
115

SYSTEMS ENGINEERING

Modeling and specification of distributed timed systems

INGENIERÍA DE SISTEMAS

Modelamiento y especificación de sistemas
distribuidos y temporizados

§ James J. Ortiz*,**

*Computer Science Faculty, University of Namur, Namur, Belgium
**Escuela de Ingeniería de Sistemas y computación , Universidad del Valle, Cali, Colombia

§ jor@info.fundp.ac.be

(Recibido: 22 de abril de 2013-Aceptado: 10 de Septiembre de 2013)

Abstract
Increasing complexity in distributed and real-time systems makes them very hard to model and specify correctly.
Different formal methods are useful for the process of modeling and specification of these kinds of systems.
Timed Automata (TA) and Distributed Timed Automata (DTA) are the dominant models of distributed and real-
time systems. Unfortunately, their language inclusion and complementation are undecidable. In this paper, we
will present logics and automata (Distributed Event Clock Automata (DECA), Memory Event Clock Automata
(RMECA), Distributed Event Clock Temporal Logic (DECTL), Memory Event Clock Temporal Logic (RMECTL)
fully decidable and they were designed to modeling, specifying and studying the behavior and in particular verifying
the correct operation of distributed and real-time systems.

Keywords: Timed Automata, Formal Methods, Temporal Logic, Distributed Timed Systems.

Resumen
El aumento en la complejidad de los sistemas distribuidos y temporizados hace que ellos sean muy difícil de modelar
y especificar correctamente. Diferentes métodos formales son útiles para el proceso de modelado y especificación
de estos tipos de sistemas. Los Autómatas Temporizados (AT) y los Autómatas Temporizados Distribuidos (ATD)
son los modelos formales más utilizados para modelar sistemas de tiempo real y distribuidos. Lamentablemente los
algoritmos existentes para calcular la inclusión y complementación de sus lenguajes son indecidible. En este artículo,
presentaremos las lógicas (Lógica Temporalizada de Eventos Distribuidos, Lógica Temporizados de Memorización
de Eventos) y los autómatas (Autómatas de Eventos Distribuidos, Autómatas de Memorización de Eventos),
totalmente decidibles. Estos métodos fueron diseñados para modelar, especificar, estudiar el comportamiento y en
especial verificar el buen funcionamiento de los sistemas de tiempo real y distribuidos.

Palabras Clave: Automatas Temporizados, Métodos Formales, Lógica Temporizados, Sistemas Distribuidos.

Ingeniería y Competitividad, Volumen 15, No. 2, p. 115 - 124 (2013)

116

1. Introduction

The traditional formalisms for reasoning about
Real-Time Systems (RTS), are not always
adequate for reasoning about Distributed Timed
Systems (DTS). The most successful techniques
for modeling RTS are Timed Automat (TA) Alur
& Dill (1994), Event Clock Automata (ECA)
Alur & Henzinger (1998) and Recursive Event
Clock Automata (RECA) Henzinger et al. (1998).
A TA is a finite automaton augmented with real-
valued clocks. The model of TA assumes perfect
clocks: all clocks have infinite precision and are
perfectly synchronized. This causes TA to have
an undecidable language inclusion problem
Alur & Dill (1994). These negative results for
TA spurred a quest for study of expressive but
still fully decidable formalisms. To restore
decidability, Alur & Henzinger (1998) proposed
to restrict the behavior of clocks. Therefore, an
Event Clock (EC) Xp is reset when a given atomic
proposition occurs. The event clock values are
deterministic and thus ECA are determinizable,
making language inclusion decidable. However,
the expressiveness of ECA is rather weak.
Furthermore, the temporal logic with Event
Clocks Raskin & Schobbens (1997) violates the
substitution principle: Any proposition should
be replaceable by a formula. Hence Henzinger et
al. (1998) introduced the notion of “Recursive”
Event. In a recursive event model (RECA),
the reset of a clock is decided by a lower-level
automaton (or formula). This automaton cannot
read the clock that is resetting. Clock resets are
thus still deterministic, but the concept of “event”
is now much more expressive. Also, Henzinger
et al. (1998) introduced the temporal logic of
recursive event clocks (EventClockTL). In Ortiz
et al. (2010), Ortiz et al. (2011), we removed
the above limitation of event clocks, inspired by
Bengtsson et al. (1998), Krishnan (1999), Akshay
et al. (2008), Alur et al. (1994), we introduced :
(i) Distributed Event Clocks (DEC) for DRTS:
A DEC xq (or yq) records the time since the last
(resp. next) reset, measured in the local time
of process q and the DEC can advance totally
independently if they are in different processes.

However Puri (1998), Wulf et al. (2004) studied
the opposite case, where the difference between
clocks (drift) is infinitesimally small. (ii) Memory
Event Clocks (MEC) for RTS : A MEC x is not
really reset, instead, a new clock is created, while
the old one is still accessible by indexing.

In Ortiz et al. (2010), Ortiz et al. (2011), we
proposed formal methods for the modeling and
specification of RTS and DRTS based on RECA with
such distributed (a.k.a independent) and memory
clocks, yielding the DECA and RMECA. We
shown that DECA and RMECA are determinizable,
thus closed under complementation; also that
their respective language inclusion problems are
decidable (more exactly, PSPACE-complete).
Additionally, in Ortiz et al. (2010), Ortiz et al.
(2011), we proposed extensions of the existing
EventClockTL with distributed clocks and
memory clocks to allow the specification of
distributed and timed properties. RMECTL are
PSPACE-complete for the satisfiability and
validity problem if the indices of the clocks are
encoded in unary and EXPSPACE-complete for
the binary case. DECTL are PSPACE-complete
for the satisfiability and validity problem. DECA
(DECTL) and RMECA (RMECTL) can been
used to specify and model systems such as the
Controller Area Network (CAN) Monot et al.
(2011), WirelessHART Networks De Biasi et al.
(2008), and the ARINC-659 protocol Gwaltney
& Briscoe (2006). This paper deals with formal
methods that can be used to automate the analysis
of complex RTS and DRTS and in particular
the analysis of the correctness of the system’s
behavior. Our contribution is to show the
applicability of DECA, RMECA, RMECTL and
DECTL over a RTS and DRTS.

Structure of the paper. The rest of the paper
is organized as follows. In sections 2, we recall
preliminary notions. In section 3, we recall the
background about of TA, Timed Temporal Logic
(TTL) and their several variants. In section 4,
we present one example of distributed real-time
system modeled on DECA and DECTL.

Ingeniería y Competitividad, Volumen 15, No. 2, p. 115 - 124 (2013)

117

2. Preliminaries

We first briefly recall the various models of time
that are used in the literature Alur & Henzinger
(1994). We present our results in the interval
semantics and recall clocks and their constraints.

2.1 Models of time

Models of time can be linear, considering a
single future, or branching, considering several
alternative futures. We only consider linear
time in this paper. Classical automata and Linear
Temporal Logic (LTL) also use a linear discrete
model of time. The point semantics adds a time
stamp to each event of this discrete model. Our
goal here is to model real-time reactive systems,
and thus we will use the real numbers as our model
of time. This avoid a premature commitment to a
discretization of time: even if computer systems
are often discrete, their discretization grain (e.g.
clock speed) should not appear at requirements
level.

Let P be a finite set of propositional symbols. A
letter is an element of a finite set Σ. In this paper,
we choose to define a letter as propositional
valuation over P, so we pose Σ = 2P. Let be
the set of natural numbers, denote the set of
real numbers, ≥0 the set of non-negative real
numbers. We use the interval semantics. We denote
by / ≥0 the set of real intervals whose bounds are
in ≥0. An interval / ∈ / ≥0 is a convex subset of

≥0. Two intervals / and / are said to be adjacent
when they are disjoint: / ∩ /’ ∅ / ∪ /’ and is an
interval. An (alternating) interval sequence is a
sequence /= /0 /1 /2 ... i.e., of non-empty intervals
of ≥0 where: (i) /0={0}; (ii) singular and open
intervals alternate; (iii) succesive intervals /j and
/j+1 are adjacent for all j ≥ 0 , (iv) if infinite,
the sequence of intervals is progressive, i.e.,
for every t∈ ≥0, there exists ∈ such that t∈/j.
An interval state sequence ρ can equivalently be
seen as a sequence of elements in 2P x / ≥0. It can
also be seen as a signal i.e. a function from ≥0 to
states: Let ρ= (σ, /) be an interval state sequence
and given t∈ ≥0, let i ∈ be the interval such

that t ∈ /j. We define ρ(t) as the state σj. Below,
our automata will consider two ISS that define the
same signal as equivalent, even if the intervals
might be split differently. Given two intervals
/1, /2, we define the interval between /1 and /2
by Betwl(/1, /2)={x|/1<x</2}. Given a set S and
an interval /, we define S Begins During / by
∃t ∈ (S ∩ /), and t ∈ S such that t</. Symmetrically,
we define S Ends During / iff ∃t , t∈ (S ∩ /) and
t ∈ S such that t>/.

2.2 Clocks

A clock is a variable that increases with time.
Thus, the value of a clock is the time elapsed
since its last reset. When we use continuous time,
there is not always a “last” reset, e.g. when the
reset holds in an open interval. For this case, we
will use non-standard clock values of the form
υ+, intuitively meaning that the clock was reset
just υ units before. The set of non-standard real
numbers, noted ≥0, is the set of {υ, υ+|υ ∈ ≥0}
ordered by <ns as following: υ1 <nsυ2

+ iff υ1 ≤ υ2.
The addition is commutative, and υ1+υ2= (υ1+υ2)

+.
⊥ is ≥0 plus a special value ⊥ for uninitialized

clocks. ⊥ is not comparable to other values, and
is absorbing for addition. Let X be a finite set
of clock names. A clock valuation over X is a
mapping υ: X→ ⊥. For a valuation υ and a time
value t ∈ ≥0, let υ+t denote the valuation such
that (υ+t)= υ(x)+t, for each clock x∈X. The set
of constraints over X, denoted Φ(X), is defined by
the following grammar where φ ranges over Φ(X),
x∈X, c∈ , and ∼ :{<, ≤, =, ≥, >}:

φ= true |x∼c| φ1 ∧ φ2

We write υ|=φ when the valuation υ satisfies
the constraint φ. When X has the value ⊥, we
evaluate x∼c to false.

2.3 Timed automata

A TA is a finite state automaton augmented with
clocks: real variables that can be reset to 0, and
other- wise increase at a uniform rate. Time is
thus global, and clocks are perfectly precise and
synchronized.

Ingeniería y Competitividad, Volumen 15, No. 2, p. 115 - 124 (2013)

118

Definition 1. A Timed Automaton is a tuple
A= (Σ, X, S, s0 , →ta, Inv, γ, F) such that: (i) Σ, is
a finite alphabet. (ii) X, is a finite set of positive
real variables called clocks. (iii) S, is a finite set of
locations. (iv) s0 ∈ S, is the initial location. (v) →ta
⊆ S x Φ(X) x 2x x S, is a finite set of transitions.
(vi) Inv:S→Φ(X) is the function of invariant.
(vii) γ:(S∪→ta)→ Σ, is the fuction than labelling
locations and transitions. (viii) F, is an acceptance
condition. For instance, for finite acceptance, we
have F⊆S, a set of final locations. We also use
Büchi (where F⊆S) or parity conditions (where
F: S→ N). TA are neither determinizable nor
complementable. Their emptiness problem can
be solved using the region construction, but
their inclusion problem is undecidable Alur &
Dill (1994).

2.4 Recursive event clock automata

Recursive Event Clock Automata (RECA) extend
Event Clock Automata (ECA). Recursive refers to
the fact that the resets of an event clock xB are
controlled by a lower level automaton B: when
B passes in a monitored location, it resets xB. We
present here a version of RECA for continuous
time, where transitions have all properties of
locations.

Definition 2. A RECA A of level / ∈ is a
tuple A=(Σ, C, S, s0 , →reca , M, γ, δ, F) such that:
(i) Σ, is a finite alphabet. (ii) C, is a finite
set of clocks, of the form xB or yB, with B
a lower-level RECA. (iii) S, is a finite set of
locations. (iv) s0 ∈ S, is the initial location. (v)
→reca ⊆ S x S, are the transitions. (vi) M ⊆(S∪ →reca),
is the set of monitored locations or transitions:
when the automaton visit such a location, it
resets the associated clock. (vii) γ:(S∪→reca)→ Σ,
is a labelling function which labels each
location or transition with a symbol. (viii)
δ:(S∪→reca)→Φ(C), gives the guard or invariant
clock constraints. (ix) F, is an acceptance
condition, e.g. a set of final locations, or
of Büchi accepting locations. Throughout
the paper, we assume this uniform naming
convention. RECA can be determinized and

thus complemented: They are fully decidable
Henzinger et al (1998).

2.5 Recursive memory event clocks automata

RMECA increase the expressive power of RECA.
In particular, an RMECA of level 0 has no
clock, it is a plain finite state automaton. An
event-recording clock and an event-predicting
clock can be associated with each monitored
automaton. The event-recording memory clock
xA

j always records the t ime that has expired
since the ith last time at which the automaton A
could pass through a monitored location, and
the event-predicting clock yA

j always records
the amount of time that will expire until the
ith next time at which the automaton A could
pass through a monitored location.

Definition 3. A RMECA is a tuple A=(P, S,
s0, →rmeca , C, γ, δ, M, F) such that: (i) P, is a
set finite of propositional symbols. (ii) S, is
a finite set of locations and s0 ⊆S is the set
of starting locations. (iii) →rmeca ⊆ S x S are the
transitions. (iv) A finite set of atomic constraints
C, containing clocks xB

j or yB
j , with B a lower-

level RMECA. (v) γ: S→2Lim(P∪C), is a function
which labels each location s∈S with the set of
limits of propositions and constraints that are
true in that location. (vi) M ⊆ S, is the set of
monitored locations: when the automaton visits
such a location, it resets the associated clock (vii)
F ⊆ S is a set of Büchi accepting locations.

The clock valuation function over a lower-
level RMECA at A and time t at ρ, is noted
υρ

t: CA→ +
⊥. It assigns a non-standard positive

real, or undefined, to each clock variable. The
resets are done when A goes in a monitored
location. The definition for recording clocks is
symmetric.

Symmetrically,

υρ
t (yA

n)=
(t-r)
(t-r)+

⊥

Ingeniería y Competitividad, Volumen 15, No. 2, p. 115 - 124 (2013)

119

If a clock of A is reset by a lower-level B, we
say that B is a direct subautomaton of A. For
the top-most automaton, we do not care about its
monitored states.

2.6 Distributed event clocks automata

To restore full decidability, we use event
clocks. For expressiveness, we use RECA
with independent clocks Akshay et al. (2008).
The event clock xA

q (or yA
q) denotes records the

time since the last (resp. next time that the
automaton A could visit a monitored state,
measured in the local time of process q.

Definition 4. A DECA is a pair (A,p) where A
is a RECA and p: C →Pr oc maps each clock
to a process Proc.

For better readability, we write the owner
process in the clock name: p(xA

q)=q. The
clock valuation depends on the ISS ρ, on the
reference time of evaluation t, and on the rate
t. It assigns a non-standard positive real, or
undefined, to each clock variable.

υρ
t (xA

n)=
(t-r)
(t-r)+

⊥

Symmetrically,

2.7 Recursive memory event clocks
temporal logic

RMECTL extends EventClockTL. We generalize
its modalities by adding an index k: the
recording modality

  I
K jφ means that the Kth last

time that φ was true is in interval t – I, and
symmetrically the predicting modality

  I
K jφ says

the next occurrence Kth of φ will occur within I.
We count only one occurrence for an interval
where φ is continuously true. Such a modality
in fact introduces a memory event clock:

  I
K jφ

means that we reset a memory clock each
time φ is true, and we constrain the Kth clock
value at the time of evaluation. We denote the
temporal logic where k ≤ n by RMECTLn, for
n∈ . If we allow only index 1, we find back
EventClockTL.

Definition 5. The formulas of RMECTL are
built from propositional symbols P, boolean
connectives, the temporal operators until and
since and two symmetric real-time modalities,
the recording modality and predicting modality.
The formulas φ of RMECTL are defined by
the grammar:

where P is a propositional symbol, / ∈ /
  is

an interval, and n∈ +. Let φ be a RMECTL
formula and let ρ be a signal whose propositional
symbols contain all propositions that occur in
φ. The semantics of the new modalities are:

(ρ, t)

(j,t) = I

nj iff the set {tn | ∃t1, ... , tn−1, s1, ... , sn−1:
tn < sn−1 < tn−1 < ...
 < t1 < t, ∧i≤n(ρ, ti) |= φ,
∧i<n(ρ, si) |≠ φ} Ends During t − I

(ρ, t)

(j,t) = I

nj iff the set {tn | ∃t1, ... , tn−1, s1, ... , sn−1:
tn > sn−1 > tn−1
 > ... > t1 > t, ∧i≤n(ρ, ti) |= φ, ∧i<n(ρ,
si) |≠ φ} Begins During t + I

where Begins During and Ends During have been
defined in Section 2.1. The intuition is that each
ti is a witness of an interval where φ was true,
that caused a reset of the clock. They must be
distinct intervals, i.e. they must be separated
by an interval where φ is false, as witnessed
by si. Intuitively, the n-th previous reset is

Ingeniería y Competitividad, Volumen 15, No. 2, p. 115 - 124 (2013)

120

Figure. 1. Complex Event Detection from [6]

the maximum of the candidates tn, but this
maximum might not exist. Hence the indirect
definition using Begins During.

2.8 Recursive distributed event clocks temporal
logic

DECTL extend the EventClockTL with distributed
(independent) clocks. As in subsection 2.6, we
assume a set of processes Proc. The clocks of each
process will evolve according to its local time
by a Rate . DECTL is based on LTL, and adds
two local real-time modalities. The recording
modality means that was true last time in
the interval I according to the local time of
q. Symmetrically, the predicting modality qI φ
says the will occur within I according to the
local time of q. If we have only one process, we
find back EventClockTL.

Definition 6. The formulas of DECTL are defined
by the grammar:

where is a propositional symbol, is an interval
and . We can now define how to evaluate the
truth value of a DECTL formula along an ISS
ρ and a Rate , noted . We omit below.

(ρ, t) |= p iff p ∈ ρ(t)
(ρ, t) |= ¬ φ iff (ρ, t)| φ
(ρ, t) |= φ1 ∧ φ2 iff (ρ, t) |= φ1 and (ρ, t) |= φ2
(ρ, t) |= φ1 U φ2 iff ∃ t > t. (ρ, t) |= φ2 and ∀
t ∈ (t, t), (ρ, t) |= φ1
(ρ, t) |= φ1 S φ2 iff ∃ t < t. (ρ, t) |= φ2 and ∀
t ∈ (t , t), (ρ, t) |= φ1
(ρ, t) |= φ iff ∃ t < t. τq(t) − τq(t) ∈ I ∧
(ρ, t) |=  I

q φ and ∀t < t. τq(t) − τq(t) < I, (ρ,
t) |≠ φ
(ρ, t) |=  I

q
 φ iff ∃t > t. τq(t) − τq(t) ∈ I ∧ (ρ,

t) |= φ and ∀t > t. τq(t) − τq(t) < I, (ρ, t) |≠ φ

3. Applications of distributed and timed
systems

In this section it will be illustrated several
examples of distributed and real-time systems
which we can model on DECA (RMECTL)
and specify on RMECTL (DECTL).

3.1 Complex event detection

In this subsection we introduce the Complex Event
Detection CED Wang et al. (2006) to show how
this RTS can be modeled as a RMECA and
also we consider the properties of the RTS in
RMECTL. Figure 1 shows a CED as a processing

Ingeniería y Competitividad, Volumen 15, No. 2, p. 115 - 124 (2013)

121

Figure 2. RMECA Model of the CED

concept in order to identify significant events in
a cloud of events. CED employs techniques such
as complex patterns detection of multiple events:
correlation, abstraction, hierarchies between
events and relationships between events such as
causality, membership, timing and event-driven
process. The function of the CED is to discover
the information in the events that passing through
all layers of an organization and then to analyze
its impact at the macro level as complex event
and then decide which plan of action in real
time. The CED is a technique that reveals the
complex events, by inference and correlation of
elementary events. There are many commercial
applications of CED as securities trading, fraud
detection in credit card and business activity
monitoring. Here we shown a simplified version
of the CED as a RMECA.

Modeling the CED in RMECA: Figure 2 shows
the CED modeled as a RMECA. The high level
automaton has the event clock variables and
the lower level automaton has the events. The
clocks are reset by the initial monitored transition
of B. In the location q (lower lever automaton),
the automaton receives the event “start”. When
the automaton receives this event, its control

evolves to the monitored location q1 the clock
constraint y3

B ≤1 of the high level automaton
imposes that the users will send the events
“request” 1 time units before crossing the
edge to the location q2. The invariant y3

B ≤1
records the amount of time that will expire
until the 1 next time at which the automaton
B could pass through a monitored location.
The automaton evolves to the monitored
location q2 and the clock constraint yB ≤1 of
the high level automaton and a new clock with
value 0 is created. In q2, the control must wait
at least 1 time units and records the amount
of time that will expire until the next time at
which the automaton B could pass through a
monitored location, before crossing the edge to
the location q0.

Properties of CED in RMECTL: The property
“asserts that eventually no more that third request
per 1 time units will be run and that surely for
any attempt to start a request, the request will
be run within 1 time units.” can be described
in RMECTL by the formula:

Ingeniería y Competitividad, Volumen 15, No. 2, p. 115 - 124 (2013)

122

3.3 Communication Protocol

In this subsection we introduce the communication
protocol example to show how this DRTS can be
modeled as a DECA and also we can consider
the properties of the DRTS in DECTL. Let us
assume a DRTS consisting of application tasks
running under an Operating System while using
several processors interconnected via Internet.
The crucial problem is to verify both, time
properties (e.g. end-to-end response time) and
logic properties (e.g. unsafe state avoidance)
of the applications incorporating two kinds of
shared resources, the processor and the bus. The
disadvantage of the traditional models (TA, ECA,
RECA, EventClockTL) to specify and verify
these systems is that they do not consider the
independent clocks of the tasks (e.g. clocks of
a task evolve synchronously, but independently
of the clocks of the other tasks). The Figure 3
shows the Communication Protocol. The protocol
is a simple system consisting of two processes
interconnected via Internet. Two Sender and
two Reader tasks are running on each process.
The clocks on each process are periodically

Figure 3. Fault-Tolerant Protocol

Figure 4. DECA Model of the Protocol

invoked whenever a message must be sent. The
clock activates the task SenderTask, which sends
a message to Internet. Receiving a message
by a process causes an activation of the task
SenderTask.

Modeling the Communication Protocol in DECA:
Figure 4 shows the communication protocol
modeled as a DECA. The high level automaton
has the event clock variables and the lower
lever automaton has the events. We will call
the processes 1 and 2 of the Figure 3 as p and
q (Proc = {p, q}, and the set of propositions
P = send, retry, ack}) and also the clocks in the

Ingeniería y Competitividad, Volumen 15, No. 2, p. 115 - 124 (2013)

123

processes p and q running to different speeds.
The clocks are reset by the initial monitored
transition of B. In the location q0 (lower lever
automaton), the process is waiting for the event
“send”. When the process receives this event,
its control evolves to the monitored location
q1 and the clock constraint yB

p ≤ 5 of the high
level automaton imposes that the message has
to be send before 5 time units for the process
p, the clock constraint yB

p ≤ 3 of the high level
automaton imposes that the message has to be
send before 3 time units for the process q.
So this requirement imposes that the message
takes less than 5 time units to go “done” for
the process p and the message takes less than
3 time units to go “done” for the process
q, when they receives the information that a
message is sent. In q1, the control must wait
at least 5 time units before crossing the edge
to the location q2 or the control must wait at
least 3 time units before crossing the edge
to the location q2. In q2, the control must wait
the “ack” signal before crossing the edge to the
location q3.

Properties of the communication protocol in
DECTL: The property “a message is followed
by an ack within 5 time units for the process
p” can be described in DECTL by the formula:

The property “a message is followed by an
ack within 3 time units for the process q” can
be described in DECTL by the formula:

The property “asserts that eventually a message
will be done and that surely for any attempt to
send a message, the message will be done
within 5 time units for the process p.” can be
described in DECTL by the formula:

The property “asserts that eventually a message
will be done and that surely for any attempt to

send a message, the message will be done within
3 time units for the process q.” can described
in DECTL by the formula:

4. Conclusions

We have presented the basis of two framework for
analyzing, modeling and specify distributed and
real-time systems through of the introduction
of independent (or distributed) event clocks,
inspired by DECA and the introduction of
memory event clocks that are designed to
overcome the criticism for being too weak since
they only see the time to next event. In contrast
to Akshay et al. (2008) and Alur et al. (1994) , we
have presented two real-time semantics, and
thus we can specify distributed and real-time
properties. We have presented DECA and that
they are fully decidable, and that their language
inclusion problem are PSPACE-complete and
EXPSPACE-complete. We presented the logic
DECTL and RMECTL to specify distributed
real-time properties with distributed observers
and allows references to the nth next (nth
last) time a formula will be (was) true. The
problems of satisfiability, validity and model-
checking of DECTL are PSPACE- complete and
RMECTL are EXPSPACE-complete. Finally,
we have showed that DECA (DECTL), RMECA
(RMECTL) can been used to specify and RTS
and DRTS.

5. Acknowledgements

This work was funded by Colciencias (Instituto
Colombiano para el Desarrollo de la Ciencia y
la Tecnología “Francisco José de Caldas”) and
to the PReCISE (Research Center in Information
Systems Engineering) Université de Namur.

6. References

Akshay, S., Bollig,B., Gastin, P., Mukund, M.,
& K. N. Kumar. (2008). Distributed Timed
Automata with independently evolving clocks. In

Ingeniería y Competitividad, Volumen 15, No. 2, p. 115 - 124 (2013)

124

proceedings of the 19th, International Conference on
Concurrency Theory, Toronto, Canada, p. 19 - 22.

Alur, R ., & Dill, D.L. (1994). A theory of timed
automata. Journal of Theoretical Computer
Science 126(2), 183 -235.

Alur, R. , Fix, L., Henzinger, T. A. (1994). A
determinizable class of timed automata. In
proceedings of the conference of Computer Aided
Verification, Stanford, California, p. 1-13.

Alur, R., & Henzinger, T. A. (1991). Logics
and models of real time: A survey. In REX
Workshop, The Netherlands, p, 74–106.

Bengtsson, J., Jonsson, B., Lilius, J., & Yi,
W. (1998). Partial order reductions for timed
systems. In proceedings of the International
Conference on Concurrency Theory, Nice, France,
p 485–500.

CED protocol. (2009). http://www.thecepblog.com/.

De Biasi, M., Snickars, C., Landernäs, K., &
Isaksson, A. (2008). Simulation of process control
with wirelesshart networks subject to clock
drift. In proceedings of the 32th Annual IEEE
International Computer Software and Applications
Conference, Paris, France, p. 1355-1360.

De Wulf, M., Doyen, L., Markey, N., & Raskin,
J-F. (2004). Robustness and implementability of
timed automata. In proceedings of the International
Conferences on Formal Modeling and Analysis of
Timed Systems, Formats. Grenoble, France, p.
118-133.

Gwaltney, D. A., & Briscoe, J. M. (2006).
Comparison of communication architectures for
spacecraft modular avionics systems. Technical
report , Boston, USA, p. 36-72.

Heitmeyer, C., & Lynch, N., (1994). The generalized
railroad crossing: A case study in formal
verification of real-time systems, Technical report,
Cambridge, MA, USA, p. 120-131.

Henzinger, T. A., Raskin, J.-F., & Schobbens,
P.-Y. (1998). The regular real-time languages.
In the 25th, international Colloquium ICALP,
Aalborg, Denmark, p. 580–591.

P. Krishnan. (1999). Distributed timed automata.
Journal of Theoretical Computer Science. 28(2),
5-21.

Monot, A., Navet, N., & Bavoux, B. (2011).
Impact of clock drifts on CAN frame response
time distributions distributions. In 16th
IEEE International Conference on Emerging
Technologies and Factory Automation, Toulouse,
France, p. 380-396.

Ortiz, J., Legay, A., & Schobbens. P-Y. (2010).
Memory event clocks. In proceedings of the
international conferences on Formal Modeling
and Anlysis of Timed Systems, Klosterneuburg,
Austria, p. 198-212.

Ortiz, J., Legay, A., & Schobbens, P-Y. (2011).
Distributed event clock automata extended
abstract, In the 16th International Conference
CIAA, Blois, France, p. 250–263.

A. Puri. (1998). Dynamical properties of timed
automata. In A. P. Ravn and H. Rischel, editors,
FTRTFT, 1486, p. 210–227.

Raskin, J-F. (1999). Logics, Automata and
Classical Theories for Deciding Real Time. Ph.D
thesis, FUNDP University, Namur, Belgium.

Raskin, J.-F. & Schobbens, P.-Y. (1997). State
clock logic: A decidable real-time logic. In
the international Workshop HART, Grenoble,
France, p. 33–47.

Wang, F., Liu, S., Liu, P., & Bai, Y. (2006).
Bridging physical and virtual worlds: Complex
event processing for rfid data streams. In the
10th International Conference on Extending
Database Technology, Munich, Germany, p. 588–
607.

Ingeniería y Competitividad, Volumen 15, No. 2, p. 115 - 124 (2013)

