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Abstract
Increasing complexity in distributed and real-time systems makes them very hard to model and specify correctly. 
Different formal methods are useful for the process of modeling and specification of these kinds of systems. 
Timed Automata (TA) and Distributed Timed Automata (DTA) are the dominant models of distributed and real-
time systems. Unfortunately, their language inclusion and complementation are undecidable.  In this paper, we 
will present logics and automata (Distributed Event Clock Automata (DECA), Memory Event Clock Automata 
(RMECA), Distributed Event Clock Temporal Logic (DECTL), Memory Event Clock Temporal Logic (RMECTL) 
fully decidable and they were designed to modeling, specifying and studying the behavior and in particular verifying 
the correct operation of distributed and real-time systems.   

Keywords: Timed Automata, Formal Methods, Temporal Logic, Distributed Timed Systems.

Resumen
El aumento en la complejidad de los sistemas distribuidos  y temporizados hace  que ellos sean  muy difícil de modelar 
y especificar correctamente. Diferentes métodos formales son útiles para el proceso de modelado y especificación 
de estos tipos de sistemas. Los Autómatas Temporizados (AT) y los Autómatas Temporizados Distribuidos (ATD) 
son los modelos formales más utilizados para modelar  sistemas de tiempo real y distribuidos. Lamentablemente los 
algoritmos existentes para calcular la inclusión y complementación de sus lenguajes son indecidible. En este artículo, 
presentaremos las lógicas (Lógica Temporalizada de Eventos Distribuidos, Lógica Temporizados de Memorización 
de Eventos) y los autómatas (Autómatas de Eventos Distribuidos, Autómatas de Memorización de Eventos), 
totalmente decidibles. Estos métodos fueron diseñados para modelar, especificar,  estudiar el comportamiento y en 
especial verificar el buen funcionamiento de los sistemas de tiempo real y distribuidos.

Palabras Clave: Automatas Temporizados, Métodos Formales, Lógica Temporizados, Sistemas Distribuidos. 
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1. Introduction

The traditional formalisms for reasoning about 
Real-Time Systems (RTS), are not always 
adequate for reasoning about Distributed Timed 
Systems (DTS). The most successful techniques 
for modeling RTS are Timed Automat (TA) Alur 
& Dill (1994), Event Clock Automata (ECA) 
Alur & Henzinger (1998) and Recursive Event 
Clock Automata (RECA) Henzinger et al. (1998). 
A TA is a finite automaton augmented with real-
valued clocks. The model of TA assumes perfect 
clocks: all clocks have infinite precision and are 
perfectly synchronized. This causes TA to have 
an undecidable language inclusion problem 
Alur & Dill (1994). These negative results for 
TA spurred a quest for study of expressive but 
still fully decidable formalisms. To restore 
decidability, Alur & Henzinger (1998) proposed 
to restrict the behavior of clocks. Therefore, an 
Event Clock (EC) Xp is reset when a given atomic 
proposition occurs. The event clock values are 
deterministic and thus ECA are determinizable, 
making language inclusion decidable. However, 
the expressiveness of ECA is rather weak. 
Furthermore, the temporal logic with Event 
Clocks Raskin & Schobbens (1997) violates the 
substitution principle: Any proposition should 
be replaceable by a formula. Hence Henzinger et 
al. (1998) introduced the notion of “Recursive” 
Event. In a recursive event model (RECA), 
the reset of a clock is decided by a lower-level 
automaton (or formula). This automaton cannot 
read the clock that is resetting. Clock resets are 
thus still deterministic, but the concept of “event” 
is now much more expressive. Also, Henzinger 
et al. (1998) introduced the temporal logic of 
recursive event clocks (EventClockTL). In Ortiz 
et al. (2010), Ortiz et al. (2011), we removed 
the above limitation of event clocks, inspired by 
Bengtsson et al. (1998), Krishnan (1999), Akshay 
et al. (2008), Alur et al. (1994), we introduced : 
(i) Distributed Event Clocks (DEC) for DRTS: 
A DEC xq (or yq ) records the time since the last 
(resp. next) reset, measured in the local time 
of process q and the DEC can advance totally 
independently if they are in different processes. 

However Puri (1998), Wulf et al. (2004) studied 
the opposite case, where the difference between 
clocks (drift) is infinitesimally small. (ii) Memory 
Event Clocks (MEC) for RTS : A  MEC x is not 
really reset, instead, a new clock is created, while 
the old one is still accessible by indexing.

In Ortiz et al. (2010), Ortiz et al. (2011), we 
proposed formal methods for the modeling and 
specification of RTS and DRTS based on RECA with 
such distributed (a.k.a independent) and memory 
clocks, yielding the DECA and RMECA. We 
shown that DECA and RMECA are determinizable, 
thus closed under complementation; also that 
their respective language inclusion problems are 
decidable (more exactly, PSPACE-complete). 
Additionally, in Ortiz et al. (2010), Ortiz et al. 
(2011), we proposed extensions of the existing 
EventClockTL with distributed clocks and 
memory clocks to allow the specification of 
distributed and timed properties. RMECTL are 
PSPACE-complete for the satisfiability and 
validity problem if the indices of the clocks are 
encoded in unary and EXPSPACE-complete for 
the binary case. DECTL are PSPACE-complete 
for the satisfiability and validity problem. DECA 
(DECTL) and RMECA (RMECTL) can been 
used to specify and model systems such as the 
Controller Area Network (CAN) Monot et al. 
(2011), WirelessHART Networks De Biasi et al. 
(2008), and the ARINC-659 protocol Gwaltney 
& Briscoe (2006). This paper deals with formal 
methods that can be used to automate the analysis 
of complex RTS and DRTS and in particular 
the analysis of the correctness of the system’s 
behavior. Our contribution is to show the 
applicability of DECA, RMECA, RMECTL and 
DECTL over a RTS and DRTS.

Structure  of  the  paper. The rest of the paper 
is organized as follows. In sections 2, we recall 
preliminary notions. In section 3, we recall the 
background about of TA, Timed Temporal Logic 
(TTL) and their several variants. In section 4, 
we present one example of distributed real-time 
system modeled on DECA and DECTL. 
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2. Preliminaries

We first briefly recall the various models of time 
that are used in the literature  Alur & Henzinger 
(1994). We present our results in the interval 
semantics and recall clocks and their constraints.

2.1   Models of time

Models of time can be linear, considering a 
single future, or branching, considering several 
alternative  futures. We only consider linear 
time in this paper. Classical automata and Linear 
Temporal Logic (LTL) also use a linear discrete 
model of time. The point semantics  adds a time 
stamp to each event of this discrete model. Our 
goal here is to model real-time reactive systems, 
and thus we will use the real numbers as our model 
of time. This avoid a premature commitment to a 
discretization of time: even if computer systems 
are often discrete, their discretization grain (e.g. 
clock speed) should not appear at requirements 
level.

Let  P  be a finite set of propositional symbols.  A 
letter is an element of a finite set Σ. In this paper, 
we choose to define a letter as propositional 
valuation over P, so we pose Σ = 2P.  Let  be 
the set of natural numbers,  denote the set of 
real numbers,  ≥0  the set of non-negative real 
numbers. We use the interval semantics.  We denote 
by / ≥0 the set of real intervals whose bounds are 
in ≥0.  An interval / ∈ / ≥0 is a convex subset of   

≥0. Two intervals / and  / are said to be adjacent 
when they are disjoint: / ∩ /’ ∅ / ∪ /’ and is  an  
interval.  An  (alternating) interval sequence is a 
sequence /= /0 /1 /2 ... i.e.,  of non-empty intervals 
of  ≥0 where: (i) /0={0}; (ii) singular and open  
intervals alternate; (iii) succesive intervals /j and 
/j+1 are  adjacent for all j ≥  0 , (iv) if  infinite, 
the  sequence of  intervals is progressive,  i.e., 
for  every t∈ ≥0, there exists ∈ such that t∈/j.  
An interval state sequence ρ can equivalently  be 
seen as a sequence of elements in 2P  x / ≥0.  It can 
also be seen as a signal i.e. a function from ≥0 to 
states: Let ρ= (σ, /) be an interval state sequence 
and given t∈ ≥0, let i ∈ be the interval such  

that  t ∈ /j. We define ρ(t) as  the state σj. Below, 
our automata will consider two ISS that define the 
same signal as equivalent, even if the intervals 
might be split differently. Given two intervals  
/1, /2, we define the interval between /1 and /2 
by Betwl(/1, /2)={x|/1<x</2}. Given a set S and 
an interval /, we define S Begins During / by 
∃t ∈ (S ∩ /), and t ∈ S such that t</.  Symmetrically, 
we define S Ends During / iff ∃t , t∈ (S ∩ /) and 
t ∈ S such  that t>/.

2.2 Clocks

A clock is a variable that increases with time.  
Thus, the value of a clock is the time elapsed 
since its last reset. When we use continuous time, 
there is not always a  “last” reset, e.g. when   the 
reset holds in an open interval.  For this case, we 
will use non-standard clock values of the form   
υ+, intuitively meaning  that the clock was reset 
just υ units before.  The set of non-standard real 
numbers, noted ≥0, is the set of  {υ, υ+|υ ∈ ≥0} 
ordered by <ns as following: υ1 <nsυ2

+ iff  υ1 ≤ υ2. 
The addition is commutative, and υ1+υ2= (υ1+υ2)

+.  
⊥ is ≥0 plus a special value ⊥ for uninitialized 

clocks. ⊥ is not comparable to other values, and  
is  absorbing  for  addition. Let X be a finite set 
of clock names.  A clock valuation over X is a 
mapping υ: X→ ⊥.  For a valuation υ and  a  time  
value  t ∈ ≥0,  let  υ+t denote the valuation such 
that  (υ+t)= υ(x)+t, for  each  clock x∈X. The set 
of constraints over X, denoted Φ(X), is  defined by 
the following grammar where φ ranges over Φ(X),  
x∈X, c∈ ,  and  ∼ :{<, ≤, =, ≥, >}: 

φ= true |x∼c| φ1 ∧ φ2

We write υ|=φ when the valuation υ satisfies 
the constraint φ. When X has the value ⊥,  we  
evaluate x∼c to  false. 

2.3 Timed automata

A TA is a finite state automaton augmented with 
clocks: real variables that can be reset to 0, and 
other- wise increase at a uniform rate. Time is 
thus global, and clocks are perfectly precise and 
synchronized. 
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Definition 1.  A Timed Automaton  is  a  tuple    
A= (Σ, X, S, s0 , →ta, Inv, γ, F) such that: (i) Σ, is 
a finite alphabet.  (ii) X, is a finite set of positive 
real variables called clocks. (iii) S, is a finite set of 
locations.  (iv) s0 ∈ S, is  the initial location. (v) →ta 
⊆ S x Φ(X) x 2x x S, is a  finite set of transitions. 
(vi) Inv:S→Φ(X) is the function of invariant.  
(vii) γ:(S∪→ta)→ Σ, is the fuction than labelling 
locations and transitions. (viii) F, is an  acceptance 
condition. For instance, for  finite  acceptance,  we  
have  F⊆S,  a  set  of  final  locations.  We also use   
Büchi  (where F⊆S)  or  parity  conditions  (where  
F: S→ N). TA  are  neither  determinizable nor  
complementable. Their emptiness  problem  can  
be solved using  the  region   construction,  but  
their inclusion  problem  is  undecidable  Alur & 
Dill (1994).

2.4 Recursive event clock automata
 
Recursive Event Clock Automata (RECA) extend 
Event Clock Automata (ECA). Recursive refers to 
the  fact that the resets of an event clock xB are   
controlled  by a  lower level automaton  B: when 
B passes in a monitored location, it resets xB. We 
present here  a   version of RECA  for  continuous  
time,  where transitions  have  all properties of 
locations.

Definition   2.   A RECA A of  level / ∈  is  a  
tuple A=(Σ, C, S, s0 , →reca , M, γ, δ, F)  such  that:  
(i) Σ, is  a  finite  alphabet.  (ii) C, is  a  finite  
set  of  clocks,  of  the  form xB or yB, with  B  
a  lower-level RECA. (iii) S, is  a  finite  set  of  
locations.  (iv) s0 ∈ S, is  the  initial location.  (v) 
→reca ⊆ S x S, are the  transitions.  (vi) M ⊆(S∪ →reca), 
is  the  set  of monitored  locations  or  transitions:  
when the  automaton visit such  a  location,  it  
resets the  associated clock. (vii) γ:(S∪→reca)→ Σ,
is a labelling  function which  labels each  
location  or transition  with  a  symbol. (viii) 
δ:(S∪→reca)→Φ(C), gives  the guard   or  invariant  
clock  constraints.  (ix) F, is  an  acceptance  
condition,  e.g.  a  set  of  final  locations,  or 
of  Büchi  accepting  locations. Throughout 
the paper,  we  assume  this  uniform naming  
convention. RECA  can be determinized and 

thus complemented: They are fully decidable  
Henzinger et al (1998).

2.5 Recursive memory event clocks automata

RMECA increase the expressive power of RECA.  
In particular,  an  RMECA  of  level 0  has  no  
clock,   it  is  a  plain finite  state  automaton.  An  
event-recording  clock  and  an event-predicting   
clock   can   be   associated   with  each   monitored   
automaton.  The  event-recording   memory   clock 
xA

j  always records  the  t ime  that  has   expired   
since  the ith last time  at   which   the  automaton   A  
could  pass   through  a   monitored  location,   and  
the  event-predicting  clock yA

j  always   records   
the  amount  of   time  that  will   expire  until   the    
ith  next time  at  which  the  automaton  A  could  
pass through a   monitored  location.

Definition  3.   A RMECA is  a  tuple A=(P, S, 
s0, →rmeca , C, γ, δ, M, F) such  that:  (i) P, is a 
set    finite of  propositional  symbols.  (ii) S, is  
a  finite  set  of  locations  and s0 ⊆S is the set   
of  starting   locations. (iii) →rmeca ⊆ S x S are the 
transitions.  (iv) A  finite  set  of atomic constraints  
C, containing  clocks xB

j  or yB
j  , with  B  a  lower-

level  RMECA.  (v) γ: S→2Lim(P∪C), is  a  function  
which labels each location s∈S with  the  set  of  
limits of propositions   and  constraints   that  are  
true   in  that  location. (vi) M ⊆ S, is  the  set  of 
monitored  locations:  when  the  automaton  visits  
such  a  location, it resets the associated clock (vii) 
F ⊆ S is  a  set  of  Büchi  accepting  locations.

The  clock  valuation  function  over  a  lower-
level  RMECA  at A and  time t at ρ, is  noted 
υρ

t: CA→ +
⊥.  It  assigns  a  non-standard  positive  

real, or undefined, to each  clock variable. The 
resets are done when  A  goes  in  a  monitored  
location.  The  definition  for recording  clocks  is  
symmetric.                                            

Symmetrically, 

υρ
t (yA

n  )=
(t-r)
(t-r)+

⊥
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If a clock of A is reset by a lower-level B, we 
say that B is a direct subautomaton of A.  For 
the top-most automaton, we do not care about its 
monitored states.

2.6 Distributed event clocks automata

To restore full decidability,  we  use  event  
clocks. For expressiveness, we use RECA  
with independent  clocks Akshay et al. (2008). 
The event clock xA

q (or yA
q ) denotes records  the 

time since  the  last  (resp. next time that the 
automaton A could visit  a  monitored  state,  
measured  in  the  local  time  of process q.

Definition 4.  A DECA is a pair (A,p) where A 
is a RECA and p: C →Pr oc maps each  clock 
to  a process Proc.

For better readability, we write the owner 
process in the clock name: p(xA

q)=q. The 
clock valuation  depends on the ISS ρ, on the 
reference time of evaluation t, and on the rate 
t. It assigns a non-standard   positive real, or 
undefined, to each clock variable.

υρ
t (xA

n  )=
(t-r)
(t-r)+

⊥

Symmetrically,

2.7  Recursive  memory  event  clocks 
temporal logic

RMECTL extends EventClockTL. We generalize 
its modalities  by  adding an  index k: the 
recording modality  

  I
K jφ means  that the Kth last  

time  that φ was  true is  in  interval t – I, and 
symmetrically the  predicting  modality 

  I
K jφ says 

the next occurrence Kth of φ will  occur  within  I. 
We  count only  one occurrence for an interval 
where φ    is  continuously true. Such   a   modality  
in fact introduces  a memory  event  clock: 

  I
K jφ 

means   that  we  reset  a  memory  clock   each  
time φ  is true, and   we constrain the Kth clock  
value  at  the  time  of  evaluation.   We denote the  
temporal  logic  where k ≤ n by RMECTLn,  for 
n∈ .  If we  allow  only  index  1,  we  find  back  
EventClockTL.

Definition  5.   The formulas of RMECTL are 
built from propositional symbols P, boolean 
connectives, the temporal operators until and  
since and two symmetric real-time modalities,  
the  recording  modality  and predicting  modality. 
The  formulas  φ of  RMECTL  are defined  by  
the grammar:

where P is a  propositional  symbol, / ∈ /
   is  

an  interval,  and n∈ +.  Let  φ be  a RMECTL 
formula and  let ρ be a signal  whose  propositional  
symbols  contain  all  propositions  that  occur  in   
φ. The   semantics  of  the  new  modalities  are:

(ρ, t)
 
(j,t) = I

nj iff  the  set {tn | ∃t1, ... , tn−1, s1, ... , sn−1:  
tn  <  sn−1  <  tn−1 < ...  
                                <  t1  <  t, ∧i≤n(ρ, ti)  |=  φ,  
∧i<n(ρ, si)  |≠ φ}  Ends  During  t  −  I

(ρ, t)
 
(j,t) = I

nj iff  the  set  {tn  |  ∃t1, ... , tn−1,  s1, ... , sn−1:  
tn  >  sn−1  >  tn−1  
             >  ...   >  t1  >  t,  ∧i≤n(ρ, ti)  |= φ,  ∧i<n(ρ, 
si)  |≠ φ}  Begins  During  t  +  I

where Begins During and Ends During  have  been  
defined  in  Section  2.1.  The intuition is that each 
ti is a witness  of  an  interval  where φ was  true,  
that  caused  a  reset of  the  clock.  They must be 
distinct  intervals, i.e. they must  be  separated  
by  an  interval where φ is false,  as  witnessed  
by  si. Intuitively, the  n-th  previous  reset  is  
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Figure. 1.  Complex  Event  Detection  from  [6]

the  maximum of  the  candidates  tn,   but  this  
maximum   might  not  exist.  Hence  the  indirect  
definition using  Begins  During.

2.8 Recursive distributed event clocks temporal 
logic

DECTL extend the EventClockTL with distributed 
(independent) clocks. As in subsection 2.6, we  
assume a set of processes Proc. The clocks of each 
process will evolve according  to  its local time  
by a Rate  . DECTL is based on LTL, and adds 
two local real-time  modalities.   The   recording 
modality   means that    was  true  last time in 
the  interval  I   according  to  the  local  time  of 
q. Symmetrically,  the  predicting modality  qI φ   
says  the     will  occur   within  I  according  to  the 
local time of q. If  we  have  only one process,  we  
find  back  EventClockTL.

Definition 6.  The formulas of DECTL are defined 
by the grammar:

where  is  a  propositional  symbol,    is  an  interval  
and   .  We can  now define how to evaluate  the  
truth  value  of  a  DECTL  formula  along  an  ISS  
ρ  and  a  Rate  ,   noted  .  We  omit    below.

(ρ, t)  |= p  iff  p  ∈  ρ(t)
(ρ, t)  |=  ¬ φ  iff  (ρ, t)| φ
(ρ, t)  |= φ1 ∧  φ2  iff  (ρ, t)  |=  φ1  and  (ρ, t)  |=  φ2
(ρ, t)  |= φ1 U φ2 iff  ∃  t  >  t.  (ρ, t)  |=  φ2  and  ∀   
t  ∈  (t, t  ),  (ρ, t)  |=  φ1
(ρ, t)  |= φ1 S φ2  iff  ∃  t  <  t.  (ρ, t)  |=  φ2  and  ∀   
t  ∈  (t  , t),  (ρ, t)  |=  φ1
(ρ, t)  |=  φ  iff  ∃  t  <  t.  τq(t)  −  τq(t )  ∈  I  ∧  
(ρ, t)  |=   I

q  φ and ∀t  <  t.  τq(t)  −  τq(t  ) <  I,  (ρ, 
t) |≠ φ
(ρ, t)  |=    I

q
 φ  iff  ∃t  >  t. τq(t  )  −  τq(t)  ∈   I  ∧  (ρ, 

t)  |=  φ and ∀t  >  t.  τq(t)  −  τq(t)  <  I,  (ρ, t)  |≠ φ

3. Applications  of  distributed  and timed  
systems

In  this  section  it  will  be  illustrated  several  
examples  of  distributed  and  real-time  systems 
which we   can  model  on  DECA  (RMECTL)  
and  specify  on  RMECTL  (DECTL).

3.1 Complex event detection

In this subsection we introduce the Complex Event 
Detection CED Wang et al. (2006)  to  show  how 
this  RTS can be  modeled  as  a  RMECA  and  
also  we  consider  the  properties  of  the RTS in 
RMECTL. Figure 1 shows a CED as  a  processing  
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Figure 2.  RMECA  Model  of  the  CED

concept  in order  to  identify  significant events in 
a cloud of events.  CED employs techniques  such  
as complex patterns detection of multiple events: 
correlation,   abstraction, hierarchies between  
events  and  relationships  between  events such as 
causality, membership, timing and  event-driven  
process.  The  function of   the  CED  is  to discover  
the  information in the events that passing through 
all layers of an organization and then to analyze 
its impact at  the  macro  level  as  complex  event  
and  then  decide  which  plan of action in real 
time. The CED is a technique that reveals the 
complex events, by inference and correlation of  
elementary events. There are many commercial 
applications of CED as securities trading, fraud 
detection in credit card and  business  activity  
monitoring.  Here we  shown   a  simplified version 
of the CED  as   a  RMECA.

Modeling  the  CED  in  RMECA:  Figure  2  shows  
the  CED  modeled  as  a  RMECA.  The high  level 
automaton  has  the  event  clock  variables  and  
the  lower  level  automaton  has the  events.  The 
clocks are reset by the initial monitored transition 
of B. In the location q (lower lever  automaton), 
the automaton receives  the  event  “start”.  When  
the  automaton receives this  event,  its  control  

evolves  to the monitored   location  q1  the  clock  
constraint y3

B    ≤1 of  the  high   level  automaton  
imposes  that the users  will   send  the  events  
“request” 1  time   units  before  crossing   the  
edge  to  the  location q2. The invariant y3

B    ≤1 
records the  amount  of  time  that  will  expire  
until  the  1  next   time  at  which the automaton   
B  could  pass through  a  monitored  location.   
The  automaton  evolves to  the  monitored 
location  q2 and  the  clock  constraint yB      ≤1 of  
the  high  level automaton and  a  new  clock with 
value 0 is created. In q2, the control must wait 
at  least 1 time units and  records  the  amount  
of time that will expire  until  the  next  time  at  
which  the automaton  B could  pass  through  a 
monitored location, before  crossing  the  edge  to  
the  location  q0.

Properties of CED in RMECTL:  The property 
“asserts that eventually no more  that third request 
per 1 time  units  will  be  run  and  that  surely  for  
any  attempt  to  start  a request,  the  request will  
be  run  within  1  time  units.”  can  be  described  
in  RMECTL  by the  formula:
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3.3 Communication Protocol

In this subsection we introduce the communication 
protocol example to show how this DRTS can be 
modeled as a DECA and also we can consider 
the properties of the DRTS in DECTL. Let us 
assume a DRTS consisting of application tasks 
running under an Operating System while using 
several processors interconnected via Internet. 
The crucial problem is to verify both, time 
properties (e.g. end-to-end response time) and 
logic properties (e.g. unsafe state avoidance) 
of the applications incorporating two kinds of 
shared resources, the processor and the bus. The 
disadvantage of the traditional models (TA, ECA, 
RECA, EventClockTL) to specify and verify 
these systems is that they do not consider the 
independent clocks of the tasks (e.g. clocks of 
a task evolve synchronously, but independently 
of the clocks of the other tasks). The Figure 3 
shows the Communication Protocol. The protocol 
is a simple system consisting of two processes 
interconnected via Internet. Two Sender and 
two Reader tasks are running on each  process.  
The clocks on each process are periodically 

Figure 3. Fault-Tolerant Protocol

Figure 4. DECA Model of the Protocol

invoked whenever a message must be sent. The 
clock activates the task SenderTask, which sends 
a message to Internet. Receiving a message 
by a process causes an activation of the task 
SenderTask.

Modeling the Communication Protocol in DECA: 
Figure 4 shows the communication protocol 
modeled  as  a  DECA.  The  high  level  automaton  
has  the  event  clock  variables and  the  lower  
lever  automaton   has  the  events.  We  will  call  
the  processes  1 and  2  of  the   Figure  3   as  p  and  
q  (Proc  =  {p, q},  and  the  set  of  propositions  
P = send,  retry,  ack}) and   also   the  clocks  in  the 
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processes  p  and  q  running  to  different speeds. 
The clocks are  reset by the initial monitored  
transition of B. In  the  location  q0 (lower  lever  
automaton),  the   process is waiting for the event  
“send”.  When  the  process receives  this  event,  
its  control  evolves  to  the  monitored   location 
q1  and  the   clock constraint  yB

p ≤ 5 of  the  high   
level  automaton  imposes  that  the  message  has 
to be  send before   5  time   units   for  the  process  
p,  the  clock  constraint  yB

p ≤ 3  of  the  high  level                 
automaton  imposes  that  the  message  has  to  be  
send  before  3  time  units  for  the  process  q. 
So  this requirement  imposes  that  the  message  
takes  less  than  5  time  units  to  go  “done” for   
the   process p and the message takes  less  than  
3  time  units  to  go  “done”  for  the  process  
q,  when  they  receives the  information  that  a  
message  is  sent.  In  q1,  the  control must  wait  
at  least  5  time   units  before   crossing  the   edge  
to  the  location  q2  or  the  control must  wait  at  
least 3  time   units   before   crossing  the  edge  
to  the  location  q2.  In q2, the control  must   wait  
the  “ack”   signal before crossing the  edge  to  the  
location  q3.

Properties  of  the  communication  protocol  in 
DECTL: The property  “a  message  is followed 
by an  ack within  5  time  units  for  the  process  
p”  can  be  described  in  DECTL by  the  formula:

The  property  “a  message  is  followed  by  an  
ack  within  3  time  units  for  the  process q”  can   
be   described  in  DECTL  by  the  formula:

The property “asserts  that  eventually a message 
will be done and that surely for any attempt to 
send a  message,  the  message  will  be  done  
within  5  time  units  for  the  process p.” can be 
described in DECTL  by  the  formula:

 
The property  “asserts that eventually a  message  
will  be  done  and  that  surely  for  any attempt  to 

send  a message, the message will be done  within 
3 time  units  for  the  process q.”  can  described 
in DECTL  by  the  formula:

4. Conclusions

We have presented the basis of two framework for 
analyzing, modeling and specify distributed  and  
real-time  systems  through  of  the  introduction  
of  independent  (or  distributed)  event  clocks, 
inspired by DECA   and  the  introduction  of  
memory  event clocks that are designed to 
overcome the criticism for being  too  weak  since  
they only  see  the  time  to  next  event.  In  contrast  
to  Akshay et al. (2008) and Alur et al. (1994) , we  
have  presented  two  real-time  semantics,  and 
thus   we   can   specify  distributed and  real-time  
properties.  We  have presented   DECA  and  that  
they  are  fully decidable, and that their  language  
inclusion  problem are  PSPACE-complete and 
EXPSPACE-complete. We presented the logic  
DECTL and  RMECTL to specify  distributed 
real-time  properties with  distributed  observers 
and allows references  to  the  nth  next  (nth  
last)  time  a  formula  will be (was) true. The 
problems of  satisfiability, validity and model-
checking of DECTL  are  PSPACE- complete  and  
RMECTL  are  EXPSPACE-complete.  Finally, 
we  have  showed  that  DECA (DECTL), RMECA 
(RMECTL)  can  been  used  to specify  and  RTS  
and  DRTS.
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