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Elastic, mechanical, optoelectronic and some thermal properties of boron phosphide (BP) in its struc-

ture zincblende phase has been performed using the pseudopotential combined with the plane wave meth-

od. The plane-wave pseudopotential approach to the density-functional theory within the local density ap-
proximation (LDA) implemented in Abinit code is used. The elastic stiffness and compliance constants, 

bulk modulus, shear modulus, zener anisotropy factor, young's modulus, internal strain parameter, pois-
son's ratio, sound velocity for directions within the important crystallographic planes, Debye temperature, 

melting point, refractive index, plasmon energy, force constants, lattice energy, band gap energy, homopo-
lar energy, heteropolar energy, ionicity and dielectric constant are obtained and analyzed in comparison 

with the available data. 
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1. INTRODUCTION 
 

Several works [1-11] have studied structural, elastic, 

and electronic properties of boron phosphide com-pound. 

The ground state, and the high-pressure effect have been 

calculated by Wentzcovitch et al. [1], using the plane-

wave basis sets and pseudopotential appr-oach (PW-PP) 

within the local density approxi-mation (LDA). Using 

the linear muffin-tin orbitals (LMTO) method within the 

LDA, the structural prope-rties of BP have been deter-

mined by Lambrecht et al. [2]. The electronic structure 

and phase transition under high pressure have been 

studied by Zaoui et al. [3], using the linearized augment-

ed plane-wave (LAPW) method within the generalized 

gradient approximation (GGA). H. Meradji et al. [6] have 

used the full-potential density functional method to 

study the electronic and structural properties of BP for 

both zincblende and rock salt structures utilizing a hy-

brid full-potential linear augmented plane-wave plus 

local orbitals (LAPW+lo) method.  

In this work, we report numerical study of elastic 

properties, sound velocity, Debye temperature, melting 

point, refractive index, plasmon energy, force con-

stants, lattice energy, band gap energy, homopolar en-

ergy, heteropolar energy, ionicity, and dielectric con-

stant of boron phosphide compound in its structure 

zincblende phase (B3). 

 

2. SIMULATION PROCEDURE  
 

The calculations were obtained using the pseudo-

potential method combined with the plane waves ap-

proach based on density functional theory [12], imple-

mented in the ABINIT code [13, 14]. ABINIT code is a 

package whose main program allows one to find the 

total energy, charge density, electronic structure and 

several other physical properties of systems (molecules 

and periodic solids) within density func-tional theory, 

using pseudopotentials and a plane-wave basis-set. It is 

a common project of the Université Catholique de Lou-

vain, Corning Incorporated, the Université de Liège, 

and other contributors. 

We used the Teter and Pade parameterization [15] 

for LDA. Only the outermost electrons of each atom 

were explicitly considered in the calculation. The effect 

of the inner electrons and the nucleus (the frozen core) 

was described within a pseudopotential scheme. We 

used the Trouiller Martins scheme [16] to generate the 

norm -conserving nonlocal pseudopotential, which re-

sults, in highly transferable and optimally smooth 

pseudo-potentials. A plane-wave basis set was utilized 

to solve the Kohn-Sham equations in the pseudo-

potential implementation of the DFT-LDA. 

The parameters that affect the accuracy of calcu-

lations are the energy cut-off and the number of special 

k-points used for the Brillouin zone (BZ) integration. 

The Brillouin zone integrations were replaced by dis-

crete summations over a special set of k-points, using 

the standard k-point technique of Monkhorst and Pack 

[17]. Where the k-point mesh used is (4  4  4). The 

plane-wave energy cutoff to expand the wave functions 

is set to be 60 Hartree. The relative energy converged 

to better than 10 – 5 eV/atom. 

 

3. DISCUSSION OF RESULTS  
 

3.1 Elastic and Mechanical Properties 
 

3.1.1 Elastic Stiffness Constants 
 

The number of elastic stiffness constants is usually 

reduced if the crystal possesses symmetry elements, 

and in the case of cubic crystals there are only three 

independent stiffness constants. The array of values of 

the elastic stiffness constant is therefore reduced for a 

cubic crystal to the following matrix [C] [18]. 
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In a cubic lattice, three independent elastic con-

stants C11, C12, and C44 are determined by employing 

suitable lattice distortions. Following the work of Niel-

sen and Martin [19], we determine these constants (for 

more details and informations about this method see for 

example, our previous work: S. Daoud, K. Loucif, N. 

Bioud, N. Lebgaa and L. Belagraa, Pramana J. Phys. 

79, 95 (2012), or also the following paper: K. Bouama-

ma, N. Lebgaa and K. Kassali, High Pressure Res. 25 

(3), 217 (2005)). The obtained elastic stiffness constants 

C11, C12, and C44, of (B3) BP at zero-pressure are listed 

in table 1, and compared with other experimental [5] 

and theoretical [6-10] data. For cubic crystals, the bulk 

modulus B is related to the elastic constants by:  

B  (C11 + 2C12)/3. The requirement of mechanical 

stability in a cubic crystal leads to the following re-

strictions: 
 

 C11 – C12  0, C11  0, C44  0, C11 + 2C12  0.  
 

Our constants Cij obey these stability conditions, in-

cluding that C12 is relatively smaller than C11, and 

meaning that C12  B  C11. 

 

3.1.2 Internal Strain Parameter, Shear Modulus 

and the Isotropy Factor 
 

The internal strain parameter was introduced by 

Kleinman [20], describing the relative ease of bond 

bending versus the bond stretching. Minimizing bond 

bending leads to ξ  0, minimizing bond stretching 

leads to ξ  1. Later, Harrison [21] linked the Kleinman 

parameter in an approximated way to the elastic stiff-

ness constants C11 and C12:  [22] 
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The shear modulus Cs and the isotropy factor A in a 

cubic crystal are respectively defined as [23]  
 

  11 12 / 2sC C C  , (3) 

 

  11 12 44/ 2A C C C  , (4) 

 

The obtained values of the internal strain para-

meter ξ, the shear modulus Cs and the isotropy factor A 

of (B3) BP are also listed and compared with other the-

oretical and experimental data in Table 1. From the 

data of the Table 1, it can be seen that our calculated 

elastic stiff-ness constants C11, C12 and C44 are in good 

agreement with the experimental data, they are deviat-

ing from the measured values [5] within the range 

13.27 %, 16.5 % and 21.62 %, respectively.  

 

 

3.1.3 Compliance Constants 

The elastic compliance tensor [S], which has the 

same form as [C], is connected reciprocally with the 

tensor [C] through Hooke's relation. Explicit equations 

for the component Sij in terms of Cij can be given by the 

following formulas [23] 
 

 11 11 12 11 12 11 12( ) / ( )( 2 )S C C C C C C      , (5-a) 

 

  12 12 11 12 11 12/ ( )( 2 )S C C C C C      , (5-b) 

 

 44 441 /S C , (5-c) 

 

The obtained values of the compliance constants Sij 

of (B3) BP at zero-pressure are presented in Table 1, 

and compared with the available theoretical data [11]. 

According to the data in the Table 1, it can be seen that 

our calculated compliance constants Sij, are relatively 

different, in comparison with the values found by the 

author [11]. It is worth noting also, that the value 1.00 

(10 – 2GPa – 1) of S44, obtained in previous work [11], 

seems to be inaccurate, because the later author used 

the experimental value (C44  1.60 Mbar  160 GPa) of 

Wettling and Windscheih [5] to estimate the value of 

S44, and if we use this experimental value 

(C44  1.60 Mbar) in the formula (5-c), we obtain the 

result (S44  0.625 Mbar – 1). Hence, the results found in 

the present work for the compliance constants S11, S12 

and S44 are deviating from the values of the author [11] 

by the marked differences of 16.9 %, 35.2 % and 17.8 % 

respectively.  
 

Table 1 – Some physical parameters of (B3) BP at zero-

pressure in comparison with  experimental [5] and theoretical 

[6-11] values. 
 

Parameter Our 

work 

Other works 

C11 (GPa) 356.8 315[5]    357[6]LDA   

337[6]GGA 359[7]      

329[8]  358.9[9]   360[10] 

C12 (GPa) 83.5 100[5]       87[6]LDA     

78[6]GGA    81[7]    97.5[8]      

80.6[9]  155[10] 

C44 (GPa) 194.6 160[5]   150[6]LDA     

200[6]GGA  202[7]  154[8]    

196.7[9]   146[10] 

B (GPa) 174.6 172[2] 173[5]           

176[6]LDA      160[6]GGA 

Cs (GPa) 136.6 139[7] 

ξ 0.384 0.31[7] 

A 0.702    0.67[11] 

S11 (10 – 2 GPa – 1) 0.3075 0.37[11] 

  – S12 (10 – 2GPa – 1)       0.0583   0.09[11] 

S44 (10 – 2 Gpa – 1) 0.5138 1.00[11] 

0.625[11] (the right value) 

 

3.1.4 Young's Modulus and Poisson's Ratio 
 

Young's modulus Y is not isotropic in cubic zinc-blende 

type crystals [23]. The Young modulus Y for an arbitrary 

crystallographic direction m can now be given by [23]   
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Where the Sij values are the elastic compliance con-

stants and the m, values are the direction cosines for 

m. Poisson's ratio P also varies with orientation. If a 

longitudinal stress in the direction m and the trans-

verse strain along the orthogonal direction n are under 

consideration, then the ratio P can be given by [23] 
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The ratio P, in this case, is written as P  –Sl2 / S11 

[23]. The variations of Y and P for directions within the 

important crystallographic planes {100}, {110}, and 

{111} are given in Table 2, and also compared with the 

other theoretical data [11]. The data in the Table 2, 

showed that our values of Y and P for directions are 

also relatively different compared to the values of the 

author [11]. This noted difference might be due to the 

effect of the error in the value (1 Mbar – 1  10 – 2GPa – 1) 

of S44, because all the values of Y and P depend on S44. 
 

Table 2 – Young's modulus Y, and Poisson's ratio P for direc-

tions within the important crystallographic planes {100}, {110} 

and {111} at zero-pressure. [11] Calculated using (S11  0.37, 

S12  – 0.09, S44  1.0) (10 – 2GPa – 1) at T  300 K 
 

Plane Direction Y (GPa) 

Our 

work 

Other 

works 

{100}    001  325.2  270[11] 

011             395.1         260[11] 

{110}      001 325.2 270[11] 

111 425.7 250[11] 

{111}    395.1 260[11] 

 

Plane Direction Poisson's ratio 

Our 

work 

Other 

works 

{100}    m  010, n  001 0.189  0.24[11] 

m  011, n  0 1 1 0.015  0.28[11] 

{110}      m  001, n  1 1 0                      0.189  0.24[11] 

m  1 1 1, n  1 1 2  0.093     0.26[11] 

{111}    0.158     0.25[11] 

 

3.2 Optoelectronic Properties 
 

The result obtained of energy band structure at 

equilibrium lattice parameter, along the high symme-

try directions in the Brillouin zone is shown in 

Fig. 1(a), the minimum of the conduction band is found 

to be at the Δmin (near X point), rendering this 

compound an indirect semiconductor with a big 

Γ15v → Δmin optical transition of 1.20 eV. 

The electronic charge density is an important pro-

perty of solids and can be only described accurately in 

the context of first-principles studies. The calculated 

profile valence density charge along the 111 direc-

tion is shown in Fig. 1(b), this figure clearly shows that 

most of the charge is located around the center between 

the two atoms. The low displacement of valence charge 

is a natural indication for the small value of ionicity 

parameter of this compound. 
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Fig. 1 – Band structure along the principal high-symmetry 

points of the (B3) BP compound (a), Total valence charge 

densities along the 111 direction at equilibrium volume (b) 
 

The evaluation of refractive indices of a semicondu-

ctor is of considerable importance for many optoelectro-

nic applications, where the refractive index of the mte-

rial is the key parameter for the optoelectronic devices.  

Reddy et al. [24] have proposed a relationship be-

tween a several physical parameters and the refra-ctive 

index for the AII-BVI and AIII-BV groups of semcon-

ductors. Recently, Kumar and Singh [25] gave another 

relationship between the energy gap and the refractive 

index for some mixed materials, belonging to groups 

IV, II-VI and III-V semiconductors, insulators, oxides 

and halides.  

The refractive index of a semiconductor material 

typically decreases with increasing band gap energy Eg. 

There are various empirical and semi-empirical rules 

and expressions that relate n to Eg. The refra-ctive in-

dex of (B3) BP, can be estimated by using the following 

formula [25] 
 

 1
c
gn C E , (8) 

 

where: n is the refractive index, Eg is the average ener-

gy gap (in eV), C1 and c are the constants, they are 

equal respectively: 3.3668 and – 0.32234. 

In Moss’ rule, n and Eg are related by: n4Eg  C2, C2 

is constant ≈ 100 eV. In the Hervé-Vandamme relation-

ship [26] 
 

  
2

2
1 21 / gn A E A   

 
, (9) 
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where A1 and A2 are constants (A1  13.6 eV and 

A2  3.4 eV). 

The values of refractive index n of (B3) BP obtained 

from the relations of equations (8) and (9) are equal to 

3.18 and 3.08 respectively. These two values are in very 

good agreement with the experimental data. They are 

deviate from the value 3.34 of the authors [5] within 

4.79 % and 7.78 % respectively. The later value (3.34) 

has been obtained at specified photon energy of 0.37 eV. 

The refractive index, versus, the plasmon energy 

(ћωp), the force constants ( and ) and the lattice en-

ergy (U) for some groups AII BVI and AIIIBV semiconduc-

tors, can be given by the following relations. [24] 
 

    1 2eV expp K K n  , (10) 

 

 

    3 4N m expK K n  , (11) 

 

    N m 0.28 1 if   , (12) 

 

      5 6 7 8 9kcal mol exp expU K K K n K K n   ,(13) 

 

The relevant values of the different constants K1, 

K2, K3, K4, K5, K6, K7, K8, and K9 for AIIIBV groups are 

respectively: 47.924, – 0.3546, 286.3, – 0.6028, 421.224, 

616.88, – 0.1779, 86.771 and – 0.3558. 

The fi is the ionicity of the semiconductor, the rele-vant 

value of fi for BP compound will be calculate hereafter (it 

is equal 0.383). The results for: the plasmon energy, force 

constants, and lattice energy are presented in Table 3. 

The plasmon energy, versus the bond length d, and 

versus the average energy gap Eg for some groups II-

VI, III-V and I-VII materials, can be given by the fol-

lowing relations [27]. 
 

     
2/3

Å pd C 


 , (14) 

 

    10 11eVg pE K K    , (15) 

 

The relevant values of the different constants C, K10 

and K11 for AIIIBV groups are respectively: 15.30, 6.3943 

and 0.7678. 

From the relations of Eqs. (14) and (15), we can 

obtain the following expressions: 
 

  
3/2

/p C d  , (16) 

 

  10 11/p gE K K   , (17) 

 

The results for: the plasmon energy, obtained from 

the relations of equations (16), and (17) by using the 

bond length d (1.955 Å) [28], and the average energy 

gap Eg (1.20 eV), obtained from first principles calcu-

lation of this work, are respectively: 21.894 eV and 

9.891 eV. These two values are generally in agreement 

with the previous results (15.545 eV, and 16.078 eV) 

obtained from the application of Eq. (10). 

The plasmon energy, can be also given as function 

of some others parameters: homopolar energy (Eh), 

heteropolar energy (Ec), ionicity (fi), and dielectric 

constant (ε) by the following relations [27]. 

  12 13h pE K K , (18) 

 

  14 15expC pE K K  
 

, (19) 

 

  16 17i pf K K   , (20) 

 

  18 19 pK K   , (21) 

 

The relevant values of the different constants K12, 

K13, K14, K15, K16, K17, K18, and K19 for AIIIBV groups are 

respectively: 0.0509, 1.6192, 0.5093, 0.1199, 0.1809,  

– 0.0126, 24.9501, and 0.9350. 

The results for: homopolar energy (Eh), heteropolar 

energy (Ec), ionicity (fi) and dielectric constant (ε), ob-

tained from the relations of equations (18), (19, (20), 

(21), and the value (16.078 eV) of the plasmon energy 

are respectively: 1.325 eV, 3.500 eV, 0.383 and 9.917. 

These results are given in Table 3, and compared 

with the available theoretical data [5, 29-32]. 
 

Table 3 – Some physical parameters calculated of (B3) BP 

compound. afrom the relation (8), bfrom the relation (9), cusing 

the refractive index obtained from the relation (8), d using the 

refractive index obtained from the relation (9),  efrom the rela-

tion (16), f from the relation (17) 
 

Parameter Our work Other works 

n                             3.175a      3.080b       3.34[5]     1.960[29]    

ћωp (eV)         15.545c     16.078d  

21.894e       9.891f           

21.71[30]                   

 (N/m)           42.231c     44.720d    

 (N/m)           7.296c         7.726d              

Ionicity   0.383  0.444[29]    0.312[30]    

 U (kcal/mol)      743.854c   748.867d    

Eh (eV)         1.325    

Ec (eV) 3.500  

ε 9.917 8.75[31]        11[32] 
 

From the data of the Table 3, it can be seen that our 

calculated value of the dielectric constant (ε), is in good 

agreement with the theoretical data [31, 32], and the 

deviations being 13.33 %, and 9.84 % respectively. 

 

3.3 Sound Velocity, Debye Temperature and 

Melting Temperature 
 

Sound velocities in BP material are strongly depen-

dent on the propagation directions. If the crystal den-

sity g and the stiffness constant Cij of a solid are 

known, one can calculate the bulk sound velocity v 

from the following general relation: [23] 
 

  
1/2

ijv C g , (22) 

 

In general there are three types of wave motion for 

a given direction of propagation in the solid crystal, but 

only for a few special directions can the waves be clas-

sified as pure longitudinal or pure transverse. [23]  

If we neglect nonlinear terms in the equation of mo-

tion, pure longitudinal sound waves may propagate in 

the [100], [110], and [111] directions [23]. 

We can see in table 3.25 of Ref. [23] definition of 
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sound velocity expressed in terms of these constants 

along the high-symmetry directions [100], [110] and 

[111] in cubic, zincblende crystals. 

The numeric values for g is equal 3.0135 g/cm3[28], 

and Cij used in the calculations are taken from Table 1. 

The predicted values of sound velocities for major dire-

ctions at zero-pressure are reported in Table 4, and 

compared with the available theoretical data [11]. 
 

Table 4 – Sound velocities for major directions in the (B3) lattice 

of BP, as controlled by the second-order elastic cons-tants Cij. 

aLongitudinal acoustic waves, bTransverse acoustic waves 
 

Propagation 

(Direction) 

Plane of 

Polarization 

Sound Velocity (105 cm/s) 

Our work Other works 

[100]                     [100]a 10.882         10[11] 

(100)b    8.0366        7.3[11] 

[110]                    [100]a 12.733          11[11] 

[001]b 8.0366         7.3[11] 

[1 1 0]b 6.7345         6.0[11] 

[111]   [111]a 12.003         11 [11] 

(111)b 7.1947         6.5[11] 
 

The Debye temperature (θD) can be obtained by us-

ing the following equation [33]  
 

  
1/3

3 / 4D m

B

h
Va v

k
  , (23) 

 

where h is the Plank’s constant, kB the Boltzmann’s 

constant and Va the atomic volume. The average sound 

velocity is given by [33] 
 

 

1/3

3 3

1 2 1

3
m

t l

v
v v


  

    
   

, (24) 

 

where vl and vt are the longitudinal and transverse 

sound velocity. They are obtained from the Navier’s 

equation [33] 
 

  
1/2

3 4 / 3l sv B C g  , and  
1/2

/t sv C g  (25) 

 

The calculated sound velocity and Debye tempera-

ture as well as the density for (B3) BP are given in Ta-

ble. 5. Unfortunately, to the best of our knowledge, 

there is a little experimental [34-36], and theoretical 

[37, 38] data available in the literature on this prope-

rties for this compound.  

The Debye temperature calculated is in excellent 

accordance with data available in the literature  

[34-38], it is deviates from the measured [34] and the 

calculated [38] ones within ~ 0.01 % and 1.78 % respe-

ctively. This marked result signified the good values 

obtained for the second-order elastic constants Cij.  

The melting point of a substance depends usually 

on pressure and is usually specified at standard atmo-

spheric pressure [39]. The melting temperature of sev-

eral cubic crystalline solid, can be estimated accor-ding 

to the following empirical relation between the melting 

temperature and the elastic constants [40] 
 

   11533 591/Mbar 300KmT C   , (26) 

 

Recently, Kumar et al. [38] proposed a linear rela-

tion between the Debye temperature and the melting 

temperature Tm for some groups II-VI, III-V and I-VII 

materials, it is given by the following formula: 
 

 20 21( ) /m DT K K  , (27) 

 

The values of the constants K20 and K21 are, respe-

ctively: 153.40 and 0.354 for AIII-BV semiconductors.  

Using eqs. (26) and (27), the values of Tm for (B3) 

BP compound at equilibrium lattice parameter have 

been calculated, the results obtained are estimated at 

2641.69  300 K, and 3201.69 K respectively. These 

values are presented in table.5, and compared with the 

available theoretical data [23, 34, 38, 41]. These values 

are in general in agreement with the previous calcu-

lations data, they are deviate from the value 2863.77 of 

the others [38] within 7.75% and 11.80% respectively. 
 

Table 5 – Longitudinal, transverse and average sound velocity  

(νl, νt, νm in 103 m/s), the Debye temperature (θD in K), and the 

melting temperature (Tm in K) for (B3) BP in comparison with 

data available in the literature [11, 23, 34 - 38, 41]. afrom the 

relation of equation (26), b from the relation of equation (27). 
 

Parameter Our work Other works 

νl       10.8821           10[11]               

νt 6.7345 7.3[11]    

νm     7.4266  

θD 980.4    980[34]            

985[35, 36]        1096[37]        

  from 726.5  to 962.78[38] 

Tm   2641.69  300a 

   3201.69b 

 3300[23]           

2800[34]  from 2508.89  

to 2863.77[38]        

2250[41]          

 

4. CONCLUSION  
 

The results obtained of elastic stiffness constants Cij 

are very similar to the other experimental and theore-

tical data of the literature. The values obtained of the 

elastic constants were used to predict the anisotropy 

effect for directions within the impo-rtant crystallo-

graphic planes on the other parameters such as: sound 

velocity, young’s modulus and poisson’s ratio. 

The energy band structure at equilibrium lattice 

parameter and the profile valence density charge along 

the 111 direction of this compound are also deter-

mined. The minimum of the conduction band is found 

to be at the Δmin, rendering this compound an indirect 

semiconductor with a Γ15v → Δmin optical tran-sition of 

1.20 eV. This value is in very good agreement compara-

tively with the results of the literature. 

Other optoelectronic properties of (B3) BP are de-

termined and compared with the other theoretical data. 

The results obtained for some of these para-meters are 

generally very similar to the results of other references.  

In general, the results obtained of the Debye tem-

perature and the melting temperature agree well with 

other experimental and theoretical data. 
 

 

 

 

http://en.wikipedia.org/wiki/Standard_conditions_for_temperature_and_pressure
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