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Sol-gel SiO2 matrices with Polymethine dyes (РМ1, РМ2 and РМ3) were synthesized using citric acid 

as a catalyst. There were measured the absorption and luminescence spectra of РМ1, РМ2 and РМ3 dyes 

(with a concentration of 1·10–5 mole/dm3) in different solvents (ethanol, dimethylformamide, formamide 

and water) and in sol-gel SiO2 matrices. The said dyes were found to be present in monomeric form in eth-

anol, dimethylformamide and formamide. PM1 dye did not form dimers in water and in matrices and re-

tained its color. PM2 and PM3 dyes aggregated into the network of SiO2 matrices and in water solution, 

and the intensity of their coloration reduced in the course of time. 
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1. INTRODUCTION 
 

The development of laser technologies has aroused 

considerable interest in the creation of optical 

limiting materials used to protect solid-state sensors 

and eyes from intense laser beams [1, 2]. Nonlinear 

absorptive organic dyes are among the most widely 

studied optical limiting materials. The creation of 

optical limiting devices that protect sensitive optical 

involves the use of active components with high RSA 

(reverse saturable absorption) [1]. High values of 

RSA in the visible spectral region are characteristic 

of organic dyes including Polymethine and 

Squarylium dyes [1]. The necessary condition for the 

existence of RSA-mechanism for dye molecules – is 

the excess (at the excitation wavelength) of the 

absorption cross-section of the excited state above the 

cross-section of linear ground state absorption [2-4]. 

RSA is one of the most low-threshold and effective 

physical mechanisms leading to nonlinear decrease of  

radiation intensity. 

Presented in [2] were the results of the 

investigations of the optical limiting behavior of acid 

blue 29 ethanol solutions under the influence of a 

low-power CW He-Ne laser irradiation at 632.8 nm. 

Polymethine dyes as donor-acceptor conjugated 
compounds which have highly polarizable π-electron 

systems, are of interest in the capacity of non-linear 

optical (NLO) materials [1, 4]. In [1] the non-linear 

properties of Polymethine and Squarylium dyes were 

studied in the elastopolymeric material polyurethane 

acrylate and in ethanol solutions. In [4] the NLO 

properties of solutions a series of asymmetric cyanine 

dyes were investigated. However, the solutions of 

these dyes lose their color with time. 

Different NLO materials are prepared using the 

sol–gel method as the most preferable, since it allows 

to obtain optical elements of various forms, e.g. 

monoliths, thin film and fibers. SiO2 matrices do not 

possess NLO properties, but with their low optical 

losses they serve as ideal matrices for nonlinear 

materials. Into SiO2 matrices there can be 

incorporated various active nano-objects, in 

particular, nanocrystals such as PbS [5] and the dye 

molecules having laser [6] and NLO properties [1]. 

Reported in [7] is the use of the sol-gel method for the 

synthesis of three types of nanocomposites with NLO 

properties: semiconductor–glass, metal cluster–glass, 

and organics–glass nanocomposites. 

A special position among solid materials belongs 

to nano-porous silicate glasses synthesized by the sol-

gel method, as their properties are widely needed for 

modern scientific and technological developments. In 

particular, such materials possess high mechanical 

and radiation strength in combination with high 

absorption capacity and chemical stability, as well as 

and high transparency in the visible and near-

infrared spectral regions.  
Limited space in the pores of  SiO2 matrix and 

efficient contact of the dye molecules with the walls 

of the pores make the micro-environment of the dye 

molecules different from that in the case when these 

molecules are contained  in the solution. In our study, 
we examined the effect of the microenvironment of 

the dye molecules incorporated into the matrices, on 

their absorption and luminescence spectra. There 
were synthesized SiO2 matrices with three different 

Polymethine dyes (Fig. 1), and the effect of the water 

environment on the dimerization of the dye molecules 
and discoloration was studied. 

 

2. EXPERIMENTAL 
 

For the silica gel synthesis we used tetraethox-
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ysilane (TEOS; Aldrich), ethanol, dimethylforma-

mide (DMFA), formamid (FA, chemically pure) and 

twice distilled water. In the capacity of active mole-
cules there were applied Polymethine dyes (Fig. 1) 

synthesized at the Institute of Organic Chemistry 

(Kiev, Ukraine). 
 

 
 

Fig. 1 – Structural formulas of PM1, PM2 and PM3 

Polymethine dyes 

 
SiO2 matrices were synthesized using the sol-gel 

method by the hydrolysis of TEOS with the addition 
of citric acid as a reaction catalyst [6, 8]. It is known 
that the use of acid as a catalyst of the hydrolysis 
reaction leads to the formation of a three-

dimensional network consisting of SiO2 particles of 
nanometer size [6, 9]. TEOS and ethanol were 
stirred with a magnetic stirrer during 30 minutes. 
Then we added twice distilled water, a few drops of 
citric acid water solution and FA as a DCCA (the 
additive controlling separation of moisture from the 
xerogel). Then the solution of the dye in FA was add-

ed to the mixture, and the resulting mixture was 
stirred during two hours. The obtained sol was 
placed into plastic cuvettes; the latter were hermeti-
cally sealed and stored till the gel was formed. Then 
the cuvettes were opened, and the samples were 
dried during 3 – 4 weeks at room temperature and at 
60С during the next 7-10 days. The densities of the 

SiO2 matrices with FA (1.5 – 1.6 g/сm3) were deter-

mined by the method of hydrostatic weighing and 
from their geometric size (0.5  0.5  1.5 сm) and 

weight. 
 

3. RESULTS AND DISCUSSION 
 

We measured the absorption and luminescence 

spectra of PM1, PM2 and PM3 dyes in ethanol, 

DMFA, FA solutions and in SiO2 matrices (dried at 

60C). The absorption spectra of Polymethine dyes 

are presented in Fig. 2. The positions of the 

absorbance and luminescence maxima of the long-

wavelength bands of РМ1, РМ2 и РМ3 dyes are 

shown in Table 1. As seen from Fig. 1, the shapes of 

the absorption bands of PM1-PM3 dyes in ethanol, 

DMFA and FА solutions are similar. The position of 

the absorption and luminescence maxima differ 

slightly (Table 1). The solutions of these dyes were 

found to be stable in FA, DMFA and ethanol 

solutions. At the change-over from the solutions of 

PM1, PM2 and PM3 dyes in ethanol, DMFA and FA 

to SiO2 matrix there was observed hypsochromic 

shift of the luminescence peaks. This shift is due to 

changes in the microenvironment of the dye, the 

presence of minor amounts of water, as well as to the 

interaction of the dye molecule with the surface of 

the pores formed by the three-dimensional network 

of the xerogel consisting of the chains of SiO2 

nanoparticles. 

The absorption maximum of PM1 dye in aqueous 

solution shifts hypsochromically only by 8 nm 

relative to ethanol solution (650 nm in ethanol 

solution and 652 in water), the coloration intensity 

remains unchanged (Fig. 2). At the same time, the 

color of the dyes PM2 and PM3 noticeably changed in 

aqueous solution. For PM2 dye in an aqueous 

medium there was observed hypsochromic shift of 

the absorption maximum by 31 nm with respect to 

ethanol solution. For the dye PM3 the absorption 

maximum shifted by 20 nm. 

The appearance of a short-wave absorption 

maximum in aqueous solutions and a decrease of the 

intensity of the molecular band (as for PM3 dye, 

Fig. 2) is observed for many classes of dyes including 

cyanine, rhodamine, xanthene and other dyes [10]. 

At aggregation of the dye the formation of dimers is 

followed by a hypsochromic shift of the maximum of 

the bandwidth from the dimer band and its 

expansion. Such a change in the absorption spectrum 

is due to the formation of polymolecular structures of 

H-aggregates. Typically, the H-like aggregates do 

not luminesce similar to the dimers [10]. 

A few days later, aqueous solution of PM1 dye 

was stable, but PM2 and PM3 dyes gradually 

changed their color and became colorless. 

For all the three dyes (PM1, PM2 and PM3) the 

absorption maxima in SiO2 matrices are shifted 

hypsochromically relative to the dye solution in 

ethanol, DMFA and FA (Fig. 2). This is connected 

with a the reduced interaction of the dye molecules 

in the xerogel network. It should be noted that these 

dyes became colorless in SiO2 gels at the use of nitric 

acid as a catalyst, probably due to their degradation. 

At the substitution of the strong nitric acid by the 

weak citric acid the dyes PM2 and PM3 retain their 

colors in the gels, and the dye PM1 does not lose the 

color in the SiO2 matrices dried at 60C. Dyes PM2 

and PM3 in the matrices dryied at 60C lose their 

color almost completely (Fig. 3). The observed effect 

seems to be caused by dimerization of the dyes PM2 

and PM3 in the porous matrices however, in the case 

of PM1 dye dimerization is absent. The tendency of 

PM2 and PM3 dyes to aggregation may be caused by 
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their conformation features [10]. 
 

 
 

a) 
 

 
 

b) 
 

 
 

c) 
 

Fig. 2 – Absorption spectra of PM1 (a), PM2 (b) and PM3 (c) 

Polymethine dyes in various solvents: water (1), ethanol (2), 

DMFA (3) and FA (4) with dyes concentration of 110–5 M 

 

At the concentration of the dye PM1 in the matrix 

higher than 310–5 mole/dm3 there was observed 

quenching of the dye luminescence caused by 

reabsorption due to a small Stokes shift 

characteristic of Polymethine dyes. 

 

Table 1 – Absorbance and Luminescence maxima of 

Polymethine dyes (PM1, PM2 and PM3) in different media. 
 

Medium Absorbance 

maxima, nm  

Luminescence 

maxima, nm  

РМ1 (Ex  600 nm) 

SiO2 matrices, 

60С 

650  668  

DMFA 648 679  

ethanol 650 674  

H2O 642 668  

РМ2 (Ex  520 nm)  

SiO2 gel 556 581  

FA 560 588 

DMFA 558 - 

ethanol 558 588  

H2O* 449  574, slightly 

РМ3 (Ex  560 nm) 

SiO2 gel  563 587  

FA 568 - 

DMFA 568 598 

ethanol 565 596 

H2O** 522 584 , slightly 
 

The concentrations of the dyes were: 1·10–5 М in the 

solution; 8.6·10–6 mole/dm3 (PM1) and 1.3·10–5 mole/dm3 

(PM2 and PМ3) in SiO2 matrices; *ex  400 nm, 

**ex  520 nm. 
 

 
 

Fig. 3 – Absorption spectra of Polymethine dyes PM1 (1), PM2 

(2) and PM3 (3) in SiO2 matrices (60ºС) with a dye 

concentration of 110–6 mole/dm3 – in sol, and 8.610–6 – 110–

5 mole/dm3 – in matrices, respectively. 

 

4. CONCLUSIONS 
 

There were synthesized SiO2 matrices with PM1, PM2 
and PM3 Polymethine dyes using FA in the capacity of 

DCCA and citric acid as a catalyst for the hydrolysis reac-
tion TEOS were synthesized. The absorption and lumi-
nescence spectra of PM1, PM2 and PM3 dyes were meas-
ured in ethanol, DMFA, FA, water solutions and SiO2 
matrices. The dye PM1 was found not to form dimers in 
water and in the matrices and to retain its color. The dyes 
PM2 and PM3 form aggregates in the matrix and in wa-

ter. When the concentration of the dye in the matrix is 
higher than PM1 310–5 mole/dm3 there is observed 

quenching of its luminescence. The obtained dates testify 
to the possibility to use SiO2 matrices with PM1 Polyme-
thine dye for the creation of optical limiting materials. 
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