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The proximity of the Fermi surface to van Hove singularities drastically enhances interaction effects and leads
to essentially new physics. In this work we address the formation of flat bands (“Fermi condensation”) within
the Hubbard model on the triangular lattice and provide a detailed analysis from an analytical and numerical
perspective. To describe the effect we consider both weak-coupling and strong-coupling approaches, namely the
renormalization group and dual fermion methods. It is shown that the band flattening is driven by correlations
and is well pronounced even at sufficiently high temperatures, of the order of 0.1–0.2 of the hopping parameter.
The effect can therefore be probed in experiments with ultracold fermions in optical lattices.

PACS numbers: 03.75.Ss, 71.27.+a, 71.10.Fd

Introduction.—The study of two-dimensional lattice mod-
els can potentially unveil the nature of exotic materials like un-
conventional superconductors and quantum spin liquids. Af-
ter their almost simultaneous discovery, high-temperature su-
perconductivity in cuprates [1–3] and the fractional quantum
Hall effect [4, 5] posed some awkward questions to Landau
Fermi liquid theory. For both systems, the Coulomb interac-
tion is sufficiently strong to cause the breakdown of perturba-
tive expansions. In such cases, the concept of quasiparticles
providing a basis for understanding most of condensed-matter
phenomena is questionable, and new physics can arise. In
cuprates, the large onsite Coulomb repulsion eliminates the
double occupancy and changes the statistics of charge carri-
ers, while in the quantum Hall phase it leads to the formation
of composite fermions. Both scenarios manifest deviations
from Landau Fermi liquid behavior.

It is well known that many body effects are drastically en-
hanced in the vicinity of anomalies in the single-particle spec-
trum [6–9]. Soon after high-temperature superconductivity
was detected in cuprates, it was pointed out that for the op-
timal doping the Fermi level lies in the vicinity of van Hove
singularities (VHSs) with divergent density of states (DOS),
and that in this case the Fermi liquid picture can be vio-
lated even for a weak interaction, due to singularities of the
electron-electron vertex [7]. The concept of the so-called van
Hove scenario has been pushed forward to explain a variety
of phases associated with the presence of VHSs, e.g., super-
conductivity, itinerant ferromagnetism, and density waves. If
the VHS is near the Fermi-level, both antiferromagnetism and
d-wave superconductivity can be produced even at small on-
site Coulomb repulsion, as can be shown from a renormaliza-
tion group (RG) analysis [10–15] or the parquet approxima-
tion [14, 16]. The nature of exotic ground states is determined
by the delicate interplay of these fluctuations, which therefore

remain controversial.
Ultracold Fermi gases in optical lattices [17, 18] open up

completely new opportunities to study exotic states of inter-
acting fermions. Today, the experimental realization of quan-
tum many-body Hamiltonians, such as the Hubbard model, is
a reality and a variety of system parameters such as the hop-
ping, lattice type, and Hubbard repulsion can be tuned [17].
However, despite substantial progress in cooling, the achieved
temperatures are still relatively high compared to the effec-
tive hopping parameter, so critical temperatures of the low-
temperature phases cannot be reached. It is therefore impor-
tant to identify effects that can be probed at these tempera-
tures.

In this Letter, we show that a precursor of a strongly cor-
related low-temperature instability, possibly chiral supercon-
ductivity [19], exists at sufficiently high temperatures and that
it can be probed in the paramagnetic phase of fermionic cold
atoms on a triangular lattice. The effect can be understood in
terms of Fermi condensation.

To clarify this statement, recall that in conventional Landau
Fermi liquid theory [20], the free energy is a functional of the
quasiparticle distribution function nk. The particle distribu-
tion minimizes this functional, i.e., δF [nk]/δnk = 0, which
leads to

εk(T ) = µ(T )+T log [(1−nk)/nk] , (1)

where εk is the dispersion, µ the chemical potential, and T de-
notes temperature. This expression reproduces the celebrated
Fermi distribution nk = 1/(1+e(εk−µ)/T ). On the other hand,
εk(T ) is a functional of nk. As long as the group velocity is
positive, all variations δE of this functional are positive and
the Fermi distribution corresponds to the minimum. If the
group velocity of the quasiparticles becomes negative, there
exist variations for which δE < 0. This leads to a restruc-
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turing of the distribution function in a certain interval of mo-
menta ki < k < k f , where the resulting nk differs from the
Fermi distribution, but still minimizes the functional. In the
limit T → 0, εk = µ and hence the dispersion becomes en-
tirely flat in this interval. In analogy to the Bose-Einstein con-
densate, this highly degenerate state has been termed Fermi
condensation.

The idea was suggested [21, 22] in a purely phenomenolog-
ical background and remains controversial [23]. If it exists, a
Fermi condensate is a new state of matter which is topolog-
ically different from both the Fermi liquid and the Luttinger
liquid [24]. In the context of the van Hove scenario in high-
temperature superconductivity, the Fermi condensation was
considered in Ref. [25] as a way to demonstrate that the van
Hove scenario is not just a scenario at van Hove filling and
hence for a single point (an objection from Ref. [1]); because
of the formation of flat bands, there is a pinning of the Fermi
energy to the VHS point for a whole range of electron concen-
trations. Otherwise, below a critical temperature, the highly
degenerate state may give way to another fermionic instability
associated with a non-Fermi liquid ground state. It is therefore
important to observe this precursor effect experimentally.

We address this effect for the Hubbard model at triangular
lattice from both weak-coupling and strong-coupling limits,
by means of RG and dual-fermion [26] approaches, respec-
tively. Our analysis shows that the phenomenon is robust and
can be observed in experiments with ultracold Fermi gases at
sufficiently high temperatures.

Model.—We focus on a Hubbard model on the triangular
lattice,

H = ∑
kσ

εkd†
kσ

dkσ +U ∑
i

ni↑ni↓ (2)

with local Coulomb repulsion U > 0 and dispersion relation
εk = −2t[cos(kxa)+ 2cos(kxa/2)cos(kya

√
3/2)]− µ , where

t > 0 is the hopping amplitude, µ the chemical potential,
and a is the lattice spacing. We take a = 1 in the follow-
ing. The reciprocal lattice is spanned by the vectors G1 =
2π
(
ex
√

3− ey
)
/
√

3 and G2 = 4πey/
√

3, while the first Bril-
louin zone is hexagon shaped. At 3/4 filling, logarithmic
VHSs (kinks in the DOS) appear in three inequivalent sad-
dle points M1 =

(
0,2π/

√
3
)
, M2,3 =

(
π,±π/

√
3
)
, and the

hexagon-shaped Fermi surface becomes highly nested (Fig.
1). It is well known that in the weak coupling limit U/t� 1,
the dominant instability for a non-nested Fermi surface away
from VHSs is related to superconductivity. Contrary to this,
at VHSs (∇kεk = 0) the Fermi surface has flat sides and is
nested as a result. The vector Qαβ connecting different points
Mα and Mβ is such that 2Qαβ = 0 modulo a reciprocal lat-
tice vector. In what follows we will focus on the model doped
exactly to the VHS (µ = 2t) and perfect nesting.

Weak-coupling analysis.—We start our analysis of the RG
flow by developing a three-patch renormalization group anal-
ogous to Refs. [25, 27]. The number of patches for the
triangular lattice agrees with the number of inequivalent
saddle points, in which the DOS diverges logarithmically:

Figure 1. (Color online) Hexagon-shaped Brillouin zone and DOS
of the system doped to the VHS. From momenta and spin conser-
vation the following two-particle processes are allowed: exchange
scattering (g1), forward scattering (g2), umklapp scattering (g3), and
intrapatch scattering (g4).

N = N0 log [Λ/max(2t,T )] (here Λ is a high-energy cutoff).
The problem in question can be reduced to a quasi-one-
dimensional one if we introduce those two-particle scatter-
ing processes between different patches, which are allowed
by momentum conservation. One-dimensional systems are
known to be unstable to the formation of pair instabilities
in both Cooper (particle-particle) and Peierls (particle-hole)
channels, and result in logarithmic singularities for pair sus-
ceptibilities. Extending the quasi-one-dimensional analysis
we define four different interactions associated with two-
particle scattering between different patches: exchange (or
backward) scattering (g1), forward scattering (g2), umklapp
scattering (g3), which conserves momentum modulo a recip-
rocal lattice vector, and intrapatch scattering (g4). All four
interactions are marginal at tree level, but acquire logarithmic
corrections from the integration near the VHS, thus justify-
ing the use of logarithmic RG. These logarithmic corrections
come from energy scales E < Λ≈ t, the energy scale at which
higher-order corrections to the dispersion become important.

The susceptibilities in the particle-particle χpp(q = 0) =
N0 log [Λ/max(2t,T )] log(Λ/T )/2 and particle-hole χph(q =

Qαβ ) = N0 log2 [Λ/max(2t,T )]/2 channels, evaluated at mo-
mentum transfers zero and Qαβ between points Mα and Mβ ,
are log-square divergent. One logarithm stems from the DOS,
whereas the second is inherent to the divergence in the Cooper
channel for χpp and appears in χph(Q) due to perfect nesting
of the Fermi surface. For the analysis of the low-energy prop-
erties we neglect the logarithmically divergent contributions
χph(0) and χpp(Q), which are parametrically smaller. Re-
stricting the integration region to the patches and placing ex-
ternal momenta at the critical points, we derive one-loop RG
equations using momentum-shell integration [28] with respect
to the flow parameter λ = χpp(q = 0,E). It is noteworthy that
to leading order the solution to a set of RG equations is de-
fined by the relative weight between the Peierls and Cooper
channels only. Because of nesting the flow of the coupling
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constants is strongly modified and the effect of interactions is
dramatically enhanced. An inspection of RG flow in Fig. 2 re-
veals that the couplings diverge when approaching instability
region λc with |g4| > g3 > g2 > g1; i.e., intrapatch scatter-
ing prevails. The combination of a divergent DOS and per-
fect nesting leads to a RG flow to strong coupling, in agree-
ment with an earlier fRG study [19]. Thus, the local repulsive
coupling can favor the formation of instabilities towards mag-
netic or superconducting states at relatively high temperatures
λc = χpp(E = Tc), e.g., for the initial values of running cou-
plings g0,

Tc ∼ t exp
(
−1/

√
g0N0

)
(3)

even if the interaction strength is weak compared to the
fermionic bandwidth W .

In order to obtain the renormalized band function we
proceed by estimating the second-order correction to the
self-energy Σω(k) for k near M1. Similar to [25, 29] we
make a distinction among three contributions stemming from
intermediate integration with quasimomentum correspond-
ing to the same point and the two other VHSs: Σω(k) =
∑i=1,2,3 Σi

ω(k) [28]. The band function is determined by
the pole of the cutoff-independent Green’s function that can
be obtained by solving the corresponding Dyson equation,
whereas the effects of spectrum renormalization, which de-
scribe the flattening, can be absorbed into mass renormal-
ization factors. The remaining divergencies are to be asso-
ciated with the quasiparticle residue. The resulting quasi-
particle spectrum in the vicinity of the M point (with initial
g1 = g2 = g3 = g4 = 0.15) is shown in the inset of Fig. 2: The
spectrum is almost flat in a rather wide range of k resulting
from mass renormalization. The quasiparticle weight is also
renormalized under the RG flow (not shown). We find that the
pinning of the Fermi level to the VHS remains robust under
the RG flow. Thus, we conclude that the effects of renormal-
ization drastically affect the Fermi surface topology, leading
to the formation of an extended VHS.

Strong-coupling analysis.—In order to demonstrate the ro-
bustness and experimental accessibility of the phenomenon, it
is necessary to show that the effect persists at finite tempera-
tures and strong interaction. This is a challenging task: While
dynamical mean-field theory (DMFT) captures nonperturba-
tive phenomena such as the Mott transition, it neglects spatial
correlations. Because of the important role of susceptibilities,
the problem cannot be treated in DMFT. Cluster extensions of
DMFT [30] lack sufficient momentum resolution. Both crite-
ria are met only in novel approaches combining DMFT with
analytical methods [26, 31]. Here we employ the dual fermion
technique [26] (see [32] for a comprehensive overview).

In this approach, the electronic self-energy is decomposed
into a local part obtained from DMFT and a nonlocal momen-
tum dependent correction Σω(k) = ΣDMFT

ω +ΣNL
ω (k), which is

evaluated in dual perturbation theory. The antiferromagnetic
pseudogap, Fermi-arc formation, and non-Fermi-liquid ef-
fects due to the VHS are already captured by the lowest-order

Figure 2. (Color online) Main panel: Renormalization group flow
of the couplings gi. Inset: Dispersion relation in the vicinity of the
saddle point corresponding to the bare (red) and renormalized (blue)
action. The flattening of the band is clearly visible. The plotting
region is determined by the cutoff parameter Λ/t ∼ 1.

diagrams [33]. Here we employ the ladder approximation,
which describes the feedback of collective excitations on the
electronic self-energy. Introducing the dual particle-hole bub-
ble χ̃ν

ω(q) =−T ∑k G̃ω(k)G̃ω+ν(k+q), the dual self-energy
reads

Σ̃ω(k) = T ∑
qω ′ν

γ
ν

ωω ′G̃ω+ν(k+q)χ̃ν

ω ′(q)[Γ
ν

ω ′ω(q)−
1
2

γ
ν

ω ′ω ].

(4)

Here γν

ωω ′ is the fully connected dynamical vertex of the im-
purity model [32], ω , ν denote fermionic and bosonic Mat-
subara frequencies, respectively, and T denotes temperature.
The vertices are tensors in spin space and spin summations
have been omitted for clarity. The second term in brack-
ets prevents double counting of diagrams. From the Bethe-
Salpeter equation [Γ−1

ν (q)]ωω ′ = [γ−1
ν ]ωω ′ − χ̃ν

ω(q)δωω ′ we
obtain the vertex function Γ. The bare dual Green’s func-
tion is G̃0

ω(k) = GDMFT
ω (k)− gω , where gω is the exact local

DMFT Green’s function. This approximation is applicable for
strong coupling [34]. The relation between the Σ̃ and the lat-
tice Green’s function can be written in the form [32, 33]

Gω(k) = [(gω +gω Σ̃ω(k)gω)
−1 +∆ω − εk]

−1, (5)

with the DMFT hybridization function ∆ω .
The resulting spectral function−(1/π)ImGω(k) for U/t =

8 is shown in Fig. 3. We observe a broadening and flatten-
ing of the spectrum at the M point. While flattening of the
spectrum is partly present in DMFT due to band renormaliza-
tion, including spatial correlations leads to the formation of an
extended VHS. Apart from the incoherent high-energy excita-
tions we observe a well-defined and only slightly dispersive
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band at low energies, which spans a large region of the Bril-
louin zone between the M and K points. We have marked the
local maxima with a white line. We find that this band agrees
perfectly well with the prediction εk− µ = T ln[(1− nk)/nk]
from Eq. (1) (black line) everywhere in the vicinity of the
Fermi level. While the results are described by the Landau
functional, the self-energy clearly exhibits a power law and
hence non-Fermi liquid behavior. For T → 0 this leads to a flat
band and Fermi condensation, or the system becomes unstable
due to the degeneracy. We therefore interpret the effect as a
precursor to a correlated magnetic or superconducting ground
state. The formation of this band is correlation driven as it
disappears when the interaction is lowered.

In order to further elucidate the origin of this effect, we
note that because of the large DOS at the M point due to the
proximity of the VHS, the dominating contribution to the con-
volution in the self-energy (4) in the vicinity of the M point is
expected to stem from the vicinity of the Γ point. An analy-
sis of the leading eigenvalues of the Bethe-Salpeter equation
reveals that the spin channel dominates in the vicinity of Γ in
agreement with our RG analysis, where intrapatch scattering
is found to give the dominant contribution. Hence the effect
results from the combination of a large DOS and coupling to
strong ferromagnetic spin fluctuations. Indeed, our calcula-
tions unambiguously determine this effect to originate from
collective excitations in the spin channel [28]. The observed
tendency to ferromagnetic ordering due to frustration is in line
with previous results [35].

The large self-energy in the vicinity of the M point leads
to both a broadening of the spectrum and a strong reduction
of spectral weight at the M point, also in agreement with
the RG. The flattening is considerably stronger in non-self-
consistent calculations, where attenuation of the fluctuations
due to damping of quasiparticles at the M point is not taken
into account [28]. The absence of the low-energy band in
second-order approximation to the dual self-energy underlines
the importance of the feedback of collective excitations onto

Figure 3. (Color online) Spectral function in dual fermion approach
at U/t = 8 and T/t = 0.05. Local maxima corresponding to the lower
band are indicated by a white line. In the vicinity of the Fermi level,
this lower band perfectly matches the prediction εk− µ = T ln[(1−
nk)/nk] following from the Fermi condensate hypothesis (thick black
line). The bare dispersion is shown for comparison (blue, dashed).

Figure 4. (Color online) Broadened Fermi surface within ±0.1
electrons for U/t = 8 and T/t = 0.1. The lower left sextant shows
the noninteracting result.

the electronic degrees of freedom.
In the top panel of Fig. 4 we plot the so-called broadened

Fermi surface within ±0.1 electrons from the value 0.5 corre-
sponding to the interacting Fermi surface for given tempera-
ture. This quantity is directly related to the occupation func-
tion for different momenta, which is experimentally measur-
able [17]. The comparison with the noninteracting case shows
that the effect of flattening is substantial. Increasing the inter-
action strength U strongly enhances the flattening while low-
ering the temperature mitigates it. The correlation-driven ef-
fect can, nevertheless, clearly be separated from this purely
thermal effect even at the highest temperatures (see Supple-
mental Material [28]). We find that the effect persists up to
shifts in chemical potential of at least 0.5t, showing that it is
robust to the presence of a trapping potential.

Conclusions.—In summary, we have investigated the for-
mation of extended van Hove singularities in the triangular
lattice. The renormalization group and strong-coupling nu-
merical analysis establish the phenomenon as driven by many-
body interactions: The interplay of many-particle scattering
and nesting leads to band flattening near van Hove singular-
ities. The related high intensity in the spectral function may
find interesting applications in tunneling experiments or spin-
tronics. The phenomenon can be interpreted as a precursor to
a strongly correlated many-body ground state. Its study in the
controlled environment of cold atom experiments may fun-
damentally improve our understanding of correlated systems.
We have shown the effect to be robust when tuning interac-
tion, temperature, and chemical potential. In particular, its
signature in the occupation function is found to persist to rela-
tively high temperatures, making the phenomenon detectable
in experiments with ultracold atoms in optical lattices. The flat
band could be observed directly via band spectroscopy [36] or
indirectly via the momentum distribution function accessible
in time-of-flight measurements [17].
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I

SUPPLEMENTAL MATERIAL

MODEL

We start our analysis with the Hubbard model on the triangular lattice. The band function of non-interacting electrons corre-
sponding to nearest-neighbor hopping is

εk =−2t

(
coskx +2cos

kx

2
cos

ky
√

3
2

)
−µ, (S1)

with the hopping parameter t > 0 and the chemical potential µ respectively. We set the lattice spacing a = 1. The dispersion
relation possesses three inequivalent saddle points at

M1 =

(
0,

2π√
3

)
, M2,3 =

(
π,± π√

3

)
which are known to coincide with the Van Hove singularities (VHSs) of the model in question. On being doped to µ = 2t the
density of states (DOS)

N(ε) =
1

π2t
√

3
K

(
1
2
+
|ε|+2t− ε2/4t

4
√

t (|ε|+ t)

)
∼|ε|/t�1 N0 log

(
2t
|ε|

)
(S2)

diverges logarithmically, where N0 =
√

3/(2π2t) and K(z) is the complete elliptic integral of the first kind [1].
We proceed by patching the hexagon-shaped Brillouin zone near M1, M2, and M3. By restricting quasiparticle dynamics to

these regions we can introduce the corresponding operators a1, a2, and a3. The most general expression of the action that meets
momentum (up to reciprocal lattice vector) and spin conservation reads as follows

S[a1,a2,a3] =

β∫
0

dτ ∑
nkσ

ānkσ (∂τ + εn)ankσ +
g1

2

β∫
0

dτ ∑
m6=n

∑
{k}

āmk1σ ānk2σ ′amk3σ ′ank4σ +
g2

2

β∫
0

dτ ∑
m6=n

∑
{k}

āmk1σ ānk2σ ′ank3σ ′amk4σ

+
g3

2

β∫
0

dτ ∑
m 6=n

∑
{k}

āmk1σ āmk2σ ′ank3σ ′ank4σ +
g4

2

β∫
0

dτ ∑
n

∑
{k}

ānk1σ ānk2σ ′ank3σ ′ank4σ . (S3)

It includes exchange scattering (g1), forward scattering (g2), umklapp scattering (g3), and intrapatch scattering (g4) (see the
explanation in the main text). The indices m and n run over 1, 2, and 3, while ∑

{k}
stands for ∑

k1+k2=k3+k4

∑
σ 6=σ ′

.

RENORMALIZATION GROUP ANALYSIS

Applying the formalism of Wilsonian renormalization group to (S3) leads to a set of renormalization group (RG) equations
[2]:

dg1

dλ
= 2d1g1 (g2−g1)+d2g1 (g1 +2g4)−2d3g1g2, (S4)

dg2

dλ
= d1

(
g2

2 +g2
3
)
+2d2 (g1−g2)(g2 +g4)−d3

(
g2

1 +g2
2
)
, (S5)

dg3

dλ
=−g3 (g3 +2g4)+2d1g3 (2g2−g1) , (S6)

dg4

dλ
=−2g2

3−g2
4 +d2

(
2g2

1 +4g1g2−4g2
2 +g2

4
)
. (S7)
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Figure S1. The renormalization group flow.

where the RG scale is chosen to be equal to λ = χpp(q = 0), i.e. the susceptibility in Cooper channel at zero momentum transfer,

χpp(0) = T ∑
ω

∫ d2k
(2π)2 G(iω,k)G(−iω,−k). (S8)

Inserting the Green function G(iω,k) = (iω− εk)
−1 into (S8), with the band function εk expanded near the VHS and DOS (S2)

we arrive at

χpp(0) =
1
2

Λ∫
−Λ

dε

ε
N(ε) tanh

(
ε

2T

)
=

N0

2
log
(

Λ

max(2t,T )

)
log
(

Λ

T

)
(S9)

within logarithmic accuracy. The particle-particle susceptibility is doubly logarithmically divergent: the first logarithm comes
from the DOS, whereas the second one takes its origin in the Cooper instability. Being doped to VHS the perfectly nested
Fermi-surface drastically enhances the interaction effects in the particle-hole, or Peierls, channel. In fact, χph(Q) at momentum
transfer Q (a vector connecting two different critical points, εk+Q =−εk) can be estimated in a similar manner:

χph(Q) =−T ∑
ω

∫ d2k
(2π)2 G(iω,k)G(iω,k+Q) =

N0

2
log2

(
Λ

max(2t,T )

)
. (S10)

The latter does not hold away from perfect nesting. The coefficient d1
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d1 =
dχph(Q)

dλ
≈ χph(Q)

χpp(0)
, (S11)

showing the ratio between the Peierls and Cooper channels respectively smoothly interpolates between its asymptotic forms
d1(λ = 0) = 1 and d1(λ � 1) ∼ 1/

√
λ , whereas the remaining coefficients, d2 = dχph(0)/dλ and d3 = −dχpp(Q)/dλ are

parametrically smaller (sub-leading contribution). For the initial values g1 = g2 = g3 = g4 = 0.15 pointed out in the text and the
model function d1(λ ) = 1/

√
1+λ the RG flow is shown on Figure S1.

SPECTRUM RENORMALIZATION

In this section we provide a basic sketch of the self-energy computation to second order in interaction strength. As explained
in the main text, we separate the contribution coming from the intermediate integration with quasimomentum from the same (in
what follows M1) and different patches. Near M1 the bare band function reads εk = t

(
k2

x −3k̃2
y
)
/2, with k̃y = ky−2π/

√
3, while

the second order contribution to the self-energy can be evaluated as follows

Σ(iω,k) =U2
∫ d2k1

(2π)2

∫ d2k2

(2π)2
f (εk1) f (−εk2) f (εk−k1+k2)+ f (−εk1) f (εk2) f (−εk−k1+k2)

iω− εk1 + εk2 − εk−k1+k2

. (S12)

We are interested in a small region close to the VHS, so that (S12) is to be represented by its Taylor expansion

ΣΛ(iω,k) = α(Λ)(iω)+β (Λ)k2
x −3γ(Λ)k̃2

y + . . . (S13)

where the subscript shows the cut-off dependence of Σ(iω,k), while the coefficients α(Λ), β (Λ), and γ(Λ) are to be determined
from (S12). Then, the Green’s function reads

G(ω,k) =
(
G−1

0 (ω,k)−ΣΛ(ω,k)
)−1

=
Z(Λ)

ω−Z−1
x (Λ)k2

x +3Z−1
y (Λ)k̃2

y + iΓ(ω)
. (S14)

Here we have absorbed all the divergencies into mass renormalization Zx(Λ) and Zy(Λ) as well as quasiparticle spectral weight
Z(Λ), whereas the imaginary part Γ(ω), that determines quasiparticle lifetime, will be unimportant for subsequent analysis. By
requiring for G(ω,k) to be cut-off independent we derive a set of flow equations

Λ
d

dΛ
G−1(ω,k) = 0 (S15)

Following the standard paradigm [3, 4] and restricting to zero temperature regime we obtain

Σ1(ω,k) = Ũ2 (A1ω +B1k2
x −3C1k̃2

y
)

log2
(

Λ

2t

)
, (S16)

and

Σ2,3(ω,k) = Ũ2 (A2,3ω +B2,3k2
x −3C2,3k̃2

y
)

log
(

Λ

2t

)
, (S17)

where Ũ =U/(2π2t2
√

3). Finally, taking account of (S15) and factorizing Z = Z1Z2Z3, as well as Zx and Zy, we derive

d
dλ

logZ1 = 2g2
4λA1, (S18)

d
dλ

logZ2 =
(
g2

1−g1g2 +g2
2
)

A2, (S19)

d
dλ

logZ3 = g2
3A3. (S20)

Equations for Zx and Zy coincide with (S18) provided Ai is replaced by Ai → Bi − Ai and Ai → Ci − Ai respectively. The
renormalized quasiparticle spectrum is determined by the poles of the Green’s function (S14) and is plotted in main text.
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DUAL FERMION SPECTRAL FUNCTIONS

In order to improve the stability of the Padé analytical continuation within the dual fermion approach, we make use of
improved estimators [5] for the self-energy and vertex functions in the continuous-time hybridization expansion quantum Monte
Carlo impurity solver [6] (the calculations are free of the sign problem). To obtain reliable spectra we calculated them by
analytical continuation of the self-energy

Σω(k) = Σ
DMFT
ω +Σ

NL
ω (k) (S21)

and also of the Green’s function

Gω(k) = [(gω +gω Σ̃ω(k)gω)
−1 +∆ω − εk]

−1. (S22)

The statistics of the simulations was sufficiently high that the results of both methods were consistent. We additionally verified
the equality of the DOS on the real axis obtained from analytical continuation of the momentum resolved as well as the local
Green’s function, which poses a rather strict consistency check on the Padé data.

Figure S2. Spectral functions for U/t = 8 and T/t = 0.05. Left panel: Spectral function obtained within DMFT. Right panel: Spectral function
obtained from the full ladder sum of dual diagrams (LDFA), taking into account both charge and spin fluctuations. Flattening of the spectrum
at the M-point can already be observed in DMFT to some degree, but the effect is significantly more pronounced in LDFA. One can see an
extended VHS spanning a large region of the Brillouin zone. The effect is absent in second-order dual perturbation theory (not shown).

Figure S3. Spectral functions at U/t = 8 and T = 0.05t. Left panel: Spectral function from charge LDFA. Right panel: Spectral function from
spin LDFA. The presence of the extended VHS in spin LDFA and its absence in charge LDFA shows that the effect is driven by collective
spin excitations. Note that the charge LDFA spectral function is very similar to the DMFT result, showing that corrections due to the charge
channel are rather small.
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Figure S4. Spectral functions for U/t = 8 and T/t = 0.05 without self-consistent renormalization of the Green’s function. Left panel: Spectral
function obtained from non-self-consistent charge LDFA. Right panel: Spectral function obtained from non-self-consistent spin LDFA. The
band flattening in the non-self-consistent spin LDFA is significantly more pronounced (and overestimated) compared to the self-consistent
calculations. At the M-point the dispersion is split.

The ladder dual fermion approach relies on the numerical solution of the Bethe-Salpeter equation, with a local approximation
to the irreducible dual fermion vertex Γirr ≈ γ(4). Here γ(4) plays the role of the bare interaction of the dual fermions, which
is given by the fully antisymmetric, reducible two-particle vertex of the impurity problem. Solution of the BSE yields an
approximation to the full vertex and subsequent application of the Schwinger-Dyson equation yields the dual self-energy in the
ladder dual fermion approximation (LDFA),

Σ̃ω(k) = T
1
2 ∑

qω ′ν
γ

ν ch
ωω ′G̃ω+ν(k+q)χ̃ν

ω ′(q)[Γ
ν ch
ω ′ω(q)−

1
2

γ
ν ch
ω ′ω ]

+T
3
2 ∑

qω ′ν
γ

ν sp
ωω ′G̃ω+ν(k+q)χ̃ν

ω ′(q)[Γ
ν sp
ω ′ω(q)−

1
2

γ
ν sp
ω ′ω ], (S23)

where we have written spin and charge contributions explicitly. This allows us to investigate their respective influence on the
quasiparticle spectrum. In the following, calculations considering either only the charge or only the spin channel of the BSE
will be referred to as charge and spin LDFA, respectively. Figure S2 shows spectral functions obtained from DMFT and (full)
LDFA. While band flattening is observed in DMFT to some extent, the formation of the extended VHS is due to the effect of
spatial correlations.

In Fig. S3 we compare results from charge and spin LDFA. The formation of the extended VHS is evident in the spin LDFA,
while it is absent in charge LDFA. One can further observe that the spectral weight at the M-point is significantly reduced as a
result of interaction of quasiparticles with collective spin-excitations with corresponding momentum. From the similarity of the
DMFT and charge LDFA result we conclude that the feedback from nonlocal charge excitations onto the self-energy (and thus
the quasiparticle spectrum) is small.

The effect is even more pronounced where the ladder diagrams are evaluated with bare dual Green’s functions instead of
summing diagrams with renormalized propagators. This can be seen in Fig. S4 where the corresponding spectral functions for
non-self-consistent charge and spin LDFA are shown. The spin LDFA spectral function even exhibits a splitting of the band at
the Fermi level and in the vicinity of the VHS. Note that while this calculation shows the formation of the extended VHS more
clearly, it overestimates the effect: The strong attenuation of spectral weight at the Fermi level diminishes the susceptibilities,
which in turn leads to a smaller self-energy, etc. This effect is accounted for in the self-consistent calculation.

The flattening of the spectrum at the M-point directly manifests itself in the occupation function which is plotted in Figs. S5
and S6. The effect is robust under changes in temperature as can be seen from Fig. S6 and can still be observed at T/t=0.2,
which is accessible in experiments with ultra cold gases in optical lattices. The flattening becomes more pronounced as the
interaction increases. In order to quantify this behavior we have fitted a third degree polynomial f (x) = c0+c1x+c2x2+c3x3 to
the occupation function in a small interval around the M-point. Increased flattening is indicated by a decrease in magnitude of
the coefficient c3 in front of the third order term. One can see in Fig. S7, that the coefficient therefore decreases with increasing
interaction, as expected. The dual fermion results are systematically below the DMFT result. Hence the band flattening predicted
by LDFA is clearly more pronounced due to the effect of nonlocal correlations on the quasiparticle spectrum. With increasing
temperature (from left to right) the differences become smaller since non-local correlations become weaker due to thermal
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Figure S5. Occupation function plotted along the high symmetry
path in momentum space as obtained from LDFA for U/t=8 and
T/t=0.05 in comparison to the occupation function as obtained
from tight-binding (tb) for the same temperature, showing the
flattening at the M-point
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Figure S6. Occupation function plotted along the high symmetry
path in momentum space as obtained from LDFA for U/t=8 for
different temperatures, showing that the effect is robust under
change in temperature. The occupation function obtained from
tight-binding (tb) for T/t=0.2 is also shown as a reference.
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Figure S7. Magnitude of the coefficient in front of the third order term of a third degree polynomial, obtained from a fit to the occupation
function within a small interval around the M-point. Fits have been performed to occupation functions obtained from DMFT and LDFA.
Smaller magnitude implies a band which is flatter. The flattening of the occupation function increases with the interaction and is considerably
stronger when nonlocal correlations are taken into account in the dual fermion calculation. Although the flattening enhances (the magnitude
of c3 decreases) with increasing temperature (from left to right), the correlation driven effect can clearly be separated from the purely thermal
effect: In the plotted interaction range, the magnitude of c3 changes by a factor of 2 even at the highest temperature.

fluctuations. The magnitude of the coefficient also decreases with increasing temperature (note the different scales). This purely
thermal effect which does not depend on the interaction. The corresponding flattening can be explained by the broadening of the
Fermi function and can be seen by comparing occupation functions in the tight-binding approximation in Figs. S5 and S6. The
correlation-driven effect can be observed by tuning the on-site interaction U . Despite being weakened at higher temperatures,
the interaction dependence remains strong and clearly visible up to the highest temperature.
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