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Measurement of the branching fraction and time-dependent
CP asymmetry in the decay B0 ! D��D��K0
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52Università di Napoli Federico II, Dipartimento di Scienze Fisiche and INFN, I-80126, Napoli, Italy

53NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
54University of Notre Dame, Notre Dame, Indiana 46556, USA

55Ohio State University, Columbus, Ohio 43210, USA
56University of Oregon, Eugene, Oregon 97403, USA
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We study the decay B0 ! D��D��K0
S using �230� 2� � 106B �B pairs collected by the BABAR detector

at the PEP-II B factory. We measure a branching fraction B�B0 ! D��D��K0
S� � �4:4� 0:4� 0:7� �

10�3 and find evidence for the decay B0 ! D��D�s1�2536� with a significance of 4:6�. A time-dependent
CP asymmetry analysis is also performed to study the possible resonant contributions to B0 !
D��D��K0

S and the sign of cos2�. Our measurement indicates that there is a sizable resonant contribution
to the decay B0 ! D��D��K0

S from an unknown D�s1 state with large width, and that cos2� is positive at
the 94% confidence level under certain theoretical assumptions.

DOI: 10.1103/PhysRevD.74.091101 PACS numbers: 13.25.Hw, 11.30.Er, 12.15.Hh

In the standard model framework, CP violation arises
from a complex phase in the Cabibbo-Kobayashi-Maskawa
quark-mixing matrix [1]. Measurements of CP asymme-
tries by the BABAR [2] and Belle [3] collaborations have
firmly established this effect in the decay B0 ! J= K0

S [4]
and related modes that are governed by the b! c �cs tran-
sition. Since both B0 and �B0 mesons can decay to the final
state D��D��K0

S and this process is dominated by a single
weak phase, W-emission b! c �cs transition, a time-
dependent CP violating asymmetry is expected.

In the approximation of neglecting penguin contribu-
tions for the decay B0 ! D��D��K0

S, there is no direct CP
violation. The time-dependent decay rate asymmetry of
B0 ! D��D��K0

S in the half Dalitz space s� 	 s� or
s� 
 s� can be written as [5]

 

A�t� �
� �B0 � �B0

� �B0 � �B0

� �y
Jc
J0

cos��mdt� �
�
2Js1
J0

sin2�� �y
2Js2
J0

cos2�
�

� sin��mdt�; (1)

where s� � m2�D��K0
S� and s� � m2�D��K0

S�, �B0 �� �B0�
is the decay rate for B0 � �B0� to D��D��K0

S at a proper time
t after production, �md is the mass difference between the
two B0 mass eigenstates, and �y � �1��1� for s� 	
s��s� 
 s��. The parameters J0, Jc, Js1, and Js2 are the
integrals over the half Dalitz phase space with s� < s� of
the functions jaj2 � j �aj2, jaj2 � j �aj2, Re� �aa��, and
Im� �aa��, where a and �a are the decay amplitudes of B0 !
D��D��K0

S and �B0 ! D��D��K0
S, respectively.

If the decay B0 ! D��D��K0
S has only a nonresonant

component, the parameter Js2 � 0 and Jc is at the few
percent level [5]. The CP asymmetry can be extracted by
fitting the B0 time-dependent decay distribution. The mea-
sured CP asymmetry is sin2� multiplied by a factor of
2Js1=J0 because the final state is an admixture of CP
eigenstates with different CP parities. In this case, the
value of the dilution factor 2Js1=J0 is estimated to be large
[5], similar to the decay B0 ! D��D��.

The situation is more complicated if intermediate reso-
nances such as D�sJ are present. In this case, the parameter

Js2 is nonzero and Jc can be large. The resonant compo-
nents are expected to be dominated by two P-wave excited
Ds1 states [5]. One such state is D�s1�2536� that has a
narrow width and does not contribute much to Js2. It can
be easily removed by imposing a mass window require-
ment. The otherD�s1 resonant state is predicted in the quark
model [6] to have a mass above the D��K0

S mass threshold
with a large width. In this case, the Js2 can be large.
Therefore by studying the time-dependent asymmetry of
B0 ! D��D��K0

S in two different Dalitz regions, the sign
of cos2� can be determined for a sufficiently large data set
using the method described in Refs. [5,7,8]. This would
allow the resolution of the �! �=2� � ambiguity de-
spite the large theoretical uncertainty of 2Js2=J0. However,
if the unknown P-wave D�s1 is the newly discovered
D�sJ�2317� or D�sJ�2460�, both of which lie below the
D��K0

S mass threshold, then it will not contribute to the
decay B0 ! D��D��K0

S. As a result, the time-dependent
analysis of B0 ! D��D��K0

S not only has a potential to
measure the sign of cos2�, but also can help us to under-
stand the possible structure of the excited charm meson
spectrum.

In this paper, we present an improved measurement of
the branching fraction of the decay B0 ! D��D��K0

S [9]
and a search for intermediate resonant decays. We also
perform a time-dependent CP asymmetry analysis to study
the possible resonant contributions and the sign of cos2�.

The data used in this analysis comprise (230� 2) mil-
lion ��4S� ! B �B decays collected with the BABAR detec-
tor at the PEP-II storage rings. The BABAR detector is
described in detail elsewhere [10]. We use a Monte Carlo
(MC) simulation based on GEANT4 [11] to validate the
analysis procedure and to study the relevant backgrounds.

We select B0 ! D��D��K0
S decays by combining two

oppositely charged D� candidates reconstructed in the
modes D�� ! D0�� and D�� ! D��0 with a K0

S candi-
date. We include the D��D�� combinations
�D0��; �D0��� and �D0��; D��0�, but not
�D��0; D��0� because of the small branching fraction
and large backgrounds. To suppress the e�e� ! q �q (q �
u, d, s, and c) continuum background, we require the ratio
of the second and zeroth order Fox-Wolfram moments [12]
to be less than 0.5.
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Candidates for D0 and D� mesons are reconstructed in
the modes D0 ! K���, K����0, K�������, and
D� ! K�����, by selecting track combinations with
invariant mass within �2� of the nominal D masses
[13]. The resolution � is measured using a large data
sample of inclusive D decays. It is equal to 7:0 MeV=c2

for D0 ! K��� decays, 13:5 MeV=c2 for D0 !
K����0 decays, 5:7 MeV=c2 for D0 ! K�������

decays, and 5:6 MeV=c2 for D� ! K����� decays.
The K0

S candidates are reconstructed from two oppo-
sitely charged tracks with an invariant mass within
15 MeV=c2 of the nominal K0

S mass [13], which is equiva-
lent to slightly less than 5� of the measured K0

S mass
resolution. The �2 probability of the ���� vertex fit
must be greater than 0.1%. To reduce combinatorial back-
ground, we require the measured proper decay time of the
K0
S to be greater than 3 times its uncertainty. Charged kaon

candidates, except for the one in the decay D0 ! K���,
are required to be inconsistent with the pion hypothesis, as
inferred from the Cherenkov angle measured by the
Cherenkov detector and the ionization energy loss mea-
sured by the charged-particle tracking system [10]. Neutral
pion candidates are formed from pairs of photons detected
in the electromagnetic calorimeter [10], each with energy
above 30 MeV. The mass of the pair must be within
30 MeV=c2 of the nominal �0 mass, and their summed
energy is required to be greater than 200 MeV. In addition,
a mass-constrained fit is applied to the �0 candidate.

The D0 and D� candidates are subject to a mass-
constrained fit prior to the formation of theD�� candidates.
The slow �� from the D�� decay is required to have a
momentum in the ��4S� center-of-mass (CM) frame less
than 450 MeV=c. The slow �0 from the D�� must have a
momentum between 70 and 450 MeV=c in the CM frame.
No requirement on the photon-energy sum is applied to the
�0 candidates from the D�� decays. The D�� mass is
required to be within 4 MeV=c2 of the nominal D��

mass, corresponding to slightly more than 3� of the mea-
sured D�� mass resolution.

For each B0 ! D��D��K0
S candidate, we calculate the

difference of the B0 candidate energy E�B from the beam
energy E�Beam, �E � E�B � E

�
Beam, in the CM frame. In

order to reduce the combinatorial background further,
j�Ej is required to be less than 25 MeV, which is equiva-
lent to 2:5� of the measured �E resolution.

The beam energy-substituted mass, mES ���������������������������
E�2Beam � p

�2
B

q
, where p�B is the B0 candidate momentum

in the CM frame, is used to extract the signal yield from the
events satisfying the aforementioned selection. We select
B0 candidates with mES 
 5:23 GeV=c2. On average we
have 1.25 B0 candidates per event. If more than one
candidate is selected in an event, we retain the one with
the smallest j�Ej. Studies using MC samples show that this
procedure results in the selection of the correct B0 candi-
date more than 95% of the time.

The total probability density function (PDF) is the sum
of the signal and background components. The signal mES

PDF is modeled by a Gaussian function and the combina-
torial background is described by an ARGUS [14] func-
tion. MC studies show that there is a small peaking
background from B� ! �D�0D��K0

S in which a �D0 origi-
nating from a �D�0 decay is combined with a random soft
�� to form a D�� candidate. The peaking background is
described by the same PDF as the signal, its fraction with
respect to the signal yield is fixed to be 1.4%, determined
from the MC simulation. An unbinned maximum likeli-
hood (ML) fit to the mES distribution yields 201� 17�stat�
signal events, where the mean and width of the signal
Gaussian, as well as the ARGUS shape parameters, are
allowed to float in the fit. In the region of mES >
5:27 GeV=c2, the signal purity is approximately 79%.
The fit result is shown in Fig. 1(a).

To correct for variations in signal efficiency across the
D��D��K0

S Dalitz plane, we calculate the branching frac-
tion using the sPlots method [15]:

 B �
X
i

wsig�mES;i�

NB �B � �i �Bsub
; (2)

where the sum is over all events i, �i is the efficiency
estimated from the simulated events in the vicinity of
each data point in the Dalitz plane, Bsub is the product of
the branching fractions of the subdecays, and wsig is an
event-dependent signal weight that is defined as [15]

 wsig�mES;i� �

PNs
j�1 Vsig;jPj�mES;i�PNs
j�1 NjPj�mES;i�

; (3)

which is calculated from the yield Nj of the jth PDF
component Pj in the fit, and the covariance matrix ele-
ments Vsig;j between the signal yield Nsig and Nj. The Ns is
the number of PDF components in the fit.

We investigate the production of intermediate reso-
nances by examining the invariant mass distribution of
the D�� and K0

S combinations. Figure 1(b) shows the
projected distribution of m�D��K0

S� from B0 !
D��D��K0

S signal events after efficiency correction using
the sPlots technique. A peak is seen at the value of
D�s1�2536� mass. We do not observe evidence of the
D�s2�2573�. The events tend to cluster toward lower values
of m�D��K0

S� (below about 2:9 GeV=c2), in contrast to the
phase-space model, as shown in Fig. 1(b).

To extract the signal yield of B0 ! D��D�s1�2536�, we
perform an unbinned ML fit to the �m � m�D��K0

S� �
m�D��� �m�K0

S� distribution in the region mES >
5:27GeV=c2 with a PDF given by the sum of a Gaussian
shape for the signal and a threshold function
�ma exp�b�m� for the background. The mean and width
of the signal Gaussian, as well as the background PDF
parameters a and b, are allowed to float in the fit. The fit
yields 12:3� 4:0�stat� signal events, as shown in Fig. 1(c).
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The significance is estimated to be 4:6� using the log-
likelihood ratio between a fit with signal and another with
none. The significance is dominated by the statistical un-
certainty and has little contribution from the systematic
uncertainty corresponding to the estimate of the signal
yield. The fitted signal mean and width are consistent
with the MC simulation. We repeat the fit in different
�m regions up to the kinematic limit, as well as using
different background parametrizations. All of these give
consistent signal yields of D�s1�2536�. We also examine the
�m distribution in the mES 	 5:27GeV=c2 region, and see
no peaking structure.

The systematic uncertainties of the branching fraction
measurements are dominated by the uncertainty of the
charged track reconstruction efficiency (10.7%). Other
sources also contribute to the systematic errors, such as
the kaon particle identification efficiency (3.9%), �0 re-
construction efficiency (3.5%), branching fractions of the
D decays (5.8%), determination of the number of B �B in the
data sample (1.1%), event selection criteria (5.0%), and the
estimate of the peaking background fraction (1.8%). The
measured branching fraction is

 B �B0 ! D��D��K0
S� � �4:4� 0:4� 0:7� � 10�3;

where the first uncertainty is the statistical and the second
is systematic. Our result is in good agreement with the
previous BABAR measurement [9]. We also measure the
intermediate resonant decay branching fraction and find

 B �B0 ! D��D�s1�2536�� �B�D�s1�2536� ! D��K0
S�

� �4:1� 1:3� 0:6� � 10�4:

The fraction of the decay B0 ! D��D��K0
S through the

intermediate D�s1�2536� resonance is measured to be
0:092� 0:024�stat� � 0:001�syst�.

We subsequently perform a time-dependent analysis
using the event sample described previously. In the time-
dependent analysis, we require that the invariant mass of
the D�� and K0

S combination be larger than 2:55 GeV=c2

in order to reject the narrow D�s1�2536� resonant decays.

For the time-dependent CP analysis, we use information
from the other B meson in the event to tag the initial flavor
of the fully reconstructed B0 ! D��D��K0

S candidate. The
decay rate f��f�� for a neutral Bmeson accompanied by a
B0� �B0� tag is given by

 

f���t� / e�j�tj=�B0

�
�1 �!� � �1� 2!�

�

�
�y
Jc
J0

cos��md�t� �
�
2Js1
J0

sin2�

� �y
2Js2
J0

cos2�
�

sin��md�t�
��
; (4)

where �t � trec � ttag is the difference between the proper
decay time of the reconstructed signal B meson (Brec) and
that of the tagging B meson (Btag), �B0 is the B0 lifetime,
and �md is the mass difference determined from the B0 �
�B0 oscillation frequency [13]. The average mistag proba-
bility! describes the effect of incorrect tags, and �! is the
difference between the mistag rate for B0 and �B0.

The technique used to measure the CP asymmetry is
analogous to that used in previous BABAR measurements
as described in Refs. [16,17]. We calculate the time interval
�t between the twoB decays from the measured separation
�z between the decay vertices of Brec and Btag along the
collision (z) axis [16]. The z position of the Brec vertex is
determined from the charged daughter tracks. The Btag

decay vertex is determined by fitting charged tracks not
belonging to the Brec candidate to a common vertex, em-
ploying constraints from the beam-spot location and the
Brec momentum [16]. Only events with a �t uncertainty
less than 2.5 ps and a measured j�tj less than 20 ps are
accepted. We perform a simultaneous unbinned maximum
likelihood fit to the �t and mES distributions to extract the
CP asymmetry. The signal PDF in �t is given by Eq. (4)
convolved with an empirical �t resolution function [16].
Both the signal mistag probability and �t resolution func-
tion are determined from a sample of neutral B decays to
flavor eigenstates, Bflav.
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FIG. 1. (a) Measured distribution of mES. The solid line is the projection of the fit result. The dashed line represents the background
components. (b) The efficiency-corrected yield of B0 ! D��D��K0

S signal events as a function of m�D��K0
S� in data (points) and in

three-body phase-space signal MC (histogram) with an arbitrary normalization. Errors shown are statistical only. Note that the vertical
axis shows events per unit m�D��K0

S�, not the events in each bin. (c) Measured distribution of m�D��K0
S� �m�D

��� �m�K0
S� in the

region mES > 5:27 GeV=c2. The solid line is the projection of the fit result.
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The background �t distributions are parametrized with
an empirical description that includes zero and nonzero
lifetime components [16]. We also allow the nonzero life-
time background to have effective CP asymmetries and let
them float in the likelihood fit.

The fits to the data yield
 

Jc
J0
� 0:76� 0:18�stat� � 0:07�syst�

2Js1
J0

sin2� � 0:10� 0:24�stat� � 0:06�syst�

2Js2
J0

cos2� � 0:38� 0:24�stat� � 0:05�syst�:

(5)

Figure 2 shows the �t distributions and asymmetries in
yields between B0 and �B0 tags, overlaid with the projection
of the likelihood fit result. The effectiveCP asymmetries in
the background are found to be consistent with zero within
statistical uncertainties. As a cross-check, we also repeat
the fit by allowing the B0 lifetime to float. The obtained B0

lifetime is in a good agreement with its world average [13]
within the statistical uncertainty.

The sources and estimates of systematic uncertainties
are summarized in Table I. Since the signal reconstruction
efficiency is not uniform over the entire Dalitz space, the
different CP components may not have the same accep-
tance. Therefore the measured parameters will deviate
slightly from their true values. We estimate the possible
bias using the signal MC weighted according to the ex-
pected theoretical Dalitz distributions in Ref. [5]. Because
of the lack of knowledge of the unknownD�s1 state, we vary
its mass and width over a wide range. The largest bias of
the measured parameters Jc=J0, �2Js1=J0� sin2�, and
�2Js1=J0� cos2� are taken as the corresponding systematic
uncertainties on the acceptance effect.

The other systematic uncertainties arise from the pos-
sible backgrounds that tend to peak under the signal and
their CP asymmetries, the assumed parametrization of the
�t resolution function, the possible differences between
the Bflav and B0 ! D��D��K0

S tagging performances,
knowledge of the event-by-event beam-spot position, and
the possible interference between the suppressed �b! �uc �d
amplitude and the favored b! c �ud amplitude for some
tag-side decays [18]. They also include the systematic
uncertainties from the finite MC sample used to verify
the fitting method. All the systematic uncertainties are
found to be much smaller than the statistical uncertainties.

In summary, we have reported an improved branching
fraction measurement of the decay B0 ! D��D��K0

S that
supersedes the previous BABAR result [9]. We also find
evidence for the decay B0 ! D��D�s1�2536� with 4:6�
significance. A time-dependent CP asymmetry analysis
has also been performed. The measured Jc=J0 is signifi-
cantly different from zero, which may indicate that there is
a sizable resonant contribution to the decay B0 !
D��D��K0

S from a unknown D�s1 state with large width,
according to Ref. [5]. We measure that �2Js2=J0� cos2� �
0:38� 0:24�stat� � 0:05�syst�. Under the assumption that
there is a significant broad resonant contribution to the
decay B0 ! D��D��K0

S, it implies that the sign of cos2�
is preferred to be positive at the 94% confidence level if the
theoretical parameter Js2=J0 is positive, as predicted in
Ref. [5].

TABLE I. Sources of systematic error on Jc=J0 (column I),
�2Js1=J0� sin2� (column II), and �2Js1=J0� cos2� (column III).

Source I II III

Acceptance 0.060 0.040 0.030
Peaking backgrounds 0.009 0.016 0.002
�t resolution function 0.015 0.006 0.008
Mistag fraction differences 0.016 0.015 0.015
Detector Alignment 0.005 0.015 0.015
�md, �B 0.001 0.001 0.001
MC statistics 0.021 0.032 0.032
Others 0.005 0.004 0.005
Total 0.068 0.058 0.050
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FIG. 2. (a) The distribution of �t in the region mES >
5:27 GeV=c2 for B0 � �B0� tag candidates in the half Dalitz space
s� < s� (�y � �1). The solid (dashed) curve represents the fit
projections in �t for B0 � �B0� tags. (b) The raw asymmetry
�NB0 � N �B0 �=�NB0 � N �B0 �, as functions of �t, where NB0

�N �B0 � is the number of candidate with B0 � �B0� tag. (c) and
(d) contain the corresponding information for the B0 candidates
in the other half Dalitz space s� > s� (�y � �1).
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