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Abstract — We report on magnetization dynamics triggered in a Co/garnet heterostructure by
femtosecond laser pulses. Although laser excitation of a bare Co-doped yttrium iron garnet leads
to magnetization precession, the phase of which strongly depends on the linear polarization of
the light pulses, the deposition of an ultrathin Co layer on a top of a garnet film results in
substantial changes of the laser-induced dynamics. The precession in the garnet is shown to lose
its sensitivity to the polarization. Instead, light triggers polarization insensitive precession in both
the magnetostatically coupled Co layer and the garnet film at two distinct frequencies typical for

Co and garnet layers.

Copyright © EPLA, 2014

Introduction. — Manipulation of magnetization with
the help of femtosecond laser pulses is a hot topic in fun-
damental science [1-4]. Understanding optical control of
the magnetism in magnetic heterostructures is a partic-
ularly important issue for further development of faster
magnetic information storage/processing and spintronic
nanodevices. Optical control of spins in Co/SmFeOs het-
erostructures has been recently demonstrated using X-ray
photoemission electron microscopy, revealing that the dy-
namics of the spins in the metallic Co and the dielec-
tric SmFeOg3 are correlated [5]. However, since the time
resolution of these experiments was limited by the du-
ration of the X-ray pulse (about 70ps), these findings
have raised the question whether the correlations between
metallic and dielectric layers in such heterostructures are
also present at the sub-100 ps time scale.

To investigate this issue we studied a similar system
consisting of a dielectric yttrium iron garnet (YIG) film
and an ultrathin Co layer. It is known that in such a het-
erostructure one can observe a strong influence of a 2nm
Co layer on both the domain structure and magnetization

(@) E-mail: and@uwb.edu.pl

reversal processes in the garnet, due to magnetostatic cou-
pling [6]. A priori, one can anticipate several mechanisms
which can be responsible for possible correlations between
the magnetization dynamics in the Co and garnet layers
of such a heterostructure. For instance, it is known for a
metal/dielectric heterostructure that spin-orbital interac-
tion may initiate a transfer of angular momentum between
the layers, and thus cause correlations in the magnetiza-
tion dynamics [7]. In addition, it can occur as a conse-
quence of exchange coupling, such as has been found in a
Py/YIG bilayer [8]. The goal of the research reported in
this paper is to understand whether the ultrathin Co film
also affects laser-induced magnetization dynamics in the
garnet film.

Here we compare laser-induced magnetization dynamics
in a cobalt/garnet heterostructure with that observed for
the bare garnet thin film. Although optical excitation of a
bare garnet leads to magnetization precession, the phase of
which strongly depends on the polarization of the pump
light, the deposition of an ultrathin Co layer on top of
the garnet film is shown to lead to substantial changes of
the laser-induced dynamics. The precession becomes in-
sensitive to the polarization of the laser pulse and occurs
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Fig. 1: Scanning electron microscopy images of the initial gar-
net surface before etching (a) and after etching and subsequent
deposition of 2nm Co (b).

in both the Co layer and the garnet film, at two distinct
frequencies typical for an ultrathin Co layer and a gar-
net film, respectively. The results reveal the existence of
ultrafast correlations between the spins of the magnetic
layers.

Experimental details. — We studied a heterostruc-
ture obtained by the growth of a 2nm Co polycrystalline
layer on a 1.8 um Co-doped YIG film (YIG:Co). Scanning
electron microscopy images of the surface of the sample are
shown in fig. 1. The original 6.5 ym garnet had a rough
surface with protrusions about 100-200nm in diameter
(see fig. 1(a)), which was thinned down with a 0.6keV
oxygen ion beam and smoothed using a 0.3keV beam for
over 10 minutes. After the reduction of the thickness from
6.5 um to 1.8 um and the subsequent etching, we also ob-
tained a significant reduction of the surface roughness with
an improvement of the root-mean-square roughness from
3.5 to 0.3nm (see fig. 1(b)). The formation of continuous
Co layers on a smoothed garnet surface is caused by ir-
radiation of high-energy atoms from a sputtered flux [9].
High-energy atoms penetrate deep in the garnet film and
in the growing Co layer. At the initial stage of Co growth,
the atoms of the sputtered flux improve the adhesion of
the Co layer to the smoothed garnet surface and favor con-
tinuity in the thinner layers as a result of compacting the
growing layer during atomic collisions. The Co/garnet
interface is sharp, and the thickness of the transition
layer is thinner than 1nm. Finally, a 4nm Au film was
used to protect the Co layer from oxidation. At room
temperature the magnetic anisotropy constants of the
1.8 um thick garnet film were K; = —2 x 103 erg/cm? and
K, = 10%erg/cm? [6], and Gilbert damping was 0.19. For
the 2nm Co layer, the effective anisotropy constant and
Gilbert damping were KSHO = —9.9x10% erg/cm?® and 0.04,
respectively [6,10].

To study the ultrafast spin dynamics in the bilayer
structure induced by femtosecond laser pulses, we carried
out time-resolved measurements at room temperature us-
ing a magneto-optical pump-probe method. Pump pulses
with a duration of 35fs from a Ti:Sapphire laser system
with an amplifier (Ace, Spectra-Physics) at a 500 Hz rep-
etition rate and wavelength of 800nm were directed at
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Fig. 2: (Colour on-line) Experimental geometry (a) and mag-
netization orientation as a function of the amplitude of external
field H for garnet and Co layer of the heterostructure (b).

an angle of incidence about 10° from the sample normal
parallel to the [001] crystallographic axis of the garnet
film. The pump beam with a fluence of 10mJ/cm? was
focused onto a spot of about 100 ym in diameter. The
sample was excited by the pump through the Co side
of the heterostructure. The probe beam was about two
times smaller in size and intensity than the pump. The
probe pulses at a 1 kHz repetition rate and wavelength of
800 nm were directed perpendicular to the sample plane,
see fig. 2(a). The delay time At between the pump and
the probe pulses could be adjusted up to 2ns. The po-
larization plane of the linearly polarized pump pulse was
adjusted to an angle ¢ with respect to the [100] axis. The
polarization plane of the probe beam was along the [110]
axis. We probed the dynamics of the perpendicular com-
ponent of the magnetization M, measuring the Faraday
rotation angle fg of the probe as a function of the delay
time between the pump and probe pulses At.

Results and discussion. — A rather unique combina-
tion of magnetic properties of the layers allows us to realize
different regimes of the laser-induced dynamics. Changing
the strength of the magnetic field we were able to obtain
conditions when the magnetization dynamics was domi-
nated either by the Co or the garnet layer. Such a layer
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selective probing of the magnetization dynamics can be
understood by a simple phenomenological model [6]. As-
sume that our bilayer system is in an external magnetic
field H applied at an angle 0y = 65° so that the layers are
in a monodomain state and the layers are characterized
by two magnetizations vectors Myarmer and Mc,.

The equilibrium orientation of the magnetizations in
the Co and garnet layers can be found by minimizing
the free energy of the total system. The expression for the
free energy contains terms representing the energy of the
magnetic anisotropies, the Zeeman energy in the external
magnetic field H as well as the demagnetization energies
defined by the saturation magnetizations for the Co and
the garnet layers [6]. Figure 2(b) shows how the angle 0y,
between the normal to the sample and the equilibrium
orientations of the magnetizations in the layers, depends
on the external magnetic field H. In our Faraday geome-
try, the probe pulse polarization rotation is proportional
to the magnetization component along direction normal
to the sample plane. The angle Or of the probe oscillates
as a fingerprint of the spin precession. Therefore, increas-
ing the angle 0y leads to increasing the amplitude of the
spin oscillations. It is seen from the figure that if an ultra-
short laser excitation triggers magnetization dynamics of
small amplitude, we can clearly distinguish two regimes:
i) the low-magnetic-field regime (H < 1kOe) when the
laser-induced dynamics is dominated by the magnetiza-
tion precession of the garnet film due to the simultaneity
of the large angle between H and Mgarnet, and close-to-
zero perpendicular component of Mc,; ii) the high-field
regime (H > 4kOe), when the laser-induced dynamics
is dominated by the magnetization precession of the Co
film with the significant perpendicular component Mc,,
on conditions that the magnetization vector Mgarnet prac-
tically is along H.

Time dependences of the z-component of the M, mag-
netization component were thus measured for different ori-
entations of the linear polarization of the pump pulse and
at different external magnetic fields H. Figure 3(a) shows
the magnetization dynamics measured at 1.5kOe, 2.3kOe
and 4.6 kOe for the polarization of the pump ¢ = 0°. It
is seen that the laser excitation triggers oscillations of the
signal at two frequencies which are idenified as the fre-
quencies of the ferromagnetic resonance in the Co and the
garnet layers, respectively [10]. It is also seen that upon
increasing the magnetic field, the contribution from the
garnet vanishes so that at a field of 4.6 kOe the contribu-
tion from the Co layer dominates. From the experimental
curves, we deduced amplitudes of the oscillations using fit
with a sinusoidal function with damping (fig. 3(b)). At the
field of 4.6kOe we have also measured the laser-induced
dynamics as a function of the polarization of the pump,
setting the latter at ¢ = 0° and 90° (see fig. 3(c)). In
this case we observe no polarization dependence of the os-
cillations. In general, the laser-induced precession can be
excited due to an ultrafast laser-induced demagnetization
typical for metallic magnets [11]. The demagnetization is
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Fig. 3: (Colour on-line) Time-resolved Faraday rotation of the
Co/garnet film as a function of the delay time At for differ-
ent magnetic-field amplitude (a) and pump polarization (b).
Dependence of the magnetization component M, on the am-
plitude of external field H for the garnet and Co layer (b). Solid
lines were fitted using the classical oscillation function includ-
ing damping for a 2nm Co layer on a 1.8 um garnet film [10].

seen as a sub-picosecond change of the magneto-optical
signal measured at H = 4.6kOe. Such an ultrafast
demagnetization leads to an ultrafast reduction of Mc,,
which effectively changing the equilibrium orientation of
the magnetization in this layer and thus triggering spin
oscillations [12,13]. In contrast to the laser-induced mag-
netization dynamics triggered in the bare garnet film, it is
clearly seen that the laser-induced magnetization dynam-
ics in the Co layer is polarization independent. Hence, the
magnetization excited in the Co layer is typical for metal-
lic magnets and thus does not seem to be affected by the
vicinity of the garnet film.

In order to investigate whether the Co layer affects the
magnetization dynamics in the garnet film, we performed
time-resolved measurements of the laser-induced magne-
tization dynamics in the heterostructure in the low-field
regime H < 1kOe. In this regime the garnet magnetiza-
tion precession amplitude always dominates that of the
cobalt layer [10]. First we measured the laser-induced
magnetization dynamics in a bare garnet film. Figure 4
shows that changing the polarization of the pump induces
a shift of the phase of the precession A in the bare garnet
film (see fig. 4(a)).
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Fig. 4: (Colour on-line) Time-resolved Faraday rotation of gar-
net and Co/garnet films as a function of the delay time At for
a magnetic field H(fg = 65°) = 0.75kOe and different pump
polarization ¢.

This is in agreement with earlier reports on laser-
induced magnetization dynamics in garnet films [14].
However, after the deposition of the nanometer-thin Co
film, the sensitivity of the laser-induced magnetization dy-
namics to the polarization vanishes. Pump pulses polar-
ized at ¢ = 0° and 90° trigger magnetization dynamics
in the garnet film with the very same phase Ay = 0, see
fig. 4(b). At the time scale up to 100 ps the magnetiza-
tion dynamics triggered in the bare garnet and Co/garnet
films with the same polarization of the pump light are
clearly different. At the same time, the frequencies of the
precession in these two samples are practically the same.

The effect of the Co layer on the laser-induced dynamics
in the garnet film can be explained as follows. The laser
excitation leads to both an ultrafast demagnetization of
the Co layer and a photoinduced magnetic anisotropy in
the garnet film. These effects lead to a rapid change of the
equilibrium orientations of the magnetizations in the lay-
ers given by the external out-of-plane magnetic field, the
demagnetizing factor, effective field of the photo-induced
anisotropy in the garnet and the effective magnetocrys-
talline anisotropy field in the Co/garnet bilayer. Such a
rapid change triggers precession of the spins around the
new equilibrium orientation. In a Co-doped garnet film,
the initial phase of the spin precession depend on whether
the pump laser pulse is polarized parallel to the [100] or
[010] crystallographic axes, which define the local tetrago-
nal symmetry. In this case, the polarization-dependent ex-

citation of the precession leads to a change of the magnetic
anisotropy in the garnet due to the uniaxial photo-induced
anisotropy [14]. The direction of this photo-induced
anisotropy field is defined by the pump pulse polarization.
At the initial time after the pump pulse, the magnetization
decays with a characteristic time of about 20 ps [14]. How-
ever, in a Co/garnet heterostructure at low applied field
(H < 1kOe), the phase of the spin precession is not only
defined by the internal, photo-induced anisotropy fields,
but also by the magnetostatic stray field produced by the
Co layer (Mco > Mgarmet [6]). The magnetostatic inter-
layer coupling is responsible for a change in phase of the
magnetization precession in the neighboring soft garnet
film. Thus, in a heterostructure, during 60 ps the mag-
netization partially recovers and the recovery is accom-
panied by a precession of the magnetization around the
effective magnetic field. The direction component of this
field is isotropic in the sample plane due to the easy plane
character of the magnetic anisotropy of the 2nm Co film.
Furthermore, the amplitude of the effective photo-induced
anisotropy field is rather small [14] compared to the effect
originating from a change of the demagnetizing field due to
the ultrafast laser-induced demagnetization of Co. Hence
the excitation of the magnetization precession is a result
of the demagnetization of Co.

In conclusion, we investigated the ultrafast magnetiza-
tion dynamics of a Co/YIG:Co heterostructure. To ex-
plore the effect of light on the observed precessions, we
studied the dependence of the spin dynamics in the het-
erostructure on the pump polarization and the external
magnetic field. It is shown that the excitation of the garnet
with linearly polarized laser pulses triggers a polarization-
sensitive magnetization precession in the bare garnet film.
The mechanism that triggers the precession is a photo-
induced change of the magnetic anisotropy. However, a
growth of just a 2nm Co film on top of the garnet signifi-
cantly changes the mechanism of the laser-induced preces-
sion in the heterostructure. In particular, the light trig-
gers polarization-independent precession in both the Co
and garnet layers via the magnetostatic coupling between
these layers.
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