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The dynamic magnetic properties of a highly anisotropic, granular L10 FePt thin film in magnetic

fields up to 7 T are investigated using time-resolved magneto-optical Kerr effect measurements.

We find that ultrashort laser pulses induce coherent spin precession in the granular FePt sample.

Frequencies of spin precession up to over 400 GHz are observed, which are strongly field and

temperature dependent. The high frequencies can be ascribed to the high value of the

magnetocrystalline anisotropy constant Ku leading to large anisotropy fields Ha of up to 10.7 T at

170 K. A Gilbert damping parameter of a � 0.1 was derived from the lifetimes of the oscillations.
VC 2014 Author(s). All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4871869]

The dynamics of spins in magnetic materials triggered

by a subpicosecond laser pulse is a recently emerging and

rapidly developing area in fundamental magnetism.1–4 The

ultimate practical goal of this research is to learn how to con-

trol the magnetic state of a medium on an ultrafast timescale.

Several mechanisms of such a laser-induced switching have

been suggested. For ferrimagnetic metallic alloys, such as

GdFeCo, it was shown that a subpicosecond laser excitation

can trigger magnetization reversal via a strongly non-

equilibrium state with no net magnetization.5–7 For ferro-

magnetic materials, another mechanism of reversible

switching of the magnetization was suggested.8,9 In this

mechanism, the switching proceeds via coherent spin preces-

sion triggered by a subpicosecond laser pulse.

Despite the claimed importance of the research for mag-

netic recording technologies, most studies treating laser-

induced magnetization dynamics have been focused on con-

tinuous metallic films with relatively low values of magnetic

anisotropy (Ku< 107 erg/cm3). On the other hand, state-of-

the-art recording media are based on granular ferromagnetic

compounds featuring high anisotropy values (Ku> 107

erg/cm3), such as FePt,10 in order to increase the data storage

density. The high magnetocrystalline anisotropy in these

materials could lead to spin precession in the THz regime.

However, since the nm-sized grains are exchange decoupled

and have a certain spread in size and crystallographic orien-

tation, it is not known whether a lm-sized laser excitation

will result in a collective, coherent response of their spins.

Hence, a possible ultrafast control of the magnetization

depends crucially on whether subpicosecond laser excita-

tions can trigger coherent spin dynamics in such a granular

compound. In this paper, we demonstrate that this is indeed

the case, using a time-resolved magneto-optical Kerr effect

(TR-MOKE) technique on a sample of highly anisotropic,

granular FePt. We furthermore show that the observed fre-

quencies indeed reach hundreds of GHz.

The investigated sample is a granular FePt thin film. It

was grown by sputter deposition at a substrate temperature

of 550 �C on a set of underlayers with MgO (001) surfaces

directly beneath the FePt, resulting in an out of plane easy

axis of magnetization (for more information see Ref. 11).

The elevated growth temperature leads to the formation of

the face centered tetragonal (fct) L10 phase rather than the

face centered cubic (fcc) A1 phase.12,13 The L10 phase is

chemically ordered (chemical order parameter S¼ 1), as

atomic layers of Fe and Pt alternate along the [001] direction.

It has been shown that in contrast to the fcc phase, the fct

phase has a high magnetocrystalline anisotropy of Ku � 7

� 107 erg/cm3.14 Thus, the higher the chemical ordering in

the FePt layer, the higher the magnetocrystalline anisot-

ropy.15 The cubic MgO-(001) seed layer provides a correct

template for FePt crystal growth, while a slightly larger lat-

tice parameter of MgO stretches the FePt a-axis. The

FePt/MgO interface induced stress in combination with the

tetragonal nature of the FePt L10 crystal results in a desired

configuration with in-plane orientation of the hard magnetic

a-axis and the easy magnetic c-axis in the out of plane direc-

tion. Even though X-ray diffraction measurements have con-

firmed a high degree of chemical ordering in this sample,

structural defects such as mis-oriented grains cause a slight

reduction of the overall order in the sample.11 To ensure

magnetically decoupled, separate grains, 35 vol. % of carbon

is added as a segregant during the growth process. Carbon

does not coalesce with FePt hence forming physically iso-

lated and exchange decoupled grains of roughly 7 nm diame-

ter and a grain size distribution of r¼ 16%.11 The magnetic

layer is capped by a 3 nm thick protective diamond like car-

bon (DLC) overcoat,16 allowing for optical access.

To characterize the static magnetic properties of the

sample, the polar magneto-optical Kerr effect was measured

at a wavelength of 800 nm. Magnetic hysteresis loops were

recorded applying an external magnetic field along the easy

axis of magnetization, normal to the sample plane. The

resulting hysteresis loops (Fig. 1) reveal a high coercive field

(Hc) of 5.0 6 0.1 T at room temperature. Decreasing the tem-

perature to 4.2 K leads to a significant increase in coercive

field to 8.2 6 0.5 T. To saturate the magnetization at 4.2 K,

fields greater than Hs¼ 11 6 0.5 T are required. This increase
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in Hc and Hs can be attributed to an increase in anisotropy at

lower temperatures15 as is also confirmed by our measure-

ments of the magnetization dynamics (see below). The rather

wide switching field distribution that can be observed in the

hysteresis curves can be explained with structural (grain size

distribution) and chemical (S< 1) inhomogeneities.11

Another notable effect was observed when applying the

external field at a 45� angle with respect to the sample nor-

mal. In this configuration, the coercive field is reduced to

3.7 6 0.1 T. This effect can be attributed to the granular na-

ture of the FePt layer. The individual grains are single do-

main, exchange decoupled ferromagnets which can be

described by a Stoner-Wohlfarth (SW) model.17 For ideal

SW particles, the switching field is minimal if applied

between the hard and easy axis of magnetization which cor-

responds to a 45� angle for the here presented sample.

In order to investigate the dynamic magnetic properties,

we used an all optical, TR-MOKE pump probe technique

described elsewhere.4 The sample was excited with a 100 fs

light pulse at a central wavelength of 800 nm and a fixed flu-

ence of 0.4 mJ/cm2. It was subsequently probed with a similar

pulse 100 times lower in power. During the measurement, an

external magnetic field up to 7 T was applied at an angle of

45� with the sample normal. A measurement at room tempera-

ture and an applied magnetic field of 7 T is shown in Fig. 2(a).

The laser pulse excitation leads to an initial ultrafast demag-

netization within 1.5 ps. The point of maximum demagnetiza-

tion is defined as zero on the x-axis. Following the

demagnetization, a relaxation of the magnetization is

observed, overlayed by an oscillation. The overall

re-magnetization can be described by a bi-exponential func-

tion f ðtÞ ¼ f ð0Þ � A1expð�t=s1Þ � A2expð�t=s2Þ with

amplitudes A1, A2. The lifetimes s1 and s2 represent the typical

timescales of the relaxation of the spin temperature and heat

diffusion away from the irradiated site, respectively. Our

measurements yielded a typical value for s1 � 1:5 ps, whereas

s2 > 25 ps cannot be accurately determined as the data only

extend to delay values of 16 ps. This background

re-magnetization at positive Dt was subtracted in Fig. 2(b) to

present the oscillatory part only. A damped sine function

A0 expð�t=sLÞsinð2pft� /Þ is used as a fitting function, with

A0, sL, f, and / representing amplitude, lifetime, frequency,

and phase of the oscillation, respectively. Only data for posi-

tive Dt are considered for the fitting. This yields a frequency

of �385 GHz for the room temperature measurement at 7 T

applied field. To investigate whether ferromagnetic resonance

(FMR) is observed here, measurements at different applied

magnetic fields at temperatures of 290 K (Fig. 2(c)) and 170 K

(not shown) were performed. Starting with a magnetically sat-

urated sample at 7 T, the magnetization dynamics were meas-

ured reducing the field in steps of 0.25 T down to 3 T. The

oscillations show a monotonic decrease in frequency as the

applied magnetic field is reduced (squares in Fig. 3), which is

to be expected for FMR. At 170 K (circles in Fig. 3), similar

behaviour is observed, but shifted to even higher frequencies

of up to �430 GHz at 7 T. Both data sets are fitted (orange

and blue lines in Fig. 3) according to the frequency-field rela-

tionship for ferromagnetic resonance, derived from the

Landau-Lifshitz(-Gilbert) (LLG) formula

dM

dt
¼ cM�Heff þ

a
M

M� dM

dt

� �
; (1)

with the gyromagnetic ratio c ¼ glB=�h, g-factor g, Bohr

magneton lB, effective field Heff ¼ �dU=dM, the damping

parameter a, the saturation magnetization M, and the internal

magnetic energy U. For a thin film with out of plane anisot-

ropy, taking into account the Zeeman energy, demagnetiza-

tion energy, the uniaxial anisotropy energy, and the internal

magnetic energy can be written as follows:

U ¼ �M �Hþ 2pðM � nÞ2 � Ku

M2
ðM � uÞ2; (2)

with applied magnetic field H, the sample normal n, and the

easy axis vector u. Here, the sample is considered as a con-

tinuous film, neglecting a possible reduction of the demag-

netizing fields due to the granular structure. However, the

effect of this reduction on U is small as the spherical grains

FIG. 1. Hysteresis loops acquired using the polar MOKE at 290 K (red

curve) and 4.2 K (black curve). Inset (a) shows the polar measurement ge-

ometry (red and black curve) while (b) shows the 45� geometry (blue curve).

The high coercive field Hc¼ 5 T at 290 K is increased to 8.2 T at 4.2 K.

Applying the field at a 45� angle (blue curve) to the easy axis results in a

reduced Hc¼ 3.7 T.

FIG. 2. (a) TR-MOKE time trace on FePt at 290 K, 7 T. Following the initial

demagnetization, damped oscillations are visible during the magnetization

relaxation, even more so if the exponential contribution of the relaxation is

subtracted (b). (c) TR-MOKE data at 290 K at different applied magnetic

fields ranging from 7 T down to 3 T.
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occupy 65 vol. % of the film and due to the high Ku, the ani-

sotropy energy will be significantly higher than the demag-

netizing energy. Using spherical coordinates, the equilibrium

angles for the magnetization M, heq, and ueq, that minimize

U are then given by

sinðheq � hhÞ
sin2heq

¼ 4pM � 2Ku=M

2H
; cos ueq ¼ 0; (3)

with hh is the polar angle of the applied magnetic field H rel-

ative to the sample normal. For the magnetization M, time

dependent azimuthal and polar angles h, u � eiwt, and small

oscillation amplitudes around the equilibrium are assumed.

This yields the following formula for ferromagnetic reso-

nance from Eq. (1):

x2

c2
¼ H1 � H2; (4)

H1 ¼ H cosðheq � hhÞ � ð4pM � 2Ku=MÞ cos2heq

H2 ¼ H cosðheq � hhÞ � ð4pM � 2Ku=MÞ cos2heq
: (5)

Using the measured saturation magnetization for this

sample of 950 emu/cm3 at room temperature, the fit yields

values for the anisotropy fields and the g-factor as shown in

Table I. The anisotropy field found at room temperature is

not equal to the coercive field, as theory would predict for

ideal Stoner-Wohlfarth particles. Here, however, a great en-

semble of grains is measured. The grains in the FePt sample

have slightly differing shapes and are spread in size as well

as in crystalline alignment, thus showing merely near-SW

behaviour.18 We find that the anisotropy field Han¼ 2Ku/M
increases with decreasing temperature. It is known for L10

FePt that with decreasing temperature, Ku increases stronger

than M.15

If one extrapolates the fit towards zero applied field

(Fig. 3(a)), the FMR frequency does not drop to zero but

reaches a value of �240 GHz at room temperature

(�280 GHz at 170 K). As can be seen from Eqs. (4) to (5),

the magnitude of this zero field frequency is determined by

the demagnetizing field 4pM and the anisotropy field 2Ku/M
acting against each other. At room temperature, the demag-

netizing field equals �1.2 T, which is small compared to the

anisotropy field of 8.9 T. This leads to the conclusion that the

strong magnetocrystalline anisotropy Ku is responsible for

the high frequencies of spin precession. As Ku has a stronger

temperature dependence than M,15 the shift in the frequency

observed between the measurements at 290 K and 170 K can

likewise be ascribed to the increase of Ku with decreasing

temperature.

The light induced excitation of coherent spin precession

can be explained phenomenologically. Initially, the magnetiza-

tion points along the out of plane easy axis (Fig. 3(a-I)). After

applying an external field H, the magnetization aligns along

the effective field at an angle heq (see Eq. (3)) between the

easy axis and the direction of the applied field (Fig. 3(a-II)).

Upon pump arrival, two possible processes can initiate the

above seen coherent spin precession: An ultrafast demagnet-

ization, decreasing the Zeeman and demagnetization energy,

or an ultrafast change of the magnetocrystalline anisotropy Ku.

In both cases, the effective field Heff is tilted out of its equilib-

rium position (Fig. 3(a-III)), so it does not lie parallel to M

anymore. This creates a torque that acts on the magnetization,

thereby starting the precessional motion around Heff which

also relaxes back to its initial position as the energy is dissi-

pated (Fig. 3(a-IV)).

Furthermore, by evaluating the lifetimes sL of the oscil-

lations the damping parameter a can be extracted, using the

following relationship derived from the LLG equation

assuming that a� 1:

a ¼ 2

sLcðH1 þ H2Þ
: (6)

A damping factor of a � 0.1 is obtained for measurements at

290 K as is shown in Fig. 3(b). No significant change in a
above the experimental error is observed upon reducing the

temperature to 170 K. Also, the damping does not change

notably as a function of applied magnetic field. This suggests

that there is only little (if any) extrinsic contribution to the

measured Gilbert damping parameter. Indeed, strong external

magnetic fields as applied here are known to suppress extrin-

sic damping.19,20 Similar relatively high values for the

TABLE I. Results of the FMR-fit for 290 K and 170 K.

Temperature (K) g-factor Han (T)

290 2.2 6 0.1 8.9 6 0.3

170 2.2 6 0.1 10.7 6 0.3

FIG. 3. (a) Magnetic field dependence of the extracted frequency at 290 K

(black squares) and 170 K (black circles). The respective FMR fits are given

by the orange (290 K) and blue (170 K) curves. Insets I) to IV): schematic

illustration of the magnetization and effective field behaviour without

applied field (I), with applied field (II), at pump excitation (III), and follow-

ing dynamic response (IV). (b) Extracted values for the damping parameter

a (red lines indicate mean value) for 290 K and 170 K.
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intrinsic Gilbert damping parameter were reported on continu-

ous FePt films with lower magnetocrystalline anisotropy.21–23

In summary, our here presented results show that coher-

ent spin precession can be excited in a highly anisotropic,

granular L10 FePt films using ultrashort light pulses of 100

fs. The high anisotropy fields up to more than 10 T found in

the here investigated sample lead to FMR frequencies in the

THz range. Frequencies of that magnitude have never before

been observed in ferromagnets, and are of considerable rele-

vance to the writing speed in magnetic data storage:

Considering conventional damped gyroscopic switching,

where the switching field is applied parallel to the easy axis,

the switching time is inversely proportional to the frequency

of magnetization precession. Lowering the temperature

increases the magnetocrystalline anisotropy Ku which leads to

a substantial increase in the observed precession frequency.

Furthermore, a Gilbert damping parameter of a� 0.1 is found,

similar to results for continuous films of L10.
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