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Abstract

We explore the geometry of isothermic meshes, conical meshes, and
asymptotic meshes around the Christoffel dual construction of a discrete
minimal surface. We present a discrete Legendre transform which realizes
discrete minimal surfaces as conical meshes. Conical meshes turn out to be
infinitesimally flexible if and only if their spherical image is isothermic, which
implies that discrete minimal surfaces constructed in that way are infinites-
imally flexible, and therefore possess reciprocal-parallel meshes. Those are
discrete minimal surfaces in their own right. In our study of relative kine-
matics of infinitesimally flexible meshes we encounter characterizations of
flexibility and isothermicity which are of incidence-geometric nature and are
related to the classical Desargues configuration. The Lelieuvre formula for
asymptotic meshes leads to another characterization of isothermic meshes
in the sphere which is based on triangle areas.

Key words: conical meshes, discrete minimal surfaces, reciprocal-parallel
meshes.
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1 Introduction

The geometric properties of meshes (i.e., simplicial manifolds with boundary) are
an important topic within discrete differential geometry, not only relevant to pure
mathematics, but also to geometric modeling and approximation theory [10], com-
puter graphics [9] and building science [11]. These ramifications can for instance
be observed for the concept of a conical mesh, which was introduced by [11] with a
viewpoint towards architectural design of freeform glass structures, and which fits
nicely into the ‘consistency as integrability’ framework underlying the monograph
[5] by A. Bobenko and Yu. Suris.

The present paper contributes to a different subject, namely discrete minimal
surfaces, the interplay of properties of meshes like isothermicity and infinitesimal
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Figure 1: (a) An isothermic mesh N contained in the unit sphere.
(b) The minimal surface N∗ = C (N) (Christoffel dual).
(c)N∗ on top of its Legendre transform L (N), which is a conical mesh representing
the same minimal surface.
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Figure 2: (a) If the quads of the conical mesh V are considered rigid and joined with
their neighbours with hinges, then V is infinitesimally flexible ⇐⇒ V = L (N)
as shown by Fig. 1(a)–(c).
(b) A discrete minimal surface R(N) reciprocal-parallel to L (N).
(c) L (N) is in equilibrium with the edges of R(N) as forces.

flexibility in this context, and the nonlinear incidence geometry of conical and
conical-isothermic meshes from the Laguerre geometry viewpoint. There is, how-
ever, again a connection to architecture and statics: The edges of a conical mesh
in the shape of a discrete minimal surface turn out to be in static equilibrium.

The following subsections gives an overview of previous work on the topics
studied by the present paper as well as an outline of the paper.
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1.1 Previous work

The notion of discrete minimal surface is not uniquely defined, as the various prop-
erties which characterize smooth minimal surfaces can be discretized in different
ways, and several of those lead to discrete surfaces with interesting geometric
properties. We would like to mention [13, 14, 15], where area minimizing triangle
meshes are studied. For instance, it can be shown that they allow for discrete
analogues of conjugate minimal surfaces.

More closely related to the present paper are discretizations of the Christoffel
dual construction, which converts an isothermic parametrization of the unit sphere
into an isothermic parametrization of a minimal surface, and vice versa. In [3], A.
Bobenko, T. Hoffmann and B. Springborn define a Christoffel dual for Schramm
circle patterns in the unit sphere, thus succeeding to construct circle and sphere
packings in the shape of discrete minimal surfaces. It is remarkable that the geom-
etry of such surfaces can be effectively determined from the mesh combinatorics,
which in the smooth case would mean that a minimal surface is computed from
the combinatoris of its network of principal curvature lines.

The present study of discrete minimal surfaces is based on the 1996 paper by
A. Bobenko and U. Pinkall [4], which introduces a Christoffel dual construction
for isothermic meshes in the unit sphere. Isothermic meshes are quadrilateral
meshes where all quadrilaterals have a circumcircle, i.e., they are a special case
of circular meshes. These meshes, which from the structural viewpoint belong to
Möbius geometry, have been introduced by [12]. We refer to the monograph [5]
for an overview and further references. The related concept of conical mesh as
introduced by [11, 21, 17] is a Laguerre geometry analogue of a circular mesh. See
[7] for a recent unified treatment of circular and conical meshes from the viewpoint
of Lie sphere geometry, which establishes the analogies between circular and conical
meshes from the viewpoint of the ‘consistency as integrability’ paradigm [5]. The
relation between Moutard nets and isothermic nets is established by [6], which
treats topics close to the present paper.

Another property of meshes relevant for our work is infinitesimal flexibility.
The relation of this property to the existence of reciprocal-parallel meshes is the
topic of the early contributions by R. Sauer [18, 19] and the recent paper [20]. The
monograph [19] on difference geometry is a source of many of the fundamental
properties of meshes which now play a role in discrete differential geometry. A
discussion of asymptotic meshes as well as systems of forces in the edges of meshes
can also be found there.
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1.2 Contributions and overview

The present paper is organized as follows: In Section 2 we review cross ratios,
and how the Desargues configuration of projective geometry looks like in Möbius
geometry. Section 3, after defining isothermic meshes, gives a characterization
of isothermic meshes in the unit sphere in terms of incidence geometry, thereby
extending a result of A. Bobenko. Next, Section 3 derives a relation between
infinitesimal flexibility of planar quadrilateral meshes and the existence of many
Desargues configurations formed by the lines of intersection between face planes
of such meshes. We show that a conical mesh is infinitesimally flexible if and
only if its spherical image is isothermic. Section 5 deals with the interpretation
of conical meshes as the circular meshes of Laguerre geometry, and characterizes
infinitesimally flexibility conical meshes in terms of incidence geometry.

The topic of Section 6 is the construction and properties of discrete minimal
surfaces. While Section 6.1 reviews the discrete Christoffel dual construction, i.e.,
discrete minimal surfaces in the shape of circular meshes, Section 6.2 shows how
to find a conical mesh which represents the same minimal surface, and which can
be seen as a Legendre transform of the Christoffel dual. Section 6.3 discusses
meshes which are reciprocal-parallel to conical meshes which represent discrete
minimal surfaces in the sense of the previous subsection. Such reciprocal-parallel
meshes exist in an essentially unique way and can be regarded as discrete minimal
surfaces in the shape of an asymptotic mesh. The so-called Lelieuvre formula for
the construction of asymptotic meshes whose spherical image is known is used in
Section 6.4 to characterize spherical isothermic meshes in terms of triangle areas
which occur in that mesh. Finally, Section 6.5 deals with the relation between
reciprocal-parallel meshes and the statics of a mesh: It turns out that for discrete
minimal surfaces in the shape of a conical mesh there is an essentially unique
collection of nonzero equilibrium forces in its edges.

2 Geometric Preliminaries

2.1 Cross ratios

We would like to define the cross ratio of 4 points in the real or complex projective
lines R ∪ {∞} or C ∪ {∞} by

cr(a, b, c, d) = (a− b)(b− c)−1(c− d)(d− a)−1. (1)

The cross ratio is a projective invariant, which in the case of C means that it is
a planar Möbius invariant. Co-planar points a, . . . , d ∈ Rd can be identified with
complex numbers and Equ. (1) is used to define their cross ratio. It is well known
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Figure 3: A configuration of coaxial circles which is a Desargues configuration in
the Möbius geometry sense.

that then the cross ratio is a Möbius invariant, and that cr(a, . . . , d) ∈ R∪ {∞} if
and only if a, . . . , d are collinear or cocircular (see also the introduction into cross
ratios in [4]).

For points a, . . . , d ∈ Rd contained in a conic section C, the cross ratio cr(a, . . . ,
d|C) is defined as cr(a′, . . . , d′), where a′, . . . , d′ arise from a, . . . , d by projection
from any center in C onto a straight line. If C is a circle, this cross ratio coincides
with the previous one.

2.2 The Desargues configuration in Möbius geometry

The Desargues configuration is a basic construction in projective spaces. It is
illustrated by Fig. 4. There is a Möbius geometry counterpart of this configuration,
which occurs naturally in the context of isothermic meshes and of infinitesimally
flexible meshes, and can be converted into the classical configuration by means of
an inversion. We first give a definition:

Definition 1. We call three pairwise different circles or straight lines C1, C2, C3

coaxial, if one of the following two conditions is satisfied:
(i) C1 ∩ C2 = {p, q} with p 6= q and C3 passes through both p and q; or
(ii) C1∩C2 = {p} and C1, C2, C3 contain p and are tangent to each other there.

In both cases, p = ∞, q = ∞ is allowed.

Such circles are illustrated by Fig. 3, where the three dashed circles are coaxial,
as well as the three ‘double line’ circles. Condition (ii) is the limit case of (i) when
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p, q coincide. This definition implies that 3 lines are coaxial either if they have
a finite point in common (another intersection point is at infinity), or if they are
parallel (they are tangent to each other at infinity).

M1M1M1M1M1M1M1M1M1M1M1M1M1M1M1M1M1

M1M1M1M1M1M1M1M1M1M1M1M1M1M1M1M1M1

M2M2M2M2M2M2M2M2M2M2M2M2M2M2M2M2M2

M2M2M2M2M2M2M2M2M2M2M2M2M2M2M2M2M2

M12M12M12M12M12M12M12M12M12M12M12M12M12M12M12M12M12

M12M12M12M12M12M12M12M12M12M12M12M12M12M12M12M12M12

M12M12M12M12M12M12M12M12M12M12M12M12M12M12M12M12M12

M12M12M12M12M12M12M12M12M12M12M12M12M12M12M12M12M12

x = y

M = ∞

Figure 4: An inversion maps the configuration of Fig. 3 to a classical Desargues
configuration. All circles are mapped to straight lines.

The following is an observation of A. Bobenko: Consider the configuration of
points V, V1, . . . , V12 such that each of the quadrangles {V, V1, V12, V2}, {V, V2, V12,
V1}, {V, V1, V12, V2}, {V, V2, V12, V1} has a circumcircle, as illustrated by Fig. 3. An
inversion with center V maps V, . . . to M, . . . , such that the sets {M1,M12,M2},
{M2,M12,M1}, {M1,M12,M2}, {M2,M12,M1} are collinear. This configuration is
Desargues in the usual sense, if the lines M12 ∨M12, M1 ∨M1, and M12 ∨M12 are
concurrent or parallel (i.e., coaxial). By Desargues’ theorem coaxiality of these
lines is equivalent to the lines M12 ∨ M12, M2 ∨ M2, M12 ∨ M12 being coaxial.
In the original domain the Desargues property is expressed by the condition that
the circumcircles of {V, V12, V12}, {V, V1, V1}, and {V, V12, V12} are coaxial; and
an equivalent condition is that the circumcircles of {V, V12, V12}, {V, V2, V2}, and
{V, V12, V12} are coaxial.

3 Isothermic meshes

Discrete isothermic surfaces, or isothermic meshes, have been introduced by [4].
They are quadrilateral meshes all of whose faces are planar and have a circum-
circle; in addition the vertices of the mesh must fulfill a cross ratio condition (see
below). Isothermic meshes are a discrete analogue of isothermic curvature line
parametrizations of smooth surfaces, and are especially useful in the context of
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discrete minimal surfaces. This paper contributes some hitherto unknown proper-
ties of isothermic meshes with a focus on meshes in the unit sphere (see Fig. 7).

3.1 Definitions and notation

Quadrilateral meshes in general are mappings from Z2 into a space of points.
Before we define isothermicity of such a mesh, we explain the subscript notation
for index shifts which we will employ later in the paper. We usually denote such
a mapping by a capital letter, like V . The vertex corresponding to the index pair
(i, j) ∈ Z2 is denoted by V (i, j). Subscripts of the form Vk and Vk denote a right
or left index shift in the kth coordinate:

V1(i, j) = V (i+ 1, j), V2(i, j) = V (i, j − 1), V12(i, j) = V (i+ 1, j + 1),

and so on. We use the word quadrilateral mesh to indicate a mapping V from Z2

to Rd. A planar mesh will be one where V, V1, V2, V12 are co-planar throughout the
mesh, and the mesh is circular, if these vertices possess a circumcircle. Following
[4], for a planar quadrilateral mesh we define the cross ratios

Q = cr(V, V1, V12, V2). (2)

The mesh is circular if and only if Q takes values in R ∪ {∞}. A circular mesh is
defined to be isothermic, if

QQ12 = Q1Q2 or Q : Q1 = Q2 : Q12. (3)

This is equivalent to the existence of sequences α : Z → R and β : Z → R with

Q(i, j) = −β(j)/α(i). (4)

It is obvious that both circular meshes and isothermic meshes are objects of Möbius
geometry.

3.2 Incidence geometry of isothermic meshes

It is interesting that the property of being an isothermic mesh can be formulated
purely in terms of geometric objects of Möbius geometry and their intersections,
without resorting to cross ratios.

Theorem 1. A mesh V : Z2 → Rd is isothermic, if and only if each vertex V (i, j)
together with its 8 neighbours is aligned in a Desargues configuration in the Möbi-
us sense, i.e., the three circumcircles of {V12, V, V12}, {V1, V, V1}, {V12, V, V12} are
co-axial throughout the mesh (see Fig. 3) .
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Proof. An inversion with center V maps the points V1, . . . to points to M1, . . . (cf.
the discussion in Section 2.2). Consider the intersection point x = (M12 ∨M12) ∩
(M1 ∨ M1) and y = (M12 ∨ M12) ∩ (M1 ∨ M1). Coaxiality means that x = y.
Isothermicity, on the other hand, is expressed in terms of Equation (3) (note the
index shift):

Q

Q2

=
M1 −M12

M12 −M2

· M2 −M12

M12 −M1

=
M1 −M12

M12 −M2

· M2 −M12

M12 −M1

=
Q1

Q12

.

By the theorem of G. Ceva on the ratios which occur when a line intersects a
triangle, these two fractions reduce to (M1− x)/(x−M1) and (M1− y)/(y−M1),
so isothermicity, like coaxiality, is shown to be equivalent to x = y.

Remark 1. The previous result has been first stated by A. Bobenko [2, 6], who
suggested the following line of proof: It is known that for generic circular meshes,
isothermicity can be characterized by the property that a vertex and its four di-
agonal neighbours are co-spherical (this characterization works only if the four
immediate neighbours are not contained in the sphere common to the diagonal
neighbours V12, V12, V12, V12). An inversion whose center is the vertex under con-
sideration produces a configuration like the one of Fig. 4, with M12, M12, M12,
M12 co-planar, whence the Desargues configuration holds. The non-generic case
would follow by a limit argument.

4 Infinitesimally flexible meshes

4.1 The Desargues configuration of relative axes

An infinitesimal motion of a mesh in R3 is a continuous assignment of velocity
vectors to each point contained in a face of the mesh, such that for each face
F (i, j), this mapping is the restriction to F (i, j) of a mapping of the form

M(i, j) : R3 → R3, x 7→ ω(i, j)× x+ v(i, j) with ω(i, j), v(i, j) ∈ R3.

M(i, j) is the velocity vector field of a rigid body motion (i.e., we treat the faces as
rigid), and by slight abuse of notation we write M(i, j) ∈ se3. Then M : Z2 → se3

becomes an se3-valued quadrilateral mesh.
Our assumption on continuity means that the relative motions M,M1 associ-

ated with neighbouring faces F, F1 assign the same velocity vector to points of the
common edge, so M −M1 is an infinitesimal rotation about that edge. The same
is true for M −M2. The edges are thus considered as hinges between rigid faces.

For M ∈ se3, we use the notation A (M) for its axis, i.e., x ∈ A (M) ⇐⇒
M(x) = 0. The axis is a straight line if and only if M is an infinitesimal rotation.
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Figure 5: The configuration of relative axes in an infinitesimally flexible mesh.
The relative motions M1 −M, . . . are indicated via their axes.

A mesh is infinitesimally flexible, if there exists an assignment M : Z2 → se3 of
an infinitesimal motion to each face, such that the conditions above are fulfilled,
but M is not the constant function, i.e., we exclude the case that the entire mesh
is moved like a rigid body.

Proposition 1. If M,M1,M2,M1,M2 are infinitesimal motions of the face F and
its neighbours, then the axes of the relative motions between them constitute a
Desargues configuration as shown by Fig. 4 and, more importantly, Fig. 5. Con-
versely, given such axes, there exist infinitesimal motions with these relative axes.

This is well known and easy to show [19]. The proof relies on the following fact:
If infinitesimal motions M,M ′,M ′′ ∈ se(3) have the property that both M −M ′

F12 ∩ F

F12 ∩ F

F12 ∩ FF12 ∩ FF12 ∩ FF12 ∩ FF12 ∩ FF12 ∩ FF12 ∩ FF12 ∩ FF12 ∩ FF12 ∩ FF12 ∩ FF12 ∩ FF12 ∩ FF12 ∩ FF12 ∩ FF12 ∩ FF12 ∩ F

F12 ∩ FF12 ∩ FF12 ∩ FF12 ∩ FF12 ∩ FF12 ∩ FF12 ∩ FF12 ∩ FF12 ∩ FF12 ∩ FF12 ∩ FF12 ∩ FF12 ∩ FF12 ∩ FF12 ∩ FF12 ∩ FF12 ∩ F

F2 ∩ F

F2 ∩ F

Figure 6: The intersection lines of faces constitute a Desargues configuration in
the case of infinitesimal flexibility.
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and M −M ′′ are rotations, and the axes intersect, then also M ′−M ′′ is a rotation
whose axis passes through the same intersection point (which is assigned the same
velocity by all three infinitesimal motions).

Proposition 2. Consider a quadrilateral mesh with planar faces F (i, j). Let
N(F ) denote the set of 8 neighbour faces of the face F . Then the mesh is in-
finitesimally flexible if and only if for each face, the lines F ∩ F ′ for F ′ ∈ N(F )
together with F1∩F1 constitute a Desargues configuration according to Fig. 6. Here
we assume that all intersection lines are well defined (alternatively, F2 ∩F2 can be
used).

Proof. As to notation, we consider faces F, F1, . . . , corresponding infinitesimal
motions M , M1, . . . ∈ se(3) and vectors ω, ω1, . . . of angular velocity, which are
parallel to the axes A (M), A (M1), . . . , respectively.

Because of ω1 − ω2 = (ω1 − ω12)− (ω2 − ω12), the axis A (M1 −M2) lies in the
plane spanned by the edges A (M1 −M12) and A (M2 −M12). This plane is the
face F12. Analogously, the axis A (M1 −M2) is contained in the face F (replace
ω12 by ω). It follows that

A (M1 −M2) = F ∩ F12.

With similar arguments we establish the identity of the lines in Fig. 5 (axes) with
the corresponding lines of Fig. 6 (intersection lines). Now the ‘only if’ part of the
statement follows directly from Proposition 1.

To show the ‘if’ part, we use Proposition 1 to construct nontrivial infinitesimal
motions M,M1,M2,M1,M2, whose existence follows from the fact that the given
axes (i.e., intersection lines) constitute a Desargues configuration. Without loss of
generality M = 0. We write ω1−ω2 = λa−µb, where a, b ∈ R3 are parallel to the
edges F12 ∩ F1 and F12 ∩ F2, respectively. Then we let ω12 := ω1 − λa = ω2 − µb.
With the axis and the vector of angular velocity the relative motion M12 is defined.
We check for consistency: ω1−ω12 = λa, so A (M12−M1) = F12 ∩F1, and indeed
the relative axis A (M12−M1) is in its place as required. A similar argument shows
consistency with M2. The construction of the remaining infinitesimal motions M12,
M12, M12 is analogous to the construction of M12.

We have thus shown how to construct infinitesimal motions for every 3 × 3
piece of the mesh separately. According to [20], this is sufficient for infinitesimal
flexibility.

4.2 Characterization of isothermicity via flexibility

Consider a mesh with planar faces F (i, j). It can be consistently oriented, so a
field of unit normal vectors N(i, j) ∈ S2 is well defined. We call the mesh N
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the spherical image of the first mesh and denote it by “S (F )”. In case S (F ) is
circular, the original mesh is conical [11]. In case F (i, j) is the tangent plane of
S2 in the point N(i, j), the conical mesh is the polar dual of the spherical circular
mesh N .

One reason why we are intersed in infinitesimally flexible meshes is that among
the conical meshes, the infinitesimally flexible ones have interesting properties
related to isothermicity.

Theorem 2. Consider the conical mesh F and its spherical image N = S (F ).
Provided the vertices N,N12, . . . which cocur in (ii) are distinct, the following three
properties are equivalent:

(i) N is isothermic;
(ii) Throughout the mesh, the planes N12∨N∨N12, N1∨N∨N1, N12∨N∨N12

have a line in common;
(iii) F is infinitesimally flexible.

Proof. The equivalence (i) ⇐⇒ (ii) is Theorem 1. In order to show (ii) ⇐⇒ (iii)
we note that infinitesimal flexibility is a property of N alone [20], so without loss
of generality we assume that F is the polar dual of N . The Desargues condition
of Proposition 2, which is illustrated by Figures 5 and 6, is by polarity turned into
condition (ii).

5 Laguerre-isothermic meshes

For some constructions with meshes, the basic elements are the planes. It therefore
is natural to consider them from the viewpoint of Laguerre geometry, which is the
Euclidean geometry of planes. For an introduction into Laguerre geometry and the
Blaschke cylinder see the monograp s [1, 8], for applications in geometric modeling
see [16].

5.1 The Blaschke cylinder model: definitions and notation

We describe the Blaschke cylinder as a point model for the oriented planes of
Euclidean 3-space. The oriented plane with equation n0 + 〈n, x〉 = 0 with n0 ∈ R
has the normal vector n = (n1, n2, n3) ∈ S2 and is represented by the coordinate
vector (n0, . . . , n3) ∈ Z, where Z = R× S2 is the Blaschke cylinder.

Definition 2. We consider the projection π : (x0, x1, x2, x3) 7→ (x1, x2, x3) and
call an affine subspace U of R4 proper if π|U is 1-1. If U is proper, then we call
U ∩ Z an L-sphere in the case dimU = 3, and an L-circle if dimU = 2.
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The oriented planes tangent to the oriented sphere with center m and radius r
fulfill the equation n0− r+ 〈n,m〉 = 0. Obviously such a set of planes corresponds
to an L-sphere and vice versa. If C = U ∩ Z is an L-circle, then π(C) is a circle
in S2. An L-circle has always the form Z ∩ U1 ∩ U2, where Z ∩ U1 and Z ∩ U2

are L-spheres, so an L-circle consists of the planes common to two L-spheres. It
may happen that the radii of these spheres are equal, in which case we call the
L-circle cylindrical, and in case of zero radius, axial. If the radii are different,
then the L-circle will be called conical. It is elementary that the tangent planes
of a cone of revolution, of a cylinder of revolution, or a straight line correspond to
conical/cylindrical/axial L-circles.

Definition 3. For L-cocircular points a, b, c, d, we define a cross ratio via L-cr(a,
b, c, d) = cr(a, b, c, d|C), where C is the L-circumcircle of the points a, b, c, d.

The cross ratio of L-cocircular points is a Laguerre invariant, because La-
guerre transformations are projective automorphisms of the Blaschke cylinder,
which leave the cross ratio of 4 points on a conic invariant.

5.2 Conical meshes as L-circular meshes

Conical meshes as defined in [11] are quadrilateral meshes with planar faces such
that for each vertex, the adjacent planes are tangent to a cone of revolution. These
planes can be consistently oriented via the mesh’s combinatorics, so a conical mesh
with faces F (i, j) has the property that throughout the mesh, F, F1, F2, F12 are
contained in a conical L-circle. Obviously this is also a characterization of conical
meshes.

It is tempting to define a conical mesh by the requirement that throughout
the mesh the faces F, F1, F2, F12 have a conical L-circumcircle. Unfortunately, the
property of being conical, or cylindrical, or axial, is not Laguerre invariant. There
is however a subgroup of the full Laguerre transformation group which leaves the
distinction between conical and non-conical L-circles invariant: This subgroup con-
tains the Euclidean congruence transformations as well as the offsetting operation,
which moves each plane by a fixed distance in the direction of its normal vector:

(n0, n1, n2, n3) 7→ (n0 + d, n1, n2, n3).

So there is a slight distinction between L-circular meshes and conical meshes:
Every conical mesh is L-circular, but the L-circular meshes have conical vertices
together with vertices at infinity where the faces are tangent to a common cylinder
or straight line.

Definition 4. A mesh with faces Ñ is L-isothermic, if the mesh N = π(Ñ) of
normal vectors is isothermic.
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Note that the symbols π (for projection) and S (for spherical image) mean
essentially the same thing.

If the mesh π(Ñ) is isothermic, then it is circular. Thus, Ñ is an L-circular

mesh, which implies that it is a conical mesh (if we assume that Ñ did not have
vertices at infinity from the beginning). By Theorem 2, L-isothermicity means
infinitesimal flexibility.

5.3 Incidence geometry of flexible conical meshes

We are going to derive a property of L-isothermic meshes, which in the generic
case is also a characterization of isothermicity. Similar to the case of isothermic
meshes in the unit sphere, we aim at a characterization purely in terms of incidence.
A related result which characterizes isothermicity of quadrilateral meshes by the
condition that a vertex which is co-spherical with its four diagonal neighbours is
shown in [6].

Proposition 3. Consider a conical mesh with faces F (i, j) and its spherical image
S (F ) = N . If N is isothermic (i.e., F is infinitesimally flexible), then the faces
F, F12, F12, F12, F12, are tangent to a common sphere S. If at least one of F1, F2,
F1, F2 is not tangent to S, then this condition characterizes isothermicity of N .

Here we assume that circumcircles of neighbouring quads of N are distinct.

Proof. Consider the mesh Ñ in the Blaschke cylinder associated with F . The sets
{Ñ12, Ñ1, Ñ2, Ñ} and {Ñ1, Ñ12, Ñ , Ñ2} are co-planar, so their union is contained
in a three-space U . U is proper because dim π(U) < 3 implies that there is only
1 circumcircle of the points under consideration. Analogously, there is a proper
3-space U ′ which contains {Ñ12, Ñ1, Ñ2, Ñ , Ñ12, Ñ2}.

Isothermicity of N means that the circumcircles according to Theorem 1 are
coaxial. As both π|U and π|U ′ are 1-1, the L-circumcircles of the sets {Ñ12, Ñ , Ñ12}
{Ñ1, Ñ , Ñ1} {Ñ12, Ñ , Ñ12} either intersect in a second point besides N , or they

touch each other in N . In particular, the planes Ñ12 ∨ Ñ ∨ Ñ12 and Ñ12 ∨ Ñ ∨ Ñ12

have a line in common, and consequently the affine span of {Ñ , Ñ12, Ñ12, Ñ12, Ñ12, }
is a 3-space (it is proper because otherwise Z ∩ U would project to 1 circle). It
follows that the corresponding planes are co-spherical as desired.

In order to show the converse, we use N as center of a projection onto any
complementary 3-space. The images of points N1, . . . are denoted by M1, . . . .
By assumption, M12, M12, M12, M12 are contained in a plane ε, whereas at
least one of M1,M2,M1,M2 is not. L-circumcircles are by construction mapped
to straight lines, so each of {M12,M1,M2}, {M1,M12,M2}, {M2,M12,M1}, and
{M2,M12,M1} is collinear. It follows that none of M1, M2, M1, M2 is contained
in ε (if 2 points of a collinear set are contained in a plane, so is the entire set). It
follows that we have a non-planar Desargues configuration according to Fig. 4.
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We define cross ratios Q̃̃ = cr(M,M1,M12,M2), Q̃ = L-cr(Ñ , Ñ1, Ñ12, Ñ2), and
Q = cr(N,N1, N12, N2). The same arguments as in the proof of Theorem 1 show

that Q̃̃Q̃̃12 = Q̃̃1Q̃̃2. Projection of a line onto a conic leaves cross ratios invariant,

if the projection center is on that conic, so Q̃Q̃12 = Q̃1Q̃2. Finally the projection π
leaves cross ratios on conics invariant, so QQ12 = Q1Q2. This is what we wanted
to show.

6 Construction of discrete minimal surfaces by

dualities

We briefly review the construction of a discrete minimal surface from a spherical
isothermic mesh via the discrete Christoffel duality [4] and then derive two new
ones. It should be mentioned that there is at least one further construction of
discrete minimal surfaces based on a different definition of discrete isothermic
surface, namely the one in [3].

6.1 Circular meshes – the Christoffel dual construction

Consider an isothermic mesh V and the sequences βj and αi according to Equ.
(4). Then the Christoffel dual V ∗ = C (V ) is any isothermic mesh with

V ∗
1 − V ∗ =

V1 − V

α‖V1 − V ‖2
, V ∗

2 − V ∗ =
V − V2

β‖V − V2‖2
. (5)

C C (V ) is a scaled copy of V (see [4], which has a typo in the equation correspond-
ing to our Equation (5)). That paper discusses why N∗ is a discrete Weierstrass
representation of a minimal surface, if N is an isothermic mesh in S2 such that
the cross ratios Q(i, j) of (2) equal −1. If Q(i, j) 6= −1 but rather is given by
Equ. (4), then the mesh N∗ is still a discrete minimal surface: If g(u + iv) is
the Weierstrass representation (i.e., an isothermic curvature line parametrization),
then such a Christoffel dual corresponds to a surface of the form g(φ(u) + iψ(v)),
where φ and ψ are parameter transforms.

6.2 Conical meshes — the Legendre transform of the Chri-
stoffel dual

If N : Z2 → S2 is isothermic and N∗ is its Christoffel dual, we consider N(i, j) as
normal vector in the point N∗(i, j) and define the tangent plane F (i, j) accord-
ingly. The oriented distance of a point from such a tangent plane is defined by
dist(x, F ) = 〈x−N∗, N〉.
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(a) (b)

Figure 7: (a) An isothermic mesh N : Z2 → S2. (b) Corresponding Christoffel
dual N∗ = C (N) (in bold) and associated conical mesh L (N). Both meshes C (N)
and L (N) describe the same underlying minimal surface.

Proposition 4. Assume that N : Z2 → S2 is isothermic with sequences αi and βj

according to Equ. (4). Then the tangent planes F (i, j) of the Christoffel dual N∗

have the property

dist(N∗, F1) = dist(N∗
1 , F ) =

1

2α
, dist(N∗, F2) = dist(N∗

2 , F ) =
−1

2β
. (6)

The tangent planes F , F1, F12, F2 intersect in a common point V on the axis A
of the circumcircle of the vertices N∗, N∗

1 , N∗
12, N

∗
2 .

Proof. We expand the distance of the neighbour vertex N∗
1 from the tangent plane

F , which has the equation 〈N, x−N∗〉 = 0:

〈N,N∗
1 −N∗〉 =

〈
N,

N1 −N

α‖N −N1‖2

〉
=

1

α

〈N,N〉 − 〈N,N1〉
〈N,N〉 − 2〈N,N1〉+ 〈N1, N1〉

which results in 1/2α, because ‖N‖ = ‖N1‖ = 1. The computation for the other
expression in (6) is similar. Now consider the symmetry plane S of the points N∗

and N∗
1 , whose normal vector is alternatively N∗ − N∗

1 or N − N1. The planes
F, F1, S have the equations

〈N,N∗ − x〉 = 0, 〈N1, N
∗
1 − x〉 = 0,

〈
N −N1,

N∗ +N∗
1

2
− x

〉
= 0.

If we observe (6), we see that the difference of the former two equations equals
the latter. This implies F ∩ F1 ⊂ S and consequently F ∩ F1 ∩ A 6= {}. Similar
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arguments show that also F1∩F12, F12∩F2, F2∩F meet A. These four intersection
points obviously coincide.

For the next result, recall that a Combescure transform of a mesh V is another
mesh V ′ such that V −V1 ‖ V ′−V ′

1 and V −V2 ‖ V −V ′
2 (i.e., corresponding edges

are parallel).

Theorem 3. If N : Z2 → S2 is isothermic, then the tangent planes F (i, j) of the
Christoffel dual N∗ constitute a conical mesh L (N), whose vertices are situated
on the axes of circumcircles of quads in N∗. Every infinitesimally flexible conical
mesh has a Combescure transform of the form L (N).

Proof. By Proposition 4, the tangent planes F (i, j) are the faces of a mesh, called
L (N), with vertices as stated. L (N) is conical, because S (F ) = N is circular.

An arbitrary infinitesimally flexible conical mesh F̃ has an isothermic spherical
image N = S (F̃ ). Because of N = S L (N), F̃ and L (N) have parallel faces
and edges.

The conical mesh referred to in Theorem 3 is a discrete minimal surface in the
same sense as the Christoffel dual was. It is called a Legendre transform of the
Christoffel dual, because in general Legendre transform means the passage from
points to tangent planes.

This construction of a conical mesh which represents tangent planes of a circular
mesh yields two meshes which describe the same underlying surface. For conical
meshes related to circular meshes, such that the faces of the former contain the
vertices of the latter, the interested reader is referred to [17, 7].

6.3 Asymptotic and reciprocal-parallel meshes

Recall that a mesh whose vertices correspond to the faces of a given mesh is
combinatorially dual to the given mesh, and that there is a natural bijection of
edges (defined by adjacent faces in the given mesh, and by adjacent vertices in
the dual mesh). A mesh V is reciprocal-parallel to another mesh V ′, if it is a
combinatorial dual and corresponding edges are parallel. We use the notation

V, V ′ are reciprocal-parallel : V ∼ V ′. (7)

If V has planar faces, V ′ has planar vertex stars, i.e., the edges emanating from a
vertex are co-planar. This property characterizes asymptotic meshes (A-meshes).
Such meshes are a discretization of the network of asymptotic curves [19]. A
reciprocal-parallel mesh, if it exists, is unique up to scaling, if never more than
two edges emanating from a vertex of the given mesh are co-planar. For details,
see [19, 20]. The vertices N(i, j) of the spherical image mesh N = S (V ) are the
normal vectors associated with the vertices V (i, j).
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F (1, 1)

V (1, 1)(a) (b)

Figure 8: (a) A discrete minimal surface of the form L (N) with faces F (i, j) (the
same as in Fig. 7). (b) The corresponding reciprocal-parallel mesh V = R(N).

Theorem 4. We assume that F is a conical mesh with spherical image N , and
that for the mesh N , the four vertices in each quad are distinct. Then the following
are equivalent

(i) F is infinitesimally flexible;
(ii) F possesses a reciprocal-parallel mesh, which then is asymptotic;
(iii) N is isothermic.

Proof. The first equivalence in is well known [19, 20], and so the theorem follows
from Theorem 2.

The asymptotic mesh which is reciprocal-parallel to the mesh F in Theorem 4
is uniquely determined, up to scale, by the spherical image N alone [19, 20]. We
therefore employ the notation R(N) for such meshes.

Theorem 5. The circular mesh N : Z2 → S2 is the spherical image of an asym-
ptotic mesh V = R(N) if and only if N is isothermic (we assume that the four
vertices of every quad in N are distinct).

Proof. We argue as follows: If N = S (V ), then V ∼ L (N) by construction, and
by Theorem 4, N is isothermic. If N is isothermic, L (N) is infinitesimally flexible
and Theorem 4 shows that there exists a reciprocal-parallel mesh.
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Definition 5. If N : Z2 → S2 is isothermic so that R(N) exists, we call R(N) a
minimal A-mesh.

The reasons why we regard R(N) as a discrete minimal surface is that it is an
asymptotic mesh whose spherical image is isothermic. The smooth variant of this
property is that asymptotic curves of a surface have orthogonal spherical image
curves. This characterizes minimal surfaces.

We can prescribe two polygons of the spherical image N and construct a mini-
mal A-mesh from it (because N is determined by these data, and in turn R(N) is
determined up to scale). As already mentioned by [4], solving this Cauchy problem
is quite unstable numerically. We however did not experience numerical instabili-
ties when constructing the reciprocal mesh from any of the many known discrete
minimal surfaces in the sense of [4].

At this point we would like to summarize the connections between various types
of meshes and results we have obtained so far:

• If a mesh N : Z2 → S2 is isothermic, then its polar dual is infinitesimally
flexible, and vice versa.

• If a mesh N : Z2 → S2 is isothermic, then the meshes C (N) (circular) and
L (N) (conical) are Legendre transforms of each other and represent the same
minimal surface.

• If a mesh N : Z2 → S2 is isothermic, there exists an asymptotic mesh R(N),
whose spherical image is N , and vice versa.

• For any spherical isothermic mesh N , its polar dual and L (N) are Combes-
cure transforms of each other. R(N) is reciprocal-parallel to both of them.

6.4 The Lelieuvre formula and area properties of isother-
mic meshes

The existence of an asymptotic mesh V with given spherical image N = S (V ) is

equivalent to the existence of normal vectors Ñ(i, j) = λ(i, j)N(i, j) such that

{Ñ + Ñ12, Ñ1 + Ñ2} linearly dependent. (8)

(see e.g. [20]). In that case, apart from a scaling factor, V is given by V − V1 =

Ñ × Ñ1 and V2 − V = Ñ × Ñ2. This is called the Lelieuvre formula. We use this
fact to derive a statement about triangle areas in spherical isothermic meshes.

Proposition 5. A circular mesh N : Z2 → S2 is isothermic, if and only if the
following condition regarding the areas “∆(a, b, c)” of triangles holds true:

∆(NN1N12) ∆(NN2N12) ∆(NN1N12) ∆(NN2N12)

∆(NN12N2) ∆(NN12N1) ∆(NN12N2) ∆(NN12N1)
= 1, (9)
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i.e., the product of areas of the four shaded triangles in Fig. 9b equals the product
of areas of the other four triangles.

Proof. By Theorem 5, N is isothermic if and only if there is an asymptotic mesh
V with N = S (V ), i.e., if and only if there is Ñ = λN such that (8) is fulfilled.
From the Grassmann identity

(N ×N12)× (N1 ×N2) = N1 det(N,N12, N2) +N2 det(N,N1, N12)

= N12 det(N,N1, N2) +N det(N12, N2, N1)

we read off the only way to solve (8), which is also illustrated by Fig. 9a:

λ2

λ1

=
det(N,N12, N2)

det(N,N1, N12)
,

λ

λ12

=
det(N,N1, N2)

det(N12, N2, N1)
.

These ratios of determinants equal the ratio of respective triangle areas, because
the vertices which occur in each fraction are coplanar. Observe that all vertex
triples have the same orientation. Apparently the choice of λ(i, j) determines
λ(i+ r, j+ s) whenever r+ s ∈ 2Z. A consistent assignment of λ(i, j)’s is possible
if circling a vertex leads to the same value of λ again. In view of the comment on
triangle areas, this is the condition expressed in the theorem.

Proposition 6. The fact that the triangle areas in a circular mesh contained in
the unit sphere obey Equation (9) is a Möbius invariant.

Proof. This follows directly from the previous theorem, as isothermicity is a Mö-
bius invariant.

0

N

N1

N2

N12

(N ×N12)

×(N1 ×N2)

N12

N1

N12

N2

NNNNNNNNNNNNNNNNN

N2

N12

N1

N12

Figure 9: (a) Construction of normal vectors for the Lelieuvre formula. (b) For an
isothermic mesh N : Z2 → S2, the product of areas of the white triangles equals
the product of the areas of the grey triangles.
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(a) (b)

Figure 10: (a) An isothermic mesh N : Z2 → S2. (b) The boundary edges of the
discrete minimal surface R(N) (asymptotic mesh) serve as equilibrium forces for
the discrete minimal surface L (N) (conical mesh).

6.5 Statics

All internal forces in a framework of rigid straight rods with flexible connections
at either end act in the line of the rods. Each rod exerts a certain force onto a
vertex it is connected to, and it exerts the negative of that force onto the vertex
at its other end. For the framework to be in static equilibrium, for each vertex the
sum of forces exerted onto it has to be zero.

We consider the edges of a quadrilateral mesh V as a framework and ask the
question if there exists a system of internal forces in the edges such that the mesh is
in static equilibrium, if we allow external forces to be applied to boundary vertices.

Obviously a system of such forces can be arranged as the edges of a mesh V ′

which is reciprocal-parallel to V , and vice versa — the condition that the sum of
forces in a vertex of V is zero translates to the condition that these four vectors
serve as the edges of a closed quadrilateral in V ′, and vice versa. Here a boundary
vertex which has a number e ≤ 3 vertices attached to it is endowed with e external
forces (see Fig. 8 and Fig. 2 for an illustration).

If V ′, V ′′ are two such collections of forces in the edges of V , then any linear
combination λ′V ′ + λ′′V ′′ is again a valid collection of forces. It follows that the
vector space of equilibrium forces is naturally isomorphic to the vector space of
meshes which are reciprocal-parallel to a given mesh.

These facts, which are elementary and well known, immediately show the fol-
lowing:
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Theorem 6. (i) A conical mesh V possesses equilibrium forces if and only if its
spherical image S (V ) is isothermic. In particular, the discrete minimal surfaces of
the form L (N) defined earlier have this property. The vector space of equilibrium
forces has dimension 1.

(ii) An asymptotic mesh V ′ whose spherical image N = S (V ′) is circular,
possesses equilibrium forces (and N is isothermic). In case V ′ is finite with n×m
faces, then the vector space of equilibrium forces has dimension n+m.

Proof. Statement (i) is Theorem 4. The dimension of the vector space of equilib-
rium forces follows from the fact that the mesh reciprocal-parallel to V is unique
up to scale.

As “∼” is a symmetric relation, statement (ii) follows from 5. Recall that with

the polar dual N̂ of N , we have V ′ ∼ N̂ . The set of equilibrium forces obviously
coincides with the set of Combescure transforms of N̂ , whose dimension is 1/2
times the number of boundary edges, i.e., n+m.

The previous theorem especially applies to discrete minimal surfaces in the
shape of conical meshes. This discussion leads back to the original motivation for
the construction of conical meshes in [11], which was applications in architecture
connected to the existence of offset meshes and three-dimensional support struc-
tures consisting entirely of planar quadrilaterals. The existence of equilibrium
forces is relevant for the construction of structures based on meshes and, more
general, frameworks. Fig. 10 illustrates this fact.

7 Conclusion and Future Research

We have studied properties of circular and especially conical meshes which are
connected with isothermicity and infinitesimal flexibility. It turns out that several
properties of a quadrilateral mesh N contained in the unit sphere are equivalent:

• isothermicity of N ;

• the occurrence of a certain Möbius geometric Desargues configuration at each
vertex of N ;

• the infinitesimal flexibility of any conical mesh V with spherical image N ;

• Laguerre-isothermicity of V (by definition);

• the fact that in the generic case any face of V is co-spherical with its four
diagonal neighbours;

• the existence of an asymptotic mesh V ′′ whose spherical image is N ;

• a certain equality involving triangle areas within N ;
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• the existence of a mesh V ′′ reciprocal-parallel to V .

Also the existence of a discrete minimal surface in the shape of a circular
mesh whose discrete Weierstrass representation is N (which is the topic of [4])
could be called a characterization of isothermicity. This last property led us to
a construction of discrete minimal surfaces in the shape of conical meshes and
to another one in the shape of asymptotic meshes (the last two being reciprocal
parallels of each other). The construction of reciprocal-parallel meshes is finally
used to to derive a result concerning the existence of equilibrium forces in conical
meshes and discrete minimal surfaces.

Future work in this direction includes the investigation of discrete Laguerre-
minimal and relative-minimal surfaces, and a more thorough study of discrete
analogues of objects of Möbius and Laguerre differential geometry. One candidate
for such objects are the central spheres used in [1] as a basic tool of Laguerre
surface theory.
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