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Abstract We consider elliptic equations of the form (E) −Au = f (x, u) + μ, where A is
a negative definite self-adjoint Dirichlet operator, f is a function which is continuous and
nonincreasing with respect to u and μ is a Borel measure of finite potential. We introduce a
probabilistic definition of a solution of (E), develop the theory of good and reduced measures
introduced by H. Brezis, M. Marcus and A.C. Ponce in the case where A = � and show basic
properties of solutions of (E). We also prove Kato’s type inequality. Finally, we characterize
the set of good measures in case f (u) = −u p for some p > 1.

Mathematics Subject Classification 35J75 · 60J45

1 Introduction

Let E be a separable locally compact metric space and let m be a Radon measure on E such
that supp[m] = E . In the present paper we study semilinear equations of the form

− Au = f (x, u) + μ, (1.1)

where μ is a Borel measure on E , f : E × R → R is a measurable function such that
f (·, u) = 0, u ≤ 0, and f is nonincreasing and continuous with respect to u. As for
the operator A, we assume that it is a negative definite self-adjoint Dirichlet operator on
L2(E; m). Saying that A is a Dirichlet operator we mean that

(Au, (u − 1)+) ≤ 0, u ∈ D(A).
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Equivalently, operator A corresponds to some symmetric Dirichlet form (E, D[E]) on
L2(E; m) in the sense that

D(A) ⊂ D[E], E(u, v) = (−Au, v), u ∈ D(A), v ∈ D[E] (1.2)

(see [12,23]) The class of such operators is quite large. It contains many local as well as
nonlocal operators. The model examples are Laplace operator � (or uniformly elliptic diver-
gence form operator) and the fractional Laplacian �α with α ∈ (0, 1). Many other examples
are to be found in [12,23].

Let Cap denote the capacity determined by (E, D[E]) (see Sect. 2). It is known (see [13])
that any Borel signed measure μ on E admits a decomposition

μ = μc + μd

into the singular (concentrated) part μc with respect to Cap and the absolutely continuous
(diffuse, smooth) part μd with respect to Cap. The smooth part μd is fully characterized in
[20].

The study of semilinear equations of the form (1.1) in case μ is smooth, i.e. when μc = 0,
goes back to the papers by Brezis and Strauss [7] and Konishi [21] In [7,21] the existence
of a solution of (1.1) is proved for μ ∈ L1(E; m). At present existence, uniqueness and
regularity results are available for equation (1.1) involving general bounded smooth mea-
sure μ and operator corresponding to Dirichlet form (see Klimsiak and Rozkosz [17] for
the case of symmetric regular Dirichlet form and [19] for the case of quasi-regular, possi-
bly non-symmetric Dirichlet form). The case μc �= 0 is much more involved. Ph. Bénilan
and H. Brezis [2] has observed that in such a case equation (1.1) need not have a solution
even if A = �. In [5] (see also [4]) H. Brezis, M. Marcus and A.C. Ponce introduced the
concept of good measure, i.e. a bounded measure for which (1.1) has a solution, and the
concept of reduced measure, i.e. the largest good measure, which is less then or equal to
μ. In case A = � these concepts are by now quite well investigated (see [2,5]). The sit-
uation is entirely different in case of more general local operators or nonlocal operators.
There are known, however, some existence and uniqueness results for (1.1) in case A is a
diffusion operator (see Véron [28]) and in case A = �α with α ∈ (0, 1) (see Chen and
Véron [8]).

The main purpose of the paper is to present a new approach to (1.1) that provides a unified
way of treating (1.1) for the whole class of negative defined self-adjoint Dirichlet operators
A and for μ from some class of measures M including the class Mb of bounded signed Borel
measures on E . In particular, we give a new definition of a solution of (1.1) and investigate
the structure of good and reduced measures relative to (1.1). In case A = � our definition
is equivalent to the definition of a solution adopted in [2,5], so our results generalize the
results of [2,5] to wide class of operators. In fact, they generalize the existing results even
in case A = �, because in this case Mb � M and M contains important in applications
unbounded measures. The second purpose of our paper is to give a probabilistic interpretation
for solutions of (1.1).

First, some remarks concerning our definition of a solution and the class M are in order.
Suppose we want to consider problem (1.1) for some class of measures M including L1(E; m).
Considering f ≡ 0 in (1.1) we see that then G := −A−1 should be well defined on L1(E; m),
i.e. the following condition should be satisfied:

Gg ≡↑ lim
N→∞

∫ N

0
Tt g dt < ∞, m-a.e., g ∈ L1,+(E; m). (1.3)
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Condition (1.3) is nothing but the statement that the semigroup {Tt , t ≥ 0} generated by A
(or, equivalently, the Dirichlet form (E, D[E])) is transient (see [12, Section 1.5]). It is well
known that then there exists a kernel {R(x, dy), x ∈ E} such that for every g ∈ L1,+(E; m),

∫
E

g(y)R(·, dy) = Gg, m-a.e.

If u is a solution of (1.1) with f ≡ 0 then

u · m(dx) = R ◦ μ(dx),

where R ◦ μ is a Borel measure defined as
∫

E
g(x)(R ◦ μ)(dx) =

∫
E

∫
E

g(y)R(x, dy)μ(dx), g ∈ B+(E).

Therefore R ◦ μ must be absolutely continuous with respect to the measure m for every
bounded Borel measure μ. This condition is known in the literature as the Meyer hypothesis
(L) (see [3]) or the condition of absolute continuity of the resolvent {Gα, α > 0} (see [12]).

For the reasons explained above in the paper we assume that {Tt , t ≥ 0} is transient and
hypothesis (L) is satisfied. It is known that under these assumptions there exists a Borel
function r : E × E → R+ such that

r(x, y)m(dy) = R(x, dy), x ∈ E .

Using the kernel r we can give our first, purely analytical definition of a solution of (1.1).
Namely, we say that a Borel function u on E is a solution of (1.1) if

u(x) =
∫

E
f (y, u(y))r(x, y) dy +

∫
E

r(x, y)μ(dy) (1.4)

for m-a.e. x ∈ E . Of course, to make this definition correct we have to assume that the
integrals in (1.4) exist. Therefore the class M we consider consists of Borel measures μ on
E such that

∫
E r(x, y) |μ|(dy) < ∞ for m-a.e. x ∈ E . We will show that Mb(E) ⊂ M.

In general, the inclusion is strict. For instance, if A = �α , α ∈ (0, 1], on an open set
D ⊂ R

d , then M includes the set of all Borel measures μ on E such that δα · μ ∈ Mb,
where δ(x) = dist(x, ∂ D). We also show that in case μ ∈ Mb and A is a uniformly
elliptic divergence form operator on a bounded domain in R

d definition (1.4) is equivalent
to Stampacchia’s definition by duality (see [27]).

Unfortunately, definition (1.4) is rather inconvenient for studying (1.1). One of the main
results of the paper says that (1.4) is equivalent to our second, probabilistic in nature definition
of a solution. At first glance the probabilistic definition seems to be more complicated than
(1.4), but as a matter of fact suits much better to the purposes of the present paper. Let
X = ({Xt , t ≥ 0}, {Px , x ∈ E}) be a Hunt process with life time ζ associated with the form
(E, D[E]). We say that u is a probabilistic solution of (1.1) if

(a) f (·, u) · m ∈ M and there exists a local martingale additive functional M of X such that

u(Xt ) = u(X0) −
∫ t

0
f (Xr , u(Xr )) dr −

∫ t

0
d Aμd

r +
∫ t

0
d Mr , t ≥ 0, Px -a.s.

for quasi every (q.e. for short) x ∈ E (Here Aμd denotes a continuous additive functional
of X of finite variation in the Revuz correspondence with μd ),
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(b) for every polar set N ⊂ E , every stopping time T ≥ ζ and every sequence of stopping
times {τk} such that τk ↗ T and Ex supt≤τk

|u(Xt )| < ∞ for x ∈ E\N and k ≥ 1 we
have

Ex u(Xτk ) → Rμc(x), x ∈ E\N ,

where Ex denotes the integration with respect to probability Px and

Rμc(x) =
∫

E
r(x, y)μc(dy), x ∈ E .

The above probabilistic definition allows us to develop a general theory of equations of the
form (1.1). Moreover, in our opinion, the theory based on the probabilistic definition is elegant
and simple.

We first prove some regularity results. We show that if u is a solution of (1.1) and μ ∈ Mb

then Tk(u) ∈ De[E] and

E(Tk(u), Tk(u)) ≤ 2k‖μ‖T V , k ≥ 0,

where Tk(u) = min{max{u,−k}, k} and De[E] is an extension of the domain of the form
E such that the pair (E, De[E]) is a Hilbert space (see [12]). We also prove Stampacchia’s
type inequality which says that for every strictly positive excessive function ρ (for ρ ≡ 1 for
instance) and μ ∈ Mρ = {μ ∈ M : ‖μ‖T V,ρ := ‖ρ · μ‖T V < ∞},

‖ f (·, u)‖L1(E;ρ·m) ≤ ‖μ‖T V,ρ .

We next study the structure of the set G of good measures and the set of reduced measures
relative to A, f . Let us recall that the reduced measure is the largest measure μ∗ ∈ M such
that μ∗ ≤ μ and there exists a solution of (1.1) with μ replaced by μ∗. A measure μ ∈ M is
good, if μ∗ = μ. By results of [17,19], if μc = 0, then μ is good. In the present paper we
first show that

μ − μ∗⊥Cap.

Then we show that, as in the case of Laplace operator, the set G is convex and closed under
the operation of taking maximum of two measures. We also show that μ ∈ G if and only if

μ = g − Av

for some functions g, v on E such that g · m, f (·, v) · m ∈ M and Av ∈ M. From this
characterization of G we deduce that for every strictly positive excessive function ρ,

L1(E; ρ · m) + Aρ( f ) = G ∩ Mρ,

where

Aρ( f ) = {μ ∈ Mρ : f (·, Rμ) ∈ L1(E; ρ · m)}.
We also show that under some additional assumption on the growth of f (it is satisfied for
instance if | f (x, u)| ≤ c1 + c2eu2

), for every strictly positive excessive function ρ,

Aρ( f ) = G ∩ Mρ,

where the closure is taken in the space (Mρ, ‖ · ‖T V,ρ).
In Sect. 6 we prove the so-called inverse maximum principle and Kato’s type inequality.

In our context Kato’s inequality says that if u is a solution of (1.1) then Au+ ∈ M and

1{u>0}(Au)d ≤ (
Au+)

d , (Au)+c = (
Au+)

c .
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This form of Kato’s inequality for Laplace operator was proved by H. Brezis and A.C. Ponce
in [6].

In the last section we study the set of good measures G for problem (1.1) with f having
at most polynomial growth, i.e. for f satisfying

| f (x, u)| ≤ c|u|p, x ∈ E, u ≥ 0

for some p > 1. For this purpose, we introduce a new capacity CapA,p , which in the special
case, when A = �α on an open bounded set D ⊂ R

d with zero boundary condition is
equivalent to the Bessel capacity defined as

CapD
α,p(K ) = inf

{
‖η‖p

W 2α,p(D)
: η ∈ C∞

c (D), η ≥ 1K

}
(1.5)

for compact sets K ⊂ D. We prove that if μ ∈ M and μ+ is absolutely continuous with
respect to CapA,p′ , where p′ denotes the Hölder conjugate to p, then a solution of (1.1) exists,
i.e. μ ∈ G. For f of the form

f (x, u) = −u p, x ∈ E, u ≥ 0 (1.6)

we fully characterize the set G. Namely, we prove that the absolute continuity of μ+ with
respect to CapA,p′ is also necessary for the existence of a solution of (1.1). Thus, in case f
is given by (1.6),

G =
{
μ ∈ M : μ+ � CapD

α,p′
}

.

Moreover,

μ∗ = μ+
CapA,p′ − μ−,

where μ+
CapA,p′ denotes the absolutely continuous part of μ+ with respect to CapA,p′ .

2 Preliminaries

In the paper E is a locally compact separable metric space and m is a positive Radon measure
on E such that supp[m] = E . By (E, D[E]) we denote a symmetric regular Dirichlet form
on L2(E; m) (see [12] or [23] for the definitions). We will always assume that (E, D[E]) is
transient, i.e. there exists a strictly positive function g on E such that∫

E
|u(x)|g(x) m(dx) ≤ ‖u‖E , u ∈ D[E],

where ‖u‖E = √
E(u, u), u ∈ D[E]. As usual, for α > 0 we set Eα(u, v) = E(u, v)+α(u, v),

u, v ∈ D[E], where (·, ·) is the usual inner product in L2(E; m).
By Riesz’s theorem, for every α > 0 and f ∈ L2(E; m) there exists a unique function

Gα f ∈ L2(E; m) such that

Eα(Gα f, g) = ( f, g), g ∈ L2(E; m).

It is an elementary check that {Gα, α > 0} is a strongly continuous contraction resolvent
on L2(E; m). By {Tt , t ≥ 0} we denote the associated semigroup and by (A, D(A)) the
self-adjoint negative definite Dirichlet operator generated by {Tt }. It is well known that A
satisfies (1.2) (see [12, Section 1.3]). Conversely, one can prove (see [23, page 39]) that for
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every self-adjoint negative definite Dirichlet operator A there exists a unique Dirichlet form
(E, D[E]) such that (1.2) holds.

Given a Dirichlet form (E, D[E]) we define capacity Cap: 2E → R
+ as follows: for an

open U ⊂ E we set

Cap(U ) = inf {E(u, u) : u ∈ D[E], u ≥ 1U , m-a.e.}
and then for arbitrary A ⊂ E we set

Cap(A) = inf {Cap(U ) : A ⊂ U ⊂ E, U open} .

An increasing sequence {Fn} of closed subsets of E is called nest if Cap(E\Fn) → 0 as
n → ∞. A subset N ⊂ E is called exceptional if Cap(N ) = 0. We say that some property
P holds quasi everywhere (q.e. for short) if a set for which it does not hold is exceptional.

We say that a function u on E is quasi-continuous if there exists a nest {Fn} such that u|Fn

is continuous for every n ≥ 1. It is known that each function u ∈ D[E] has a quasi-continuous
m-version.

A Borel measure μ on E is called smooth if it does not charge exceptional sets and there
exists a nest {Fn} such that |μ|(Fn) < ∞, n ≥ 1. By S we denote the set of all smooth
measures on E .

By S(0)
0 we denote the set of all measures μ ∈ S for which there exists c > 0 such that∫

E
|u| d|μ| ≤ c

√
E(u, u), u ∈ D[E]. (2.1)

For a given Dirichlet form (E, D[E]) one can always define the so-called extended Dirichlet
space De[E] as the set of m-measurable functions on E for which there exists an E-Cauchy
sequence {un} ⊂ D[E] convergent m-a.e. to u (the so-called approximating sequence). One
can show that for u ∈ De[E] the limit E(u, u) = limn→∞ E(un, un) exists and does not
depend on the approximating sequence {un} for u. Each element u ∈ De[E] has a quasi-
continuous version. It is known that (E, D[E]) is transient if and only if (E, De[E]) is a
Hilbert space. In the latter case for a given measure μ ∈ S(0)

0 inequality (2.1) holds for every
u ∈ De[E].

By Mb we denote the set of all bounded Borel measures on E and by M0,b the subset of
Mb consisting of smooth measures.

Given a Borel measurable function η on E and a Borel measure μ on E we write

(μ, η) =
∫

E
η dμ.

By u · μ w denote the Borel measure on E defined as

( f, u · μ) = ( f · u, μ), f ∈ B(E)

whenever the integrals exist.
With a regular symmetric Dirichlet form (E, D[E]) one can associate uniquely a symmetric

Hunt process X = ((Xt )t≥0, (Px )x∈E , (Ft )t≥0, ζ ) (see [12, Section 7.2]). It is related to
(E, D[E]) by the formula

Tt f (x) = Ex f (Xt ), t ≥ 0, m-a.e.,

where Ex stands for the expectation with respect to the measure Px . For α, t ≥ 0 and
f ∈ B+(E) we write

Rα f (x) = Ex

∫ ζ

0
e−αt f (Xt ) dt, pt f (x) = Ex f (Xt ), x ∈ E .
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Observe that for α, t > 0 and f ∈ L2(E; m),

Rα f = Gα f, pt f = Tt f, m-a.e.

For simplicity we denote R0 by R. We say that some function on E is measurable if it is
universally measurable, i.e. measurable with respect to the σ -algebra

B∗(E) =
⋂

μ∈P(E)

Bμ(E),

where P(E) is the set of all probability measures on E and Bμ(E) is the completion of B(E)

with respect to the measure μ.
A positive measurable function u on E is called α-excessive if for every β > 0, (α +

β)Rα+βu ≤ u and αRαu ↗ u as α → ∞. By Sα we denote the set of α-excessive functions.
We put S = S0.

By S(0)
00 we denote the set of all μ ∈ S(0)

0 such that |μ|(E) < ∞ and R|μ| is bounded. For
a Borel set B we set

σB = inf{t > 0; Xt ∈ B}, DA = inf{t ≥ 0; Xt ∈ B}, τB = σE\B ,

i.e. σB is the first hitting time of B, DA is the first debut time of B and τB is the first exit
time of B.

By T we denote the set of all stopping times with respect to the filtration (Ft )t≥0 and by
D the set of all measurable functions u on E for which the family

{u(Xτ ), τ ∈ T }
is uniformly integrable with respect to the measure Px for q.e. x ∈ E .

For a Borel measure μ on E and α ≥ 0 we denote by μ ◦ Rα the measure defined as

( f, μ ◦ Rα) = (Rα f, μ), f ∈ B(E),

and by Pμ we denote the measure

Pμ(A) =
∫

E
Px (A) μ(dx), A ∈ F∞.

In the whole paper we assume that m is the reference measure for X, i.e. for all x ∈ E and
α > 0 we have Rα(x, ·) � m. It is well known (see [12, Lemma 4.2.4]) that in this case for
every α ≥ 0 there exists a B(E) ⊗ B(E) measurable function

rα : E × E → R
+

such that for every x ∈ E the mapping y �→ rα(x, y) is α-excessive and

Rα f (x) =
∫

E
f (y)rα(x, y) m(dy), x ∈ E .

It is also clear that by symmetry of X, rα(x, y) = rα(y, x) for x, y ∈ E, α ≥ 0. In what
follows we put r(x, y) = r0(x, y), x, y ∈ E . Thanks to the existence of rα we may define
Rαμ for arbitrary positive Borel measure μ by putting

Rαμ(x) =
∫

E
rα(x, y) μ(dy).
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It is well known (see [12, Section 5.1] and [3, Theorem V.2.1] that for each μ ∈ S there
exists a unique perfect positive continuous additive functional Aμ in the Revuz duality with
μ, and moreover,

(Rαμ)(x) = Ex

∫ ζ

0
e−αt d Aμ

t , x ∈ E .

3 Linear equations

In this section we give some definitions of a solution of the linear problem

− Au = μ, (3.1)

where μ is a Borel measure such that R|μ|(x) < ∞ for q.e. x ∈ E . The class of such
measures will be denoted by M.

In the whole paper we adopt the convention that
∫

E r(x, y) dμ(y) = 0 for every Borel
measure μ on E such that

∫
E r(x, y) dμ+(y) = ∫

E r(x, y) dμ−(y) = ∞. We call u : E →
R ∪ {−∞,∞} a numerical function on E .

3.1 Solutions defined via the resolvent kernel and regularity results

Definition 3.1 We say that a measurable numerical function u on E is a solution of (3.1) if

u(x) =
∫

E
r(x, y) dμ(y) for q.e. x ∈ E .

Let us note that by [3, Proposition V.1.4], if the above equality holds for every x ∈ E ,
then u is Borel measurable. Since μ ∈ M, u is finite q.e.

Proposition 3.2 Mb ⊂ M.

Proof Since the form E is assumed to be transient, there exists a strictly positive Borel
function f on E such that R f < ∞, q.e. From this we conclude that f · m is a smooth
measure. Hence, by [12, Theorem 2.2.4], there exists an increasing sequence {Fn} of closed
subsets of E such that

⋃
n≥1 Fn = E , q.e. and supx∈E R(1Fn f )(x) < ∞ (see also comments

following [12, Corollary 2.2.2]). As a matter of fact, in [12] in the last condition sup is
replaced by ess sup with respect to m, however in view of [3, Proposition II.3.2], it holds true
also with supremum norm. We have

(
R|μ|, 1Fn f

) ≤ (|μ|, R(1Fn f )
) ≤ ‖μ‖T V · ‖R(1Fn f )‖∞.

Hence R|μ| is finite q.e., i.e. μ ∈ M. ��
Using Definition 3.1 we can easily prove some regularity result for solutions of (3.1). For

this purpose, for k ≥ 0 set

Tk(u) = max{min{u, k},−k}, u ∈ R.

Theorem 3.3 Let μ ∈ Mb(E) and let u be a solution of (3.1). Then Tk(u) ∈ De[E] and for
every k ≥ 0,

E(Tk(u), Tk(u)) ≤ k‖μ‖T V .
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Proof For α ≥ 0 and measurable functions u, v on E set

E(α)(u, v) ≡ α(u − αRαu, v)

whenever the integral exists. By the definition of a solution of (3.1), u · m = μ ◦ R. Hence

(Rαu, η) = (u · m, Rαη) = (μ ◦ R, Rαη) = (μ, R Rαη).

Therefore

E(α)(u, Tk(u)) = α(μ, RTk(u) − αRα RTk(u)) = α(μ, RTk(u) − (RTk(u) − RαTk(u)))

= (μ, αRαTk(u)) ≤ k‖μ‖T V .

On the other hand, since αRα is Markovian, we have

E(α)(Tk(u), Tk(u)) ≤ E(α)(u, Tk(u)).

Consequently,

sup
α≥0

E(α)(Tk(u), Tk(u)) ≤ k‖μ‖T V ,

so applying [23, Lemma I.2.11(ii)] we get the desired result. ��
Remark 3.4 (i) By Theorem 3.3, Tk(u) ∈ D[E] if m(E) < ∞, because by [12, Theorem

1.5.2(iii)], D[E] = De[E] ∩ L2(E; m).
(ii) Tk(u) ∈ D[E] if the form satisfies Poincaré type inequality c(u, u) ≤ E(u, u) for every

u ∈ D[E] and some c > 0, because then De[E] = D[E].
3.2 Probabilistic solutions

In this subsection we give an equivalent definition of solution of (3.1) using stochastic equa-
tions involving a Hunt process X associated with the Dirichlet operator A. We begin with the
following lemma.

Lemma 3.5 Assume that μ, ν ∈ M and there is α0 ≥ 0 such that Rαμ ≥ Rαν for α ≥ α0.

Then μ ≥ ν.

Proof Since μ, ν ∈ M, there exists a strictly positive Borel function ψ on E such that
(Rψ, |μ| + |ν|) < ∞. So, it is clear that it is enough to prove that (ηRψ,μ) ≥ (ηRψ, ν) for
every η ∈ C+

b (E). Let η ∈ C+
b (E). An elementary calculus shows that αRα(ηRψ)(x) →

ηRψ(x) for every x ∈ E . On the other hand, αRα(ηRψ)(x) ≤ ‖η‖∞ Rψ(x), x ∈ E . Hence,
by the Lebesgue dominated convergence theorem,

(ηRψ,μ)= lim
α→∞(αRα(ηRψ),μ)= lim

α→∞(ηRψ, αRαμ) ≥ lim
α→∞(ηRψ, αRαν)=(ηRψ, ν),

which completes the proof. ��
Theorem 3.6 Assume that μ ∈ M

+ and μ⊥Cap. Then u = Rμ is quasi-continuous and
the process [0,∞) � t �→ u(Xt ) is a cádlág local martingale under the measure Px for q.e.
x ∈ E.

Proof Let uα = αRαu, α > 0. Then

uα(x) = αEx

∫ ζ

0
e−αr u(Xr ) dr, x ∈ E .
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By the Markov property, for every t ≥ 0 and x ∈ E we have

uα(Xt ) = αEx

(∫ ζ

t
e−α(r−t)u(Xr ) dr |Ft

)
, Px -a.s.

By [12, Theorem A.2.5] the processes t �→ uα(Xt ), t �→ u(Xt ) are cádlág under the measure
Px for every x ∈ E , while by [12, Theorem 4.6.1], u is quasi-continuous. Let us put

N̄α,x
t = αEx

(∫ ζ

0
e−αr u(Xr ) dr |Ft

)
− uα(X0), t ≥ 0,

and let Nα,x denote a cádlág modification of the martingale N̄α,x . Then for every x ∈ E ,

e−αt uα(Xt ) = uα(X0) − α

∫ t

0
e−αr u(Xr ) dr +

∫ t

0
d Nα,x

r , t ≥ 0, Px -a.s.

By the integration by parts formula applied to the processes eαt and e−αt uα(X) we get

uα(Xt ) = uα(X0) −
∫ t

0
d Aα

r +
∫ t

0
d Mα,x

r , t ≥ 0, Px -a.s.,

where

Mα,x
t =

∫ t

0
e−αr d Nα,x

r , Aα
t = α

∫ t

0
(u − uα)(Xr ) dr, t ≥ 0.

Since u is an excessive function, Aα is an increasing process and uα(x) ↗ u(x) for every
x ∈ E as α ↗ ∞. Hence

uα(Xt ) ↗ u(Xt ), t ≥ 0, uα(Xt−) ↗ u(Xt−), t > 0.

Let [uα(X)], [u(X)] denote the quadratic variations of processes uα(X) and u(X), respec-
tively. By [12, Theorem 4.2.2] there exists an exceptional set N ⊂ E such that for every
x ∈ E\N ,

[uα(X)]t− = uα(Xt−), [u(X)]t− = u(Xt−), t ∈ (0, ζ ), Px -a.s.

Let ζi , ζp denote the totally inaccessible and the predictable part of ζ , respectively. From
[12, Theorem 4.2.2] it also follows that

[uα(X)]ζi − = uα(Xζi −), [u(X)]ζi − = u(Xζi −), Px -a.s.,

while by the fact that uα, u are potentials,

[uα(X)]ζp− = [u(X)]ζp− = 0.

By what has already been proved,

uα(Xt ) ↗ u(Xt ), t ≥ 0, [uα(X)]t− ↗ [u(X)]t−, t > 0.

By the generalized Dini theorem (see [10, p. 185]), uα(X) ↗ u(X) uniformly on compact
subsets of [0,∞). Observe that for every t ≥ 0 and q.e. x ∈ E ,

Ex u(Xt ) ≤ lim inf
α→∞ Ex uα(Xt ) ≤ lim inf

α→∞ Ex uα(X0) = u(x).

Hence u(X) is a supermartingale and limt→∞ Ex u(Xt ) < ∞. Therefore by [25, Theorem
III.13], for q.e. x ∈ E there exists an increasing predictable process Cx with Ex Cx

ζ < ∞
and a cádlág local martingale Mx such that

u(Xt ) = u(X0) − Cx
t + Mx

t , t ≥ 0, Px -a.s.
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Since the filtration is quasi-left continuous, Mx has no predictable jumps. Since X is quasi-
left continuous, it also has no predictable jumps, which implies that u(X) has no predictable
jumps, because u is quasi-continuous. Thus Cx is continuous. Since u(X) is a special semi-
martingale, there exists a localizing sequence {τ x

n } ⊂ T such that for every n ≥ 1,

Ex sup
t≤τ x

n

|u(Xt )| < ∞. (3.2)

By [16, Proposition 3.2], {u(X) − uα(X)} satisfies the so-called condition UT. Therefore
by [16, Corollary 2.8], [u(X) − uα(X)]t → 0 in probability Px for every t ≥ 0. But
[u(X) − uα(X)] = [Mx − Mα,x ]. Hence [Mx − Mα,x ]t → 0 in probability Px , which due
to (3.2) is equivalent to the convergence of {Mα,x } to Mx in ucp (uniform on compacts in
probability). Since uα(X) → u(X) in ucp, Aα → Cx in ucp. In fact, by (3.2), for every
n ≥ 1 we have

Ex sup
t≤τ x

n

|Aα
t − Cx

t | → 0.

By [12, Lemma A.3.3] there exists a process A such that A = Cx for q.e. x ∈ E . Of course,
A is a positive continuous additive functional. Putting

Mt = u(Xt ) − u(X0) + At , t ≥ 0, (3.3)

we see that M is an additive functional and Mx = M , Px -a.s. for q.e. x ∈ E . Thus M is
a local martingale additive functional. By [12, Theorem 5.1.4] there exists ν ∈ S such that
A = Aν . In particular, for every α ≥ 0,

Rαν(x) = Ex

∫ ζ

0
e−αt d Aν

t

for q.e. x ∈ E . Observe that by the resolvent identity, for every α ≥ 0 we have

u = Rα(μ + αu). (3.4)

On the other hand, by (3.2) and the integration by parts formula applied to the processes e−αt

and u(Xt ),

u(x) = Ex e−ατ x
k u(Xτ x

k
) + Ex

∫ τ x
k

0
e−αr d Aν

r + αEx

∫ τ x
k

0
e−αr u(Xr ) dr. (3.5)

It is clear that

Ex

∫ τ x
k

0
e−αr d Aν

r → Rαν(x), αEx

∫ τ x
k

0
e−αr u(Xr ) dr → αRαu(x)

as k → ∞. From this, (3.4) and (3.5) we conclude that for q.e x ∈ E ,

lim
k→∞ Ex e−ατ x

k u(Xτ x
k
) = Rα(μ − ν)(x).

By this and [3, Proposition II.3.2], Rα(μ − ν) ≥ 0. Since α ≥ 0 was arbitrary, applying
Lemma 3.5 shows that μ ≥ ν. Since μ⊥Cap, it follows that ν ≡ 0 or, equivalently, that
Aν ≡ 0. Therefore from (3.3) it follows that u(X) is a local martingale. ��

Let us recall that a process M is called a local martingale additive functional (MAF) if it
is an additive functional and M is an (F, Px )-local martingale for q.e. x ∈ E .
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Theorem 3.7 Assume that μ ∈ M
+ and let u = Rμ. Then u is quasi-continuous and there

exists a local MAF M such that

u(Xt ) = u(X0) −
∫ t

0
d Aμd

r +
∫ t

0
d Mr , t ≥ 0, Px -a.s. (3.6)

for q.e. x ∈ E. Moreover, for every polar set N ⊂ E, every stopping time T ≥ ζ and
sequence {τk} ⊂ T such that τk ↗ T and Ex supt≤τk

u(Xt ) < ∞ for x ∈ E\N and k ≥ 1
we have

lim
k→∞ Ex u(Xτk ) = Rμc(x), x ∈ E\N . (3.7)

Proof Let w = Rμc and v = Rμd . It is well known (see [17, Lemma4.3]) that v is quasi-
continuous and that there exists a uniformly integrable MAF Mv such that

v(Xt ) = v(X0) −
∫ t

0
d Aμd

r +
∫ t

0
d Mv

r , t ≥ 0, Px -a.s. (3.8)

for q.e. x ∈ E . By Theorem 3.6, w is quasi-continuous and there exists a local MAF Mw

such that

w(Xt ) = w(X0) +
∫ t

0
d Mw

r , t ≥ 0, Px -a.s. (3.9)

for q.e. x ∈ E . Let N ⊂ E be a polar set such that (3.8), (3.9) hold for x ∈ E\N . Let {τk} be
as in the formulation of the theorem. Then Mv,τk , Mw,τk are both uniformly integrable and
by (3.8) and (3.9),

u(x) = Ex u(Xτk ) + Ex

∫ τk

0
d Aμd

r , x ∈ E\N .

Letting k → ∞ in the above equation yields

Rμ(x) = u(x) = lim
k→∞ Ex u(Xτk ) + Rμd(x), x ∈ E\N ,

which proves (3.7). Adding (3.8) to (3.9) gives (3.6). ��
Remark 3.8 Under the assumptions of Theorem 3.7, for every α > 0,

lim
k→∞ Ex e−ατk u(Xτk ) = Rαμc(x), x ∈ E\N .

To see this we use (3.4) and arguments following it.

We are now ready to introduce the second definition of a solution of (3.1) making use
of the Hunt process X associated with operator A. Solutions of (3.1) in the sense of this
definition will be called probabilistic solutions or simply solutions, because we will show
that our second definition is equivalent to the definition via the resolvent kernel.

Definition 3.9 We say that a measurable numerical function u on E is a probabilistic solution
of (3.1) if

(a) there exists a local MAF M such that for q.e. x ∈ E ,

u(Xt ) = u(X0) −
∫ t

0
d Aμd

r +
∫ t

0
d Mr , t ≥ 0, Px -a.s.,

(b) for every polar set N ⊂ E , every stopping time T ≥ ζ and every sequence {τk} ⊂ T
such that τk ↗ T and Ex supt≤τk

|u(Xt )| < ∞ for every x ∈ E\N and k ≥ 1 we have

Ex u(Xτk ) → Rμc(x), x ∈ E\N .
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Any sequence {τk} with the properties listed in (b) will be called the reducing sequence for
u, and we will say that {τk} reduces u.

Remark 3.10 Since u(X) in the above definition is a special semimartingale, there exists at
least one reducing sequence {τk} for u. In fact, the stopping times defined as

τk = inf{t ≥ 0; |u(Xt )| ≥ k} ∧ k, k ≥ 1

form a reducing sequence (see the reasoning in the proof of [26, Theorem 51.1]).

Remark 3.11 If μ is a smooth measure then Definition 3.9 reduces to the definition of a
solution introduced in [17]. Indeed, by condition (a),

u(x) = Ex u(Xτk ) + Ex

∫ τk

0
d Aμd

r

for q.e. x ∈ E . Therefore letting k → ∞ and using (b) we see that for q.e. x ∈ E ,

u(x) = Ex

∫ ζ

0
d Aμd

r .

Note that if A is a uniformly elliptic divergence form operator then by [17, Proposition 5.3],
u is also a solution of (3.1) in the sense of Stampacchia (see [27]). In the sequel we will show
that this holds true for general Borel measures and wider class of operators.

Proposition 3.12 A measurable function u on E is a probabilistic solution of (3.1)if and
only if it is a solution of (3.1) in the sense of Definition 3.1.

Proof Assume that u is a solution of (3.1) in the sense of Definition 3.1. Then by Theorem
3.7, u is a probabilistic solution. Now suppose that u is a probabilistic solution of (3.1). Then
using (a) and (b) of the definition of a probabilistic solution of (3.1) we obtain

u(x) = Rμc(x) + Ex

∫ ζ

0
d Aμd

r = Rμ(x) =
∫

E
r(x, y) μ(dy)

for q.e. x ∈ E . ��

4 Semilinear equations

In what follows μ ∈ M and f : E ×R → R is a function satisfying the following conditions:
R � y �→ f (x, y) is continuous for every x ∈ E and E � x �→ f (x, y) is measurable for
every y ∈ R.

In this section we consider semilinear equation of the form

− Au = f (x, u) + μ. (4.1)

Definition 4.1 We say that a measurable numerical function u on E is a solution of (4.1) if
f (·, u) · m ∈ M and u is a solution of (3.1) with μ replaced by f (·, u) · m + μ.

We will need the following hypotheses:

(H1) for every x ∈ E the mapping y �→ f (x, y) in nonincreasing,
(H2) for every y ∈ R the mapping x �→ f (x, y) ∈ q L1(E; m),
(H3) f (·, 0) · m ∈ M.

123



78 Page 14 of 27 T. Klimsiak

4.1 Comparison results, a priori estimates and regularity of solutions

In the sequel, for a given real function u on E we write

fu(x) = f (x, u(x)), x ∈ E .

Proposition 4.2 Assume that μ1, μ2 ∈ M, μ1 ≤ μ2, f 1(x, y) ≤ f 2(x, y) for x ∈ E, y ∈ R

and f 1 or f 2 satisfies (H1). Then u1 ≤ u2 q.e., where u1 (resp. u2) is a solution of (4.1) with
data f 1, μ1 (resp. f 2, μ2).

Proof Let {τk} be a common reducing sequence for u1 and u2. We assume that f 1 satisfies
(H1). By the Tanaka-Meyer formula (see [25, Theorem IV.66]), for every k ≥ 1,

(u1(x) − u2(x))+ ≤ Ex (u1 − u2)
+(Xτk ) + Ex

∫ τk

0
1{u1>u2}(Xr )( f 1

u1
− f 2

u2
)(Xr ) dr

+ Ex

∫ τk

0
1{u1>u2}(Xr ) d(A

μ1
d

r − A
μ2

d
r )

for q.e. x ∈ E . From the assumption μ1 ≤ μ2 and properties of the Revuz duality it follows
that d Aμ1

d ≤ d Aμ2
d , Px -a.s. for q.e. x ∈ E . By (H1) and the assumptions on f 1 and f 2,

1{u1>u2}( f 1
u1

− f 2
u2

) = 1{u1>u2}( f 1
u1

− f 1
u2

) + 1{u1>u2}( f 1
u2

− f 2
u2

) ≤ 0.

Hence

(u1(x) − u2(x))+ ≤ Ex (u1 − u2)
+(Xτk ), k ≥ 1

for q.e. x ∈ E . But

(u1 − u2)
+ = (R( f 1

u1
+ μ1 − μ2 − f 2

u2
))+ ≤ R( f 1

u1
+ μ1 − μ2 − f 2

u2
)+.

Therefore

(u1(x) − u2(x))+ ≤ lim sup
k→∞

Ex (u1 − u2)
+(Xτk ) ≤ R(μ1

c − μ2
c)

+ = 0

for q.e. x ∈ E , which proves the proposition. ��
Corollary 4.3 Under (H1) there exists at most one solution of (4.1).

Proposition 4.4 Let u1, u2 be solutions of (4.1) with μ1 ∈ M and μ2 ∈ M, respectively. If
f satisfies (H1), then

R| fu1 − fu2 |(x) ≤ R|μ1 − μ2|(x), x ∈ E .

Proof Let {τk} be a common reducing sequence for u1 and u2. By the Tanaka-Meyer formula,

|u1(x) − u2(x)| ≤ Ex |u1 − u2|(Xτk ) + Ex

∫ τk

0
sgn(u1 − u2)(Xr )( fu1 − fu2)(Xr ) dr

+ Ex

∫ τk

0
sgn(u1 − u2)(Xr ) d(A

μ1
d

r − A
μ2

d
r ) (4.2)

for q.e. x ∈ E . By (H1) the second term on the right-hand side of (4.2) is nonpositive.
Therefore from (4.2) it follows that

Ex

∫ τk

0
| fu1 − fu2 |(Xr ) dr ≤ Ex |u1 − u2|(Xτk ) + Ex

∫ τk

0
d A

|μ1
d−μ2

d |
r
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for q.e x ∈ E . Letting k → ∞ we get

Ex

∫ ζ

0

∣∣ fu1 − fu2

∣∣ (Xr ) dr ≤ R
∣∣μ1

c − μ2
c

∣∣ (x) + R
∣∣μ1

d − μ2
d

∣∣ (x) = R |μ1 − μ2| (x)

for q.e. x ∈ E (see the reasoning at the end of the proof of Proposition 4.2). From this and
[3, Proposition II.3.2] we get the desired result. ��
Proposition 4.5 Let u be a solution of (4.1) with f satisfying (H1), (H3). Then

R| fu |(x) ≤ 2R | f (·, 0)| (x) + R|μ|(x), x ∈ E .

Proof We apply Proposition 4.4 to u1 = u, u2 = 0, μ1 = μ,μ2 = − f (·, 0). ��
Given a positive function ρ ∈ S, we denote by Mρ the set of all measures μ ∈ M such

that ‖μ‖ρ < ∞, where ‖μ‖ρ = ‖ρ · μ‖T V .
Important examples of positive ρ ∈ S are ρ = 1 and ρ = Rη, where η is a positive Borel

function on E . Let us also note that if A = �α (with α ∈ (0, 1]) on an open bounded set
D ⊂ R

d (see Remark 4.13) then for ρ = R1 we have Mρ = {μ ∈ M : δα · μ ∈ Mb},
where δ(x) = dist(x, ∂ D), because by [22] there exists c, C > 0 such that

cδα(x) ≤ R1(x) ≤ Cδα(x), x ∈ D.

In the rest of the paper we assume that ρ ∈ S and ρ is strictly positive.

Lemma 4.6 Assume that μ, ν ∈ Mρ and Rμ(x) ≤ Rν(x) for x ∈ E. Then ‖μ‖ρ ≤ ‖ν‖ρ .

Proof By [3, Proposition II.2.6] there exists a sequence {hn} of positive bounded Borel
functions on E such that Rhn ↗ ρ. For n ≥ we have

(μ, Rhn) = (Rμ, hn) ≤ (Rν, hn) = (ν, Rhn),

so letting n → ∞ we get the desired result. ��
Proposition 4.7 Let u1, u2 be solutions of (4.1) with μ1 ∈ Mρ and μ2 ∈ Mρ , respectively.
If f satisfies (H1) then

‖ fu1 − fu2‖L1(E;ρ·m) ≤ ‖μ1 − μ2‖ρ.

Proof Follows from Proposition 4.4 and Lemma 4.6. ��
Proposition 4.8 Let u be a solution of (4.1) with μ ∈ Mρ and f satisfying (H1) and such
that f (·, 0) ∈ L1(E; ρ · m). Then

‖ fu‖L1(E;ρ·m) ≤ 2‖ f (·, 0)‖L1(E;ρ·m) + ‖μ‖ρ.

Proof Follows from Proposition 4.5 and Lemma 4.6. ��
Theorem 4.9 Let u be a solution of (4.1) with μ ∈ Mb and f satisfying (H1) and such that
f (·, 0) ∈ L1(E; m). Then for every k ≥ 0, Tk(u) ∈ De[E] and

E (Tk(u), Tk(u)) ≤ 2k
(‖ f (·, 0)‖L1 + ‖μ‖T V

)
.

Proof Follows from Theorem 3.3 and Proposition 4.8. ��

123



78 Page 16 of 27 T. Klimsiak

4.2 Stampacchia’s definition by duality

In [27] Stampacchia introduced a definition of a solution of (3.1) in case μ ∈ Mb and A is
uniformly elliptic operator of the form

A =
d∑

i, j=1

∂

∂x j

(
ai j

∂

∂xi

)

on a bounded open set D ⊂ R
d . According to this definition, now called Stampacchia’s

definition by duality, a measurable function u ∈ L1(D; m), where m is the Lebesgue measure
on R

d , is a solution of (3.1) if

(u, η) = (Gη,μ), η ∈ L∞(D; m).

The above definition has sense, because it is well known that for A as above Gη has a bounded
continuous version. In the general case considered in the paper the original Stampacchia’s
definition has to be modified, because the measure μ is not assumed to be bounded, Gη

may be not continuous for η ∈ L∞(E; m) and moreover, the solution of (3.1) may be not
locally integrable (see [17, Example 5.7]). In [17] we introduced a generalized Stampacchia’s
definition for solutions of (4.1) with Dirichlet operator A and bounded measure μ such that
μ � Cap. Here we give a definition for general measures of the class M.

Lemma 4.10 We have M = ⋃
Mρ , where the union is taken over all strictly positive

excessive bounded functions.

Proof It is clear that
⋃

Mρ ⊂ M. To prove the opposite inclusion, let us assume that
μ ∈ M. Then R|μ| < ∞, m-a.e. Therefore there exists a strictly positive Borel function η

on E such that (R|μ|, η) = (|μ|, Rη) < ∞. On the other hand, since the form (E, D[E]) is
transient, there exists a strictly positive Borel function g on E such that ‖Rg‖∞ < ∞ (see
[24, Corollary 1.3.6]). Let us put ρ = R(η ∧ g). It is clear that ρ is*** a bounded strictly
positive excessive function. ��

Definition 4.11 We say that a measurable numerical function u on E is a solution of (4.1)
in the sense of Stampacchia if for every η ∈ B(E) such that (|μ|, R|η|) < ∞ the integrals
(u, η), ( fu, Rη) are finite and we have

(u, η) = ( fu, Rη) + (μ, Rη).

Proposition 4.12 Let μ ∈ M. A measurable function u on E is a solution of (4.1) in the
sense of Definition 4.11 if and only if it is a solution of (4.1) in the sense of Definition 3.1.

Proof Let u be a solution of (4.1) in the sense od Definition 3.1. Then by Proposition 4.5,
|u| + R| fu | ≤ R|μ|, it is clear that u is a solution of (4.1) in the sense of Stampacchia. Now
assume that u is a solution of (4.1) in the sense of Stampacchia. By Lemma 4.10 there exists
a strictly positive ρ ∈ S such that μ ∈ Mρ . In fact, from the proof of Lemma 4.10 it follows
that we may take ρ = Rg for some strictly positive Borel function g on E . We have

(u, g1B) = (R fu, g1B) + (Rμ, g1B)

for every B ∈ B(E). Hence u = R fu + Rμ, m-a.e., and the proof is complete. ��
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Remark 4.13 Let α ∈ (0, 1] and let D be an open subset of R
d . Denote by (E, D[E]) the

Dirichlet form associated with the operator �α on R
d (see [12, Example 1.4.1]), and by

(ED, D[ED]) the part of (E, D[E]) on D (see [12, Section 4.4]). By A denote the operator
associated with (ED, D[ED]), i.e. the fractional Laplacian �α on D with zero boundary
condition. If μ ∈ Mα

δ then in Definition 4.11 one can take any function η ∈ Bb(E) as a test
function. It follows in particular that in case of equations involving operator A Stampacchia’s
definition is equivalent to the one introduced in [8, Definition 1.1].

Remark 4.14 In [18] renormalized solutions of (4.1) are defined in case μ is a bounded
smooth measure. It is also proved there that u is a renormalized solution of (4.1) if and only
it is a probabilistic solution. Thus, in case μ is smooth, all the definitions (renormalized,
Stampacchia’s by duality, probabilistic, via the resolvent kernel) are equivalent.

Remark 4.15 In case A is the Laplace operator on an open bounded set D ⊂ R
d , also the so-

called weak solutions of (4.1) are considered in the literature (see, e.g., [5]). A weak solution
of (4.1) is a function u ∈ L1(D; dx) such that fu ∈ L1(D; dx) and for every η ∈ C∞

0 (D),

−
∫

D
u�η dx =

∫
D

fuη dx +
∫

D
η dμ.

It is clear that the definition of weak solution is equivalent to Stampacchia’s definition by
duality. It is worth pointing out that in fact the concept of weak solutions is also due to
Stampacchia (see [27, Definition 9.1]).

4.3 Existence of solutions

In [17] (see also [19] for the case of operator corresponding to general nonsymmetric quasi-
regular form) it is proved that if μ is smooth then under conditions (H1)–(H3) there exists a
solution of (4.1). It is well known that if A = � and μ is not smooth, i.e. μc �= 0, then in
general assumptions (H1)–(H3) are not sufficient for the existence of a solution of (4.1). In
this section we give an existence result for (4.1) under the following additional hypothesis:

(H4) there exists a positive Borel measurable function g on E such that g · m ∈ M and
| f (x, y)| ≤ g(x), x ∈ E, y ∈ R.

Let us observe that (H4) implies (H2), (H3). In the paper we have assumed Meyer’s hypothesis
(L), so we may also drop (H1).

Hypothesis (H4) imposes rather restrictive assumption on the growth of f but allows us
to prove the existence of solutions for any μ ∈ M and any Dirichlet operator A.

Theorem 4.16 Assume (H4). Then there exists a solution of (4.1).

Proof Let � be a strictly positive Borel function on E such that

r :=
∫

E
(Rg(x) + R|μ|(x))�(x) m(dx) < ∞.

Let us define � : L1(E; � · m) → L1(E; � · m) by

�(u) = R f (·, u) + Rμ.

Observe that for every u ∈ L1(E, � · m), ‖�(u)‖L1(E;�·m) ≤ r . It is an elementary check
that � is continuous. Let {un} ⊂ L1(E; � · m) and let vn = �(un). By [11, Lemma 94, page
306], {vn} has a subsequence convergent m-a.e., which when combined with the fact that
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|vn |(x) ≤ Rg(x) + R|μ|(x) for x ∈ E implies that, up to a subsequence, {vn} converges in
L1(E; � · m). Therefore by the Schauder fixed point theorem there exists u ∈ L1(E; � · m)

such that �(u) = u, which proves the theorem. ��

5 Good measures and reduced measures

In this section we develop the theory of reduced measures for (1.1) in case of general Dirichlet
operator A and general measure μ of the class M. Our results generalize the corresponding
results from H. Brezis, M. Marcus and A.C. Ponce [5] proved in the case where A is the
Laplace operator on a bounded domain in R

d and μ is a bounded measure. Also note that in
[5] it is assumed that f does not depend on x .

In the whole section in addition to (H1)–(H3) we assume that f (x, y) = 0 for y ≤ 0.

Definition 5.1 We say that a measurable numerical function v on E is a subsolution of (4.1)
if fv · m ∈ M and there exists a measure ν ∈ M such that ν ≤ μ and

−Av = f (x, v) + ν.

Theorem 5.2 Assume (H1)–(H3). Let fn = f ∨ (−n) and let un be a solution of

−Aun = fn(x, un) + μ.

Then un ↘ u∗, where u∗ is a maximal subsolution of (4.1). Moreover, the measure μ∗ =
−Au∗ − f (x, u∗) admits decomposition of the form μ∗ = μd + ν with ν⊥Cap such that
ν ≤ μc.

Proof Let {τk} be a reducing sequence for un . By the Tanaka-Meyer formula,

|un(x)| ≤ Ex |un |(Xτk ) + Ex

∫ τk

0
sgn(un)(Xr ) fn(Xr , un(Xr )) dr

+ Ex

∫ τk

0
sgn(un)(Xr ) d Aμd

r

for q.e. x ∈ E . By (H1),

|un(x)| + Ex

∫ τk

0
| fn(Xr , un(Xr ))| dr ≤ Ex |un |(Xτk ) + Ex

∫ τk

0
d A|μd |

r

for q.e. x ∈ E . Letting k → ∞ in the above inequality we get

|un(x)| + R| fn(·, un)|(x) ≤ R|μ|(x) (5.1)

for q.e. x ∈ E . Let vn, wn be solutions of the following equations

−Avn = f +
n (·, un) + μ+, −Awn = f −

n (·, un) + μ−.

Of course, vn, wn are excessive functions and by (5.1),

vn = R f +
n (·, un) + Rμ+ ≤ 2R|μ|, wn = R f −

n (·, un) + Rμ− ≤ 2R|μ|. (5.2)

By [11, Lemma 94, page 306], from {vn} and {wn} one can choose subsequences convergent
m-a.e. to excessive functions v and w, respectively. By (5.2) and [14], there exists ν1, ν2 ∈ M

+
such that v = Rν1, w = Rν2. By Theorem 3.7 the function h = R|μ| is quasi-continuous.
Therefore if we put δ1

k = inf{t ≥ 0 : h(Xt ) ≥ k} ∧ ζ , then δ1
k ↗ ζ, Px -a.s. for q.e. x ∈ E .

123



Reduced measures for semilinear elliptic equations involving… Page 19 of 27 78

From Theorem 3.7 it also follows that h(X) is a special semimartingale. Therefore there
exists a sequence {δ2

k } ⊂ T such that δ2
k ↗ ζ and for q.e. x ∈ E ,

Ex sup
t≤δ2

k

|h(Xt )| < ∞.

We may assume that τk = δ1
k = δ2

k . Since by Proposition 4.2, un(x) ≥ un+1(x), n ≥ 1, for
q.e. x ∈ E , there exists u∗ such that un ↘ u∗, q.e. Therefore letting n → ∞ in the equation

un(x) = Ex un(Xτk ) + Ex

∫ τk

0
fn(Xr , un(Xr )) dr + Ex

∫ τk

0
d Aμd

r

and using (H1)–(H3), (5.1) (and the fact that τk = δ1
k = δ2

k ) we get

u∗(x) = Ex u∗(Xτk ) + Ex

∫ τk

0
f (Xr , u∗(Xr )) dr + Ex

∫ τk

0
d Aμd

r

for q.e. x ∈ E . Observe that u∗ = v − w = Rν, q.e., where ν = ν1 − ν2. Therefore by
Theorem 3.7,

lim
k→∞ Ex u∗(Xτk ) = Rνc(x) (5.3)

for q.e. x ∈ E . By (5.1) and Fatou’s lemma, f (·, u∗) · m ∈ M. Hence u∗ is a solution of (4.1)
with μ replaced by μ∗ := μd + νc. What is left is to show that u∗ is the maximal subsolution
of (4.1). By the construction of u∗, un ≥ u∗. Therefore by condition (b) of the definition of a
probabilistic solution of (4.1) and Lemma 3.5 (see also Remark 3.8) we have μ∗

c ≤ μc, which
when combined with the fact that μ∗

d = μd shows that μ∗ ≤ μ, i.e. that u∗ is subsolution
of (4.1). Suppose that v is another subsolution of (4.1). Then there exists β ∈ M such that
β ≤ μ and v is a solution of (4.1) with μ replaced by β. Since β ≤ μ and fn ≥ f , applying
Proposition 4.2 shows that un ≥ v q.e., hence that u∗ ≥ v q.e., which completes the proof. ��

Let μ ∈ M. From now on by μ∗, u∗ we denote the objects constructed in Theorem 5.2.
By Theorem 5.2, μ∗ ≤ μ. It is known (see [2]) that it may happen that μ∗ �= μ, i.e. that
there is no solution of (4.1) under assumptions (H1)–(H3).

Definition 5.3 (a) We call μ∗ the reduced measure associated to μ.
(b) We call μ ∈ M a good measure (relative to A and f ) if there exists a solution of (4.1).

In what follows we denote by G the set of all good measures relative to A and f . Of course,
μ∗ ∈ G.

Proposition 5.4 Let μ ∈ M. Then

(i) μ∗ ≤ μ,
(ii) μ − μ∗⊥Cap, (μ∗)d = μd ,

(iii) A ∩ S ⊂ G,
(iv) μ∗ is the largest good measure less then or equal to μ,
(v) |μ∗| ≤ |μ|,

(vi) if μ, ν ∈ M and μ ≤ ν, then μ∗ ≤ ν∗.

Proof Assertions (i) and (ii) follow from Theorem 5.2. (iii) follows from [17]. Let ν ∈ G
and ν ≤ μ. Since ν ∈ G, there exist a solution v of (4.1) with μ replaced by ν. Since ν ≤ μ,
the latter means that v is a subsolution of (4.1). Therefore by Theorem 5.2, v ≤ u∗ q.e. From
this, condition (b) of the definition of a probabilistic solution and Remark 3.8,

Rανc ≤ Rα(μ∗)c
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for every α ≥ 0. Hence νc ≤ (μ∗)c by Lemma 3.5. On the other hand, since ν ≤ μ, νd ≤ μd .
By (ii), (μ∗)d = μd . Consequently, ν = νc + νd ≤ (μ∗)c + μd = (μ∗)c + (μ∗)d = μ∗.
To prove (v), let us observe that −μ− ∈ G, because −Rμ− is a solution of (4.1) with μ

replaced by −μ−. Hence, by (iv), −μ− ≤ μ∗, from which we easily get (v). To show (vi),
let us observe that μ∗ ∈ G, and by (i), μ∗ ≤ ν. Hence μ∗ ≤ ν∗ by (iv). ��
Proposition 5.5 A measure μ ∈ M is good if and only if the sequence { fn(X, un(X))}
considered in the proof of Theorem 5.2 is uniformly integrable under the measure dt ⊗ Px

for m-a.e. x ∈ E.

Proof From the proof of Theorem 5.2 we know that fn(X, un(X)) → f (X, u∗(X)), dt ⊗Px -
a.e. for m-a.e. x ∈ E and

un(x) = Rμc + Ex

∫ ζ

0
fn(Xr , un(Xr )) dr + Ex

∫ ζ

0
d Aμd

r (5.4)

for q.e. x ∈ E . If { fn(X, un(X))} is uniformly integrable then letting n → ∞ in (5.4) shows
that for q.e. x ∈ E ,

u∗(x) = Rμc + Ex

∫ ζ

0
f (Xr , u∗(Xr )) dr + Ex

∫ ζ

0
d Aμd

r ,

i.e. μ is a good measure. If μ ∈ G then there exists a solution u of (4.1), i.e.

u(x) = Rμc + Ex

∫ ζ

0
f (Xr , u(Xr )) dr + Ex

∫ ζ

0
d Aμd

r

for q.e. x ∈ E . Of course, u is a subsolution of (4.1), so by Theorem 5.2, u = u∗ and un ↘ u.
By this and (5.4),

Ex

∫ ζ

0
fn(Xr , un(Xr )) dr → Ex

∫ ζ

0
f (Xr , u(Xr )) dr

for q.e. x ∈ E . Since fn(X, un(X)) → f (X, u(X)), dt ⊗ d Px -a.e. for q.e. x ∈ E and
fn(X, un(X)) ≤ 0, applying Vitali’s theorem shows that the sequence { fn(X, un(X))} is
uniformly integrable under the measure dt ⊗ Px for q.e. x ∈ E , and hence for m-a.e. x ∈ E .

��
Proposition 5.6 If ν ∈ M, μ ∈ G and ν ≤ μ, then ν ∈ G.

Proof Let {un} be the sequence of functions of Theorem 5.2 associated with μ and let {vn}
be a sequence constructed as {un} but for μ replaced by ν. By Proposition 4.2, vn ≤ un q.e.
Consequently, fn(·, un) ≤ f (·, vn) ≤ 0 q.e. Since μ ∈ G, we know from Proposition 5.5 that
the sequence { fn(X, un(X))} is uniformly integrable under the measure dt ⊗ Px for m-a.e.
x ∈ E . Therefore { fn(X, vn(X))} has the same property. By Proposition 5.5, this implies
that ν ∈ G. ��
Corollary 5.7 If μ ∈ M and μ+ ∈ G, then μ ∈ G.

Proof Follows immediately from Proposition 5.6 and the fact that μ ≤ μ+. ��
Corollary 5.8 If μ1, μ2 ∈ G, then μ1 ∨ μ2 ∈ G.

Proof Let μ = μ1 ∨μ2. Since μ1 ≤ μ, μ2 ≤ μ and μ1, μ2 ∈ G, it follows from Proposition
5.4(iv) that μ1 ≤ μ∗ and μ2 ≤ μ∗. Hence μ ≤ μ∗. On the other hand, by Proposition 5.4(i),
μ∗ ≤ μ, so μ = μ∗, i.e. μ ∈ G. ��

123



Reduced measures for semilinear elliptic equations involving… Page 21 of 27 78

Corollary 5.9 The set G is convex.

Proof Let μ1, μ2 ∈ G. Then μ1 ∨ μ2 ∈ G by Corollary 5.8. But for every t ∈ [0, 1],
tμ1 + (1 − t)μ2 ≤ μ1 ∨ μ2, so by Proposition 5.6, tμ1 + (1 − t)μ2 ∈ G, t ∈ [0, 1]. ��

Set Gρ = G ∩ Mρ .

Theorem 5.10 We have

(i) ‖μ − μ∗‖ρ = minν∈Gρ ‖μ − ν‖ρ for every μ ∈ Mρ ,
(ii) if μ1, μ2 ∈ M and μ1⊥μ2, then (μ1 + μ2)

∗ = μ∗
1 + μ∗

2,

(iii) (μ ∧ ν)∗ = μ∗ ∧ ν∗ and (μ ∨ ν)∗ = μ∗ ∨ ν∗ for every μ, ν ∈ M,
(iv) (μ∗ − ν∗)+ ≤ (μ − ν)+ for every μ, ν ∈ M.

Proof It suffices to repeat step by step the reasoning from the proofs of Corollary 6 and
Theorems 8–10 in [5]. ��
Theorem 5.11 Let μ ∈ M. The following conditions are equivalent:

(i) μ ∈ G,
(ii) μ+ ∈ G,

(iii) μc ∈ G,
(iv) μ = g − Av for some functions g, v on E such that g · m ∈ M and f (·, v) · m ∈ M.

Proof That (i) is equivalent to (ii) follows from Corollaries 5.7 and 5.8. That (ii) implies (iii)
follows from the fact that μc ≤ μ+ and Proposition 5.6. Suppose that μc ∈ G. Since μd ∈ G
and μ+ = μd ∨ μc, it follows from Corollary 5.8 that μ+ ∈ G. Thus (iii) implies (ii). Of
course (i) implies (iv). Suppose now that (i) is satisfied. Then

−Av = f (·, v) + (μ − g − f (·, v)).

Hence μ − g − f (·, v) ∈ G, and consequently (μ − g − f (·, v))c = μc ∈ G, because we
already know that (i) implies (iii). Hence μ ∈ G, because we also know that (iii) implies (i).

��
Set

L(E; m) = { f ∈ B(E) : f · m ∈ M},

A( f ) = {μ ∈ M : f (·, Rμ) ∈ L(E; m)}, Aρ = {μ ∈ Mρ; f (·, Rμ) ∈ L1(E; ρ · m)}.
Corollary 5.12 We have

(i) G + M ∩ S ⊂ G,
(ii) A( f ) + L(E; m) = G,

(iii) Aρ( f ) + L1(E; ρ · m) = Gρ .

Let us consider the following hypothesis:

(A) for every θ ∈ [0, 1), c ≥ 0 there exist α(c, θ), β(c, θ) ≥ 0 such that

| f (x, θu + c)| ≤ α(c, θ)| f (x, u)| + β(c, θ), x ∈ E, u ∈ R.

Theorem 5.13 Let ρ ∈ L1(E; m). If (A) is satisfied then Aρ( f ) = Gρ , where the closure is
taken in the space (Mρ, ‖ · ‖ρ).
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Proof First we show that Gρ is a closed subset of (Mρ, ‖ · ‖ρ). Let {μn} ⊂ Gρ be a sequence
such that μn → μ in (Mρ, ‖·‖ρ) for some μ ∈ Mρ . Let un denote a solution of (4.1) with μ

replaced by μn and let ψ be a strictly positive Borel function on E such that Rψ ≤ ρ, m-a.e.
Let us observe that

(R|μn − μm |, ψ) ≤ ‖μn − μm‖ρ, n, m ≥ 1. (5.5)

By Proposition 4.4, (
R| fun − fum |, ψ) ≤ ‖μn − μm‖ρ, n, m ≥ 1. (5.6)

Adding (5.5) to (5.6) gives∫
E

|un(x) − um(x)| ψ(x) m(dx) ≤ 2‖μn − μm‖ρ, n, m ≥ 1.

Therefore there exists u ∈ L1(E;ψ ·m) such that un → u in L1(E;ψ ·m). By the definition
of a solution of (4.1),

un = R fun + Rμn, m-a.e.

By (5.5) and (5.6) the right-hand side of the above equation converges in L1(E;ψ · m) to
R fu + Rμ. Hence

u = R fu + Rμ, m-a.e.,

which implies that μ ∈ Gρ , and hence that Gρ is closed. Therefore Aρ( f ) ⊂ Gρ , because
Aρ( f ) ⊂ Gρ by Theorem 5.11. Now suppose that μ ∈ Gρ . Then there exists a solution u of
(4.1). Let θn = (1 − 1

n ) and let {Fn} be a nest such that c(n) := ‖R(1Fn f (·, u))‖∞ < ∞
(such a nest exists, because f (·, u) ∈ Mρ ⊂ M). Let μn = −θn Au − 1Fn f (·, u). By (A),

| f (x, Rμn(x))| ≤ α(c(n), θn)| f (x, u(x))| + β(c(n), θn), x ∈ E . (5.7)

By Proposition 4.8, fu ∈ L1(E; ρ · m). Therefore from (5.7) it follows that μn ∈ Aρ( f ).
Since it is clear that ‖μn − μ‖ρ → 0, we have μ ∈ Aρ( f ), which completes the proof. ��

6 Inverse maximum principle and Kato’s inequality

In this section we consider the linear equation (3.1). The following theorem generalizes the
inverse maximum principle proved by H. Brezis and A.C. Ponce in [6] in case A is the Laplace
operator on a bounded domain in R

d .

Theorem 6.1 Let μ ∈ M and u be a solution of (3.1). If u ≥ 0 then μc ≥ 0.

Proof Assume that u ≥ 0. Let {τk} be a reducing sequence for u. By the definition of a
solution of (3.1), for every α ≥ 0,

lim
k→∞ Ex e−ατk u(Xτk ) = Rαμc(x)

for q.e. x ∈ E . In particular, Rαμc(x) ≥ 0 for q.e. x ∈ E , and hence, by [3, PropositionII.3.2],
Rαμc ≥ 0 everywhere. That μc ≥ 0 now follows from Lemma 3.5. ��
Proposition 6.2 Assume that μ ∈ M. Let u be a solution of (3.1) and let ϕ be a positive
convex Lipschitz continuous function on R such that ϕ(0) = 0. Then Aϕ(u) ∈ M. Moreover,

‖Aϕ(u)‖ρ ≤ Lip(ϕ)‖μ‖ρ.
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Proof Let {τk} be a reducing sequence for u. By the definition of a probabilistic solution of
(3.1),

u(Xt ) = u(X0) −
∫ t

0
d Aμd

r +
∫ t

0
d Mr , t ≥ 0

for some local MAF M . By the Itô-Meyer formula,

ϕ(u)(Xt ) = ϕ(u)(X0) −
∫ t

0
ϕ′(u(Xr )) d Aμd

r

+
∫ t

0
d Ar +

∫ t

0
ϕ′(u(Xr−)) d Mr , t ≥ 0 (6.1)

for some increasing process A, where ϕ′ is the left derivative of ϕ. Let Ap denote the dual
predictable projection of A (one can find a version of Ap which is independent of x ; see [9]).
Since Ap is predictable, it is continuous, because the filtration (Ft ) is quasi-left continuous.
Therefore there exists a positive smooth measure ν such that Ap = Aν . For q.e. x ∈ E we
have

Ex

∫ ζ

0
d Aν

r = lim
k→∞ Ex

∫ τk

0
d Aν

r ≤ lim
k→∞

(
Exϕ(u(Xτk )) + Ex

∫ τk

0
ϕ′(u(Xr )) d Aμd

r

)

≤ Lip(ϕ) lim
k→∞

(
Ex |u(Xτk )| + Ex

∫ τk

0
d A|μd |

r

)
≤ 2 Lip(ϕ)R|μ|(x).

Thus ν ∈ M. Write

v1(x) = Rν(x), v2(x) = Rμ−
d (x), x ∈ E

and observe that

ϕ(u)(Xt ) + v1(Xt ) + v2(Xt ) = ϕ(u)(x) + v1(x) + v2(x) −
∫ t

0
d Aμ+

d +
∫ t

0
d M̄r , t ≥ 0

for some local MAF M̄ . Set w = ϕ(u) + v1 + v2. From the above equation and the fact that
w ≥ 0 it follows that w(X) is a supermartingale. Therefore w is an excessive function. On
the other hand,

w ≤ |ϕ(u)| + v1 + v2 ≤ Lip(ϕ)|u| + Rν + Rμ−
d ≤ Lip(ϕ)R|μ| + Rν + Rμd .

Therefore by [14, Proposition 3.9] there exists a positive β ∈ M such that w = Rβ. This
implies that Aϕ(u) = β − ν − μ−

d ∈ M. By (6.1) and the assumptions on ϕ,

ϕ(u)(x) = Exϕ(u)(Xτk ) + Ex

∫ τk

0
ϕ′(u(Xr )) d Aμd

r − Ex

∫ τk

0
d Aν

r

≤ Lip(ϕ)

(
Ex |u|(Xτk ) + Ex

∫ τk

0
d A|μd |

r

)

for q.e. x ∈ E . Letting k → ∞ and applying Lemma 4.6 we get the desired result. ��

The following version of Kato’s inequality was proved by H. Brezis and A.C. Ponce [6]
(see also H. Brezis, M. Marcus and A.C. Ponce [5]) in case A is the Laplace operator on a
bounded domain in R

d ).
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Theorem 6.3 Let u be a solution of (3.1). Then Au+ ∈ M and

1{u>0}(Au)d ≤ (Au+)d , (6.2)

(Au)+c = (Au+)c. (6.3)

Proof By Proposition 6.2 and (6.1), Au+ ∈ M and there exist positive ν, l ∈ M such that
ν⊥Cap, l �Cap and

−Au+ = ν + 1{u>0}μd − l.

By the resolvent identity, for every α ≥ 0 we have

u = Rα(μ + αu), u+ = Rα

(
ν + 1{u>0}μd − l + αu+)

.

It is clear that

Rα

(
ν + 1{u>0}μd − l + αu+) ≤ Rα(μ + αu)+.

Hence

Rα

(
ν + 1{u>0}μd − l

) ≤ Rα

[
(μ + αu)+ − αu+] ≤ Rαμ+.

By Lemma 3.5,

ν + 1{u>0}μd − l ≤ μ+.

Taking the diffuse part of the above inequality we get (6.2). Taking the concentrated part we
get

ν ≤ μ+
c . (6.4)

On the other hand, since u+ − u ≥ 0, it follows from Theorem 6.1 that
(
ν + 1{u>0}μd − l − μ

)
c ≥ 0, (6.5)

which implies that ν ≥ μ+
c . When combined with (6.4) this gives (6.2). ��

Remark 6.4 Applying in the proof of Theorem 6.1 the Itô-Meyer formula with right derivative
of the function u �→ u+ we obtain (6.5) with 1{u>0} replaced by 1{u≥0}. As a result, we get
(6.2) with 1{u>0} replaced by 1{u≥0}.

7 Equations with polynomial nonlinearity

In this section we give a necessary and sufficient condition on μ ensuring the existence of a
solution of (4.1) with f satisfying the condition

| f (x, u)| ≤ cu p, x ∈ E, u ≥ 0 (7.1)

for some constants c ≥ 0, p > 1. We also calculate the reduced measure in the case where
f (x, u) = −u p . In our study a primary role will be played by a new capacity CapA,p , which
we define below.

Let p ≥ 1. By the Riesz-Thorin interpolation theorem one can extend the semigroup
{Tt , t ≥ 0} from L2(E; m) ∩ L p(E; m) to L p(E; m). We denote the extended semigroup
by {T p

t , t ≥ 0}, whereas by {R p
α , α > 0} we denote its resolvent. Let (Ap, D(Ap)) be

the operator generated by {T p}. It is well known that D(Ap) = R p
1 (L p(E; m)). We set
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D+(Ap) = R p
1 (L p,+(E; m)). Each element of D+(Ap) is defined pointwise via the resolvent

kernel. Let Vp denote the space D(Ap) equipped with the norm

‖u‖Vp = ‖Apu‖L p(E;m) + ‖u‖L p(E;m).

We define the capacity of B ⊂ E as

CapA,p(B) = inf{‖η‖p
Vp

: η ∈ D+(Ap), η ≥ 1B}.
It is an elementary check that CapA,p is subadditive and increasing (see, e.g., [1, Proposition
2.3.6]). We say that μ ∈ V ′

p ∩ M
+ if for every η ∈ V +

p ,

(η, μ) ≤ c‖η‖Vp .

In the rest of the section we assume that p > 1. By p′ we denote the Hölder conjugate to
p.

Proposition 7.1 If μ ∈ V ′
p ∩ M

+ then μ is a good measure relative to the function f (u) =
−|u|p′

.

Proof Let u be a solution of the equation

(I − A)u = μ.

Then u ∈ L p′
(E; m)∩L(E; m). Indeed, the fact that u ∈ L(E; m) follows from the inequality

Ru ≤ Rμ. Now, for f ∈ L p,+(E; m) set η = R p
1 f . Then

∫
E

u f dm =
∫

E
u(I − Ap)η dm =

∫
E
(I − Ap)uη dm =

∫
E

η dμ

≤ c‖η‖Vp = c
(‖Apη‖L p(E;m) + ‖η‖L p(E;m)

) ≤ 2c‖ f ‖L p(E;m),

which shows that u ∈ L p′
(E; m). That μ is a good measure relative to f (u) = −|u|p′

now
follows from Theorem 5.11. ��
Lemma 7.2 Let u ∈ D+(Ap). Then for every λ > 0,

CapA,p(u ≥ λ) ≤ λ−p‖u‖p
Vp

.

Proof Let B = {u ≥ λ}. Then λ−1u ≥ 1B , so the required inequality follows immediately
from the definition of CapA,p . ��

Lemma 7.3 Let μ ∈ M+
b . If μ ≤ c·CapA,p for some c ≥ 0, then μ ∈ V ′

p.

Proof Let η ∈ V +
p . By our assumptions onμ and Lemma 7.2, for any η ∈ V +

p with ‖η‖Vp = 1
we have

∫
E

η dμ ≤ μ(E) +
∞∑

k=0

2k+1μ
(
η ≥ 2k

)
≤ μ(E) + c

∞∑
k=0

2k+1 CapA,p

(
η ≥ 2k

)

≤ μ(E) + c
∞∑

k=0

2k(1−p)+1 < ∞,

which proves the lemma. ��
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Lemma 7.4 Let μ ∈ M+
b and μ � CapA,p. Then there exists a decreasing sequence {Gn}

of Borel subsets of E such that

lim
n→∞ CapA,p(Gn) = 0, lim

n→∞ μ(Gn) = 0, 1E\Gn · μ ≤ 2nCapA,p , n ≥ 1.

Proof It is enough to repeat step by step the proof of [12, Lemma 2.2.9], the only difference
being in the fact that we choose the sets Bn appearing in the proof of [12, Lemma 2.2.9] as
Borel sets. ��

As a corollary to Lemma 7.4 we get the following proposition.

Proposition 7.5 A measure μ ∈ M
+ satisfies μ � CapA,p if and only if there exists an

increasing sequence {En} of Borel subsets of E such that 1En · μ ∈ V ′
p ∩ M

+ for n ∈ N and
μ(E \ ⋃

n≥1 En) = 0.

Theorem 7.6 Assume (7.1). If μ ∈ M and μ+ � CapA,p′ then μ ∈ G.

Proof By Theorem 5.11 we may assume that μ ≥ 0. By Lemma 4.10 there exists a strictly
positive bounded excessive function ρ such that μ ∈ M+

ρ , and by Proposition 7.5 there exists
a sequence {μn} ⊂ V ′

p′ ∩ M
+ such that limn→∞ ‖μn − μ‖ρ = 0. Therefore it is enough to

show that μn ∈ G. But this follows from Proposition 7.1. ��
Corollary 7.7 Assume that μ ∈ M and an let f (x, u) = −u p, x ∈ E, u ≥ 0. Then μ ∈ G
if and only if μ+ � CapA,p′ .

Proof Sufficiency follows from Theorem 7.6. Suppose that μ ∈ G. By Theorem 5.11, μ+ ∈
G. By Proposition 5.6 and closedness of G we may assume that μ+ is bounded. Assume that
CapA,p′(B) = 0 for some Borel set B ⊂ E . Then there exists a sequence {ηn} ⊂ V +

p′ such
that ‖ηn‖Vp′ → 0, supn≥1 ηn ≤ c for some c > 0 and ηn ≥ 1B . Let u be a solution of (4.1)
with μ replaced by μ+. Then u ∈ L p(E; m) by Proposition 4.8. Therefore

μ+(B) ≤ (
ηn, μ+) = (u p, ηn) + (u,−Apηn)

≤ (u p, ηn) + ‖u‖L p(E;m)‖Apηn‖L p′
(E;m)

≤ (u p, ηn) + ‖u‖L p(E;m)‖ηn‖Vp′

for every n ∈ N, which forces μ+(B) = 0. ��
Corollary 7.8 Let the assumptions of Corollary 7.7 hold. Let μ+

CapA,p′ denote the absolutely

continuous part, with respect to CapA,p′ , of the measure μ+. Then

μ∗ = μ+
CapA,p′ − μ−.

Proof It suffices to repeat step by step the proof of [5, Theorem 16]. ��
Remark 7.9 Let us note that from [1, Proposition 2.3.13] (see also [15]) it follows that for
all p > 1, α ∈ (0, 1] and open bounded set D ⊂ R

d ,

c1CapD
α,p(B) ≤ CapA,p(B) ≤ c2CapD

α,p(B), B ⊂ D,

where A = �α on D with zero boundary condition (see Remark 4.13) and for a compact
K ⊂ D the capacity CapD

α,p(K ) is defined by (1.5).
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