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Abstract Maximum likelihood estimation of the concentration parameter of von
Mises–Fisher distributions involves inverting the ratio Rν = Iν+1/Iν of modified
Bessel functions and computational methods are required to invert these functions
using approximative or iterative algorithms. In this paper we use Amos-type bounds
for Rν to deduce sharper bounds for the inverse function, determine the approximation
error of these bounds, and use these to propose a new approximation for which the
error tends to zero when the inverse of Rν is evaluated at values tending to 1 (from the
left). We show that previously introduced rational bounds for Rν which are invertible
using quadratic equations cannot be used to improve these bounds.

Keywords Maximum likelihood · Modified Bessel function ratio · Numerical
approximation · von Mises–Fisher distribution

1 Introduction

A random unit length vector in R
d has a von Mises–Fisher (or Langevin) distribution

with parameter θ ∈ R
d if its density with respect to the uniform distribution on the

unit hypersphere S
d−1 = {x ∈ R

d : ‖x‖ = 1} is given by
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946 K. Hornik, B. Grün

f (x |θ) = eθ ′x/0 F1(; d/2; ‖θ‖2/4),

where

0 F1(; ν; z) =
∞∑

n=0

�(ν)

�(ν + n)

zn

n!

is a generalized hypergeometric series and related to the modified Bessel function of
the first kind Iν via

0 F1(; ν + 1; κ2/4) = Iν(κ)�(ν + 1)

(κ/2)ν

(e.g., Mardia and Jupp 1999, p. 168).
We note that the von Mises–Fisher distribution is commonly parametrized as

θ = κμ, where κ = ‖θ‖ and μ ∈ S
d−1 are the concentration and mean direction

parameters, respectively (if θ �= 0, μ is uniquely determined as θ/‖θ‖).
Using the common parametrization by κ and μ, the log-likelihood of a sample

x1, . . . , xn from the von Mises–Fisher distribution is given by

−n log(0 F1(; d/2; κ2/4)) + κμ′r,

where r = ∑n
i=1 xi is the resultant vector (sum) of the xi . Using recursions for the

modified Bessel functions (e.g., Watson 1995, p. 71), one can show that the negative
log-derivative of κ �→ log(0 F1(; d/2; κ2/4)) equals Ad(κ) = Rd/2−1(κ), where
Rν(t) = Iν+1(t)/Iν(t). The maximum likelihood estimators are thus obtained by
taking μ̂ = r/‖r‖ and solving

Rd/2−1(κ̂) = ρ,

where ρ = ‖r‖/n is the mean resultant length (Schou 1978).
It can be shown (e.g., Schou 1978) that for ν ≥ 0, Rν is strictly increasing, and

satisfies the Riccati equation R′
ν(t) = 1 − ((2ν + 1)/t)Rν(t) − Rν(t)2. As Rν and

hence also its derivatives can efficiently be computed via its Perron or Gauss continued
fraction representation (Gautschi and Slavik 1978; Tretter and Walster 1980; Song et al.
2012), solving Rν(t) = ρ should conveniently be achievable by standard iterative root
finding techniques, provided that good starting approximations are available (which
is particularly important in the right tail of Rν where Rν is rather “flat”).

Dhillon and Sra (2003) and subsequently Banerjee et al. (2005) suggest the approx-
imation

R−1
ν (ρ) ≈ ρ

1 − ρ2 (2(ν + 1) − ρ2) =: Qν(ρ) (1)

obtained by truncating the Gauss continued fraction representation of Rν and adding a
correction term “determined empirically”, pointing out that this initial approximation
can subsequently be improved by Newton–Raphson iterations. Sra (2012) suggests to
use exactly two such iterations.
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On maximum likelihood estimation of von Mises–Fisher distributions 947

Tanabe et al. (2007) show that for ν ≥ 0 and 0 ≤ ρ < 1,

R−1
ν (ρ) = ρ

1 − ρ2 (2(ν + 1) − c)

for some suitable 0 ≤ c = c(ν, ρ) ≤ 2, or equivalently,

2νρ

1 − ρ2 ≤ R−1
ν (ρ) ≤ 2(ν + 1)ρ

1 − ρ2 , (2)

with the Dhillon–Sra approximation assuming c ≈ ρ2. The upper and lower bound
differ by 2ρ/(1 − ρ2) which is independent of ν but tends to infinity as ρ → 1−.
Tanabe et al. (2007) also suggest to use the “mid-point” approximation with c = 1,
i.e., R−1

ν (ρ) ≈ (2ν + 1)ρ/(1 − ρ2) as the starting value for iterative schemes for
solving Rν(t) = ρ, such as the fixed-point iteration tn+1 = tnρ/Rν(tn).

In this paper, we use a family of bounds for Rν first introduced in Amos (1974)
to provide substantially sharper bounds for R−1

ν , which have approximation error at
most 3ρ/2, and use these results to suggest a new approximation. We establish that
these improved bounds also hold for the Dhillon–Sra approximation, which thus has
the same maximal approximation error. We also show that the error of the suggested
new approximation tends to zero for ρ → 1−, whereas the error tends to −1/2 for the
Dhillon–Sra approximation, which thus is too large for large ρ. Finally, we investigate
whether the rational bounds for Rν developed by Nåsell (1978) can be used to obtain
improved explicit bounds for R−1

ν , and show that for the rational bounds which can
be inverted by solving quadratic equations, no such improvement is possible.

2 Amos-type bounds

Let

Gα,β(t) = t

α + √
t2 + β2

,

where in what follows we take β ≥ 0 without loss of generality. Amos (1974) gives
the bounds

Gν+1/2,ν+3/2(κ) ≤ Rν(κ) ≤ Gν+1/2,ν+1/2(κ), κ, ν ≥ 0

(Equation 16) and

Gν+1,ν+1(κ) ≤ Rν(κ) ≤ Gν,ν+2(κ) ≤ Gν,ν(κ), κ, ν ≥ 0

(Equations 9 and 11). The bounds are actually valid for larger ν domains (see for
example Nåsell 1978; Yuan and Kalbfleisch 2000). It is trivial that Gν+1/2,ν+1/2(t) <

Gν,ν(t) for all t > 0. For 	(t) = (ν + 1/2) + √
t2 + (ν + 3/2)2 − ((ν +

1) + √
t2 + (ν + 1)2) we have 	(0) = 0 and 	′(t) = t/

√
t2 + (ν + 3/2)2 −
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948 K. Hornik, B. Grün

t/
√

t2 + (ν + 1)2, which is negative for all t > 0. Thus, 	(t) < 0 for all t > 0
and hence Gν+1/2,ν+3/2(t) > Gν+1,ν+1(t) for all t > 0.

Let

βSS(ν) = √
(ν + 1/2)(ν + 3/2).

Simpson and Spector (1984) show that with vν(t) = t/Rν(t), vν(t)2 −(2ν+1)vν(t)−
(t2 + ν + 1/2) > 0 for all ν ≥ 0 and t > 0, which is readily seen to imply vν(t) ≥
ν+1/2+√

t2 + βSS(ν)2 and hence Rν(t) ≤ Gν+1/2,βSS(ν)(t), which is clearly smaller
than Gν+1/2,ν+1/2(t) for all t > 0.

Altogether, we thus have that for ν ≥ 0 and t ≥ 0,

Gν+1/2,ν+3/2(t) ≤ Rν(t) ≤ min
(
Gν,ν+2(t), Gν+1/2,βSS(ν)(t)

)
. (3)

What makes these Amos-type bounds particularly attractive is that they can be
inverted explicitly, as shown in the following lemma.

Lemma 1 Let α ≥ 0 and α + β > 0. Then Gα,β is strictly increasing on [0,∞), and
for all 0 ≤ ρ < 1 the equation Gα,β(t) = ρ has a unique solution t = G−1

α,β(ρ) given
by

G−1
α,β(ρ) = ρ

1 − ρ2

(
α +

√
ρ2α2 + (1 − ρ2)β2

)
. (4)

Proof The derivative of Gα,β is given by

G ′
α,β(t) = 1

α + √
t2 + β2

− t

(α + √
t2 + β2)2

2t

2
√

t2 + β2

= α
√

t2 + β2 + β2

(α + √
t2 + β2)2

√
t2 + β2

,

where the numerator has value β(α + β) at t = 0 and hence is positive for all t > 0
if and only if α ≥ 0 and α + β > 0 in which case Gα,β is strictly increasing, and
as Gα,β(0) = 0 and limt→∞ Gα,β(t) = 1 the equation Gα,β(t) = ρ has a unique
solution for 0 ≤ ρ < 1. Now Gα,β(t) = ρ iff t = ρ(α + √

t2 + β2), giving t as the
larger root of the quadratic equation (1 − ρ2)t2 − 2ραt + ρ2(α2 − β2) = 0, so that

G−1
α,β(ρ) = 1

2(1 − ρ2)

(
2ρα +

√
4ρ2α2 − 4(1 − ρ2)ρ2(α2 − β2)

)

= ρ

1 − ρ2

(
α +

√
ρ2α2 + (1 − ρ2)β2

)

(the smaller root does not converge to ∞ as ρ → 1−).

Theorem 1 Let ν ≥ 0 and 0 ≤ ρ < 1. Then

max
(

G−1
ν,ν+2(ρ), G−1

ν+1/2,βSS(ν)(ρ)
)

≤ R−1
ν (ρ) ≤ G−1

ν+1/2,ν+3/2(ρ). (5)
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On maximum likelihood estimation of von Mises–Fisher distributions 949

Proof This follows immediately from combining the previous lemma with Eq. 3.

The above result substantially improves the results of Tanabe et al. (2007). Using
Eq. 4, G−1

α,α(ρ) = 2αρ/(1 − ρ2), so that the lower and upper bound in Eq. 2 equal

G−1
ν,ν(ρ) and G−1

ν+1,ν+1(ρ), respectively, and hence correspond to Gν+1,ν+1(t) ≤
Rν(t) ≤ Gν,ν(t), which was already shown to be strictly weaker than the bounds in
Eq. 3. We also see that the “mid-point approximation” R−1

ν (ρ) ≈ (2ν + 1)ρ/(1 −ρ2)

equals G−1
ν+1/2,ν+1/2(ρ), which for positive ρ is strictly smaller than G−1

ν+1/2,βSS(ν)(ρ),

and hence strictly under-estimates R−1
ν (ρ).

Let

g(ν) = (ν + 3/2)

2ν + 1
.

Then g is monotonically decreasing on [0,∞) with g(0) = 3/2 and limν→∞ g(ν) =
1/2.

Theorem 2 Let ν ≥ 0 and 0 ≤ ρ < 1. Then

0 ≤ G−1
ν+1/2,ν+3/2(ρ) − G−1

ν+1/2,βSS(ν)(ρ) ≤ ρg(ν)

and for βSS(ν) ≤ β ≤ ν + 3/2,

∣∣R−1
ν (ρ) − G−1

ν+1/2,β(ρ)
∣∣ ≤ ρg(ν).

Proof Using the mean value theorem, for u1 ≥ u0 > 0 and α ≥ 0 with a suitable
ũ ∈ (u0, u1),

0 ≤ √
α + u

∣∣u=u1

u=u0
= u1 − u0

2
√

α + ũ
≤ u1 − u0

2
√

α + u0

and hence

0 ≤ G−1
ν+1/2,ν+3/2(ρ) − G−1

ν+1/2,βSS(ν)(ρ)

= ρ

1 − ρ2

√
(ν + 1/2)2ρ2 + β2(1 − ρ2)

∣∣∣∣
β=ν+3/2

β=βSS(ν)

≤ ρ

1 − ρ2

(1 − ρ2)((ν + 3/2)2 − (ν + 1/2)(ν + 3/2))

2
√

(ν + 1/2)2ρ2 + β̃2(1 − ρ2)

≤ ρ(ν + 3/2)

2(ν + 1/2)
.

For βSS(ν) ≤ β ≤ ν + 3/2, both R−1
ν and G−1

ν+1/2,β are bounded below by

G−1
ν+1/2,βSS(ν) and above by G−1

ν+1/2,ν+3/2, implying that |R−1
ν − G−1

ν+1/2,β | ≤
G−1

ν+1/2,ν+3/2 − G−1
ν+1/2,βSS(ν), whence the result from the bounds on this difference.
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950 K. Hornik, B. Grün

Corollary 1 Let ν ≥ 0 and 0 ≤ ρ < 1. Then

0 ≤ R−1
ν (ρ) − max

(
G−1

ν,ν+2(ρ), G−1
ν+1/2,βSS(ν)(ρ)

)
≤ ρg(ν).

Proof Immediate from Theorems 1 and 2.

Theorem 3 Let ν ≥ 0 and 0 ≤ ρ < 1. Then

max
(

G−1
ν,ν+2(ρ), G−1

ν+1/2,βSS(ν)(ρ)
)

≤ Qν(ρ) ≤ G−1
ν+1/2,ν+3/2(ρ).

Proof For βα(ρ) = √
(α + 1)2 − ρ2,

α2ρ2 + βα(ρ)2(1 − ρ2) = α2ρ2 + ((α + 1)2 − ρ2)(1 − ρ2) = (α + 1 − ρ2)2.

Hence, α + √
α2ρ2 + βα(ρ)2(1 − ρ2) = 2α + 1 − ρ2 so that in particular,

Qν(ρ) = G−1
ν+1/2,βν+1/2(ρ)(ρ).

As clearly βSS(ν) ≤ βν+1/2(ρ) ≤ ν + 3/2 for all 0 ≤ ρ ≤ 1, we thus obtain
G−1

ν+1/2,βSS(ν)(ρ) ≤ G−1
ν+1/2,βν+1/2(ρ)(ρ) = Qν(ρ) ≤ G−1

ν+1/2,ν+3/2(ρ).

Writing 	(σ) = σ + √
(ν + 2)2 − 4(ν + 1)σ − (ν + 2) we have G−1

ν,ν+2(ρ) −
Qν(ρ) = 	(ρ2)ρ/(1 − ρ2). As 	′(σ ) = 1 − 2(ν + 1)/

√
(ν + 2)2 − 4(ν + 1)σ and

	′′(σ ) = −4(ν +1)2((ν +2)2 −4(ν +1)σ )−3/2, 	 is strictly concave with its unique
maximum at the solution σ ∗ of 	′(σ ) = 0, or equivalently (ν + 2)2 − 4(ν + 1)σ =
4(ν + 1)2, from which

σ ∗ = (ν + 2)2 − 4(ν + 1)2

4(ν + 1)
= −3ν2 − 4ν

4(ν + 1)
,

which is non-positive for ν ≥ 0. Thus, 	 is decreasing on [0, 1]. As 	(0) = 0, we
obtain that for 0 < ρ < 1, 	(ρ2) < 0 and hence G−1

ν,ν+2(ρ) < Qν(ρ).

Corollary 2 Let ν ≥ 0 and 0 ≤ ρ < 1. Then

∣∣∣R−1
ν (ρ) − Qν(ρ)

∣∣∣ ≤ ρg(ν).

Proof Straightforward from combining Theorems 1, 2 and 3.

We thus see that the Dhillon–Sra approximation is not invalidated by the available
inverse Amos-type bounds (in the sense of being outside the range provided by these
bounds), and has the same maximal approximation error as these bounds (indicating
that it is indeed a good approximation).
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On maximum likelihood estimation of von Mises–Fisher distributions 951

Theorem 4 Let ν ≥ 0. Then as ρ → 1−,

R−1
ν (ρ) − G−1

ν+1/2,βSS(ν)(ρ) = O(ρ − 1)

and

R−1
ν (ρ) − Qν(ρ) = −1

2
+ O(ρ − 1).

Proof Using the asymptotic expansion of Iν for large argument (e.g.,Watson 1995,
Formula 7.23.2), one can show that for arbitrary ν,

Rν(t) = 1 − ν + 1/2

t
+ ν2 − 1/4

2t2 + O(1/t3), t → ∞, (6)

see also Schou (1978, Eq. 6, assuming ν ≥ 0). Thus, we have R−1
ν (ρ) = ω−1/(ρ−1)+

ω0+O(ρ−1) as ρ → 1− with ω−1 �= 0, and the coefficients of this approximation can
be determined by rewriting ρ = Rν(t) ≈ 1+α1/t +α2/t2 as (ρ−1)t2 −α1t −α2 ≈ 0
to obtain

t = R−1
ν (ρ) ≈

α1 +
√

α2
1 + 4α2(ρ − 1)

2(ρ − 1)
= α1

ρ − 1
+ α2

α1
+ O(ρ − 1),

giving (with α1 = −(ν + 1/2) and α2 = (ν − 1/2)(ν + 1/2)/2)

R−1
ν (ρ) = −ν + 1/2

ρ − 1
− ν − 1/2

2
+ O(ρ − 1), ρ → 1−.

For ρ → 1−,

ρ

1 − ρ2 = − (ρ − 1) + 1

(ρ − 1)(2 + (ρ − 1))

= −1

2

(
1

ρ − 1
+ 1

) (
1 − ρ − 1

2
+ (ρ − 1)2

4
+ O((ρ − 1)3)

)

= −1

2

(
1

ρ − 1
+ 1

2
− ρ − 1

4
+ O((ρ − 1)2)

)
.

Hence, if f (ρ) = δ0 + δ1(ρ − 1) + O((ρ − 1)2) as ρ → 1,

ρ

1 − ρ2 f (ρ) = −δ0

2

1

ρ − 1
− δ0 + 2δ1

4
+ O(ρ − 1)
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952 K. Hornik, B. Grün

as ρ → 1−. In particular, as for α > 0

√
ρ2α2 + (1 − ρ2)β2 =

√
α2 + (β2 − α2)(1 − ρ2)

= α

(
1 + β2 − α2

2α2 (1 − ρ2) + O((ρ − 1)2)

)

= α − β2 − α2

α
(ρ − 1) + O((ρ − 1)2)

as ρ → 1,

G−1
α,β(ρ) = ρ

1 − ρ2

(
2α − β2 − α2

α
(ρ − 1) + O((ρ − 1)2)

)

= − α

ρ − 1
− 1

4

(
2α − 2

β2 − α2

2α

)
+ O(ρ − 1)

= − α

ρ − 1
− α + β2

2α
+ O(ρ − 1), ρ → 1−.

For α = ν + 1/2 and β = βSS(ν) we have −α + β2/(2α) = −ν/2 + 1/4 so that

G−1
ν+1/2,βSS(ν)(ρ) = −ν + 1/2

ρ − 1
− ν − 1/2

2
+ O(ρ − 1)

and hence R−1
ν (ρ) − G−1

ν+1/2,βSS(ν)(ρ) = O(ρ − 1) as ρ → 1−.

As 2(ν + 1) − ρ2 = (2ν + 1) − 2(ρ − 1) − (ρ − 1)2,

Qν(ρ) = −ν + 1/2

ρ − 1
− 2ν − 3

4
+ O(ρ − 1), ρ → 1−.

As

−ν − 1/2

2
−

(
−2ν − 3

4

)
= −1

2
,

we thus have R−1
ν (ρ) − Qν(ρ) = −1/2 + O(ρ − 1) as ρ → 1−, and the proof is

complete.

3 Nåsell bounds

Nåsell (1978) gives families Lν,k,m and Uν,k,m of rational lower and upper bounds
for Rν , which converge to Rν as m → ∞ or k → ∞ (Nåsell 1978, Theorems 2 and
3). These bounds can be used for obtaining bounds for R−1

ν by applying numerical
root finding techniques either directly to equations of the form P(t)/Q(t) = ρ with
polynomials P and Q, or by rewriting the equations of this form as R(t) = P(t) −

123



On maximum likelihood estimation of von Mises–Fisher distributions 953

ρQ(t) = 0 and then determining a suitable root of the polynomial R. “Simple” closed
form expressions can be obtained when root finding amounts to solving a quadratic
equation.

As Rν(t) tends to 0 and 1 for t → 0 and ∞, respectively, we thus restrict ourselves
to Nåsell bounds exhibiting the same limits, and having numerator and denominator
degrees at most 2. This leaves (Nåsell 1978, Appendix) the lower bounds Lν,1,0 <

Lν,2,0 and the upper bounds Uν,1,1 and Uν,3,0 < Uν,2,0, where the inequalities again
follow from Theorems 2 and 3 in the reference. Neither of Uν,1,1 and Uν,3,0 dominates
the other, as they have different orders of approximation at 0 and ∞. In fact, writing

Uν,1,1(t) = t
Pν,1,1(t)

Qν,1,1(t)
= t

2(ν + 2) + t

4(ν + 1)(ν + 2) + 2(ν + 1)t + t2

and

Uν,3,0(t) = t
Pν,3,0(t)

Qν,3,0(t)
= t

1
2 (ν + 1/2) + t

(ν + 1/2)(ν + 1) + 3
2 (ν + 1/2)t + t2

,

it is readily verified that

Uν,1,1(t) − Uν,3,0(t) = (ν + 5/2)t2(t − (ν + 2))

Qν,1,1(t)Qν,3,0(t)
.

This implies that with tν = ν+2, Uν,1,1(t) < Uν,3,0(t) for 0 < t < tν , and Uν,1,1(t) >

Uν,3,0(t) for t > tν .
The best lower bound Lν,2,0 which only involves solving a quadratic equation is

given by

Lν,2,0 = t
(ν + 3/2) + t

2(ν + 1)(ν + 3/2) + 2(ν + 1)t + t2 .

Theorem 5 Let ν ≥ 0. Then for all t > 0,

Lν,2,0(t) < Gν+1/2,ν+3/2(t)

and

min
(
Gν,ν+2(t), Gν+1/2,βSS(ν)(t)

)
< min

(
Uν,1,1(t), Uν,3,0(t)

)
.

Proof All Nåsell bounds under consideration are of the form

t
P(t)

Q(t)
, P(t) = t + γ, Q(t) = t2 + δ1t + δ0

with non-negative coefficients γ , δ1 and δ0. All Amos-type bounds Gα,β under con-
sideration have α ≤ β.
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954 K. Hornik, B. Grün

To show that the Amos-type bounds dominate these Nåsell bounds we have to
investigate when

P(t)

Q(t)
− 1

α + √
t2 + β2

has no zeros on (0,∞), or equivalently, when

	(t) = (Q(t) − αP(t))2 −
(

t2 + β2
)

P(t)2

has no zeros on (0,∞). Note that

	(t) =
(

Q(t) −
(

α +
√

t2 + β2

)
P(t)

)(
Q(t) −

(
α −

√
t2 + β2

)
P(t)

)
,

where the second term is always positive for t > 0 and α ≤ β. Hence, 	(t) > 0
for all t > 0 is equivalent to Q(t) − (α + √

t2 + β2)P(t) > 0, or P(t)/Q(t) <

1/(α + √
t2 + β2) for all t > 0; 	(t) < 0 for all t > 0 is equivalent to P(t)/Q(t) >

1/(α + √
t2 + β2) for all t > 0.

Writing

Q(t) − αP(t) = t2 + (δ1 − α)t + (δ0 − αγ ) = t2 + ω1t + ω0,

we obtain

	(t) = (t2 + ω1t + ω0)
2 − (t2 + β2)(t + γ )2

= 2(ω1 − γ )t3 + (ω2
1 + 2ω0 − β2 − γ 2)t2+2(ω1ω0−β2γ )t + (ω2

0 − β2γ 2).

Comparing Lν,2,0 to Gν+1/2,ν+3/2, we haveγ = ν+3/2, δ0 = 2(ν+1)(ν+3/2) and
δ1 = 2(ν+1), from which ω0 = δ0 −αγ = 2(ν+1)(ν+3/2)−(ν+1/2)(ν+3/2) =
(ν + 3/2)2 = β2 and ω1 = δ1 − α = ν + 3/2 = β, giving

2(ω1 − γ ) = 0,

ω2
1 + 2ω0 − β2 − γ 2 = β2,

2(ω1ω0 − β2γ ) = 0,

ω2
0 − β2γ 2 = 0

so that 	(t) = β2t2 > 0 for all t > 0. Hence, we have Lν,1,0(t) < Lν,2,0(t) <

Gν+1/2,ν+3/2(t) for all t > 0.
Comparing Uν,1,1 to Gν,ν+2, we have γ = 2(ν + 2) = 2β, δ0 = 4(ν + 1)(ν + 2)

and δ1 = 2(ν + 1), from which ω0 = δ0 − αγ = 4(ν + 1)(ν + 2) − 2ν(ν + 2) =
2(ν + 2)2 = 2β2 and ω1 = δ1 − α = 2(ν + 1) − ν = ν + 2 = β, giving
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On maximum likelihood estimation of von Mises–Fisher distributions 955

2(ω1 − γ ) = −2β,

ω2
1 + 2ω0 − β2 − γ 2 = 0,

2(ω1ω0 − β2γ ) = 0,

ω2
0 − β2γ 2 = 0,

so that 	(t) = −2βt3 < 0 for all t > 0. Hence, Gν,ν+2(t) < Uν,1,1(t) for all t > 0.
Finally, comparing Uν,3,0 to Gν+1/2,βSS(ν), we have γ = 1

2 (ν + 1/2) = α/2,
δ0 = (ν + 1/2)(ν + 1) = α(α + 1/2). δ1 = 3

2 (ν + 1/2) = 3α/2, from which
ω0 = δ0 − αγ = α(α + 1/2) − α2/2 = α(α + 1)/2 = β2/2 and ω1 = δ1 − α =
3α/2 − α = α/2, giving

2(ω1 − γ ) = 0,

ω2
1 + 2ω0 − β2 − γ 2 = 0,

2(ω1ω0 − β2γ ) = −αβ2/2,

ω2
0 − β2γ 2 = β2(β2 − α2)/4,

so that with β2 − α2 = (ν + 1/2)(ν + 3/2) − (ν + 1/2)2 = ν + 1/2 = α we get

	(t) = −αβ2

2
t + β2α

4
= β2α

4
(1 − 2t),

which is negative for t > 1/2, so that Gν+1/2,βSS(ν)(t) < Uν,3,0(t) for all t > 1/2.
As Uν,1,1(t) < Uν,3,0(t) for 0 < t < tν = ν + 2, we infer that

min
(
Gν,ν+2(t), Gν+1/2,βSS(ν)(t)

)
< min

(
Uν,1,1(t), Uν,3,0(t)

)

for all t > 0, and the proof is complete.

As the Nåsell bounds considered in the previous theorem are dominated by the
Amos-type bounds used for Rν , the same must be true for the respective inverses.

Corollary 3 Let ν ≥ 0 and 0 ≤ ρ < 1. Then

R−1
ν (ρ) ≤ G−1

ν+1/2,ν+3/2(ρ) < L−1
ν,2,0(ρ)

and

max
(

U−1
ν,1,1(ρ), U−1

ν,3,0(ρ)
)

≤ max
(

G−1
ν,ν+2(ρ), G−1

ν+1/2,βSS(ν)(ρ)
)

≤ R−1
ν (ρ).

Proof Straightforward from the previous theorem and Theorem 1.
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Table 1 Number of iterations
required by uniroot() (top)
and by the Newton-Fourier
algorithm (bottom) using the
Tanabe et al. (2007) bounds
(T07) and the newly established
bounds (New) for initialization

T07 New

0 1 2 3 4 5

1 4 3 0 0 0 0

2 2 22 32 2 0 0

3 0 5 46 36 3 0

4 0 0 5 14 9 0

5 0 0 4 3 1 1

T07 New

1 2

1 87 0

2 52 45

3 0 8

4 Numerical comparisons

In the following we compare the number of iterations required to reach convergence
by two different algorithms based on nested intervals for finding roots using (1) the
Tanabe et al. (2007) and (2) the newly established bounds for initialization. The two
algorithms used are (a) a one-dimensional root finding algorithm as implemented in
function uniroot() available in R (R Core Team 2013) and (b) the variant of the
Newton-Fourier method for the case of strictly increasing concave functions (see e.g.,
Atkinson 1989, pp. 62–64). Concavity of Rν can be established by using that Rν is
the pointwise minimum of a set of Amos-type functions (see Hornik and Grün 2013,
Theorem 11). It is straightforward to show that the second derivative of these Amos-
type functions is non-positive and hence Rν is concave, because it is the pointwise
minimum of concave functions.

The numbers of iterations required are determined for a range of different d and κ

values which are selected similar to those used in Sra (2012), i.e., κ = 100, 500, 1,000,
5,000, 10,000, 20,000, 50,000, 10,000 and d = 500, 1,000, 5,000, 10,000, 20,000,
10,000. Each value of d is combined with each value of κ and they are used to deter-
mine the corresponding ρ. For the given d and implied ρ the root finding algorithms
are employed to determine κ again. For uniroot() convergence is assessed using
argument tol and the Newton-Fourier algorithm is stopped if the relative distance of
the midpoint to the endpoints of the interval is smaller than tol. This pre-specified
precision value tol is varied and set to values 10e for exponents e ∈ {−6, −8, −10,
−12}.

The results are given in Table 1. For the Newton-Fourier algorithm the newly
established bounds always require the same or a smaller number of iterations. In 31 %
of the cases one iteration less is required, reducing the number of iterations required
by 60 or 20 %. When using uniroot(), there is an improvement achievement in
55 % of the cases, the same number of iterations are required in 42 % of the cases and
only in 3 % of the cases a deterioration occurs and one iteration more is required when
using the newly established bounds for initialization.
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Overall it has to be noted that the number of iterations is rather small to reach
convergence when either of the two sets of intervals is used for initialization. However,
the general tendency to require even less iterations of the newly established bounds
will nevertheless be of interest from a computational point of view if these roots are
solved repeatedly, which is required when for example the expectation-maximization
algorithm is used to estimate mixtures of von Mises–Fisher distributions (Banerjee
et al. 2005).
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