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Abstract. This paper proposes a hardware/software (HW/SW) co-design methodology
for secure Public-Key Cryptosystems. Our design flow allows to assess the risk for simple
side-channel attacks including Timing Analysis (TA) and Simple Power Analysis (SPA)
at an early design stage. It also allows to evaluate the quality of countermeasures against
these attacks. The HW/SW co-design is illustrated with an Elliptic Curve Cryptosystem
(ECC) over GF(p). By balancing the execution time in SW and HW, a first order side-
channel-resistant design can be obtained with a 15% increase in latency for a point
multiplication.
Keywords: HW/SW co-design, TA-attacks, SPA-attacks, ECC implementation

1 Introduction

The implementation of Public-Key Cryptography (PKC) is a challenge in embedded systems
such as smartcards, RF-ID tags, and mobile phones. They have limited silicon resources and a
limited power budget. For this reason, the short key-lengths of ECC (proposed by Koblitz [1]
and Miller [2]) are often preferred over the more traditional RSA-based systems. From a Side-
Channel Attack (SCA) point of view, both ECC and RSA need to be resistant to protect private
information (e.g. a secret key in a memory).

HW/SW co-designs are attractive especially for PKCs because they can take advantage of
the flexibility of SW and at the same time use the performance offered by HW. In this paper,
we are concerned with a code-design flow that will take SCA into account in the HW/SW
partitioning and the design of the interface.

1.1 Side-Channel Attacks

Several types of SCAs have been introduced. Anderson and Kuhn summarized a number of
attacks [3]. Among the SCAs, the most straightforward attack is a physical attack directly to
the silicon. This is a powerful method if a probing point is available. For instance, it is easy
to retrieve secret information by probing the data on a bus. The fault induction attack [4] is a
well-known technique that works by disturbing the device to induce errors in the computation.
These attacks are named active attacks after the technique.

Possibly more dangerous type of attack, undetectable for the embedded system, is the passive
attack. This type is based on measuring physical characteristics leaking from side-channels of the
embedded systems. Timing Analysis (TA) attacks check the computation time. If the execution
time varies with the data or the key used in the computations, this can be detected by the
attacker [5]. Simple Power Analysis (SPA) attacks measure the power consumption during
cryptographic operations and guess the actual types of computations. In [6], Kocher, Jaffe, and
Jun introduced differential power analysis (DPA) that also considers effects correlated to data
values. Electromagnetic analysis (EMA) attacks [7] [8] and Acoustic analysis (AA) attacks were
also introduced as effective passive SCA examples [9].
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Fig. 1. Security pyramid : possible SCAs and required functions for each abstraction level of ECC over
GF(p).

1.2 Our design approach

Fig.1 shows how SCA and HW/SW co-design are related, illustrated for the case of PKCs. A
PKC is decomposed into multiple layers of operation (point multiplication, addition/doubling,
GF(p) operations) which each map into HW or SW. Possible SCAs are shown on the left side
of the pyramid. Starting from mathematical attacks, each abstraction level can potentially be
attacked corresponding to its functionality. Especially, the HW/SW boundary can be a serious
threat to ECC since the boundary is easy to identify, and an obvious interface point in the
system.

The HW/SW boundary situates at the cycle-true, Register Transfer (RT) level of design. At
that level, simple SCAs can be detected and countermeasures can be implemented. Of course,
once a design is made resistant to the simple SCAs, the differential ones and higher order ones
need to be addressed. This requires however solutions at a lower level of abstractions, e.g. at
the gate or transistor level [10].

1.3 Paper Overview

The remainder of this paper is as follows. Section 2 explains the co-design flow proposed in
the paper. Section 3 presents system overview for ECC over GF(p). The HW co-processor has
a Modular Arithmetic Logic Unit (MALU) used for accelerating operations in the finite field
GF(p). The SW relies on a co-processor attached to the 8051. Section 4 shows a case study of
simple SCA and the corresponding defense against it on an 160-bit ECC over GF(p) (ECC-160p)
and Section 5 concludes the paper.



2 A Secure Co-Design Flow

In this section, we look at a HW/SW co-design approach for system design with consistent
resistance against SCAs. In designs that include both SW and HW components, the natural
fit is for SW to support flexibility and for HW to support performance and energy/efficiency.
Frequently, flexibility and performance constraints are in competition, leaving the designer to
decide on an optimal partitioning between HW and SW. Under consideration of SCAs, also the
risk of attack needs to be included besides flexibility and performance constraints. The time-
multiplexed nature of SW makes it more susceptible to TA attacks or SPA attacks (here we call
it simple SCAs). HW on the other hand can easily be made to perform with constant-timing
behavior and thus will show better resistance against simple SCAs. In our design flow, we make
use of this knowledge to decide on a proper boundary between HW and SW.

2.1 The Co-simulation Tool

We use a co-simulation environment, called GEZEL [11], that allows us to estimate immediate
dynamic power consumption. We use toggle count per clock cycle (TCPC) as an approximation
for this power. The toggle count is obtained directly out of the RT-level model and does not
require synthesis of the model. Despite this approximation, our experiments have shown that it
is sufficient to build cryptosystems that are safe to simple SCAs. As mentioned before, higher
order attacks need to be addressed at lower levels of abstraction. The co-design approach gives
the designer an environment to get a quick and correct evaluation of first order attacks.

Cryptographical algorithms, including public-key ciphers, are typically first developed as
C/C++ programs. The first step is to partition these C/C++ programs into a HW part,
described as RT-level, and a SW part. The partitioning is based on SW performance analysis
on the one hand, and on insight into the cryptographical algorithm on the other. The PKC
illustrated in Fig.1 for example is layered in logical abstraction levels that each fit nicely into
either HW or SW. The GEZEL design environment allows us to try out different alternatives,
and to co-simulate for each partition the HW and the SW as a cycle-true model. An instruction-
set simulator (ISS) is used to obtain cycle-accurate SW performance with accurate modeling
of the HW/SW interface. At this level, we also obtain toggle counts of the HW model as a
function of clock cycle. These toggle counts allow us to analyze the risk for simple SCAs and,
if detected, to rewrite the SW and/or the HW. After cycle-accurate co-simulation, the HW
model is converted into VHDL, and synthesized by a secure back-end. In the next subsection,
we briefly discuss the mechanism for toggle counting at the RT-level.

2.2 RT-level toggle counting

The HW descriptions in GEZEL are expressions of cycle-true register transfers, containing
operations and assignments on signals and registers. We obtain toggle count estimates directly
on these expressions, by means of a simple set of rules:

– The TCPC for a register or a signal is the Hamming distance between the value during the
previous clock cycle and the value during the current clock cycle. In the case of a register,
this toggle count is measured at the register input.

– The TCPC of a simple operation is given by the Hamming distance of the previous operation
result and the current result. The toggle count is measured at the operation output. Simple
operations includes additions, subtractions, shifts, multiplications, and so on.

– The TCPC of an expression composed of simple operations is given by the sum of TCPC
of individual operations.



For example, assume an RT-level expression as follows:

signal a;
register b;
a = 3;
b = b + a;

This piece of code contains three operations: two assignments and an addition. In the first
clock cycle, signal a changes from 0 to 3. The addition operation output will be 3 as well,
and this value will be assigned to register b. The total toggle count for the first clock cycle
thus equals 6. In the second clock cycle, signal a does not change value. The output of the
addition operator will now change from 3 to 6 however (Hamming distance ’110’ - ’011’ = 2),
and register b will change from 3 to 6 as well. The toggle count for the second clock cycle thus
equals 4. We can continue in this way to obtain an approximation of the immediate dynamic
power consumption. This methodology is very simple, and for example does not take glitching
nor the implementation complexity of operators into account. For the purpose of simple SCAs
on the other hand, it is adequate.

3 System architecture for ECC operations over GF(p)

First, the introduced MALU and the implemented software of ECC over GF(p) is shortly given.
Second, potential vulnerability in the ECC algorithm is explained. Third, possible countermea-
sures for simple SCAs are introduced.

3.1 Modular Arithmetic Logic Unit (MALU)

The proposed MALU is a Carry-Save Adder (CSA) based Montgomery modular multiplier.
It is composed of regularly allocated cells as illustrated in Fig.2. The 5-3 CSAs are used to
sum up five-bit inputs that are xy, mn, s, c0, and c1 and outputs three bits for the redundant
CS-form that has a value of 2(c0next + c1next) + snext where s and c0/1 are the virtual sum
and carries respectively. The bit multiplication xy and mn are main inputs for computing bit
level of Montgomery multiplication, i.e. (xy + mn)/2 [14]. The behavior of the cell(i,j) is
explained by the following equation where d is the number of CSAs concatenated in i direction.

2d+1c1i+1,j+1 + 2dc0i+1,j + si,j−1 = xiyj + minj + c0i,j + c1i,j + si,j

mi[0] = c1i,j ⊕ c0i,j ⊕ xi[0]yj ⊕ nj

mi[l] = c1next ⊕ c0next ⊕ si,j [l]⊕ xi[l]yj ⊕ nj

(1)

Input/output vectors for such bit-level variables are described as X, Y, N, S, C0, and C1,
where X and Y are the multiplicands, N is the modulus, and S, C0, and C1 are intermediate
variables representing a redundant CS-form. The MALU has two independent stages. One is the
Carry-Save(CS)-stage that operates Montgomery algorithm in a redundant CS-form. Another
stage converts the CS-form integer into a normal integer by propagating carries, namely the
Carry-Propagate(CP)-stage. The combination of the MALUN and CPN allows all basic modular
computation necessary for Elliptic Curve (EC) point multiplication over GF(p) as shown in
Eq.2. This unit will be implemented in a HW co-processor and separate care needs to be taken
that it has a constant execution time.

MALUN (XR, Y R, SR) =(XY + S)R mod N

CPN (AR, BR) =(A + B)R mod N
(2)
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Fig. 2. Schematic of the MALU in the co-processor.

3.2 Point Addition/Doubling

Point addition and doubling can be performed according to the algorithm given in [12]. Here we
assume that the two points that will be added, i.e. P = (X1, Y1, Z1) and Q = (X2, Y2, Z2) are
already transformed to the weighted projective coordinates (Jacobian representation) and Mont-
gomery representation, where (X,Y, Z) corresponds to the affine coordinates (X/Z2, Y/Z3). The
result point is stored as Q, i.e. Q ⇐ P + Q.

We now create a schedule for point addition using a single MALU. The following schedul-
ing as shown in Table 1 can be used. Point doubling is considered as a special case of point
addition, i.e. Q ⇐ 2Q = Q + Q. In Table 2 a possible schedule for point doubling is given. For
efficient computing of point addition and doubling, four additional registers storing intermediate
variables are provided. These are stored in the co-processor RAM.

Table 1. Scheduling of point addition.

POINT ADDITION COST

t1 = MALUN (Z1, Z1, 0) 1M
t2 = MALUN (X2, t1, 0) 1M
t3 = MALUN (Z2, Z2, 0) 1M
t4 = MALUN (X1, t3, t2) 1M
t2 = CPN (2N + 1, t̄2, 0) 1A
t2 = MALUN (X1, t3, t2) 1M
t1 = MALUN (t1, Z1, 0) 1M
t1 = MALUN (t1, Y2, 0) 1M
Y2 = MALUN (t3, Z2, 0) 1M
t3 = MALUN (Y2, Y1, t1) 1M
t1 = CPN (2N + 1, t̄1, 0) 1A
Y2 = MALUN (Y2, Y1, t1) 1M
t1 = MALUN (t2, t2, 0) 1M
t1 = MALUN (t4, t1, 0) 1M
t4 = CPN (2N + 1, t̄1, 0) 1A

X2 = MALUN (Y2, Y2, t4) 1M
t4 = MALUN (2, X2, 0) 1M
t4 = CPN (2N + 1, t̄4, 0) 1A
t4 = MALUN (1, t1, t4) 1M
t1 = MALUN (t2, t2, 0) 1M
t1 = MALUN (t1, t2, 0) 1M
t1 = MALUN (t3, t1, 0) 1M
t1 = CPN (2N + 1, t̄1, 0) 1A
Y2 = MALUN (t4/2, Y2, t1/2) 1M
t1 = MALUN (Z1, Z2, 0) 1M

Z2 = MALUN (t2, t1, 0) 1M
TOTAL 21M + 5A

Table 2. Scheduling of point doubling.

POINT DOUBLING COST

t1 = MALUN (X2, X2, 0) 1M
t1 = MALUN (2X2, X2, t1) 1M
t2 = MALUN (Z2, Z2, 0) 1M
t2 = MALUN (t2, t2, 0) 1M
t2 = MALUN (a, t2, 0) 1M
t1 = MALUN (1, t1, t2) 1M
t2 = MALUN (2Y2, Y2, 0) 1M
t3 = MALUN (2t2, t2, 0) 1M
t2 = MALUN (2X2, t2, 0) 1M
t4 = MALUN (2, t2, 0) 1M
t4 = CPN (2N + 1, t̄4, 0) 1A

X2 = MALUN (t1, t1, t4) 1M
t4 = MALUN (1, X2, 0) 1M
t4 = CPN (2N + 1, t̄4, 0) 1A
t2 = MALUN (1, t2, t4) 1M

Z2 = MALUN (2Z2, Y2, 0) 1M
t3 = CPN (2N + 1, t̄3, 0) 1A
Y2 = MALUN (t1, t2, t3) 1M

TOTAL 15M + 3A



3.3 Point Multiplication

Point multiplication can be implemented as a repeated combination of point addition and point
doubling. We used the simplest algorithm, binary method. It is well-known that binary method
is vulnerable for SCAs because of a different computation time in the for-loop. One of the
countermeasures is add-and-always-double method proposed by Coron [13]. The idea is that
SCA resistance is ensured by computing both point addition and point doubling in a for-loop.
This method increases the HW cost and decreases the performance because of the additional
dummy point additions.

Our proposed countermeasure is described as follows. As shown previously, point addition
has more computational steps than point doubling. We create a countermeasure for SCA attacks
by letting them have the same number of steps. To do this, dummy MALUs and CPs are added
to point doubling shown in Table 2. In addition, the co-processor is implemented to have a
constant execution time for each MALU or CP operation. This is the so-called balancing of
point operations. Moreover, imbalance of binary method can be solved by inserting dummy
instructions such that intervals of point operations can be constant and toggle counts can be
the same within the intervals. Namely, this is for balancing of the conditional branches in SW.
It is commonly accepted that increasing the resistance against SCAs is at the cost of system
performance and/or resources. The trade-off among cost, performance, and security can easily
be explored by our proposed HW/SW co-design environment.

4 A case study of simple SCAs and corresponding countermeasure

Here, the result for a case study of ECC-160p implementation is discussed. Three types of met-
rics, cost, performance, and security for ECC-160p are estimated using the proposed design flow
of GEZEL system-level co-simulation. First, HW and SW are implemented based on a strat-
egy to find the best trade-off between performance and cost. The performance/cost-optimized
result tends to be vulnerable to simple SCAs. To confirm the fact, power estimation for point
multiplication is simulated with GEZEL. More precisely, the toggle counts of the co-processor
is collected through the ECC operations and traced in smoothing format (average of 2000 cy-
cles). The result is shown in Fig.3a and Fig.3b. AtoP, PtoA represent coordinate conversion
from/to affine to/from projective. Representation conversions are done with NtoM and MtoN
that means conversion from/to normal form to/from Montgomery form. The trace in Fig.3a
clearly says which type of the ECC operations is executed. The highest risk exists in its enlarged
figure (Fig.3b) for EC point multiplication. Carefully observing the trace, different shapes of
peaks and valleys can be found. As mentioned in Section III, the difference is caused by the
imbalanced SW/HW depending on point operations and conditional branches. Thus, the secret
key is easily cracked (the cracked secret key is written up in Fig.3b).

In the second place, HW and SW are modified based on our proposed simple SCA-resistant
implementation. The result is shown in Fig.3c. From the trace, it is hard to distinguish the point
operation type. One of the side-effects of the countermeasures is a longer execution time because
dummy MALUs and CPs are inserted in point doubling operations. Hence, this resistance comes
at the price of lower performance. The more detail observation is given in the following.

The C/C++ codes are compiled with µVision2 by Keil Software, Inc with a target device
of Intel 8051AH. The co-processor block was synthesized with Project Navigator by Xilinx and
implemented on a Virtex-II PRO (XC2VP30). Two different configurations, performance/area-
oriented design and simple SCA-resistant design are summarized in Table.3. The case of using
non-balanced binary method (no simple SCA-resistance) shows on the left side of the table.
The right side of the table describes the simple SCA-resistant result with the proposed counter-
measure. In the countermeasure implementation, the latency of point multiplication increases



0 20 40 60 80 100

Time for ECC Point Multiplication [msec ]

E
st

im
at

ed
 P

ow
er

 o
f C

o-
pr

oc
es

so
r.

25 27 29 31 33 35

Time for ECC Point Multiplication [msec ]

E
st

im
at

ed
 P

ow
er

 o
f C

o-
pr

oc
es

so
r.

EC Point Multiplication

NtoM & AtoP PtoA & MtoN

(a)

AD

1

(b)

AD D D A D D D D D A D D D D A D A D A D A D

1 1 1 1 1 1 10 0 0 0 0 0 0 0

25 27 29 31 33 35

Time for ECC Point Multiplication [msec ]

E
st

im
at

ed
 P

ow
er

 o
f C

o-
pr

oc
es

so
r.

(c)

Fig. 3. Result of power simulation with GEZEL for ECC-160p. (a): Estimated power consumption for
the whole ECC-160p operation. (b): The enlarged trace of (a). ”D” and ”A” means point doubling and
point addition respectively. The cracked secret key is written below the wave. (c) simple SCA-resistant
result. Point doubling and point addition are indistinguishable.

by 15% and the program size becomes slightly large (1%). However, the size of XRAM and the
co-processor do not change. In this sense, it is said that our proposed countermeasure explores
a trade-off between performance and security.

5 Conclusions

We have presented a secure HW/SW co-design flow for PKCs. By using the design flow, it is
possible to verify the simple SCA-resistance in an early stage of a cryptographic design. ECC-
160p is shown as an example of tamper-proof implementations with the proposed design flow.
The result showed a trade-off among cost, performance and security by the HW/SW co-design
exploration.
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Table 3. Result of point multiplication of ECC-160p for different security configurations on the same
co-processor.

Simple SCA-resistance None Yes

Total Latency[ms] @12MHz operation 91.7 105.6
8051 Resource[Bytes]

XRAM 211 ←
PROM 2,561 2,589

FPGA Mapping of Co-processor
Number of 4-input LUTs 6,666 ←
Number of Slice F/Fs 1,195 ←
Number of Block RAM 6 ←
Critical Path[ns] 18.8 ←
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