
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen
 

 

 

 

The following full text is a preprint version which may differ from the publisher's version.

 

 

For additional information about this publication click this link.

http://repository.ubn.ru.nl/handle/2066/127468

 

 

 

Please be advised that this information was generated on 2018-07-07 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/20488992?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.ubn.ru.nl/handle/2066/127468


Cracking Unix Passwords using FPGA Platforms

Nele Mentens, Lejla Batina, Bart Preneel and Ingrid Verbauwhede

Katholieke Universiteit Leuven, ESAT/SCD-COSIC
Kasteelpark Arenberg 10

B-3001 Leuven-Heverlee, Belgium
{Nele.Mentens,Lejla.Batina,Bart.Preneel,Ingrid Verbauwhede}@esat.kuleuven.ac.be

Abstract. This paper presents a hardware architecture for UNIX pass-
word cracking using Hellman’s time-memory trade-off; it is the first hard-
ware design for a key search machine based on the the rainbow variant
proposed by Oechslin. We estimate that an FPGA implementation of the
function can run at 17.5 million password tests/second on a Virtex-4. Our
design targets passwords of length 48 bits (out of 56). This means that
with 16 FPGAs the precomputation for one salt takes about 11 days,
resulting in a storage of 56 Gigabyte. Recovering an individual password
requires a few minutes.
Keywords: cryptanalysis, hash-functions, time-memory trade-off, ex-
haustive key search, rainbow table, FPGA implementation

1 Introduction

Symmetric-key cryptography deals with algorithms that use only a secret key
to provide confidentiality, identification and data authentication. A fundamental
problem in symmetric-key cryptology is the computation of preimages or inver-
sion of one-way functions. For example, a brute-force attack on a block cipher
in a known plaintext attack considers the mapping of the key to the plaintext,
which should be a one-way function. If no shortcut method is known, and the
function has an n-bit result, there are two straightforward methods: first one
can perform an exhaustive search over on average of 2n−1 values until the target
is reached. A second solution is to precompute and store 2n input and output
pairs in a table (for a random function this will not result in different values –
if the input space is large enough, the coupon collector’s formula tells us that
a space of about n · 2n elements needs to be searched). If one then needs to in-
vert a particular value, one just looks up the preimage in the table, so inverting
requires only a single table lookup.

The time-memory trade-off attack invented by Hellman in 1980 [5] proposes
a solution that lies in between the two solutions. The precomputation time is
still on the order of 2n, but the memory complexity is 22n/3 and the inversion
of a single value requires only 22n/3 function evaluations. In [4] Fiat and Naor
propose a more general and rigorous variant at the cost of extra workload and/or
memory. Kusuda and Matsumoto generalize the Hellman method in [6]; they
derive stricter bounds on the success probability and give relationships between



the memory complexity, processing complexity, and success probability. Note
that for cryptanalyzing stream ciphers more complex time/memory/data trade-
offs are known – see for example Biryukov and Shamir [2].

Hellman’s basic idea was improved in 1982 by Rivest who suggested to use
distinguished points in order to reduce the number of memory accesses. This
idea was elaborated independently by Borst et al. [3] and Stern [11]. The first
FPGA design of this method was proposed by Quisquater et al. [10] for a 40-bit
DES variant; they also presented cost estimations for the cryptanalysis of a full
DES (with 56 bits). A detailed analysis for this platform was given in [12]. A
more generic full-cost analysis of the time-memory trade-off with and without
distinguished points has been provided by Wiener in [13].

At Crypto 2003, Oechslin [8] suggested to use so-called rainbow tables for
precomputations; this method combines the advantage of the distinguished point
approach (reduced number of memory accesses) with the higher success proba-
bility and easier analysis of Hellman’s original method. He has developed further
details in [9].

In this paper we propose an FPGA platform for cryptanalysis of the UNIX
passwords hashing scheme [7]. We use the rainbow table approach and we give
some first estimations and results. This paper is organized as follows. Section 2
provides the theoretical background and some definitions as well as specifics
related to our case. In Sect. 3 the details of the new FPGA implementation
are described together with future improvements. Finally, Sect. 4 concludes the
paper.

2 Theoretical background

In this section we give some definitions that are used in the remainder of the
paper.

2.1 Time-memory trade-off

Let E : {0, 1}n × {0, 1}k −→ {0, 1}n be a block cipher with block length n and
key length k. We will consider an extension of DES with n = 64 and k = 56. The
encryption can be written as: C = EK(P ) where C, K and P are respectively
ciphertext, key and plaintext. For a fixed and known plaintext P , the mapping
EK(P ) is a one-way function from the key to the ciphertext. For a time-memory
trade-off two functions are usually defined. The first one is g : {0, 1}64 −→
{0, 1}56 that maps a ciphertext to a key-length string, so we can write:

g(C) = g(C1, C2, . . . , C64) = (X1, X2, . . . , X56). (1)

This function is usually called a mask function or a reduction function. There
are many possibilities to define this function; one often proposes to drop 8 bits
and to permute the other 56 ones, which results in more than 2280 choices. Other
options that are more suitable for hardware implementations include bit swaps,



xor functions, etc. We discuss these options in Section 3.1 in more detail. Second,
we define a function f : {0, 1}56 −→ {0, 1}56 that maps the key-space to itself:

f(K) = g(EK(P )) = g(C1, C2, . . . , C64) = g(C), ∀K ∈ {0, 1}56. (2)

This construction originates from Hellman [5]; it was generalized by Kusuda
and Matsumoto in [6]. By succession of ciphertexts with keys a chain can be
constructed:

Ki

EKi
(P )−→ Ci

g(Ci)−→ Ki+1,

which can be written as a chain of keys

Ki
g−→ Ki+1

g−→ Ki+2.

In the original algorithm of Hellman m chains of length t are created; one stores
only the first and the last element of each chain in a table. Given a ciphertext
C (with a known plaintext) one can try to find a key that was used to generate
C in the following way. Chains that are stored (up to some fixed length t) are
searched until a key that matches the last key of some chain is found. Using the
first key, the chain can be reconstructed and the right key is the one just before
g(C). The typical parameter sizes for a k-bit key are t = m = 2k/3. If one uses
2k/3 tables, the total precomputation time is 2k evaluations of f and one needs
to store 22k/3 values of 2k bits. Recovering a single key requires 22k/3 evaluations
of f .

The approach of distinguished points avoids that one needs to look up a value
in a table after every function computation, since this would be too expensive.
A distinguished point is a key that has a property that is easy to identify (for
example the 20 most significant bits should be zero); this means that one only
needs to check after each iteration whether or not a value is a distinguished
point or not. One creates chains starting and ending with a distinguished point:
this also allows to reduce the storage per chain and to check for some merged
chains (but throwing away such chains implies that one needs to increase the
precomputation time). However, in the distinguished point variant chains are of
unequal length and will have a larger probability to merge (reducing the success
probability of the attack).

The rainbow table approach proposed by Oechslin [8] uses a different function
g in every iteration, more precisely, rainbow chains have a fixed length t and use
t different mask functions inside one chain: g1, . . . , gt. In order to recover a key
one first starts in the one but last column (1 application of gt); next one starts in
the second but last column and one applies gt−1 and gt. In the final iteration one
applies g1 through gt; the total number of iterations is t(t−1)/2. This also allows
to reduce the memory accesses, but at the same time it reduces the probability
of merging chains; indeed, two chains will only merge if the two merging points
are at the same position in a chain. Because of the reduced merge probability,
rainbow tables can be much larger; typically only a few tables are needed [9].
The method has been implemented in software (a.o. for Windows passwords),
but we are not aware of any hardware implementations. This article explores



some options for hardware implementations of rainbow chains applied to the
UNIX password system.

2.2 UNIX password hashing

Here we consider the application of the time-memory trade-off to the UNIX
password system. In this case, 25 DES operations are performed where the ci-
phertext of one DES is used as the plaintext of the next DES. The plaintext
of the first DES consists of all zeros and the key to all DES functions is the
user password consisting of 8 ASCII characters. The ciphertext of the last DES
block is the hash-value of the password. To increase the security of the UNIX
password system, these 25 DES functions are modified based on a 12-bit salt;
this salt defines an extra permutation in the expansion of the round function.
The salt is a public value that is allocated to the user when she registers to
the system; it is stored together with the hash value. The salt is often derived
from the system clock. The black-box representation of this scheme is shown in
Fig. 1. Assuming password characters consisting of capitals, small letters, and
numbers and two special characters “ \” and “.” every character contains only 6
bits of information which results in a key space of 48 bits. The password salting
results in 212 extra variations, hence the time-memory trade-off precomputation
needs to be repeated for all salts: both the storage and the precomputation time
increase with a factor 4096, but a single password can still be recovered with 232

function evaluations. Of course one can also choose to mount the attack for a
subset of salts.

25DES

plaintext

salt

key ciphertext

Fig. 1. Black-box of one UNIX password hashing.

2.3 Bounds and parameters

We now introduce some notation. Let t be the length of the chains, let m denote
the number of chains in each table and r the number of tables. These parameters
can be varied in order to tune the success rate as the time-memory trade-off is
a probabilistic method. The schematics of one chain and the total structure are
shown in Fig. 2 and Fig. 3. The bounds on the memory M (used to store the



precomputation tables) and the time T (required to find the password starting
from the hash) are as follows:

M = m · r · m0

T = t · r · t0 .

Here, m0 is the amount of memory required to store each chain i.e. its starting
and end point. In our case m0 is 14 bytes. Likewise, t0 is the time in which one
password hash is generated.

g1 g2 gt25DES 25DES 25DES 25DES EPSP

64 zeros

salt

Fig. 2. Schematics of one rainbow chain. The inputs and outputs of one hash function
are depicted in Fig. 1. SP = start point, EP = end point.

3 Hardware implementation options and results

Here we elaborate on the precomputation that has been implemented in hard-
ware. We describe the FPGA design and give performance results.

Mask functions. The first crucial choice is related to the mask functions. The
mask function is actually a reduction function that maps a ciphertext to a key.
There exist various options among which we mention:

– permutations i.e. S-boxes
– xor functions
– bit swaps

As we are interested in hardware implementations it is important to choose
mask functions with a low hardware complexity. From this point of view, all
three suggested options are suitable. However, for rainbow tables a chain contains
many different mask functions which implies that the overhead in control logic
should also be minimized. With respect to this, xor-ing with a register containing
a variable value is the best solution. Moreover, in our case permutations may
not even offer enough choices for different masks.



For our implementation we chose to xor with a 56-bit counter. The last 8 bits
are thrown away before xor-ing. In this way, we can use just one generic mask
function which is varied by different states of the counter resulting in a total of
256 different mask functions.

Generation of start points (SP). This task is implemented in hardware in
order to contribute to a more efficient precomputation. More precisely, loading
start points of chains from outside of the FPGA would create an overhead in
communication time. For this reason, we implemented a counter to generate
the start points. The counter we apply to construct the mask functions can be
re-used for this purpose.

Our FPGA solution. Fig. 4 depicts the architecture of our design. To con-
struct a chain, an alternating sequence of hash algorithms and mask functions
is applied. This is done using a feedback loop.

We synthesized our design for a XC4VLX200 FPGA. The results are sum-
marized and compared with other relevant work in Table 1.

Table 1. Comparison of implementation results for symmetric key cryptanalysis

platform algorithm speed (enc/s)

[1] software 56-bit DES 2 M

[10] Virtex1000 40-bit DES 66 M

[8] software 56-bit DES 0.7 M

this work Virtex-4 25 x 56-bit modified DES 0.7 M

In this table we compared our results with other hardware as well as soft-
ware solutions. The only known hardware solution is [10] which has a better
performance figure due to pipelining and a much shorter algorithm: indeed, they
attacked one 40-bit DES while our target was 25 56-bit DES blocks. The other
are software options dedicated to cracking symmetric-key algorithms.

The next step in the development of this architecture is introducing pipelining
which is expected to speed up the encryption time with a factor 25. Next a buffer
design needs to be developed to take into account the variable output rate of
the rainbow algorithm. After sorting the table entries, the on-line part has to be
performed. It looks up the values output by the FPGA until the targeted key is
found. This part can be done in software or, to make it faster, on an FPGA.

4 Conclusions

In this paper we presented an FPGA architecture for cracking UNIX passwords.
The first indicative performance results are given and compared to other known



work. The next development steps and further improvements are ongoing and
future work. We plan to finalize a complete design by the time of the workshop
(3rd week of February 2005) and hope to demonstrate the results (live?) in Paris.

References

1. E. Biham. A fast new DES implementation in software. In E. Biham, editor,
Proceedings of 4th International Workshop on Fast Software Encryption Workshop
(FSE), number 1267 in Lecture Notes in Computer Science. Springer-Verlag, 1997.

2. A. Biryukov and A. Shamir. Cryptanalytic time/memory/data tradeoffs for stream
ciphers. In Tatsuaki Okamoto, editor, Advances in Cryptology - ASIACRYPT 2000,
volume 1976 of Lecture Notes in Computer Science, pages 1–13. Springer, 2000.

3. J. Borst, B. Preneel, and J. Vandewalle. On the memory trade-off between ex-
haustive key-search and table precomputation. In Proceedings of the 19th Sympo-
sium on Information Theory in the Benelux, pages 111–118. Werkgemeeschap voor
Informatie-en-Communicatietheorie, Enschede, The Netherlands, 1998.

4. A. Fiat and M. Naor. Rigorous time/space tradeoffs for inverting functions. In
Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, pages
534–541, 1991.

5. M. Hellman. A cryptanalytic time-memory trade-off. IEEE Transcactions on
Information Theory, 26:401–406, 1980.

6. K. Kusuda and T. Matsumoto. Optimization of time-memory trade-off cryptanal-
ysis and its application to DES, FEAL-32 and Skip-jack. IEICE Transcations on
Fundamentals of Electronics, Communications and Computer Science, E-79A:35–
48, 1996.

7. A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography.
CRC Press, 1997.

8. P. Oechslin. Making a faster cryptanalytic time-memory trade-off. In D. Boneh, ed-
itor, Advances in Cryptology: Proceedings of CRYPTO’03, number 2729 in Lecture
Notes in Computer Science, pages 617–630. Springer-Verlag, 1986.

9. P. Oechslin. Les compromis temps-mémoire et leur utilisation pour casser les mots
de passe windows. In Symposium sur la Sécurité des Technologies de l’Information
et de la Communication SSTIC, Rennes, June 2004.

10. J.-J. Quisquater, F.-X. Standaert, G. Rouvroy, and J.D. Legat. A cryptanalytic
time-memory trade-off: First FPGA implementation. In Proceedings of the 8th In-
ternational Workshop on Field-Programmable Logic and Applications (FPL), vol-
ume 2438 of Lecture Notes in Computer Science, pages 780–789. Springer-Verlag,
2002.

11. J.-J. Quisquater and J. Stern. Time-memory tradeoff revisited. Unpublished, 1998.
12. F.-X. Standaert, G. Rouvoy, J.-J Quisquater, and J.-D. Legat. A time-memory

trade-off using distinguished points: New analysis and FPGA results. In B. S.
Kaliski Jr., Ç. K. Koç, and C. Paar, editors, Proceedings of 4th International Work-
shop on Cryptographic Hardware and Embedded Systems (CHES), number 2535 in
Lecture Notes in Computer Science, page 593609. Springer-Verlag, 2002.

13. M. J. Wiener. The full cost of cryptanalytic attacks. J. Cryptology, 17(2):105–124,
2004.



m

t

m

t

m

t

r

Fig. 3. Schematics and parameters of the complete structure.



bit−wise
XOR

64−bit hash

56
−

bi
t c

ou
nt

er

56−bit image

25DES

ig

SP

EP

password

hash

counter

Fig. 4. Architecture for performing the rainbow chains.


