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Abstract
Aims/hypothesis Low-grade inflammation is a feature of
chronic diseases such as type 2 diabetes and lipodystrophy. It
is associated with abdominal adiposity, increased levels of
NEFA, hyperinsulinaemia and low adiponectin levels. How-
ever, the causal relationship between impaired metabolism and
inflammation is not understood. We explored the anti-lipolytic
effect of acipimox and insulin on adiponectin and adipocyte-
associated cytokines in patients with lipodystrophy.
Methods In a randomised placebo-controlled crossover de-
sign using nine patients with non-diabetic, HIV-associated
lipodystrophy, we assessed whether (1) overnight adminis-
tration of a low dose of acipimox and/or (2) insulin-induced
suppression of NEFA flux altered circulating plasma levels
of adiponectin, IL-18, TNF-α and IL-6 in the basal condition
and in a two-stage euglycaemic–hyperinsulinaemic clamp
combined with stable isotopes (insulin infusion rates
20 mU m−2 min−1 and 50 mU m−2 min−1).
Results Insulin decreased plasma NEFA in a dose-dependent
manner (p<0.0001). Acipimox reduced basal plasma NEFAs

and plasma NEFAs during the low-dose insulin infusion
compared with placebo (p<0.0001 for acipimox effect).
Plasma adiponectin and plasma IL-18 were reduced during
both situations where lipolysis was inhibited (p<0.0001 for
acipimox effect; p<0.0001 and p<0.05 for insulin effect on
plasma adiponectin and plasma IL-18, respectively). In con-
trast, plasma IL-6 and plasma TNF-α did not change during
low NEFA concentrations.
Conclusions/interpretation Using two different tools to ma-
nipulate lipolysis, the present study found that acute inhibi-
tion of lipolysis reduces levels of adiponectin and IL-18 in
patients with HIV-associated lipodystrophy.
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Introduction

Systemic low-grade inflammation is thought to play a central
role in the development of insulin resistance, leading to type
2 diabetes and cardiovascular diseases [1]. Such inflamma-
tion is defined by a two- to threefold increase in circulating
cytokines such as TNF-α, IL-6 and IL-18. Low-grade in-
flammation is typically associated with increased levels of
NEFA, hyperinsulinaemia, visceral fat accumulation and low
adiponectin levels [1].
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Much attention has been focused on persistent low-grade
inflammation in obesity. In the obese state, macrophages are
recruited to the adipose tissue. The macrophages subsequent-
ly produce cytokines, causing a low-grade inflammatory
response [1]. However, the mechanisms that lead to this
proinflammatory state are still being investigated.

In obesity, both visceral and subcutaneous fat are sources
of systemic low-grade inflammation [2]. Indeed, the distribu-
tion of adipose tissue, rather than the total amount of fat, seem
to be associated with systemic low-grade inflammation [3–5].

This is illustrated by the lipodystrophy syndrome, where
patients lose subcutaneous fat in the limbs and accumulate
visceral fat, both of which processes are associated with
systemic low-grade inflammation and accompanied by insulin
resistance, increased lipolysis and consequently increased
levels of NEFA [6]. The most common form of lipodystrophy
is the acquired lipodystrophy seen in HIV-infected patients on
highly active antiretroviral therapy (HAART) [7].

It is well established that NEFAs promote insulin resis-
tance with compensatory hyperinsulinaemia [8], but NEFAs
have also been suggested to be the underlying cause of
systemic low-grade inflammation [8]. In support of this,
NEFAs are able to engage toll-like receptor (TLR)s, activate
nuclear factor κB (NF-κB) and induce proinflammatory
production of TNF-α and IL-6 [9] at least in vitro. Despite
the tight association between increased NEFA levels and
systemic inflammation in humans, very few studies in
humans have been conducted, and all except for one [10]
are based on an endotoxin experimental model [11–15].
Thus it still remains elusive as to whether NEFAs directly
influence human cytokine levels in vivo.

While most systemic inflammatory molecules are re-
leased from immune cells, adiponectin is released primarily
from adipocytes. Low levels of adiponectin are often asso-
ciated with low-grade inflammation and increased levels of
NEFA. Adiponectin has anti-inflammatory effects and de-
creases circulating NEFAs [16]. Conversely, increased cir-
culating NEFAs decrease circulating adiponectin [17]. It re-
mains unknown whether lowering of NEFA levels regulates
adiponectin, as divergent results have been reported from
studies using the anti-lipolytic drug acipimox, a nicotinic
acid [10, 18–20]. However, as adiponectin is produced pri-
marily by adipocytes, it can be argued that adiponectin may
not sense circulating NEFA levels. Thus, the relationship
between adiponectin and circulating NEFA may in fact re-
flect the possibility that adiponectin and other adipokines are
regulated by the anti-lipolytic effect as such. To explore this,
we used acipimox and insulin, both of which affect lipolysis
through different intracellular pathways. The anti-lipolytic
effect of acipimox takes place after the inhibitory regulative
G protein action of a G protein-coupled receptor (HM74b),
occurring probably with no other effects on the cell and
leading to reduced intracellular concentrations of cAMP

[21, 22]. Insulin also reduces intracellular cAMP, but
through a completely different mechanism, namely activa-
tion of phosphodiesterases [22]. In addition, insulin exerts its
effects via downstream signalling through phosphoinositide
3-kinase, activating, for example, mitogen-activated protein
kinase. To better understand the effect on adipokine regula-
tion of inhibiting intracellular lipolysis and lowering system-
ic NEFA, we explored the in vivo effects of acipimox and
insulin on adiponectin and cytokine levels in patients with
HIV-associated lipodystrophy. Acipimox and a two-stage
euglycaemic–hyperinsulinaemic clamp were used as tools
to induce anti-lipolysis, based on our hypothesis that inhibi-
tion of lipolysis would inhibit adipokine production and
thereby decrease circulating cytokine and adiponectin levels.

Methods

Participants We recruited nine non-diabetic HIV-positive
men on stable HAART from the Outpatient Clinic of the
Department of Infectious Disease (Rigshospitalet, Copenha-
gen, Denmark). A description of selection, anthropometry,
HIV-immunology and components of HAART for all partic-
ipants has been previously published [23]. In brief, the
patients were included on the basis of: (1) lipoatrophy
(at least one moderate sign of lipoatrophy) [fat loss] in face,
arms, buttocks or legs based on a physical examination; and (2)
the presence of insulin resistance (fasting plasma insulin
≥104 pmol/l). If fasting plasma insulin was <104 pmol/l,
a standard 75 g OGTTwas done and the participant included if
insulin was >521 pmol/l after 120 min. Patient characteristics
appear in Table 1.

Informed consent was obtained from all patients
according to the requirements of the local Ethics Committee
and the Helsinki Declaration.

Design The study was a randomised double-blinded cross-
over study. Each participant was studied twice at an interval
of at least 2 weeks, receiving acipimox on the one occasion
and placebo on the other. The HAART medication was taken
3.5 to 4.5 h before commencing the clamp, with no change to
the HAART combination during the study. This enabled us to
eliminate the effect of HAART on the cytokine response.
Acipimoxwas administered in doses of 250mg at 07:00 hours
and 24:00 hours (midnight) on the day/night before, and at
07:00 and 09:00 hours on the day of the study. The timing of
acipimox treatment and the euglycaemic clamp in relation to
fasting was chosen according to previous studies [24, 25]. The
study protocol has been described elsewhere [23]. In brief, on
each study day, participants reported to the laboratory at
07:00 hours after an overnight fast. Peripheral catheters were
inserted into an antecubital vein for blood sampling, in the
contralateral antecubital vein for infusion of fluids and in a
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dorsal hand vein for blood sampling. The hand waswrapped in
a heating blanket to obtain arterialised blood samples. After
catheterisation, venous blood samples were obtained at 0, 30,
60, 90, 120 and 150 min for measurement of plasma NEFA,
and at 0, 90 and 150 min (basal stage) for measurement of
cytokine levels. At 2.5 h later, a two-stage euglycaemic–
hyperinsulinaemic clamp was initiated and continued for 6 h,
according to a previously published protocol [26] with some
modifications. Insulin (100 IU/ml; Actrapid; Novo Nordisk,
Bagsvaerd, Denmark) was infused for 2 h (stage 1) at a rate of
20 mU m−2 min−1 (initiated with a two-step priming dose of
80 mUm−2 min−1 for 5 min, followed by 40mUm−2 min−1 for
5 min), and for the following 4 h (stage 2) at a rate of 50 mU-
m−2 min−1 (initiated with a two-step priming dose of 200 mU
BSAm−2 min−1 for 5 min, followed by 100 mUm−2 min−1 for
5min). The bloodglucose concentrationwas kept at 5.5mmol/l
by a variable-rate infusion of 20% glucose. To maintain
euglycaemia, arterialised blood glucose was measured every
5 min in the first hour of each clamp stage and every 10 min
during the rest of the clamp, with samples being immediately
analysed (EML 105; Radiometer, Copenhagen, Denmark).

During the euglycaemic–hyperinsulinaemic clamp, venous
blood samples were obtained for measurement of NEFA and
cytokine levels at 180, 210, 240 and 270 min during stage 1,
and at 300, 330, 390, 450 and 510 min during stage 2. As one
participant did not complete the clamp study for technical
reasons, results during the clamp represent data from eight
participants only.

Laboratory analyses All blood samples were drawn into
tubes containing EDTA and centrifuged (3,000 g). Plasma
was stored at −80°C. Plasma concentrations of IL-18,
TNF-α, IL-6 and insulin were determined by ELISA (TNF-α
and IL-6: Quantikine High Sensitivity, R&D Systems,
Minneapolis, MN, USA; insulin: DakoCytomation, Ely,
UK; IL-18: Medical and Biological Laboratories, Nagoya,
Japan). Plasma concentrations of adiponectin were deter-
mined by a human adiponectin RIA kit (Linco Research, St
Charles, MO, USA). Plasma concentrations of NEFA were
determined using an automatic analyser (Cobas fara; Roche,
Basel, Switzerland; and NEFA C; Wako Chemicals, Neuss,
Germany). The detection limits were 12.5 pg/ml for IL-18,
0.094 pg/ml for TNF-α, 0.18 pg/ml for IL-6, 0.51 pmol/l for
insulin and 1 ng/ml for adiponectin. All determinations were
run as duplicates and mean values calculated.

Total cholesterol (mmol/l), HDL-cholesterol (mmol/l),
LDL-cholesterol (mmol/l), triacylglycerol (mmol/l) and glu-
cose (mmol/l) measurements on the day of inclusion were
determined using standard laboratory procedures. CD4+ cell
counts were calculated by flow cytometry and HIV-RNA
copies were measured with an Amplicor HIV Monitor
(Roche Molecular Systems, Branchburg, NJ, USA) (lower
limit of detection: 20 copies/ml).

Statistical analysis Values of cytokines, NEFA and insulin
were natural log-transformed to achieve homogeneity of
variance and an approximate normal distribution. Statistical
analyses of the plasma measurements were carried out using
a multivariate linear mixed-effects regression model [27].
The effect of treatment was estimated using a binary variable
(acipimox or placebo). The effect of insulin infusion was
estimated using a categorical variable, i.e. none, low
(20 mUm−2 min−1) or high (50 mUm−2 min−1) infusion level,
with a model that allowed for an interaction term between
treatment and insulin infusion when needed. During the insu-
lin infusion, time in minutes was entered as a continuous
variable in the analysis of plasma variables, allowing for
different effects during low and high insulin infusion, respec-
tively. Thus, the categorical effect variable of insulin models
the effect of a different insulin level in plasma, leading to a
constant change in the level of the response variable, whereas
the time effect during insulin infusion models the cumulative
effect over time of a higher insulin level, leading to a rate
change in the response variable. A random participant-specific

Table 1 Clinical characteristics of the study patients

N 9

Age (years) 52.3 ± 8.7

HIV infection duration (years) 16.3

LogHIV RNA (copies/ml) 1.90 ± 1.65

CD4+ cell counts (cells/μl) 732 ± 354

Body weight (kg) 81.9 ± 9.6

BMI (kg/m2) 25.0 ± 2.4

Body fat (%) 19.9 ± 6.6

Fat mass (kg) 16.8 ± 7.2

Lean body mass (kg) 62.5 ± 38.1

Truncal fat mass (kg) 10.4 ± 4.8

Truncal fat mass (%) 60.7 ± 11.13

Limb fat mass (kg) 5.5 ± 2.85

Limb fat mass (%) 33.4 ± 10.11

Trunk:limb ratio 2.00 ± 1.08

Fasting glucose (mmol/l) 5.5 ± 0.69

Fasting insulin (pmol/l) 86 ± 54

Fasting triacylglycerol (mmo/l) 3.07 ± 2.22

Fasting total cholesterol (mmol/l) 6.1 ± 1.4

Fasting HDL-cholesterol (mmol/l) 1.4 ± 1.05

Fasting LDL-cholesterol (mmol/l) 3.73 ± 2.22

Fasting NEFAs (μmol/l) 412 ± 183.9

Fasting TNF-α (pg/ml) 1.08 (0.95–3.22)

Fasting IL-18 (pg/ml) 304 (237–382)

Fasting IL-6 (pg/ml) 2.01 (1.68–3.22)

Fasting adiponectin (μg/ml) 1.98 (1.37–3.03)

Data are mean ± SD; for cytokines the data are median and 25% and
75% quartiles
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component was introduced at the baseline level and allowed
adjustment for inter-individual variations. This introduces a
positive correlation between measurements from the same
participant, while measurements from different participants
are independent. The study protocol was designed to measure
plasma TNF-α, IL-6, IL-18 and adiponectin concentrations
from the same individual at several time-points. The statistical
models take into account the fact that observations come from
the same person [27]. In this way, the total variation is split into
the within-participant and between-participant variations,
which are known to appear in cytokine response under various
stimuli [28], thereby improving the estimation of variables in
the study population. Likelihood ratio tests were applied to
assess statistical significance. The final model was found by
backward stepwise regression. Thus, in the final models, only
the terms that were statistically significant were retained. Sta-
tistical significance was defined as p<0.05. The fit of the
general linear model was evaluated by testing the residuals
for normality and by inspection of the residual plots. For the
analysis, the procedure lme in R (version 2.1) was used [29].
Results are presented as estimates (95% CI) if not otherwise
stated.

Results

Baseline characteristics The participants’ clinical character-
istics are in Table 1. All participants had lipodystrophy as
indicated by a decreased percentage of limb fat (limb fat per-
centage in healthy men 45.3%) [30] and an increased percent-
age of trunk fat (trunk fat percentage in healthy men 50.9%)
[30]. The participants had elevated plasma triacylglycerol (val-
ue in men with hypertriacylglycerolaemia >1.7 mmol/l,
according to WHO [31]) and NEFA concentrations (value in
healthy men 292 ± 58 μmol/l [mean ± SEM]) [32]. As an
indication of low-grade inflammation, the participants had ele-
vated plasma TNF-α and IL-18 levels, and decreased plasma
adiponectin levels (Table 1) compared with cytokine levels in
healthy controls obtained in other studies performed in our
laboratory (values [median and 25% and 75% quartiles] in
healthy men: TNF-α 0.32 [0.08–0.83] pg/ml [30]; IL-18 111.6
[62.3–171.3] pg/ml [33]; adiponectin 9.10 [4.32–12.05] μg/ml
[30]; IL-6 1.99 [1.45–3.8] pg/ml [30]).

All patients were receiving HAART and at least one
nucleoside analogue; seven were receiving at least one pro-
tease inhibitor and five a non-nucleoside analogue. All pa-
tients except one had suppressed HIV-RNA (HIV-RNA
<18 copies/ml).

Insulin and glucose concentrations Insulin increased in
stage 1 of the euglycaemic–hyperinsulinaemic clamp and in-
creased further in stage 2 of the clamp, while all patients were

euglycaemic. Basal plasma glucose and insulin concentrations
did not differ between the placebo and acipimox trials [23].

The effect of insulin and acipimox onNEFA concentrations Low
doses of insulin reduced plasma NEFA concentrations during
stage 1, with no further reduction during high doses of insulin
in stage 2 (basal NEFA 431 μmol/l, p<0.0001 for main
treatment effect; NEFA, end of stage 1 232 μmol/l, p=0.035).

Acipimox reduced basal plasma NEFA concentrations
from 431 μmol/l to 209 μmol/l. Acipimox and a low dose of
insulin infusion decreased plasmaNEFA further to 167 μmol/l
during stage 1. This reduction was more pronounced thanwith
insulin alone (placebo) (p=0.035 for interaction between in-
sulin and treatment). Acipimox did not further reduce plasma
NEFA during stage 2 (p=0.27).

The anti-lipolytic effect on adiponectin and cytokines In
Fig. 1, geometric means for the plasma concentrations of
adiponectin (Fig. 1a), IL-18 (Fig. 1b), IL-6 (Fig. 1c) and
TNF-α (Fig. 1d) are shown in the basal state, and at stages 1
and 2. In Fig. 2, the predicted levels of plasma adiponectin
(Fig. 2a), plasma IL-18 (Fig. 2b), plasma IL-6 (Fig. 2c) and
plasma TNF-α (Fig. 2d) appear as in the final statistical
models, i.e. a mixed-effects model. The full model for all four
cytokines has fourmain effects: treatment, insulin, time during
stage 1 and time during stage 2. It has three interaction terms:
treatment with insulin, time during stage 1 and time during
stage 2, respectively. The final models were reduced to only
retain terms that were significant at a 5% confidence level.

Plasma adiponectin decreased when lipolysis was
inhibited by acipimox and insulin, and consequently plasma
NEFA levels were low (Figs 1a and 2a). Acipimox reduced
basal plasma adiponectin levels from 2.23 μg/ml (1.41–3.53)
to 1.91 μg/ml (1.12–3.25). During stage 1 of the clamp,
plasma adiponectin decreased to 1.64 μg/ml (0.87–3.10),
decreasing further in stage 2 to 1.48 μg/ml (0.79–2.79).
During each stage, the reduction in plasma adiponectin was
more pronounced with acipimox than with insulin alone
(placebo) (p=0.0001 for main treatment effect).

Insulin reduced basal plasma adiponectin from 2.23
(1.41–3.53) to 1.92 (1.1–3.37) in stage 1 and further to
1.74 (1.0–3.1) in stage 2 (p<0.0001 for, main insulin effect).

Plasma IL-18 decreased when lipolysis was inhibited by
acipimox and insulin, and consequently plasma NEFA levels
were low (Figs 1b and 2b). Acipimox reduced basal plasma
IL-18 from 310 pg/ml to 284 pg/ml, with no further reduction
of IL-18 occurring (p<0.0001 for main treatment effect).
Insulin reduced basal plasma IL-18 from 310 pg/ml (248–
389) to 285 pg/ml (193–423) at the end of stage 2 (p=0.023
for interaction between treatment and time during stage 2).

Neither plasma TNF-α, nor plasma IL-6 concentrations
responded to the inhibition of lipolysis by acipimox or insu-
lin. In contrast, during stage 1, insulin actually increased
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plasma IL-6 from 2.97 pg/m to 3.49 pg/ml (2.31–5.27), with
a further increase during stage 2 to 5.41 pg/ml (2.79–10.51)
(p<0.0001 for insulin, main effect; p=0.0001 for time during
stage 2) (Figs 1c and 2c). Similarly, during stage 1, insulin
increased basal plasma TNF-α from 1.26 pg/ml (0.98–1.62)
to 1.31 pg/ml (0.98–1.76) (p=0.024 for time during stage 1)
with no further increase during stage 2 (Figs 1d and 2d).

Discussion

In this acute intervention study, lipolysis was inhibited by two
completely different methods, acipimox and insulin, in order to
investigate the anti-lipolytic effect on systemic levels of
adiponectin and cytokines in lipodystrophy patients. Themajor
finding was that acute anti-lipolysis, reflected by a reduction in
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Fig. 1 (a) Geometric means ± SEM for plasma adiponectin, (b) plasma
IL-18, (c) plasma IL-6 and (d) plasma TNF-α levels during the basal
stage, low-dose insulin infusion (stage 1) and high-dose insulin infusion
(stage 2) after overnight treatment with placebo (dashed lines) and
acipimox (solid lines) in nine HIV-infected patients with lipodystrophy.
The full statistical model for all four cytokines has four main effects:
treatment, insulin, time during stage 1 and time during stage 2. It has
three interaction terms: treatment with insulin, time during stage 1 and
time during stage 2. The final models were reduced to only retain those
terms significant at a 5% confidence level. The statistical results appear
as: (1) the effect of acipimox or placebo (treatment, main effect); (2) low
or high-dose insulin infusion (insulin, main effect); and (3) time during
the different stages of the clamp (time effect); and they allow (4) for an

interaction between treatment, insulin and time. The main effect of
treatment was only significant for adiponectin (p=0.0001) (a) and
IL-18 (p<0.0001) (b), and was thus removed from the final models
of IL-6 (c) and TNF-α (d). Likewise, the main effect of insulin
was only significant for adiponectin (p<0.0001) (a) and IL-6
(p<0.0001) (c), and was thus removed from the final models of
IL-18 (b) and TNF-α (d). Time was only significant during stage 1
for TNF-α (p=0.024) (d), and during stage 2 for IL-18 (p=0.046)
(b) and IL-6 (p=0.0001) (c). The time effects were removed in all
other cases. Only one interaction term was retained, namely the
interaction between treatment and time during stage 2 for IL-18
(p=0.023) (b). In total, nine main effects and 11 interaction terms
were removed from the final models
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NEFA, is sufficient to lower plasma adiponectin and plasma
IL-18. This suggests that either intracellular inhibition of lipol-
ysis or reduction of NEFA as such is capable of regulating
production and hence circulating levels of adiponectin and IL-
18. Anti-lipolysis did not influence TNF-α and IL-6 plasma
levels; however, hyperinsulinaemia increased circulating IL-6

and TNF-α levels, suggesting that insulin, and not NEFA
regulates IL-6 and TNF-α.

The anti-lipolytic effect on adiponectin Previous studies
have found that chronically and acutely elevated NEFA
levels suppress adiponectin secretion in vivo [17, 34]. In
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Fig. 2 The predicted levels from the final statistical model of (a)
plasma adiponectin, (b) plasma IL-18, (c) plasma IL-6 and (d) plasma
TNF-α during the basal stage, low-dose insulin infusion (stage 1) and
high-dose insulin infusion (stage 2) after overnight treatment with
placebo (blue dashed lines) and acipimox (blue solid lines) in nine
HIV-infected patients with lipodystrophy. For IL-6 and TNF-α the solid
lines are predicted values irrespective of treatment status, as no treat-
ment effect was detected. Lines with slopes different from zero indicate
a statistically significant cumulative effect of insulin over time beyond
the instantaneous effect of a change in insulin infusion. A statistically
significant effect of a changed insulin level is shown by discontinuous
lines. Note that only one interaction (insulin × time × treatment) term
was retained, namely for IL-18 during high insulin infusion, where the
effect of insulin depends on treatment status. Grey symbols indicate
observed values (squares during placebo, triangles during acipimox

treatment), and grey lines connect measurements from the same partic-
ipant and day during placebo (dashed grey lines) and during treatment
(solid grey lines). The main effect of treatment was only significant for
adiponectin (p=0.0001) (a) and IL-18 (p<0.0001) (b), and was thus
removed from the final models of IL-6 (c) and TNF-α (d). Similarly, the
main effect of insulin was only significant for adiponectin (p<0.0001)
(a) and IL-6 (p<0.0001) (c), and was thus removed from the final
models of IL-18 (b) and TNF-α (d). Time was only significant during
stage 1 for TNF-α (p=0.024) (d), and during stage 2 for IL-18
(p=0.046) (b) and IL-6 (p=0.0001) (c). The time effects were removed
in all other cases. Only one interaction term was retained, namely the
interaction between treatment and time during stage 2 for IL-18
(p=0.023) (b). In total, nine main effects and 11 interaction terms were
removed from the final models
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agreement with our hypothesis, we found that intracellular
inhibition of lipolysis reduced plasma adiponectin, probably
reflecting reduced intracellular production. This result was
evident with both forms of lipolysis inhibition, i.e. insulin
and acipimox. In agreement with our findings, previous
studies using acipimox found a reduction in circulating
adiponectin in healthy men with moderate overweight. How-
ever, others found [18] no effect in healthy lean participants or
in participants with a family history of type 2 diabetes [10, 20].
The discrepancy between study results may be explained by
the duration of administration (chronically in the study by
Bajaj et al [7 days] [10] vs acutely in a study by Bernstein
et al [6 h] [18] and in the current study [13 h]) or by the study
design (open label administration in Staiger et al [20] vs
randomised, placebo-controlled crossover design as in a pre-
vious [18] and the present study).

Interestingly, a positive correlation between circulating
adiponectin and rate of appearance of glycerol was recently
found when correcting for fat mass [17]. It was suggested
that circulating adiponectin represents a marker of total ad-
ipose tissue lipolytic capacity, a hypothesis that is supported
by our results.

We can only speculate on the mechanisms underlying the
decrease of adiponectin resulting from inhibition of lipolysis
and reduced systemic NEFA levels. Adiponectin gene tran-
scription is stimulated by several factors involved in
adipogenesis, e.g. peroxisome proliferator-activated receptor
(PPAR)γ, forkhead box O1 (FOXO1), CCAAT/enhancer-
binding protein (C/EBP) alpha, sirtuin 1 and sterol regulato-
ry element-binding protein 1. It is suppressed by hypoxia,
transcription repressors such as nuclear factor of activated
T cells and CREB, and by inflammatory cytokines such as
TNF-α, IL-6 and IL-18 [16]. As TNF-α and IL-6 did not
respond to inhibition of lipolysis, a pathway through TNF-α
and IL-6 is unlikely.

NEFAs are directly involved in cellular signalling path-
ways and regulation of gene transcription, and it has recently
been proposed that lipolysis is required to promote PPARγ-
activated expression of lipogenic genes [22]. When
acipimox reduces NEFA, it may lead to reduced PPARG
expression, and thereby reduced adiponectin gene expres-
sion and reduced circulating adiponectin as seen in our study.
This is supported by a previous study, where elevating NEFA
in healthy males increased adipose tissue PPARG mRNA
levels [35]. Other factors upregulating adiponectin gene
transcription such as FOXO1 and sirtuin 1 are inhibited by
NEFA in vitro and in mice [36, 37], and may therefore not
explain our results, although levels in these former studies
were not investigated in an acipimox trial.

Given that insulin and acipimox inhibit lipolysis and
lower plasma NEFA levels, it has already been suggested
that some effects on gene expression may be shared by
nicotinic acid and insulin [38].

As suggested previously, adiponectin may not sense circu-
lating NEFA levels. It has recently been proposed that lipo-
lytic products and intermediates participate in cellular signal-
ling processes [22]. The anti-lipolytic effect of acipimox and
insulin takes place through different pathways, leading to
reduced intracellular concentrations of cAMP. As insulin and
acipimox decreased plasma adiponectin, our findings suggest
that the secretion of adiponectin is regulated by anti-lipolytic
effect as such.

The anti-lipolytic effect on IL-18 To our knowledge the anti-
lipolytic effect on plasma IL-18 has not previously been
examined in vivo. Plasma levels of IL-18 are increased in
obesity [39] and lipodystrophy [33], and are associated with
several components of the metabolic syndrome, including
hypertriacylglycerolaemia [40] and insulin resistance. How-
ever, while this suggests that IL-18 is involved in the patho-
genesis of insulin resistance [41], IL-18-deficent mice are
obese, insulin-resistant and dyslipidaemic compared with
wild-type mice [42]. This highlights the complexity of IL-
18 actions in metabolism.

Our findings revealed that acute anti-lipolysis, resulting in
low levels of NEFA, led to reduced amounts of circulating
IL-18 and that insulin during acipimox treatment had no
additive effect. This suggests that NEFA or lipolytic prod-
ucts, and not insulin as such, regulate systemic IL-18 in vivo.
IL-18 secretion is regulated through TLRs. It may therefore
be speculated that the regulation of IL-18 by NEFA occurs
through engaging TLRs and the induction of NF-κB [9].
Another possibility is through activation of the NLP3
(NLR family pyrin domain-containing 3)-ASC (apoptosis-
associated speck-like protein) inflammasome, as NEFAs
have recently been found to induce activation of the NLP3-
ASC inflammasome, causing IL-1 beta and IL-18 production
[43]. A previous study found suppression of circulating IL-
18 during acute hyperinsulinaemia in healthy controls [44],
and is thus supported by our data. However, our study adds
to the former one in as far as we suggest that the reduction in
plasma IL-18 is due to insulin-mediated inhibition of lipol-
ysis. Together, these data suggest that in individuals with
insulin resistance, chronically elevated systemic IL-18 may
be causally linked to increased plasma NEFA levels and not
to hyperinsulinaemia.

In line with the above sentences on the regulation of
adiponectin, the regulation of IL-18 may also be related to
a drug effect, as the G protein-coupled receptor 109A
(GPR109A) has recently been found to be expressed in
immune cells.

The anti-lipolytic effect on TNF-α and IL-6 Several lines of
evidence show a relationship between NEFA and inflamma-
tion [45]. In addition, NEFAs have been shown to increase
TNFA (also known as TNF) expression in adipose tissue [35],
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as well as IL-6 and TNFα secretion in adipocytes [45]. We
were therefore surprised that anti-lipolysis and the resultant
lowered levels of NEFA with acipimox treatment or insulin
did not affect TNF-α and IL-6. Bajaj et al also failed to find
an effect of 7 days of acipimox treatment on circulating
cytokines [10]. However, this was less surprising as only
healthy participants without low-grade inflammation were
studied. The discrepancy between our results and the NEFA-
induced augmentation of TNFA gene expression in adipose
tissue and TNF-α secretion in vitro suggests that NEFAs
have local, but no direct systemic effects.

The effect of NEFAs on inflammation has been investigat-
ed especially in models where inflammation is induced exper-
imentally by infusion of endotoxin, with additional NEFA
infusion enhancing the systemic cytokine response in some
[11–13], but not all studies [14, 15]. Some differences be-
tween these studies are the observed changes in insulin and
glucose concentrations induced by infusion of intralipid. For
example, when systemic insulin increases, an enhancement of
systemic cytokines occurs [11–13], whereas if insulin concen-
trations are kept stable with a hyperinsulinaemic–euglycaemic
clamp, no effect on the systemic cytokine response occurs
[14, 15]. Thus, as demonstrated in our study, insulin level
control is critically important [46]. For instance, upon
clamping insulin at levels comparable to those seen in
insulin-resistant individuals, we found that insulin (low insu-
lin infusion stage), but not NEFA provoked an acute increase
in TNF-α and IL-6, which can be interpreted to mean that
while insulin increases systemic IL-6 and TNF-α, plasma
NEFAs alone are insufficient to increase IL-6 and TNF-α.

In vitro, acipimox directly reduced the secretion of TNF-α
and IL-6 through the GPR109A receptor in human monocytes
[47], while in various in vivo animal models, nicotinic acid
inhibited vascular inflammation independently of changes in
plasma lipids [48, 49]. However, we found that acipimox had
no effect on TNF-α and IL-6, and thus acipimox did not
regulate those cytokines in our study. Few studies have exam-
ined the acute effect of nicotinic acid in humans, and all those
that we are aware of investigated the effect after a challenge
with endotoxin, inducing very high levels of cytokines [38].

Study limitations Our study has several limitations. One is
that it lacks a healthy control group to control for the effect of
HAART and immune deficiency. However, the participants
acted as their own controls by taking the same antiretroviral
medication at 3.5 to 4.5 h before each clamp on each study
day, thereby controlling for the effect of HAART. Further-
more, all patients except one had suppressed HIV-RNA. Our
aim, moreover, was to assess the effect of NEFA on inflam-
matory responses in a patient group with low-grade inflam-
mation rather than in a group of healthy individuals, which
has been described elsewhere. Patients with lipodystrophy
have increased visceral fat, decreased subcutaneous fat, low-

grade inflammation, insulin resistance and excess NEFA.
The changes are therefore very similar to those occurring in
obesity [50] due to excessive food intake and lack of exer-
cise. Although our study had a small sample size, we found
differences between the trials on inflammatory cytokines and
adiponectin; it is therefore likely that our results suggest a
robust physiological response.

Conclusions Using two different tools to manipulate lipoly-
sis, the present study provides evidence that acute inhibition
of lipolysis reduces levels of adiponectin and IL-18 in pa-
tients with HIV-associated lipodystrophy.
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