
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen
 

 

 

 

The following full text is a preprint version which may differ from the publisher's version.

 

 

For additional information about this publication click this link.

http://repository.ubn.ru.nl/handle/2066/127408

 

 

 

Please be advised that this information was generated on 2017-03-09 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/20488933?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.ubn.ru.nl/handle/2066/127408


Modular Reduction without Precomputational Phase
Miroslav Knežević, Lejla Batina and Ingrid Verbauwhede

Katholieke Universiteit Leuven
ESAT/SCD-COSIC and IBBT

Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium
{Miroslav.Knezevic, Lejla.Batina, Ingrid.Verbauwhede}@esat.kuleuven.be

Abstract—In this paper we show how modular reduction
for integers with Barrett and Montgomery algorithms can be
implemented efficiently without using a precomputational phase.
We propose four distinct sets of moduli for which this method
is applicable. The proposed modifications of existing algorithms
are very suitable for fast software and hardware implementations
of some public-key cryptosystems and in particular of Elliptic
Curve Cryptography. Additionally, our results show substantial
improvement when a small number of reductions with a single
modulus is performed.

Index Terms—Modular reduction, modular multiplication,
Barrett reduction, Montgomery reduction, public-key cryptog-
raphy, elliptic curve cryptography (ECC).

I. INTRODUCTION

As embedded systems evolve from isolated devices to
always-on networked devices, security becomes a paramount
issue. After more than two decades of extensive research on
both, theoretical and practical aspects it is evident that Elliptic
curve cryptography (ECC) [1], [2] offers equivalent security as
RSA for much smaller key sizes. This results in hardware of
smaller footprint and lower power consumption. These features
are very important for applications with very firm constraints
on area, power, energy etc. i.e. for embedded security.

At the same time, a distributed computing starts to play
very important role in the embedded systems field and we
need more and more powerful servers that will take over the
computationally expensive tasks from the constrained devices.
In contrast to most of the research work that is focused on
providing efficient algorithms on a constrained device itself,
here we target servers in mobile network applications as
possible subjects of optimization. A modular multiplication,
which is the core operation for many public-key cryptosystems
(e.g. ECC), is one of the computationally expensive algorithms
where the high-throughput implementation of modular reduc-
tion is necessary.

In this work, we are focusing on the arithmetic. We propose
four distinct sets of moduli for which either Barrett or Mont-
gomery reduction algorithm can be performed without using a
precomputational step. While using pseudo-Mersenne primes
in software implementations brings obvious advantages, our
method is more suitable for the hardware implementations.
It uses Barrett and Montgomery reductions that are known
to be the most efficient reduction algorithms so far. Based
on the proposed reduction methods, a modular multiplication
algorithm can be implemented at a very high throughput.

Moreover, most of the NIST recommended moduli for ECC
are also included in the proposed sets (curves P-192, P-224,
P-384, P-521) [3].

Our previous work [4] showed that the reduction algorithms
of Barrett and Montgomery over binary fields can be per-
formed without using a precomputational step. The set of
moduli was accordingly extended by defining two distinct sets
for which either reduction method is applicable. Due to the
similarity between the two algorithms, a hardware architecture
for the fast modular multiplier handling both types of moduli
was also proposed. In this work, we extend the approach to
the ring of integers.

II. RELATED WORK

Barrett reduction algorithm was introduced by P. D. Barrett
in 1986 [5]. This algorithm computes r = a mod m for
an input a and a modulus m and is given in Alg. 1. The
algorithm uses µ, a precomputed reciprocal of m, to avoid
computationally expensive divisions that are necessary to
compute the quotient q such that a = qm + r.

Algorithm 1 Barrett reduction for integers.

INPUT: positive integers a = (a2n−1 . . . a0)b and m =
(mn−1 . . . m0)b, where mn−1 �= 0, b ≥ 3 and
PRECOMPUTED µ =

⌊
b2n/m

⌋
.

OUTPUT: r = a mod m.

q̂ ⇐
⌊⌊

a

bn−1

⌋
µ

bn+1

⌋
,

r ⇐ a mod bn+1 − mq̂ mod bn+1,
if r < 0 then

r ⇐ r + bn+1.
end if
while r ≥ m do

r ⇐ r − m.
end while
RETURN: r.

Based on this algorithm, a modular multiplication can be
performed at a very high throughput by providing 2n-digit
product and performing the modular reduction afterwards.

Montgomery algorithm [6] is one of the most commonly
used reduction algorithms. The result of reduction has a form
aR mod m. Similar to Barrett reduction, this algorithm uses
a precomputed value m′ = −m−1 mod R. For the sake of
efficient implementation one usually uses R = bn where b



is a radix. Algorithm 2 shows the Montgomery reduction in
short. Similar to Barrett reduction, modular multiplication of
two n-bit inputs can also be done based on Alg. 2.

Algorithm 2 Montgomery reduction for integers.

INPUT: positive integers a = (a2n−1 . . . a0)b, m =
(mn−1 . . . m0)b, R = bn, where gcd(b,m) = 1 and
PRECOMPUTED m′ = −m−1 mod R.

OUTPUT: t = aR−1 mod m.
s ⇐ (a mod R)m′ mod R,
t ⇐ (a + ms)/R,
if t ≥ m then

t ⇐ t − m
end if
RETURN: t.

Both described, Barrett and Montgomery algorithms have
one property in common. In order to perform modular reduc-
tion, they need a precomputed value of the reciprocal/inverse
of modulus. This reduces flexibility of the system forcing one
to use fixed modulus and its precomputed reciprocal/inverse.
From the implementation point of view, this requires extra
computational time and memory space to calculate the pre-
computed value. Hence, both algorithms are suitable only for
the case when many reductions are performed with a single
modulus. In the next section we show how these shortcomings
can be overcome using the special sets of moduli.

III. THE PROPOSED MODULAR REDUCTION METHODS

Here, we first provide two special sets of moduli for which
the precomputational step in Barrett reduction can be effi-
ciently avoided. Second, we propose a modular reduction al-
gorithm that is based on Barrett reduction and show how using
a modulus from the defined sets can be beneficial for skipping
the precomputational step. Finally, we show how Montgomery
reduction, with using complementary sets of moduli, can
also be performed very efficiently without precomputation.
A modular multiplication based on these algorithms can be
implemented at a very high throughput in hardware. Due to the
big integers used in cryptographic applications, the algorithms
are not suitable for embedded devices as they require the use
of big multipliers (e.g. 163×163-bit multiplier)1. On the other
hand, they are very suitable for powerful servers where the fast
modular multiplication is necessary.

Before describing the actual algorithms, we give some
mathematical background to make the following explanations
easier. Starting with the basic idea of the proposed modular re-
duction based on Barrett algorithm we give next two Lemmata
as follows:

Lemma 1: Let m = bn−1 + Δ be n-word positive integer
in radix b representation, such that 0 ≤ Δ <

⌊
b(n−1)/2

⌋
and

1We consider only the case where the multiplication is performed at the
first place, followed by the reduction afterwards. Implemented in this way, the
algorithm is performed faster than the bit/digit serial multiplication interleaved
with reduction.

µ =
⌊
b2n−2/m

⌋
. Then it holds:

µ = bn−1 − Δ . (1)

Proof of Lemma 1: Rewrite b2n−2 as

b2n−2 = (bn−1 − Δ)m + Δ2 .

Since it is given that 0 ≤ Δ <
⌊
b(n−1)/2

⌋
, we conclude that

0 ≤ Δ2 < m. By definition of Euclidean division, this shows
that µ = bn−1 − Δ.

Lemma 2: Let m = bn − Δ be n-word positive integer
in radix b representation, such that 0 < Δ <

⌊
bn/2

⌋
and

µ =
⌊
b2n/m

⌋
. Then it holds:

µ = bn + Δ . (2)

Proof of Lemma 2: Rewrite b2n as

b2n = (bn + Δ)m + Δ2 .

Since it is given that 0 < Δ <
⌊
bn/2

⌋
, we conclude that

0 < Δ2 < m. By definition of Euclidean division, this shows
that µ = bn + Δ.

The Barrett modular reduction algorithm for integers is
given in Sect. II. Now, according to Lemmata 1 and 2,
we can define two sets of primes for which the Barrett
reduction described in Alg. 1 can be performed without using
a precomputational phase. These sets are of type:

S1 : m = bn−1 + Δ1 where 0 ≤ Δ1 <
⌊
b(n−1)/2

⌋
;

S2 : m = bn − Δ2 where 0 < Δ2 <
⌊
bn/2

⌋
.

(3)

To further illustrate the properties of the two proposed sets,
we give Fig. 1 where the moduli from each set are represented

in radix 2 representation. Note that here k =
⌊n − 1

2

⌋
, mi ∈

{0, 1} and, additionally, Eq. (3) has to be satisfied.

…all 0’s… 0 mk … m01 0

n-1 n-2 k+1 k 0k-1

S1 m1mk-1

…all 1’s… 1 mk … m01 1S2 m1mk-1

Fig. 1. Binary representation of the proposed sets S1 and S2.

The precomputed reciprocal needed for the Barrett algo-
rithm can be easily formed together with the modulus as:

µ =
{

bn−1 − Δ1 if m ∈ S1;
bn + Δ2 if m ∈ S2.

The proposed modular reduction based on Barrett algorithm
is shown in Alg. 3. It is important to note here that using this
algorithm with the modulus m we can efficiently reduce an
integer a that is less than m2. Since we assume that, a priori
multiplication, all the inputs are reduced and less than m, this
does not make any additional constraints.

Proof of Alg. 3: To show the correctness of the algorithm
we first assume that m ∈ S1. The case when m ∈ S2 is



Algorithm 3 Modular reduction without precomputation based
on Barrett algorithm.

INPUT: positive integers a = (a2n−1 . . . a0)b, m ∈ S1 ∪ S2,
µ, b ≥ 3.

OUTPUT: r = a mod m.

q̂ ⇐

⎧⎪⎪⎨
⎪⎪⎩

⌊⌊
a

bn−1

⌋
µ

bn−1

⌋
if m ∈ S1;⌊⌊

a

bn−1

⌋
µ

bn+1

⌋
if m ∈ S2.

r ⇐ a mod bn+1 − mq̂ mod bn+1,
CORRECTION STEP:
if r < 0 then

r ⇐ r + bn+1.
end if
while r ≥ m do

r ⇐ r − m.
end while
RETURN: r.

completely analogous. Let q = �a/m	 and r = a mod m =
a − qm. In the algorithm above, q̂ is an estimate of q since

a

m
=

a

bn−1
· b2n−2

m
· 1
bn−1

.

We now show that q − 3 ≤ q̂ ≤ q. The right part of the
inequality is straightforward to prove as it is

q̂ =
⌊⌊

a
bn−1

⌋
µ

bn−1

⌋
≤

⌊
a

bn−1
· b2n−2

m
· 1
bn−1

⌋
=

⌊
a

m

⌋
= q .

Next, we prove the left part of the inequality. Since
A

B
≥⌊A

B

⌋
>

A

B
− 1 for any A,B ∈ N, we can write the following

inequality

q =
⌊ a

bn−1 · b2n−2

m

bn−1

⌋

≤
⌊(⌊

a
bn−1

⌋
+ 1

)(⌊
b2n−2

m

⌋
+ 1

)
bn−1

⌋

=
⌊⌊

a
bn−1

⌋
µ

bn−1
+

⌊
a

bn−1

⌋
+

⌊
b2n−2

m

⌋
+ 1

bn−1

⌋
.

Since a < m2 and m = bn−1 +Δ1 ≥ bn−1, where 0 ≤ Δ1 <⌊
b(n−1)/2

⌋
, it follows that

⌊ a

bn−1

⌋
+

⌊b2n−2

m

⌋
+ 1 ≤

⌊
m2

bn−1

⌋
+ bn−1 + 1

= bn−1 + 2Δ1 +
⌊

Δ2
1

bn−1

⌋
+ bn−1 + 1

≤ 2bn−1 + 2Δ1 + 2 .

Finally, we have

q ≤
⌊⌊

a
bn−1

⌋
µ

bn+1
+

2bn−1 + 2Δ1 + 2
bn−1

⌋

=
⌊⌊

a
bn−1

⌋
µ

bn+1
+ 2 +

2Δ1 + 2
bn−1

⌋

≤ q̂ + 3 .

Similarly, for the case when m ∈ S2 we have2

q =
⌊ a

bn−1 · b2n

m

bn+1

⌋

≤
⌊(⌊

a
bn−1

⌋
+ 1

)(⌊
b2n

m

⌋
+ 1

)
bn+1

⌋

≤
⌊⌊

a
bn−1

⌋
µ

bn+1
+ 2 +

2Δ2b + 2
bn+1

⌋

≤ q̂ + 3 .

Hence, q̂ is indeed a good estimate of q and at most 3
subtractions at the correction step are required to obtain
r = a mod m. This concludes the proof.

In contrast to the original Barrett algorithm for integers (see
Alg. 1), our proposed algorithm differs not only in the lack
of the precomputational phase, but also in the number of the
correction steps (see Alg. 3). While in the original Barrett
reduction algorithm, the number of correction steps is at most
2, in our modified reduction algorithm this number can be
at most 3. One can further reduce the number of redundant
subtractions by increasing a precision of µ for two or more
digits. The same approach was applied to the original Barrett
algorithm, resulting in the improved Barrett reduction where at
most one subtraction needs to be performed at the correction
step [7].

Similar to Lemmata 1 and 2 we also give Lemmata 3 and 4
that are the base points for the proposed modular reduction
based on Montgomery algorithm.

Lemma 3: Let m = Δbk + 1 be n-word positive integer
in radix b representation where bn−k−1 ≤ Δ < bn−k, k =⌈n − 1

2

⌉
and let m′ = −m−1 mod bn−1. Then it holds:

m′ = Δbk − 1 . (4)

Proof of Lemma 3: In order to prove Eq. (4) we need to
show that

mm′ ≡ −1 mod bn−1 .

Indeed, if we express product mm′ as

mm′ = (Δbk + 1)(Δbk − 1)

= Δ2b2k − 1 ,

it becomes obvious that mm′ ≡ −1 mod bn−1.

2Due to the space limitation, we skip a few steps of the following
computation. These steps are equivalent to the steps from the case when
m ∈ S1.



Lemma 4: Let m = Δbk − 1 be n-word positive integer
in radix b representation where bn−k−1 < Δ ≤ bn−k, k =⌈n − 1

2

⌉
and let m′ = −m−1 mod bn−1. Then it holds:

m′ = Δbk + 1 . (5)

Proof of Lemma 4: Analogous to the proof of Lemma 3,
we write

mm′ = (Δbk − 1)(Δbk + 1)

= Δ2b2k − 1

≡ −1 mod bn−1 .

This concludes the proof.
According to Lemmata 3 and 4, we can easily find two sets

of moduli for which the precomputational step in Montgomery
reduction can be excluded. The proposed sets are of type

S3 : m = Δ3b
k + 1 where bn−k−1 ≤ Δ3 < bn−k;

S4 : m = Δ4b
k − 1 where bn−k−1 < Δ4 ≤ bn−k,

(6)

where k =
⌈n − 1

2

⌉
. To further illustrate the properties of

the two proposed sets, we give Fig. 2 where the moduli from
each set are represented in radix 2 representation. Note that

here k =
⌈n − 1

2

⌉
and mi ∈ {0, 1}.

… 0 0 11S3 …all 0’s… 0mn-2 mk+1

… 1 1 11S4 …all 1’s… 1mn-2 mk+1

n-1 n-2 k+1 k 0k-1

Fig. 2. Binary representation of the proposed sets S3 and S4.

The precomputed inverse needed for the Montgomery algo-
rithm can be easily formed together with the modulus as:

m′ =
{

Δ3b
k − 1 if m ∈ S3;

Δ4b
k + 1 if m ∈ S4.

In contrast to the modified Barrett algorithm, the Montgomery
algorithm is easier to adopt to the special moduli, because it
always computes aR−1 mod m, no matter what R is. The
modified algorithm is shown in Alg.4.

Algorithm 4 Modular reduction without precomputation based
on Montgomery algorithm.

INPUT: positive integers a = (a2n−1 . . . a0)b, m ∈ S3 ∪ S4,
m′, R = bn.

OUTPUT: t = aR−1 mod m.
s ⇐ (a mod R)m′ mod R
t ⇐ (a + ms)/R,
CORRECTION STEP:
if t ≥ m then

t ⇐ t − m
end if
RETURN: t.

IV. ON THE SECURITY OF THE PROPOSED SETS

As we can see from Figs. 1 and 2, one half of the modulus
(either the most or the least significant half) is always filled
with all 0’s or all 1’s. In the current state of the art, the security
of ECC/HECC over prime fields GF(p) does not depend at all
on the precise structure of the prime p. Hence, choosing a
prime from the proposed sets has no influence on the security
of ECC/HECC.

The security analysis for the RSA corresponds to attacks
on RSA with partially known factorization. This problem has
been analyzed extensively in the literature and the best attacks
all rely on variants of Coppersmith’s algorithm [8]. The best
results in this area are as follows: let N be an n-bit number,
which is a product of two n/2-bit primes (p and q). If half of
the bits of either p or q (or both) are known, then N can be
factored in polynomial time. Hence, it is important to stress
here that, due to the Coppersmith’s method of factoring, this
type of integer should not be used as a prime factor for the
RSA modulus.

V. CONCLUSION

The four distinct sets of primes, for which the precomputa-
tional step in modular reduction algorithms can be excluded,
are introduced in this work. Choosing the modulus from the
proposed sets gives more flexibility when implementing a
high-speed modular multiplication algorithms. The proposed
modular reduction methods are very suitable for fast hardware
implementations of some public-key cryptosystems and in
particular of Elliptic Curve Cryptography.

ACKNOWLEDGMENT

This work is funded partially by IBBT, Katholieke Uni-
versiteit Leuven (OT/06/40) and FWO projects (G.0300.07
and G.0450.04). This work was supported in part by the IAP
Programme P6/26 BCRYPT of the Belgian State (Belgian
Science Policy), by the EU IST FP6 projects (ECRYPT) and
by the IBBT-QoE project of the IBBT.

REFERENCES

[1] V. Miller. Uses of elliptic curves in cryptography. In H. C. Williams,
editor, Advances in Cryptology: Proceedings of CRYPTO’85, number 218
in Lecture Notes in Computer Science, pages 417–426. Springer-Verlag,
1985.

[2] N. Koblitz. Elliptic curve cryptosystem. Math. Comp., 48:203–209, 1987.
[3] National Institute of Standards and Technology. FIPS 186-2: Digital

Signature Standard, January 2000.
[4] M. Knežević, K. Sakiyama, J. Fan, and I. Verbauwhede. Modular

Reduction in GF(2n) Without Pre-Computational Phase. In International
Workshop on the Arithmetic of Finite Fields, LNCS, page 11. Springer–
Verlag, 2008.

[5] P. Barrett. Implementing the Rivest Shamir and Adleman Public Key
Encryption Algorithm on a Standard Digital Signal Processor. In Proc.
CRYPTO’86, pages 311–323, 1986.

[6] P. Montgomery. Modular multiplication without trial division. Mathe-
matics of Computation, 44(170):519–521, 1985.

[7] J.-F. Dhem. Design of an efficient public-key cryptographic library for
RISC-based smart cards. PhD Thesis, 1998.

[8] D. Coppersmith. Finding a Small Root of a Bivariate Integer Equation;
Factoring with High Bits Known. In Proceedings of Eurocrypt ’96 vol.
1070. Lecture Notes in Computer Science, 1996.


