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ABSTRACT 

 

The Power Flow is the most important issue to ensure an efficient yet 

affordable system. To maintain a low failure electrical breakdown or blackout 

analysis of faults leads to appropriate protection settings which can be 

computed in order to select suitable fuse, circuit breaker size and type of 

relay. The studies and detection of these faults is necessary to ensure that the 

reliability and stability of the power system do not suffer a decrement as a 

result of a critical event such a fault. This project will analyze a power 

systems under fault conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 

 

 

 

 

 

CONTENTS 

 

 

DECLARATION  

                                 

ACKNOWLEDGEMENT  

                         

ABSTRACT                 iii 

 

CONTENTS                   iv 

 

LIST OF TABLE                 viii

  

LIST OF FIGURES                  x 

 

LIST OF SYMBOLS AND ABBREVIATIONS              xii 

 

 

CHAPTER 1 : INTRODUCTION   

1.1 Design of protection       2 

1.2 Equipment of protection      3 

1.3 System protection       3 

1.4 Problem statement                                               4  

1.5 Objective        4 

 

 

CHAPTER 2 : LITERATURE REVIEW 

2.1  Introduction        5 



vi 

 

     

 

CHAPTER 3 : METHODOLOGY 

3.1 PowerWorld Simulator Network Case    10 

3.2  System Modelling via PowerWorld Simulator   10 

3.3 Power Flow Analysis Voltage Control Simulator   11 

3.4  Formulation of Power Flow      12 

3.4.1 Inner power flow loop     12 

3.4.2 Nonlinear power flow equations    12 

3.5 Power flow analysis       12 

  3.5.1 Positive sequence components    13 

 3.5.2 Negative sequence components    13 

 3.5.3 Zero sequence components     14 

3.6 Fault analysis for power system     17 

 3.6.1 Three phase fault      17 

 3.6.2 Single line-to-line fault     20 

 3.6.3 Line-to-line fault      22 

 3.6.4 Double line-to-ground fault     24 

          

          

CHAPTER 4 : DATA ANALYSIS AND RESULTS 

4.1 Power network model      29 

4.2 Power balance in power system     30 

4.3  Normalization of voltage measured in per unit instead of V 31 

 4.4 Power flow variables and parameters    32 

 4.5 Security limits in power system operating    33 

 4.5.1 Branch loading limits      33 

 4.5.2 Bus voltage limits      33 

4.6 Fault analysis        34 

 4.6.1 Three phase fault      34 

 4.6.2 Single line-to-ground  fault     35 

 4.6.3 Line-to-line fault      35 

 4.6.4 Double line-to-ground fault     36 

 



vii 

 

 

 

4.7 Fault analysis when increasing the load on Bus 3 from    

100 MW to 300 MW       37 

4.7.1 Three phase fault      37 

 4.7.2 Single line-to-ground fault     38 

 4.7.3 Line-to-line fault      38 

 4.7.4 Double line-to-ground fault     39 

4.8 Fault analysis when increasing the load on Bus 3 from    

300 MW to 600 MW       40 

4.8.1 Three phase fault      40 

 4.8.2 Single line-to-ground  fault     41 

 4.8.3 Line-to-line fault      41 

 4.8.4 Double line-to-ground fault     42 

4.9 Fault analysis when increasing the load on Bus 3 from    

600 MW to 900 MW       43 

4.9.1 Three phase fault      43 

 4.9.2 Single line-to-ground  fault     44 

 4.9.3 Line-to-line fault      44 

 4.9.4 Double line-to-ground fault     45 

4.10 Hand calculation on Bus 3 at 100 MW    46 

4.10.1 Three phase fault      46 

 4.10.2 Single line-to-ground  fault     48 

 4.10.3 Line-to-line fault      54 

 4.10.4 Double line-to-ground fault     60 

4.11 Results and discussion      67 

4.11.1 Three phase fault      67 

 4.11.2 Single line-to-ground  fault     68 

 4.11.3 Line-to-line fault      68 

 4.11.4 Double line-to-ground fault     69 

 

  

 

 



viii 

 

 

 

CHAPTER 5 : CONCLUSION 

5.1 Fault analysis visualization of results    71 

 5.2 Conclusion        72 

 

 

REFERENCES        74 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 

 

 

 

 

 

 

LIST OF TABLES 

 

 

 

 

4.1 Bus voltage for three phase fault at load 100MW   34 

4.2 Fault current for three phase at load 100MW   34 

4.3 Bus voltage for single line-to-ground fault at load 100MW  35 

4.4 Fault current for single line-to-ground at load 100MW  35 

4.5 Bus voltage for line-to-line fault at load 100MW   35 

4.6 Fault current for line-to-line at load 100MW   35 

4.7 Bus voltage for double line-to-ground fault at load 100MW 36 

4.8 Fault current for double line-to-ground at load 100MW  36 

4.9 Bus voltage for three phase fault at load 300MW   37 

4.10 Fault current for three phase at load 300MW   38 

4.11 Bus voltage for single line-to-ground fault at load 300MW  38 

4.12 Fault current for single line-to-ground at load 300MW  38 

4.13 Bus voltage for line-to-line fault at load 300MW   38 

4.14 Fault current for line-to-line at load 300MW   39 

4.15 Bus voltage for double line-to-ground fault at load 300MW 39 

4.16 Fault current for double line-to-ground at load 300MW  39 

4.17 Bus voltage for three phase fault at load 600MW   40 

4.18 Fault current for three phase at load 600MW   41 

4.19 Bus voltage for single line-to-ground fault at load 600MW  41 

4.20 Fault current for single line-to-ground at load 600MW  41 

4.21 Bus voltage for line-to-line fault at load 600MW   41 

4.22 Fault current for line-to-line at load 600MW   42 

4.23 Bus voltage for double line-to-ground fault at load 600MW 42 

 



x 

 

 

 

 

 

 

LIST OF TABLES 

 

 

 

 

4.24 Fault current for double line-to-ground at load 600MW  42 

4.25 Bus voltage for three phase fault at load9 00MW   43 

4.26 Fault current for three phase at load 900MW   44 

4.27 Bus voltage for single line-to-ground fault at load 900MW  44 

4.28 Fault current for single line-to-ground at load 900MW  44 

4.29 Bus voltage for line-to-line fault at load 900MW   44 

4.30 Fault current for line-to-line at load 900MW   45 

4.31 Bus voltage for double line-to-ground fault at load 900MW 45 

4.32 Fault current for double line-to-ground at load 900MW  45 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xi 

 

 

 

 

 

 

LIST OF FIGURE 

 

 

 

 

3.1 Methodology of creating diagram of power system   11 

3.2 Simulator solution methodology     11 

3.3 Positive sequence components     13 

3.4  Negative sequence components     14 

3.5 Zero sequence components      14 

3.6 Diagram of three phase fault      17 

3.7 Sequence network diagram of three phase fault   18 

3.8 Diagram of single line-to-ground fault    20 

3.9 Sequence network diagram of single line-to-ground fault  20 

3.10 Diagram of line-to-line fault      22 

3.11 Sequence network diagram of line-to-line fault   23 

3.12 Diagram of double line-to-ground fault    24 

3.13 Sequence network diagram of double line-to-ground fault  25 

4.1 Diagram of 5 Bus system      29 

4.2 Diagram of 5 Bus system showing active power (MW) and 

normalized Voltage (pu)      30 

4.3 Power flow list       32 

4.4 Power flow diagram when Bus 3 at 300MW    37 

4.5 Power flow diagram when Bus 3 at 600MW    40 

4.6 Power flow diagram when Bus 3 at 900MW    43 

 

 

 

 



xii 

 

 

 

 

 

 

LIST OF FIGURE 

 

 

 

 

4.7 Three phase fault       67 

4.8 Single line-to-ground fault      68 

4.9 Line-to-line fault       68 

4.10 Double line-to-ground fault      69 

5.1 Diagram of 5 bus system power flow    71 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xiii 

 

 

 

 

 

 

 

 

LIST OF SYMBOLS AND ABBREVIATIONS  

 

 

 

P – Power 

Q – Reactive power 

V  – Voltage 

I – Current 

|V| – Voltage magnitude 

 – Phase angle 

Hz – Hertz 

Cos – Cosine 

Sin – Sine 

MW – Mega Watt 

KV – Kilovolt 

(F) – Fault 

AGC – Automatic generation control 

 

 

 

 

 

 

 

 

 

 



 

CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

Different types of protections are installed to protect the equipment in an electric 

power system. Their task is to disconnect failed or overloaded equipment or parts of the 

system to avoid unnecessary damages on equipment and personnel. The purpose is also 

to limit the impact of failures on the parts of the system that have not failed. Special 

types of protection are the “system protections”. Their task is to prevent collapse (black 

out) of the system or parts of the system. 

 

An intensive development of protections based on modern information 

technology is going on both regarding hardware and software. On the hardware side 

microprocessors have been used over a long time to implement different functions in the 

protections, and with the recent developments more and more complicated functions can 

be implemented in a reliable way. Powerful methods like signal processing, state 

estimation, and “artificial intelligence”, are being integrated into the protections. In 

general the functions which earlier were handled with separate relays are increasingly 

being integrated with other functional units for control and supervision.  
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It is cost prohibitive to make power systems 100 percent safe or 100 percent 

reliable. Risk assessments are necessary for determining acceptable levels of danger 

from injury or cost resulting from damage. Protective relays are electronic or 

electromechanical devices that are designed to protect equipment and limit injury caused 

by electrical failures. Relays are only one part of power system protection, because 

protection must be designed into all aspects of power system facilities. Protective relays 

cannot prevent faults; they can only limit the damage caused by faults. A fault is any 

condition that causes abnormal operation for the power system or equipment serving the 

power system. Faults include but are not limited to: short- or low-impedance circuits, 

open circuits, power swings, overvoltages, elevated temperature, off-nominal frequency 

operation, and failure to operate. 

Power system protection must determine from measurements of currents and/or voltages 

whether the power system is operating correctly. Three elements are critical for 

protective relays to be effective: measurements, data processing, and control. 

 In order to prevent such an event, power system fault analysis was introduced. 

The process of evaluating the system voltages and currents under various types of short 

circuit is called fault analysis which can determine the necessary safety measures and the 

required protection system. It is essential to guarantee the safety of public. 

 

 

1.1 Design of Protection 

 

A protection for an electric power system comprises the following parts: 

 Measurement device with current- and/or voltage transformers and other 

sensors measuring the relevant quantities. 

 Relay which when certain conditions are fulfilled sends signals to a 

circuit breaker or another switching device. This relay was earlier a 

separate unit, but can in modern protections be a part of a larger unit for 

protection, supervision and control. 

 Circuit breakers which execute the given instruction(s) from the relay. 
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 Telecommunication system is mainly used at distance (line) protection to 

get a faster and more reliable performance. 

  Power supply systems which shall secure the power supply to the 

protection system, even with faults in the system. 

 

 

 

1.2 Equipment Protection 

 

The primary function of power system protection is to limit damage to power 

system apparatus. Whether the fault or abnormal condition exposes the equipment to 

excessive voltages or excessive currents, shorter fault times will limit the amount of 

stress or damage that occurs. The challenge for protective relays is to extract information 

from the voltage and current instrumentation that indicates that equipment is operating 

incorrectly. Although different faults require different fault detection algorithms, the 

instrumentation remains the same, namely voltages and currents.  

 

 

 

1.3 System Protections 

 

System protections are special types of protection, the primary task of which is 

not to isolate failed equipment, but to prevent that the total system large parts of it 

collapse. System protections often use information from several different points in the 

system or quantities which can give a reliable diagnosis of the state of the system. These 

systems often work in a time scale which is considerably longer than the more device 

oriented protections which were considered earlier, typically several seconds or minutes. 

An example of a system protection is load shedding. This is used to avoid that the 

frequency in the system falls below acceptable values if the generation capacity has 

dropped in the system. The load shedding then disconnects predetermined loads 

depending on how much and how fast the frequency is falling. Voltage collapse 
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protection is another system protection, the task of which is to prevent voltage collapse 

in the system. Load shedding uses only the frequency as input signal, while the voltage 

collapse protection often uses several different quantities as input signals. 

 

 

1.4 Problem statement 

 

Many organizations are turning to intelligent power technology to protect their 

data center. When power generator failures triggered, the company was compelled to 

pay out millions to their clients. The most rigorous redundancy in servers, storage and 

networking means nothing if lose the power to run it all, even briefly. If power fluctuates 

for even a few seconds, data can become corrupted or lost. A brief power disturbance 

can trigger events that require hours of data recovery time. Invisible power anomalies 

can damage sensitive components and cause malfunctions in crucial servers and 

processes and the costs are high.  

.  

 

1.5 Objective: 

 

The objectives of this project are : 

 

1. To study the 5 Bus power system transmission. 

 

2. To develop a system protection of data. 

 

3. To analyze a power systems under fault conditions. 

 

 

 

 



 

CHAPTER 2 

 

 

 

 

LITERITURE REVIEW 

 

 

 

 

Bruce G. Bailey [1] says the power monitoring system described uses 

microprocessor technology to provide protection, real-time status displays, event logging 

and power management and control for industrial AC power distribution and generation 

systems. The system uses an industrial grade host personal computer to monitor various 

device communication systems. Each device communication system consists of a 

display and monitoring unit connected by a single twisted-pair EIA RS-485 

communications interface to microprocessor-controlled power meters, trip units, 

overcurrent protective relays and/or motor protective relays on power distribution 

systems. Both metering and protection functions use RMS sensing to properly account 

for harmonics that distort waveforms. 

 

Mesut Baran and Jinsang Kim [2] developed a method for screening the Power 

Quality event records and estimating the protection system responded to disturbances. 

The method identifies the protection devices operated following a disturbance and 

checks whether there is coordination or malfunction problems with the protection 

devices involved. In the system, Mesut Baran and Jinsang Kim said the electric utilities 
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are installing power quality monitors (PQM) at substations to monitor power quality. 

Distribution substations are the preferred places for PQ monitoring. Whenever a PQM 

detects any current or voltage variation that is outside the preset threshold, it records all 

phase current and voltage waveforms. This data is stored in PQM and downloaded and 

stored in a power quality database (PQDB). The PQ event analysis uses these event 

records in the PQDB and generates a report that includes a description of disturbance 

and the system response to the disturbance. 

 

Meanwhile Dr. Z Schreiner, A.J. Middleton and J. Bizjak [3] has adopted a new 

intelligent mobile approach for secondary systems maintenance, enabling Advanced 

Data Management  together with access to rapid, automatic and reliable testing 

procedures. The paper describes the solution and how it provides documentation 

optimization with automatic synchronization of the mobile data throughout the 

enterprise. The team said the new system enables management and testing of power 

system protection devices to be carried out by single or multiple users and also from 

different locations, including switchgears, substations, power plants etc. Mobile working 

is supported by notebooks with local databases, followed by automatic synchronization 

after connection to the server via LAN or WAN. Maintenance of modern protection 

devices must be adapted to existing and future technologies for example the 1EC61850.  

The authors’ present new developments in protection testing methodology termed SOR 

(Stabilization-Operation-Reset).  SOR is a standard, simple and vendor-independent test 

methodology and experienced conducting practical test of SOR for future trends in 

Mobile Data Management. The Project Team added, the new system must be extremely 

user friendly and intuitive. The simplicity of the system from the user point of view was 

seen to be the fundamental issue and also the new system had to be capable to manage 

protection parameters no matter to the generation, producer and type of the asset. That 

means that the system is also suitable for legacy devices (electromechanical and 

analogue protection devices) that do not have a capability to import the protection 

parameters. As a result, the system had to have the capability of manual input of 

protection parameters. 
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Mladen Kezunovic [4] from Texas A&M University, said one issue that did not 

get adequate attention regarding control and protection of power systems in the past is 

the data integration and information exchange. The traditional approaches assume that 

each function such as protection, control, monitoring, and maintenance are supported by 

a separate infrastructure of recording instruments and/or controllers for obtaining and 

processing data. With introduction of the new computer-based equipment for control and 

protection in the mid eighties, the integration of data and information exchange were 

possible, but not explored. This paper indicates the improvements and benefits that can 

be obtained by integrating the data and exchanging information among control and 

protection as well as system-wide monitoring and control functions. 

 

Zhang Hai Yang and Li Shan De [5] discover the key idea to make certain 

changes to the protection system is respond due to the load changes, such as power 

failures caused by switching operations or changes in the power system. By referring to 

the basic principle of protection, adaptive protection automatically adjust the relay to a 

various protection functions, or changes to more suitable for a given power system 

conditions. For general protection adaptive capacity and detecting some aspects of 

complex fault there are some limitations and hardware circuit of microprocessor line 

protection device. Both hardware and algorithm considers the anti-jamming methods. 

On the software side, they use new method of frequency measurement, dynamically 

tracking changes of frequency, real-time adjustment of sampling frequency for sampling 

and developed the new algorithm in improving data accuracy and simplifying the 

hardware circuit. The adaptive principle is applied to the microprocessor line protection, 

adaptive instantaneous overcurrent protection, overcurrent protection principles, to meet 

the requirements of rapid change operation mode to improve the performance of line 

protection. Relay protection needs to adapt to frequent changes in the power system 

operating mode, correctly remove various failure and equipment, and adaptive relay 

protection maintains a system of standard features in case 

of parameter changes. The simulation results show that it is an effective adaptive 

method. 
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Takaya Shono, Katsuhiko Sekiguchi, Tatsuji Tanaka, Member and Shigeki 

Katayama [6] developed a system which can reduce the total cost of maintenance and 

management of protection and control equipment. In the system, they have proposed an 

Intranet Power System which performs supervisory control of a power system using 

Internet technology and they also have proposed a mobile agent for power system 

protection and control system as part of the Intranet Power System. In this paper, the 

Real-Time Mobile Agent Platform (MAP) provides more powerful functions to 

synchronize between two or more agents in a distributed node, and redundancy to deal 

with unexpected communication failure. So the agent can now be applied to the power 

system protection and control system for which real time operation and advanced 

reliability are required. They said, at present, a Remote Operating and Monitoring 

System for protection and control equipment has been verified for real use and put into 

service. However, in order to perform maintenance or event analysis for two or more 

equipments, it is necessary for the operator to use the terminal (PC) for data collection 

and analysis, connecting and communicating individually. 

  

Jianxin Tang [7] studies the optimal power flow (OPF) in a power grid using the 

PowerWorld Simulator for an undergraduate power system course. He discussed the 

cases of with and without transmission line losses. The results from the simulations are 

compared to analytical and numerical calculations. The visual results from the simulator 

allow students to better understand the OPF and how to use the simulator to perform 

more advanced simulation of power grid. 

  

Fangxing LI and Rui Bo [8] present two small test systems for power system 

economic studies. The first system is based on the original PJM 5-bus system, which 

contains data related to real power only because it demonstrates results based on the 

linearized DC optimal power flow (OPF) model. Fangxing LI and Rui Bo suggests some 

modification to the original data, as well as new parameters related to reactive power 

such AC-model-based simulation is possible. The second system is based on the original 

IEEE 30-bus system, which is an AC system, but it does not have economic data such as 
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generation costs and transmission network limits. Both of them suggest some reasonable 

values for generation costs and transmission limits.  

  



 

CHAPTER 3 

 

 

 

 

METHODOLOGY 

 

 

 

 

3.1 Powerworld Simulator Network Case 

 

PowerWorld is a power system visualization, simulation and analysis tool. This case 

study contains information such as bus data, generator data and branch data which this 

information is needful to complete power flow diagram of system. There is a certain 

information need to fill up without information given in the study case such as rating of 

transformer that connects to every bus. 

 

 

3.2  System Modelling via PowerWorld Simulator 

 

Before starting a power flow via PowerWorld Simulator, the system must have the 

information about the systems element such as generator, transmission lines, transformer 

and load. The orders in which they are input are shown in Figure 3.1 below. 
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Figure 3.1  Methodology of creating diagram of power system 

 

 

3.3 Power Flow Analysis and Voltage Control using Simulator 

 

In the Power Flow Analysis, the formulation of the power flow problem is using the 

Newton’s method for solving the power flow. In the PowerWorld Simulator, the 

simulator actually uses three nested loops to solve the power flow. 

 

 

Figure 3.2 Simulator Solution Methodology 

Case identification 

Bus Data 

Generator 

Transmission Line 

Load Data 

Running Case 
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3.4 Formulation of Power Flow 

 

3.4.1 Inner Power Flow Loop 

 

The goal is to solve the nonlinear power balance equations for all system buses. For an n 

bus power system : 

 

                                                                   (3.1) 

 

where; 

                                                        

                                            

                                     

 

 

3.4.2    Nonlinear Power Flow Equations 

 

The complex nonlinear power balance equations are : 

 

                                                                             (3.2) 

                                                                               (3.3) 

 

3.5 Power flow analysis 

 

Power flow (or load flow) analysis provides the steady-state solution of a power network 

for specific network conditions which include both network topology and load levels. 

The power flow solution gives the nodal voltages and phase angles and hence the power 

injections at all buses and power flows through lines, cables and transformers. It is the 

basic tool for analysis, operation, and planning of distribution networks. In a power 

system, each busbar is associated with four quantities. There are the magnitude of 

voltage (|V|) and its angle (θ), real power injection (P) and reactive power injections (Q).  
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Analyzing any symmetrical fault can be achieved using impedance matrix 

method or Thevenin’s method. Fortescue’s theorem suggests that any unbalanced fault 

can be solved into three independent symmetrical components which differ in the phase 

sequence. These components consist of a positive sequence, negative sequence and a 

zero sequence.  

 

 

3.5.1  Positive Sequence Components  

 

The positive sequence components are equal in magnitude and displayed from each 

other by 120° with the same sequence as the original phases. The positive sequence 

currents and voltages follow the same cycle order of the original source. In the case of 

typical counter clockwise rotation electrical system, the positive sequence phasor are 

shown in Figure 3.3. The same case applies for the positive current phasors. This 

sequence is also called the “abc” sequence and usually denoted by the symbol ‘+’ or ‘1’. 

 

 

Figure 3.3  Positive sequence components 

 

 

 

3.5.2 Negative Sequence Components  

  

This sequence has components that are also equal in magnitude and displayed from each 

other by 120° similar to the positive sequence components. However, it has an opposite 

phase sequence from the original system. The negative sequence is identified as the 

“acb” sequence and usually denoted by the symbol ‘-’ or ‘2’. The phasors of this 

sequence are shown in Figure 3.4 where the phasors rotate anti-clockwise. This 
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sequence occurs only in case of an unsymmetrical fault in addition to the positive 

sequence components, 

 

Figure 3.4  Negative sequence components 

 

 

3.5.3 Zero Sequence Components  

  

In this sequence, its components consist of three phasors which are equal in magnitude 

as before but with a zero displacement. The phasor components are in phase with each 

other. This is illustrated in Figure 3.5.  

 Under an asymmetrical fault condition, this sequence symbolizes the residual 

electricity in the system in terms of voltages and currents where a ground or a fourth 

wire exists. It happens when ground currents return to the power system through any 

grounding point in the electrical system. In this type of faults, the positive and the 

negative components are also present. This sequence is known by the symbol ‘0’. 

 

 

 

 

Figure 3.5  Zero sequence components 
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The following are three sets of components to represent three-phase system voltages as 

positive, negative and zero components : 

  

   Positive component    =              

   Negative component    =              

   Zero component    =              

 

The addition of all symmetrical components will present the original system phase 

components Va, Vb and Vc as seen below : 

 

                        

                                               (3.4) 

                        

 

The ‘a’ operator is defined below : 

                                                                                   (3.5) 

 

The following relations can be driven as below : 

              

           

 

From the above definition and using the ‘a’ operator, it can be translated into a set of 

equations to represents each sequence : 

  

Zero sequence components  :                                                     (3.6) 

Positive sequence components :                                            (3.7) 

Negative sequence components  :                                            (3.8) 
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The original system phasors Va , Vb and Vc can be expressed in terms of phase ‘a’ 

components. The equation can be written as follows : 

                           

                                                                        (3.9) 

                              

 

Writing the above equations can be accomplished in a matrix form : 

 
  
  

  

      
   
    
    

  
   

   

   

                                           (3.10) 

 

Defining A as : 

      
   
    
    

                                                            (3.11) 

 

The equation (3.10) can be written as : 

 
  
  

  

       
   

   

   

                                                               (3.12) 

 

The equation above can be inversed to obtain the positive, negative and zero sequences 

from the system phasors : 

 
   

   

   

         
  
  

  

                                                            (3.13) 

 

Where      is equal to the following : 

       
 

 
  

   
    
    

                                                     (3.14) 

 

These equations can be applied for the phase voltages and currents. It also can be 

express for line currents and line-to-line voltages of any power system under fault 

conditions. 
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3.6 Fault Analysis in Power System 

 

Fault studies form an important part of power system analysis [11].The problem consists 

of determining bus voltages and line currents during various types of faults. Faults n 

power systems are divided into three-phase balanced faults and unbalanced faults. 

Different types of unbalanced faults are single line-to-ground fault, line-to-line fault and 

double line-to-ground fault.[8] 

 

 

3.6.1 Three Phase Fault 

 

A three phase fault is defined as the simultaneous short circuit across three phases. It 

occurs infrequently but it is the most severe type of fault encountered. Some of the 

characteristics of a three phase fault are very large fault current and usually a voltage 

equals to zero at the site where the fault takes place. 

 A general representation of a balanced three phase fault is shown in Figure 3.6 

where F is the fault point with impedances Zf and Zg. Figure 3.7 shows the sequences 

networks interconnection diagram. 

 

 

Figure 3.6  Diagram of three phase fault 
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Figure 3.7  Sequence network diagram of balanced three phase fault 

 

From figure 3.7 positive sequence network has an internal voltage source. Therefore, the 

corresponding currents for each of the sequences can be expressed as 

           

         (3.15) 

       
        

     
 

 

If the fault impedance Zf is zero, 

       
        

  
 (3.16) 

If the equation is substituted into equation 

 

   

   
   

      
   
    
    

  
 
   

 
   (3.17)

   

Solving equation 3.17 
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Since the sequence networks are short-circuited over their own fault impedance 

           

                (3.19) 

         

 

If the equation is substituted into Equation 

 

   

   

   

      
   
    
    

  
 

   

 
   (3.20) 

 

Therefore, 

                    

                                                                                 (3.21) 

                          

 

The line-to-line voltages are 

                                             

                       
                              (3.22)                          

                                             

 

If Zf is equal to zero, 

       
        

  
       

       
          

  
                                                                                          

       
          

  
       

                                  

The phase voltage becomes, 

                       (3.24) 
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The line voltages, 

                       (3.25) 

 

 

3.6.2 Single Line-To-Ground Fault 

 

The single line-to-ground fault is referred as short circuit fault and it is occurs when one 

conductor falls to ground or makes contact with neutral wire. The diagram on Figure 3.8 

shows a single line-to-ground fault where F is the fault point with impedances Zf. Figure 

3.9 shows the sequences network diagram. Phase a is assumed to be the faulted phase. 

 

Figure 3.8  Diagram of single line-to-line fault 

 

 

Figure 3.9  Sequence network diagram of single line-to-line fault 
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Since the zero sequence, positive sequence and negative sequence currents are equals 

therefore, 

                  
        

             
                                              

 

 Since, 

 

   

   
   

      
   
    
    

  
   

   

   

   (3.27) 

 

Solving Equation the fault current for phase a is 

                       (3.28) 

 

It can also be 

                          (3.30) 

 

From Figure 3.8 it can be observed that, 

               (3.31) 

 

The voltage at faulted phase a can be obtained by substituting Equation 3.27 into 

Equation 3.29. Therefore,  

                (3.32) 

                       (3.33) 

                 =           (3.34) 

 

With the results obtained for sequence currents, the sequence voltages can be obtained 

from, 

 
   

   

   

      
 

      
 

  
   
    
    

  
   

   

   

   (3.35) 
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By solving Equation 

                                                                

                                                                   (3.36) 

                                                                

 

If the single line-to-ground fault occurs on phase b or c, the voltages can be found by the 

relation that exist to the known phase voltage components, 

 

   

   

   

      
   
    
    

  
   

   

   

   (3.37) 

 

and 

                          (3.38) 

                          

 

 

3.6.3 Line – To – Line Fault 

 

A line to-line fault may take place either on an overhead and/or underground 

transmission system and occurs when two conductors are short circuited. The 

characteristic of line-to-line fault is the fault impedance magnitude could vary over a 

wide range and it is very hard to predict its upper and lower limits.  

 When the fault impedance is zero, the highest asymmetry at the line-to-line fault 

occurs. Figure 3.10 shows the diagram of line-to-line faut. 

 

Figure 3.10  Diagram of line-to-line fault 
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Figure 3.11 Sequence network diagram of line-to-line fault 

 

From Figure 3.11, the equations are 

                                                           

                                                             (3.39) 

                                                               

 

The sequence currents can be obtained as 

                                                           

              
        

         
                                                                                                                        

  

If Zf  =  0 

              
        

     
                                                                                                                              

 

The fault currents for phase b and c can be obtained by substituting Equations 3.40 into 

Equation 3.27. 

                                                                                    (3.42) 

 

The sequence voltages can be found by substituting Equation 3.40 into Equation 3.35 

         

                                                                   (3.43) 

              =            
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Also substituting Equation 3.41 into Equation 3.35 

                                       ) 

                                                     (3.44) 

                                     
          

 

The line-to-line voltages for line-to-line fault can be expressed as 

                  

                   (3.45) 

                  

 

 

 

3.6.4 Double Line – To – Ground Fault 

 

Double line–to –ground fault represents a serious event that causes a significant 

asymmetry in a three phase symmetrical system and it may spread into a three phase 

fault when not clear in appropriate time. 

 When analyzing double line-to-ground fault, the assumption of the impedance Zf 

and value of the impedance toward the ground Zg. Figure 3.12 shows the diagram of 

double line-to-ground where F is the fault point with impedances Zf and the impedance 

from line to ground Zg. Figure 3.13 shows the sequence network diagram. Phase b and c 

are assumed to be the faulted phases. 

 

Figure 3.12  Diagram of double line-to-ground fault 



74 
 

 
 

 

 

 

 

 

REFERENCES 

 

 

 

 

1. Bruce G. Bailey, Power System Protection – Power Monitoring – Data 

Logging – Remote Interrogation System. IEEE. 2005 

 

2. Mesut Baran and Jinsang Kim, Protection Device Monitoring Using Data 

from Power Quality Monitoring Devices, IEEE.2008 

 

3.  Dr. Z Schreiner, A.J Middleton and J. Bizjak, Innovative Technique for 

Intelligent Power System Mobile Data Management. pg 459-464 

 

4.  Mladen Kezunovic, Data Integration and Information Exchange for 

Enhanced Control and Protection of Power System, Proceedings of the 

36th Hawaii International Conference on System Sciences. 2002. 

 

5.  Zhang Hai Yang and Li Shan De, Design of Adaptive Line Protection 

under Smart Grid, The International Conference on Advanced Power 

System Automation and Protection 2011, pg 599-603 

 

6.  Takaya Shono, Katsuhiko Sekiguchi, Tatsuji Tanaka and Shigeki 

Katayama,  A Remote Supervisory System for a Power System Protection 

and Control Unit Applying Mobile Agent Technology.pg 148-153, IEEE 

2002 

 

 



75 
 

 
 

 

 

8.  Janaka Ekanayake, Kithsiri Liyanage, JianzhongWu, Akihiko Yokoyama 

and Nick Jenkins, Smart Grid Technology And Applications 

 

9.  Anthony J. Pansini, Guide to Electrical Power Distribution System. 6th 

edition. Lilburn GA. The Fairmont Press. 2005 

 

10. Turan Gonen,  Electric Power Transmission System Engineering, 

Analysis and Design, Crc Press Taylor and Francis Group.  

 

11.  Paul M. Anderson, Analysis of Faulted Power Systems. The Institute of 

Electrical and Electronics Engineers, Inc. 1995. 




