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ABSTRACT 

 

 

 

This thesis presents the governing equation of flight motions which can be used to 

describe the flight behavior of any type flying vehicles consist of 12 equations 

described 12 state – space variables involving the aircraft position and aircraft 

aptitude with respect to the inertial coordinate system and also with respect to their 

axis body system had been used. These twelve equations are coupling each to others 

and in the forms highly non linear equation; the numerical approach is required for 

solving such system equation. The coefficient of system equation can be said as a 

result of the combination between aircraft’s mass and inertia, aircraft geometry 

properties and also their aircraft   aerodynamics derivatives. The present work is 

focused in the development computer code which allows in manner of determining 

the root of equation of the 12 equations which described the flight behavior for 

particular airplane. Through determining the root of equation one will able to carry 

out a non linear transient analysis such as aircraft at landing approaches gust 

response and pilot initiated maneuvers. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

vii 

 

 

 

ABSTRAK 

 

 

 

Tesis ini membentangkan persamaan menakluk gerakan penerbangan yang boleh 

digunakan untuk menerangkan tingkah laku penerbangan apa-apa jenis kenderaan 

terbang terdiri daripada 12 persamaan yang dinyatakan 12 negeri - pembolehubah 

ruang yang melibatkan kedudukan pesawat dan kebolehan pesawat berkenaan 

dengan sistem koordinat inersia dan juga dengan berkenaan dengan sistem badan 

paksi mereka telah digunakan. Dua belas persamaan tersebut menggandeng setiap 

satu kepada orang lain dan dalam bentuk persamaan sangat tidak linear ; pendekatan 

berangka diperlukan untuk menyelesaikan persamaan sistem itu. Pekali persamaan 

sistem boleh dikatakan sebagai hasil daripada gabungan antara jisim pesawat itu dan 

inersia , harta geometri pesawat dan juga derivatif aerodinamik pesawat mereka. 

Kajian yang memberi tumpuan dalam pembangunan kod komputer yang 

membolehkan dalam cara menentukan akar persamaan daripada 12 persamaan yang 

digambarkan kelakuan penerbangan untuk pesawat tertentu. Melalui penentuan akar 

persamaan satu wasiat dapat menjalankan analisis linear sementara tidak seperti 

pesawat di pendaratan pendekatan sambutan tiupan dan juruterbang memulakan 

gerakan. 
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CHAPTRE 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

 

1.1 Introduction 

 

 

The governing equation of flight motions which can be used to describe the flight 

behavior of any type flying vehicles consist of 12 equations described 12 state – space 

variables involving the aircraft position and aircraft aptitude with respect to the inertial 

coordinate system and also with respect to their axis body system had been used.  These 

twelve equations are coupling each to others and in the forms highly non linear 

equation; the numerical approach is required for solving such system equation.   The 

coefficient of system equation can be said as a result of the combination between 

aircraft’s mass and inertia, aircraft geometry properties and also their aircraft   

aerodynamics derivatives.  Such combination had made each equation which described 

the behavior of flight has own characteristics.  

 

The present work is focused in the development computer code which allows in 

manner of determining the root of equation of the 12 equations which described the 

flight behavior for particular airplane.  
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Through determining the root of equation one will able to carry out a non linear 

transient analysis such as aircraft at landing approaches gust response and pilot initiated 

maneuvers. 

 

1.2 Background  

 

 

The flight equation of motion represents the governing equation of flying vehicle which 

can be used to describe what kind movement of the flying vehicle will be.  If one able to 

control the aerodynamic forces and moments acting on the flying vehicle at any instant 

time including the capability for controlling the required thrust, it will make such flying 

vehicle becomes an autonomous flying vehicles. Since through the governing equation 

of flight motion which normally solved to obtain the aircraft position, altitude and 

velocity can be inverted to become the problem of prescribing flight trajectory and 

control mechanism as its solution. Through these experiences of solving the governing 

equation of flight motion, it can be expected to give a plat form in developing a 

particular aircraft to become an Unmanned Aerial Vehicles in the future work.  However 

it had been understood, that design flight control mechanism to allow the airplane able 

to control its movement arbitrary at various flight condition are  so complex and difficult 

task,  it is therefore for only particular flight maneuver the aircraft designed to be 

autonomous as result various type of UAV had been developed to fulfill different 

purposes.  

In parallel of the advancement of computer technology, material, propulsion 

system and better understanding on the aircraft stability had made the development of 

autonomous flying vehicle becomes an attracted matter. The applications of UAV are 

widely had been recognized whether for civilian or military purposed. The military 

purposes may the UAV can serve for[1]:  

 

Surveillance for peacetime and combat synthetic aperture radar (SAR).  

Reconnaissance surveillance and Target acquisition (RSTA). 
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Maritime operations (Naval fire support, over the horizon targeting, anti-ship 

missile deference, ship classification). 

Meteorology missions.  

Electronic warfare (EW) and SIGNT (Signals Intelligence).  

Deception operations. 

 

While for civilian applications, the UAV can be used for:  

Communications relay. High altitude long endurance UAVs can be used as 

satellites.  

Law enforcement. VTOL UAVs can take the role of police helicopters in a more 

cost effective way.  

Disaster and emergency management. Arial platforms with camera can provide 

real time surveillance in hazardous situations such as earthquakes.  

Research. Scientific research of any nature (environmental, atmospheric, 

archaeological, pollution etc) can be carried out UAVs equipped with the appropriate 

payloads.  

Industrial applications. Such application can be crops spraying, nuclear factory 

surveillance, surveillance of pipelines etc. 

 

Considering that there are a lot of application can be served through the use of 

UAV, it is therefore, the ability to develop the UAV based on own design is necessary in 

order to limit the foreign dependence in this type of technology. 

 

1.3 Problem statements  

 

 

 As unmanned flying vehicle, it is means that the aircraft has capability to control their 

flight path over any kind of disturbance may appear during their flight. Such capability 

only can be obtained through the use of flight control system placed inside the aircraft. 

Flight control system represents computer software which required the aerodynamics 

data for that aircraft in order to allow developing flight mechanism for controlling the 
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aircraft. Flight control system can be considered as inverse problem of solving the 

governing equation of flight motion. In the stage of development in developing flight 

control on board it is necessary to develop a computer code for solving the governing 

equation of flight motion for a given aerodynamic characteristics, control surfaces 

movement and aircraft’s mass and inertia properties to Obtain the transient flight 

phenomena if the airplane under small disturbance.  

 

1.4 Thesis objective  

 

 

The objectives of the research work are to develop computer code which allows one to 

define the characteristics properties of each equation of the system equation of aircraft’s 

flight motions.  

 

1.5 Scope of study 

 

 

Refer to the objectives of the research work as mentioned in the previous of paragraph, 

the scope of study will be conducted in the present work involves:  

 

 Understanding coordinate system applied to the airplane namely the earth 

coordinate system, aircraft   body axis coordinate system and the aircraft stability 

coordinate system.  

Understanding how to derive the governing equation of flight motion. 

Development computer code for solving root equation of each of equation 

defining the aircraft motion. 

Obtain the transient flight phenomena if the airplane under small disturbance.  
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CHAPTER 2 

 

 

 

 

LITERATUR REVIEW 

 

 

 

 

2.1 Type of Aircraft 

 

 

To fulfill the need of various activities in modern life, the aircraft development was not 

focused on particular type of aircraft. The aircraft industries around the world had been 

produced various kinds of aircraft. Hence some manner how to classify is needed. 

Currently there are various manners to classify the type of aircraft.  Basically in manner 

one in classifying the aircraft defined according to the following groups: 

 

1. Method of Lift Generated 

2. Propulsion 

3. Design and construction 

4. Flight characteristic 

5. Impact and use 

6. Piloted and Unpiloted Aircraft    
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2.2 Mission profile and overview  

 

 

For any aircraft designed without pilot on board called as unmanned aerial 

vehicle (UAV). Without pilot on board made the size of vehicle can be reduced 

significantly but at the same time the ability to maintain their safety flight are highly 

demanded. In line with the progress of aircraft technology development in respect to the 

design procedures, material, manufacturing and the rapid progress in electronics, 

communication system and computing power had made a further effort for UAV’s 

development becomes apparent. The UAV has gained interest for military or civilian 

users. Military users may look the UAV with a particular design can perform a variety 

of missions supporting military and intelligence purposes. The list below presents the 

military applications that UAVs have served up to now [1].  

 

Surveillance for peacetime and combat synthetic aperture radar (SAR).  

Maritime operations (Naval fire support, over the horizon targeting, anti-ship missile 

deference, ship classification).  

 

Adjustment of indirect fire and close air support (CAS).  

Meteorology missions.  

Ratio and data relay.  

Battle damage assessment (BDA). 

Reconnaissance surveillance and target acquisition (RSTA).  

Deception operations.  

Electronic warfare (EW) and SIGNT (Signals Intelligence).  

Route and landing reconnaissance support. 

 

While from the point of view, civilian users, the Unmanned Aerial Vehicles may 

be used for the one of following mission [1]:  
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Communications relay. High altitude long endurance UAVs can be used as 

satellites.  

Disaster and emergency management. Arial platforms with camera can provide 

real time surveillance in hazardous situations such as earthquakes.  

Industrial applications. Such application can be crops spraying, nuclear factory 

surveillance, surveillance of pipelines etc.  

Search and rescue. Looking for survivors from shipwrecks, aircraft accidents etc.  

Research. Scientific research of any nature (environmental, atmospheric, 

archaeological, pollution etc) can be carried out UAVs equipped with the appropriate 

payloads.  

Wild fire suppression. UAVs equipped with infrared sensors can detect fire in 

forests and notify the fire brigade on time.  

Border interdiction. Patrol of the borders by aerial platforms.  

Law enforcement. VTOL UAVs can take the role of police helicopters in a more 

cost effective way.  

 

In more specific purposes, where the mission condition in civil application is 

unsafe mission, the UAV can be used to carry out to conduct such mission the mission 

for:  

 

Surveillance over nuclear reactors.  

Surveillance over Hazardous chemicals.  

Fire patrol.  

Volcano patrol.  

Hurricane observations.  

Rescue missions over adverse weather conditions.  

 

Above explanation clearly indicated that there are a numerous missions can be 

performed by the use of UAV. Each mission may require a specific aircraft 

configuration, payload and size. For a long endurance UAV may require a sufficient size 

of UAV to accommodate the required fuel.  
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The UAV which designed for law enforcement by authority body may require 

the UAV in the form of Helicopter rather than fixed wing aircraft in order to provide the 

ability to take off and landing vertically in crowded area and hovering over particular 

region may need to be investigated carefully. A good review on UAV mission for 

military application may be found in
[2]

. 

 

2.3 Some Examples of UAV Model Already Developed 

 

 

Unmanned Aerial Vehicles, or UAVs, as they have sometimes been referred to, have 

only been in service for the last 60 years [3]. UAVs are now an important addition to 

many countries air defenses. Modern UAVs have come a long way since the unmanned 

drones used by the USAF in the 1940s [4]. These drones were built for spying and 

reconnaissance, but were not very efficient due to major flaws in their operating 

systems. Over the years UAVs have been developed into the highly sophisticated 

machines in use today. Modern UAVs are used for many important applications 

including coast watch, news broadcasting, and the most common application, defense. 

With a growing number of UAVs being developed and flown in recent years 

there is the problem of classifying these new UAVs. As UAVs are used in a variety of 

applications it is difficult to develop one classification system that encompasses all 

UAVs. It has been decided that the UAVs will be classified into the two main aspects of 

a UAV, their performance specifications and their mission aspects [5].  

The specifications of a UAV include weight, payload, endurance and range, 

speed, wing loading, cost, engine type and power. The most common mission aspects 

are ISTAR, Combat, Multi-purpose, Vertical Take-off and landing, Radar and 

communication relay, and Aerial Delivery and Resupply. It is important to have a 

classification system for UAVs as when a specific UAV is needed for a mission it can 

be easily chosen from the wide variety of UAVs available for use. 
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2.4 Predator [6, 7, 8]  

 

2.4.1 Predator Description 

 

 

Predator is a Medium-Altitude Endurance (MAE) UAV designed to provide battlefield 

surveillance with a beyond line of sight communications capability. This aircraft is an 

evolution from the General Atomics Gnat UAV. The Predator program began in 1994 as 

an Advanced Concept Technology Demonstrator (ACTD). The program transitioned to 

operational use very early in development [6]. 

 

2.4.2 Geometry Characteristics 

 

 

The Predator key geometry characteristics are shown graphically in Figure 2.1, and 

numerically in Table 2.1. 

 

 

Figure 2.1: Predator UAV [9] 
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Table 2.1: Predator Geometry [6] 

Description Value Source 

Wing span 48.7 ft 
Jane’s 

[1999] 

Aspect ratio 19.25 
Jane’s 

[1999] 

Sweep (quarter chord) 0
o
 

Jane’s 

[1999] 

Fuselage Length 26.7 ft 
Jane’s 

[1999] 

Length 27 ft 
Jane’s 

[1999] 

 

Table 2.1 (continued) 

Description Value Source 

Height 6.9 ft 
Jane’s 

[1999] 

Weight 1,130 lbs (empty) 
Jane’s 

[1999] 

Runway (ISA) Improved,3000 ft * 100 ft 
Jane’s 

[1999] 

Max Gross Take-off 

Weight 
2250 lbs 

Jane’s 

[1999] 

Fuel 
Type: 110 LL avgas ; capacity: 

110 lits 

Jane’s 

[1999] 

 

2.4.3 Propulsion 

 

 

Predator uses the Rotax 914 reciprocating engine to drive a pusher propeller. Major 

engine characteristics are presented in Table 2.2. 
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Table 2.2: Predator Propulsion Characteristics [6] 

Item Value Source 

Maximum Power 

(S/L) 
105 HP 

Jane’s 

[1999] 

BSFC 0.5 lbm/HP-hr 
Assum

ed 

Weight 150.4 lbs 
Jane’s 

[1999] 

 

 

2.4.4 Avionics 

 

 

Predator has a relatively simple avionics suite compared to Global Hawk. Predator is 

largely a single-sting system with little redundancy. A summary of the Predator avionics 

weights is presented in Figure 2.2. 

 

 

Figure 2.2: Predator Avionics Weights Summary [6] 
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2.4.5 Subsystems 

 

 

A summary of the Predator subsystems weights is presented in Figure 2.3. 

 

Figure 2.3: Predator Subsystems Weights Summary [6] 

 

2.4.6 Structures 

 

 

The structure is largely made of carbon/epoxy composites [Jane’s 1999]. The smaller 

Gnat UAV in the Predator family is stressed for 6 G maneuvers at an unspecified 

weight. Absent of further information, the 6 G loading was applied to the Predator. A 

summary of the Predator structural weights is presented in Figure 2.4. 
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Figure 2.4: Predator Structural Weight Summary [6] 

 

2.4.7 Performance 

 

 

The mission profile for Predator is 24 hours time on station at a 500 nautical mile radius, 

according to Jane’s [1999]. The 2003 General Atomics Predator brochure indicates that 

the performance is 24 hours time on station at a 400 nautical mile radius. The Jane’s 

[1999] mission profile was used here. The EO/IR-SAR payload combined weight of 181 

pounds was used, not the maximum payload capacity. An additional one-hour loiter at 

sea level is added to account for recovery operations. A ceiling of 25,000 feet was 

imposed on the mission performance calculation. A climb from sea level to 20,000 feet 

was included in the ingress segment. The descent from the final loiter point to sea level 

was included in the egress segment. The Predator altitude and velocity performance is 

shown in Figure 2.5 and Figure 2.6. 
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Figure 2.5: Predator Altitude Profile [6] 

 

 

Figure 2.6: Predator Velocity Profile [6] 

 

2.4.8 Predator’s Design Technology 

 

 

The weights and performance calibration process resulted design technology levels 

shown in Table 2.3. 
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Table 2.3: Predator Design Technology Level [6] 

Design Item Tech Level (0-1) 

Volume Efficiency 0.5 

Induced Drag 0.4 

Interference Drag 1.0 

Wave Drag 
1.0 (No compressibility 

impacts) 

Laminar Flow 0.4 

Factor Of Safety 1.0 

Weight Growth 0.75 

Installation Weight 1.0 

 

2.5 Global Hawk [6, 10, 11, 12] 

 

2.5.1 Global Hawk Description 

 

 

The Global Hawk is the first and only operational strategic high altitude UAV. This 

system began development in 1994 [6]. Global Hawk started as an Advanced Concept 

Technology Demonstrator (ACTD) with many goals, but the only firm requirements was 

a fixed Unit Fly-away Price (UFP). Many modifications have occurred to improve the 

system, and it has experienced operational use in wartime. Therefore, the available 

performance numbers represent the estimated performance of the vehicle as built, not 

necessarily as designed. As with nearly any aircraft program, the performance changes 

over time due to weight growth, system modifications, and other considerations. An 

attempt is made to calibrate the code against a representative Global Hawk [6]. 
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2.5.2 Geometry Characteristics 

 

 

A rendering of Global Hawk is shown in Figure 2.7 and some important geometrical, 

weight and other Global Hawk characteristics are shown in Tables 2.4. 

 

 

Figure 2.7: Global Hawk UAV [13 

 

Table 2.4: Global Hawk Geometry
 
[6, 14] 

Item Value Source 

Wing span 35.42 m 
Jane’s 

[1999] 

Length 13.52 m 
Jane’s 

[1999] 

Height 4.60 m 
Jane’s 

[1999] 

Wing area 50.2 m² 
Jane’s 

[1999] 

Weight MTOW 12111 kg 
Jane’s 

[1999] 

Aspect ratio 25.09 Jane’s 
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[1999] 

Equipped empty 

weight 
4177 kg 

Jane’s 

[1999] 

Take-off weight 11622 kg 
Jane’s 

[1999] 

Fuel weight 6583 kg 
Jane’s 

[1999] 

Mission equipment 

weight 
900 - 1000 kg 

Jane’s 

[1999] 

 

Detailed geometry characteristics were found through scaling of 3-view 

drawings. The results were integrated into the detailed geometry input files [6]. 

 

2.5.3 Propulsion 

 

The Global Hawk engine is the Rolls-Royce 3007H. Major engine characteristics are 

shown in Table 2.5. 

 

Table 2.5: Global Hawk Propulsion [6] 

Item Value Source 

Thrust (T-O S/L) 8,290 lbs 
Jane’s 

[1999] 

TSFC 0.33 lbm/lb-h 
Jane’s 

[1999] 

Weight (Dry) 1,581 lbs 
Jane’s 

[1999] 

Length 8.88 ft 
Jane’s 

[1999] 

Diameter 3.63 ft 
Jane’s 

[1999] 
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In addition to the engine, an additional 50 pounds of propulsion weight was 

added to account for the engine control electronics and actuators, as an assumption [6]. 

 

2.5.4 Avionics 

 

 

Global Hawk is known to have an extensive electronics suite. Weights for all of the 

components are not available. Details of some avionics components, such as INS and 

data recorders, are found in Global Hawk literature and vendor data sheets. The assumed 

avionics weights use a fragmentary Master Equipment List (MEL), developed from 

information generated from Altmann [2002] and Janes [1999], as guidance. Figure 2.8 

shows the avionics weights determined for the calibration case. 

 

 

Figure 2.8: Global Hawk Avionics Weights Summary [6] 
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2.5.5 Subsystems 

 

 

Global Hawk has a complex set of subsystems. A list of known subsystems identified by 

Altmann and Janes is captured in the simple MEL. Unfortunately, no weights data is 

available for the subsystems. Therefore, no actual weights were used, only assumed 

subsystem weights and parametric methods. The resulting subsystems weights are 

shown in Figure 2.9. 

 

 

Figure 2.9: Global Hawk Subsystems Weights Summary [6] 

 

2.5.6 Structures 

 

 

The Global Hawk structure consists of the main wing, tails, fuselage, nacelle, landing 

gear and installation weight. No direct weights data is available for the structure. 

However, Altmann [2002] provides useful information to describe the structural design 

drivers and philosophy. The factor of safety for the structure is 1.25. Altmann provides a 

V-N diagram that indicates that the light weight vertical load is approximately 3.6 G, 

and the heavy weight vertical load is approximately 2 G. Because the wing weight is 
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calculated at gross weight, the vertical load is assumed to be 2 G. The Global Hawk 

structural weight is presented in Figure 2.10. 

 

 

Figure 2.10: Global Hawk Structural Weight Summary [6] 

 

2.5.7 Payloads 

 

 

Global Hawk payloads consist of a Synthetic Aperture Radar (SAR), an Electro-Optical/ 

Infrared (EO/IR) payload, and the supporting electronics. The supporting electronics 

include an integrated sensor processor, a receiver/exciter/controller unit, transmitter (for 

SAR, presumably), and a sensor electronics unit. It is unclear if the elements of the 

communications architecture, INS, or structure are included in the advertised payload 

weight of 1,900 pounds [Jane’s 1999]. The summation of the listed components comes 

to 797 pounds [Jane’s 1999]. There is no available source that clarified this discrepancy. 

To satisfy the sizing mission profile, 1,900 pounds was assumed for the total payload 

weight, with an even weight division between SAR and EO/IR. 
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2.5.8 Performance 

 

 

Altmann [2002] provides useful information on the Global Hawk performance and flight 

envelope limitations. The maximum equivalent airspeed is 175 Keas, and the maximum 

Mach is approximately Mach 0.7 and the characteristics are shown in Table 2.6. 

Northrop Grumman advertises the Global Hawk Performance as 24 hours time 

on station at 1,200 nautical miles radius [Northrop 2003]. This performance estimate 

was adopted for sizing. Range credit was assumed to be 100 nautical miles for the initial 

climb to 50,000 feet, and 200 nautical miles from the end of cruise to the final loiter 

altitude. A half-hour loiter at 5,000 feet was assumed for airfield operations. Altitude 

and Mach characteristics are shown in Figure 2.11 and Figure 2.12. 

 

 

Figure 2.11: Global Hawk Altitude Profile [6] 
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Figure 2.12: Global Hawk Mach Profile [6] 

 

 

Table 2.6: Global Hawk– selected performances
 
[6, 14] 

Item Value Source 

Stall speed 170 km/h Jane’s [1999] 

Loiter speed 650 km/h Jane’s [1999] 

Max speed 670 km/h Jane’s [1999] 

Ceiling 19.80 km Jane’s [1999] 

Rate of climb 17.3 m/s Jane’s [1999] 

Endurance 38 - 42 h Jane’s [1999] 

Range 17 000 km Jane’s [1999] 

Runway length 1500 m Jane’s [1999] 

Take-off thrust 3.13 kN Jane’s [1999] 

Wing loading 231.52 kg/m² Jane’s [1999] 

Thrust loading 37.1 kg/N Jane’s [1999] 

Max Altitude 65 000 ft Jane’s [1999] 
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2.5.9 Design Technology 

 

 

The weights and performance calibration process resulted design technology levels are 

shown in Table 2.7. 

Table 2.7: Global Hawk Design Technology Levels [6] 

Design Item Tech Level (0-1) 

Volume Efficiency 0.5 

Induced Drag 0.31 

Interference Drag 1.0 

Wave Drag 0.31 

Laminar Flow 0.31 

Factor Of Safety 1.0 

Weight Growth 0.35 

Installation Weight 0.5 

 

2.6 Shadow 200 [6, 15, 16, 17] 

 

2.6.1 Shadow 200 Description 

 

 

Shadow 200 is a small tactical UAV designed to support line-of-sight battlefield 

surveillance missions. Initial development began in 1990. However, the technology year 

was assumed to be 2000 due to the extended development time, significant design 

evolution, requirements changes, and incorporation of more advanced technologies. 

Palumbo [2000] is assumed to be the most authoritative source of Shadow 200 data.  

Palumbo describes an evolutionary design history beginning in 1990 that has not 

ended. For example, the wing configuration is driven by a constraint to re-use Pioneer 

program wing tooling [6].  
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2.6.2 Geometry Characteristics 

 

The Shadow 200 geometry characteristics are shown graphically in Figure 2.13, and 

numerically in Table 2.8. 

 

Figure 2.13: Shadow 200 UAV [18] 

 

 

Table 2.8: Shadow 200 Geometry Characteristics [6, 15] 

Item Value Source 

Wing span 12.75 ft 

Office of the 

Secretary of Defence, 

Unmanned Aircraft 

Systems Roadmap 

2005-2030. 

Weight 
165 lbs. empty; 328 

lbs. loaded 

Length 11.2 ft 

Height 3.0 ft 

Aspect ratio 7.07 

Fuel Capacity 51 lb 

Sweep (quarter 

chord) 
0 º 

Payload Capacity 60 lb 

Ceiling 14,000 ft 
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