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ABSTRACT 

 

 

 

 

This thesis presents the flight trajectory analysis for the Missile. It has been known 

that the missile performance during its flight governed by the flight equation of 

motions. The present work has presented the flight dynamics analysis for AGM-65 

Maverick missiles model. Through this work it can be conclude, in manner how to 

solve the governing equations are simpler compared to the effort for providing the 

aerodynamics data or the mass and inertia of the missile. This work presents 

trajectory of air -to-surface missile attacking a fixed target constraint. The missile 

must hit the target from above, subject to the missile dynamics and path constraints. 

The problem is reinterpreted using optimal control theory resulting in the formulation 

of minimum integrated altitude. The formulation entails nonlinear, three-dimensional 

missile flight dynamics, boundary conditions and path constraints. The generic shape 

of optimal trajectory is know how will be the change of the range, altitude and Y- 

axis deflection with time. The numerical solution of path equations is solved by 

computer code that can compute the position of missile at any time.   
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ABSTRAK 

 

 

 

 

Tesis ini membentangkan analisis trajektori penerbangan untuk Peluru Berpandu . Ia 

telah diketahui bahawa prestasi peluru berpandu semasa penerbangan dikuasai oleh 

persamaan penerbangan dari usul. Kajian yang telah membentangkan analisis 

dinamik penerbangan untuk AGM- 65 Maverick peluru berpandu model. Melalui 

kerja ini ia boleh membuat kesimpulan , dengan cara bagaimana untuk 

menyelesaikan persamaan yang mengawal adalah lebih mudah berbanding dengan 

usaha untuk menyediakan data aerodinamik atau jisim dengan inersia peluru 

berpandu. Kerja ini membentangkan trajektori udara-ke- permukaan peluru berpandu 

menyerang kekangan sasaran tetap. Peluru berpandu mesti memukul sasaran dari atas 

, tertakluk kepada dinamik peluru berpandu dan kekangan jalan . Masalah ini ditafsir 

semula dengan menggunakan teori kawalan optimum menyebabkan penggubalan 

ketinggian bersepadu minimum. Penggubalan melibatkan tak linear, tiga dimensi 

dinamik penerbangan peluru berpandu , keadaan sempadan dan kekangan jalan . 

Bentuk generik trajektori optimum adalah tahu bagaimana akan perubahan 

lingkungan , ketinggian dan Y- paksi pesongan dengan masa. Penyelesaian berangka 

persamaan jalan diselesaikan oleh kod komputer yang boleh mengira kedudukan 

peluru berpandu pada sebarang masa. 
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CHAPTRE 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction  

 

 

This thesis presents the flight trajectory analysis missile. It has been known that the 

missile performance during its flight governed by the flight equation of motions. This 

flight equation of motion consist of 12 first order differential equations which 

coupling to each other. Those 12 equations described 12 state – space variables 

involving the aircraft position and aircraft aptitude with respect to the inertial 

coordinate system and also with respect to their axis body system had been used. 

Through solving those 12 equations one can obtain the trajectory of the missile and 

also possible to define its trim condition for a given flight speed and flight altitude. 

For this purposes, the analysis missile model, it is namely cruise missile model. The 

data required for analysis missile performance is involved the aerodynamics data, 

mass and inertia of the aircraft and also thrust provided by their propulsion system 

are available. It is therefore time history of their position, aptitude, linear velocity 

and as well as their angular velocity can be identified. However it had been realized 

the comparison with actual flight can be done, since such data are not available. [1]  
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1.2 Back ground  

 

 

The flight equation of motion represents the governing equation of flying vehicle 

which can be used to describe what kind movement of the flying vehicle will be. If 

one able to control the aerodynamic forces and moments acting on the flying vehicle 

at any instant time including the capability for controlling the required thrust, it will 

make such flying vehicle becomes an autonomous flying vehicles. Since through the 

governing equation of flight motion which normally solved to obtain the vehicle 

position, aptitude and velocity can be inverted to become the problem of prescribing 

flight trajectory and control mechanism as its solution. Through these experiences of 

solving the governing equation of flight motion, it can be expected to give a plat 

form in developing a particular vehicle to become an Unmanned Aerial Vehicles in 

the future work.  However it had been understood, that design flight control 

mechanism to allow the airplane able to control its movement arbitrary at various 

flight condition are  so complex and difficult task,  it is therefore for only particular 

flight maneuver the vehicle designed to be autonomous as result various type of 

UAV had been developed to fulfill different purposes. [2] 

 

 

1.3 Problem statements  

 

 

As unmanned flying vehicle, it is means that the missile has capability to control its 

flight path over any kind of disturbance may appear during its flight. Flight control 

system represents computer software which required the aerodynamics data for that 

missile  in order to allow developing flight mechanism for controlling the missile. 

Flight control system can be considered as inverse problem of solving the governing 

equation of flight motion. In the stage of development in developing flight control on 

board it is necessary to develop a computer code for solving the governing equation 

of flight motion for a given aerodynamic characteristics, control surfaces movement 

and missile’s mass and inertia properties to obtain its  trajectory and velocity at any 

instant time.  
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1.4 Thesis objective  

 

 

The flight dynamics equations a consist of a complete system equation which can 

describe the performance of the missile at different flight condition, so the aim of this 

thesis is to solving the governing equations of flight motion, to get state space 

variables. The purpose of this thesis is through developing computer code allowing 

one to estimate the flight performance of the missile.  

 

 

1.5 Scope of study 

 

 

Refer to the objectives of this thesis, the scope of study will be conducted in the 

present work involves: 

i. Coordinate system applied to the missile namely the earth coordinate 

system, missile body axis coordinate system and the missile stability 

coordinate system.  

ii. Closed loops model in deriving control system for bank angle, angles 

of attack and sideslip on the missile models. 

iii. Development computer code for solving the governing equation of 

flight motion with imposing the flight control in managing the aerodynamics 

forces and moments work on the missile. 

 

 

 

 

 

 

 



 

 

 

CHAPTER 2 

 

 

 

 

LITERATUR REVIEW 

 

 

 

 

2.1 Mission profile and overview  

 

 

A MISSILE is any object that can be projected or thrown at a target. This definition 

includes stones and arrows as well as gun projectiles, bombs, torpedoes, and rockets. 

But in current military usage, the word MISSILE is gradually becoming synonymous 

with GUIDED MISSILE. It will be so used in this text; we will use the terms 

MISSILE and GUIDED MISSILE interchangeably. So a MISSILE is an unmanned 

vehicle that travels above the earth's surface; it carries an explosive war head or other 

useful payload; and it contains within itself some means for controlling its own 

trajectory or flight path. A glide bomb is propelled only by gravity. But it contains a 

device for controlling its flight path, and is therefore a guided missile. For any 

aircraft designed without pilot on board called as unmanned aerial vehicle (UAV). 

The flight control system is a key element that allows the missile to meet its system 

performance requirements. The objective of the flight control system is to force the 

missile to achieve the steering commands developed by the guidance system. The 

types of steering commands vary depending on the phase of flight and the type of 

interceptor. For example, in the boost phase the flight control system may be 

designed to force the missile to track a desired flight-path angle or attitude. In the 
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midcourse and terminal phases the system may be designed to track acceleration 

commands to effect an intercept of the target. This article explores several aspects of 

the missile flight control system, including its role in the overall missile system, its 

subsystems, types of flight control systems, design objectives, and design challenges. 

Also discussed are some of APL’s contributions to the field, which have come 

primarily through our role as Technical Direction Agent on a variety of Navy missile 

programs.[3] 

 

 

2.2 Types of  missiles. 

 

 

Guided missiles are classified in a number of different ways; perhaps most often by 

function, such as air-to-air, surface-to-air, or air-to-surface. A nonballistic missile is 

propelled during all or the major part of its flight time; the propulsion system of a 

ballistic missile operates for a relatively short time at the beginning of flight; 

thereafter, the missile follows a free ballistic trajectory like a bullet (except that this 

trajectory may be subject to correction, if necessary, by the guidance system). Some 

missiles are designed to travel beyond the earth's atmosphere, and re-enter as they 

near the target. Others depend on the presence of air for proper operation of the 

control surfaces, the propulsion system, or both.  
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Figure 2.1: Missiles types[4] 

Missiles may be further classified by type of propulsion system, such as turbo-jet, 

ramjet, or rocket; or by type of guidance, such as command, beam-riding, or 

homing.[4] 

Missiles are generally classified on the basis of their type, launch, range, propulsion, 

warhead and guidance systems.[5] 

a. Type : 

i. Cruise Missile. 

ii. Ballistic Missile. 

b. Launch Mode: 

i. Surface-to-Surface Missile. 

ii. Surface-to-Air Missile. 

iii. Surface (coast)-to-Sea Missile. 

iv. Air-Air Missile. 

v. Air-to-Surface Missile. 

vi. Sea-to-Sea Missile. 

vii. Sea-to-Surface Missile. 

viii. Anti-Tank Missile. 

c. Range. 

i. Short range missile 

ii. Medium range missile. 

d. Propulsion. 

i. Solid Propulsion. 

ii. Liquid Propulsion. 

iii. Hybrid Propulsion. 

iv. Ramjet. 

v. Scramjet. 

vi. Cryogenic. 

e. Warhead. 

i. Conventional. 

ii. Strategic. 

f. Guidance System. 
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i.Wire Guidance. 

ii. Command Guidance. 

iii. Terrain Comparison Guidance. 

iv. Inertial Guidance. 

v. Beam rider Guidance. 

vi. Laser Guidance. 

vii. RF and GPS reference. 

 

 

2.3 Coordinate Systems. 

 

 

There are three commonly used methods of expressing the orientation of one three 

axis coordinate system with respect to another. The three methods are (1) Euler  

angles, (2), direction cosines and (3) quaternions. The Euler angle method, which is 

the conventional designation relating a moving-axis system to a fixed-axis system, is 

used frequently in missile and aircraft mechanizations and/or simulations. The 

common designations of the Euler angles are roll (φ), pitch (θ), and yaw (ψ). Its 

strengths lie in a relatively simple mechanization in digital computer simulation of 

vehicle (i.e., missile or aircraft) dynamics. Another beneficial aspect of this 

technique is that the Euler angle rates and the Euler angles have an easily interpreted 

physical significance. The negative attribute to the Euler angle coordinate 

transformation method is the mathematical singularity that exists when the pitch 

angle θ approaches 90◦. The direction cosine method yields the direction cosine 

matrix (DCM), which defines the transformation between a fixed frame, say frame a, 

and a rotating frame, say frame b,such as the vehicle body axes.[6] 
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Figure 2.2 Coordinate Systems[6] 

 

 

2.4 Forces acting on a missile in flight. 

 

 

Gravity, friction, air resistance, and other factors produce forces that act on all parts 

of a missile moving through the air. One such force is that which the missile exerts 

on the air as it moves through it. In opposition to this is the force that the air delivers 

to the missile. The force of gravity constantly attracts the missile toward the earth, 

and the missile must exert a corresponding upward force to remain in flight. 

 

Figure 2.3: forces on a missile[6] 
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2.4.1 Lift and drag. 

 

 

 Represents a flat surface moving through an airstream. In accordance with the 

principle of relativity, the forces acting on the surface are the same, regardless of 

whether we think of the surface as moving to the left, or of the airstream as moving 

to the right. One of the forces acting on the surface is that produced by friction with 

the air. This force acts in a direction parallel to the surface, as indicated by the small 

white arrow at the lower right. As the air strikes the surface, it will be deflected 

downward. Because the air has mass, this change in its motion will result in a force 

applied to the surface. This force acts at a right angle to the surface, as indicated by 

the long black arrow. The resultant of the frictional and deflection forces, indicating 

the net effect of the two, is represented by the long white arrow. We can resolve this 

resultant force into its horizontal and vertical components. The horizontal 

component, operating in a direction opposite to the motion of the surface, is drag. 

The vertical force, operating upward, is lift. The angle that the moving surface makes 

with the air stream is the angle of attack. This angle affects both the frictional and the 

deflection force, and therefore affects both lift and drag. 

Bernoulli's theorem states that the total energy in any system remains 

constant. Air flowing past the fuselage or over the wing of a guided missile forms a 

system to which this theorem can be applied. The energy in a given air mass is the 

product of its pressure and its velocity. If the energy is to remain constant, it follows 

that a decrease in velocity will produce an increase in pressure, and that an increase 

in velocity will produce a decrease in pressure. 

Represents the flow of air over a wing section. Note that the air that passes 

over the wing must travel a greater distance than air passing under it. Since the two 

parts of the airstream reach the trailing edge of the wing at the same time, the air that 

flows over the wing must move faster than the air that flows under. In accordance 

with Bernoulli's theorem, this results in a lower pressure on the top than on the 

bottom of the wing. This pressure differential tends to force the wing upward. and 

gives it lift. 
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Figure 2.4: Airflow over a Wing[7] 

 

 

2.4.2 Aerodynamic Forces. 

 

 

A discussion of the problems of aerodynamic forces involves the use of several flight 

terms that require explanation. The following definitions are intended to be as simple 

and basic as possible. They are not necessarily the definitions an aeronautical 

engineer would use. [7]. 

AIRFOIL. An airfoil is any structure around which air flows in a manner that 

is useful in controlling flight. The airfoils of a guided missile are its wings or fins, its 

tail surfaces, and its fuselage. 
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Figure 2.5 Aerodynamic Forces on the airfoil[7] 

 

 

DRAG is the resistance of an object to the flow of air around it. It is due in 

part to the boundary layer, and in part to the piling up of air in front of the object. 

One of the problems of missile design is to reduce drag while maintaining the 

required lift and stability.  

STREAMLINES are lines representing the path of air particles as they flow 

past an object, as shown in figure 2.5. 

WING SPAN is the measured distance from the tip of one wing to the tip of 

the other.  

ATTITUDE. This term refers to the orientation of a missile with respect to a 

selected reference.  

STABILITY. A stable body is one that returns to its initial position after it 

has been disturbed by some outside force. If outside forces disturb a stable missile 

from its normal flight attitude, the missile tends to return to its original attitude when 

the outside forces are removed. If a body, when disturbed from its original position, 
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2.5  Factors controlled. 

 

 

Missile course stability is made possible by devices which control the movement of 

the missile about its three axes. The three flight control axes are shown in figure 2.6. 

These are the pitch, yaw and roll axes.  PITCH. In certain missiles, pitch control is 

obtained by the use of elevators similar to those used on light airplanes. Other 

methods will be described in the next section of this chapter. For the present, it is 

sufficient to say that pitch control means control of the up-and-down movements of 

the missile, as shown in the illustration.  YAW. Missile movement about the yaw 

axis is controlled by the rudder. Other methods for controlling yaw will be covered in 

the following section of this chapter.  ROLL. Roll deviations are controlled by 

differential movements of rudders, elevons, or other flight control surfaces.[4]  

 

 

 

Figure 2.6: Three control axes of a missile[4] 
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2.6   Missile Control Systems. 

 

 

The heart of a missile is the body, equivalent to the fuselage of an aircraft. The 

missile body contains the guidance and control system, warhead, and propulsion 

system. Some missiles may consist of only the body alone, but most have additional 

surfaces to generate lift and provide manoeuvrability. Depending on what source you 

look at, these surfaces can go by many names. In particular, many use the generic 

term "fin" to refer to any aerodynamic surface on a missile. Missile designers, 

however, are more precise in their naming methodology and generally consider these 

surfaces to fall into three major categories: canards, wings, and tail fins.[8] 

 

 

Figure 2.7 : Major components of a missile[8] 
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The example shown in figure 2.6  illustrates a generic missile configuration 

equipped with all three surfaces. Often times, the terms canard, wing, and fin are 

used interchangeably, which can get rather confusing. These surfaces behave in 

fundamentally different ways, however, based upon where they are located with 

respect to the missile. In general, a wing is a relatively large surface that is located 

near the center of gravity while a canard is a surface near the missile nose and a tail 

fin is a surface near the aft end of the missile. Most missiles are equipped with at 

least one set of aerodynamic surfaces, especially tail fins since these surfaces provide 

stability in flight. The majority of missiles are also equipped with a second set of 

surfaces to provide additional lift or improved control. Very few designs are 

equipped with all three sets of surfaces. We have discussed how aircraft use control 

surfaces to turn the plane in different directions in a number of previous questions. In 

order to turn the missile during flight, at least one set of aerodynamic surfaces is 

designed to rotate about a center pivot point. In so doing, the angle of attack of the 

fin is changed so that the lift force acting on it changes. The changes in the direction 

and magnitude of the forces acting on the missile cause it to move in a different 

direction and allow the vehicle to maneuver along its path and guide itself towards its 

intended target.  

Canards, wings, and tails are often lumped together and referred to as 

aerodynamic controls. A more recent development in missile maneuvering systems is 

called unconventional control. Most unconventional control systems involve some 

form of thrust vector control (TVC) or jet interaction (JI). We have now introduced 

four major categories of missile flight control systems--tail control, canard control, 

wing control, and unconventional control--so let's briefly take a closer look at each 

type . 

 

 

http://www.aerospaceweb.org/question/aerodynamics/q0165.shtml
http://www.aerospaceweb.org/question/aerodynamics/q0165.shtml
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Figure 2.8 : Four main categories of missile flight control[8] 

 

 

2.6.1   Tail Control. 

 

 

Tail control is probably the most commonly used form of missile control, particularly 

for longer range air-to-air missiles like AMRAAM and surface-to-air missiles like 

Patriot and Roland. The primary reason for this application is because tail control 

provides excellent maneuverability at the high angles of attack often needed to 

intercept a highly maneuverable aircraft. Missiles using tail control are also often 

fitted with a non-movable wing to provide additional lift and improve range. Some 

good examples of such missiles are air-to-ground weapons like Maverick and AS.30 

as well as surface-to-surface missiles like Harpoon and Exocet. Tail control missiles 

rarely have canards, although one such example is AIM-9X Sidewinder. A selection 

of 23 representative missiles using tail control is pictured below 
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Figure 2.9: Missiles with tail control[10] 

 

 

In addition to missiles, some bombs also use tail control. An example is the 

JDAM series of GPS-guided bombs [10], [8]. 

 

 

2.6.2 Canard Control. 

 

 

Canard control is also quite commonly used, especially on short-range air-to-air 

missiles like AIM-9M Sidewinder. The primary advantage of canard control is better 

maneuverability at low angles of attack, but canards tend to become ineffective at 

high angles of attack because of flow separation that causes the surfaces to stall. 

Since canards are ahead of the center of gravity, they cause a destabilizing effect and 

require large fixed tails to keep the missile stable. These two sets of fins usually 

provide sufficient lift to make wings unnecessary. Shown below are twelve examples 

of canard control missiles.[10]. 
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Figure 2.10: Missiles with canard control[10] 

 

 

A further subset of canard control missiles is the split canard. Split canards 

are a relatively new development that has found application on the latest generation 

of short-range air-to-air missiles like Python 4 and the Russian AA-11. The term split 

canard refers to the fact that the missile has two sets of canards in close proximity, 

usually one immediately behind the other. The first canard is fixed while the second 

set is movable. The advantage of this arrangement is that the first set of canards 

generates strong, energetic vortices that increase the speed of the airflow over the 

second set of canards making them more effective. In addition, the vortices delay 

flow separation and allow the canards to reach higher angles of attack before stalling. 

This high angle of attack performance gives the missile much greater 

maneuverability compared to a missile with single canard control. Six examples of 

split canard missiles are shown below. 
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Figure 2.11 : Missiles with split canard control[10] 

 

 

Many smart bombs also use canard control systems. Most notable of these are 

laser guided bombs such as the Paveway series. 

 

 

2.6.3 Wing Control. 

 

 

Wing control was one of the earliest forms of missile control developed, but it is 

becoming less commonly used on today's designs. Most missiles using wing control 

are longer-range missiles like Sparrow, Sea Skua, and HARM. The primary 

advantage of wing control is that the deflections of the wings produce a very fast 

response with little motion of the body. This feature results in small seeker tracking 

error and allows the missile to remain locked on target even during large maneuvers. 

The major disadvantage is that the wings must usually be quite large in order to 

generate both sufficient lift and control effectiveness, which makes the missiles 

rather large overall. In addition, the wings generate strong vortices that may 

adversely interact with the tails causing the missile to roll. This behavior is known as 

induced roll, and if the effect is strong enough, the control system may not be able to 

compensate. A few examples of wing control missiles are shown below. 
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Figure 2.12: Missiles with wing control[10] 

 

 

2.6.4 Unconventional Control. 

 

 

Unconventional control systems is a broad category that includes a number of 

advanced technologies. Most techniques involve some kind of thrust vectoring. 

Thrust vectoring is defined as a method of deflecting the missile exhaust to generate 

a component of thrust in a vertical and/or horizontal direction. This additional force 

points the nose in a new direction causing the missile to turn. Another technique that 

is just starting to be introduced is called reaction jets. Reaction jets are usually small 

ports in the surface of a missile that create a jet exhaust perpendicular to the vehicle 

surface and produce an effect similar to thrust vectoring. 

 

 

http://www.aerospaceweb.org/question/propulsion/q0095.shtml
http://www.aerospaceweb.org/question/propulsion/q0095.shtml
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Figure 2.13:  Unconventional control technologies[10] 

 

 

These techniques are most often applied to high off-boresight air-to-air 

missiles like AIM-9X Sidewinder and IRIS-T to provide exceptional 

maneuverability. The greatest advantage of such controls is that they can function at 

very low speeds or in a vacuum where there is little or no airflow to act on 

conventional fins. The primary drawback, however, is that they will not function 

once the fuel supply is exhausted. 

 

 

2.7 Cruise Missile. 

 

 

A cruise missile is a missile that is guided by a navigation system and is able to 

sustain flight through aerodynamic lift for most of its path in air. Its main purpose is 

to place ordnance on a targeted spot. There are different types of cruise missiles, and 

each differs from its mass to its speed. The different types of cruise missiles include 
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ground-launched, sea-launched, and air-launched cruise missiles. Some have 

relatively short ranges while some were made to travel long distances and have long 

ranges. The ranges of cruise missiles vary from 105 km to 3,000 km. The similarity 

between the missiles is that they fly low and have low radar. This ability allows them 

to evade detection in defense systems. The average radar cross-section in a cruise 

missile is 1 square meter.[9] 

 

 

 

Figure 2.14: Main Cruise Missile Architecture[9] 

 

 

2.7.1 some examples of cruise missiles. 

 

 

Cruise missiles exist in three versions: (1) land-based or ground-launched cruise 

missiles (GLCM), (2) sea-based or sea-launched cruise missiles (SLCM), and (3) air-

launched cruise missiles (ALCM). Unlike a ballistic missile, which is powered and 

hence usually guided for only a brief initial part of its flight, after which it follows a 

free-fall trajectory governed only by the local gravitational field, a cruise missile 
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requires continuous guidance, since both the velocity and the direction of its flight 

can be unpredictably altered, for example, by local weather conditions.[4] 

 

 

 

Figure 2.15 : Tepys of cruise Missile[4] 
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2.7.1.1  3M – 14 TE1 cruise missile. 

 

 

The 3M – 14 TE1 cruise missile geometry characteristics are shown graphically in 

Figure 2.15, and its specifications in Table 2.1. 

 

 

 

Figure 2.16 : 3M – 14 TE1 cruise missile[11] 

 

 

Table 2.1:  3M – 14 TE1 missile specifications[11] 

Missiles  3M-14TE1(CLUB-N) 

Length ,m  6.2 

Diameter , m 0.514 

Weight , kg 1505 

Operational range ,km Up to  300 

Cruise stage flight level , m 
20- over the sea 

50 – 150- over the land 

Target  approach flight level ,m 50 - 150 

Cruise stage flight speed , mps 180  - 240 

Warhead weight , kg 450 
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2.7.1.2  3M – 54 TE  cruise missile 

 

 

The 3M – 54 TE1 cruise missile geometry characteristics are shown graphically in 

Figure 2.16, and its specifications in Table 2.2 

 

 

 

Figure 2.17 : 3M – 54 TE  cruise missile[11] 

 

 

Table 2.2:  3M – 54 TE missile specifications [11] 

Missiles  3M – 54 TE (CLUB-N) 

Length ,m  8.22 

Weight , kg 1951 

Operational range ,km 220 

Combat stage cruising  range, km Up to 20 

Cruise component flight level, m 20 

Warhead weight , kg 200 

Target  approach flight level ,m About 5 

Cruise component flight speed,mps 180 -240 

Maximum combat stage flight speed, mps Up to 1000 
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