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ABSTRACT 

 
 
 
 

This study evaluates the indoor thermal performance in an office space due to the effects 

of wall materials and night cooling strategies. The combined research methods of this 

study involved firstly the field measurement and monitoring work on the existing office 

space at the Development and Property Management Office, Universiti Tun Hussein 

Onn Malaysia (UTHM). It was to acquire the actual indoor data and provide data for 

verification of Ecotect simulation program. Secondly, the modelling and simulating of 

the existing office building in Ecotect so as to evaluate the indoor operative temperature 

and indoor comfort condition of the office space. The final stage was conducting the 

parametric study to investigate indoor thermal condition in response to the passive 

cooling strategies (i.e. changing wall material and night cooling). The study showed that 

the verification of simulated and measured results indicates a good agreement with 

discrepancy value less than 10% and can be considered acceptable as suggested by many 

researchers. It was also found that by changing to high thermal mass wall material could 

improve building’s thermal performance index and reduced peak indoor operative 

temperature about 1°C. Indoor comfort condition in the office space during the office 

hours was improved about 22% (on the ground floor) and 30% (on the first floor). The 

results also demonstrated that night cooling compensate the drawback of high thermal 

mass material and reduced the indoor operative temperature in the early hour of office 

hours. High thermal mass wall material offers a high potential alternative wall material 

construction in providing better indoor environmental condition during the day 

particularly in office building.  
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ABSTRAK 

 
 
 
 
Kajian ini menilai prestasi terma dalaman di dalam ruang pejabat disebabkan oleh 

kesan daripada bahan dinding dan penyejukan malam. Gabungan kaedah kajian ini 

melibatkan, pertamanya ialah kaedah kerja pengukuran lapangan di ruang pejabat 

sedia ada di Pejabat Pengurusan Hartabina (PPH), Universiti Tun Hussein Onn 

Malaysia (UTHM). Kerja pengukuran di lapangan ini adalah untuk memperolehi data 

dalaman sebenar dan menyediakan data untuk pengesahan data kepada program 

simulasi Ecotect. Keduanya adalah pembangunan model bangunan pejabat di dalam 

program simulasi Ecotect berdasarkan bangunan pejabat sedia ada untuk mengkaji 

suhu dalaman dan keadaan keselesaan dalaman bangunan tersebut. Peringkat terakhir 

ialah menjalankan kajian parametrik untuk mengkaji keadaan terma dalaman 

terhadap strategi penyejukan pasif (penukaran bahan binaan dinding dan penyejukan 

malam). Hasil kajian menunjukkan perselisihan antara keputusan simulasi dan 

pengukuran di lapangan kurang daripada 10% dan diterima seperti yang dicadangkan 

oleh para penyelidik. Hasil kajian juga menunjukkan dengan menukar bahan dinding 

yang mempunyai jisim termal yang tinggi dapat meningkatkan indeks prestasi terma 

bangunan dan mengurangkan suhu operatif puncak dalaman sebanyak 1°C. Keadaan 

selesa dalaman di ruang pejabat sepanjang waktu pejabat meningkat sebanyak 22% 

(tingkat bawah) dan 30% (tingkat atas). Hasil kajian ini juga menunjukkan 

penyejukan malam dapat mengatasi kelemahan bahan dinding berjisim termal tinggi 

dan dapat mengurangkan suhu operatif dalaman di awal waktu bekerja. Bahan 

dinding yang berjisim termal tinggi mempunyai potensi yang tinggi sebagai bahan 

binaan dinding alternatif dalam menyediakan keadaan persekitaran dalaman yang 

lebih baik pada waktu siang terutamanya di dalam bangunan pejabat. 
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CHAPTER 1 

 
 
 
 

INTRODUCTION 

 
 
 
 

1.1 Research Background 

 
 

Different climates may need different design strategies for optimum thermal 

performance of a building. Designing a building that respond to the natural 

environment can provide a desire level of comfort in the prevailing environment 

(Baker, 1987). Unfortunately, in modern building technologies, the existing cities are 

redeveloped to form a series of glass; and concrete blocks of offices and houses 

which commonly neglect the context of climate and culture. Therefore, unresponsive 

building design to its climate may affect the building thermal performance. 

 Thermal performance of a building can be referred to as the process of 

modelling the heat transfer between the buildings to its surrounding. It calculates and 

estimates the indoor temperature variation, heating and cooling load; and also the 

duration of uncomfortable periods. Thermal performance of building involves 

various heat exchange process such as opaque conduction, solar radiation through 

glazing; and sensible and latent heat gain. Two types of parameters affecting thermal 

performance of a building are the unsteady climatic condition (i.e. solar radiation, 

ambient temperature, wind speed and relative humidity) and design features (i.e. 

orientation, shading devices and building material properties) (Wong, 2004). 

 In hot and humid climate like Malaysia, solar radiation receives by building 

envelope is the major contributor to internal heat gain which may cause overheating 

in the building. Indoor overheating can be prevented by minimising solar heat gain 

through fabric, casual gains and ventilation by using active and passive cooling 
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strategies. However, in this type of climate, moderating daytime indoor temperature 

and minimising heat gain seems to be one of the fundamental design strategies. 

Therefore, attention will be brought to a passive cooling strategy that has tremendous 

potential in improving building thermal performance, alleviate the energy demand 

for cooling purpose and reducing carbon emissions; particularly in office building. In 

this respect, two interesting passive cooling strategies to be adopted are fabric’s 

thermal mass and night cooling. The benefits of passive cooling must, however, be 

balanced against the local climate and culture. 

 
 
1.2 Problem statement  

 
 
High daytime temperature throughout the year in Malaysia has affected the indoor 

thermal condition in building, particularly office building. It causes overheating due 

to excessive heat gain; leading to the dissatisfaction and unhealthy working 

environment. Thus, the usage of air conditioning in office building is adopted as a 

simple solution to provide a comfortable working environment and it has becoming a 

culture in Malaysia. 

 The term ‘fully air conditioning’ almost synonym with large prestigious 

building, particularly commercial offices (Arnold, 1999) so as to control the indoor 

temperature and humidity to maintain occupants’ thermal comfort. In Malaysia, 

some offices and hotels maintain the indoor temperature as low as 18 to 20°C 

although the comfortable temperature is about 24°C. Since the indoor temperature is 

so low, occupants tend to wear sweaters at the working desk (Aun, 2009). This 

situation clearly illustrates that offices uses more energy than it should and occupant 

themselves do not understand how the building should operate. Apart from that, 

underestimating the energy requirement at the early stage could also contribute to the 

excessive heat gain and energy use of the building.  

Therefore, office building has high potential in indoor thermal performance 

improvement and energy saving. One way to improve the quality of building thermal 

performance is to use passive cooling technique. Since overheating is common due to 

solar penetrating through envelope and lack of ventilation, it is significant to study 

the effect of fabric’s thermal mass and night cooling in improving indoor thermal 
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performance. As the thermal performance is improved, the growing of energy 

consumption for cooling can be alleviated. 

 
 

1.3 Research Objective 

 
 
The objectives of this study are: 

 

i. To evaluate the actual indoor thermal condition of office space. 

ii. To verify the accuracy of simulated result in terms of operative temperature 

iii. To compare the indoor thermal performance of interlocking earth brick 

(ICEB) with that of common brick 

 
 
1.4 Scope of Research 

 
 
In order to carry out this study, scopes of the study have been defined as follows: 

 

i. This study mainly focuses on thermal performance of internal spaces of office 

building in Malaysia particularly an office building at the Universiti Tun 

Hussein Onn Malaysia (UTHM) - the Development and Property 

Management Office is selected as the studied building in this study.  

ii. Since field measurement and monitoring work seem to be the best method to 

evaluate the real thermal performance of indoor spaces, it is employed as a 

part of the methods to obtain data. The field measurement and monitoring 

work cover the measurement of indoor comfort parameters which include air 

temperature (
�), mean radiant temperature (
��) and relative humidity 

(RH) while outdoor parameter data collected are air temperature (
�), relative 

humidity (RH) as well as thermal comfort indices (PMV and PPD). 

iii. Thermal Analysis in Ecotect simulation program is utilized in modelling and 

simulation work and the indoor thermal performance of office space is 

evaluated in terms of operative temperature. 

 
 



4 
 

1.5 Structure of Thesis 

 
 
This thesis is divided into six chapters. The first chapter contains the introduction, 

objectives, together with a brief overview of the overall thesis. 

Chapter two presents a literature review of thermal comfort contributing to 

the general understanding of the related field. It begins with a general knowledge of 

climate of Malaysia, follows by an overview of office building and previous study on 

indoor thermal comfort. A review on alternative wall material and night cooling 

strategy are also covered in this chapter. Finally, a literature review on computer 

simulation program and the selection of computer simulation program is discussed. 

Chapter three discusses the research method employed in this study. A 

review on the equipment used during field measurement and monitoring work in 

order to obtain the actual data is discussed. Besides, a brief explanation on Ecotect 

simulation program is also included. 

Chapter four presents the field measurement work carry out on the selected 

office building as well as verification between simulated and measured data. This 

chapter firstly explains the details of the field measurement work including the 

equipment setup and assumptions made. It follows with the result and analysis of the 

data measured. Secondly, verification process in order to evaluate the capability and 

accuracy of Ecotect are discussed in the second part of this chapter. 

Chapter five presents parametric study for this research. This chapter 

concerns with substituting the common wall material to an alternative wall material 

to investigate the ability of the alternative material in improving indoor comfort 

condition. Also, the effect of night ventilation in removing warmer air trapped in the 

building is presented. The results of the parametric study are also discussed in this 

chapter. 

Chapter six concludes and summarizes all the results obtain from this study. 

The limitations throughout this research study are also outlined and some 

recommendations for further research study are provided. 
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1.6 Summary  

 
 
This chapter has described the research background, description of issues to be 

addresses as well as its objectives. The scopes of this research also described in order 

to decide and direct the research works. To give an overview of overall thesis, a 

review on every chapter in this thesis is delineated. The next chapter is the literature 

review of this study in order to discuss the particular topic related to this research. 
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 CHAPTER 2  

 
 
 
 

LITERATURE REVIEW 

 
 
 
 
2.1 General Climate of Malaysia 

 
 
Malaysia which consists of Peninsular and East Malaysia (Sabah and Sarawak), lies 

between latitudes 1 and 7 degrees North, and longitude 100 and 119 degrees East 

(Abdullah, 2007). The characteristic features of the climate of Malaysia are uniform 

temperature, high humidity and abundant rainfall. The winds are generally light 

particularly in urban environment. Situated in the equatorial doldrum area, it is 

extremely rare to have a full day with completely clear sky and also rare to have a 

few days with completely no sunshine except during Northeast Monsoon seasons 

according to Malaysia Meteorological Department (MMD, 2010). 

 
 

2.1.1 Sunshine and Solar Radiation 

 
 
Malaysia naturally has abundant sunshine and solar radiation. However, it is 

extremely rare to have a full day with completely clear sky even in periods of severe 

drought. The cloud cover cuts off a substantial amount of sunshine and solar 

radiation. For most part of the country, the sunniest period of the year occurs during 

the months of February and March at the end of Northeast Monsoon. In the 

Northwest, February is the sunniest month with an average of 8.5 hours per day. In 

the south and central areas, the hottest days are between the months of March to 

April, while on the East Coast they are between March and April. In general, March 
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is the sunniest month (for the whole Peninsular Malaysia) with the amount of 

sunshine being 7.5 hours per day. On the average, the amount of sunshine receives in 

Malaysia is 6 hours per day (Abdullah, 2007; MMD, 2010).  

 
 

2.1.2 Temperature  

 
 
Copious rainfall supplies abundant moisture for evaporation, which absorbs large 

amounts of net radiation, has contributed to uniformly temperature profile in 

Malaysia. The temperature seldom rises above 36ºC or falls below 20ºC (Abdullah, 

2007). The day-time air temperature ranges from 25-35ºC and it is reasonably cool 

between 21 to 25ºC during the night. The annual variation is less than 3ºC. The daily 

range of temperature is being from 5 to 10ºC and from 8 to 12 ºC at the coastal and 

inland stations respectively (Rahman, 2005; MMD, 2010). 

 
 

2.1.3 Relative Humidity 

 
 
Malaysia has high humidity with mean monthly relative humidity is between 70 to 

90 percent. By day it varies between 55 and 70 percent, and at night it rises above 95 

percent which makes evaporation and sleeping difficult. The mean daily minimum 

can be at the lowest at 42 percent during the dry months and reached the highest up 

to70 percent during the wet months. The mean daily maximum varies from 94 to 100 

percent (Abdullah, 2007; MMD, 2010). 

 
 

2.1.4 Wind  

 
 
The wind flow over the country is generally light and variable. However there are 

some uniform periodic changes in the wind flow patterns. Based on these changes, 

four seasons can be distinguished – southwest monsoon, northeast monsoon and two 

shorter inter-monsoon seasons. 

The southwest monsoon is usually established in the latter half of May or 

early June and ends in September. The prevailing wind flow is generally 
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southwesterly from the Indian Ocean blow into the West Coast of the Peninsular and 

brings light rain. The northeast monsoon usually commences in early November and 

ends in March. During this season, northeasterly wind blowing from South China 

Sea sweeps over the country. It brings a lot of rainfall on the East Coast, which is 

higher in December and may cause flooding in many coastal areas of Kelantan, 

Terengganu and Pahang. The speed of the wind seldom exceeds 10.7 m/s, except 

during occasional tropical storm accompanying the heavy showers. The wind in the 

inter-monsoon season (occur in April in the south and May in the north) are 

generally light and variable (Abdullah, 2007; Malaysia Meteorological Department, 

2010). 

 
 
In hot and humid climate of Malaysia, the function of building to provide a 

comfortable indoor environment is a must since high solar radiation; temperature and 

humidity are contributing to thermal discomfort. In this climate, solar radiation is the 

major factor contributes to the heat gain in a building (Hidayat, 2004). High 

proportion of solar radiation heat absorbed by the building fabric will increase the 

mean radiant temperature of the internal surfaces and rising the resultant temperature 

inside the building (Abdullah, 2007). Therefore, minimizing the heat gain through 

the building fabric is important for maintaining indoor thermal condition. 

 
 
2.2 Office Building 

 
 
This study focuses on office buildings so as to serve as the classical example of 

commercial buildings. As mentioned earlier, commercial buildings have significant 

attribution to the total energy usage. Chow (2010) labelled some of them as “energy 

wasters” since they often use much more energy than they are designed to use. There 

are several reasons contributing to this situation including designers underestimating 

the energy requirement, or occupants misunderstand how the building should 

operate. Hence, it can be said that commercial buildings have great potential in 

energy saving and improving its performance. 

 In Malaysia, the government has shown its initiatives towards improving 

energy efficient in government and private office building by taking lead in 

developing its first energy efficiency building in 2005 so called Low Energy 
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Building (LEO Building) occupied by Ministry of Energy, Green Technology and 

Water (Abdullah, 2007; Darus & Hashim, 2012). Apart of this building, there are 

also two energy efficient demonstration office buildings which are Green Energy 

Office (GEO – occupied by Malaysian Green Technology Center) and Diamond 

Building (occupied by Suruhanjaya Tenaga). These buildings are used as 

demonstrated building as well as showcase for energy efficiency and low 

environmental impact building (Abdullah, 2007). As a result, recently, architects 

have shifted to design sustainable building and make the practice demanding in the 

Malaysian building industry market. Moreover, the Malaysian Institute of Architects 

(MIA) tries to incorporate design guidelines for energy efficiency to ensure 

minimum energy performance standards particularly in commercial building. (Darus 

& Hashim, 2012)  

Office building is an important building type to consider and can be referred 

as a home for people who work there -  not only for 8 hours a day, but perhaps 4 to 

12 hours. Its design, greatly affects the performance and occupants’ productivity. 

Generally, most office buildings have the same pattern of operation which is 

typically occupied during the day and unoccupied or partially occupied at night and 

during weekends. They are also dominated by high internal loads basically from 

lighting, equipment and people during the occupied periods. Therefore, offices are 

often cooled most time of the year using air conditioning (Al-homoud, 1997). The 

main reason for mechanically conditioning office buildings is to create comfortable 

thermal conditions for occupants (ASHRAE, 2001; Charles, 2003). 

Recently, demand for high quality buildings seem to increase. Occupants and 

developers of office buildings ask for healthy and stimulating working environment. 

Back to 1960s, office was meant as central air-conditioning, a telephone at every 

desk, and IBM electronic typewriter for each secretary and a new Xerox photocopier 

at each floor. By the late 1980s, two relentless forces which were the rise of high 

technology and the competitive global economy had changed the workplace forever 

(Kohn & Katz, 2002). In the meantime, the advent of computer and other office 

equipment increased the internal heat gains in most offices. 

In line with extra heat gains from office equipment and electric lighting, 

highly glazed façade, often with poor shading has increased the overheating risk 

(Gratia & Herde, 2003). Proper design and selection of building components at the 

early design stage have significant impact in achieving thermal comfort with 
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minimum reliance upon HVAC systems, and therefore minimum energy 

requirements (Al-homoud, 1997; Gratia & Herde, 2003). 

A parametric study using climatic data, carried out by Gratia and Herde 

(2003) found that factors that have significant impact on energy consumption in 

buildings are: insulate the building and have good air tightness; limit and control 

internal gains; good choices of the windows area and orientation; adequate 

ventilation and thermal inertia. 

 
 

2.3 Energy and Electricity Consumption in Malaysia 

 
 
Since independence in 1957, Malaysia has undergone tremendous growth and 

prosperity by shifting the economic activities from labour-intensive industries to 

energy and capital-intensive industries, particularly heavy industry. In recent years, 

Malaysia’s energy consumption has increased and become one of the fastest growing 

building industries worldwide, and this is an area where the corresponding energy 

demand will significantly increase in the coming area (Daghigh et al., 2009). 

Malaysia is going to need more energy as the economy continues to grow and 

it is expected that 6 GW of new generation capacity to be needed by 2020 to provide 

energy for businesses and the growing population, representing an increase of about 

25 percent over installed capacity in 2009 (Economic Transformation Programme, 

2010) 

According to the Energy Commission, total electricity generation in Malaysia 

is 116 114 GWh with a total electricity consumption of 96 646 GWh or 3415 kWh 

per capita. Having 28.3 million multi-racial population (comprising Malays, Chinese, 

Indians and others) (Energy Commission, 2009) and expected to grow at rate 2 

percent for a period 2000 to 2010 (Department of Statistic, 2011), the energy demand 

in this country also expected to increase as it is crucial to everyday life and 

development activities. Hence, the increase in building’s electricity consumption will 

contribute to the higher release of greenhouse gases due to the most of the electricity 

consumed by building is generated using fossil energy (Raman, 2009; Ng & Akasah, 

2011).  

Figure 2.1 shows the distribution of electricity consumption by sectors. The 

National Energy Balance (2009) reported that the commercial sector is the second 
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Air 
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(%) 

Hotels 50-70 

Shops 40-55 

Offices 55-65 

  NA – Not Available 
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physiological effort of regulation is minimized (ASHRAE, 1992). However, 

expectations a comfortable environment are converging worldwide where a hot 

environments are being cold while a cold environments are being heated (Andamon, 

2006). 

Comfort quality of a space is evaluated with its comfort performance. 

Inadequate comfort conditions can cause numerous undesirable effects on the 

occupants’ behaviour, productivity, health and decreasing of production quality 

(Ünver, 2004). Thus, people tend to modify their behaviour and environment to 

conform to societal expectations of thermal comfort (Andamon, 2006). Reducing air 

temperature using air conditioning system can provide comfortable environment to 

occupant in a room. Likewise, increasing air movement in the room using fan or 

natural ventilation also can provide comfort to occupant although air temperature is 

not reduced.  

To determine appropriate thermal conditions, practitioners refer to standards 

such as ASHRAE Standard 55 and ISO Standard 7730. These standards define 

temperature ranges that should result in thermal satisfaction for at least 80% of 

occupants in a space (Charles, 2003).  

According to ASHRAE Standard 55, thermal comfort is defined as conditions 

of mind which expresses satisfaction with thermal environment. Thermal comfort 

also can be defined as a conditioned when people feel neither too hot nor too cold 

when their body functions well and also not causing uncomfortable feelings (Aprita, 

2004). In physiological terms, thermal comfort is what we experience when the body 

functions well, with a body temperature constant at around 37ºC.  

The comfort condition is the result of simultaneous control of temperature, 

humidity, cleanliness and air distribution within the occupant’s surrounding. These 

factors include mean radiant temperature as well as the air temperature, odour control 

and control of the proper acoustic level within the occupant’s surrounding (Clifford, 

1992). There appears to be no rigid rule as to the best environmental conditions for 

occupant’s comfort. The comfort of an individual is affected by many variables. 

Health, age, activity level, clothing, sex, food and acclimatization all play their part 

in determining the best comfort condition for any group of persons. Besides, under 

the same conditions of temperature, humidity and air movements, a healthy, young 

man may be slightly warm while an elderly woman is cool. 
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Fundamental studies of thermal comfort such as acceptable range of dry-bulb 

temperatures, relative humidity and activity levels were completed in the 1970s. 

These studies, which led to the development and refinement of ASHRAE Standard 

55, were performed at Kansas State University by Ole Fanger and others (Fanger, 

1972). 

 
 

2.4.1 Basic principles of thermal comfort 

 
 
Thermal comfort is strongly related to thermal balance between the body’s heat 

generations and the release of body heat into its surroundings. Human body 

continuously produces heat due to metabolic activities which is used as work and 

dissipated to surrounding to maintain the body temperature (achieve body thermal 

balance). A state of thermal balance of the body is when heat gains and losses to its 

surrounding are at equilibrium rate. Equation 2.1 shows relationship between the 

body’s heat production and loss: 

 

 Heat production = Heat loss 

           M = E ± R ± C ± S                         (2.1) 

 

where: 

 

 M = metabolic rate 

 E  = rate of heat loss by evaporation, respiration, and elimination 

 R  = radiation rate 

 C  = conduction and convection rate 

 S  = body heat storage rate 

 

 

There are four different modes of heat transfers between the human body and 

its environment (Koenigsberger et al., 1973; Egan, 1975; Chadderton, 1991; 

Abdullah, 2007). The different modes of heat exchanges to maintain the heat balance 

are as follows: 
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(i) Radiation: Heat gain from the environment is by solar radiation or warm surfaces, 

whilst radiant heat loss between skin and clothing surfaces and the room depends on 

the absolute surface temperature, the emissivity, the surface area and the geometric 

configuration (or the view factor) of the emitting and receiving areas. Thus, a moving 

person will experience changes in comfort level depending on the location of the hot 

and cold surfaces in the room. 

 

(ii) Convection: Heat transmission from the body to the air in contact with the skin or 

clothing by natural convection currents or ventilation is a major source of cooling. 

The rate of convection heat loss is influenced by two factors: speed of air movement 

and temperatures of air. The body’s response to a cool environment is by restricting 

blood circulation to the skin, involuntary reflex action such as shivering, or in 

extreme cases, lowering the body temperature. 

 

(iii) Evaporation: Heat loss takes place on the skin as insensible perspiration and 

sweat, and in the lungs through respiration and exhalation. Basically, man loses 

about one litre of water a day by perspiration. The rate of evaporation depends on the 

amount of moisture transfer and on the air humidity. 

 

(iv) Conduction: Heat exchange depends on thermal conductivity of materials 

contacting directly with the skin and the surroundings. In other words, it is the 

temperature difference between the body surface and the object that is in direct 

contact with the body (i.e. clothing). The rate of conduction also depends on the 

insulation value of the cloth the body is wearing.  

 

 Baker (1987) stated that heat loss to the environment occurs predominantly 

by three mechanisms (radiation, convection and evaporation) and to a much lesser 

extent by conduction. Heat transfer between human body and its surrounding in a 

normal comfort condition is illustrated in Figure 2.3.  
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Figure 2.3 Body heat exchanges (Source: Baker, 1987) 

 
 

The three main mechanisms of heat loss are controlled by four environmental 

parameters which include mean radiant temperature (
��), air temperature (
�), 

relative humidity (RH) and air movement.  

 Basically, our body constantly produces heat from the consumption and 

digestion of food and the processes are known as metabolism of the energy produced 

in the body. There are only about 20% of energy produced in the body is utilized in 

useful work while remaining 80% must be dissipated to the environment 

(Koenigsberger et al., 1973, Abdullah, 2007). Heat must be continuously dissipated 

and regulated to maintain normal body temperature at around 37ºC. Insufficient heat 

loss leads to overheating called hyperthermia, and excessive heat loss results in body 

cooling which is called hypothermia. An internal body temperature less than 28ºC 

can lead to serious cardiac arrhythmia and death; and temperature greater than 46ºC 

can cause irreversible brain damage. Therefore, the careful regulation of body 

temperature is critical to maintain body comfort and health (ASHRAE, 1992). 

 
 
2.4.2 Factors affecting comfort 

 
 
Basically, thermal comfort conditions considered the six basic parameters which are 

classified into two major variables such as environmental variables; and personal 

variables. These parameters can influence thermal condition and the integrated 
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influence of these six parameters can determine thermal comfort responses. 

However, Auliciems & Szokolay (2007) considered those variables that affect heat 

dissipation from the body and also thermal comfort to be grouped into three sets as 

shown in Table 2.2 below. 

 
Table 2. 2: Variables affecting the thermal comfort 

Environmental variables Personal variables Contributing factors 

Air temperature Metabolic rate (activity) Food and drink 

Air movement Clothing Acclimatization 

Humidity  Body shape 

Radiation (can be referred to as 
mean radiant temperature) 

 Subcutaneous fat 

  Age and gender 

  State of health 

 
(i) Air temperature 

Temperature is easily measured and alternatively called air temperature or dry bulb 

temperature which is measured by an accurate thermometer or thermocouple. When 

measuring air temperature, the thermometer should be shielded to reduce the effects 

of direct radiation. It is found that in most cases a reasonably comfortable 

environment can be maintained when two or three of parameters are controlled 

(Kreider, 2002). 

 

(ii) Mean radiant temperature 

Mean radiant temperature can be defined as the temperature of an imaginary 

isothermal enclosure with which a human body would exchange the same radiation 

as with the actual environment (Kreider, 2002). An equation to calculate mean 

radiant temperature can be expressed as: 

 

�� =	
� + 	2.35	(�)�.�	(
� − 
�)     (2.2) 

 
where; 

 
�� = mean radiant temperature 

 
� = air temperature (dry bulb temperature) 

 
�  = globe temperature 

 � = relative air velocity 
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The commonly used instrument to determine the mean radiant temperature is 

Vernon’s globe thermometer, which consists of a hollow sphere 6 in. in diameter, flat 

black paint coating and a thermometer or thermocouple bulb at its center.  

The equilibrium temperature assumes by the globe (the globe temperature as 

shown in Figure 2.4) results from a balance in the convective and radiative heat 

exchanges between the globe and its surroundings. This parameter involves the 

amount of radiant exchange between a person and the surroundings. Cold walls or 

windows may cause a person to feel cold even the surrounding air may be at a 

comfortable level. Likewise, sunlight or warm surfaces such as stoves or fireplaces 

or ceilings may cause a person to feel warmer than the surrounding air temperature 

would indicate. 

 
 

 

Figure 2.4: Globe thermometer (Source: Baker, 1987) 

 
 
(iii) Relative humidity 

Usually, air contains less than the maximum amount of moisture that it is capable to 

hold. When we compare the amount of moisture contained in an air sample to the 

maximum it can possibly hold, we are describing relative humidity. Relative 
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humidity is the ratio of mass of water vapour in the air to the mass of water vapour 

when the air is in saturated state. 

A simple method to measure humidity of the air is by measuring the 

temperature difference before and after it undergoes the adiabatic saturation process. 

The temperature measured before the process is dry-bulb temperature and the 

temperature measured after is wet-bulb temperature. Note that, theoretically, wet-

bulb temperature is equal to the adiabatic saturation temperature. The larger 

difference between the dry-bulb and wet-bulb temperatures, the lower the humidity 

(Parson, 2010). 

 

(iv) Air velocity 

Continuously moving air is one of the requirements for thermal comfort. It is not 

only effective in evaporating perspiration but also in speeding convection heat loss 

from the skin (Allen, 1995). Zain et al. (2007) noted that an air flow of 0.7 m/s will 

give rise to comfort while if the air flow is more than 1.5 m/s, the space will be 

comfortable throughout. When air flow less than 0.2 m/s it would not be effective 

while more than 2.0 m/s will create other related problem (e.g. paper flying from the 

desk). 

 

(v) Clothing insulation 

Clothing insulation is measured in units of ‘clo’ (Gagge, Burton, & Bazett, 1941; 

Charles, 2003). Clothing, through insulation properties, is an important modifier of 

body heat loss and comfort. If clothing does not provide enough insulation then the 

wearer may be at risk in the very cold conditions. For dry insulation a value of 1 Clo 

is defined as providing an insulation of 0.155 m2K/W (Parson, 2010). 
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Table 2. 3: Garment insulation values (source: Auliciems & Szokolay, 2007) 

 

 
 
(vi) Metabolic rate 

Metabolism determines the rate at which energy is converted from chemical to 

thermal form within the body, and blood circulation controls the rate at which the 

thermal energy is carried to the surface of the skin. The energy generated by a 

person’s metabolism varies considerably with that person’s activity. A unit to 

express the metabolic rate per unit of body surface area is the ‘met’, which is defined 

as the heat produced by a sedentary person and is given the values of 58 Watts 

produced for every square metre of the body surface area  (i.e. 1.0 Met = 58.2 W/m2) 

(McQuiston, 2004; Parson, 2010).  

 
 
 
 
 
 
 
 



21 
 

Table 2.4: The metabolic rate values (edited from: Auliciems & Szokolay, 2007) 

Activity met W/m2 

Sleeping  0.7 40 

Reclining, lying in bed 0.8 46 

Seated, at rest 1.0 58 

Standing, sedentary work 1.2 70 

Very light work (i.e. shopping, cooking, light industry) 1.6 93 

Medium light work (i.e. house work, machine tool work)  2.0 116 

Steady medium work (i.e. jackhammer, social dancing) 3.0 175 

 
 

2.4.3 Determination of comfort criteria 

 
 
Air temperature and temperature of the immediate surroundings, humidity and speed 

of airflow in the local environment all modify the manner in which thermal comfort 

is experienced. For given values of aforementioned variables, thermal comfort level 

may be determined. Thermal comfort level can be defined in term of range of 

operative temperature and also by PMV and PPD index. 

 
 

2.4.3.1 Operative temperature 

 
 
When calculating the indoor thermal climate, operative temperature (
�) can be used 

as a simple measure for the heat loss from a person (Christensen, 2008) and also used 

to determine the temperature limit of the comfort zone. A range of operative 

temperature provides an acceptable thermal environmental condition.  In determining 

operative temperature, mean radiant temperature is seems to be a significant factor, 

especially in buildings which the envelopes are exposed to a strong solar radiation 

where conventional indoor temperature and humidity control cannot guarantee 

indoor comfort (Atmaca et al., 2007). Note that, the mean radiant temperature has 

significant effects to the changes of operative temperature in dependence on the 

location. In addition, operative temperature is also time variable since indoor surface 

temperature is changing during the day depending on the outdoor climatic condition 

(Zmrhal & Drkal, 2007).  
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Operative temperature can be defined as the temperature of a uniform, 

isothermal ‘black’ enclosure in which man would exchange heat by radiation and 

convection at the same rate as in the given non-uniform environment; or can simply 

defined as the average of mean radiant temperature and dry bulb temperature 

weighted by their respective transfer coefficients (Auliciems & Szokolay, 2007). 

Hence, operative temperature can be expressed in the following equation: 

 


� =	 �� !"	�# $#%
��"�#

       (2.3) 

 

Where; 

ℎ� = convection coefficient 

ℎ� = radiation coefficient 


� = air temperature (dry bulb temperature) 


�� = mean radiant temperature 

 
 
This index integrates the effect of air temperature and radiation, but ignores humidity 

and air movement (as the effect of humidity is small and indoor air movement 

negligible).  

In addition, for occupants engaged in near sedentary physical activity, not in 

direct sunlight, and not exposed to air velocities greater than 0.2 m/s, a simple 

calculation of operative temperature which can give acceptable accuracy result is 

expressed by the following equation: 

 


� =  !" $#%
&        (2.4) 

 
 

2.4.3.2 Predicted Mean Vote (PMV) 

 
 
A model named Predicted Mean Vote model was developed in 1970 which combines 

the six thermal comfort parameters into an index that can be used to predict thermal 

comfort level. PMV can be precisely determined if both environmental and 

individual parameters are correctly measured and only for steady-state conditions or 
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minor fluctuations of variables. PMV index is derived on the basis of experimental 

conditions which are near thermal neutrality or slightly discomfort. The index 

provides a score that corresponds to ASHRAE thermal sensation scale (see Figure 

2.5) and represents the average thermal sensation felt by a large group of people in a 

space (Fanger, 1970; ASHRAE, 2001; Charles, 2003). 

 
 

 

Figure 2.5: ASHRAE scale of thermal sensation 

 
 
In defining the conditions for comfort, ASHRAE offers three classes of 

comfort as goals or criteria for performance. These classes (A, B and C) differ in the 

allowable PMV range and PPD as well. Obviously, the C class have larger 

percentage of dissatisfied people and offers a wider boundary of allowable thermal 

condition than the A class. The three classes of thermal comfort are given in the 

Table 2.5 below: 

 
 

Table 2.5: Three classes of acceptable thermal environment for general comfort 
(source: ASHRAE, 2004) 

Comfort Class PMV Range PPD 

A -0.2 <PMV< +0.2 <6 

B -0.5 <PMV< +0.5 <10 

C -0.7 <PMV< +0.7 <15 

 
 

2.4.3.3 Predicted Percentage Dissatisfied (PPD) 

 

 
The quality of the thermal environment may be expressed by the PPD index, which is 

related to the PMV index. It is based on the assumption that people voting -3, -2, +2 

or +3 from the thermal sensation scale are dissatisfied with the current environment. 
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Even if the indoor thermal condition is maintained in accordance to the PMV model, 

there will be some dissatisfaction feelings amongst occupants. When PMV is equal 

to 0, PPD of 5% is reflected to the dissatisfaction of occupants with the thermal 

environment. While PMV range of ±0.5 correspond to 10% of dissatisfaction. 

Dissatisfied is defined as ‘A vote outside the central three categories of 

ASHRAE or similar scales. A vote within the three central categories is referred as 

satisfaction with the thermal environment, and this is called as thermal acceptability. 

Thermal acceptability is defined as ‘Any condition in which 80% or more of the 

people express satisfaction with a given environment’ (ASHRAE, 1993; Ismail, 

2007). 

Unlike PMV, which gives the average response of a large group of people, 

PPD is indicative of the range of individual responses (Ismail, 2007). The 

maximum/minimum value of PMV are at ±2, since the more the PMV deviates from 

zero, the more PPD increases, in a semi-logarithmic manner (Abdullah, 2007). 

The relationship between PMV and PPD is shown in Figure 2.6 below: 

 
 

 

Figure 2.6: Percentage of people dissatisfied as a function of mean vote 
(Source:Lyons et al., 2000) 
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