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Processing an increasing volume of data, especially in industrial and manufacturing domains, calls for advanced tools of data 
analysis. Knowledge discovery is a process of analyzing data from different perspectives and summarizing the results into some 
useful and transparent findings. To address such challenges, a thorough extension and generalization of well-known techniques 
such as regression analysis becomes essential and highly advantageous. In this paper, we extend the concept of regression models 
so that they can handle hybrid data coming from various sources which quite often exhibit diverse levels of data quality. The 
major objective of this study is to develop a sound vehicle of a hybrid data analysis, which helps in reducing the computing time, 
especially in cases of real-time data processing. We propose an efficient real-time fuzzy switching regression analysis based on 
a genetic algorithm-based fuzzy C-means associated with a convex hull-based fuzzy regression approach. The method enables 
us to deal with situations when one has to deal with heterogeneous data which were derived from various database sources 
(distributed databases). In the proposed design, we emphasize a pivotal role of the convex hull approach, which is essential to 
alleviate the limitations of linear programming when being used in modeling of real-time systems. O 2013 Institute of Electrical 
Engineers of Japan. Published by John Wiley & Sons, Inc. 
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1. Introduction 

Across a wide variety of fields, data are currently being collected 
and accumulated at a rapid pace. There is an urgent need for a new 
generation of computational approaches and tools to assist humans 
in extracting useful knowledge from the rapidly growing volumes 
of data [I, 21. 

Furthermore, in real-world optimization problems that are 
widely encountered in engineering, management, economics, 
medicine, and numerous other disciplines, it is quite common to 
handle a large amount of data in a limited time [3, 41. This crit- 
ical situation imposes demanding requirements on industrial and 
manufacturing data analysis processes. The need for sophisticated 
data analysis tools is very noticeable, with an ultimate goal is to 
efficiently produce high-quality results. Closely related in this con- 
text, real-time data processing demonstrates an essential growth 
in relevance and visibility when dealing with timely managerial 
tasks, where we encounter evidence of time constraints. This sit- 
uation supports the emergence of intelligent data analysis (IDA), 
especially for real-time data analysis which enables us to make 
decisions within allowable time limits. 
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Co~nputational intelligence (CI) includes a concept of fuzzy 
regression, which exhibits advantages and strengths in its ability 
to deal with non-numeric data [5-71. Fuzzy regression analysis 
exploits techniques of linear programming (LP) to explore and 
describe dependencies among variables [8]. In this context, LP 
is subject to constraints whose number is proportional to the 
number of samples (data points) to be considered when designing 
constructs of fuzzy regression; see Refs [9-111. An increasing 
number of attributes and the size of the dataset itself might directly 
lead to increased computational complexity and the required 
processing time [12]. 

As a result, in recent years, various applications of so-called 
switching regression methods have become available. One visible 
feature of such models is that the data are generated by several dif- 
ferent sources (distributed databases) over some time period [13]. 
Currently, such data analysis process is pursued mostly in the 
batch-processing mode. 

Our intent is to exploit as well as to combine the concepts 
and algorithms of genetic-algorithm-based fuzzy C-means (GA- 
FCM) with a convex hull-based fuzzy regression approach in the 
implementation of real-time fuzzy switching regression. In addi- 
tion, the adaptation of a convex hull approach, specifically the 
so-called Beneath-Beyond algorithm, helps to alleviate the limi- 
tations of the 'conventional' switching regression when pursuing 
real-time data processing. We show its efficient implementation 
and present results of experimental studies including steam gen- 
erator industries and randomly generated synthetic datasets. In 
a nutshell, the ultimate objective here is to decrease, in real- 
time situations, the time required for data processing as well 
as to reduce the computational complexity in order to effi- 
ciently support the ensuing process of decision making. With 
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the intention of demonstrating the optimization and computa- 
tional details of the proposed method, illustrative examples are 
presented. 

This paper is organized as follows. Section 2 offers a concise 
literature review, which focuses on the fuzzy switching regression 
models presented here. These models are constructed on the basis 
o f  methods such as FCM clustering and GA approaches, where 
the combination of both tools is used to cluster data and, in this 
manner, will reveal the structure in the data. Afterwards, a convex 
hull approach is discussed. Next, in Section 3, we present the real- 
time fuzzy switching regression model realized with the use of 
hybrid combinations of the GA-FCM algorithm and the convex 
hull-based fuzzy regression approach. Section 4 covers examples 
concerning real-world industrial data and generated synthetic data, 
while Section 5 presents further results and offers a pertinent 
discussion. Finally, Section 6 covers concluding remarks. 

2. Related Works 

IDA is an important tool to support decision-making activities. 
Some representative examples deal with problems of risk analysis, 
targeted marketing, customer retention, portfolio management, and 
brand loyalty. 

Associated with such examples, the tools coming from the 
area of CI are endowed with an ability to construct models 
i n  the presence of noise while enhancing the interpretability 
of the models themselves. Let us recall that the CI comes as 
a unified conceptual and algorithmic vehicle embracing neuro- 
computing, fuzzy sets, and evolutionary optimization. The recent 
studies reported emphasize the ueed for forming a consistent 
methodology that supports the development of high-quality models 
and offers their further maintenance. One of the main require- 
ments badly needed in successful industrial data analysis is to 
realize fast computing which implies that the processing to be 
involved should be characterized by a minimal computational 
complexity. 

Regression models were initially developed as constructs that 
statistically describe the relationship among variables; that is, they 
explain one variable by making use of variation of some other 
(independent) variables [14]. The variables that are used to explain 
the other variables are called explanatoly variables [15, 161. 

In what follows, we introduce the notations pertinent to this 
study: 

Index of sampleslpoints 
Number of samples/points 
Index of attributes 
Number of attributes 
Index of vertices 
Number of vertices 
Coefficient vector of the model 
The j th  coefficient with center, 9 and 
spread cj 
Vector of center values 
Vector of spread values 
The expected fuzzy value of the model 
Independent variable vector, where 

xio= l,(i = 1, ..., n) 
Dependent variable with numeric or fuzzy 

value, (i = I ,  ..., n) 
Points to be added to the convex hull 
Points of constructed convex hull 

2.1. Fuzzy switching regression models A generic 
regression analysis involves data that originate from a single data 
source. A single functional relationship between the independent 

or input variables x E NK and the dependent or output variable 
y E 91 is assumed, and this relationship holds for all of the data 
collected. A general 'standard' regression model is then described 
as follows: 

where h(,) is a function and E,  are independent random variables 
with a zero mean and some variance, i = 1 , .  . . , n  [17]. 

An important assumption made in regression analysis is that 
the dataset to be analyzed is homogeneous in the sense that there 
is only a single functional relationship between exogenous and 
endogenous variables [18]. 

While this assumption may hold in many cases, we also 
encounter situations involving heterogeneous data. In addition, we 
might have some prior information as to the split (partition) of 
the overall dataset into some homogeneous subsets. Therefore, 
switching regression methods can be considered as a viable design 
alternative. Interestingly, switching regression has been applied 
to various fields such as manufacturing, economics, and bio- 
computing. 

An implementation of switching regression is realized for a het- 
erogeneous dataset by forming C homogeneous subsets of data and 
determining a regression function for each subset k(k = 1, .  . . , C).  
In other words, a mixed distribution is given aimed at splitting this 
distribution into C homogeneous sets [19]. The performance crite- 
rion quantifies the squared metric distance differences between the 
estimated values y of the regression function observed in each sub- 
set and the corresponding experimental data. The criterion has to be 
minimized over all data subsets. Additionally. based on the study 
by Hathaway and Bezdek [20], a switching regression model has 
been discussed in varying details. Say, S = {(.xl,yl), . . . , (x,, y,)} 
becomes a set of data where each independent observation xk E sK 
has a corresponding dependent observation yk E N. In switching 
regression models, assume that the data are drawn from Cmodels 
such as 

where f,(;,&)is a polynomial function about x ,  each 8; E ni c 
9tki, ki 5 n,  and each 8; is a random vector with a mean vector 
pi = 0 and a covariance matrix Ji [21]. 

Generally, the basic idea of switching regression analysis 
has been mentioned in Hosmor's research, which describes an 
exemplified application of a fishery area [20]. According to this 
research, the parameters defining the linear growth curves for 
the genders can be estimated by treating the data analysis as a 
switching regression problem. The general models read as follows: 

With the incorporation of fuzzy sets, an enhancement of 
the regression model comes in the form of a so-called fuzzy 
regression or a possibilistic regression, which was originally 
introduced by Tanaka et ul. [4] (refer also to Ref. [16]) to reflect 
the relationship between the dependent variable and independent 
variables expressed in terms of fuzzy sets. The upper and 
lower regression boundaries that are used in the possibilistic 
regression reflect upon the possibilistic distribution of the output 
values. Associated with the previously discussed methods, fuzzy 
switching regression has been proposed by several researchers, 
including Hathway and Bezdek [20], Jajuga [22], and Quandt and 
Ramsey [23]. 

Fuzzy switching regression is a technique for estimating multi- 
ple fuzzy regression models for a dataset and, as such, it has been 
used for capturing nonlinear dependencies among selected input 
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and output variables in many data mining applications. Initially, 
based on Wu et al. [24], Hathaway and Bezdek first combined 
switching regression with FCM and referred to the algorithm as 
fuzzy C-regression (FCR). FCR is a fuzzy clustering-based switch- 
ing regression model where regression errors are also used to form 
a clustering criterion in the FCM clustering, such as the itera- 
tive optimization procedure. Moreover, related to Hathaway and 
Bezdek's approach [20], an estimate of {6y] in (3) and (4), using 
mixture distributions, was employed. Each data point (xk,yk) is 
viewed as coming from regime 1 (corresponding to (3)) with 
probabilityp and from regime 2 (corresponding with (4)) with 
probability I - p.  An assumption of EI and EZ was also made, 
where both of them are independent for different data and the dis- 
tributions of 81 and E* are normal with mean 0 and unidentified 
standard deviations a1 and 02, respectively. Indicating the univari- 
ate normal probability density function with mean p and standard 
deviation a by 

the following log-likelihood function of the samples in N is 

In addition, an allocation of a data point is shared by several 
regression models and is given by the fuzzy membership degree, 
which represents the weight of the data point in each regression 
model. Then the parameters of the regression models are estimated 
considering the weights present in each cluster. 

The realization of fuzzy switching regression is completed in 
several phases. We start with heterogeneous data which is divided 
into several fuzzy sets. For each fuzzy set, a weighted regression 
is completed, where the weights of the corresponding data are 
given as the membership degrees of the data to the corresponding 
subsets. Usually, these models are applied when the results of 
a regression analysis are very poor for the overall dataset, e.g., 
the multiple correlation coefficient !R2 is much smaller than 1. 
However, it is assumed that a mixed distribution is given with a 
reasonable regression, which could he formed for each component 
of this distribution. 

The aim of the FCM algorithm is to find an optimal fuzzy 
c-partition and the corresponding prototypes minimizing the fol- 
lowing objective function [30]: 

where U E Mk,, is a fuzzy partition matrix, and V = (v l , .  . . , v,) 
is a matrix of unknown cluster centers (prototype parameters 
or cluster centers). The notation vi E mKvi and Dik(vi.xk) is a 
matrix of prototypes from xkto the ith cluster prototype while 
m positioned in [ l , ~ )  is the weighting exponent on each 
membership function, which influences the membership values. 
Moreover, Bezdek [29] highlighted that the Euclidean distance and 
the diagonal structure are used for all FCM results for nz = 2. 
Taken as a ( U ,  V) minimizer of (8). this algorithm produces a 
sound cluster structure in X.  

In addition, to minimize the criterion J ,  by considering the unity 
constraint in (7). the FCM algorithm is expressed as an alternating 
minimization algorithm. Choose values for c,m, and E, a small 
positive constant, then generate randomly a fuzzy c-partition Uo, 
and set the iteration number t = 0. A two-step iterative process 
works as follows: Given the membership values F!:), the cluster 
centers v:)(i = I , .  . . , c )  are calculated as 

Given the new cluster centers vj'), we update the membership 
values 

The process stops when I U ('+') - U (') I < - E, or a predefined 
number of iterations has been reached. Additionally, an FCM 
algorithm is used for grouping the individuals, and the fitness 
of each individual is estimated according to membership values. 
Based on Alata el al., the original FCM proposed by Bezdek 
is optimized using GA, and other values of the weighting 
exponent (rather than nz = 2) give less approximation error. 
Therefore. the least-square error is enhanced in most of the 

2.2. A review of fuzzy C-means clustering models cases handled in this work. Also, the number of clusters is 

In real-world applications, there are no well-defined boundaries 
reduced [3 11. 

A - 
between clusters (groups of data); as a result, fuzzy clustering has 
emerged as a viable alternative [25. 261. The membership degrees 
assuming values between 0 and 1 are used in fuzzy clustering 
to quantify partial assignment of data to clusters [27]. In addition, 
fuzzy clusters of the objects can be represented by a fuzzy partition 
matrix. The commonly encountered fuzzy clustering algorithm is 
the FCM [28]. The FCM algorithm is one of the most widely used 
methods in fuzzy clustering. 

The FCM algorithm [29] can be summarized as follows: Let 
X = {xl,. . . ,x,] be a set of given data, where each data point 
xk(k = 1 ,..., n)  is a vector in 9 t K ,  Uc,, is a set of real c x n 
matrices, and c is an integer, 2 5 c 5 n.  Then the fuzzy c-partition 
space for Xis the set defined in the form 

2.3. Genetic-based clustering technique Several 
researchers have employed genetic-based clustering techniques to 
solve various types of problems [32, 331. More specifically, we 
exploit GAS to determine the prototypes of the clusters in the 
Euclidean space 9 tK .  At each generation, a new set of prototypes 
is created through the process of selecting individuals according to 
their level of fitness. Subsequently, the individuals are affected by 
running genetic operators [33]. This process leads to the evolution 
of a population of individuals who become more suitable given 
the correspondmg values of the fitness function. 

There are a number of studies that utilize the advantages 
of the GA-enhanced FCM. We focus here on the geneti- 
cally guided clustering algorithm proposed by Hall et ul. Based 

r n 
on [30], in any generation, element i of the population is 

U E % ~ ~ " I ~ U ; ~ = ~ , O < ~ U ~ ~ < ~ ,  and 
V,, a c x s matrix of cluster centers (prototypes). The ini- 

i = l  k=l 
tial population of size I is constructed by a random assign- 

uik s [0,11; , 5 i . c;  1 . k . .] (7) ment of rsal numbers to each of thesfeatures of the ccenten 
of the clusters. The initial values are constrained to be in the 
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range of the attributes to which they were assigned (deter- 
mined from the experimental datasets) but are otherwise ran- 
dom [30]. 

Additionally, there are several advantages due to the synergy of 
the GA and FCM. The time needed to reach an optimum through 
GA is less than the time needed by running the iterative approach. 
Also, GA provides higher resolution capability compared to the 
iterative search because of the fact that the precision depends 
on  the step value in the 'for loop function'. So GA gives better 
performance and has less approximation error with less time [31]. 
Furthermore, GA is generally able to find the lowest known J,, 
value or a J,,, associated with a partition very similar to that 
associated with the lowest value of J,. 

On datasets with several local extrema, the GA approach always 
avoids the less desirable solutions as well as help avoiding 
deterioration of partitions, which provides an effective method 
for optimizing clustering models whose objective function can 
be represented in tenns of cluster centers. The time cost of 
genetically guided clustering is shown to make a series of random 
initializations of fuzzyhard c-means, where the partition associated 
with the lowest J, value is chosen, and is an effective competitor 
for many clustering domains [31]. 

It can be concluded that the time needed for the GA to optimize 
an objective function depends on the number and the length of the 
individual in the population and the number of parameters to be 
optimized [31]. 

In addition, as Vs will be used within the GA, it is necessruy to 
reformulate the objective function for the FCM for optimization 
purposes 1301. Thus, the way the assignments are made to clusters 
is based on the following: 

which is equivalent to a reformulation of JI that eliminates U .  
Subsequently, (8) can be written down in terms of distances 

from the prototypes (as is being done in the FCM method) [30]. 
Specifically, for m > 1, as long as Djk (vj, xk) > 0 Vj ,  k ,  we have 

Hall et al. substituted (12) into (8); this gives rise to the FCM 
functional, reformulated as follows: 

The intent is to optimize Rm with a genetically guided algorithm 
(GGA) [30]. 

In general, GGA consists of selecting parents for reproduc- 
tion, performing crossover with the parents, and applying muta- 
tions to the children; in this case, Hall et al. used a binary 
gray code representation in which any two adjacent numbers 
are different by 1 bit. This method may yield a faster conver- 
gence and improved performance over a straightforward binary 
encoding. The complete process of the GGA is summarized as 
follows: 

1) Choose rn, c, and Dik. 

2) Randomly initialize Isets of ccluster centers. Constrain the 
initial values within the space defined by the data to be 
clustered. 

3) Calculate Rm by using (13) for each population member 
and apply a modified objective function RL ( V )  = R ,  (V) = 
R,,, (V) + b x R,,,(V), where h E [0, c] is the number of empty 
clusters. 

4) Convert the population members to their binary equivalents 
(using the Gray code). 

5) For i = 1 to number of generations, do 

a. Use k-fold tournament selection (default k = 2) to select 
112 parent pairs for reproduction; 

b. Complete a two-point crossover and bitwise mutation for 
each feature of the parent pairs; 

c. Calculate R,, by using (13) for each population member and 
apply a modified objective function Rh, (V) = R,,, (V) = 
R,, ( V )  + 17 x R,, (V), where b E [O,  c] is the number of 
empty clusters; 

d. Create a new generation of size I ,  which is selected from 
the two best members of the previous generation and the 
best children that are generated by using crossover and 
mutation. 

6) Provide the cluster centers to the terminal population with the 
smallest Ri,, value and report this smallest value. 

In addition, an automatic setting of crossover and mutation rates 
is also used in this GGA. Hall et al. considered notation in which 
f,, is the maximum fitness in a population,j' becomes the average 
fitness in a population,f is the fitness of an individual child about 
to have a mutation applied to it, and f '  is the larger of two fairness 
values of individuals about to have crossover applied to them. 
Then, the probability of crossover, p,. , is given as 

Moreover, the probability of mutation is specified in the form 

where kl, kz, k3,k4 4 1.0 1301. 
Furthermore, closely related to the proposed idea, the implemen- 

tation of the fuzzy switching regression requires fuzzy clustering to 
'translate' the problem into a series of subproblems to be handled 
for the individual subsets of data [34]. 

2.4. Affine, convex hull, and supporting hyperplane 
Let us recall that the affine hull of set S in the Euclidean space 

9tK is the srnallest affine set containing S or, equivalently, the 
intersection of all affine sets containing S .  Here, an affme set is 
defined as the translation of a vector subspace. The affine hull 
aff(S) of S is the set of all affine combinations of elements of S ,  
namely, 

The convex hull of set S of points, hull(S), is defined to be a 
minimal convex set containing S. We say that point P E S is an 
extreme point of S if P 4 hull(S - P). In general, if S is finite, 
then hull(S) is a convex polygon while the extreme points of S 
are the comers of this polygon and the edges of this polygon will 
be referred to as the edges of the hull(S). Figure 1 shows how a 
convex hull polygon can be constructed. 

We say that the extreme points of S have been identified, and 
hence hull(S) has been identified, if 
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Convex hull 

, .. , --. , . 
( . . - . I  Convex hull, w~th 

vemces h~ghl~ghted 

A set of polnts 

Fig. 1. Construction steps of a convex hull polygon 

1) for each Pi containing a point of S, Pi has a Boolean variable 
'extreme' that is true if and only if the point contained in Pi 
is an extreme point of S ,  and 

2) for each Pi containing an extreme point of S ,  Pi contains 
the position of its point in the clockwise ordering, the total 
number of extreme points, and its adjacent extreme points in 
the clockwise order. 

In general, this term is concerned with a concept of geometry. 
A hyperplane divides a space into two half-spaces. A hyperplane 
is said to support a set S in Euclidean space !RK if it meets the 
following conditions [35]: 

1 )  S is entirely contained in one of the two closed half-spaces of 
the hyperplane, and 

2) S has at least one point located on the hyperplane. 

In addition, if the dimension of the supporting line is higher 
than three, the related relationship can be written down as 

where a = [a,, . . . , a ~ ]  denotes a unit vector, x = [ X I , .  . . ,XK] is 
an arbitrary point, and b assumes any arbitrary real value. 

In the case when the following conditions 

are satisfied, we say that the supporting hyperplane S supports the 
set P .  

Therefore, using this definition, a convex hull. conv(P), can be 
expressed as follows: 

Beneath-Beyond Algorithm: This algorithm incrementally builds 
up the convex hull by keeping track of the current convex hull 
Pi using an incidence graph. For instance, the Beneath-Beyond 
algorithm consists of the following steps: 

3ING REGRESSION ANALYSIS 

1) Select and sort points along one direction, say XI. Let s = 
Po, P I , .  . . , P,-I be input points after sorting. Process the 
points in an increasing order. 

2) Take the first n points, which define a facet as the initial hull. 
3) Let Pi be the point to be added to the hull at the ith stage. Let 

Pi = conv(Po, P I , .  . . , Pi-1) be the convex hull polytope built 
so far. This step includes two lunds of hull updates: 

a. A pyramidal update is done when Pi  $ aff(Po, P I , .  . . Pi-l), 
i.e. when Pi is not on the hyperplane defined by the current 
hull. A pyramidal update consists of adding a new node 
representing Pi to the incidence graph and connecting this 
node to all existing hull vertices by new edges. 
A non-pyramidal update is done when the above condition 
is not met, i.e. P i  is in the affine subspace defined by the 
current convex hull. In this case, faces that are visible from 
P, are removed and new facets are created. 

In addition, by processing a point in Quickhull [36], the 
randomized incremental algorithm is equivalent to using an 
implementation of the simplified Beneath-Beyond theorem based 
on Grunbaum's Beneath-Beyond Theorem proposed in 1961 [36]. 

Theorem I .  Let H b e  a convex hull in !RKand let p be a point in 
!XK - H. Then the faces f  = conv@ U H)are as follows: 

1) f is also a face of H if there is a facet F and H such thatf is 
in F and p is below F. 

2) f is not a face of H iff = conv0, U f ') with f '  E H, and either 

a. p is a linear combination of vertices off' ,  or 
b. p is above one facet of H containing f' and below another 

facet containing f '. 

The rationale behind the first condition is straightforward. The 
second condition describes a face of the cone that is to be created 
if p is at least above one face. The ridge with one incident facet 
below and the other above p is the equivalent of the edge between 
visible and invisible faces for the discussed incremental algorithm 
above. 

3. Real-Time Fuzzy Switching Regression Analysis 
in a Heterogeneous Dataset 

Fuzzy switching regression applied to real-time scenarios deals 
with dynamic changes of data size. An adaptation of the GA- 
FCM [30] with the convex hull-based fuzzy regression approach 
called the Beneath-Beyond algorithm [37] in particular becomes 
of interest here. There are two major phases that are involved 
in the implementation of real-time fuzzy switching regression 
analysis: GA-FCM, which is concerned with the determination of 
the clusters in first phase, and the utilization of convex hull-based 
fuzzy regression approach, see Fig. 2. 

Proceeding with more details, the complete procedure can be 
outlined as a series of the following steps. 

Step I .  (Sarrzple Selection) 

Select raw data samples which are retrieved from distributed 
locality resources. 

Step 2. (Build Clusters) 

Given the data, construct the C ( l  < C 4 1%) clusters. The 
number of clusters depends on the nature of the data. Figure 3 
illustrates the structure of the data revealed through clustering. If 
the number of clusters is 'not sufficient' (inadequatelpoor clusters 
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Hall el 01. 's GA- 
FCM 

Ramb a oL 's 
convex hull-bared 
fuzzy regression 

I Determine and build elurrers 
based on dirrnbution of data 

clusrcrs should 

d~~slcrs are 
sufficient 
enough? 

sufficienlly built .... . . . . . . . . . . . . . . . . . . . . . . . . . 
Consrruct an appropriate 

Petfor)" a fuzzy regression 

are considered huge or still 

samples is huge 
or havc much 

No, newly added samples 

Fig. 2. Main processing phases of the proposed approach 

Fig. 3. Example of clusters formed on a basis of available data 

fitting) to represent a structure in the data, it has to be increased. 
Given the relevance of the clustering phase, we use an augmented 
GA-based version of the FCM. In our case, we concentrate on Hall 
et al .  [30] in which the GGA approach was considered. 

Step 3. (Construction of Convex Hull) 

The adaptation of the convex hull approach is realized by 
considering the outside points that were obtained when running the 
previous process. Such selected points will become vertices and 
bond each other to produce convex edges. The connected edges 
form a convex hull for the selected data. 

Step 4. (Fuzzy Regression Analysis) 

Fuzzy regression is realized on a basis of the constructed 
clusters. In other words, each cluster comes with its own fuzzy 
regression models. The example of fuzzy regression is illustrated 
in Fig. 4. 

Step 5. (Process Newly Added Samples) 

Fig. 4. Realization of the f ~ ~ z z y  regression based on fuzzy clusters 

Edges 

Fig. 5. Adaption of convex hull approach to graph 

Related to real-time scenario, new data are added to the currently 
processed data. Therefore, if this group of data becomes huge or 
we require more processing time, the procedure will restart from 
Step 2; else it moves to the next step. 

Step 6. (Solve LP) 

By utilizing the convex hull developed so far, the implemen- 
tation of the LP becomes easier because of the slightly changed 
(either increasing or decreasing) number of vertex points that must 
be considered for further computing. In other words, the analysis 
takes into consideration selected vertex points which were used for 
the convex hull polygon construction. These vertices are treated 
as constraints in the LP formulation and used to generate each of 
the regression models. 

3.1. Solution to a problem with a convex hull 
approach The weaknesses of the implementation of multidi- 
mensional points in the fuzzy regression analysis can be addressed 
by the adaptation of a convex hull approach [37]. In the suggested 
modification, real-time data processing becomes realizable based 
on the constructed vertices of the convex hull using related points 
on the graph. The real-time implementation mostly deals with a 
large number of data. Each particular data will be represented as 
dynamic convex points and the related edges will be constructed 
as well. The adaptation of a convex hull approach is illustrated in 
Fig. 5. 

The reconstruction process of the convex hull is also concerned 
with a new convex point or vertices which are located inside or 
outside the already developed convex hull. Certain related vertices 
may be removed and some new vertices will connect to the new 
points of the convex hull. Figure 6 shows an example of new edges 
being the result of the reconstruction process of the convex hull. 

In order to obtain a suitable regression model based on the 
convex hull constructed in this way, the connected vertex points 
serve as constraints in the formulation of the LP problem. 
Considering this process, we note that the limited number of 
selected vertices will directly reduce the computational complexity 
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Fig. 6.  Reconstmction of convex hull of graph 

when forming a sound model while reducing the overall processing 
time. 

Let us recall that the main purpose of fuzzy regression analysis 
is to form the upper and lower bounds of the linear regression 
model. Both the upper line yUand the lower line y L  for fuzzy 
regression are expressed in the form 

The related changes of the corresponding relationships can be 
expressed as follows: 

1) Evaluation function 

n K 

2) Constraints 

The above expression can be further rewritten as follows: 

We also arrive at the following simple relations: 

In addition, we know that any discrete topology is a topology 
that is formed by a collection of subsets of a topological spacex. 
The smallest topology has two open sets, the empty set 4 and the 
universe X. The largest topology contains all subsets as open sets 
and is called the discrete topology. In particular, every point in x 
is an open set in the discrete topology. The discrete metric p on 
x is defined by 

for anyx, y E X. In this case (X, p )  is called a discrete metric space 
or a space of isolated points. 

According to the definition of discrete topology, (30) is rewritten 
as follows: 

where we assume that Pi1 = 1. 

This expression corresponds to the definition of the support 
hyperplane. Under the consideration of the range below 

the following relation is valid: 

This is explained by the fact that the regression equations 
Y Uand YLare formulated by vertices of a convex hull. Therefore, 
it is explicit that the convex hull approach (or its vertices) can 
clearly define the discussed constraints of fuzzy mathematical 
programming, which is more reliable and accurate. 

The convex hull is a smallest convex unit that contains given 
points. Let us denote the set of points given as input data as P, 
and the set of vertices of the convex hull as PC where PC c P. 
Therefore, a convex hull satisfies the following relationship: 

Let us introduce the following set: 

where m is the number of vertices of the convex hull. Substituting 
this relation into dimension of the supporting line which is higher 
than 3, we encounter the following constraints: 

Using these, the constraints of the LP of the problem of fuzzy 
regression can be written down in the following manner: 

yi 5 ax;  + clx;l 

(38) 
(i = 1 ,  . . . ,  nz). 

Expression (38) is rewritten based on (28) where the index 
of samples ( i  = 1, .  . . ,n)was changed into the index of vertices 
( i  = 1, . . . , in ) .  This occurs by virtue of (36). As previously men- 
tioned, m here represents the number of selected points, which 
become the vertices of constructed convex hull polygon. In addi- 
tion, (38) composes LP constrains in order to obtain the opti- 
mum model as regression models: upper and lower boundaries. 
Associated to the fuzzy switching regression analysis, this for- 
mulation of LP constraints will be employed when constructing 
clusters. 

In other words, in order to form a suitable regression model 
based on the constructed convex hull, the connected vertex points 
will be used as the constraints in the LP formulation of the 
fuzzy regression. Considering this process, the limited number of 
selected vertices minimizes the computing complexity required to 
develop the model. 

3.2. An efficient formulation of the real-time fuzzy 
switching regression through the convex hull approach 
Based on the original method of the determination of the convex 

hull, the process has to be realized using all analyzed data. Here, 
we propose a new method by building a convex hull for such 
processed data. Focusing on the constn~ction of an appropriate 
convex hull for each cluster process, the following substeps are 
completed: 
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Table I. Comparison between previous studies and the proposed 
approach of fuzzy switching regression implementation 

Previous Newly proposed 
studies of switching approach of fuzzy 

No. regression [20] switching regression 

i. It is a huge constraint to 
deal with large-scale 
data volume, especially 
in real-time data 
processing 
implementations. 

ii. With the new arrival of 
data, the past 
performance analysis is 
totally ignored and the 
analysis process has to 
restart again. 

. . . 
111. It is necessary to 

recalculate the LP 
perfomlance 
considering the initially 
analyzed data and also 
the newly added data. 

It is efficient in dealing with 
a large-scale data volume 
in a real-time data 
processing 
implementation. 

Decrease of computational 
time; it is not necessary to 
delicately compute the 
past performed analysis. 
The analysis can be built 
on the basis of the past 
results. 

Reconstruction of convex 
hull edges is affected 
whether related newly 
analyzed data are selected 
or not selected as new 
convex hull 
vertices-either inside or 
outside of the remaining 
constructed convex hull. 

1) Select the outsider points among the distributed analyzed data 
points. These points will become vertices of a convex polygon. 

2) Connect each of the selected potential vertex points for 
constructing convex edges. 

3) Connect constructed edges for producing boundaries of convex 
hull Hg . 

4) Omit points that are included in the convex hull H p .  
5) Perform the Beneath-Beyond method to formulate the convex 

hull Ho using one of the selected vertex points that were chosen 
for building the convex hull. 

It is useful to choose the Beneath-Beyond algorithm to realize 
the convex hull approach considering that no extra computing is 
required for the construction of the facet structure. This algorithm 
may reduce the computational time required to obtain the best 
solution for an equivalent problem. In addition, the main criterion 
that distinguishes the different variants of this algorithm is related 
to dealing with a search for the visible facets. That is, we can 
find a visible facet among the facets added in the previous stage; 
therefore, we may simply search through all of the latter facets 
until a visible facet has been found. Then we examine adjacent 
facets and repeat the process on those that are visible. 

Table I gives a general comparison between the previously 
studied approaches 1201 and our newly proposed idea related to 
fuzzy switching regression implementation. 

Refemng to the explanation offered above, it becomes apparent 
that real-time fuzzy switching regression analysis can be improved 
by adopting a convex hull approach, or, more specifically, a 
Beneath-Beyond algorithm. Considering that the changes of edges 
depend on the outer plot positions, we can show that the 
proposed approach is more suitable to deal with real-time data 
implementations. 

4. Illustrative Examples 

To demonstrate the process of real-time data processing, we 
have chosen a set of real-world data that were obtained from a 

certain heavy industry company and a set of randomly generated 
synthetic data. Each of the selected samples of data is divided into 
two groups. This process is considered to show the simulation of 
a real-time situation, in which the first group is analyzed at the 
beginning of the procedure and the remaining data were added 
next, which mimics the real-time scenario. In addition, we also 
developed the conventional switching regression [20] for the same 
selected data. We discuss the efficiency of our method to construct 
a fuzzy switching regression model for one real-world case as well 
as randomly generated synthetic sample cases. Some comparative 
analysis is also provided. 

Exanzple 1 :  Performance monitoring of a steam generator 
involves a continuous evaluation of the plant's efficiency over 
time using data supplied by sensors. These evaluations are repeated 
in constant time intervals using data coming from online instru- 
mentation. According to Buljubaic and Delalic, the objective of 
performance monitoring is a continuous evaluation of degradation 
such as decrease in performance of the steam generator [38]. In 
addition, these results require additional information that is helpful 
in problem identification, improvement of plant performance, and 
making economic decisions about maintenance schedules. 

We use a set of data resulting from a simulation of a steam 
generator (SG) and, in this case, we focus on steam boiler samples. 
The steam, which drives the steam turbine, is generated by heating 
water. In addition, depending on the power of the reactor, two, 
three or four steam generators are provided and, together with 
the reactor, are installed in the hermetically sealed doubled-walled 
reactor building. The efficiency of a steam boiler depends on 
the heat transfer properties from the primary to the secondary 
fluid 1391. 

The data set consists of 400 samples forming an initial group that 
consists of three variables describing the input-output relationship; 
drum pressure: the pressure inside the steam drum (PSI), XI ;  
oxygen exhaust: excess oxygen in the exhaust gas (%), x2; and 
steam flow: the rate of steam flow from the steam drum (kgls), y .  
Additionally, this analysis will identify a cluster or group of steam 
flows that achieved the standard and vice versa. 

We ran GA-FCM clustering with two clusters and constructed 
convex hull-based fuzzy regression for each of them. This process 
gives rise to fuzzy regression boundaries that cover the entire set of 
analyzed data. Therefore, the result will be the optimal convex hull 
polygon that can be constructed using selected outside vertices. 

In general, the first cluster shows that 14 vertices were selected 
to be connected convex edges to construct a convex hull. Another 
cluster (second cluster) comes with 12 vertices, which were 
selected to establish convex edges and their combination generates 
a convex hull. 

Given a real-time processing scenario, let us assume that 100 
samples were added to the previously analyzed data and that all 
of the data need to be processed again; the entire 500 samples of 
the data set are further processed. 

We may anticipate that the newly added data are distributed 
inside the remaining convex hull. We have found that only minor 
changes occurred, resulting in a total of 15 vertices formed during 
the reconstruction process of the convex hull for the first cluster. 
On the other hand, the second cluster in this example also has been 
impacted, and in this case we have amved at 11 vertices. 

Finally, the selected vertices, which are used for the convex 
hull polygon for each cluster, will become a constraint in the 
formulation of the LP used to construct the fuzzy regression. 
Example 2 : In general, the synthetic sample sets are generated to 

meet specific needs or certain conditions that may not be found in 
the original real-world scenario. This process can be useful when 
designing any type of system because the synthetic data are used 
as a simulation or as a theoretical value or situation. Moreover, 
this condition allows us to take into account unexpected results 
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and to have a basic solution or remedy, if the results prove to be 
unsatisfactory [40]. 

Given the capabilities discussed in this example, we consider 
carrying out random generation of synthetic data to produce a set 
of sample data within the assumption of heterogeneous sources 
and locations. In addition, the data samples generated will consist 
of two inputs, xl and xz, variables with the intention of forecasting 
an output, y ,  variable. 

To demonstrate the dynamic changes of data representation in 
the context of real-time data processing, as explained above, we 
initially ran the proposed approach for 750 samples. Based on the 
results obtained, we noted that the constructed convex hull for 
the first cluster consisted of 52 convex vertices while another one 
(second cluster) had 54 convex vertices. Therefore, by utilizing 
these vertex points as constraints in the LP formulation, we can 
directly form an appropriate regression model for each cluster. 

Next, we add 300 more samples and process them in the 
same manner as discussed in the previous example. Based on 
the results obtained, we notice that there are several changes 
that attect the initially constructed convex hull. These changes 
are to the constructed convex hull due to the distribution of 
the newly added samples. The reconstructed convex hull for 
the first cluster was modified and comes with a small number 
of decrements, which happen as a change is made from 52 
(as previously highlighted) to 51 vertices points. The second 
convex hull, corresponding to the second cluster, has been slightly 
changed, and now the total number of vertices becomes 53. In 
addition, more than 50% of the vertices were considered in the 
reconstruction process of the convex hulls for both clusters, which 
consider newly added samples of data that are reused from the 
earlier process. 

Therefore, referring to both numerical examples, we conclude 
that the employment of the proposed method is highly beneficial, 
especially for the dynamic database environment due to the 
minimal time usage as well as the lower computational overhead. 

5. Discussion 

The increase in sample size might cause computational difficul- 
ties in the implementation of the LP problem. Another issue might 
emerge when changes occur with regard to the variables them- 
selves. Thus, the entire set of constraints must be reformulated, 
which increases the overall computational overhead. The increase 
in the computing complexity has been alleviated by the use of the 
proposed method. 

Before going further into this precious section, we indicate 
here the computer specification that has been used to perform the 
whole processes. The specifications of machine are as follows: a 
personal notebook PC with Intel(R) Pentium CORE(TM) Duo 2 
CPU (2.00 GHz) processors combined with 2 GB DDR2 type of 
RAM. Moreover, Windows Vista Business Edition (32 bit) was 
the operating system installed in this machine. 

For comparative purposes, Table I1 summarizes the results pro- 
vided by the proposed fuzzy switching regression and the con- . - 

ventional switching regression approach for the two numerical 
examples covered in the previous section. In addition, the approach 
by Hathaway and Bezdek [20] was considered here as the conven- 
tional one. 

We may conclude that most of the obtained proposed fuzzy 
switching regression models are not very much different, which 
indicates that there were only slight changes in analyzed data 
as well as in the constructed convex hull polygons. Therefore, 
the newly added data will not influence the regression models 
excessively and the produced models become more accurate 
because the reconstructed convex hull automatically covers all 
points of the analyzed data. In other words, we do not have to 

consider the complete data to construct the regression models; we 
only utilize the selected vertices that are used for the construction 
of the convex hull. Therefore, this situation will lead to a decrease 
in computational load. 

Moreover, based on the reported computing time, we note a 
substantial reduction in time required to construct regression when 
using the method introduced in this study. Refening to Table 11, 
focusing on the Time Required column, we highlighted that the 
differentiation of the time interval between two completed iteration 
cycles is only 0.24 s or 0.093% for the total of essential duration 
used while initial group of data processes for the steam generator 
sample sets. Conversely, merely 0.49 s or 0.138% of 3.49 s 
(total processing time of the initial set of synthetic samples) is 
added. Compared to the conventional approach, both the analyzed 
samples required more time, along with an increase in the sample 
volume. We may anticipate that the differences could be become 
substantially more when dealing with larger data sets. 

Closely related with computing time, we also present here 
Inference Speed criteria. Based on this comparison criterion, we 
assumed a conventional switching regression approach as 100% 
inference speed; therefore we noticed that an inference speed for 
the steam generator dataset is 129% faster through the proposed 
approach compared to the selected conventional one. Conversely, 
134% greater inference speed has been achieved for the synthetic 
dataset. Thus, we can simply generalize here that, with more data 
to be processed, thus, the percentage of inference speed greatly 
increases. 

Apart from Table 11, we highlight also some interesting fea- 
tures in tenn of Accuracy Level viewpoint. Related to this aspect, 
suppose that those produced conventional sw~tching regression 
models are considered 100% accurate and are taken as eval- 
uation benchmark. Generally, we can clearly distinguish that 
those regression models that are obtained from our proposed 
approach are very much similar to the models produced through 
a conventional one. Hence, the qualities of accuracy for those 
models formed via the proposed approach are considered to be 
superior. In addition, the most important feature that relates to 
the proposed approach is with regard to the utilization of the . - -. 

fuzzy concept along with switching regression implementation 
process. As was clarified in the previous section, this combi- 
nation produced a great implication especially associated with 
the accuracy intensity of the produced models even in real-time 
circumstances. 

On the other hand, related to the computational complexity 
factor for the subsequent iterations, our new approach will only 
consider the newly added samples of data together with the 
selected vertices of the previous convex hull. For that reason, 
this computing scenario will reduce the computational complexity 
because of the smaller number of the analyzed samples of data used 
for the subsequent processing of regression models. These results 
illustrate the potential of our proposed model to solve switching 
regression proble~ns that demand incremental adaptability. 

6. Concluding Remarks 

In this study, we have reported on the development of fuzzy 
switching regression models that can be regarded as a potential 
IDA tool for an array of essential problems in real-time data 
processing, especially problems encountered in the industry and 
manufacturing fields. 

We have developed the enhancement of fuzzy switching regres- 
sion, which comes as a hybrid GA-FCM with the convex hull- 
based fuzzy regression approach, specifically the Beneath-Beyond 
algorithm. In real-time processing, where we are faced with 
dynamically modified data, the proposed algorithm realizes fuzzy 
switching regression by reconstructing particular edges and con- 
sidering new vertices for which the recomputing has to be realized. 
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Table 11. Fuzzy switching and conventional regression models: details of performance comparisons 

Regression 
approach 

Dataset Group 
sample 

Obtained Time Inference Accuracy 
regression required speed level 

models (s) 
- - 

Proposed fuzzy 
switching 
regression 
approach 

Conventional 
switching 
regression 
approach [15] 

-- 

Steam Generator 400 samples 

500 samples 

Synthetic data 750 samples 

1050 samples 

Steam Generator 400 samples 

500 samples 

Synthetic data 750 samples 

1050 samples 

- 

xl = input variable for drum pressure, and x l  = input variable for oxygen exhaust for both implemented regression approach. Note that 121 = 

(23.4.2.4) + (3.5,1.9)~1 + (1.0,l.l)xz represents the upper line, while )?  = -(21.1,0.0) - (3.5,O.O)xl - (12.2,0.0)~2 is the lower line obtained for steam 
generator and synthetic dataset via implementation of proposed fuzzy switching regression approach. This is valid for those obtained regression models in 
Table 11. 

The implementation of the proposed method clearly highlights this method performs as a randomized incremental algorithm 
that the constructed convex hull becomes a data boundary inside that is truly output sensitive to the number of vertices. In 
which the analyzed data points are found. Essentially, this pro- addition, the approach requires less space compared to most 
posed hybrid approach becomes an alternative to real-time fuzzy of the randomized incremental algorithms and executes faster 
switching regression analysis. for inputs with non-extreme points, especially when dealing 

Furthermore. we have demonstrated that the convex hull-based with real-time data processing. We may envision that such 
fuzzy regression approach performs efficiently for real-time data fuzzy switching regression could become an efficient vehicle for 
processing for fuzzy switching regression problems; this method analyzing real-world data where ambiguity or fuzziness cannot be 
could recompute and reconstruct the related edges by taking into avoided. 
account newly added data to form suitable regression models. On As future directions for this proposed approach, issues that 
the other hand, we also showed that the number of obtained ver- could be pursued include cut-off time for dynamic data situations 
tices of the convex hull edifice will not drastically change (either and the consideration of data preprocessing procedures for real 
increase or decrease), thereby retaining the computing effort rela- time data analysis implementations. Furthennore, the proposed 
tively constant in spite of an increasing number of samples. approach might be able to enhance nonlinear regression analysis 

These results suggest that the proposed method can be applied to with adaptation to other intelligent techniques of data analysis. 
real-world large-scale systems, especially those operating in redl- 
time computing environments. In addition, the proposed method 
will not lead to repetition in computing, as it focuses only on Acknowledgments 
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