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Abstract
The enormous popularity of the Internet has made an
instant star of the Java programming language.
Java’s portabilit y, reusabilit y, security and clean
design, has made it the language of choice for Web-
based applications and a popular alternative to C++
for object-oriented programming. Unfortunately, the
performance of the standard Java implementation,
even with just-in-time compilation technology, is far
behind the most popular languages today. The need
for an aggressive optimizing compiler for Java is
clear.

Building on preliminary experience with the JavaSoft
bytecode optimizer, this paper explores some the
issues that arise in building eff icient implementations
of Java. A number of interesting problems are
presented by the Java language design, making
classical optimization strategies much harder to
implement. On the other hand, Java presents the
opportunity for some new optimizations, unique for
this language.

1. Introduction

In this paper we present the results of a summer project on
optimizing Java done at JavaSoft Division of Sun
Microsystems, along with preliminary results of
continuing research at Rice University. Many interesting
compilation problems emerge when trying to optimize
Java, including:
• unavailabilit y of the complete program at compilation

time, eliminating opportunities for interprocedural
optimization,

• the exception mechanism, which limits code
movement optimizations, and

• the high abstraction level of the Java Virtual Machine
instruction codes (bytecodes), which hides many
machine dependent optimization opportunities from
the compiler.

In this paper, we discuss those problems, propose some
solutions, and suggest areas for further research.

This paper is organized into several sections. Section 2
describes possible approaches to optimizing Java. Section
3 presents the design of our current research compiler,
including the optimizations implemented and advantages
and limitations of the compilation model it employs.
Section 4 describes an approach to Java optimization that
relaxes the compilation model and presents some new
optimizations with preliminary results. Section 5 describes
an aggressive strategy for Java optimization, discussing its
potential and applicabilit y. Section 6 addresses the Java
exception mechanism, which presents a problem for
optimization regardless of the strategy employed. The final
section draws conclusions from this preliminary work and
present some directions for future research.

2. Optimization Strategies

There are three distinct strategies for optimizing Java
compilation. each having advantages and disadvantages
for particular applications and situations. In this paper, we
will describe each of them and discuss their applicabilit y
to different problems for which  Java might be used.

The first approach is to stay within the Java compilation
model defined by Sun Microsystems—code is generated
for the Java Virtual Machine (VM), the compiler processes
one class at a time, and the generated code is completely
independent of the platform on which it is executed. This
means that the compiler cannot make any assumptions
about the machine on which the VM code will be executed
and the VM cannot make any assumptions about the
compiler that is being used to generate VM bytecodes.

This model is used in a project begun at the JavaSoft that
is discussed in Section 3 of the paper. This approach has
an obvious advantage: no changes are made to the current
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Java execution environment, so the portabilit y, security,
and functionalit y that are the hallmarks of the Java
technology are preserved. Unfortunately, that compilation
model, along with the combination of the Java features,
leaves only limited room for performance improvement.
However, for applications where absolute portabilit y and
security are crucial, the compiler must stay within the
boundaries of this model. Given that requirement, it is
nevertheless worthwhile to exploit every opportunity for
performance improvement no matter how small.

An approach at the opposite end of the spectrum would be
to sacrifice the portabilit y and security of the Java Virtual
Machine, concentrating instead on the construction of the
highly sophisticated optimizing native code compiler.
Although this would sacrifice the portabilit y of the VM
object code and the security required for execution over the
Internet, the source code would remain portable and it
could always be recompiled using the first compilation
strategy for use over the Internet. This approach is
suggested for the very high performance server
applications where Fortran and C++ are currently being
used. Some important aspects of this strategy are discussed
in Section 5.

A third approach would combine features of the first two,
compromising some portabilit y and functionalit y for better
performance. As we will show in Section 4, relaxing the
constraints on the way the Java code is currently compiled
and executed can impact the performance significantly.
This model would still keep all of the convenience and
power of execution over the Internet and the Java Virtual
Machine security model would still be enforced. The
compiler and the VM would know about each other,
weakening the absolute portabilit y model, so that the cross
knowledge could be used to achieve higher performance.
Under this scheme the compilation process would not be
as simple as in the JavaSoft model. This model would be
suitable for applications that require execution over the
net, with all the security of the Java VM instruction set,
but which are willi ng to be limited to the specific
compilers and VMs that are supporting this model.

As already mentioned, each of this strategies has its
advantages and disadvantages, and the right model should
be chosen to meet the needs of the intended application.

3. Standard Model

In this section, we describe the first approach, which is
used in our current compiler. During the design and
implementation of this project, which was done while one
author was a summer student intern at JavaSoft, a number

of interesting problems in optimizing Java surfaced,
revealing some limitations of the compilation model that
has been used to date.

Our research compiler builds on the distributed Sun Java
compiler by including a standalone, bytecode-to-bytecode
optimizer. This structure was chosen for the effort for two
reasons. First, when the effort was begun at JavaSoft, the
optimizer was easier to develop and debug because it was
independent of the current build of JavaSoft’s javac
compiler. Second, the structure also makes the optimizer
independent of any compiler, so it can be used to optimize
code produced by other Java compilers, as well as any
other language compiled to the Java VM. Third, it can be
used as a optimizing prepass to many just-in-time (JIT)
run-time compilers, which are now coming into
widespread use.

The compiler itself is organized into a series of phases that
are loosely connected with one another:
1. parse the input class and load it into memory;
2. convert the stack machine bytecodes into traditional

expression trees and construct the control flow graph
(CFG);

3. convert the CFG into static single assignment (SSA)
form.

4. perform some standard optimizations—dead code
elimination and constant propagation—on the SSA.

5. restore the CFG from the SSA, renaming the local
variables if necessary.

6. perform local optimizations on the CFG itself—local
common subexpression elimination, copy
propagation, and register allocation; and

7. generate the final program as Java VM bytecodes,
performing  peephole optimizations (stack allocation,
replacement with the cheaper operator) along the way.

In the next several sections we will discuss some of these
operations.

3.1. High Level Source Recovery
Java bytecodes are not a particularly suitable intermediate
representation for optimization. Most optimizations in the
literature apply to expression-li ke code, with variables and
registers instead of a stack. The most common
intermediate representations are sequences of three-
address and two-address instructions resembling assembly
language [Aho et al. 1986].

The Java VM is a stack machine, which makes data flow
analysis complicated. The need to track the usage of the
variables to and from the operator stack is the most
common diff iculty we encountered. This motivated us to
develop a pass to translate Java VM bytecodes into
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expression trees, a representation more suitable for
analysis.

The conversion procedure is straightforward. Basic blocks
are identified by scanning the Java VM bytecodes for .
branches, identifying branch targets in the process. When
the structure of the CFG has been establi shed in this way,
we proceed with the conversion of the bytecodes in each
basic block to the expression trees.

The conversion to expression trees is done by traversing
the basic block simulating the behavior of the virtual
machine using an expression stack. There are three cases:
• when a constructing bytecode—one that creates a

constant or pushes a local variable on the stack—is
encountered, the corresponding constant or variable is
pushed onto an expression stack;

• When an arithmetic operation is simulated, the
appropriate number of operands are popped from the
expression stack, the resulting expression is
constructed, and it is pushed back on the expression
stack.

• A bytecode that stores the value on top of the stack in
a local variable will be simulated by  popping the top
expression from the expression stack and constructing
an assignment.

Figure 1 shows an example of the bytecodes and the
resulting expression.

After construction of the expression trees for each basic
block, the expression stacks have to be merged at the each
basic block entry. The expression tree constructor assigns
arbitrary “register” names to the local variables when
constructing expressions. If two or more blocks have non-
empty expression stacks at their exits, and they merge at
the same point in the CFG, the expression stacks must be
unified. This is done by unifying each of the expressions
on the stack with the appropriate expressions on other
stack(s). A complex expression that must be unified is
converted into an assignment to a temporary variable and
then the variable is unified with other expressions. The
code that does the unification assignments is inserted at
the beginning of the block that succeeds the merging
point. A similar merging operation is done for the splitti ng
points in the CFG, with code inserted (if necessary) at the
end of the block before the split.

3.2. SSA Construction and Usage
The fastest known algorithms for many compiler
optimizations use SSA form to represent the program
being optimized. That was the primary reason we selected
it as an intermediate representation in our compiler. SSA
construction and reconstruction algorithms are described
in detail elsewhere [Cytron et al. 1991][Briggs et al.
1995].

One issue in SSA construction and reconstruction for Java
programs is yet to be resolved. Our current
implementation converts only the method’s local variables
into SSA names, ignoring all i nstance variables. This is
because some of the code moving optimizations (loop
invariant code motion, for example) require the SSA
reconstruction algorithm to rename variables when
restoring the CFG. This is, of course, unacceptable for
instance and global variables in Java, since that would
change the class interface. We believe that the omission of
instance variables from the SSA (and thus from
optimizations on it) causes a significant decrease in the
qualit y of code generated. We plan to use techniques
developed by Briggs, Schilli ngburg and Simpson [Briggs
et al. 1995], which employ tags for memory locations to
deal with instance variables. All of the optimizations on
SSA would be aware of the instance variable tags and
would act accordingly so the class interface would not be
changed after the reconstruction of the CFG.

3.3. Dead Code Elimination and Constant
Propagation
Dead code elimination is a important and well -understood
optimization in traditional languages [Kennedy 1981],
[Briggs et al. 1993]. In applying this optimization to Java,
it is important to understand the impact of impact of the
Java exception mechanism. Since many Java instructions
can potentiall y cause an exception, a prepass of the dead
code elimination algorithm must mark all of those
instructions as criti cal (e.g., undeletable), thus limiti ng
opportunities for dead code elimination. Some approaches
to dealing with exceptions are discussed later in this
paper.

For constant propagation we use the well -known
Wegman-Zadeck algorithm [Wegman Zadeck 1985].

3.4. Local Common Subexpression Elimination
In our implementation of local common subexpression
elimination, we use a well known value numbering
algorithm [Simpson 1996],[Briggs et al. 1996]. Value
numbering provides a very natural framework for common
subexpression elimination. All of the variables in the

Bytecode Stack Code
iconst_1 1
iload_1  R1  1
iadd (R1+1)
istore_1 R1=R1+1

Figure 1
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program are numbered, with two variables having the
same number only if they have the same value. Two
expressions have the same value (and get the same value
number) only if they have identical structure and their
operands have the same value number. After discovering
the value numbers, it is trivial to discover the common
subexpressions, store the value once computed for the
given subexpression and replace all the subsequent
computations with simple loads.

3.5. Register and Stack Allocation
The Java Virtual Machine is a stack machine, so it does
not have the notion of registers in the usual sense.
Furthermore, it does not have a notion of memory, just a
potentiall y huge number of local variables to store
temporary values and a stack for operations. However,
there is a substantive difference in the speed when
accessing the stack versus the local variables.

Four local variables (0-3) have a special codes for load and
store operations assigned to them that are shorter than
normal. This results in shorter code and faster execution
when those variables are used. Also, the first 64 local
variables can fit into the register cache on some Java
microprocessors currently under development. It is
reasonable to expect that most of the speciali zed Java
microprocessors, as well as the run-time environments for
conventional processors will cache some of the local
variables in their registers. Although the speed differences
are not dramatic enough, relative to access times in
registers vs. cache vs. memory on conventional processors,
to justify the implementation of a full graph-coloring
allocation algorithm [Briggs et al. 1994], they are
significant enough to prompt us to implement a simple,
but fast and effective heuristic to exploit the described
asymmetry. The register allocation algorithm is as follows:

• if the compiled method is large enough, the input
values (originall y stored in local variables starting
from 0) are taken into account for register allocation
and relocated, else they are left in their original
location

• for each basic block, make a list of available registers
• traverse each block, assigning the lowest available

register to the variable that has been assigned the
value, and replacing the usage of the local variables
with their assigned registers

• if the current instruction uses the variable for the last
time, put the corresponding register on the free list

• after assigning registers for each basic block, registers
are assigned to the global values. Every local variable
that is li ve across the basic block is considered global
and is assigned a unique register for the whole

method. The registers are assigned sequentiall y to
those variables, starting with the maximum register
number allocated in the basic block register allocation

Although not nearly as aggressive and effective as graph
coloring allocators, this simple strategy proved quite
effective in practice, especiall y for short methods, which
are very common for object oriented programming style.

As we already noted, the operator stack is usually the
fastest memory in Java virtual machine. Using the stack as
much as possible for storing the intermediate values would
speed-up the code substantiall y. We use a very simple pass
over the code to discover the possibiliti es for reusing the
stack:

• if the value stored in some local variable is used
exactly once and in the very next instruction, we
eliminate the store and subsequent load, leaving the
value on the stack. This is the most common case,
because it results from breaking up large expressions
into subexpressions and computing them separately.

• if the value stored in the local variable is used twice
by the next two instructions, store and two later loads
are replaced with the duplication of the value on the
stack. This case is a common result of the unification
algorithm described in section 3.1. and of the
common subexpression elimination algorithm.

Again, this is a very simple method, and although there
are more effective algorithms for code generation for stack
machines that use the stack optimally [Bruno Lassagne
1975], we found this one quite appropriate for our needs.

3.6. Performance

The performance improvements under this model are
presented on Figure 2 and Figure 3. These experiments
were performed on a Sparc 5 workstation, with 32MB of
memory using the Sun Java interpreter.
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Figure 2.
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The performance results are quite interesting because
actual execution time improvement is larger than the
instruction count decrease. This is primaril y a
consequence of local common subexpression elimination,
which replaces many array accesses with register
references, and peephole optimizations, which replace
existing instructions with the cheaper ones that do the
same work.

In our opinion, the total performance gain possible under
this compili ng model is modest. Some additional
optimizations can be implemented and some
improvements can be made to the current ones, but unless
the compilation model changes, we do not believe that big
improvements are possible beyond what can be deli vered
by just-in-time compilers. For more significant
improvements, at least a part of the current Java
compilation and execution model will need to be
sacrificed.

4. Relaxed Model

A more effective approach to optimizing Java would be
possible if we could relax some rules of the current Java
compilation model. In particular, given the standard Java
object-oriented coding style—frequent method call s, many
short methods—interprocedural optimization techniques
such as aggressive method inlining could lead to
substantive performance gains.

Unfortunately, interprocedural analysis as described in the
literature for conventional languages is not permissible
with the existing Java compilation and execution model,
except with final classes and methods. The reason is that
the compiler must assume late binding of the method call s
inside the same class as well as to the methods from other
objects. This is a consequence of not having the whole
program in hand at compilation time.

However, if we change the model, some interprocedural
optimizations become possible, Object inlining, described
in the next section, looks at all the classes that are
available to the compiler and, whenever it can prove that a
method invocation must be static, inlines whole objects.
Code duplication relies on the run-time mechanism to
distinguish between the optimized and non-optimized
classes and to decide which one to use for instantiation
and which one for inheritance.

4.1. Object Inlining
One of the simplest and the most effective interprocedural
optimizations is inlining. It has two major positi ve effects
on the compiled code: elimination of subroutine call
overhead and exposure of the method body to further
optimization in the context of the original invocation. The
potential negative effect is explosion of code size and the
corresponding increases in compilation times.

Intuiti vely, inlining would be most effective for code that
has many subroutine call s and short subroutines. Thus,
object oriented languages and programs written in object
oriented style would profit the most from this
optimization. Many of the current C++ compilers
implement extensive inlining and achieve significant
performance improvements as a result.

4.1.1. The Method

Java presents two major impediments to inlining, which
are illustrated by the sample code fragment Figure 4.

In this hypothetical code, there are two Java classes, each
of which declares a private integer variable along with
methods that access and modify that variable. The main()
method of the class Foo contains a simple loop that does
some computation and call s the internal method inc() of
Foo and the  external method dec() of the object goo, an
instance of the class Goo.

There are two (different) reasons why those two methods
calls cannot be inlined in Java. First, we cannot inline the
call to inc() because neither the class Foo nor the method
inc() are declared final. Thus, someone can later produce
a class that inherits the class Foo and overrides the
method inc(), but not the method main(), as shown on
Figure 5.

It is obvious that if the method call to inc() was inlined in
Foo, a call to main() of an instance of FooFoo would
produce an incorrect result. Thus, we cannot inline call s to
the non-final methods that belong to the same class since
someone can inherit the compiled class later and override
some of the inlined methods. Since the overriding methods
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would not be correctly invoked from the method where
inlining took place, the resulting program would be
erroneous.

The call to goo.dec() cannot be inlined for a different
reason. Unlike C++, Java compiler transforms the source
code to bytecodes for the Java Virtual Machine, which
have a very similar structure to Java source code, with
object instantiations, method invocations and language
rules that directly reflect the rules for Java source code
[Lindholm Yelli n 1996]. In particular, bytecodes have to
respect the privacy of object fields. In our example, the
code from method main() cannot directly access the
variable y from the class Goo, in either the source or in
the bytecodes. Most Java Virtual Machine
implementations would reject the bytecodes that violate
the privacy rules.

We propose two methods for handling these two problems:
code duplication, which addresses the first problem, and

object inlining, which addresses the second one. These
will be described in the next two subsections

4.1.2. Object Inlining

The idea of object inlining is very simple: instead of
simply inlining method call s, we will i nline whole objects,
including data and code. By making the whole object local
to the calli ng procedure, we gain immediate access to it’s
private data and make it possible to directly inline all the
calls to that object’s methods. Figure 6 shows how this
would affect the method main() from our previous
example.

There are two obvious problems with this approach:
1. it can only be applied to the objects that are

instantiated inside the current class, and
2. the inlined object cannot be passed to other objects

and methods as an argument.
The first problem cannot be solved unless the compiler has
access to  the whole program at compilation time, which is
not the case in our framework. The second problem is less
serious, since we could wrap a container object around our
inlined data and pass it along to the called method as a
parameter, restoring the inlined data after the call.

Let us ill ustrate this on an example: Suppose that we are
passing the object goo to the System.out.println() method
inside our main() method. Obviously, we cannot apply
object inlining as above, since we wouldn’ t have an object
to pass to the system method. What we need is an object
whose data can be set to correct values and which can be
passed to the given method. Our inlined data can be
restored on return if the called method changes anything.
To do that, we need direct access to our helper object’s
data, which can be provided by inheriting the inlined
object and adding accessor and modifier methods to it, as
shown on Figure 7.

class Foo{
private int x = 0;

public void inc(){
x++;

}

public void main(){
Goo goo = new Goo();
for(int i = 0; i<10; i++){
inc();
x--;
goo.dec();

}
}

}

class Goo{
private int y = 0;

public void dec(){
y--;

}
}

Figure 4.

class FooFoo extends Foo{
public void inc(){
x--;

}
}

Figure 5.

public void main(){
// inlined: Goo goo = new

Goo();
int goo_y = 0;

for(int i = 0; i<10; i++){
inc();
x--;

// inlined: goo.dec();
goo_y--;

}
}

Figure 6.
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Of course, heuristics have to be applied at compile time to
determine if the benefits of inlining the object outweigh
the cost of introducing a new object and the wrapping and
unwrapping that must take place around method where it
is passed as an argument.

4.1.3. Arrays of Objects

Arrays of objects can also be inlined, with some additional
caution in implementation. Allocation of an array of
objects will be replaced by allocation of an array of data
for each field in the given object. An instantiation of an
object in the array will be replaced by initiali zation of the
inlined data, as shown on Figure 8. The lines that are
commented out represent the original code, as before.

4.1.4. Performance

On Figure 9, we present some performance results
obtained on applying object inlining by hand on the Intel
Oopack benchmark. The actual implementation of object
inlining is under way, and we hope to represent more
complete and more detailed benchmark results once
completed.
The graph on Figure 9 shows the execution times in
seconds on an IBM 6x86 P166+ at 133MHz, with 40MB
of memory and running under Windows 95. The first two
bars show the execution times of the nonoptimized and
optimized code (only the object inlining optimization is
applied) using the original Sun bytecodes interpreter from
JDK 1.0. The third and fourth bar show the execution
times under the Symantec Café JIT compiler, again for
nonoptimized version and version optimized by object
inlining.

The data shows a promising performance improvement
with both interpretation and JIT compilation. The actual
speedup varies from 1.5 on Max to more than 7 on
Complex. This huge performance gain is not surprising
since Oopack is simply Linpack written in object-oriented
style with many method call s and short methods—thus it
is very suitable for this kind of optimization.

4.2. Code Duplication
Code Duplication is a method for widening the spectrum
of applicable  interprocedural optimizations on the
bytecodes, with very littl e sacrifice in portabilit y and
potentially big gains in the performance.

class GooH extends Goo{
public int get_y(){
return y;

}
public void set_y(int val){
y = val;

}
}
public void main(){
GooH gooH = new GooH()
int goo_y = 0;
for(int i = 0; i<10; i++){
inc();
x--;
goo_y--;

}
gooH.set_y(goo_y);
System.out.println(gooH);
goo_y = gooH.get_y();

}
Figure 7.

public void main(){
// Goo goo = new Goo[10];
int goo_y[] = new int[10];
for(int i = 0; i<10; i++){
// goo[i] = new Goo();
goo_y[i] = 0;

}
for(int j = 0; j<10; j++){
for(int k = 0; k<10; k++){
// goo[i].dec();
goo_y[i]--;

}
}

}
Figure 8.
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The problem we are trying to solve was described in
Section 4.1.1. Let’s look at the example at Figure 4 again.
The compiler cannot inline the call to method inc() in the
main loop because there is a possibilit y that someone may
later inherit from the class Foo and override the method
inc() but not main(), resulting in incorrect code. If the
method inc() was declared as final, the inlining could be
done safely (this is already done in most Java compilers).
The problem arises with the methods that are not declared
as final, as in our example.

The solution is very simple: the compiler generates two
copies of the code, one under the assumption that the
generated class will not be used for inheritance, thus
permitting aggressive optimizations, and a second with the
assumption that derived classes will be presented later.
The compiler will apply to the second only optimizations
that are safe under that assumption, as described in
previous sections. We already showed the result of
applying object inlining on the example on Figure 4 for
those invocations that are inheritance-safe. Figure 10
shows the result of inlining under the assumption that the
class foo will not be inherited from. Another optimization
pass, such as value numbering, would eliminate both
increment and decrement of x from the main loop.

There is obviously a problem with compatibilit y when this
method is applied. The run-time environment must know
that code duplication has been applied to the code, and act
accordingly. Only minor changes to the run-time
environment are required. When executing the code that is
instantiating the class Foo, it should use the class from
Figure 10, and when loading the class that is inheriting
from class Foo, it should use the inheritance-safe class
from Figure 6.

With careful naming conventions, we can completely
eliminate the compatibilit y problem. It is obvious that the
run-time environment that understands the code on which
the code duplication has been performed will have no
problems executing the ordinary bytecode, so we are safe
from that side. Code duplication will create a subdirectory
named $_OPT_$ in the directory where the generated
code is stored under the standard Java directory
conventions, and put the optimized class files in it. This
way, if the run-time environment does not understand
code duplication, it will i nstantiate the class from the
usual directory, which is still correct, though not as fast. In
our example, if the class Foo was a part of the package
foo, and the whole class tree is in directory Main, the
compiler will put the inheritance-safe version of the class
Foo, as in Figure 6, in file Foo.class in the directory
Main/foo/, and the optimized version from Figure 10 in

the file Foo.class in the directory Main/foo/$_OPT_$/.
Run-time environment that understands code duplication
will use Main/foo/Foo.class for inheritance and
Main/foo/$_OPT_$/Foo.class for instantiation, whether
the run-time environment that does not understand code
duplication will still use Main/foo/Foo.class for both
inheritance and instantiation, with lesser performance, of
course.

The main disadvantage this method is implied by its
name: it duplicates the code. This could be a serious
problem when executing over the Internet, since it actuall y
doubles the downloading time. For some applications
where the downloading takes the biggest part of the
execution time, this could be unacceptable, and the code
duplication should be disabled. It is our goal to automate
the decision on the profitabilit y of using code duplication
in light of the increase in download time to get the highest
performance possible.

It should be noted here that run-time environments that do
not understand code duplication will not experience any
download time increase. Since they don’ t know about the
optimized versions of the class files, they will not
download them. What still remains is the increase in the
disk space the code is using on the server, which is clearly
a far smaller problem.

The total performance increase to be expected is
dependent on the interprocedural optimizations
implemented. Code duplication does not increase the
speed of the code, it is simply ameliorating the problem of
not having the whole program available at the compile

class Foo{
private int x = 0;

public void inc(){
x++;

}

public void main(){
// Goo goo = new Goo();
int goo_y = 0;
for(int i = 0; i<10; i++){
//inc();
x++;
x--;
goo_y--;

}
}

}
Figure 10.
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time. Its real value is that it enables other optimizations,
particularly inlining of the intra-class methods, as
described on our example. It also enables the whole
spectrum of interprocedural analysis and optimizations on
a single class file, which goes beyond the scope of this
paper.

5. High Performance Model

Although Java has risen to prominence as a language for
the Internet, there are many reasons why a programmer
might find it attractive for building high-performance
codes that would run on a secure server. In addition to its
clean object-oriented design, type safety and automatic
memory management, Java offers a way to write
applications that can not only run on servers but which
can also be securely downloaded to run at remote
platforms over the Internet, albeit with some performance
degradation. Furthermore, it seems li kely that Java will be
increasingly used for education at both the undergraduate
and K-12 levels because of its ease of use, widespread
availabilit y, and absolute portabilit y. Many industry
pundits are predicting that it will supplant C++ as the
language of choice for object-oriented commercial
development.

Given these factors, it is easy to imagine Java being used
in a high-performance execution environment where
whole programs would be compiled directly to target
machine without going through the Java VM. and its
associated security and portabilit y constraints. Note that
usage in such an environment does prevent the program
from being downloaded over the Internet—if the program
is written in standard Java, it can still be compiled to the
Java VM if the user later wishes to use it in a network
environment.

In this section we explore some of the implications for
compilation in complete freedom from the standard Java
execution environment. The only restrictions that would
remain would be those imposed by the semantics of the
language. Clearly some performance problems would
remain—the language would still need to be garbage
collected and it would require that user-managed
exceptions be handled precisely (see the next section).
However, there would be no restrictions on the use of
procedure inlining and other classical optimizations
because the entire program would be available at compile
time.

5.1 Whole Program Management
For a high-performance approach to be effective, it must
be undertaken in the context of a program management

system that will be comfortable for programmers to use.
For example, it would not be acceptable for the entire
program to be recompiled each time a single change is
made to a single file or package. Thus, a truly usable high-
performance implementation environment will need a
mechanism for managing whole-program optimizations
such as inlining and transformations based on
interprocedural analysis.

Our previous work on whole-program compilation for
Fortran [Cooper et al. 1986] led to the development of the
Rn Environment, which supported recompilation analysis
to limit recompilation in response to a change. In other
words, part of the job of interprocedural analysis was to
determine which files needed to be recompiled after a
source change to a part of the program. In Java, for
example, a change to a single method in a public class
would require recompilation of any file in which that
method had been inlined.

To address the problem, the Rn Environment introduced
the notion of a program compiler whose job was to
perform interprocedural analysis and optimization,
including recompilation analysis, prior to selectively
invoking the source compiler on program files. Such a
system, which can be thought of as an intelli gent version
of the Unix utilit y MAKE, is a near requirement for high-
performance compilation of Java.

5.2 Uniprocessor Compilation
To compile for a high-performance Uniprocessor, we plan
to take full advantage of the body of compilation
technology that has been developed for languages such as
Fortran and C. The Massively Scalar Compiler Project at
Rice [http://softlib.rice.edu/MSCP/results.ps] has
developed a state-of-the-art experimental optimizing
compiler for RISC machines that uses a more traditional
quadruple-based intermediate language called ILOC
(intermediate language for optimizing compilers). Our
plan is to adapt the Java front-end to generate ILOC so we
can experiment directly with a high-performance compiler
back end. Prior to execution of the compiler, the
interprocedural optimization framework would perform
aggressive inlining to make the code more amenable to
optimization.

In addition, we plan to experiment with a number of Java-
specific optimizations such as ameliorating the need for
garbage collection through program analysis [cite Barth
and others].

Although Java presents many challenges to the compiler,
we believe that there is no reason that the performance of



10

Java programs in an unrestricted compilation environment
cannot come asymptoticall y close to equivalent Fortran
and C programs.

5.2 Compiling to Parallel Machines
Most high-performance servers that Java might run on
will be multiprocessors. In the case of most scientific
applications and some business applications, the need for
performance will make a scalable parallel system a
requirement. Because they employ many processors with
complex memory hierarchies, almost all scalable parallel
systems will put a premium on using lots of paralleli sm
while maintaining a high degree of localit y in the
computation.

Although Java supports explicit parallel programming
through its threads mechanism, it is unli kely that most
programmers will use this extensively for high degrees of
paralleli sm. Furthermore, there is no facilit y for expli cit
localit y  management in Java. For these reasons we will
experiment with directive-style hints, such as those found
in High Performance Fortran (HPF) [Koelbel et al. 1993]
for specifying both paralleli sm and data location. As an
example consider class instantiation. It may be possible to
use a directive to establi sh a home processor for each
instantiation, thus ensuring that classes that will be used
together will be allocated together. Furthermore, array
classes can be distributed in the same way as arrays in
HPF. Just as in HPF, class methods would be executed on
the processor where the class is instantiated, thus
implicitl y introducing paralleli sm. Of course, the compiler
would be free to migrate code whenever performance
could be improved as a result.

With these and similar methods, we believe that it will be
possible to build truly high performance applications in
Java and run these with high eff iciency on scalable
parallel systems.

6. Handling Exceptions

The exception mechanism in Java presents an obstacle to
compiler optimization regardless of which framework is
used in the compiler implementation. In this section we
discuss the problems that arise due to the Java exception
model, and propose some solutions.

Java has an exact exception model [Gosling et al. 1996]: if
the exception occurs in the program, the program state at
the moment of exception must be visible to the user and no
matter how many optimizations are performed, the state at
an exception must be indistinguishable from the state that
would result if all the instructions in the original source

code before the one causing the exception, and none of the
instructions after it, have been executed. In another words,
if the exception occurs in the program, user should not be
able to tell by examining the state that optimizations have
been performed.

This, of course, greatly reduces the freedom of the
compiler to move code within the program. None of the
instructions that change the user-visible state of the
program can be moved across an instruction that can cause
an exception. In other words., those instructions that can
trigger an exception cannot be interchanged or moved
arbitraril y around the control flow graph, even if all of the
data dependencies remain satisfied.

Because most Java instructions can cause an exception, the
naïve approach—marking all of the instructions that can
cause an exception and prohibiting the optimizer from
moving instructions past a marked instruction—would
effectively eliminate all the possibiliti es for performance
enhancement by code movement.

Fortunately, although most Java VM instructions can
cause an exception, in the normal program execution most
of them will not do so. By exploiting this fact, it may be
possible to achieve most of the performance of program
written languages without exceptions (e.g., Fortran). If the
compiler can prove that an instruction will not cause an
exception in the given program context, optimizations can
freely move the code around it.

There is ongoing research within the Rice University
programming languages research effort on type analysis
for the object oriented languages [Flanagan Felleisen
1996]. This work is highly applicable to the problem
described, and we expect it to be able to identify most of
the instructions that are not going to cause an exception,
thus greatly easing the constraints on the code movement.
The problem with this analysis is that it is potentiall y slow
(O(n3) in the worst case), although it is very fast in
practice. Some faster, though less powerful algorithms do
exist however [Steensgaard 1996].

There are a number of other approaches to attacking this
problem that could be used apart or in combination with
aggressive exception analysis. Many of these are littl e
tricks that are optimization dependent. Consider for
example the code fragment in Figure 11.

for(i = k; a[i] < 0; i++){
this.x = 3*k;
sum = sum + a[i];

}
Figure 11.
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Since k is loop invariant, the first assignment in the loop
body is loop invariant, so loop invariant code motion
would seek to move that assignment out of loop. However,
since the loop header can cause an exception—the loop
test involves an array access (let’s assume that the
exception analysis has been able to prove that a[] is not
null , but not that the value of k at the entry to the loop is
less than the length of a)—the optimizer cannot move this
assignment. If the first iteration of the loop header caused
an exception, the value of x would not have changed in
the original program, but it would be changed in the
optimized program.

In this case, we can solve the problem by simply peeling
off the first iteration of the loop, as shown on Figure 12.
Loop invariant code motion can now move the assignment
to this.x outside the loop, where can be later completely
eliminated.

As already noted, this approach is completely dependent
on the optimizations attempted. The basic idea is to insert
in front of the code block we are trying to optimize some
dummy instructions that would simulate the exception
behavior of the instructions in the block and leave the
program in the correct state if an exception occurs. This
would eliminate the concern about the exceptions in a
particular code block and enable free code movement
inside it. For example, if a block of code is using a
particular array, and exception analysis is unable to prove
that the array reference is not null , a simple dummy access
of the array before the given block of code will raise the
exception if it is going to occur anyway.

Another approach that can help in addressing the problem
of exceptions is to emulate methods used to make it
possible to debug optimized code [Hennessy 1982]. These
two problems are very similar, except for two very
important detail s: in debugging optimized code, the
debugger can simply inform the user if it was unable to
recover the correct state of the program, but our system
must return in the correct state, so the recovery code would
have to be inserted in the executable program itself instead
of the debugger, thus increasing the original code size.
The idea is as follows: a whole method is enclosed in a try
statement, with corresponding exception handler at the

end. Thus, the handler would catch any exception that
occurs in the code, and use the methods from [Henessy
1982] to recover the correct state of the object before
allowing the user’s exception handling mechanism to
proceed. Of course, it is not always possible to recover the
correct state, so this method would have to be restricted
only to optimizations that can be undone.

An approach similar to the one just described would
involve code reexecution instead of the recovery of the
program state. This would require insertion of
checkpoints, thus increasing the execution time. Special
attention would have to be given to the reexecution of I/O
operations. This method has the same structure as the one
just described, with the exception handler reexecuting the
non-optimized code instead of un-doing the optimizations
to achieve the correct program state. The rollback and
reexecution is well researched and applied in interactive
environments [Archer et al 1981], distributed databases
[Long 1994], and other fault tolerance systems [Alewine
1995].

7. Conclusions and Future  Research

Over the next several years, the Java phenomenon should
continue unabated. Increasingly, Java will be used as a
general-purpose language rather than just a language for
the Internet. This paper addresses some preliminary
techniques for making Java more eff icient. We believe
that, using these techniques and others that are yet to be
discovered, Java performance can rival that of languages
like C and Fortran, even on scalable parallel systems.

Most of the approaches described in this paper have yet to
be implemented. The project we have embarked upon at
Rice will explore these methods in the context of a
sophisticated compilation environment, with the goal of
making Java the language of choice for high-performance
server applications as well as those that execute over the
Internet.
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