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Abstract Solar cycle 23 behaved differently than cycle 22 in many ways. Certain properties,
namely the long minimum at the end of cycle 23, weakening of polar fields, shrinking of
polar coronal holes, reduction in the terrestrial atmospheric neutral density layer, have been
identified as unusual compared to several past cycles. The origin of these differences most
likely lies in the ways the dynamo has operated that led to distinctly different generation and
evolution of the large-scale magnetic fields in cycles 22 and 23. Certain differences in the
properties of Galactic-Cosmic Rays during cycles 22 and 23 have recently been explained
by the differences in evolutionary pattern of coronal holes, which are linked to the dynamo-
generated large-scale magnetic fields. In this paper, I will discuss the differences in the solar
interior dynamics, particularly the properties of flow fields and their influence in governing
the evolution of dynamo-generated magnetic fields during cycles 22 and 23, respectively.
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1 Introduction

The observational records of sunspot data indicate that the minimum between cycles 22 and
23 has been more than twice as long as that at the end of cycle 22. The monthly smoothed
sunspot number (ssn) has been plotted in Fig. 1. If we define a solar minima in ssn for a
value of ssn <15, then it yields 9 and 38 months for the lengths of minima at the end of
cycles 22 and 23, respectively. There is no universal definition for the cut-off value of ssn
for minimum conditions. However, no matter what cut-off value is being considered for
determining the length of minimum, the essence is—the minimum at the end of cycle 23
was much longer than that at the end of cycle 22. In fact, the minimum at the end of cycle 23
has been unusually long, the longest in 100 years. One has to go back nine cycles in order
to find such a long minimum. It has also been a deep minimum; the lowest ssn was 1.7,
whereas the lowest ssn at the end of cycle 22 was 12.6.
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Fig. 1 Monthly smoothed
sunspot number data from Royal
Observatory of Belgium
(www.sidc.be) are plotted in blue
filled curve for a time span from
January, 1986 to February, 2010.
Lengths of minima at the end of
cycles 22 and 23 are indicated by
thick yellow lines

The effect of this unusually long, deep minimum has been observed in various other so-
lar cycle indices, such as in f10.7 radio flux, total solar irradiance (TSI) (Fröhlich 2009;
Domingo et al. 2009), atmospheric neutral density (Solomon et al. 2010), as well as in the
trend of solar p-mode frequency (Tripathy et al. 2010) and torsional oscillation (Howe et
al. 2009). These unusual features observed in cycle 23 are most likely due to the dynamo
operating in a somewhat different fashion compared to the previous cycles. In this context,
we can mention other relevant observations by the Ulysses spacecraft in the modulation of
the galactic cosmic rays—in cycle 22 the decrease in the component of the recurrent cosmic
rays arising from the fast solar wind showed a clear maximum from 25° to 40° and beyond,
whereas in cycle 23 there was no such significant decrease (Dunzlaff et al. 2008). As an ex-
planation the authors have suggested that the absence of large stable coronal hole structures
during cycle 23 might have caused this difference. Since the large-scale coronal structure is
most likely governed by the dynamo-generated cyclic magnetic fields, it is important to un-
derstand the causes that created the differences in the operation of the Sun’s global dynamo
during cycle 23 compared to that in cycle 22.

These observations and associated physical reasonings motivate us to seek answers to
several questions—whether such a long, deep minimum at the end of cycle 23 would lead
to a strong or weak cycle 24; why cycle 23 lasted so long, for about 12.5 years compared to
past four cycles (19 to 22) which had an average duration of 10.5 years; why the large stable
coronal holes disappeared in cycle 23.

Another important feature of the last minimum is an unusually low value of the polar
fields, a fraction of 50% of that during the minimum of cycle 22. If polar fields originate from
the Babcock-Leighton type decay of tilted, bipolar active regions (Babcock and Babcock
1955; Leighton 1969), they will have to be the follower of a cycle. It is an observational fact
that the relative amplitude of cycle 23 was 20% smaller than that of cycle 22. If at the end of
a given cycle the polar field has one unit, in the next cycle it takes two units of polar fields
coming from the surface poloidal source to reverse the remnant polar field and have the new
polar fields reach minus one unit. But if the surface poloidal source is 20% smaller in the new
cycle than the previous one (as cycle 23 was compared to cycle 22) there are only 1.6 units
of new, negative, polar fields available that can be used to reverse the old, positive, polar
field and establish the new, negative, polar field. This means the new, negative, polar field
will be only 0.6 units, or 40% smaller in relative amplitude than that of the previous cycle.
However, we do not attempt a detailed discussion of polar fields in this paper, because that
will be discussed in details in another paper by Jiang et al. (2011, this issue). An extensive
review of this topic has recently been published by Sheeley (2010).
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2 Can the Length of a Minimum be Used to Predict the Next Cycle’s Strength?

There exists a prevailing view in the community that a long minimum leads to a weak follow-
ing cycle, for example, see Hathaway (2010). With our present knowledge of how a dynamo
operates inside the Sun and produces a cyclic evolution of the Sun’s global magnetic fields,
it is not possible to find any physical reason behind this notion. So let us investigate whether
we have any statistical evidence to hold the concept that a weak cycle will follow after a
long minimum.

Dikpati et al. (2010a, 2010b) have recently estimated the correlation coefficients between
the length of a cycle minimum and the following peak minus preceding peak. Using a cutoff
value of 15 for the monthly ssn (downloaded from the website of Royal Observatory of
Belgium, www.sidc.be) and using a cutoff value of 180 for the spot area data averaged over
13 rotations as previously used by Dikpati et al. (2006), they estimated the lengths of minima
for 23 ssn cycles and 12 spot-area cycles and examined whether they can say something
about the following nth cycle’s amplitude relative to the preceding (n − 1)th one’s, based
on the length of the minimum between the nth and (n − 1)th cycles. They correlated the
length of minimum with the difference in amplitude between the following and preceding
cycles so that any longer term trends, regardless of origin, get eliminated. This correlation
was found to be insignificant—with correlation coefficients of r = −0.13 for monthly ssn
and r = −0.10 for spot-area data (see Fig. 2a), with a relative chance of about 70% that these
correlations are random. This means that it is not possible to predict whether the next cycle
will be stronger or weaker than the previous one when we use the length of minimum as the
predictor. Therefore the current long minimum at the end of cycle 23 does not necessarily
portend a weaker cycle 24 than 23.

By defining the depth of a minimum as the least spot number or the least spot area within
the span of a cycle minimum, Dikpati et al. (2010a, 2010b) also examined whether there is
any correlation between the length of a minimum and its depth. They found a strong anti-
correlation between the length and depth of a minimum, the correlation coefficient r being
−0.75 for spot number, and −0.79 for spot area, with a small probability that either of these
values is due to chance is (1 − 2) × 10−3. Figure 2b shows a scatterplot with linear fits to
both data sets.

Why a long minimum is also a deep minimum can be physically explained using our gen-
eral concept of dynamo processes. During the minimum phase of a solar cycle, oppositely
directed toroidal bands are in close proximity on the two sides of the equator (see Fig. 2c);
in the case of a long minimum they both have more time to annihilate each other, leading to
fewer or no eruptions of low-latitude spots.

3 Why Did Cycle 23 Last so Long?

In flux-transport dynamos the cycle length is primarily determined by the speed and extent
of the meridional circulation (Dikpati and Charbonneau 1999). The speed of the meridional
flow at the surface has been measured for many years by various instruments. Most models
were built assuming a meridional circulation profile that peaks around mid-latitudes, see
for example Küker et al. (2001), Bonanno et al. (2002), Guerrero and Muñoz (2004), Jouve
and Brun (2007), Jouve et al. (2008), Hotta and Yokoyama (2010). With such a prescribed
profile, numerical experiments with a flux-transport dynamo including a slow-down in the
meridional flow speed, as observed during 1996–2003 (Haber et al. 2002; Basu and Antia
2003), produced a forecast of about 1.5 year delay in the onset of cycle 24 (Dikpati 2004),
with a prediction of 12 years, but in reality it lasted about six months longer.
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Fig. 2 Scatter-plot for difference
between following and preceding
cycles’ peaks as function of
length of minima between
following and preceding cycles
(panel (a)); scatter-plot for length
and depth of minima (panel (b));
and a schematic diagram showing
a configuration of solar minimum
toroidal bands as would be
generated at the base of the
convection zone by the shearing
mechanism of a dynamo
(panel (c)). The frames of this
figure have been adapted from
Figs. 1, 2 and 3 of Dikpati et al.
(2010a, 2010b)

In order to investigate what caused the additional delay in the onset of cycle 24, Dikpati
et al. (2010a, 2010b), Ulrich (2010) re-examined the behavior of the Sun’s plasma flow,
specifically how its properties changed during cycle 23 from that in cycle 22. Extending
the analysis of long-term Mount Wilson Observatory (MWO) data previously performed in
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Fig. 3 Characteristics of the Sun’s conveyor belts during cycles 22 (left frame) and 23 (middle frame) as
obtained from surface observations combined with mass conservation. Note that the top and bottom bound-
aries of the flow are at the surface (1R) and at Rb = 0.69R. A colorbar at the right indicates the flow speeds
presented in the left and middle frames

2005 by Ulrich and Boyden (2005), we found that the Sun’s surface plasma was flowing
poleward all the way up to the pole during the major part of cycle 23, whereas during cycle
22, the poleward surface flow ended around 60° latitude, beyond which it became equator-
ward. Our analysis also indicates that the maximum average flow speed at the surface was
not different during cycles 23 compared to that during cycle 22.

Combining the above information from MWO observations of the poleward surface flow
with the constraint of mass conservation, we can construct the equatorward return flow. The
mathematical prescription of this flow is given by the following expression (see Dikpati and
Choudhuri 1994) for the stream function (ψ ):

ψr sin θ = ψ0(θ − θ0) sin

[
π(r − Rb)

(R − Rb)

](
1 − e−β1rθε ) (

1 − eβ2r(θ−π/2)
)

e−((r−r0)/Γ )2
, (1)

in which, Rb denotes the bottom boundary of the flow, β1 and β2 control the concen-
tration of the streamlines at the polar and the equatorial regions respectively, ε with a
proper choice of value >2 can avoid unphysical flow at the pole, combination of r0 and
Γ determines at which depth the poleward flow becomes zero before returning towards
the equator. The parameter θ0 determines the cell-size in latitude, namely θ0 = 0 means a
single-cell flow going all the way to the pole. The values selected for these parameters are:
Rb = 0.69R, β1

1 = 0.1/(1.09×1010) cm−1, β2 = 0.3/(1.09×1010) cm−1, ε = 2.00000001,
r0 = (R −Rb)/5, Γ = 3×1.09×1010 cm and θ0 = 0.14π and 0 for the left and right frames
of Fig. 3. This choice of the set of parameter values produce a flow pattern that peaks at
24°. As discussed in Dikpati et al. (2005), the dimensionless length in our calculation is

1The parameter values for β1, β2 and Γ were given in dimensionless units in the GRL paper by Dikpati et
al. (2010a, 2010b), whereas other parameters were given in dimensional units; we thank Dr. Luis Eduardo
Antunes Vieira for helping us catching that.
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Fig. 4 A two-dimensional map
of dynamo half-cycle period
(corresponding to one sunspot
cycle period), obtained from the
simulations of a flux-transport
dynamo, as function of latitude
extent of primary meridional flow
cell and maximum poleward
surface-flow speed. Thick
continuous white line denotes the
contour of an 11-year sunspot
cycle period. Thin white lines
denote the contours of other
periods in half-year intervals.
The horizontal broken line marks
the maximum surface-flow speed
of 14 m/s. The positions of cycles
22 and 23 in this map are shown
by semi-transparent gray patches
[adapted from Dikpati et al.
(2010a, 2010b)]

1.09 × 1010 cm and the dimensionless time is 1.1 × 108 s, which respectively come from
taking the inverse of the dynamo wavenumber, k = 9.2 × 10−11 cm−1, as one unit of di-
mensionless length, and the inverse of the dynamo frequency, ν = 9.1 × 10−9 s−1, as one
dimensionless time. If a full dynamo wavelength is defined as the full wavelength of a 22-
year magnetic cycle, then the migration of sunspots from about 40° latitude to the equator
represents a half wavelength of a dynamo cycle. A full dynamo wavelength in dimensional
and nondimensional units are then 2π × 1.09 × 1010 cm and 2π respectively, and the mean
dynamo cycle period in those units are 22 years and 2π . Thus, in dimensionless units, the
above parameters are: Rb = 4.41, β1 = 0.1, β2 = 0.3, ε = 2.00000001, r0 = (R − Rb)/5,
Γ = 3 and θ0 = 0.

The characteristics of the Sun’s conveyor belts during cycle 22 and 23, presented in
Fig. 3, can be obtained by setting the values of θ0 respectively at 0.14π and 0. A longer con-
veyor belt in cycle 23, associated with a slower return flow, compared to a shorter primary
belt in cycle 22, caused the cycle 23 to persist about two years longer than cycle 22. Figure 4
shows the simulated cycle lengths as function of the extent of the Sun’s primary conveyor
belt and the maximum surface flow speed. As expected, simulations from a flux-transport
dynamo produce the shortest cycles for faster flow speed and shorter primary belts—a pa-
rameter space that is located at the bottom-left corner of Fig. 3. Conversely the longest
cycles are located at the top-right corner. As the average poleward surface flow speed did
not differ much during cycles 22 and 23, it is primarily the length of the conveyor belt that
determined the cycle lengths in the cases of cycle 22 and 23 (see their positions marked in
gray circles in Fig. 4). In fact, all past and future cycles can have a place on such a diagram
if the surface flow speed and the latitudinal extent of the primary conveyor belt would be
known from observations.

We know from sunspot-cycle observations that not just cycle 22 but the past four cycles,
cycles 19 to 22 were short cycles with an average length of ≈10.5 years. Analyzing MWO
data from further back into the past Ulrich (1993) had already shown that a high-latitude
reverse meridional flow cell indeed existed during cycles 20 and 21. Thus, according to our
flux-transport dynamo model, the flux must have been transported via a shorter path of the
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conveyor belts during those cycles, hence rendering an average duration of 10.5 years for
cycles 20 and 21.

These observational facts leads to an obvious question—is a shorter primary flow cell
ending around 60° latitude and being associated with a reverse cell beyond ≈60° latitude
the Sun’s more common choice? Dikpati and Gilman are currently developing a theory of
meridional circulation at high-latitudes. Preliminary calculation shows that the Sun’s pre-
ferred solution is to have a high-latitude reverse cell. Rather, the primary cell going all the
way to the pole, as it did in cycle 23, was unusual.

4 Do We Know Why Large Stable Coronal Holes Disappeared in Cycle 23?

Observations by the Ulysses spacecraft revealed that the recurrent cosmic rays measured in
the fast solar wind showed distinct differences in cycles 22 and 23. A large, stable coronal-
hole structure was present during cycle 22, but not in cycle 23. The polar coronal-hole
shrank during the declining phase of cycle 23 (Kirk et al. 2009) and a part of the coronal
whole structure existed in the equatorial region (Abramenko et al. 2009).

The large-scale magnetic structure of the corona is most likely governed by the cyclic
evolution of the dynamo-generated fields. We do not know the details of the interior dynam-
ics that behaved differently during cycles 22 and 23, but we now know that the meridional
circulation pattern behaved distinctly differently, namely a large flow cell persisted during
cycle 23 going all the way to the pole from the equator at the surface, whereas during cycle
22 the flow pattern had two cells, with the primary cell going up to ≈60° and then sinking
down towards the bottom of the convection zone (cf., Fig. 3). Taking the dynamo-generated
poloidal fields from Dikpati et al. (2010a, 2010b) and scaling the amplitudes accordingly to
correspond to that of cycles 22 and 23, we use them as input to a simple 2D potential-field-
source-surface (PFSS) model of the corona, and expand them up to 2.5 R�. This is a very

Fig. 5 Large-scale simulated corona derived from the PFSS extrapolation of a flux-transport dynamo model
that ran with two meridional circulation patterns characteristics of cycle 22 and 23 as shown in Fig. 3; frames
(a) and (b) respectively represent the corresponding coronal structures; open lines represent coronal-hole
regions
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simplified 2D approach derived from the more complex 3D PFSS models of the solar corona
(see Luhmann et al. 2002). We find the two typical configurations for the large-scale corona
as presented in Fig. 5. Even though this procedure of obtaining a 2D large-scale corona ap-
pears very simple, it captures the basic characteristic that there was no large stable polar
coronal hole during cycle 23. In this model, the persistence of a large stable polar coronal
hole is coming from the fact that the two flow cells are sinking down over a large range
around 60° to 70°; this in turn is advecting the fields downward and creating the necessary
space for the open field lines to spread towards the poles. On the other hand, in cycle 23,
the fields did not sink down before being advected up to the pole. Thus the poloidal loops
continuously get transported towards the pole where they get squeezed and self-annihilated.

The large-scale coronal dynamics is governed by many other complex processes in the
interior as well as photosphere and corona, but the differences in the behavior of the merid-
ional circulation in cycles 22 and 23 produce some trend in the evolving large-scale fields
which in turn can shed some light about what to expect for the large-scale coronal behavior.
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