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Abstract

Surface waves and their applications have been extensively studied by

the photonics and radio engineering communities throughout the whole

of the twentieth century. This thesis details briefly the history of both

approaches and highlights their significance with regard to the sub-

ject of this thesis; laterally confining a surface wave in the microwave

regime. Detailed within are the experimental, analytical and numerical

methods used to ascertain what, if any, effect a change in the dimen-

sion of a guiding structure has on the dispersion of a mode supported

by a metamaterial.

The method of experimentally determining the dispersion of a mi-

crowave surface wave is discussed. The insensitivity of a mode sup-

ported on a one-dimensional corrugated array to the lateral width of

the supporting array, even when the width is much less than the wave-

length of radiation incident upon it, is investigated. Spatial dependent

reduction of group velocity associated with a microwave surface wave

is also detailed. Local electric-field and phase measurements are used

to probe this condition. In particular, the measurement of phase asso-

ciated with the supported microwave surface wave is shown to indicate

the trapping location of a surface wave more accurately when compared

to local electric-field measurement. The channelling of surface waves

via the addition of dielectric overlayers to a metamaterial surface is

investigated. By progressively narrowing the width of the channel, the

interaction of the electric fields associated with the mode supported

in the channel with the bordering dielectric overlayer increases. This

investigation leads to a discussion of the electric field overlap between

two regions of differing surface impedance.



Contents

Contents iv

Glossary of Terms ix

1 Introduction 1

1.1 Purpose of Research . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Outline of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 3

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Historical Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2.1 Radio Engineering . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.2 Photonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.2.1 Applications Associated with Surface Plasmons . . 7

2.2.2.2 Dispersion: Relating Frequency and Wavevector . . 7

2.2.3 Microwave Surface Waves and their Early Applications . . . 9

2.2.3.1 Corrugated Waveguides and Horn Antennas . . . . 12

2.2.4 Metamaterials . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.5 The Effective Medium Approach . . . . . . . . . . . . . . . 15

2.3 The Dispersion of a Surface Wave . . . . . . . . . . . . . . . . . . . 16

2.3.1 Derivation of the Dispersion Relation . . . . . . . . . . . . . 17

2.3.1.1 Surface Waves in Different Frequency Regimes . . . 21

2.4 Permittivity of a Metal . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.1 Permittivity as a Function of Frequency . . . . . . . . . . . 23

2.4.1.1 Skin Depth and Penetration Depth . . . . . . . . . 25

2.5 Microwave Surface Waves on Metallic Structures with Subwave-

length Patterning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.1 The Effective Medium Approach . . . . . . . . . . . . . . . 27

2.5.1.1 Surface Waves Supported on a One Dimensional

Array of Metallic Grooves . . . . . . . . . . . . . . 28

2.5.2 Resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

iv



CONTENTS

2.5.3 Surface Impedance . . . . . . . . . . . . . . . . . . . . . . . 31

2.5.3.1 Transverse Magnetic Surface Waves . . . . . . . . . 32

2.5.3.2 Transverse Electric Surface Waves . . . . . . . . . 33

2.5.4 Description of the Surface Impedance Associated with a One-

Dimensional Array of Metallic Grooves . . . . . . . . . . . . 34

2.5.5 Physical Origin of the Lumped Circuit Model . . . . . . . . 35

2.5.6 Effective Surface Impedance Model . . . . . . . . . . . . . . 36

2.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Experimental Methods 40

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1 Functionality of a VNA . . . . . . . . . . . . . . . . . . . . 41

3.2.2 Functionality of Equipment . . . . . . . . . . . . . . . . . . 42

3.2.3 VNA Calibration . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.3.1 S-Parameters . . . . . . . . . . . . . . . . . . . . . 44

3.2.4 VNA Architecture . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.4.1 Generator . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.4.2 Receivers . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Experimental Techniques . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.2 Dispersion Measurement . . . . . . . . . . . . . . . . . . . . 51

3.3.2.1 Phase as a Function of Frequency . . . . . . . . . . 51

3.3.2.2 Modal Index . . . . . . . . . . . . . . . . . . . . . 55

3.3.3 Unwrapped Phase and Dispersion Measurement . . . . . . . 56

3.3.3.1 Other Methods of Determining the Dispersion of a

Surface Wave via Phase Measurements . . . . . . . 60

3.3.4 Termination of a Surface Wave . . . . . . . . . . . . . . . . 61

3.4 Numerical Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4.1 Finite Element Method Modelling with HFSS . . . . . . . . 64

3.4.2 Adaptive Iterative Solution Process . . . . . . . . . . . . . . 65

3.4.3 Using HFSS . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.4.3.1 Types of Solution . . . . . . . . . . . . . . . . . . . 67

3.4.3.2 Periodic Boundary Conditions . . . . . . . . . . . . 68

3.4.3.3 Symmetry Boundary Conditions . . . . . . . . . . 69

3.4.3.4 Sheet Impedance . . . . . . . . . . . . . . . . . . . 70

3.4.3.5 Excitations . . . . . . . . . . . . . . . . . . . . . . 70

3.4.3.6 Solution Setup . . . . . . . . . . . . . . . . . . . . 71

3.5 Analytical Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . 71

v



CONTENTS

3.6 Excitation and Detection of a Surface Wave . . . . . . . . . . . . . 74

3.6.1 Coupling Considerations . . . . . . . . . . . . . . . . . . . . 74

3.6.2 A Coaxial Probe Antenna . . . . . . . . . . . . . . . . . . . 75

3.7 Different Excitation Methods . . . . . . . . . . . . . . . . . . . . . 76

3.7.1 Surface Wave Launcher . . . . . . . . . . . . . . . . . . . . . 78

3.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4 Lateral Confinement of Microwave Surface Waves 82

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4.1 Dispersion over Multiple Widths . . . . . . . . . . . . . . . . 87

4.4.2 Local Electric Field Amplitude with Respect to the Guiding

Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.4.3 Analytical Modelling . . . . . . . . . . . . . . . . . . . . . . 92

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.5.1 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . 96

4.5.2 Closed-Ended Cavities . . . . . . . . . . . . . . . . . . . . . 96

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5 Microwave Surface Waves Supported by a Tapered Geometry

Metasurface 98

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2.1 Photonic Crystal Waveguides . . . . . . . . . . . . . . . . . 100

5.2.2 Slow Light and the Dispersion Relation . . . . . . . . . . . . 101

5.2.2.1 Radar Beam Sharpening . . . . . . . . . . . . . . . 102

5.2.3 The Proposed Experiment . . . . . . . . . . . . . . . . . . . 103

5.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3.1 Spatially Dependent Dispersion . . . . . . . . . . . . . . . . 106

5.3.1.1 An Array Composed of Finite Depth Cavities . . . 106

5.3.1.2 Modal index of the Tapered Metasurface . . . . . . 107

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.4.1 Modal Index Approaching the Limiting Frequency of the Mode109

5.4.2 The Trapping Location of a Surface Wave . . . . . . . . . . 109

5.4.2.1 Loss Mechanisms . . . . . . . . . . . . . . . . . . . 111

5.4.3 Amplitude of Oscillations in Local Field Intensity . . . . . . 113

5.4.4 Oscillation Insensitivity . . . . . . . . . . . . . . . . . . . . 113

5.5 Multi-Modal Excitation . . . . . . . . . . . . . . . . . . . . . . . . 114

vi



CONTENTS

5.5.1 Higher Order Mode excitation . . . . . . . . . . . . . . . . . 116

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6 Channelling a Microwave Surface Wave 122

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.3 Sievenpiper ‘Mushroom’ Structure . . . . . . . . . . . . . . . . . . . 124

6.3.1 Application of the LC model to the Sievenpiper Mushroom

Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.3.2 The Band Gap . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.3.3 Disadvantages Associated with the Effective Surface Impedance

Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.3.3.1 The Characteristics of the Sievenpiper Mushroom

Array . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.4 Addition of a Dielectic Overlayer . . . . . . . . . . . . . . . . . . . 131

6.4.1 The TM Suppression Band . . . . . . . . . . . . . . . . . . . 133

6.5 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.5.1 Addition of a Dielectric Overlayer Completely Covering the

Sievenpiper Mushroom Array . . . . . . . . . . . . . . . . . 134

6.5.2 TM Surface Wave Channel Using a Sievenpiper Mushroom

Array and Dielectric Overlayers . . . . . . . . . . . . . . . . 134

6.5.2.1 Excitation and Measurement . . . . . . . . . . . . 136

6.5.3 Measurement of Spatially Dependent Phase . . . . . . . . . 137

6.5.3.1 Measuring Dispersion . . . . . . . . . . . . . . . . 139

6.6 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.6.1 Frequency Dependent Dispersion Characteristics . . . . . . . 140

6.6.2 Comparison of Numerical and Experimental Measurements

of Electric Field Amplitude and Phase . . . . . . . . . . . . 143

6.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7 Conclusions and Future Work 153

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.2 Summary of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.3 Recent Publications Relating to this Work . . . . . . . . . . . . . . 154

7.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.4.1 Surface Wave Data Transfer . . . . . . . . . . . . . . . . . . 156

7.4.2 Beam Sharpening . . . . . . . . . . . . . . . . . . . . . . . . 156

7.4.3 Further Investigation of Surface Wave Channelling . . . . . . 157

vii



CONTENTS

7.4.4 Quantifying the Reflections of a Surface Wave by Measure-

ment of Local Phase . . . . . . . . . . . . . . . . . . . . . . 158

7.4.5 Impedance Matching Compared to Field Overlap . . . . . . 161

7.5 Presentations and Publications . . . . . . . . . . . . . . . . . . . . 164

References 165

viii



Glossary of Terms

ix



Table 1: Glossary of Terms, in order of appearance.

Name of Constant Symbol

Grating Periodicity λg
Angle of Diffracted Light φN
Angle of Incident Light θ
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Lateral Width L
Phase Φ
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Limiting Frequency fres
Overlap Integral Q
Group Velocity vg
Group Delay dg

Charge Q
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Transverse Magnetic TM
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Radio Frequency RF
Local Oscillator LO
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Chapter 1

Introduction

1.1 Purpose of Research

The focus of this thesis is the investigation of laterally confined microwave surface

waves supported on structures that gain their electrical properties from geometric

design rather than their constituent material properties. Applications associated

with surface waves include wireless communication devices and the reduction of

monostatic reflections from an object under radar surveillance via the control of

surface waves excited on the surface of that object. Another application includes

beam steering of the radiation emitted by patch array antennas through the control

of the surface waves scattering off the patch arrays. Rather counter intuitive to

the focus of this thesis, the excitation of surface waves can also be undesirable.

When excited along substrates of microwave antennas, surface waves can distort

the radiation pattern of the antenna and reduce its overall efficiency.

The control of surface waves and an understanding as to how small a limit a

surface wave can be confined to is clearly a topic worthy of study, even if it is not

a new one. For over one hundred years the study of surface waves has received a

large amount of attention from both engineers studying radio waves and physicists

investigating extraordinary optical phenomena on gratings. The obvious difference

in wavelength regimes that define both areas of research resulted in two very

different paths to the same conclusion: in the optical regime an electromagnetic

mode can be excited and confined to an interface between air and metal. In the

microwave regime, confinement of a surface wave to an interface is achieved by

surface structure.

Analysis of surface waves supported by a variety of different surface structures

is studied. Specifically, this thesis explores the limits to which a microwave surface

wave can be confined before the dispersive properties of the mode are changed.

Given the large period of time over which surface wave phenomenon have been

1



Background

scrutinised, it is surprising to note that studies regarding the lateral confinement

of surface waves, the slowing light properties of microwave surface waves and in-

vestigations as to the channelling of these modes have yet to be exhausted. This

work details some of the more recent advancements in the field of microwave sur-

face wave research and strives to contribute to it.

1.2 Outline of Thesis

This thesis is organised as follows. Chapter 2 outlines literature relevant to this

thesis, providing a historical review of microwave surface wave studies to date.

This includes material specifically relevant to laterally confining microwave surface

waves.

Chapter 3 details the experimental methods used throughout this thesis. De-

tailed are the methods used to experimentally determine the dispersion of a mi-

crowave surface wave. The techniques used to excite microwave surface waves are

also detailed. Numerical and analytical techniques used to support experimen-

tal measurements are included in this discussion. Chapter 4 explores the lateral

confinement of microwave surface waves. Highlighted is the lateral insensitivity of

the mode supported on a one-dimensional array of corrugations, even when the

geometry of the supporting structure is made much less than that of the incident

radiation.

Chapter 5 details microwave surface waves supported on a tapered geometry

metasurface. Local electric field and phase measurements associated with the

supported mode are recorded. Conclusions as to the slowing and trapping of a

wave due to lateral confinement are made; phase measurements are preferred as

an indicator of the trapping location.

Chapter 6 discusses the channelling of a microwave surface wave between two

dielectric overlayers. This chapter shows that the mode is supported in a region

between the overlayers and in the overlayers themselves.

Finally, Chapter 7 reiterates the findings of this thesis and suggests possible

future avenues of research in light of this study.

2



Chapter 2

Background

2.1 Introduction

Surface waves and their applications have been extensively studied by the pho-

tonics and radio engineering communities throughout the whole of the twentieth

century. This chapter details briefly the history of both approaches and highlights

their significance with regard to the subject of this thesis; a surface wave in the

microwave regime. The conditions required to support a surface wave are reviewed

from the basic principles of Maxwell’s equations and applied to metals in the mi-

crowave regime. The concept of resonances associated with subwavelength surface

structure at microwave frequencies in contrast to an intrinsic resonant condition

associated with the bulk free electrons of a metal at visible frequencies is included

in this discussion.

2.2 Historical Review

Rather counter intuitively to the focus of this thesis, the excitation of surface waves

can be undesirable. When excited along substrates of microwave antennas, surface

waves distort the radiation pattern of the antenna and reduce its overall efficiency.

Further, when excited within the substrates associated with microwave integrated

circuits there is an increase in cross-talk between components, decreasing the sen-

sitivity of the device [1].

For over one hundred years the study of surface waves has received a large

amount of attention from both engineers studying radio waves and physicists in-

vestigating extraordinary optical phenomena on gratings. It wasn’t until a pub-

lication by U. Fano in 1941 [2] that the two studies were linked. The obvious

difference in wavelength regimes that define both areas of research resulted in two

very different paths to the same conclusion. An outline of these routes is now

3
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included in a small narrative, collated from the earlier literary efforts of Stratton

[3], Zucker [4] and Glory [5].

2.2.1 Radio Engineering

In 1907 Zenneck [6] proposed that a planar interface between two semi-infinite

media such as ground and air could support an electromagnetic wave which is

exponentially attenuated in the direction orthogonal to the interface. This hy-

pothesis was based on early investigations by Cohn [7] and Uller [8] in 1903 on

the guiding of an electromagnetic wave on a plane interface separating a dielectric

and a good conductor.

In Zenneck’s analysis a wave with a forward tilt, following a flat (planar) earth

and attenuated in the vertical as well as the horizontal direction was shown to

be a valid solution of Maxwell’s equations. It was then proposed as a possible

explanation for observed radio transmission. However, definitive proof of excitation

of such a wave bound to a surface via a radio antenna was actually attempted

by Sommerfeld in 1909 [9], wherein he laid out three possible components of an

electromagnetic surface wave excited by a vertical antenna; two free space waves

and one main ‘surface’ wave component.

It is apparent from the literature reviewed that this attempt failed due to a

mathematical error. Studies conducted by Weyl in 1919 [10] contradicted the pre-

dictions of Sommerfeld. Although the solutions of the total electric field as defined

by Sommerfeld and Weyl match in the special case where the co-ordinate under

consideration is at the interface between a conducting earth and a dielectric (free

space), as soon as some vertical component is considered there is a discrepancy

between the two studies. Norton preformed his own analysis of the possible exci-

tation of a surface wave using a vertical antenna emitting radio waves in 1935 [11].

In this paper it was pointed out that Sommerfeld’s original paper in 1909 con-

tained an incorrect sign, resulting in incorrect predictions of transmission of radio

waves at a radial and vertical distances from the emitting antenna. Experimental

results obtained by Burrows in 1936 [12] confirmed the Weyl-Norton analysis by

measuring transmission at 150 MHz over Seneca Lake, New York. The vertical

antenna was varied in height above the lake and a receiver placed 1.8 km away

from the transmitting antenna.

Experimental data obtained by Burrows and the theoretical values Weyl-Norton

of radio wave intensity at a given height from the earth were found to agree well. In

contrast to these results, the predictions outlined by Sommerfeld were more than

a thousand times greater than the observed experimental values. Controversy as

to the original analysis preformed by Sommerfeld was further ignited when Norton

4
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pointed out that this mathematical error had not been repeated in Sommerfeld’s

1926 paper (of the same name as the 1909 paper). However, when the analysis

presented in 1926 was compared to experimental data, it was found to be correct

only when the conductivity of the earth was considered to be large. In fact, Som-

merfeld’s mathematical error in the form of an incorrect square root of a complex

error function was later outlined by Neissen in 1937 [13].

Sommerfeld’s earlier work on the propagation of surface waves on a single wire

in 1899 [14] stood the test of time somewhat better and was an inspiration for the

analysis preformed by Goubau [15] on surface waves propagating on a dielectric

coated wire. However, credit for the first deliberate study of surface waves excited

in the microwave regime should go to Toraldo di Francia in 1942 [16] for his work

concerning evanescent waves excited via a diffraction grating.

Francia’s 1942 paper is referred to by Zucker (1952) [4] and Guerra (1995)

[17] who credit the Italian publication as being the first to examine surface waves

deliberately. Toraldo is credited with proving their existence and illustrating the

role they play in diffraction [4] and for specifically showing that the period of

evanescent waves diffracted from a grating directly correlates with the period of

the grating upon which they are excited [17].

A copy of the referenced publication has not yet been found which is un-

fortunate because it pre-dates the paper originally accredited to have been the

first study of surface waves in 1944 [18], discussed shortly. In 1949, Francia

and Schaffner [19] expanded on the 1942 paper to show diffracted evanescent mi-

crowaves could excite a propagating surface wave. Ulrich and Tacke [20] later

undertook a similar experiment with a laser incident on a prism upon a wire

mesh.

Indeed, optical investigations using diffraction gratings were the means by

which the photonics community first gained awareness of surface waves. As such,

the genesis of surface wave understanding via extraordinary optical phenomena

will now be discussed.

2.2.2 Photonics

The study of the properties and transmission of photons is a topic commonly

known as ‘Photonics’. Its rich history spans many centuries and has moved from

the study of photons at frequencies associated with visible light to those no longer

observed by the human eye in the ultraviolet. In 1821 Joseph von Fraunhoffer used

a diffraction grating to measure the wavelength of visible light (λ0) and verified
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the grating equation:

λg(sinφN − sin θ) = Nλ0 (2.1)

where N is the order of diffraction, θ is the angle of incident light, φN the

angle of diffracted light and λg is the period of the grating. Optical phenomena

associated with diffracting grating experiments were to follow over eighty years

later.

In 1902 Wood [21] published a paper detailing the extraordinary response of

a metallic ruled diffraction grating when the surface of that grating was radiated

with a white light source. The reflection spectra not only exhibited extreme bright

and dark bands, the spacial distance between these bands was notably smaller

than expected. The origin of the extreme bright bands was later explained by

Lord Rayleigh [22] in 1907 as a result of the scattered field at specific wavelengths

becoming evanescent and energy redistributing amongst the other propagating

orders. However, the positions of the dark bands in the spectra were observed by

Strong [23] to be modified when the metallic composition of the diffraction grating

was changed. Therefore the effect could not be the result of grating periodicity.

The consequence of this was not realised until Fano [2] proposed that, in fact,

the origin of the two dark and bright neighbouring bands were a consequence of

the excitation of a pair of surface waves travelling along the surface of the grating.

These waves are bound to the surface and decay exponentially in the direction

perpendicular to the grating. Although Fano recognised that the solutions pro-

vided by Sommerfeld may not have been suitable to compare to a field excited

by a radio antenna (by citing Weyl) he drew parallels between his own math-

ematical treatment of surface waves with those already derived by Sommerfeld.

From the perspective of this author this added to the confusion as to the correct

accreditation for the discovery of surface waves.

The momentum of the pair of surface waves proposed by Fano exceeds that

of a wave propagating in free space, i.e. it is a non-radiating mode decaying

exponentially from the interface to which it is bound. As a result, a free space

wave cannot simply excite such a surface wave as the momentum of the two modes

are not matched.

Teng and Stern (1967) [24] used an optical grating to provide enhanced mo-

mentum so that the surface mode and the incident electron beam used in their

experiment could couple together, resulting in peaks in the out-coupled radiation.

The out-coupled radiation was polarised so that if the propagating component of

the surface wave was in the plane of this page, the magnetic component of the radi-

ation would oscillate in and out of the page. This polarisation convention is known
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as transverse magnetic and is further detailed in section 2.3.1 of this chapter.

A reflection experiment was then conducted. The same grating was bombarded

by an electron beam, incident on that grating at the specific angles and frequency

at which the out-coupled radiation in the previous experiment had been emitted.

Teng and Stern’s hypothesis was that if indeed the free electrons of the metal were

coherently interacting as a plasma and a surface wave was excited, there would be

a lack of amplitude of reflection at a given frequency for a given angle of incidence

(corresponding to the aforementioned peaks).

The hypothesis proved correct and for the first time the momentum (k) and an-

gular frequency (ω) of a surface wave supported on a grating surface was obtained.

This surface wave was termed a ‘surface plasmon’ and, just as Zenneck originally

hypothesised, is a non-radiative mode that decays exponentially from the interface

between a dielectric and a metal. The energy of that mode is concentrated at the

interface.

2.2.2.1 Applications Associated with Surface Plasmons

The potential applications of surface plasmons are still a very much active area of

research and include miniaturized photonic circuits, enhancement of Raman spec-

troscopy and sensing. A photonic circuit would rely on using the subwavelength

channelling properties of surface plasmons. Such a circuit would convert light into

surface plasmons, which would then propagate along subwavelength channels to be

processed by logic elements. Another application would be to use the electric field

enhancement of the surface plasmon at the dielectric-metal interface to manipulate

light-matter interactions and boost non-linear phenomena. For example surface-

enhanced Raman spectroscopy (SERS) relies on massive signal enhancement from

structures much smaller than the wavelength of light. This enhancement could be

greatly increased if these structures were supporting surface plasmons. A third

application would be to use the field enhancement associated with surface plas-

mons as a sensor to indicate minute changes in the surrounding medium, ideal for

sensing changes in biomolecules. These applications are further elaborated upon

in the following publications [25, 26, 27].

2.2.2.2 Dispersion: Relating Frequency and Wavevector

The limiting frequency of a surface plasmon is governed by the surface plasma

frequency ωSP and is therefore dependent on the behaviour of the electrons at

the surface of the metal. Above the plasma frequency (ωp) the surface electrons

are unable to respond to the incident electromagnetic field, therefore the surface

wave excitation is limited to ωSP (where ωSP = ωp√
2
). The relationships between
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frequency (ω) and momentum (k) of an electromagnetic mode is given by ω = ck

and is often called the dispersion relation. When an electromagnetic mode is

travelling in free space the momentum associated with it, ‘k’ is referred to as the

wavevector which can be separated into contributions in each dimension:

k20 = k2x + k2y + k2z (2.2)

where k0 = 2π/λ0 and λ0 is the wavelength of the incident wave. The three

components of k0 determine the propagation and nature of attenuation (or loss)

suffered by that mode and is elaborated upon further in section 2.4.1.1 of this

chapter. This thesis maintains the coordinate system where the propagation of

the mode is always described to be positive in the x-direction. Therefore the

component of momentum of the surface mode will further be described as the

in-plane wavevector or ‘kx’.

Figure 2.1 depicts the dispersion of an optical surface wave on a flat metal

sheet.

The three bands of colour represent three different frequency regimes including

microwave (yellow), infrared (red) and visible (purple) of wavelengths 10−2 m,

10−5 m and 0.5 x 10−6 m. The behaviour of a photon travelling in free space is

represented by the solid black line with a constant gradient, the surface mode is

represented with the solid black line with a frequency dependent gradient. The

black dashed line represents the limiting frequency of the surface wave. In this

diagram that frequency is governed by the bulk response of electrons at the surface

of the metal, the surface plasma frequency (ωSP ).

As the mode approaches ωSP , the electric fields associate with the surface wave

become more confined to the interface upon which it is supported. Notice that in

the microwave regime the dispersion of the mode has diverged from the light line

(where ω = ck) an infinitesimal amount. Therefore in this frequency regime the

mode can be described as ‘unconfined’ and resembles a free space photon.

Physically, this can be understood by examining the extent of penetration

of the electric field into the two media bordering the interface of air and metal.

Specifically note the vertical extent of the electric field into the metal at visible

and microwave frequencies, as seen in schematic (a) and (b) (respectively) inset

in Figure 2.1. The exponential decay of the electric field into the metal at visible

frequencies is obvious whereas it is distinctly lacking in the schematic depicting the

vertical extent of the fields into both bordering mediums at microwave frequencies.

As there is a greater concentration of field close to the interface at visible

frequencies in comparison to the microwave regime, the surface wave is described

as ‘confined’. The physical origin of this lack of penetration is further elaborated
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Figure 2.1: Dispersion of a surface wave (solid black curve) associated with the
coherent oscillation of bulk electrons within a metal. Also included is dispersive
behaviour of a free space photon (solid black line) and the limiting frequency of
the mode (dashed black line). Inset: Schematic representation of the electric field
associated with a surface wave penetrating into the surrounding region. The solid
orange line represents the vertical extent of the electric field of the surface wave
into air and is contrasted with the dashed orange line representing the penetration
of the electric field into the metal. Inset (a) vertical electric field penetration into
the metal at visible frequencies. (b) vertical electric field penetration into the
metal at microwave frequencies. Reproduced with permission from Hibbins et al.
(2005) [28]. Below each inset is the approximated relative permittivity of the metal
(εmetal). Inset (b) shows the decay of the electric field into the dielectric relative to
the penetration depth of the electric field into the metal in each case. Therefore
the length of decay into the dielectric region in (a) is not directly comparable to
the corresponding length in schematic(b).

on in Sections 2.3.1.1 and 2.4.

2.2.3 Microwave Surface Waves and their Early Applica-

tions

Confined microwave surface waves have been explored by the radar engineering

community for a number of years. The original hypothesis that surface waves were

responsible for radio transmission was debunked by both experimental evidence of

Burrows [12] and analysis by Weyl [10] and Norton [11]. In 1937 Wise [29] proved

the transmission of radio waves could not be due to a surface wave of the form

proposed by Zenneck in 1907 as a vertical dipole could not excite such a solution,

ending the subject in terms of radio wave propagation.

However, it was discovered quite accidentally by Cutler in 1944 [18] during his

efforts to increase the transmission of radar antennas that a surface wave such as
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described by Zenneck could in fact be excited on a metal at microwave frequen-

cies. Cutler originally wanted to reduce the reflections he observed from radiation

emitted from the side of the flat antenna feed he was using to interact with a

near-parabolic reflector dish. Radiation emitted from the side of the antenna feed

instead of in the forward direction are known as side lobes. In general this fea-

ture results in a non-directive antenna beam pattern and as such is an undesirable

property. The flat metallic feed is also known as a flat reflector, which reflects the

signal initially fired at the dish from a waveguide source back to the dish and is

designed to increase the gain of the antenna in a certain direction [30].

When used together, the dish and the feed were designed to achieve an antenna

that could be used to survey high altitude aircraft from its position on the ground

via a beam pattern polarised in the vertical direction. The military significance of

such a device in a time when World War II raged across the globe was not lost on

Cutler, who was then under contract with the US Air Force.

By indenting the surface of the flat metallic feed with closely spaced corruga-

tions that were one quarter of the wavelength of the operating frequency in depth

he hoped to reduce the distorting effects of the side lobes. However, what he ob-

served was a pronounced maximum field at the corrugated surface which decreased

by several orders of magnitude when moved no more than a wavelength away from

the corrugations. This is indicative of the evanescent field decay associated with

surface waves in the vertical direction away from the supporting interface; Cutler

had discovered microwave surface waves on a corrugated sheet. This was two years

after the referred to publication by Toraldo di Francia (1942) [16]. Cutler’s final

solution to his antenna problem was to cut the corrugations deeper to negate the

effects of side lobe reflections, however, this experiment is considered to be the

first investigation of a microwave surface wave supported on an array of quarter

wavelength corrugations embedded in a metal sheet.

Figure 2.2 details the initial boundary conditions of surface waves first outlined

by (a) Zenneck in 1907 [6] and the genesis of this understanding of surface waves

as regards antenna theory as detailed by Zucker [31] (b) and in another paper by

Barlow and Cullen (1953) [32] presenting a unified picture of the various forms of

surface waves known at the time.

Indeed, antenna theory and microwave circuitry were the main topics of re-

search as regards surface waves in the 1950s in the pursuit of guiding electromag-

netic radiation. In 1950 Goubau [15] investigated surface waves on metallic rods

which were smooth (as in Sommerfeld’s initial analysis [14]) or coated with a di-

electric layer over a modified surface. By patterning the surface of the rod with a

spiralling groove in the same way a common screw is patterned (or ‘threaded’) and

adding a dielectric overlayer Goubau showed that the radial extent of the electric
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Figure 2.2: Figures reproduced (with modifications) from historical publications
detailing surface waves where ε1 indicates the permittivity of the dielectric layer
and ε2 indicates the permittivity of the conducting surface layer. (a) Zenneck’s
original paper [6] hypothesising the field solution of a transverse magnetic surface
wave and the arrow representative of the direction of the propagating mode. Un-
derneath are the electric (E) and magnetic (M) field components required to be
zero for such a mode to be supported. (b) Zucker (1952) [31] representation of the
phase and amplitude variation of the electric field associated with a surface wave.
Shaded region represents amplitude decay (I) as a function of distance from the
interface between ε1 and ε2 media, solid vertical lines represent lines of constant
phase and dashed horizontal lines represent lines of constant amplitude (c) The
orientation of the electric and magnetic fields what is described as a Zenneck wave
as defined by Barlow and Cullen in 1953 [32].

field associated with the supported mode was controlled. The radial extent of this

electric field was also shown to be less than the radial extent of the electric fields

on the smooth uncoated rod. As a result low loss methods of transporting radio

frequency signals (transmission lines) could feasibly be designed.

This analysis was extended by Attwood in 1951 [33] by investigating dielectric

layers on plane conducting sheets and exciting a confined surface wave to this

interface. Surface wave application to transmission lines using corrugated metal

sheets were further studied in 1951 by Rotman [34] who modified Cutler’s original

formulas by using a different approximation for the field distribution in the gaps

between the corrugations. This approach was extended to the study of antennas

in 1954 by R.S. Elliot [35] where a corrugated rectangular waveguide used as a
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feed to a corrugated surface was analysed.

2.2.3.1 Corrugated Waveguides and Horn Antennas

The study of waveguides with corrugations originated with Slater in 1941 [36]

when, during his analysis of magnetron oscillators, he derived an approximate

theory for wave propagation between parallel conducting plates with the interior

of one plate being corrugated in the transverse dimension. Goldstein [37, 38]

and Walkinshaw [39, 40] extended this to rectangular and circular waveguides,

respectively. This, as well as an in depth discussion of waveguide modes and

propagation of electromagnetic radiation in a waveguide is summarised in a book

titled ‘Microwave Engineering’ by Pozar [41] and will not be further elaborated on

in this thesis.

Corrugations can be used to guide a mode from a confined waveguide into

free space by texturing the inner surface of a tapered guide known as a feedhorn

(horn) antenna. Diffraction from the aperture of the antenna results in undesirable

radiation which distorts the Gaussian beam profile of the radiating device. It was

realised by Kay in 1964 [42] that corrugations inside a horn antenna could be

used to reduce such diffraction as they present the same boundary conditions

to all polarizations of waveguide mode within the device. This tapers the field

distribution at the aperture of the antenna in all planes so that the same boundary

conditions are enforced on the emitted waveguide mode on all four walls of the

aperture, eliminating spurious diffraction.

Figure 2.3: Photograph of a corrugated scalar horn antenna (left) and a schematic
representation (right) of the interior cross section of the same antenna. The scale of
the schematic (modified diagram from CST AG) does not represent the dimensions
of the photographed horn on the left, a corrugated feed horn antenna designed by
the Commonwealth Scientific and Industrial Research Organisation (CSIRO).

Figure 2.3 shows a photograph of a corrugated horn antenna designed by

CSIRO in comparison to a schematic of the inside of the same horn to illustrate

the corrugations within a feed horn antenna. The dimensions of the schematic

are for illustrative purposes only. Olver and Clarricoats [43, 44] further analysed
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corrugated feed horn antennas such as the ones depicted in Figure 2.3 in 1984.

Corrugated feed horn antennas remain an active area of research as the proper-

ties inherent with this design such as low sidelobes and high beam symmetry are

desired on smaller scales to operate at higher frequency regimesand has been de-

signed by McKay et al. (2013) [45]. However, the physics of a mode confined

within a waveguide is not the subject of this work therefore this historical review

now continues to follow the genesis of the surface wave mode.

Barlow and Cullen [32, 46] and Harvey [47] summarise the excitation and sup-

port of surface waves via quarter wavelength grooves or dielectric overlayers via a

property known as surface impedance (Zs). Zs is defined as the ratio between the

tangential components of electric and magnetic fields associated with the surface

wave. In fact the impedance model was used by Wait [48] to provide a link between

the surface waves of Zenneck, Sommerfeld, Norton, and Goubau [6, 14, 11, 15].

Further study of surface wave applications including increasing the directivity

and decreasing the gain of the antenna is summarised in Zucker (1952) [49]. As

an aside it is noted that the property of directivity is the ratio of the radiation

intensity in a given direction from the antenna to the radiation intensity averaged

over all directions.

In the concluding remarks Zucker notes that while a Zenneck wave is almost

impossible to excite on a metallic sheet in the microwave regime due to a negative

permittivity, at optical frequencies it should be easily supported. To the surprise

of this author a parallel is drawn between the surface wave observed by Wood

and Fano and the mode supported by a dielectric overlayer on a metallic sheet

or an array of corrugations in the microwave regime. To the best knowledge of

this author this is notably the first parallel drawn between the field of photonics

and microwave engineering concerning the electromagnetic modes studied in each

field actually being attributed to one in the same phenomenon. A more rigorous

approach was used by Pendry et al. (2004) [50, 51] to explain the link between mi-

crowave surface waves and those in the visible regime (Figure 2.1) via the concepts

of ‘Metamaterials’ and ‘effective’ permittivity and permeability.
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2.2.4 Metamaterials

In terms of electromagnetic materials, a metamaterial is one whose electromagnetic

properties are due to its geometric design and not the constituent properties of its

chemical composition. By altering the structure of a metamaterial its electric and

magnetic properties as defined by complex permittivity (ε), the ratio between elec-

tric field E and electric displacement D as stated in equation 2.3, and permeability

(µ) the ratio between magnetic induction H magnetic field intensity B are altered.

It is common to classify a material into four possible subcategories depending on

the sign of ε and µ associated with it i.e. (+ε, + µ), (- ε, - µ), (+ε, -µ) and (-ε,

+µ). These four categories are referred to as double positive media (DPS), double

negative media (DNG) and single negative media (SNG) respectively. Most natu-

rally occurring materials are classified as DPS but some do display characteristics

of SNGs depending on the frequency regime under consideration i.e. a metal at

visible frequencies has negative ε whereas it is otherwise positive. While there are

no naturally occurring DNG materials, research in the field of metamaterials has

resulted in the design and realisation of both DPS and DNG materials.

There are two theoretical and two experimental publications which have no-

tably galvanised the field of metamaterials over a number of years including Vese-

lago (1968) [52], Pendry (2000) [53], Smith et al. (2000) [54] and Shelby et al.

(2001) [55]. Veselago proposed the use of DNG materials to achieve negative re-

fractive index materials and hypothesised that a slab of such material could be used

to focus light from a point source. Pendry re-iterated that result years later when

he proposed using DNG materials as ‘superlenses’. He further elaborated on this

in the aformentioned citation by noting such superlenses transmitted evanescent

waves without loss, surprisingly resulting in the perfect recreation of an image.

Both Smith et al. and Shelby et al. experimentally realised artificial DNG

using split ring resonators (SRR), a structure first proposed by Pendry et al.

(1999) [56]. The former investigated the transmission response of a structure that

exhibited SNG properties and DNG properties over a range of frequencies, resulting

in transmission minima and maxima respectively. The latter arranged the SRR

structure into a prism and observed negative refraction of incident radiation in

comparison to a prism composed of a DPS medium.

A summary of these seminal publications can be found here [57, 58]. Research

topics inspired by these papers are cloaking, high refractive index materials and

other artificial magnetism topics. Further, the idea of a metamaterial has been

extended to include ‘metasurfaces’ where one dimension of the metamaterial in

question is so much less than that of the other dimensions it is considered to be

infinitesimal. Therefore the metasurface is considered two dimensional [59]. Also,
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the dispersive properties of the metasurface must be able to be described by a

sheet impedance as is discussed in Section 3.4.3.4.

What is of particular interest to this thesis is the work proposed by Pendry et

al. (2004) [50] who further realised that individual resonances created by a metal

sheet perforated with holes of some depth could in fact provide a means to an

‘effective permittivity’.

2.2.5 The Effective Medium Approach

Pendry recognised that an infinitely thick metallic slab perforated with a square

array of infinitely deep square holes could be described as a metamaterial surface

with each hole acting as a resonant element. Consider Figure 2.4. As in Figure

2.1, the three bands of colour represent three different frequency regimes including

microwave (yellow), infrared (red) and visible (purple). The behaviour of a photon

travelling in free space is represented by the solid black line with a constant gradi-

ent and the surface mode is represented with the solid black curve with a frequency

dependent gradient. The black dashed line represents the limiting frequency of the

surface wave.

In contrast to Figure 2.1 this limiting frequency occurs in the regime denoted as

‘microwave’ and not at ωSP . In this case the limiting frequency is governed by the

resonant condition of a subwavelength element in an array of similar elements, in

this case a square hole array. Individual resonances interact as an array, providing

an overall resonant response and the mechanism by which a microwave surface

wave is supported. The geometrical design of these elements dictate the frequency

regime in which the limiting frequency occurs. For the specific case of a square

array of deep square holes, below the waveguide cutoff frequency of that hole

incident electric field will decay evanescently into the hole.

Schematic (b) in Figure 2.4 shows the electric field interaction at microwave

frequencies with an array of square holes of infinite depth perforating an infinitely

thick metallic slab. The electric field will exponentially decay into the holes at

frequencies below the cutoff frequency of the waveguide mode supported in the

square holes. Further, decay below the surface of the perforated metal results in

the medium being described by an effective permittivity as now the electric field

can extend beneath the interface of metal and air (into the square hole) or is

screened by the non-perforated region of the metal sheet. The same logic was also

applied to a sheet of quarter wavelength grooves [51], with the resonance supported

by each element interacting coherently and supporting a surface wave limited by

a geometrically designed resonance. This is fully discussed in Section 2.5.1.

Figure 2.4 depicts the dispersion of such a mode, termed a ‘spoof’ or ‘pseudo’

15



Background

Figure 2.4: Dispersion of a surface wave associated with a metal slab of infinite
depth, perforated with subwavelength holes (curved black line) which are also
infinitely deep. Solid dashed line represents limiting frequency. Insets: penetration
of vertical electric field (orange) into (a) metal (b) an array of infinitely deep square
holes at microwave frequencies. Modified from Hibbins et al. (2005) [28].

surface plasmon. Experimental verification of this pseudo mode was given by Hib-

bins et al. (2005) [28] and the support and manipulation forms the main discussion

in this thesis.

2.3 The Dispersion of a Surface Wave

A surface wave is an electromagnetic mode which exists on interface of two dis-

similar media, decaying exponentially into each medium. It propagates along the

interface between the two media and is non-radiative therefore the mode is subject

to losses from the bordering media only. A surface plasmon (SP) can be described

as such and is a longitudinal oscillation of charge along the interface between the

aforementioned two media.

Figure 2.5 is a schematic representation of the electric field associated with a

surface plasmon. Notice the similarity in the field profile of the schematic shown

in Figure 2.5 to the wave described as a Zenneck wave in Figure 2.2 (c) in Barlow

and Cullen [32] on a completely different surface and at microwave frequencies.

This is because they are one in the same phenomenon as described by Zenneck in

1907 [6].

We will now describe how a surface wave can be supported on a planar interface

between a metal and a dielectric. This is extended to consider the permittivity

of the metal and how its behaviour changes in different frequency regimes. The
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Figure 2.5: Schematic representation of the electric field associated with a surface
wave confined to the interface between a dielectric (ε1) and a conductor (ε2) at
optical frequencies, adapted from ‘The Optical Response of Short-Pitch Surface-
Relief Gratings’ by Dr I. Hooper [60].

consequences of these changes in relation to the confinement of the electric field

associated with the surface wave is discussed and a method for supporting a con-

fined surface mode in the microwave regime is detailed. Further to this is a small

illumination as to the description of a surface wave as an inhomogeneous plane

wave.

2.3.1 Derivation of the Dispersion Relation

Primarily let us consider the initial conditions required for a surface wave to be

supported on an planar interface between two semi-infinite homogeneous media

at visible frequencies. Polarisation charge must be trapped at this interface for

a surface wave to exist. Therefore a component of the electric field (E) must be

normal to the interface so that the displacement (D) of the electric field will be

induced. The relationship between E and D is described as

D = εrelε0E (2.3)

where ε = εrelε0, εrel represents the relative permittivity of the medium and ε0

represents the permittivity of free space.

Crucially, the displacement D of the electric field is continuous across such an

interface. If we assume the two media in question are air (where εrel is positive)

and metal (εrel is large and negative) then the direction of E will change and

‘trap’ polarisation charge at the surface. Subsequently, to excite a surface wave

the incident wave must be polarised so that its magnetic component traverses

the plane of incidence and its electric field component is parallel to the plane of
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incidence, a transverse magnetic (TM) polarisation.

The orientation of a TM wave is illustrated in Figure 2.6 where the plane of

incidence is in the xz-plane.

Figure 2.6: Transverse magnetic polarised plane wave incident on a metal-dielectric
interface. The interface between air (medium 1) with permittivity ε1 and a metal
(medium 2) with permittivity ε2 is planar.

An incident plane TM wave is detailed in Figure 2.6. The spatial and temporal

components of electric (E) and magnetic fields (H) can therefore be described as

E = [Ex, 0, Ez] e
i(kxx̂+kz ẑ−wt) (2.4)

H = [0, Hy, 0] ei(kxx̂+kz ẑ−wt) (2.5)

In the absence of free charge, Maxwell’s equation defining the relationship

between the electric and magnetic field is:

∇∧H = ε
δE

δt
(2.6)

Equation 2.6 can be applied to the fields defined in equations 2.4 and 2.5 to

obtain the following relations:

∇∧H = (ikxHyẑ − ikzHyx̂) ei(kxx̂+kz ẑ−wt) (2.7)

ε
δE

δt
= (ε(iωExx̂+ iωEz ẑ) ei(kxx̂+kz ẑ−wt) (2.8)

By equating the vector components of equations 2.7 and 2.8 the following
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relation is obtained:

Hy =
εωEx
kz

= −εωEz
kx

(2.9)

where ε is the permittivity of the medium, kx is the component of the wavevec-

tor (k0) in the x-direction and ω is the angular frequency.

The component of k which notes the direction of travel of a confined surface

wave is often noted as the ‘in-plane’ wavevector. As such kx has been described

in this thesis as the in-plane wavevector. We consider the permability (µ) of both

media 1 and 2 to be equal to 1. Hence expressions for the incident (inc), reflected

(refl) and transmitted (trans) fields are:

Einc
1 = Einc

x1 [1, 0,
−kx
kz1

] ei(kxx̂+kz1ẑ−wt) (2.10)

Erefl
1 = Erefl

x1 [1, 0,
+kx
kz1

] ei(kxx̂+kz1ẑ−wt) (2.11)

Einc
2 = Etrans

x [1, 0,
−kx
kz2

] ei(kxx̂+kz2ẑ−wt) (2.12)

H inc
1 = Einc

x1 [0,
εω

kz1
, 0] ei(kxx̂+kz1ẑ−wt) (2.13)

Hrefl
1 = Erefl

x1 [0,
−εω
kz1

, 0] ei(kxx̂+kz1ẑ−wt) (2.14)

H trans
1 = Etrans

x [0,
εω

kz2
, 0] ei(kxx̂+kz2ẑ−wt) (2.15)

Components of E and H which are tangential to the interface must be conserved,

irrespective of medium. Further, the fields under consideration are associated

with the surface wave solution to Maxwell’s equations. A surface wave is an

eigenmode of a metal-air interface; it is a mode that can be supported by the

system. Therefore it must exist as a solution of the equations with no exciting field,

and therefore we can set the incident field, Ex, to zero. These boundary conditions

result in the following relations for the electric and magnetic field components in

x̂ and ŷ with the incident field set to zero.

Ex1 = Ex2 and Hy1 = Hy2 = Hy (2.16)

Therefore equation 2.9 is modified to:

Hy =
−ε1ωErefl

x1

kz1
=
ε2ωE

Trans
x2

kz2
(2.17)
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and

Hy =
−ε1
kz1

=
εTrans2

kz2
(2.18)

Also, as Ex is conserved so is kx. Therefore the expression for k0 (as seen for a

free space wave in equation (2.2) can be rewritten as:

k2x + k2a,z = εak
2
0 (2.19)

Where ‘a’ describes a specific medium which is, in turn, non-magnetic so µ

= 1. The expression for the refractive index nref =
√
µε reduces to nref =

√
ε.

Further, we consider the incident radiation to be TM polarised. As a result, ky =

0. Therefore equation 2.18 is expressed as:

−ε1√
ε1k20 − k2x

=
ε2√

ε2k20 − k2x
(2.20)

An expression for the propagating component of kx can now be determined:

ε21(ε2k
2
0 − k2x) = ε22(ε1k

2
0 − k2x) (2.21)

(ε22 − ε21)k2x = ε1ε2k
2
0(ε2 − ε1) (2.22)

Resulting in

k2x = k20
ε1ε2

(ε22 + ε21)
= kSW (2.23)

where kSW is the wavevector of the surface wave. In this instance k0 < kSW .

Therefore, the excitation of a surface wave is only attainable if the radiation cou-

pling to the surface has an excess of momentum via evanescent decay from either

diffraction or prism coupling [60, 61].

The wave vector normal to the interface kz can be expressed via consideration

of Equation 2.19 to be given by

ka,z = (εak
2
0 − k2x)(1/2) (2.24)

where ‘a’ denotes the medium under consideration and ky = 0. By considering that

k0 < kx, kz as given by Equation 2.24 must be imaginary so decays exponentially

away from the interface. This equation describes an inhomogeneous plane wave,

where the planes of equal amplitude are orthogonal to planes of equal phase. The

electric field amplitude decays away from the supporting interface while the mode

propagates along the interface. The electric field loops in Figure 2.5 result from

substitution of Equations 2.23 and 2.24 into Equations 2.10, 2.11 and 2.12.
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2.3.1.1 Surface Waves in Different Frequency Regimes

A graphical representation of the behaviour of kx with respect to the frequency

of radiation has previously been shown schematically in Figure 2.1 to describe

the behaviour of the surface electrons associated with a metal medium at visible

frequencies using the Drude model. The surface mode closely resembles that of a

grazing photon until the frequency associated with the surface plasma frequency

( ωSP = ωp√
2
) is approached where ωp is the plasma frequency . At this point, the

value of kx >> k0 and the gradient of the dispersion changes so that the surface

mode is asymptotic to ωSP of the metal. ωp is defined thus

ωp =
ne2

mε0
(2.25)

where n, e and m represent electron density, electric charge and the effective

mass of an electron. While exact values of the plasma frequency are obviously spe-

cific to material, in general ωp lies in the ultraviolet region of the electromagnetic

spectrum. Subsequently, the surface mode supported at microwave frequencies

resembles a grazing photon.

At visible frequencies the permittivity of the medium is large and real. There-

fore the comparatively small contribution of the imaginary component of ε2 is

neglected. However, the behaviour of the permittivity of a metal is highly depen-

dent upon the frequency regime in which the metal is being irradiated. So much

so that at microwave frequencies the imaginary component of ε is both large and

orders of magnitude greater than the real part.

Extending equation 2.23 to include real and imaginary components of εrel and

kx provides insight as to the behaviour of the surface wave for a range of frequencies

and has been included for completeness. This derivation has been adapted from

Yang et al. (1991) [62] and [63].

The relative permittivity εrel and in-plane wavevector (kx) can be described

thus

εrel = εr + iεi and kx = kxr + ikxi (2.26)

where the subscripts ‘i’ and ‘r’ denote the real and imaginary components of

equation 2.26. Medium 1 is air and can be considered to be without charge so has

a permittivity εrel = ε1 without any imaginary contributions. Therefore:

k2x
k20

=
k2xr − k2xi + 2ikxikxr

k20
=

ε1ε2
ε1 + ε2

=
ε1(ε2r + iε2i)

ε1 + ε2r + iε2i
(2.27)

To separate the real and imaginary components of kx with respect to the per-

mittivity associated with both media the right hand side of Equation 2.27 is mul-
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tiplied by its complex conjugate, producing:

ε1ε2r(ε1 + ε2r) + ε1ε
2
2i + iε21ε2i

(ε1 + ε2r)2 + ε22i
(2.28)

The real parts of kx and ε are now describe as:

k2xr − k2xi
k20

=
ε1ε2r(ε1 + ε2r) + ε1ε

2
2i)

(ε1 + ε2r)2 + (ε2i)2
= R (2.29)

While the imaginary parts can be described as:

2kxikxi
k20

=
ε21ε2i

(ε1 + ε2r)2 + (ε2i)2
= I (2.30)

Therefore from equation 2.30 the following statement can be made:

k2xi
k20

=
I2k20
4k2xr

(2.31)

Equation 2.31 can be substituted back into equation 2.29 and gives the following

expression:
k2xr
k20
− I2k20

4k2xr
−R = 0 (2.32)

Which yields the following quadratic equation with k2xr
k20

as the subject:

k4xr
k40
−Rk

2
xr

k20
− I2

4
= 0 (2.33)

Similarly a quadratic equation with
k2xi
k20

as the subject can be obtained.

−k
4
xi

k40
−Rk

2
xi

k20
+
I2

4
= 0 (2.34)

Solving equations 2.37 and 2.38 for expressions of the real and imaginary com-

ponent of kx in with respect to the permittivity gives the following.

k2xr
k20

=
ε1(ε

2
r + ε22r + ε1ε2r +

√
(ε2r + ε22r + ε1ε2r)4 − ε1ε22i

2((ε1 + ε2r)2 + ε22i)
(2.35)

k2xi
k20

=
ε1(−(ε2r + ε22r + ε1ε2r)−

√
−(ε2r + ε22r + ε1ε2r)4 + ε21ε2i

2((ε1 + ε2r)2 + ε22i)
(2.36)

Equations 2.35 and 2.36 can be simplified by representing the terms ε2r + ε22r +

ε1ε2r as equal to ε2e, an arbitrarily named constant, so that they can be represented
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thus:

k2xr
k20

=
ε1(ε

2
e +

√
ε4e − ε1ε22i

2((ε1 + ε2r)2 + ε22i)
(2.37)

k2xi
k20

=
ε1(−ε2e −

√
−ε4e + ε21ε2i

2((ε1 + ε2r)2 + ε22i)
(2.38)

Equation 2.37 is indicative of a quantity known as the modal index n expressed

as

n =
c

vg
=
λ0
λx

(2.39)

where λ0 is the wavelength of the free space mode (λ0 = 2π
k0

), λx is the wavelength

of the surface wave ( λx = 2π
kx

) and vg is the group velocity of the mode. Equation

2.38 describes the non-radiative damping of the mode and can be used to express

the propagation length of a surface wave along a supporting interface as a function

of permittivity.

2.4 Permittivity of a Metal

Having detailed complete expressions for the wavevector associated with a surface

wave with respect to the permittivity of the supporting media (Equations 2.37

and 2.38), the frequency dependent nature of the permittivity with respect to the

metal medium is reviewed and related to the confinement of a surface wave to

the interface between a metal and a dielectric. The concept of confinement has

previously been discussed in Section 2.2.2.2.

2.4.1 Permittivity as a Function of Frequency

The confinement of an electromagnetic mode is characterised by the extension of

the electric field from the interface between the two supporting media. As such,

the confinement of a surface wave supported by a metal-air interface varies with

frequency due to the nature of the permittivity of the metal medium.

There is an absence of charge in the air medium therefore ε1 remains constant

and equal to ε0. However, the metal is composed of conduction electrons. Their

response to an incident electromagnetic field can be characterised using the Drude

free-electron model [64] so that the real and imaginary parts of the permittivity

are described thus:

εr = 1−
ω2
pτ

2

(1 + ω2τ 2)
(2.40)
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εi =
ω2
pτ

ω(1 + ω2τ 2)
(2.41)

where τ is the collision time and ωP is the plasma frequency.

Figure 2.7: Real (black) and imaginary (grey) permittivity as defined by the Drude
electron-free model for aluminium. In this case ωp = 1.93x1016 radians and τ =
5.07x10−15 seconds, values obtained from reference [64]

Figure 2.7 represents the behaviour of the real and imaginary components of

the permittivity for aluminium as a function of wavelength. It is clear that at

microwave frequencies (wavelength ' 0.001 m ) εr has reached a constant, steady

value that is many orders of magnitude smaller than εi.

Consider a perfect electrical conductor (PEC), where the electric fields are

completely screened so do not penetrate into the PEC surface and conductivity (σ)

of the PEC is infinite. The imaginary component of the permittivity εi associated

with a PEC is considered to be infinite and larger than εr. By inspection of Figure

2.7 it is clear to see why metals at microwave frequencies are often approximated

as PECs as εi is very large and positive.

Further consider the following relation of σ at all frequencies

σ =
nq2τ

m(1 + iωτ)
(2.42)

where n is electron density, m the mass of an electron, q is the charge of

an electron and τ is relaxation time. At microwave frequencies ω << 1
τ

so the

imaginary component of σ is negligible while the real part is large, resulting in an

almost perfect conductor of electric field (PEC).
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The frequency dependence of the permittivity associated with a metal has

direct consequences as to the penetration of electric field associated with a surface

wave supported on a metal-air interface and subsequently the confinement of the

mode.

2.4.1.1 Skin Depth and Penetration Depth

The decay of a surface wave in a direction normal to the interface (in the ẑ-direction

in Figure 2.6) into the surrounding media defines how confined the electric and

magnetic fields associated with the mode are with respect to the interface which

supports the mode. An indication of the confinement of the mode to the supporting

interface is the rate at which the intensity of the fields decreases as a function of

distance from the supporting interface. The more confined the mode, the faster

the rate of decay of the fields from the supporting interface. A description of

this confinement is found via the ‘skin depth’ (δs) of a material, i.e. the distance

normal to the interface at which the amplitude of the electric field reduces to 1
e

in

comparison to its value at the interface [41]. Skin depth is related to imaginary

kzi thus

δs =
1

kzi
=

√
2

ωµσ
(2.43)

where σ is the conductivity of the material of the penetrated medium. This

should not be confused with the ‘penetration depth’ (δz) which is the distance

normal to the interface at which the intensity of the electric field drops to 1
e

where

δz =
1

2kzi
(2.44)

Besides the obvious mathematical differences, δs of a material is associated with the

conductivity and therefore any free charge of the medium. However, δz describes

more general absorption into a medium. For instance, while the rate of decay of

the fields associated with a surface wave into a metallic surface might be described

by δs the rate of decay of those same fields into a dielectric such as air should be

described by δz due to lack of free charges in the medium.

The electric field of a surface wave normal to the interface is imaginary and

has previously been described by Equation 2.24. Therefore kz will be described by

its imaginary component kzi. If Equation 2.24 is rewritten as a factor of k0 and

then separated in terms of the real and imaginary parts of epsilon, an expression

for kzi can be found:

kz
k0

=

√
(εr + εi)−

k2x
k20

(2.45)
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kz
k0

=

√√√√(εr − ε1ε2e
(ε1 + ε2r) + ε22i

)
+ i

(
εi −

ε21ε2i
(ε1 + ε2r)2 + ε22i

)
(2.46)

Then, as in equations 2.37 and 2.38, a quadratic with kiz
k0

as the subject is used

to gain an expression for kzi.

k2zr(a) − k2zi(a) + 2ikzr(a)kzi(a)

k20
=

(
εr(a)−

ε1ε
2
e

(ε1 + ε2r) + ε22i

)
+i

(
εi(a)−

ε21ε2i
(ε1 + ε2r)2 + ε22i

)
(2.47)

kzi
k0

=

√√√√√√√εr − ε1ε2e
(ε1+ε2r)2+ε22i

−

√√√√(εr − ε1ε2e
(ε1+ε2r)2+ε2i2

)2

+

(
εi − ε1ε22i

(ε1+ε2r)2+ε2i2

)2

−2
(2.48)

Equations 2.48 and 2.44 can be combined to provide a frequency dependent

penetration depth:

δz =
1

2kzi
=
λ0
2π

k0
2kzi

(2.49)

where λ0 is the wavelength of a free space wave.

Figure 2.8: Penetration depth (δz) as a function of frequency associated with the
electric field of the surface wave decaying in the z-direction in (a) medium 2 (alu-
minium) and (b) medium 1 (air). Adapted from from ‘Electromagnetic surface
wave mediated absorption and transmission of radiation at microwave frequen-
ciesDr M Lockyear’ by Dr M. Lockyear [63].

Figure 2.8 represents the skin depth of the electric field associated with the

surface wave in (a) medium 2 (aluminium) and (b) medium 1 (air). The values of

δz differ between these two media severely at microwave frequencies. For instance
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at 30 GHz δz = 0.7 µm in aluminium whereas δz = 18.5 m in air. However, when

the wavelength under consideration is in nanometers (visible light), inspection of

Figures 2.8 (a) and (b) shows that although penetration into aluminium is less than

at microwave frequencies, the ratio between the values of δz is far more comparable

and in fact only differs by an order of magnitude [28].

2.5 Microwave Surface Waves on Metallic Struc-

tures with Subwavelength Patterning

In the optical regime the skin depth of the electric field into the metal is comparable

to the skin depth into the air. However, in the microwave regime, this component

extends many wavelengths into the air medium and the surface wave is no longer

confined to the interface between the air and metal. Since the 1950s, it has been

known that the addition of surface structure or a dielectric overlayer will act to

confine a surface wave at microwave frequencies [32, 65, 12].

This thesis investigates a surface wave which is confined to the interface between

air and a metal which is corrugated by a one dimensional array of grooves. The

mechanism of confinement is discussed via matching electric field associated with

diffraction from an incident wave to the forward and backward propagation of a

waveguide mode supported within the metallic groove. This is different to the

description of surface waves investigated in the 1950’s wherein the impedance

model was employed to describe the electromagnetic fields of the mode. The

impedance model is discussed in section 2.5.3.

2.5.1 The Effective Medium Approach

Previously considered was the confinement of an electromagnetic surface wave to

a metal-air interface at any frequency. This confinement was characterised by

the spatial extent of the electric field into the dielectric, vertically away from the

interface, which is much greater than the spatial extent of the electric field into

the metal interface at the microwave frequencies. As a result, the surface wave is

not confined.

By addition of subwavelength structure a confined surface wave can be sup-

ported on a metal-air interface so that the system is subject to an ‘effective’ per-

mittivity rather than the large and imaginary permittivity in as is typical for this

frequency regime. This section details how the effective medium approach can be

applied to a subwavelength one dimensional array of grooves and an array of square

holes to explain how a surface wave can be supported on these structures. This

treatment has been adapted from the publication of Garcia-Vidal et al. (2005)
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[51] which followed the seminal publication of Pendry et al (2004) [50] concerning

the effective medium approach to support surface plasmons.

2.5.1.1 Surface Waves Supported on a One Dimensional Array of Metal-

lic Grooves

The system considered is the same as in Section 2.3 in that a TM polarised plane

wave is incident on a metal-air interface.

Figure 2.9: Schematic of a one dimensional array of grooves. Medium 1 is dielectric
(air) and while medium 2 is composed of both metal and air. The shaded region
indicates the interface between medium 1 and medium 2 at z = 0 and is for
illustrative purposes only. The blue dotted line further illustrates the position of
z = 0 and therefore the position of the interface. The black coordinate system
indicates the direction of propagation (k0) of the free space wave as well as the
electric (E) and magnetic (M) components of that wave. The pitch of the structure
and the height of each groove is indicated by d and h, respectively.

However, in this instance the surface is now considered to be corrugated by an

array of grooves and medium 2 is now composed of both metal and air. This is

shown schematically in Figure 2.9 where an incident free space wave is shown in

black, the dimensions of the structure are stated in white and the coordinates of

the system are shown in blue.

The following derivation has been adapted from Garcia-Vidal et al. (2005) [51].

The incident and reflected electric E and magnetic H field of the surface wave in

medium 1 can be expressed as:

Einc =
1√
d

[1, 0,− kx
kz1

] ei(kxx+kzz−ωt) (2.50)

Hinc =
1√
d

[0,
εµ

kz1
, 0] ei(kxx+kzz−ωt) (2.51)

Erefl = Erefl
x1 [1, 0,

kx
knz1

] ei(k
n
xx+k

n
z z−ωt) (2.52)
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Hrefl = Erefl
x1 [0,

−εµ
knz

, 0] ei(k
n
xx+k

n
z z−ωt) (2.53)

The derivation follows the same method outlined in Section 2.3.1. Further, as

the surface we are considering is a corrugated structure and not perfectly planar,

the reflected wave will be subject to Huygens Principle and multiple orders of

diffraction can be expected. These are denoted as (n) in the equations above

where k
(n)
x = kx + 2π n/d (∞ ≤ n ≥ ∞) and k

(n)
z =

√
k20 − (knx).

Medium 2 is comprised of both metal and air and, as previously shown in

Figure 2.7, a metal’s permittivity εi at microwave frequencies is large. In the

case of this derivation let us now consider a metal at microwave frequencies to

be a perfect electrical conductor (PEC). Subsequently εi is now considered to be

infinite, instead of simply large in comparison to its real counterpart, εr, and the

only electric field to consider is that found inside the groove. As the wavelength

of incident radiation is much larger than the width of the groove itself we only

consider the fundamental transverse electric (TE) waveguide modes supported by

the corrugations:

E2
TE,± = (1, 0, 0)

1√
a
e±ik0z) (2.54)

H2
TE,± = (0, 1, 0)

1√
a
e±ik0z) (2.55)

where ‘TE,±’ indicates the forward TE mode into the groove and the backward

TE mode reflected from the metallic termination at the end of the groove.

Garcia Vidal et al. (2005) [51] do not consider the fields in medium 2 be

subject to diffracted orders. Therefore the electric and magnetic field inside the

corrugations can be considered as a combination of forward and reflected fields of

the TE modes that are propagating in the positive and negative ẑ direction due

to the metal boundary terminating the end of each cavity.

E2 = C+ETE,+ + C−ETE,− (2.56)

H2 = C+HTE,+ + C−HTE,− (2.57)

where C is an arbitrary constant, indicative of the amplitude of the mode. The

shaded region on Figure 2.9 at z = 0 indicates the interface between medium 1 and

medium 2 and is for illustrative purposes only. This region includes a metal-air

interface and an air-air interface. The matching conditions used to obtain equation

2.18 are once again applied so that Ex is continuous across the interface where z
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= 0. However, the key difference in this treatment is that Hy is now continuous

along the metallic struts which border the air filled groove and along the bottom

of the groove itself. (i.e. at z = 0, where x = d− a and z = h, respectively).

By applying these boundary conditions and considering that the dimensions of

the corrugation are much smaller than the incident wavelength an expression for

the in-plane wavevector kx where kx > k0 can be stated thus√
k2x − k20
k0

= S2
0 tan(k0h) (2.58)

where S0 is the overlap integral for the zeroth diffracted order. This equation is

extended in Martin-Cano et al (2010) [66] to

kx = k0

√
1 + (

a

d
)2 tan2(k0h) (2.59)

where k0, the wavevector of the incident wave is defined entirely by a real value of

kz. As this expression for kx includes a tangent function, there will be an asymptote

when k0 h = π
2
. As a result, if the corrugations were infinitely thin slits, the limiting

frequency of the surface wave supported on the array of corrugations would occur

when h = λ
4
.

In reality the limiting frequency will occur lower than the λ
4

limit as the corru-

gations are not infinitely thin. There is an overlap between the incident field and

the fields of the TE mode within the cavity resulting in a lowering of the resonant

frequency of the mode.

2.5.2 Resonance

The previous section elaborated upon a surface wave supported by an array of

corrugations. The boundary conditions implied by the geometrical structure of the

corrugations define the characteristics of the individual resonance of each cavity;

the forward and backward propagating TE waveguide modes. The surface wave

is supported by a source of radiation coupling to this mode, matching the fields

outside the corrugations to the waveguide modes supported within them. However,

the ability to support surface waves in this manner is not unique to this structure.

Any array of cavities with subwavelength geometry that individually support

a resonance, such as a waveguide mode, can be used as a metamaterial structure

that will support a surface wave. The design of that cavity will dictate the limiting

frequency of the supported mode. Indeed, this has been shown for a square array

of infinitely deep square holes perforating a metallic slab [50], a square array of

finite depth square holes [51], a square array of finite depth rectangular holes [67]

and other resonant structures such as the Sievenpiper ‘Mushroom’ structure [68].
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Figure 2.10: (a) Unit cell of Sievenpiper mushroom array. Pitch d = 1.6 mm, patch
length a = 1.3 mm, via radius r = 0.15 mm, dielectric thickness tε = 0.787 mm
of Nelco NY-9220 (ε = 2.2) and metal thickness tmet = 0.0175 mm. (b) Photo of
a Sievenpiper mushroom array. (c) Schematic of Sievenpiper mushroom structure
indicating the physical origin of the inductive (L) and capacitive (C) components
of the mode. This is useful when describing a TM surface wave via the impedance
(Z) model [68].

Figure 2.10 shows (a) a unit cell of the Seivenpiper mushroom structure, (b)

a photo of an array of the Seivenpiper mushroom structure. Figure 2.10 (c) will

be discussed in section 2.5.5 Figure 2.10 (a) shows a unit cell of the Seivenpiper

mushroom structure, a combination of a metallic ground plane with a dielectric

overlayer perforated by an array of metallic vias. A via can be seen in Figure

2.10 (a). The vias electrically connect the ground plane to an array of square

metal patches which obtrude from the dielectric layer. This connection supports a

resonance when excited by a transverse magnetic polarised wave. Figure 2.10 (b)

is a photo of an array of the Seivenpiper mushroom structure. The Seivenpiper

mushroom structure is an example of a structure that is not characterised by

waveguide modes, unlike the array of grooves or array of holes. A further discussion

of this particular structure can be found in Chapter 6

Sievenpiper originally described the resonance supported on an array of mush-

rooms using the impedance model, which we will now briefly detail as it has been

used extensively since the 1950s to characterise surface waves investigated by radio

engineers such as Barlow and Cullen [32].

2.5.3 Surface Impedance

The impedance (Z) of the surface supporting a surface wave can be expressed by

its real (R) and imaginary components (χ) thus

Z = R + i(χ) (2.60)
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where χ indicates reactance (Ω) and R is the resistance (Ω). The reactance

χ is composed of inductive (L) and capacitive (C) components given by χL and

χC respectively. In free space there is an absence of free charge so the impedance

is described by R, equal to 377 Ohms and χ = 0. However, when describing

impedance inside a lossy medium the loss mechanisms of that medium are de-

scribed by both its real (R) and imaginary (χ) components. As such, these loss

components are either capacitive or inductive, given by χL and χC respectively.

A surface supporting a mode is termed ‘capacitive’ if XC > XL and ‘inductive’ if

XC < XL. Figure 2.10 (c) displays the capacitive and inductive components of

the Seivenpiper mushroom structure.

Surface impedance Zs is defined as the ratio between the tangential components

of electric and magnetic field at the interface at which a surface wave is confined

where

Zs =
Ex
Hy

(2.61)

The concept of surface impedance can be used to derive expressions detailing

the dispersion of surface waves, as is seen in

2.5.3.1 Transverse Magnetic Surface Waves

Equation 2.61 is used to describe the surface impedance with respect to a TM

wave propagating on that surface. The following expressions have been adapted

from ‘The Field Theory of Guided Waves’ by Collin (1991) [69] and will be briefly

outlined here as surface impedance is referred to later in this thesis. First consider

the initial boundary conditions by which a TM wave is bound to a surface where

Hx = Hz = Ey = 0. Electric field in the direction of propagation (Figure 2.6) can

be described as

Ex = Ce−i(kxx−kzz+ωt) (2.62)

where C is a constant describing the time independent component of the mode.

Crucially, the time varying term of the electric field is described as positive

(eiωt), in contrast to most of the literature based in photonics where it is negative

(e−iωt). This positive reference is nomenclature used in most engineering literature

surveyed by this author and has direct implications as regards to how a surface is

described in terms of it’s capacitive or inductive qualities. No physical properties

of the surface wave are effected by this change of sign so this derivation continues

unchanged.

By applying the Maxwell’s relation defined in equation 2.6 (in the absence of

32



Background

free charge) the electric and magnetic fields can be expressed as

iωεEx =
δHy

δz
(2.63)

Hy =
−iωε
kz

C e−i(kxx−kzz) (2.64)

By substituting equations 2.63 and 2.64 into Equation 2.61, Zs can be described

thus:

Zs =
Ex
Hy

=
Ce−i(kxx−kzz+ωt)

−iωε
kz
C e−i(kxx−kzz)

= − kz
iωε

=
ikz
ωε

(2.65)

By further considering that -1
i

= i, Equation 2.65 can be stated thus:

Zs =
ikz
ωε

(2.66)

The solution is positive and imaginary therefore, with reference to the original

circuit theory model outlined in 2.60 it can be stated that a surface which supports

a TM surface wave is inductive as χL > χC .

2.5.3.2 Transverse Electric Surface Waves

For completeness it should be noted briefly that this analysis can be extended to

describe the condition by which a transverse electric (TE) surface wave is sup-

ported. In this case Hy = Ex = Ez = 0 and the magnetic field is described

as:

Hx = C e−i(kxx−kzz+ωt) (2.67)

By applying Faraday’s equation

∇∧ E = −µδH
δt

(2.68)

to equation 2.67 the electric and magnetic components of the surface wave are

obtained. However, due to the condition that the surface wave is always considered

to be absorbed by the medium, the sign for the impedance (Z) describing a surface

supporting a TE surface wave (ZTE) changes in comparison to equation 2.66 to

become:

ZTE = −Ey
Hx

(2.69)

33



Background

Therefore ZTE is given by:

ZTE =
−iωµ
kz

(2.70)

Note that the reactance is now negative and imaginary therefore it can be stated

that the surface is capacitive and does not support a TM surface wave.

2.5.4 Description of the Surface Impedance Associated with

a One-Dimensional Array of Metallic Grooves

Historically, the addition of corrugation to a metallic surface in the form of a one

dimensional array of grooves has been understood to support a surface wave as

characterised via transmission line theory [69, 46]. This theory uses a parameter

called impedance (Z), which is the ratio between tangential electric and magnetic

field. Consider again Figure 2.9 and consider the case where height of each groove

h is equal to λ
4
. The shaded region noted on the schematic indicates the interface

along which the surface wave is confined and consists of metal-air boundaries and

air-air boundaries.

With a TM polarised wave impinging upon such a surface the magnetic field

is orientated parallel to the groove and the electric field has a component in both

the vertical (z) and horizontal (x) directions, as shown schematically Figure 2.9

(black coordinates). The TE mode within the groove (where groove width a <<

λ) will propagate to z = h and be reflected by the metallic end which terminates

the groove.

The reflection of an electromagnetic wave with a perfectly reflecting surface is

known as a ‘short’ in the engineering community. At microwave frequencies metals

are considered to be near perfectly reflecting. When h, the height of the groove, is

equivalent to λ/4 relative to the frequency of the incident electromagnetic wave,

a standing wave is set up in a metallic groove. This consists of a convolution of

forward (incident) and backward (reflected) propagating waves, described thus:

E(z) = Eince−ikz + Erefleikz (2.71)

H(z) = H ince−ikz +Hrefleikz (2.72)

The impedance is defined at the interface (where z = 0) as

Z =
E(z = 0)

−(H(z = 0)
(2.73)

However in the grooves this must be modified to consider the forward and
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backward propagation of the mode as follows:

ζ =
Einc(z)

H inc(z)
=
Erefl(z)

Hrefl(z)
(2.74)

where ζ describes the impedance inside the groove.

Due to the termination of the groove in a short the electric field will fall to zero

at z = h. Therefore ζ = 0 and the electric field reverses direction. Consequently

the following statement can be made:

Erefl(z = 0) = −Einc(z = 0) (2.75)

By substituting equation 2.76 into equation 2.74 a relation for impedance as a

function of groove depth is obtained:

Etot(h)

Htot(h)
=
Eince−ikh − Eince−ikh

H ince−ikh +H ince−ikh
= iζ tan(kh) (2.76)

Due to the nature of the tangent function if h > λ/4 the value of ZS will be

negative, indicative of a capacitive surface upon which TM waves are no longer

supported. If h < λ/4 then the impedance will be positive imaginary and the

corrugated surface supports a TM wave.

2.5.5 Physical Origin of the Lumped Circuit Model

The lumped circuit impedance model can be used to describe the surface impedance

of a corrugated surface. Indeed, it can accurately be used to model the impedance

of any surface which supports a surface wave that has electromagnetic field in-

teraction in the region of space where z ≤ 0 where z is the label for the vertical

coordinate in Figure 2.9. If there are field interactions below z = 0, the model is

no longer accurate.

The surface impedance is described by

Zs =
iωL

1− ω2L C
(2.77)

The resonant frequency is expressed as a function of inductance (L) and ca-

pacitance (C)

ω0 =
1√
LC

(2.78)

The significance of equation 2.77 and 2.78 is the that as ω → ω0, Zs → ∞. In

practice this will never occur as when the impedance of the surface matches that of

the free space (377 Ω) the mode is not longer bound to the surface and will scatter

into free space. Thus Zs will never actually be infinite. However, the impedance
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model is still used in numerical calculations of the bulk response of resonant arrays

as it is computationally inexpensive and is a good approximation of the response

of surface wave supporting structures, except at their resonant condition.

In the case of a corrugated surface such as the one dimensional array of grooves

shown in Figure 2.9 both L and C can be approximated by considering the unit

cell of the groove structure. Each groove can be approximated as the gap between

two metallic parallel plate capacitors, negating the end effects of the grooves, and

capacitance can be calculated via

C =
εA

d1
(2.79)

where A is the area of the face of the strut bordering the groove, d1 is the

separation between the metallic struts and ε is the permittivity of the groove

medium. In the case of Figure 2.9, the groove is filled with free space only therefore

ε = ε0.

In the case of microstrip patch antennas, the capacitance of the structure is

given by the fringing electric field between the adjacent metallic patches [30]. This

results in a build up of charge at the edges of the patch. When a voltage is applied

across the patch the charge on the edges oscillates. As previously detailed, the

top layer of a Sievenpiper mushroom array is a layer of patches connected to a

conducting ground plane. This is achieved with an array of connecting metallic

vias, resulting in the electrical connection of the patches in the top layer.

Observe Figure 2.10 (c). When a voltage is applied across the charge on the

edges of the patch layer, oscillating in time, the charge travels the electrical length

of the unit cell. This is from the patch to the ground plane through the via and

then up to the edge of neighbouring patch and oscillates in response to the applied

voltage. This induced current results in an inductive term. Inductance (L) is

described thus:

V (t) = L
δI

δt
(2.80)

where V (t) represents time dependent voltage and I represents current. Figure 2.10

(c) schematically shows this charge build up as well as the inductive and capacitive

terms of the individual Sievenpiper elements [70]. An outline of the calculations

involving L and C for a Sievenpiper array is further discussed in Chapter 6.

2.5.6 Effective Surface Impedance Model

Expressions for the in-plane wavevector kx with respect to the impedance of the

surface as stated by Equation 2.77 has been derived by Collin [69] and published by

Sievenpiper et al. (1999)[68] and is used as a reference for the following derivation.
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Consider the form of the electric field in the z direction for a TM surface

wave to be represented by Equation 2.62. Using Ampere’s law (Equation 2.6 and

Faraday’s law (Equation 2.68), the other non-zero field components of a TM wave

can be found:

iωε0Ex =
δHy

δz
(2.81)

iωε0Ez =
−δHy

δx
(2.82)

−iωµ0Hy =
δEz
δx
− δEx

δz
(2.83)

These can be solved to find Hy and Ez:

Hy =
−iωε0
kz

Ce−i(kxx−kzz)+iωt (2.84)

Ez =
−iωk
kz

Ce−i(kxx−kz)z+iωt (2.85)

where C is describing the time dependant component of the mode. Combining

Equations 2.84 and 2.85 allows a solution for wavevector kx to be derived:

k2x = µ0ε0ω
2 + k2z (2.86)

Combining Equation 2.86 and 2.68

Z =
i

ωε0

√
k2x − µ0ε0ω2 (2.87)

Z2 =
−(k2x − µ0ε0ω

2)

ω2ε20
(2.88)

k2x
ωε20

=
µ0ε0ω

2

ω2ε20
− Z (2.89)

k2x = ε0ω
2(µ0 − ε0Z2) (2.90)

k2x = ε0ω
2µ0(1−

ε0Z
2

µ0

) (2.91)

k2x = k2TM =
ω2

c2
(1− Z2

s

η2
) (2.92)

where η represents free space impedance. It should be noted that the free space
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impedance can be described thus:

η =

√
µ0

ε0
(2.93)

where µ0 and ε0 is the permeability and permittivity of free space.

The expression for the propagating wavevector of a TE polarised surface wave

with respect to impedance can be derived in the same manner as previously seen

and is expressed thus:

k2TE =
ω2

c2
(1− η2

Z2
s

) (2.94)

where Equation 2.92 and 2.94 indicate the in-plane wavevector of the TM and

TE wave with respect to impedance. By inspection of equation 2.92 it is clear

that a propagating surface wave can be excited upon a corrugated surface on the

condition that ZS < η.
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2.6 Chapter Summary

This background chapter investigates the origins of the electromagnetic mode

known as a surface wave that can be traced through literature to the turn of

the last century. Each advancement in understanding of this phenomenon has

been highlighted chronologically and the relevant areas of research in association

with this is elaborated upon. The mathematical derivation originally proposed

as a solution to Maxwell’s equations has been detailed for the general solution

of a surface wave supported by a metal-air interface. The frequency dependent

behaviour of the permittivity associated with a metal such as aluminium has been

discussed. The consequence of this behaviour with respect to the confinement of a

surface wave to the metal-air interface has been discussed with particular reference

to the confinement of a surface wave to this interface at microwave frequencies.

Methods for supporting a surface wave at microwave frequencies via subwavelength

surface structure have been elaborated upon. This has been done by considering

both the effective permittivity model and the impedance model. Expressions for

relating the in-plane component of a transverse magnetic and transverse electric

surface wave as a function of surface impedance and free space impedance have

been detailed along with an explanation as to the origin of surface descriptors of

‘inductive’ and ‘capacitive’ surfaces.
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Experimental Methods

3.1 Introduction

As one dimension of a waveguide structure is changed the mode which propagates

along or in that structure will be modified. This chapter outlines the experimental,

analytical and numerical methods used to ascertain what, if any, effect a change in

the dimension of a guiding structure has on the dispersion of the supported mode.

The experiments described in this thesis used the following apparatus: a vector

network analyser (VNA); waveguide devices such as coaxial cables; radio frequency

(RF) connectors and antennas which emit and receive electromagnetic radiation.

The antenna used to measure the electric field of the surface wave is a stripped

coaxial wire and is referred to as a ‘probe’ throughout this chapter. The function-

ality of these devices is elaborated upon. Further detailed is the architecture and

operation of the VNA to highlight the attributes associated with the instrument.

The method of experimentally determining the dispersion of a surface wave

supported by a metamaterial surface is detailed via the use of the aforementioned

pieces of equipment. The electric field associated with the supported mode can

be mapped, enabling observation of changes in amplitude and phase associated

with the spatial position of the mode. A brief discussion detailing the mechanisms

involved in the excitation and measurement of a surface wave is included. Refer-

ences as to the methods employed to excite and measure surface waves during the

investigations detailed in Chapters 4, 5 and 6 are also included.

To support the conclusions reached in this thesis via experimental methods

both analytical and numerical methods are used to provide comparative analysis.

Both analytical and numerical methods are discussed and compared to each other.
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3.2 Apparatus

3.2.1 Functionality of a VNA

Experimental investigation of laterally confined surface waves is achieved through-

out this study using a Vector Network Analyser (VNA). The VNA is known as

a VectorStar MS4640A, manufactured by Anritsu, and operates between 70 KHz

and 70 GHz and is an AC source. A VNA is capable of indirectly measuring both

the amplitude and phase information of an electric field associated with a surface

wave. The loops of electric field associated with the supported surface wave, as

previously shown in Figure 2.5, induce current in the field profile of an antenna

connected to a VNA. The current generates a voltage which is measured by the

VNA. The voltage generated by the induced current is assumed to be linear with

field strength, hence an approximation as to the strength of the a measured field

is made.

The voltage measurement is processed digitally, resulting in real and imaginary

parts (I and Q pairs, respectively) of the original signal. The time-averaged electric

field, otherwise known as the amplitude of the electric field (A), can be expressed

via the I and Q values thus:

A = I2 +Q2 (3.1)

Although measurement of time-average electric field is one of the many products of

I and Q pair mathematics, it is used throughout this work as the primary indicator

of the magnitude of the electric field strength.

A VNA internally generates a voltage resulting in a radio frequency (RF) sig-

nal that is sampled, transmitted and compared to the signal from the detected

voltage. When a VNA is connected to an antenna, the voltage generated by the

induced current A VNA internally generates a radio frequency (RF) signal which

is sampled by the device in both the transmission and detection processes. This

sampling enables comparison of transmitted and detected signals, resulting in a

local phase measurement as a function of frequency. The sampling process is fur-

ther elaborated upon in Section 3.2.4, as well as the production of I and Q pairs.

Technical documents provided by three VNA manufacturers (Anritsu, Agilent and

Rohde & Schwarz) are used as the basis for the following explanation of VNA

architecture and operation and can be found in references [71, 72, 73]. Under-

standing of VNA functionality identifies why it is an ideal instrument for use in

the investigations detailed in this thesis.

A VNA measures scattering parameters (S-parameters) on a two port system.

The term ‘scattering parameters’ originates from transmission line terminology and

describes the results of an electromagnetic wave propagating through free space
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and experiencing a region of space which can no longer be considered a vacuum.

This term is synonymous with the term S-matrix and is used to describe reflection

and transmission measurements. A ‘port’ is the adaptor from which the RF sig-

nal internally generated by a VNA is converted into a transverse electromagnetic

(TEM) mode. Specifically, the port associated with the VectorStar MS4640A con-

nects to a V-type coaxial cable which transports the RF signal for use with some

other device (i.e. an antenna). The path by which an RF signal is transmitted

and detected, including interaction with the sample under test is further referred

to as the ‘electrical length’. An example of the experimental system is shown in

Figure 3.1 (left) to illustrate the system during initial explanation of components.

Included in this figure is the antenna used to measure the electric field associated

with a surface wave: a stripped coaxial wire labelled as a ‘probe’. More discussion

as to the effect of the probe on measurement of the surface wave and the length

of the exposed wire is included in section 3.6.2. An example of the composition of

a coaxial cable has also been included (right).

VNA port 1

VNA port 2

Broadband

Horn Antenna

Probe

45˚

2.5 mm
L = 100 mm

75 mm

z

y

x Outer Sheath

Inner Core

Dielectric Layer

Dielectric Jacket

r

Figure 3.1: Schematic of typical measurement system (left) including detecting
probe and emitting broad band horn antenna. (Right) schematic of the composi-
tions of a coaxial wire.

3.2.2 Functionality of Equipment

Before experimentally investigating the frequency response of a surface it is vital

that equipment used is specified to operate over the frequency range of interest.

For example a coaxial cable connecting to a broadband horn antenna may not

operate in the same frequency range, a characteristic which is dictated by the

internal structure of the cable and the horn.

A coaxial cable supports a transverse electromagnetic (TEM) mode and is

composed of three layers: a metallic solid cylindrical inner core, a layer of dielectric

which coats the core and a metallic sheath which coats the dielectric layer [41].

These three layers are often coated once more in a dielectric jacket to protect

the rigidity of the cable and the continuity of the TEM mode within. The radius

between the inner core and outer sheath dictate the frequencies at which RF signal
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can propagate along the cable without gross loss of signal.

RF equipment seldom operates over the large range of frequencies achievable

with a VNA. It is more common to have equipment which uses a small band of

possible frequencies within the spectrum produced by the VNA. Therefore signal

from the 1.85 mm radius (V-type) coaxial cables which connect directly to the

VectorStar MS4640A must be adapted for use with coaxial connectors of a different

radius between the inner and outer sheaths. These connections often result in a

reflection along the electrical length of the system but can be accounted for by

calibration of the VNA and other equipment used in an experiment.

3.2.3 VNA Calibration

There are several sources of systematic error which are inherently present in every

VNA measurement. These are:

• Crosstalk between the ports (unwanted transfer of signals between components)

which bypasses interaction with the sample under test.

• Reflections from any connection along the electrical path the RF signal takes

including the emitting port to coaxial cable connection and the coaxial cable con-

nected to any other adaptor, connector or antenna.

• Loss to any amplitude measurements due to propagation along an electrical

length that is not included in the architecture of the VNA. This includes coaxial

cables, connectors and adaptors.

• Deformities in cables such as kinks resulting in loss of transmission at particular

frequencies.

These errors result in unstable and non-repeatable amplitude measurements

resolved by the VNA but can be removed from the measurement process via a

calibration known as a ‘SOLT’, as is detailed in [72, 71] as well as the following

paragraph.

A SOLT calibration normalises out systematic error by connecting calibration

standards directly to the end of a coaxial cable or adaptor. The calibration stan-

dards simulate terminating boundary conditions called a ‘short’, ‘open’, ‘load’ and

‘through’ terminations. These are more commonly referred to as total reflection,

free space termination, total absorption and total transmission measurements re-

spectively. Total absorption is also known as a ‘match’. The impedance (Z) inside

a coaxial cable is 75 Ω where

Z =
E

H
(3.2)

The calibration standards attached to coaxial cables are used determine the re-

sponse of an electromagnetic mode travelling along the electrical length of the

system to be met by the aforementioned boundary conditions. For example, the
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calibration standard of a ‘short’ consists of a metallic termination placed a known

distance from the aperture of the standard and at a known orientation. The VNA

is preprogrammed with this distance and as such is also preprogrammed with the

expected response of an RF signal at frequency in its range travelling this distance

under lossless conditions. Therefore, when the VNA generates a frequency which

will match perfectly a λ
4

condition and has already sampled the amplitude and

phase of that generated signal, the VNA will expect to detect 100% of the RF

signal reflected and a π change in phase. In practice a system is never totally

without loss so the VNA will not detect 100% of the transmitted signal, there will

be some offset in amplitude and phase. However, due to this process the VNA can

reference how much loss is in the system via the measured offset and apply that

offset to future measurements, calibrating out systematic errors. The same logic

applies for the termination standards of ‘open’ and ‘load’, a separate offset is mea-

sured for each standard and applied to any further measurement the VNA records

after calibration. This normalises out the systematic response of the equipment

used in experiments and is polarisation independent. This normalisation is valid

up to and including the ends of the cable to which the calibration standards were

attached.

A broad band dual polarisation horn antenna is employed in experiments with

a dynamic range of 8 and 40 GHz [74] to achieve planar excitation along a metallic

edge, as is discussed in section 3.3. It is attached to a coaxial cable via a 2.4 mm

connector and is composed of a square waveguide horn antenna and waveguide

coaxial adaptors built as a single unit [75]. This broad band horn antenna is pre-

ferred over other standard gain horn antennas as electromagnetic modes of interest

to this thesis are often measured over frequency ranges larger than the dynamic

range available to a standard gain horn antenna. The historical significance of

corrugated horn antennas can be found in Section 2.2.3.1.

3.2.3.1 S-Parameters

A VNA represents transmission and reflection measurements between two ports

as S-parameters, a measure of the ratio between the amplitude of transmitted and

detected signals noted by the constants ‘a’ and ‘b’, respectively.

The VNA used in this thesis is a two port continuous wave (CW) device which

measures reflection at each port and transmission between ports. Due to the CW

nature of the device, transmission and reflection can be measured simultaneously

as long as the port emitting the signal is the same for both measurements. The

notation SXY denotes the type of measurement taking place. In this case X and Y

can be integers 1 or 2 (the port number) where X indicates which port the signal

is travelling to and Y indicates which port the signal is travelling from. Reflection
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measurements are defined thus:

S11 =
Detected (Port 1)

Transmitted (Port 1)
=
b1
a1
, a2 = 0 (3.3)

S22 =
Detected (Port 2)

Transmitted (Port 2)
=
b2
a2
, a1 = 0 (3.4)

Transmission measurements are defined thus:

S21 =
Detected (Port 2)

Transmitted (Port 1)
=
b2
a1
, a2 = 0 (3.5)

S12 =
Detected (Port 1)

Transmitted (Port 2)
=
b1
a2
, a1 = 0 (3.6)

 

Port 1 Port 2 

a1 b2 

S11 

S21 

b1 

Z0 

Load 

a2 

∴ a2=0 DUT 

b
1
 a

2
 

S
22

 

S
12

 

Z
0
 

Load 

a
1
 

DUT 

b2 
∴ a1=0 

Figure 3.2: Schematic of direction of propagation between ports 1 and 2, adapted
from ‘Agilent Network analyzer basics’ [72]. Constants ‘a’ and ‘b’ represent the
magnitude of the transmitted and detected signal. The device under test (DUT) is
shown as part of the electrical path between port 1 and port 2 while the direction
of propagation is shown by the arrows in the schematic for measurements of S11,
S21, S12 and S22.

Figure 3.2 details the measurement of S21, S11, S22 and S12. Note for S21,

signal transmitted from port 1 and detected on port 2 results in a1 ⇒ b2. Further,

the receiving port (in this case 2) terminates the transmission signal a2 with an

absorber with impedance matched to free space (377 Ω). Signal transmitted from
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port 2 and detected on port 1 undergoes the inverse of the operation previously

explained.

First consider measurements of S21 and S11 and define a forward measurement

as a wave travelling from port 1 to port 2. Port 1 acts as a source of radiation so

that a1 6= 0. The transmitted wave is represented by the coefficient b2 and port

2 is terminated so that there is no reflection from the port back to port 1. This

termination is known as a ‘load’ or a ‘match’ and can be considered to be a perfect

absorber so that a2 = 0. The only reflection present in the system is from port 1,

hence a measurement of S11 can be made. For the reverse measurements of S12

and S22, a1 = 0 and port 1 is stimulated by port 2.

Phase with respect to frequency is plotted as an S21 plot and labelled with the

nonmenclature describing the type of parameter measured (S -parameter). The

numbering system denotes which port acted as a detector (first number) and which

acted as a source (second number). In this case the radiation travelled from port

1 to port 2, hence the label ‘S21’.

3.2.4 VNA Architecture

The VectorStar MS4640A is described as a heterodyne N-port network analyser

where N denotes the number of ports in operation. The concept of heterodyning

will be elaborated upon shortly.

A VNA has four key operational components: a generator to produce and

reference an RF signal, ports which transmit and detect the RF signal, receivers for

referencing the RF signal and a computer with a user interface and remote control

interfaces. Section 3.2.3.1 has already discussed the measurements undertaken at

the ports and the operation of a user interface is outside the scope of this thesis.

However, as the phase measurement capabilities of the VectorStar MS4640A have

been an intrinsic part of investigations detailed within this thesis a discussion now

follows briefly detailing the operation of both the generator and receivers in the

VNA.

3.2.4.1 Generator

Microwave radiation is generated within the VectorStar MS4640A using a yttrium-

iron-garnet oscillator and varactor-tuned voltage oscillator or a oven controlled

crystal oscillator (OCXO) for low and high frequency components present in the

VNA spectrum (respectively). These voltage controlled oscillator (VCO) sources

produce the sinusoidal stimulus that is the RF signal. To ensure the required

frequency stability this oscillator is embedded in a phase locked loop (PLL). A PLL

is composed of combining a VCO with a phase comparator so that the oscillator
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maintains a constant phase angle relative to a reference signal [76, 77, 78].

In this way it is possible to maintain the generated wave (for example a1 from

Figure 3.2) within an error correction of 0 dBm ± 0.3 dBm. By using a power

splitter on a signal from the generator with an amplitude 2a1 a reference mea-

surement is made. The signal is split symmetrically so that half travels to a test

port for outgoing S-parameter measurements while the other half is directed to a

reference receiver so that the phase of a1 on transmission is known.

3.2.4.2 Receivers

Mixing an input frequency (FRF ) with a known and internally generated frequency

associated with a local oscillator (FLO) to produce two other frequencies is a process

called heterodyning and was first introduced by Reginald Fessenden in 1902 [79].

The term is composed of two greek words for ‘different’ and ‘force’. With this

method the phase and amplitude of the input signal is recorded at the receivers

used to reference the transmitted signal and receivers used to reference the detected

signals. Figure 3.3 is adapted from ‘Fundamentals of a Vector Network analyser’

published by Rohde and Schwarz and written by M Hiebel (2008) [73].

Figure 3.3: Block diagram of a heterodyne VNA reciever, adapted from ‘Funda-
mentals of a Vector Network analyser’ [73].

Figure 3.3 is adapted from [73] to show a block diagram of the operations

associated with a receiver used in a VNA to produce phase measurements via the

process of heterodyning. The principle states that when two frequencies A and B

are combined, a product of this mixing is a signal with frequency A minus B and
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A plus B [80]. This is based on the following trigonometric identity:

sin θ sinφ =
1

2
cos(θ − φ)− 1

2
cos(θ + φ) (3.7)

In the case of heterodyne receivers the identity in Equation 3.7 is used twice,

once to convert input signal FRF to some intermediate frequency (FIF ) where FIF

= |FRF − FLO| and again to produce a DC signal for analysis. In both cases the

receiver filters out the higher frequency product of Equation 3.7 (i.e. the right

hand side of the equation with terms θ+φ) and uses the lower frequency product.

This process is known as ‘down conversion’.

Figure 3.4: Schematic representation of FIF produced when mixing FRF and FLO.
Down conversion results in FIF = |FRF − FLO|. The higher frequency component
produced by the mixing is labelled as an unwanted image in this schematic. In
practice, this component is suppressed with a filter.

Figure 3.4 is a schematic representation of the first use of heterodyning, clearly

showing FIF and an unwanted image produced when FRF and FLO are mixed.

Once the analogue FIF is produced, it is sent to an analogue to digital converter.

This digital signal in indicated in Figure 3.3 as χIF .

The second use of heterodyning is now employed. A numerically controlled

oscillator (NCO) generates a sinusoidal frequency (FNCO) equivalent to χIF . FNCO

and χIF are mixed and χIF and χNCO (FNCO phase shifted by 90 deg) are mixed

to produce χRe and χIM thus:

χRe(t) =
1

2
AIFANCO

[
cos(ΦIF ) + cos[4πFNCOt+ ΦIF )

]
(3.8)

χIM(t) =
1

2
AIFANCO

[
sin(ΦIF )− sin[4πχNCOt+ ΦIF )

]
(3.9)
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This process is known as I/Q demodulation and is typical in most digital signal

processing techniques designed to measure phase. A lowpass filter suppresses the

frequency components where F 6= 0 and the low frequency signals denoted in Figure

3.3 as the real χI and imaginary χQ are produced. They are known as the ‘inphase’

and ‘quadrature’ components respectively.

Figure 3.5: Schematic representation of real χI and imaginary χQ products of
digital signal processing in a heterodyne receiver. A is the amplitude of the original
signal a1.

By examining Figure 3.5 the benefit of obtaining χI and χQ is clear. The phase

of the intermediate frequency (ΦIF ) and the amplitude (A) of the incident wave is

obtained. The phase difference obtained by receivers associated with transmission

and detection ports results in a known local phase difference. The local phase dif-

ference between transmission and detection is indicative of the possible dispersive

effects experience by the RF signal along the path travelled such as is present in

a surface wave measurement.

Discussed thus far is the generation of an RF signal from a source, the transit

of an RF signal from the generator to the ports (i.e. the test set), the interaction of

that signal with a sample and a port receiving reflected or transmitted signal. The

measurement and referencing of the signal received has also been detailed. Finally,

the result of these processes are outputted onto a graphical interface. Graphs of

amplitude and phase of electric field as a function of frequency can be displayed

on the screen. Other products from the post-processing of these two fundamental

measurements are also available to the user such as power, impedance and group

delay [73].

3.3 Experimental Techniques

Experimental determination of dispersive behaviour associated with a surface wave

supported by a metamaterial surface is detailed within this section. Further, the
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spatial mapping of the electric field amplitude associated with the supported mode

is discussed and employed as a tool for comparison of different methods used to

excite the surface wave. The methods by which surface waves are excited and

detected are discussed.

3.3.1 Experimental Setup

All measurements of the amplitude and phase of surface waves detailed in this

thesis are conducted with a vertically oriented coaxial wire. This coaxial wire has

an exposed inner core of wire stripped of both the surrounding dielectric layer and

the outer sheath. This device is further referred to as a ‘probe’. When the length

of exposed inner core of wire corresponds to the λ
4

condition, the wire supports a

resonant mode and may interfere with the measurement of the surface wave. The

probe used in all measurements has been engineered so that the probe is resonant

at the λ
4

condition above the limiting frequency of the surface wave. Therefore

perturbation of the surface wave via measurement by the probe is negligible. Per-

turbation of the surface wave due to the scattering cross section of the probe is

discussed in due course.

Figure 3.6: Photographs of detecting probe positioned above 1D array of grooves.
Two samples of widths (a) L = 5 mm and (b) L = 100 mm are shown. (a)
The method of obtaining experimentally determined dispersion measurements as
detailed in Section 3.3.2 is shown. A detecting probe is maintained at a static
position above the mid-point of L while the local electric field associated with the
supported surface wave is measured as a function of frequency. (b) The method
of detecting spatially varying fields associated with the supported surface wave. A
probe varies in position in the xy-plane but remains static in z, measuring the fields
associated with the supported surface wave at single frequencies as a function of
distance. In both cases a broadband horn antenna is used to excite the surface
wave via edge-coupling.

A VectorStar MS4640A VNA is used to measure S21 transmission between a

transmitting broad band horn antenna and a detecting coaxial wire probe.
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Figure 3.6 (a) and (b) are photographs of the position of the probe used for (a)

experimentally determined dispersion of a surface wave and (b) direct measure-

ment of the local electric field amplitude and phase associated with the supported

surface wave at different spatial positions to achieve field mapping. The probe

with exposed wire length l is oriented vertically directly above the supporting sur-

face in both cases. To achieve mapping of electric fields with respect to spatial

position, the detecting probe is simply scanned across the surface via a computer-

controlled XYZ-stage in the xy-plane, remaining static in z. To ensure the probe is

stationary during each measurement a lag time of 0.5 seconds is enforced between

movements during the mapping process. In Figure 3.6 this surface is an array of

1-D corrugations of width L = 5 mm (a) and L = 100 mm (b).

Figure 3.6 (b) shows a transmitting microwave broad band horn antenna used

to excite the surface wave via ‘edge-coupling’. The horn is orientated such that

it lies in the xz-plane and directs TM polarised microwave radiation at the edge

of the corrugated sample and is pitched at an angle of approximately 45 deg

with respect to the xy-plane. This minimises crosstalk between the horn and

detector while irradiating the edge of the sample with TM polarised radiation of

approximately uniform intensity. As a result diffraction occurs along the edge

and evanescent field components of electric field with in-plane wavevector kx > k0

(wavevector associated with free space) become available, exciting a surface wave.

The broad band horn is placed a distance of 75 mm away from the edge of the

sample and irradiates the edge of the sample approximately uniformly, exciting

a surface wave mode. This coupling method was successful and regardless of

the width of the sample edge a surface wave was excited. Therefore no further

investigations as to coupling strength were conducted with respect to the strength

of the mode excited as the method proved more than adequate. Comparisons

between excitation methods are made shortly in Section 3.7.

Figure 3.7 shows a schematic of this setup. The orientation of the electric field

emitted from the horn as well as both the pitch and yaw of the broad band horn

antenna is indicated. The possible frequency response of the cables are calibrated

out of the measurement (as detailed in Section 3.2.3) so that amplitude and phase

can be measured over a range of frequencies with the lowest possible level of

systematic noise.

3.3.2 Dispersion Measurement

3.3.2.1 Phase as a Function of Frequency

A VNA measures phase as a function of frequency via the aforementioned processes

of heterodyning and frequency mixing, previously detailed in Section 3.2.4. Due to
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the calibration process outlined in Section 3.2.3, the frequency and phase response

of the electrical length included in the calibration is known. However, the total

electrical length of the system extends further than the point at which calibration

occurred (at the end of the coaxial wires). Therefore systematic errors in the

measurement process external to the VNA which effect the determination of the

dispersion associated with a surface wave are not removed from the measurement

via a SOLT calibration.

Figure 3.7 is a schematic of the method used to calibrate the dispersion mea-

surement, in addition to a SOLT calibration already completed. The points at

which the calibration standards were attached are noted on Figure 3.7 via the

grey dotted lines. These define the calibration planes of the system via SOLT

calibration.

Edge-coupling is used to excite a surface wave on an array of corrugations in

the form of a metallic one dimensional array of grooves and a free space wave on

an untextured metallic slab propagating from the edge of the slab to the detecting

probe. These two systems are shown schematically by Figure 3.7 (a) and (b),

respectively. The probe is maintained in a static position of 775 mm in the x-

direction away from the edge associated with diffraction from the beam transmitted

by the horn antenna. The probe is maintained at z = 0.25 mm above the samples

in the air region as observed in Figure 3.7. By comparison of the phase response of

these two systems, the effect of edge coupling and the measurement of the surface

wave mode is negated. The system is calibrated over the full electrical length of the

RF signal measured. This calibration is subject to the orientation of both the broad

band horn antenna and the probe used to measure the surface wave remaining

unchanged when used to edge-couple to either the array of corrugations or the

untextured metal slab. The surface wave calibration and dispersion measurement

is now detailed.

Figure 3.8 displays an example of the phase of a surface wave on a metasurface

measured as a function of frequency via the method shown in Figure 3.7 (a).

As the phase oscillates between ±π the gradient of the phase is negative due to

the time dependent term of the electric field being described as eiωt as opposed

to e−iωt. The difference is a simple sign convention and has no bearing on the

measurement of phase which, as expected, oscillates between ±π more frequently

at higher frequencies.

Now consider Figure 3.9 where an example of the phase as a function of fre-

quency detected by the probe from the static position over (a) a metal slab and (b)

a surface wave is compared. The phase associated with the surface wave oscillates

between ±π more frequently at a higher frequency than the phase of the free space

wave over the same frequency range. This is because the wavevector measured in
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Figure 3.7: Schematic of (a) surface wave (b) free space wave (coloured arrows)
reference measurement. (a) shows the excitation of a surface wave which is sup-
ported by an array of metallic corrugations via edge-coupling. (b) the excitation
of an unconfined free space wave propagating along a planar, untextured metallic
slab (synonymous with a grazing photon) via edge-coupling. Both surface wave
and free space wave are detected by a static probe at 775 mm away from the
diffracting edge maintained at a height of 0.25 mm above z = 0 in the air region
at the mid point of L. The grey dashed lines indicate the points at which the
calibration standards were attached during a SOLT calibration.

Figure 3.9 (b) is no longer associated with a free space wave and is indicative of the

wavelength of the surface wave bound to the supporting interface. As a result, the

wavelength of the surface wave will decrease in comparison with the wavelength

of the free space wave.
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Figure 3.8: Measured phase associated with a surface wave plotted as a function
of frequency. The surface wave is supported by a L = 10 mm array of open-sided
metallic corrugations, described as a domino array in Chapter 4. The measurement
is taken by a probe maintained at a static position 0.25 mm above the mid-width
of the array.

Figure 3.9: Measured phase plotted as a function of frequency associated with (a)
an unconfined free space wave propagating along a planar metallic sheet and (b) a
surface wave supported by a L = 10 mm array of open-sided metallic corrugations,
described as a domino array in Chapter 4. The frequency range of 15.5 to 16.0 GHz
is near the limiting frequency (18.7 GHz) of the surface wave supported by these
corrugations. Both free space wave and surface wave are excited via edge-coupling
and detected by a static probe at 775 mm away from the diffracting edge. The
probe is maintained at a height of 0.25 mm above z = 0.
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3.3.2.2 Modal Index

The relationship between the wavevector ‘k’ and phase Φ is

∆Φ = ∆kP (3.10)

where ∆Φ is the phase of the wave over some distance P and k is the wavevector

associated with the wave. For the dispersion measurements detailed in Chapter

4, P = 775 mm and ∆Φ ⇒ ΣΦ where ΣΦ is the total phase of the surface wave

cumulatively added over a frequency range. A full discussion of the cumulative

addition of phase will follow in due course.

Figure 3.10 has been included to illustrate Equation 3.10. It is a measurement

of phase associated with a surface wave supported by a metamaterial surface (as

detail in Chapter 6) at a fixed frequency of 15 GHz as a function of distance from

the source, which is at x = -200 mm. By inspection of Figure 3.10 it is clear that

when P = λ, ∆Φ = 2π since k = 2π
λ

.

Figure 3.10: Phase of a surface wave supported by a metamaterial surface at a fixed
frequency of 15 GHz as a function of distance from the source where ∆Φ is some
difference in phase and λ is surface wave wavelength. The source is positioned at
x = -200 mm with a probe used to detect the surface wave scanned in the positive
x-direction.

Figure 3.10 demonstrates the measurement of the wavelength of a mode. Con-

sequently, by measuring and comparing the wavelength of a free space wave (λ0)

with that of the surface wave wavelength (λSW) the modal index (n) can be mea-

sured. Modal index is described thus:

n =
λ0
λSW

(3.11)

This measurement is later used in Chapter 5
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3.3.3 Unwrapped Phase and Dispersion Measurement

A measurement of phase as a function of frequency can be used to determine the

dispersive behaviour of a surface wave. First, the mode is measured over a given

frequency range by a probe set at a static position in proximity to the supporting

interface. The phase measurement is then ‘unwrapped’ in post processing. The

‘unwrap’ function cumulatively sums the phase as a function of frequency over the

period of 2π so that it no longer oscillates between ± π. The unwrap function is

applied to the phase measured over the full frequency range and is further referred

to as ΣΦ. Examples of raw phase and the unwrap function will now be shown.

Figure 3.11: (a) Experimentally obtained phase associated with a surface wave
plotted as a function of frequency. The surface wave is supported by a L = 10
mm array of metallic corrugations. (b) Phase of the surface wave multiplied by -1
resulting in a positive gradient of phase (between −π to π).

Figure 3.11 displays phase as a function of frequency over a smaller frequency

range than has previously been displayed in Figure 3.8. Note the negative gradient

of the phase in Figure 3.11 (a). As has previously stated, this is due to the time

dependent term of the electric field being defined as eiωt. For the purposes of

measuring dispersion, the phase is multiplied by -1 so that the change of gradient

of the phase when unwrapped will be positive. This change of gradient is shown

in Figure 3.11 (b).

Figure 3.12 is an example of the phase unwrap function. To measure the

dispersion of the mode the phase associated with the surface wave is unwrapped
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Figure 3.12: An example of a phase unwrap as a function of frequency. The
overlaid black line illustrates the positive gradient of phase. Phase is cumulatively
added over every period of 2π. The total phase unwrapped is noted as ΣΦ.

and compared to the measured unwrapped phase of a free space wave propagating

over a metal slab. These two systems have been shown in Figure 3.7 as schematics

(a) and (b).

The phase of the wave measured with the setup shown in Figure 3.7 (b) will

result in a line of constant gradient as a function of frequency, as shown in Figure

3.13 (a) (black line). Conversely, ΣΦ of the phase associated with the surface

wave measured in setup shown in Figure 3.7 (a) will have a change of gradient as

a function of frequency due to the dispersive nature of the surface wave, Figure

3.13 (a) (red line).

ΣΦMetal associated with the free space wave is subtracted from ΣΦSurface Wave

associated with the surface wave. These two measurements are shown schemati-

cally in Figure 3.7 (a) and (b). The difference between the two unwrapped phases

ΣΦDiff is expressed thus

ΣΦDiff = ΣΦSurface Wave − ΣΦMetal (3.12)

Note that the measurement of phase of both the free space wave and the sur-

face wave includes the whole electrical length of the system, past the calibration

planes of the SOLT calibration as is noted by the grey dashed lines in Figure

3.7. Therefore any phase effects directly related to initial excitation and detection
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Figure 3.13: Post-processing of the phase associated with a surface wave and a free
space wave to measuring the dispersion of the surface wave. Phase is measured by
a probe in a static position over a range of frequencies. (a) Unwrapped phase ΣΦ
associated with the supported surface wave (red solid line) and a free space wave
propagating over an untextured metal slab (black solid line) is shown in comparison
to the difference between the two unwrapped functions, ΣΦDiff.(b) Converting
phase ΣΦDiff to kx. Compared is ΣΦDiff with the addition of the unwrapped
phase associated with a free space photon (grey solid line). The propagation
distance P of the surface wave and free space wave has been taken into account.
Also compared is the light line (black solid line). (c) Displayed is the same solid
grey line compared to analytical modelling of an infinite one dimensional array of
grooves (solid black line). Final dispersion for a one dimensional array of grooves
with L = 10 mm, ±2mπ

P
(solid red line). Inset (c) shows the addition of 2mπ

P
(where

m is an integer value) to match initial unwrap position in kx with that predicted by
the analytical modelling technique. (d) Raw phase of the supported surface wave
at higher frequencies. Lack of amplitude data as the surface wave approaches its
limiting frequency results in a cessation of phase oscillation between ±π and the
mode is no longer measured.

methods of both the surface wave and the free space wave have been negated by

the measurement of ΣΦDiff. This subtraction can be thought of as calibrating the

surface wave dispersion measurement. ΣΦDiff is shown in Figure 3.13 (a) (grey

line).

This difference, ΣΦDiff, is related to ∆Φ as expressed in equation 3.10 and
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is a measurement of the unwrapped phase of the surface wave, total ∆Φ of the

surface wave propagating a distance P = 775 mm. Therefore equation 3.10 can

now be applied to relate ΣΦDiff to the in-plane wavevector of the surface wave as

seen in Figure 3.13 (b)(red line). The y-axis of Figure 3.13 (a) is transformed to

measure kx thus and transformed into the x-axis in Figure 3.13 (b), displaying kx

as a function of frequency.

The measurement of ΣΦDiff as detailed in equation 3.12 removed the contribu-

tion of cumulative phase associated with a free space photon travelling distance P .

Therefore, the free space component of momentum (k0) is re-added. This is plot-

ted in Figure 3.13 (b) as the grey line to the right hand side of the light line (black

line of constant gradient). Figure 3.13 (c) shows this once again as a grey line and

compares it to the full expression for the in-plane component of the wavevector:

kx =
ΣΦDiff

P
+ k0 ±

2mπ

P
(3.13)

where 2mπ
P

is a factor used to match the initial value of kx associated with the

derived dispersion (where m is an integer value) to the value of kx analytically

derived at that point in frequency. This is done because the exact location of the

starting point of the unwrapped phase in kx is unknown. Therefore comparison is

made to the analytical model.

The analytical model detailed in Section 3.5 will reliably predict the dispersion

of a surface wave supported on a 1D array of corrugations of infinite extent at all

frequencies, unlike the numerical modelling which requires an HFSS model with a

very high meshing volume, something which can be quite computationally expen-

sive and will be discussed shortly. The experimental dispersion as determined by

Equation 3.13 is subject to experimental error as apparatus is swapped to achieve

a measurement of ΣΦMetal and ΣΦSurface Wave. The array of metallic corrugations is

swapped with a metallic slab which then has to be raised so that the top xy-plane

of the slab is at z = 0. This results in very small changes to propagation distance

P and error in the value of the phase initially measured at 8 GHz of within 2π

radians. This is associated with ± one wavelength. Therefore, an approximation

of where the initial value of experimentally determined kx is made with possible

shifts in kx of 2mπ
P

(where m is an integer value).

The shift does not effect the rate of change of dispersion associated with the

surface wave as the measured dispersion diverges from the light line. Also, it

does not effect the position in frequency to which the surface wave dispersion is

asymptotic. Therefore, this shift has been used to partially approximate the initial

position of kx at lower frequencies. The shift is detailed in the inset of Figure 3.13

(c) by the black arrows.
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When the amplitude of the surface wave falls below the noise floor of the VNA

the phase no longer oscillates in a clear period of ±π, as noted by Figure 3.13

(d). At this point the surface wave dispersion can no longer be determined and

the data is not included in final measurements representing the dispersion of the

supported mode, noted by the red arrow on 3.13 (c).

3.3.3.1 Other Methods of Determining the Dispersion of a Surface

Wave via Phase Measurements

Dispersion measurement via the method previously detailed is valid for approxima-

tions of the first order mode of the structure. This technique pioneers dispersion

measurements of microwave surface waves using a VNA. Having understood the

original work that took place by this author, it was then realised by other mem-

bers of the Electromagnetic and Acoustics Materials Group at the University of

Exeter that a different reference measurement could be used to obtain the disper-

sive properties of not only the fundamental mode of the surface wave but of higher

order surface wave modes as well.

Instead of comparing two measurements of phase detected at the same position

P over two different samples, as shown in Figure 3.7, two measurements of phase

associated with a surface wave detected at two positions P1 and P2 were compared

[67, 81]. The distance between P1 and P2 is at least five operating wavelengths in

separation distance. In this case kx is expressed as

kx =
2π

P2 − P1

(
ΣΦ2 − ΣΦ1

2π
+m

)
(3.14)

where m is an unknown integer due to the VNA measurement of phase in mod-

ulo 2π. m is calculated by comparing the experimentally determined dispersion of

a surface wave to the light line at frequencies far from any resonance supported by

the surface. The integer value which yields the closest comparison of the disper-

sion to the gradient of the light line in this frequency range is used throughout to

calculate higher order modes which are not comparable to the light line. In this

way any phase contributions from excitation and detection techniques are negated.

The method detailed in [67, 81] requires that the mode measured at the lowest

frequency value of interest is closely matched to the light line. In the same way

as the method detailed in this thesis, the position of kx associated with the lowest

frequency is gained via numerical or analytical modelling techniques. For the

system of interest in Chapter 4 it is clear that the value of kx at 8 GHz is slightly

diverged from the light line, seen in inset of Figure 3.13 (c) therefore matching

the mode to the light line would, for this system, be incorrect. However, once the

value of m is known the dispersion (as dictated by equation 3.14) of higher order
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modes can be examined with this method.

A third technique has been developed by Mr J. Dockrey [82] to directly deter-

mine the dispersion of the surface wave. As the method is unpublished it will be

briefly outlined but not extensively detailed in this thesis. In contrast to the dis-

persion measurement previously described in Section 3.3.2, this method requires

multiple position measurements of local phase as a function of distance from the

source over a range of frequencies, an example of which is shown in Figure 3.10.

The phase is unwrapped as a function of position and kx is determined by analysing

the gradient of the line. This is repeated for each frequency and is used in Chapter

6.

3.3.4 Termination of a Surface Wave

Thus far the experimental setup and measurement of a surface wave supported

on resonant structures such as a one dimensional array of corrugated grooves has

been discussed. The termination of such a surface wave mode is now considered.

Figure 3.14 is a schematic of an experimental setup where a surface wave is

excited and measured. In both Figure 3.14 (a) and (b) the surface wave is sup-

ported by a one dimensional array of metallic, closed sided cavities and excited via

a broadband horn antenna. In contrast to one another, the one dimensional array

is terminated in free space (a), a geometrically graded absorber (b) and a metal

sheet (c).

The absorber is composed of carbon loaded foam, uniformly loaded throughout

the structure. As the absorber is cut into a wedge shape, the electromagnetic

fields of the surface wave supported by the array of closed sided cavities gradually

increases interaction with the cross section of the foam. This reduces any reflections

the supported surface wave may undergo as the termination is gradual and lossy.

This kind of absorber is known as geometrically graded due to the nature of the

shape of the absorber, without a change of index of carbon loaded into the foam.

Figure 3.15 displays a comparison between the electric field amplitude of a

surface wave supported on a 1D array of close sided grooves of width L = 15 mm

when the terminating boundary condition at the end of the structure is modified

to the three terminations shown in Figure 3.14. These include free space (solid

red line), metal (solid grey line) and a geometrically graded absorber (solid black

line). The period of the oscillations seen in Figure 3.15 is indicative of the surface

wave wavelength. The amplitude of the oscillations in the measured field when the

surface wave is terminated in an absorber is less than the amplitude of oscillations

when the surface wave is terminated by a metallic boundary. The tapering of

the geometrically graded absorber was optimised so that a minimum strength of
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Figure 3.14: Schematic of a surface wave experiment. The surface wave is sup-
ported by a one dimensional array of metallic, closed sided cavities and excited via
a broadband horn antenna. This structure is further detailed in Chapter 5. The
one dimensional array is terminated in (a) free space, (b) geometrically graded ab-
sorber foam and (c) a metal screen. The surface wave is excited via edge-coupling
and measured by a static probe at 775 mm away from the diffracting edge. The
probe is maintained at a height of 0.25 mm above z = 0.

oscillation in the measured surface wave field was achieved, the result of which is

displayed in Figure 3.15. As such, this absorber was used throughout all surface

wave investigations detailed.

The measured system is one where a convolution of a supported surface wave

is measured as there will always be some reflection of the mode from a terminating

boundary condition. If this were not the case the experimental results shown in

Figure 3.15 would not show any oscillation in the measured field of the surface wave
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Figure 3.15: Experimental results comparing the amplitude of electric field asso-
ciated with a surface wave supported on a close sided array of grooves of width L
= 15 mm when the terminating boundary condition at the end of the structure is
modified. These terminations include free space (red line), metal (solid grey line)
and a geometrically graded absorber. The surface wave field is measured by an
antenna which is scanned in along the x-direction, remaining stationary in y and
z. Frequency of measurement is 11 GHz.

when the mode was terminated in absorber. Therefore the system can be described

as multi-modal, with both a forward and backward surface wave mode. Initial

experiments measuring the strength of the reflection of a terminating boundary

were conducted in the effort to minimise surface wave reflection and investigate

the possibility of a perfect microwave surface wave absorber.

These experiments included Fourier analysis of the amplitude of the supported

surface wave was conducted to investigate if the strength of reflection of the surface

wave could be monitored and therefore tuned. In this case, the surface wave was

terminated by a metallic boundary so that a maximum reflection was analysed.

However, these initial investigations failed to show any reflections at length scales

that were realistic given the measurement system shown in Figure 3.14. This could

have been due to the total electrical length of the system not being calibrated via

the position scanning method of field detection.

The calibration planes of the system are noted by the dashed grey lines in

Figure 3.7 and do not include the broadband antenna or the probe used to measure

surface wave fields. This, as well as other as yet unknown effects of measuring a

convolution of the surface wave and therefore a multi-modal system, was deemed

the reason for the failure of the Fourier analysis. Initial investigations into surface

wave absorption were discontinued in favour of continuing investigations into the

lateral confinement of microwave surface waves. Indeed, the analysis of surface

wave reflections is far from trivial and is the main topic investigated in ‘Oblique

Angle Scattering of Surface Waves from Surface Wave Absorbing Materials’ by Mr
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S. Berry [83] which followed this work.

3.4 Numerical Modelling

In this thesis a 3D electromagnetic simulator called HFSS (High Frequency Struc-

ture Simulator) made by Ansoft [84] is employed to compare to experimental data.

HFSS is a type of Electronic Design Automation (EDA) software which, in general,

provides the user with an environment for design of 3D structures and simulation

of their electromagnetic behaviour over a range of frequencies [85]. Structures ex-

perimentally investigated in this thesis can be drawn directly into an HFSS 3D

modeller window and assigned their constituent material properties. ‘Ports’ which

simulate a source of excitation of the electromagnetic modes supported by the

structure can be defined in a model enabling the accurate reproduction of exper-

imental conditions. Additionally, HFSS can be set by the user to solve for all

eigenmodes supported by a given structure.

3.4.1 Finite Element Method Modelling with HFSS

HFSS uses the finite element method (FEM) to simulate electromagnetic interac-

tion associated with structures of a variety of geometries and constituent materials.

The FEM method segments the volume of a model into smaller tetrahedra known

as finite elements, small four-sided pyramids [86]. A collection of such elements is

known as a finite element mesh. The resolution of the electrical (E) and magnetic

(H) field solutions is dependent on the grade of mesh; how many segments make

up a given volume of model.

Figure 3.16: Single tetrahedron used in HFSS. Noted are points where electric and
magnetic field solutions are calculated or extrapolated [87].

Figure 3.16 displays a single tetrahedron and details the regions where fields are

stored or interpolated [87]. At the vertex of each tetrahedron the components of
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electric field which are tangential to the three planar faces connected to the vertex

are calculated and stored by the HFSS software. The components of the fields at

the midpoint of the selected edges that are tangential to a face and normal to the

edge are also calculated and stored. The field values in the centre of tetrahedron

are interpolated from those stored from the vertex and midpoints. The electric

fields are calculated for each element based on the type of excitation applied to the

structure. A finite element matrix is formed from the field values associated with

each tetrahedron in the mesh. Field values over the whole structure are measured

by applying the wave equation below to the matrix:

∇∧
(

1

µr
∇∧ E

)
− k20εrE = 0 (3.15)

where E is electric field obtained from solving the finite element matrix, relative

permeability µr = µ
µ0

, relative permittivity εr = ε
ε0

, k20 = ω2ε0µ0 = ω2

c2
, wavevector

of an electromagnetic wave propagating through free space k0. The magnetic field

H is calculated by

H =
1

ωµ
∇∧ E (3.16)

Boundary conditions which may apply to the fields in the structure and port

excitations used in the model are included in the finite element matrix.

3.4.2 Adaptive Iterative Solution Process

The final HFSS field solutions are not formed simply from the mesh which the

model volume is initially segmented into. Instead, the whole process is repeated

and the mesh is refined. The number of repetitions depends on an error calculation.

This is known as an adaptive iterative solution process and will now be elaborated

upon.

Initially, the model is split into a geometrically conformal mesh. Using the

conformal mesh, initial electric (Einitial) and magnetic field (Hinitial) components

are calculated from the finite element matrix which is composed of tangential,

normal and interpolated field values associated with the tetrahedra from which

the mesh is composed. This process is completed at a predetermined frequency

with Equations 3.15 and 3.16 and is known as ‘solving’. Regions where the field

solution has a high degree of error are quantified by inserting Einitial and Hinitial

into Equations 3.15 and 3.16

∇∧
(

1

µr
∇∧ Einitial

)
− k20εrEinitial = product (3.17)

thus obtaining a ‘product’. The ‘product’ of each element of mesh is evaluated
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and compared with all other values of ‘product’ in the model. A percentage of

tetrahedra with a large product value are selected and made smaller (refined). The

software solves again using the refined mesh and repeats the same error analysis on

the new values of E and H. This process of solve, analyse, refine is repeated until

the solutions have converged (the product value is below a set threshold for all the

tetrahedra in the model) or a predetermined limit on the number of passes have

been reached. Only then are other frequencies swept to find the electromagnetic

response of the structure over a predetermined range.

Figure 3.17: (a) A photograph of a 1D array of metallic corrugations protruding
from a metallic ground plane with width L = 5 mm. This structure supports a
surface wave. (b) A typical FEM model is displayed of a unit cell of a 1D array
of metallic corrugations protruding from a metallic ground plane with a width of
L = 10 mm. This is an example of a unit cell used to model the resonant mode of
the structure in (a). (c) The same unit cell as seen in (a) however in this case the
adaptive mesh of the model is overlaid. The inner cuboid has a high resolution of
mesh of 202 tetrahedra per mm3.

Figure 3.17 shows an example model used in Chapter 4. Notice that the region

close to the structure of interest, the grooves, has a more refined mesh than in com-

parison to the surrounding region as is displayed in Figure 3.17 (c). This is due to

the parameters set by the user in the adaptive iterative solution process. Specifi-

cally, the mesh is repeatedly refined to achieve a user defined convergence value.

This can also be achieved by defining the maximum edge length of tetrahedra used

when initially segmenting the model volume.

3.4.3 Using HFSS

In general, the method of creating and analysing any HFSS model is broken down

into six steps. First, the user must draw the structure of interest in a 3D modeller

window, assign it constituent material parameters and choose which solution type

is most correct to use given the nature of the investigation. Second, a definition of

the boundary conditions imposed on the structure is required. The software will

use them to determine if the structure is a stand alone object or a periodically
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repeating array as well as define how the structure is terminated. Third, assign

an excitation or port to the model to excite the electromagnetic modes of interest.

Fourth, make a solution setup where in the initial frequency of the model, the

convergence criteria and range of frequencies of interest are defined. Fifth, analyse

the model and finally sixth: post-process the results of analysis. Now that the

reader understands the overall process, a more in depth description of relevant

steps ensues.

3.4.3.1 Types of Solution

There are three types of solution which the software uses to obtain S-parameters;

Driven Terminal, Driven Modal and Eigenmode. As the S-matrix obtained from

a driven terminal solution is expressed in terms of voltages and currents it is not

used in this thesis.

However, the S-matrix obtained from a driven modal solution is expressed in

terms of incident and reflected waveguide modes for systems where two ports have

been defined within the model as areas of excitation and detection. This is similar

to the previously defined S-parameters discussed in Section 3.2.3.1. When investi-

gations in this thesis have required the simulation of an excitation source a driven

modal solution has been employed. With this type of solution the electromagnetic

modes supported by the structure can be investigated over a range of frequencies,

known as a ‘frequency sweep’ via reflection and transmission between the waveg-

uide modes. The modes are defined by the boundary conditions associated with

the 2D sheet the excitation source is defined upon (waveport) and is later discussed

in 3.4.3.5.

An Eigenmode solution can deduce all possible electromagnetic modes sup-

ported by a given structure and can be used to investigate resonant photonic sys-

tems [88, 89] and modes supported by metamaterials [68, 90, 91, 92, 93, 94, 95, 96]

(previously described in Section 2.2.4). The software provides the frequency at

which the mode is supported as well as the the electromagnetic fields associated

with each mode. It should be noted that an Eigenmode model does not require

step three as the solution finds all possible modes excited by the system, regardless

of excitation source therefore no excitation or port where electromagnetic radiation

would enter or exit the system is required.

It should also be noted that the prediction of an Eignemode associated with

a surface may not be accurate if the model has not been solved to a high enough

accuracy. This is evident by inspection of the electric and magnetic fields at low

values of in-plane wavevector produced in post-processing of Eigenmode models

completed by this author. These modes are actually modes associated with the

whole volume of the model, as they change frequency position as the geometry of
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the model is changed. Eigenmodes of the electromagnetic fields associated with

the surface wave at frequencies far from the limiting frequency of the supported

mode can be obtained by ensuring the mesh of a model is extremely dense (as

in the inset of Figure 3.17), however, this is extremely computationally expensive

and still may only lead to discovery of modes associated with the whole volume

of the model. Comparison between this numerical technique and other techniques

such as analytical and effective medium modelling is useful in overcoming this

discrepancy at low kx values when experimentally determined values of kx are not

attainable.

3.4.3.2 Periodic Boundary Conditions

Electromagnetic solutions of infinitely large two or three dimensional arrays are

achieved in HFSS by defining periodic boundary conditions. These are defined

around the unit cell of the array in co-ordinate planes whose parallel planar faces

are orthogonal to one another. For example this could be two faces of the outside

of a model in the xz-plane, separated by some distance y. Note that these faces

cannot intersect the model unit cell as infinitely repeating boundary conditions

require mirror symmetry.

Figure 3.18: Eigenmode model where the boundaries between two yz-planes are
result in a periodic condition in the x direction. This is set by the boundaries
known as ‘master’ (red) and slave (blue) boundaries. The two xz-planes are set as
perfect H-boundaries (green). In this case the structure which supports a resonance
has a unit cell of a 1D array of grooves embedded in a metal sheet. xz-planes are
designed to be over three wavelengths away from the supporting structure.

Figure 3.18 is an example of periodic boundary conditions placed on the yz-

plane. Such boundaries are denoted as ‘master ’ and ‘slave’ and are represented

on Figure 3.18 by the red and blue shaded planes (respectively). The relation-

ship between the phase at one master boundary with respect to the phase of the
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electromagnetic mode at the corresponding slave boundary can be swept as a pa-

rameter. This is true for both driven and eigenmodal solutions but is particularly

useful in the latter because the dispersion of the modes obtained can be directly

determined.

Conversion of an Eigenmode solution into a dispersion plot is achieved by

considering the incrementation of the phase of a resonance between a master-slave

boundary and relating it to kx. The Brillouin zone of a repeating structure is 1
2
2π
λg

[97] where λg is the pitch of the structure. When the momentum of the mode as

expressed by the in-plane wavevector kx ranges from zero to 1
2
2π
λg

, the phase change

between these master-slave boundaries will range from 0 to π radians. Hence

the multiple phase values of the Eigenmode solution can be converted to specific

values of kx. Subsequently, the Eigenmode solutions are detailed as frequency as

a function of phase.

3.4.3.3 Symmetry Boundary Conditions

The subject of this thesis is laterally confined surface waves that are TM in char-

acter (previously discussed in Section 2.3.1) and are supported by structures which

are periodic in the same dimension as the in-plane wavevector x only. Therefore

periodic boundary conditions in the lateral direction are no longer desirable as the

system under measurement is no longer periodic in this direction.

The Eigenmode models used in this thesis set Perfect-H boundaries at least

three wavelengths away from the structure of interest in both exterior xz-planes

of the models. A Perfect-H boundary is a symmetry boundary which forces the

magnetic field tangential to the plane on which the boundary is set to zero. The

position of the H-boundary relative to the structure of interest results in the mag-

netic field component of the mode supported by the structure to be greatly decayed

before impinging on the boundary, and is considered negligible. Further, as the

mode supported on the structure is TM in nature there will be no component of the

magnetic field tangential to boundary. This decreases any possible reflection from

the H-boundary which would interfere with the mode supported by the structure.

For this reason the exterior xz-planes of all Eigenmode model solutions used

in this thesis to simulate a one-dimensional array, such as the ‘domino’ structure

detailed in Chapter 4 and previewed in Figures 3.17 and 3.18 are set as ‘Perfect

H-boundaries’. Conversely, a ‘Perfect E’ boundary (otherwise known as a perfect

electric conductor (PEC)) forces the electric field tangential to the boundary to

be zero.

Other types of boundary conditions that are used to complete the investigations

in this thesis, specifically for the driven modal solutions are ‘radiation’ boundaries

and ‘impedance’ boundaries. The former acts to completely absorb electromag-
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netic field which is incident upon that boundary at a direction which is normal

to the surface of that boundary at all frequencies. If the electromagnetic field is

incident at some angle other than normal the radiation boundaries will no longer

be perfectly absorbing and the model will be subject to some reflection from this

boundary.

3.4.3.4 Sheet Impedance

Impedance boundaries are employed to simulate a high impedance surface that

supports a TM mode as modelled by the effective impedance model. Surface

impedance Zs is defined as the ratio between the tangential components of electric

field ETan and magnetic field HTan where Zs = ETan

HTan
. An impedance (Z) can be

assigned to a sheet in HFSS which is composed of resistive (R) and reactive (χ)

components. To design a surface which mimics free space, the resistive component

of Z is set to 377 Ω and the reactive component set to a value comparable with

zero. Conversely, to simulate a surface which supports a TM mode the resistive

component of the impedance is set to near zero while the reactive component is

derived from the dispersion relation for a TM surface wave in the context of the

effective surface impedance model [68]:

kTM =
ω

c

√
1− Z2

s

η2
(3.18)

where kTM is the in-plane wavevector, ω is frequency, c is the speed of light and η

is the impedance of free space. Equation 3.18 can be rearranged to give

Zs =

√
η2(1− k2TM

c2

ω2
) (3.19)

where the value of kTM is known preferably from experimental determination.

The advantage of simulating a high impedance surface rather than including all

structural elements of the surface is primarily due to the computational constraints

associated with such a fine level of structural detail over large areas. However with

a simulated high impedance surface a larger region of a supported surface wave

can be investigated, a quality which is used later in Chapter 6

3.4.3.5 Excitations

The third step of using HFSS for numerical modelling requires defining an exci-

tation source in the model. This step does not apply to an Eigenmode solution.

In a driven modal solution an excitation source is used to simulate a radiative

source. The electromagnetic response of a modelled structure over a user defined

frequency range is then simulated, determined by the orientation of the electric
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field of the source and the boundaries defined in the model as well as the geometry

of the structure of interest.

Voltage and waveport excitations were used to simulate excitation sources used

in experiments. A voltage excitation results in an enforced electric field pattern

by projecting a static uniform field onto the surface upon which the user set the

voltage line. The direction of the electric field is in the direction of the user

defined voltage line. When a voltage line is set normal to two conducting plates a

source with an electric field normal to those plate is achieve for the full range of

frequencies as defined in the ‘sweep’.

A waveport excitation is embedded on a 2D sheet structure and can achieve the

same electric field profile as that set by the voltage line. The Eigenmode of that

2D structure is deduced by the software and is dependent on the geometry of the

sheet and the nature of the borders to the sheet, resulting in possible quantisation

of the mode. As such the direction of the electric field can be manipulated. The

user selects the Eigenmode of interest to act as the excitation source.

3.4.3.6 Solution Setup

Regardless of solution type, all models in this thesis required a solution setup which

includes the frequencies analysed and the convergence criteria. There are small but

important differences in these setups. The frequency defined in the setup for an

Eigenmode solution dictates the lowest frequency mode analysed by the system.

In a driven modal solution, this frequency is the frequency at which the initial

conformal mesh is solved. Frequency sweeps also need to be defined for a driven

modal solution, as do the number of modes investigated by an Eigenmode solution.

With the aforementioned knowledge all models in this thesis can be replicated.

3.5 Analytical Modelling

The analytical technique employed in this thesis was developed solely by Professor

Hendry and adapted from his previous publication regarding the dispersion of

designer surface plasmon-like modes supported by a periodic array of square holes

in a perfect conductor [93].

Conversely, the software package employed for numerical modelling (HFSS)

struggles to calculate the Eigenmode associating with a structure of interest at

frequencies which are far less than the limiting frequency of a supported wave, at

low values of the in-plane wavevector. Eigenmodes of the electromagnetic fields

associated with the surface wave at frequencies far from the limiting frequency of

the supported mode can be obtained by ensuring the mesh of a model is extremely
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dense (as in the inset of Figure 3.17) however this is extremely computationally

expensive. For this reason it is useful to compare analytically determined dis-

persions with those determined via numerical and experimental methods as the

analytical method is frequency independent, insensitive to the meshing constraints

of numerical data and is not subject to possible experimental error.

A designer surface plasmon-like mode is also known as a ‘spoof’ or ‘pseudo’

surface plasmon and is simply a surface wave supported at microwave frequencies,

as is previously discussed in Section 2.2.5. The mechanism of support of the

surface wave is the interaction of the waveguide modes supported in each square

hole below the limiting frequency of the waveguide. Previous analytical work

conducted by Pendry and co-workers [50] assumed only the fundamental mode of

an infinitely deep square waveguide would be supported in each square hole where

the dimensions of the hole were far less than the wavelength of incident radiation

and therefore did not accurately predict the full dispersion of the surface wave

supported by a real array of finite depth.

A study conducted with numerical modelling (and FEM techniques) concluded

that the dispersion of a surface wave supported by the aforementioned array of

holes cannot be generally derived by assuming only fundamental waveguide modes

are supported in the holes [98]. Indeed, both the hole period and depth are crit-

ical in determining the precise dispersion of the surface mode supported by these

structures. Hendry et al. (2008) [93] proposed an analytical technique for precisely

determining the dispersion of the surface wave supported by a periodic square ar-

ray of square holes for all possible depths and periods. Further noted was the

interaction of evanescent diffracted orders with the supported waveguide modes,

resulting in a more accurate determination of the experimentally determined dis-

persion when compared with previous analytical modes [99].

Professor Hendry modified his analytical technique to precisely determine the

dispersion of the surface wave supported by a infinite periodic array of corrugations

in a metallic slab for any value of depth or period. The technique had previously

been employed to predict the Eigenmodes of the surface waves supported by an

infinite array of square holes in a metallic slab with finite depth [93] and an infinite

array of circular holes in a metallic plate suspended in air [100]. The technique

relies on a modified modal matching approach to relate frequency to in-plane wave

vector of the surface wave supported on an periodic array of corrugations in a

metallic slab. The results of this technique have been published in Brock et al.

(2011) [91] with Professor Hendry and is detailed in Section 4.4.3.

The modified modal matching technique can be decomposed into 4 general

steps. First, the whole system is defined by either two or three regions. If analysis

is performed for a finite depth array of infinite extent the two regions of interest
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are: the volume of free space above the array and the cavity region in the metallic

plate of finite depth. However, if the array of interest is suspended there are now

two regions of free space and a cavity region embedded in the metallic plate for

which the electric and magnetic fields need to be defined, resulting in three regions.

Consider the periodic plane of the array to be in the xy-plane while the depth of the

array is in the z-direction. For a finite depth metallic slab, consider the interface

between the slab and vacuum to occur at z = 0 as is apparent in Figure 2.9.

Second, the time independent in-plane component of the electric field in the

semi-infinite vacuum region above the structure is defined by a Fourier-Floquet

expansion of diffracted orders associated with the structure. The dimensions of

the expansion depend on the periodicity of the structure of being analysed. For

an array of square holes in a metallic slab the expansion is expressed in two di-

mensions while for an array of corrugations in a metallic slab the expansion is

expressed in one dimension. The number of diffracted orders included in the an-

alytical model is specified by the user, an attribute which is not available via the

numerical modelling technique employed in this thesis. Subsequently, Hendry et

al. (2008) [93] commented on the importance of the inclusion of diffracted or-

ders when analytically determining the dispersion of a designer surface plasmon in

comparison other analytical measurements and those determined experimentally.

Third, the electric field inside the cavity is defined by the appropriate waveguide

modes. This includes an expression for the z component of the electric field for z

< 0 (inside the cavity) and z < 0 (in the vacuum region). The magnetic fields are

then subsequently calculated via the following free space Maxwell equations:

∇.E = 0 , ∇∧ E =
−µ0δH

δt
(3.20)

where µ0 denotes the permeability of free space.

Finally, appropriate boundary conditions for the tangential components of the

electromagnetic fields at the vacuum-sample interfaces (z = 0) can then be applied

and Eigenmodes of the structure can be calculated for all frequencies of interest.

Comparison between analytically determined dispersions and experimentally

determined dispersions obtained for surface waves supported on structures which

are periodic in two dimensions is clearly useful. However, as the electric field in the

vacuum region is defined by the Fourier Floquet expansion of the diffracted orders

associated with the structure the analytical model cannot be used to represent

structures which can be considered periodic in one direction only.
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3.6 Excitation and Detection of a Surface Wave

The studies in this thesis investigate surface waves supported by metamaterial

structures via a variety of detection and excitation methods. To excite a propa-

gating surface wave supported on a metamaterial structure there must be momen-

tum available greater than that associated with a free space photon. Evanescent

field excitation is the mechanism by which this occurs. Examples of two types of

evanescent field excitation methods are discussed and contrasted in an effort to

ascertain correct coupling methods.

3.6.1 Coupling Considerations

A propagating photon has a finite amount of momentum available, as described

by wavevector k0. A propagating surface wave can be described by its in-plane

wavevector, kx, where kx > k0 as discussed in Sections 2.3 and 2.3.1 where k0 is

the free space wavevector. To excite a surface wave the excitation source must

have enough momentum to match kx. Therefore a free space propagating photon

will not be able to excite a surface wave directly unless an excess of momentum

becomes available to the system. Conversely, a surface wave will not be able to

couple out to a free space photon as it is no longer momentum matched to free

space.

Diffraction or the total internal reflection (TIR) of a photon travelling in a

high refractive index medium bordered by a low refractive index medium are two

phenomena which result in evanescent field decay. This field will contain k compo-

nents greater than that of k0, the exact value of which will depend on the refractive

index of the prism or the periodicity of the structure used in diffraction. If these

two parameters are chosen correctly there will be k components present in the

evanescent decay of the electric field which match kx. It is possible to excite a

surface wave if the interface upon which that mode is supported is placed in prox-

imity to the evanescently decaying fields. Examples of prism coupling experiments

can be found in references [101, 102, 92]. Examples of coupling via diffraction on

a grating has previously been discussed in Section 2.2.2 and shown experimentally

at microwave frequencies in [28, 19].

A brief discussion of diffraction is useful in clarifying the range of wavevectors

present in evanescent decay. Diffraction occurs when a planar wave is incident

on an aperture which is smaller than the wavelength associated with the incident

radiation. Radiation of fields diffracted from a subwavelength aperture was first

treated by Borgiotti (1963) [103], as referenced by Rhodes (1966) [104] and ex-

tended to antenna theory by Balanis (2005) [30]. The field from this diffracted

aperture can be described by the Fourier expansion of the electric field after passing
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through a subwavelength aperture

E(x, y, z) =
1

4π2

∫ ∞
−∞

∫ ∞
−∞

[f(kx, ky)]e
−i(kxx+kyy)dkxdky (3.21)

where the cross section of the aperture is in the x and y plane and the depth of

the aperture is in the z plane.

The vector amplitude of the wave is described as f(kx, ky)). The radiated wave

is composed of the entire spectrum of possible k vectors ( −∞ ≤ kx, ky ≤ ∞ ).

If k20 < k2x + k2y then the wavevectors kx and ky will contribute to the evanescent

waves associated with diffraction from the aperture. Surface mode momentum

matching occurs when the wavevectors in the evanescent field of a mode radiated

from an aperture is the same as kx associated with the supported mode. Surface

wave excitation can occur.

The same principle applies to an antenna such as the probe used throughout

this thesis and the edge used in diffraction as outlined in Section 3.3.2, the whole

spectrum of k values are available in the evanescent decay of the fields associated

with these two different geometries [30]. Therefore the a probe is able to couple

to a surface wave.

3.6.2 A Coaxial Probe Antenna

A coaxial probe antenna can be used to excite and couple to a propagating surface

wave. However, crosstalk between source and detector will effect the measurement

of the mode. This, as well as any resonance associated with the geometry of

the antenna itself must be minimised to obtain an independent measure of the

behaviour of the surface wave under study.

Figure 3.19 (a) shows numerically calculated time-averaged electric fields asso-

ciated with a surface wave on a 1D array of corrugations with L = 10 mm at 14

GHz when a probe is place in the model. The probe is displaced by 1 mm in the

y-direction from the edge of the supporting structure and does not significantly

perturb the fields of the supported surface wave.

A stripped coaxial probe can be approximated as a λ/4 resonator [68] as is

observed in Figure 3.19 when the time-averaged electric fields associated with a

probe of wire length ` = 3.75 mm are observed at 10 and 20 GHz. At 20 GHz
λ
4

= 3.75 mm. The fields are more confined to the wire when compared to the

electric field shown at 10 GHz. Also shown in the bottom left hand corner of

Figure 3.19 (a) and (c) is a grey box which is indicative of the proximity of the

1D array. By inspection it can be seen that any perturbing effect the proximity

of the metallic 1D array of corrugations has on fields associated with the probe
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Figure 3.19: Numerical model of the time-averaged electric field associated with
(a) a surface wave on an L = 10 mm 1D array of metallic corrugations at 14 GHz
with a probe displaced 1 mm in the y-direction from the edge of the supporting
structure. (b) and (c) depict numerical simulations of the time-averaged electric
field associated with a coaxial probe antenna operating at two frequencies; 10 and
20 GHz. The exposed length of wire ` = 3.75 mm. The grey rectangle in the
bottom right hand corner of (b) and (c) represents the location of the 1D array
of corrugations. The magnetic field vector of the system at these two frequencies
is represented by the arrows overlaid on the plot. Excitation of the probe was
achieved by a waveport placed at the top of the probe and between the inner
core wire and outer sheath covering, mimicking the electromagnetic fields inside a
coaxial wire.

is minimal, regardless of frequency. Therefore any perturbing effects that might

be associated with the probe mapping electric field of a laterally confined surface

waves is considered to be negligible as there is no significant interaction with

the supporting structure. Further, to minimise any resonant effect, all detecting

probes throughout this thesis are engineered so that the λ
4

condition is at a higher

frequency that that of the investigated mode.

3.7 Different Excitation Methods

Experimental plots of the local electric field amplitude are displayed throughout

this thesis. They are achieved by measurement of the local electric field with a

detecting probe, the position of which is modified by an automated XY Z stage. A

high amplitude of local electric field is expected to be measured in areas which are

in close proximity to a surface wave supported on a metamaterial structure. When

the probe is not in proximity of such a structure, the electric field is expected to

be negligible in amplitude when compared to the amplitude associated with the

supported mode.

Electric field measurements recorded in regions more than five wavelengths
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away from a surface wave supporting structure and compared with the amplitude

of electric field associated with the supported surface wave. Surprisingly in some

cases these measurements were only separated by an order of magnitude. Two

types of coupling techniques were investigated so that the source of these ‘stray’

fields could be ascertained and minimised.

Figure 3.20: Experimental data showing the amplitude of the electric field asso-
ciated with a surface wave supported on a 1D array of close sided cavities using
two separate coupling in techniques to excite the mode, measured via a vertical
antenna. All data is normalised and at a finite frequency of 17 GHz. (a) Blade-
coupling (left) and the amplitude of electric field plot (right) in the xy-plane of
the surface wave.(b) Edge-coupling (left) and the amplitude of electric field plot
(right) in the xy-plane of the surface wave. All detection regions plotted are 640
mm from the excitation point (at x = 0 mm) with y = 0 mm, mid-width of the
array.

Figure 3.20 displays the result of these investigations. The amplitude of the

measured electric field associated with a surface wave supported by a one dimen-

sional array of closed sided metal cavities is displayed in field plots. These plots

are indicative of the amplitude of the electric field measured in the xy-plane. The

white line and box structure outline a schematic representation of the supporting

structure beneath the field plot but are not reflective of the pitch of the structure

and are for illustrative purposes only. The field plots are measured by a probe

at a constant vertical distance of 0.25 mm above the array of closed sided metal
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cavities at a starting position of y = 0, mid-width of the array. The surface wave is

excited via edge or blade-coupling. Both plots are normalised with respect to the

maximum amplitude of electric field associated with the supported surface wave,

enabling comparison to the amplitude of electric field strength measured in regions

which are not in proximity to the supporting surface wave structure.

Edge-coupling, as seen in Figure 3.7 relies on the edge of a sample to diffract

incident radiation incident from a broad band horn antenna. Blade-coupling as

schematically shown in Figure 3.20 (a) and used in a previous publication [105]

also relies on diffraction of radiation from the same horn antenna. However this

diffraction now occurs through an aperture of width α where α < λ and should

decrease excitation of fields from other sources. Further, the ratio between width

of gap and operating wavelength is a method of ensuring a greater number of

higher wavevector components result from the diffraction through the aperture in

comparison to an edge.

Figure 3.20 (a) and (b) show that when blade and edge-coupling are compared,

a surface wave excited via blade-coupling clearly results in stray fields with am-

plitude of electric field within a tenth of that associated with the surface wave

supported by the 1D array of cavities. In contrast to this, the stray fields mea-

sured when a surface wave is exited via edge-coupling are less than a tenth of the

amplitude of electric field associated with the supported mode. For the purposes

of investigating laterally confined surface waves this evidenced the edge-coupling

technique as a preferred method of surface wave excitation.

From these investigations it is concluded that surface wave experiments will

never be totally independent of stray fields which can be attributed to free space

waves. However the technique preferred in this thesis is, in general, edge-coupling

as it uniformly excites along edges up to 100 mm in length and minimises the stray

fields in comparison to the blade coupling technique shown in Figure 3.20.

3.7.1 Surface Wave Launcher

When a excitation source was required to uniformly excite surface waves along

length greater than 100 mm, a lens device known as a ‘surface wave launcher’ was

used. This has been designed recently by Mr S. Berry and will appear in ‘Oblique

Angle Scattering of Surface Waves from Surface Wave Absorbing Materials’ [83].

The device resembles a parallel plate capacitor structure with a pin in the

cavity between the two plates. The pin, as indicated by the black arrow (left) acts

as dipole source, emitting a radial field pattern within the two conducting plates

(labelled PEC) with electric field parallel to the z -plane. The interaction of the

electric field within the launcher with a perspex lens can be seen in Figure 3.21
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Figure 3.21: Adapted from ‘Oblique Angle Scattering of Surface Waves from
Surface Wave Absorbing Materials’ by Mr S. Berry [83]. (a) Schematic of surface
wave launcher in the xz -plane. The lens is composed of two parallel metallic
plates separated by a cavity. The plates are considered to be PEC at microwave
frequencies. The aperture of the lens occurs when x = 150 mm and rests on the
metamaterial surface, schematically represented by the orange box. A coaxial cable
connects an RF source such as a VNA to the lens where a metallic pin protrudes
into the cavity, exciting a transverse electromagnetic (TEM) mode within the
cavity. This mode propagates radially away from the pin and results in spherical
wavefronts with an electric field polarised in the xz-plane (red arrow in (a)). (b)
Numerically calculated phase of the electric field in the xy-plane inside the surface
wave launcher associated with the mode within the cavity. The pin is located at
coordinates (0,0), the centre of the spherical wavefronts. The perspex lens inside
the cavity is noted in (a) and the interaction of the mode within the cavity with
perspex is observed when the spherical wavefronts associated with the cavity mode
become planar at x = 150 mm, the aperture of the lens.

(b) as represented by the numerically modelled phase of the electric field (without

reflections considered from the sides of the lens). As a result the beam is collimated

within the launcher. The wavefronts associated with the phase of the electric field

of the mode within the cavity are spherical at the pin location but are planar at

x = 150 mm, the aperture of the lens.

The pin indicated on the photograph is connected to a coaxial cable so that a

TM mode is excited and guided within the lens by the tapped semi-transparent

perspex and the black absorber. This lens is used to launch microwave radiation

with planar wavefronts along a distance of over 300 mm, polarised so that the

electric field is polarised in the xz-plane and can excite TM modes on a meta-

material surface such as a Sievenpiper mushroom array. The electric field is not

totally polarised in the z-plane due to diffraction at the aperture of the lens. The

surface is placed directly underneath the lens device, so that the lens aperture

rests along the surface uniformly. The surface is represented schematically by the

orange box in Figure 3.21 (a). The dynamic range of the lens is 10 to 30 GHz.

In comparison to previous methods of excitation, the surface wave launcher can
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excite a mode uniformly along distances of greater that 100 mm. Edge-coupling,

which relies on excitation from a broad band horn antenna, cannot be guaranteed

to uniformly excite over 100 mm width due to curvature of the beam profile from

the horn antenna.

The coupling efficiency of the launcher when used to excite a surface wave on

the Sievenpiper mushroom array was not investigated. This is due primarily to

the fact that a uniform excitation over distances greater than that of 100 mm was

required for investigations detailed in Chapter 6, therefore coupling constraints

were not analysed. Further, there was never any experimental issues encountered

as regards to the strength of the mode excited on the Sievenpiper mushroom array

surface so an investigation was not warranted at that time.
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3.8 Conclusions

The method of measuring the dispersion of the fundamental mode of a surface wave

supported by a metamaterial surface has been outlined in this chapter. Further,

mapping the electric field of surface waves supported by a metamaterial and exci-

tation methods used to induce a surface wave are elaborated upon. The method of

termination of surface wave experiments has also been discussed. All of the afore-

mentioned experimental data is collected with a vector network analyser (VNA)

whose operation, functionality and calibration has been detailed. To support the

conclusions reached in this thesis via experimental measurements, both analytical

and numerical methods are used therefore have been discussed.
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Chapter 4

Lateral Confinement of

Microwave Surface Waves

4.1 Introduction

Experimental verification of the ‘domino plasmon,’ proposed by Cano et al. (2010)

[66] is presented. Using microwaves, it is demonstrated that this mode propagates

along a periodic chain of metallic cuboids protruding from a planar metallic ground

plane. The structure used to support the surface wave resembles a chain of dominos

placed on a flat metallic sheet therefore the mode has been referred to as a ‘domino

plasmon’. The dispersion of the surface wave is determined experimentally and

compared with the predictions of analytical and numerical models. This mode

is found to be surprisingly insensitive to the lateral width of the chain. This is

found to be the case even when the lateral width of the chain is less than the

wavelength of microwave radiation used to excite the mode. This limit is further

referred to as subwavelength. Having such tight confinement, ‘domino plasmons’

show considerable promise for one-dimensional subwavelength guiding and focusing

of electromagnetic fields. Confinement of the domino plasmon to the supporting

structure is shown by measurement of the local field amplitude along a constant

height in the yz-plane. The amplitude of the local electric field of the surface wave

in the xy-plane is shown for two different heights above the supporting domino

structure to further illustrate confinement.

4.2 Background

The plethora of electromagnetic (EM) surface-wave studies since the early 1900s

[6] have largely focused on the propagation of non-radiative modes along the inter-

face between two dissimilar media [32]. At optical frequencies, a surface plasmon
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polariton (SPP) is one such wave, existing at the interface between a metal and a

dielectric.

This mode can be described as the hybridisation of a grazing photon with

the density oscillation of the electrons at the metal surface, and whose disper-

sion is asymptotic to the surface plasma frequency, ωSP . These electron density

oscillations have dipolar and multi-polar charge distributions [106] that strongly

enhance the fields at the interface [107]. The propagating surface mode is bound

to the interface with fields decaying exponentially away. This behaviour has been

previously discussed in Section 2.4.

Propagation of a SPP may be characterised by the real (resistive) and imag-

inary (reactive) components of the impedance of the interface, Zs along which it

travels. When this interface is bounded by a metal in the visible regime, Zs is

dominated by a positive reactance [69]. The surface can be described as naturally

inductive [108] with the SPPs supported being transverse magnetic (TM) polarized

waves. The impedance associated with a surface is discussed further in Section

2.5.3.

At visible frequencies the fundamental modes of metallic waveguides, such as

channel [109, 110], or corrugated-wedge [111] structures are considered as SPP

modes hybridized with the geometric resonances of the structure itself. Therefore

it is usual for the dispersion of a SPP mode supported by such waveguide structures

to experience a dependence dictated by either the transverse or vertical dimension

of that structure, or even both. For reference, Sections 2.2.2.2 and 2.2.5 contain

explanations of the dispersion of a surface wave supported in both the optical and

the microwave regime so will not be further elaborated on in this chapter.

In contrast to the visible regime, at microwave frequencies a strongly bound

surface wave, such as the SPP in the visible, is no longer naturally supported on a

metallic planar surface because the fields are almost completely excluded i.e. the

imaginary component of the permittivity with respect to the real component is

very large and positive. Consequently the decay length of the electric (E) field

into the dielectric is many orders of magnitude larger than the incident wavelength.

Hence the SPP becomes essentially an almost unconfined surface wave described

as a surface current [28]. A discussion of the confinement of the surface wave in

relation to the decay length of electric field penetrating into a metal can be found

in Section 2.4.1.1

Previous studies have shown that the addition of a dielectric overlayer [32] on

to a metal surface, or a corrugation [18] introduced to that surface will result in

an enhanced positive surface reactance, allowing a confined TM-polarised surface

wave to be supported.
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4.3 Experimental Setup

The present study investigates a surface mode at microwave frequencies supported

by a metallic waveguide composed of an array of grooves. This modes asymptotic

frequency is dictated primarily by the height of the grooves, h, even when the

transverse dimension of the waveguide is subwavelength. The waveguide consists

of a chain of metal cuboids (dominos) with uniform separation (cavities) that

protrude from a large metal sheet. Figure 4.1 shows a schematic of the supporting

surface which can also be described as a 1D array of corrugations and physically

resemble a chain of dominos with the lateral width (domino dimension along y),

L. This structure will be known henceforth as the ‘domino array’.

The cavity between each cuboid along the chain is analogous to a truncated

transmission line, which for a perfect conductor (the approximation for a metal at

microwave frequencies), is perfectly reflecting at its closed end (in the negative z-

direction) though it remains open at each side end (in the transverse direction) and

top. Consequently, the surface impedance at the top of the dominoes becomes very

high at frequencies close to the resonant condition of the cavities. The frequency

at which the resonant condition of the cavities occurs is defined as:

fres ∼
c

4h
(4.1)

where c is the speed of light and h is the height of the cavity. As a result, the

group velocity of the surface mode support at the interface between the top of

the cavities and the free space region tends towards zero at this limit [34]. This

mode, which is bound to the waveguide via the boundary conditions imposed by

the structure (and not the constituent material properties), is henceforth referred

to as a ‘Domino Plasmon’ (DP).

Consider the surface wave waveguide structure presented in Figure 4.1. In

contrast to the optical SPP mode, the localization of energy is here achieved via

the hybridisation between a grazing photon and the resonant mode of the cavities.

On resonance, the top of each cavity supports an electric dipole and, when all these

dipoles interact collectively, provide the mechanism for the DP to be supported.

The time-averaged electric field and vector direction of a surface wave supported

on an array of grooves near resonance can be observed in Figure 4.2 (a) and

(b) respectively. The DPs dispersion exhibits many similarities to a SPP, but in

contrast, due to its dependence on geometry, it can be engineered to occur at

almost any wavelength [50].

Through a series of experimental measurements, we show a surprising insen-

sitivity of the dispersion of the DP to the lateral width L, exhibited even in the

subwavelength limit, as proposed in reference [66]. To be specific, a surface wave
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Figure 4.1: Schematic of dimensions of the proposed domino structure where the
pitch (d) is 1.6 mm, the width of the domino (a) is d

2
, height (h) is 3.75 mm and

L denotes the lateral width of the structure which is varied.

Figure 4.2: Numerically calculated time-averaged electric field (a) and vector dis-
tribution of electric field (b) of the surface wave supported on a domino structure
near resonance. These solutions were obtain via FEM modelling.

is excited on domino arrays of six different widths L = 100 mm, 19 mm, 15 mm, 10

mm, 5 mm and 1.60 mm (± 0.05 mm). A photograph of five of the experimental

samples can be viewed in Figure 4.4. The metallic ground plane from which the

dominos protrude is not shown for clarity.

In our experiments, edge coupling at the end of the waveguide is employed to

excite the DP. Figure 4.5 is a schematic representation of the experimental setup.

A Vector Network Analyser (VNA) is used to measure S21 transmission between a

transmitting microwave horn antenna and a detecting coaxial-wire probe antenna,

providing measurement of both magnitude and phase of the local field. The horn
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Figure 4.3: Numerical simulations of time-averaged field on resonance of the
domino waveguide consisting of open-ended cavities. The coloured arrows bisect-
ing the xz-plane are representative of the vector electric field while the coloured
arrows in the xy-plane are representative of the vector magnetic field.

Figure 4.4: Photograph of non-embedded experimental samples of lateral widths
L = 100 mm, 15 mm, 10 mm, 5 mm, 1.6 mm (± 0.05 mm).

is orientated such that it lies in the xz -plane (Figure 4.1) and directs microwaves

with polarization in that plane towards the end of the sample at an angle of

approximately 45◦ with respect to the horizontal xy-plane.

This setup minimizes direct transmission between the horn and detector while

irradiating the end of the waveguide with TM-polarised radiation of approximately

uniform intensity. This edge diffraction provides a range of effective in-plane in-

cident momentum values (evanescent near field source) for excitation of the DP.

The distance between this source and the receiving antenna, length P, is many

times larger than the wavelength (P > 50 c
fres

). Subsequently, the signal detected

by the coaxial probe can be attributed solely to the DP and not any surface modes
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Figure 4.5: Schematic of experimental setup. Broad band horn irradiates the
side of the sample at 45◦ with respect to the horizontal. Direction of radiation is
noted by the red arrow. Surface wave is excited and propagates across the sample,
radiation direction is represented by the multicoloured sinusoidal curve. It should
be noted that this curve is not representative of the amplitude of the electric field
of the surface wave and is for illustrative purposes only. The detecting coaxial-wire
probe antenna is also shown connected to port 2 of the VNA. The exposed length
of the wire of the probe is 2.5 mm in this experiment.

associated with the surrounding metal ground plane. This setup is also discussed

in Section 3.3. All surface waves in this experiment have been terminated in a ge-

ometrically graded absorber placed at the end of the array supporting the mode.

This has been discussed previously in Section 3.3.4.

4.4 Results

The cumulative phase of the detected signal associated with the DP supported by

the waveguide is compared with that expected from a free space wave excited from

the diffraction at the edge of the sample which then propagates over a planar metal

sheet for the same distance P. The coaxial probe used in detection is placed at

the same height above both types of surface so that the phase difference between

the waveguide DP and the surface current on a flat metal substrate is obtained,

allowing the dispersion of the DP to be directly determined. The method for

obtaining the dispersion of a surface wave has been previously explained in Section

3.3.2 so will not be further elaborated upon in this chapter.

4.4.1 Dispersion over Multiple Widths

The dispersion of a surface wave has been experimentally obtained for domino

arrays of six different widths L = 100 mm, 19 mm, 15 mm, 10 mm, 5 mm and 1.60

mm. Figure 4.6 compares these dispersions for all six variations of the domino
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array to analytically obtained data for an array of lateral width L = ∞ but with

otherwise similar dimensions. The analytical technique used to calculate dispersion

for comparison with experimental data will be elaborated upon shortly.

Figure 4.6: Experimentally obtained dispersion curves (red symbols) of surface
mode supported by samples with L = 100 mm, 19 mm, 15 mm, 10 mm, 5 mm and
1.60 mm compared with analytically derived dispersion.

Each graph in Figure 4.6 compares the dispersion of a surface wave supported

on a domino array with an analytically derived dispersion associated with a surface

wave supported on a 1D array of grooves of infinite lateral width. Also compared

is the frequency at which domino cavity is expected to be resonant labelled as

the domino cavity resonance. This is less than the resonant condition of the

cavities previously stated in Equation 4.1 as the cavities are a width of a = 0.8

mm (± 0.05 mm) and not infinitely thin. By inspection of Figure 4.6 it is clear

to see that the width of the supporting domino array can be decreased until it

is far subwavelength while the supported surface wave mode remains insensitive
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to geometric change. Further, the mode remains similar to the dispersion of the

surface wave analytically calculated for an array of infinitely wide dominos. This

is true for both the limiting frequency of the mode and the rate of change in kx

associated with the surface wave as a function of frequency. Therefore, given the

previous discussion in Section 2.2.2.2 it can be stated that the confinement of the

mode to the interface as a function of frequency remains insensitive to geometrical

changes.

4.4.2 Local Electric Field Amplitude with Respect to the

Guiding Structure

Figure 4.7 depicts the experimental and numerical measurement of local electric

field amplitude of a surface wave supported by a domino array. This is measured

as a function of distance y from mid-width of the array, at y = 0, illustrating the

confinement of the mode to the domino array.

The starting position of the probe in x is at P = 350 mm, y = 0 mm (mid

width of the array) and z = 1 mm above the array. The x and z coordinates

remain unchanged throughout the measurement. The measurement of electric

field amplitude via the probe was varied in distance y from the starting location,

mid-width of the array, past the end of the supporting domino array at L
2

and

over the flat untextured metal surface from which the array protrudes from. The

experiment was conducted for a surface wave supported by a domino structure of

lateral width L = 1.6 mm and 19 mm (black and red lines, respectively).

Figures 4.7 (b) shows a numerical FEM measurement of the same experiment

for domino widths of L = 1.6 mm, 5 mm and 10 mm (red, grey and black lines,

respectively). The end of the supporting domino structure is noted in Figure 4.7

(a) and (b) by the vertical dashed lines for the surface wave supported by each

domino array. Figure 4.7 (c) illustrates the measurement detailed in (a) and (b)

via a schematic. The probe used in measurement is shown at starting position y

= 0 mm. The red rectangle in the schematic in Figure 4.7 (c) is representative of

the L = 19 mm domino structure while the black rectangle represents the L = 1.6

mm domino structure

As seen in Figure 4.7, the local electric field amplitude of the supported surface

wave on a domino array decreases as a function of distance from mid-width of the

array, irrespective of domino width.

The confinement of the electric field to the supporting structure is further

illustrated by the experimentally measured field plots in Figure 4.8 of the local

electric field amplitude associated with the supported surface wave. The field

plots were obtained by a detecting probe attached to a motorised XY Z scanning
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Figure 4.7: (a) Experimentally obtained local electric field amplitude associated
with a surface wave supported by an array of open sided dominos as a function
of distance in y away from the mid-width of the supporting structure. This is
measured for domino arrays of L = 1.6 mm (black) and L = 19 mm (red). The
starting position of the probe in x is at P = 350 mm, y = 0 mm (mid width
of the array) and z = 1 mm above the array. The x and z coordinates remain
unchanged throughout the measurement.(b) Numerically obtained local electric
field amplitude associated with a surface wave supported by a domino array as a
function of distance y away from the mid-width of the supporting structure. This
measurement was observed for domino arrays of widths L = 1.6 mm (red), L = 5
mm (grey) and L = 10 mm (black). The vertical dashed lines in (a) and (b) are
representative of the position of the probe at y = L

2
above the supporting domino

array. (c) Schematic depicting the starting position of the measuring probe, mid-
width of the array at y = 0 mm. The red and black rectangles denote the position
of an open sided domino array with widths L = 19 mm (red) and 1.6 mm (black)
with respect to the starting position of the probe. This schematic is for illustrative
purposes only.

stage and sampled the electric field of the supported surface wave in the xy- plane

at two constant heights, z = 4.0 mm (left) and z = 4.5 mm (right). Figure 4.8

is shown at the single frequency of 15 GHz and scans an area of 100 mm2 at a

resolution of 0.2 mm. While no smoothing was preformed on this image, it is still

subject to the limit of accuracy of measurement of the motorised XY Z stage of
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± 0.2 mm. Both data sets are represented on the same scale. By inspection of

Figure 4.8 it is evident that when the detecting probe is moved further from the

supporting structure in height, there is less intensity of local electric field detected.

This illustrates surface wave confinement of the electric field with respect to the

supporting the domino structure.

Figure 4.8: Experimentally obtained field plot of the local field amplitude of a
surface wave supported on a L = 1.6 mm domino array, height = 3.75 mm above
the planar metallic surface from which it protrudes. The surface wave is excited
via edge-coupling at x = 0 mm. The field plots were obtained by measurement of a
probe attached to a motorised XY Z scanning stage. The amplitude of the electric
field was sampled in the xy- plane at two constant heights, z = 4.0 mm (left) and
z = 4.5 mm (right) where z = 0 mm is defined at the top of the planar metallic
surface from which the array protrudes. The probe length l = 2.5 mm, with the
tip of the probe position at (left) z = 4.0 mm or (right) z = 4.5 mm above the
domino array. The white dashed lines are indicative of the structure supporting
the surface wave, beneath the xy-plane of either and is illustrative of the position
of the edge of the domino array only. Both left and right experimental data sets
are plotted on the same scale and at the single frequency of 15 GHz. The plots
were obtained at the same distance x = 300 mm along the domino array and at a
resolution of ± 0.2 mm.
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4.4.3 Analytical Modelling

The dispersion curves of the DP obtained experimentally are compared in Figure

4.10 to those predicted from a modal matching method developed by Professor

Hendry and similar to that presented by Hendry et al. (2008) [93] and employed

in Edmunds et al. (2011) [100]. This approach obtains the dispersion relation

expected for an array of dominoes of infinite width (L = ∞). The domino array

is considered to be a PEC structure filled with air and at an interface with air.

The analytical method functions by first defining the in-plane component of

the electric field in the semi-infinite vacuum region as a one dimensional Fourier-

Floquet expansion of the form

Evac
x =

∑
N

ANe
(i(kx+2Nπ/d)x)e−ikz(N)z) (4.2)

where N is the order of diffraction, kx is the in-plane component of the wavevector

and d is the pitch of the domino structure. The out of plane component of the

wavevector, kz is described by the component of electric field in the z plane and

is given by:

Em
z =

√
(k0)2 − (kx2Nπ/d)2 (4.3)

where k0 is the wavevector of light in vacuum and AN is the Fourier amplitude of

order N . Equations 4.2 and 4.3 describes a mode whose electric field is polarised in

the xz-plane, a TM polarised mode which has previously been depicted in Figure

2.6.

The number of orders of diffraction has been shown by Hendry et al. (2008) [93]

to be crucial when determining the limiting frequency of a surface wave. Before

some critical value is reached, the dispersion calculated by the analytical code will

vary. This is in comparison to previous work by Pendry et al. (2004) [50] where the

diffracted orders associated with a supported surface wave were considered to be

negligible. As a result, Pendry et al. predicted the dispersion of supported surface

waves to have a limiting frequency which was less than the experimentally mea-

sured mode whereas the analytical predictions of Hendry et al. (2008) described

the measured mode far better. However, as the domino array of infinte width is

considered to be infinite in extent, there are an infinite number of diffracted orders

that could be included to measure the dispersion of the mode supported.

The analytical code provided by Professor Hendry to analytically measure the

dispersion of an infinitely wide domino array was initially tested to investigate the

number of diffracted orders up to which the measurement of the dispersion was no

longer sensitive to. Up to N = 5 was tested before the values for the dispersion

of the mode calculated by the analytical code remained insensitive to a change of
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diffracted orders (within 1% standard deviation).

Inside the domino cavities the in-plane component of the electric field is rep-

resented by the fundamental waveguide mode:

Ecav
x = B(e(ik0z) − e(ik0(2h−z))) (4.4)

where h is the height of the domino cavity and B is the amplitude of the mode.

One can then obtain the z-components of the electric field inside and outside the

domino cavity, and subsequently expressions for the magnetic field, by applying

Maxwells relations.

∇.E = 0 , ∇∧ E =
−µ0δH

δt
(4.5)

where µ0 denotes the permeability of free space. The boundary conditions at

the vacuum-domino interface (defined here as z = 0) is such that at the vacuum-

vacuum interface the field inside the domino cavity must match the field in free

space, the bordering medium. At the domino-vacuum interface tangential electric

field is forced to zero and magnetic field is maximal. By applying these boundary

conditions the unknowns AN and B can be eliminated. The dispersion relation for

a surface wave supported on a domino array of infinite width can be stated thus:

k0 cot(k0h) = i
∑
N

Q+(N)Q−(N)

ad

k0
kz(N)

(4.6)

Where

Q±(N) =

∫ a

0

(e±i(kx+
2Nπ
d

)xdx (4.7)

is the mode overlap integral. A mode overlap integral describes how well the fields

at an interface match spatially, in intensity and in phase.

To aid in understanding of modal overlap, Figure 4.9 is considered. Numerical

models of the time-averaged electric field of a surface wave on resonance supported

by (a) a domino array and (b) a closed-sided domino array are displayed. Both

arrays have a width L = 10 mm. (b) is supporting a second order resonance within

the closed-sided cavity while (a) is supporting a fundamental mode. Now inspect

mid-width of both arrays.

At this position, as illustrated by the dashed white line, Figure 4.9 (a) is at an

anti-node and the time-averaged electric field is maximal. Conversely, the time-

averaged electric field shown in Figure 4.9 (b) at the same position mid-width of

the array is experiencing an node and is minimal. Therefore, if these structures

were placed in proximity to one along, in a 1D uniform array, there would be no

modal overlap between the two modes mid-width of the array and one mode would

93



Lateral Confinement of Microwave Surface Waves

Figure 4.9: Numerical models of the time-averaged electric field of a surface wave
on resonance supported by (a) a domino array and (b) a closed-sided domino
array. Both arrays have a width L = 10 mm. (b) is supporting a second order
resonance within the closed-sided cavity while (a) is supporting a fundamental
mode. The arrows in (a) are indicative of the magnetic field of the mode. The
dashed white line is used for comparison of the mid-width of both arrays and is
used for comparison only.

not couple to the other.

The analytical technique detailed here has been previously discussed in Sec-

tion 3.5 in context with other publications that have used analytical methods to

calculate dispersion.

4.5 Discussion

Figure 4.10 shows the experimentally determined dispersion of the domino struc-

tures of lateral widths of L = 100 mm ( � c / fres) and L = 1.60 mm ( � c /

fres) compared to the analytically calculated dispersion for L = ∞ where fres is

the limiting frequency of the surface wave.
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Figure 4.10: Experimentally obtained dispersion curves (symbols) of surface mode
supported by samples with L = 100 mm and 1.60 mm compared with analytically
derived dispersion (lines) for a structure represented by inset schematic. Pitch d
= 1.6 mm, Height H = 3.75 mm, a = d/2, near field source to detector length P
= 775 mm, lateral widths L are varied.

Figure 4.11: Numerical simulations of time-averaged electric field (regions of high
to low field represented by the colour scale, arbitrary units) and vector magnetic
field (arrows) on resonance of the domino waveguide consisting of (a) open-ended
cavities, L = 10 mm and (b) closed-ended cavities, L = 10 mm. The slice of field in
the middle of the cavity in the yz-plane is clearly seen to be quantised by boundary
conditions imposed upon it by the closed ended structure (b). (c) and (d) display
simulations of L = 5 mm and L = 1.6 mm open-ended cavities, respectively. The
mode remains unquantised, even when the width of the supporting structure is
subwavelength.
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4.5.1 Boundary Conditions

In Figure 4.11 we plot field profiles for a surface mode on an L = 10 mm sample

with open and closed sides (left and right respectively). It is apparent from the

arrows overlaid on Figure 4.11 (left) that the magnetic field is polarized parallel

to the edge of the domino and remains unquantized in the y-direction. The vector

of the magnetic and electric fields of the supported surface wave on resonance is

plotted in Figure 4.3. The magnetic field loops associated with the surface wave

can be observed, however within the domino cavity the magnetic field is seen to

be polarized parallel to y-axis.

Therefore it presents no significant contribution to the total wavevector of the

cavity mode. The insensitivity of the dispersion and, in particular the asymptotic

limit of the DP mode to L is therefore due to the open-ended nature of cavity sides

parallel to the xz -plane. This total wavevector k0 is a sum of the components of

the wavevector in three dimensions express thus

k20 = k2x + k2y + k2z (4.8)

As there is no boundary condition imposed on the field in the y-direction there

is no component of ky which will contribute to the in-plane wavevector kx where

k2x = k20 - k2z . Therefore the domino structure can be decreased in width until it is

far subwavelength without perturbing the supported surface wave.

4.5.2 Closed-Ended Cavities

To substantiate this hypothesis, we have carried out dispersion measurements and

FEM modelling for waveguides comprised of cavities with open ends and closed

metallic (perfect electrical conductor, PEC) ends each with lateral domino width

of L = 10 mm as represented by the insets of Figures 4.10 and 4.12 respectively.

Changing this boundary condition from open-ended to a metal reflecting plate

(PEC) results in a lateral quantization of the electromagnetic field within the

cavity, shown by the FEM model presented in Figure 4.11. This significantly affects

the mode dispersion as shown by comparison of the L = 10 mm and L = 100 mm

DP results displayed in both the experimental and FEM data (Figure 4.12). It is

clear that for the closed-ended waveguide, even a modest lateral confinement (of

order c / fres) due to the lateral domino width results in a drastically different

dispersion of the surface mode compared to that of a mode supported by cavity

widths of infinite extent (L = ∞).
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Figure 4.12: Dispersion curves obtained experimentally are represented by the
symbols ©, ∗ and 4 which indicate data from the L = 100 mm closed-ended, L
= 10 mm open-ended and L = 10 mm closed-ended structures respectively. Data
obtained numerically (FEM) are represented by the short dotted line and long
dashed line for the L = 10 mm open and closed-ended structures, respectively.
The solid black line represents the light line and the intermittently dotted black
line is the domino-cavity resonance. Inset is a schematic of the modified domino
structure, the gray sides representing the closed boundary condition.

4.6 Conclusion

Present in this chapter is compelling experimental evidence that the domino waveg-

uide supports a surface wave whose dispersion (including its asymptotic limit) is

surprisingly insensitive to the lateral width of the structure. The surface wave

supported by such a domino array structure has been shown to be confined to

that structure both laterally and vertically. The dispersion of DPs for a range of

lateral widths from 100 mm to 1.60 mm is measured, the latter being subwave-

length compared to the excitation wavelength. Even for such narrow dominos,

good agreement is found between the experimentally measured dispersion and the

analytical relation expected for cavity widths of infinite extent. The reason for

this insensitivity lies in the absence of a lateral quantization condition for the

mode when the waveguide is comprised of open-ended cavities. This is compared

and contrasted to experiments conducted on domino waveguide structures with

close-ended cavities to affirm our understanding of the mechanism responsible.
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Chapter 5

Microwave Surface Waves

Supported by a Tapered

Geometry Metasurface

5.1 Introduction

This chapter demonstrates the spatially dependent reduction of group velocity as-

sociated with a microwave surface wave. The metasurface supporting this mode is

composed of a linear array of rectangular cavities whose lateral widths are varied

as a function of distance from the point of excitation. This variation results in

modification to the dispersion of the supported mode and, therefore, a spatially

dependent modal index. Previous investigations of slowing propagating electro-

magnetic modes and further literature concerning stopping such phenomena are

highlighted and compared with the present investigation. Both local electric-field

and phase measurements are used to probe this condition, the latter of which is

shown to be a more accurate identification of the trapping location of the surface

wave. The reflectivity of the mode supported by two tapered metasurfaces close to

this point is discussed and the effects of modifying the rate of taper is noted. The

concurrent excitation and support of a family of higher order modes on the tapered

metasurfaces in each experiment is explored and discussed. A large proportion of

the contents of this chapter has been recently been published by the author of this

thesis in Applied Physical Letters [95].

5.2 Background

The prospect of slowing and completely stopping light is an attractive focus for

many areas of physics due to the number of technological applications that would
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benefit from such control. The characteristic that defines slow light is a reduced

group velocity, vg in comparison to the speed of light, c. Equation 5.1 defines

group velocity

vg =
dω

dk
< c (5.1)

where ω and k are the angular frequency and wavevector of the electromagnetic

mode, respectively.

Applications where a reduced group velocity would be advantageous range from

the fields of nonlinear optics such as Raman spectroscopy [112] and quantum optics

to the fields of optical storage and switching in microwave photonics. Practically,

slowing light results in stronger light-matter interactions as, by definition, the

electromagnetic wave under investigation has a lower group velocity than if that

same mode were travelling in free space. This can also be discussed in terms of

the density of states of a system.

As previously discussed in Section 2.2.2.2, the dispersion of a surface wave

is defined the relationship between propagating wavevector k of the mode as a

function of frequency (ω). This can also be thought of as a change in the density

of states of the system [64] and is described as δk
δω

. At frequency far below that of

the limiting frequency of the surface mode, there is a low density of states as the

dispersion of the surface wave resembles that of a free space propagating photon.

As the limiting frequency of the surface wave is approached the density of states

increases, as there are more k states available per frequency component. The

higher k components decay more rapidly into the surrounding medium and this

systematic loss results in a width of the mode in frequency approaching resonance.

There is a higher concentration of energy via these higher k values at the interface

of the supported mode, resulting in stronger light-matter interactions [113].

Control of the bandwidth of these interactions is possible via the manipulation

of the band gap of a photonic crystal waveguide and allows delay and temporary

storage of optical signals [114].

A seminal example of slowing light to 17 ms−1 using electromagnetic induced

transparency (EIT) has been achieved by Hau et al [115] over a very narrow band-

width. Other methods include guiding a transverse electromagnetic mode along

waveguides composed of different insulator-metal combinations or guides with a

negative-index core clad in dielectric (insulator-negative-index-insulator) design

[116, 117, 118, 119, 120] or indeed through photonic crystal (PhC) waveguides

[121, 122, 123, 124, 125, 126].
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5.2.1 Photonic Crystal Waveguides

A photonic crystal (PhC) waveguide is composed of a periodic array of dielectric

layers, each with a different permittivity associated with it. The path of an electro-

magnetic (EM) mode through a PhC is dependent on both the layer arrangement

and the changing refractive index experienced by the photon when propagating be-

tween the layers. This is analogous to the study of electron propagation through a

semiconductor crystal; a periodic arrangement of atoms or molecules. The spatial

position of electrons associated with the constituent atoms or molecules in the

crystal form periodic potentials with clear allowed energy states. Therefore both

the conduction properties and the lattice geometry of the crystal dictate the range

of energy within each state. As such energy band gaps, i.e. the range of energy

above or below the allowed states, may be engineered. The path of an electron

through such a crystal is dictated by its interactions with these periodic potentials.

In the PhC case it is the refraction and reflection between the dielectric layers

that define the allowed frequencies and directions of propagation of the mode

through the system, creating band gaps. The bandwidth over which light can be

slowed in a PhC waveguide is defined by the width of its bandgap; a result of the

crystals periodicity. At these frequencies, delay and temporary storage of optical

signals is possible [126].

The total thickness of such slow light waveguide structure is of the same scale as

the wavelength of light itself and therefore larger than the electrical components

required to connect to it, limiting minimum geometric size. However, surface

plasmons polaritons (SPPs) [25] have provided a route to circumnavigate this

limitation. SPPs are a resonant collective excitation of free electrons strongly

localised at the interface between a metal and a dielectric, oscillating longitudinally

and in coherence with incident visible light.

They are intrinsically slow transverse-magnetic (TM) polarised modes, whose

electromagnetic fields exponentially decay into each bounding medium. Impor-

tantly, the mode can be manipulated on subwavelength structures; an aspect that

has recently been exploited in slow wave devices including miniaturized photonic

circuits, enhancement of Raman spectroscopy and sensing.

A photonic circuit would rely on using the subwavelength channelling proper-

ties of surface plasmons. Such a circuit would convert light into surface plasmons,

which would then propagate along subwavelength channels to be processed by logic

elements [25]. Another application of the slow light characteristic of surface plas-

mons is the electric field enhancement of the surface plasmon at a dielectric-metal

interface. This is used to manipulate light-matter interactions and boost non-

linear phenomena. For example, surface-enhanced Raman spectroscopy (SERS)
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relies on massive signal enhancement from structures much smaller than the wave-

length of light. This enhancement could be greatly increased if these structures

were supporting surface plasmons [26, 27].

5.2.2 Slow Light and the Dispersion Relation

It is known that light can be slowed down in dispersive materials near resonances

[97]. The gradual decrease in velocity of an electromagnetic mode can be observed

when plotting the frequency of the mode as a function of its propagating wavevec-

tor, the dispersion relation. Dispersion and the limiting frequency associated with

a mode have already been discussed in Section 2.3. Specifically, the gradient of a

tangent to the dispersion relation of the mode under inspection indicates its group

velocity (Equation 5.1). Figure 5.1 is a schematic representation of the dispersion

(a) of a surface wave (red line). Noted on each figure are two frequencies ω1 and

ω2 and the tangent to the dispersion associated with those frequencies.

Figure 5.1: Schematic of dispersion (a) and group delay (b) of a surface wave ap-
proaching a resonant limit. (a) notes the group velocity at two specific frequencies
by drawing a tangent to the dispersion at ω1 and ω2, illustrating the decrease in
gradient of the dispersion curve (red) between these two points in frequency. (b)
shows the behaviour of the group delay at these two frequencies and illustrates the
reciprocal relationship between vg and dg, per unit length.

Clearly, the group velocity of the mode at frequency ω1 is greater than that

associated with the mode at ω2. As the wavevector increases the gradient of the

dispersion tends to zero. The frequency associated with this condition is known as

the limiting frequency and has already been discussed in Section 2.2.4. Figure 5.1

also displays a schematic representation of the group delay (dg, per unit length)

of the surface wave in (b) and is described thus:

dg =
1

vg
(5.2)
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Equation 5.2 shows the reciprocal nature of the relationship between vg and dg,

per unit length. By inspection of this relationship it is clear that the group delay of

the mode will become infinite (i.e. the mode is stationary) when the group velocity

falls to zero. Also, it is clear that group delay dg is in fact a measurement of the

density of states of a systems, δk
δω

, and becomes infinite at the resonant frequency

of the mode.

Strictly any electromagnetic mode cannot be completely stopped before Ohmic

losses become dominant [127], an example of which is an SPP supported by a

Drude-like metal. As previously stated during the discussion of density of states,

on approach to the resonant frequency more k states become available at greater

values of k, decaying into the surrounding media. Therefore an actual ‘stopping’

location for a surface wave will never actually be measured. Practically, the tangent

to a measured dispersion curve, as is seen in Figure 5.1 for the highest value of k

measured with respect to frequency will result in a measurement of the velocity of

a supported surface wave such as an SPP.

However, it has been shown that a somewhat analogous mode to the SPP,

with a similar dispersion, can be supported at microwave frequencies on metals

patterned with subwavelength features [50]. Such structures are known as meta-

surfaces [59] and can be described as a single layer of periodically arranged sub-

wavelength elements arranged in a dielectric host which gain their electromagnetic

properties from geometric design and not their constituent materials. Without

such surface structure a metal would be unable to support a confined microwave

surface wave due to its near-perfectly conducting nature in this frequency regime

[32, 128].

The collective resonant frequency of these metallic elements is synonymous

with the surface plasma frequency of the aforementioned case because it is this

limiting frequency, below which the necessary boundary condition (inductive sur-

face impedance [69]) is induced for TM-polarised surface waves to be supported.

The surface plasma frequency and the confinement of a surface wave has previously

been discussed in Section 2.4.

At frequencies much lower than this limit, the surface wave is photon-like,

however on approach to this limiting frequency it becomes highly localised to the

metasurface, and its group velocity reduces to zero. Such behaviour has been

experimentally demonstrated on metasurfaces for a range of geometries, including

open-ended grooves[91] , holes [67],[28] and Sievenpiper mushrooms [68].

5.2.2.1 Radar Beam Sharpening

The localisation of a mode supported by a metasurface and the dispersive prop-

erties of that mode can be utilised for pulse compression during Doppler radar
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operations [129]. This application results in the radar transmitting what is com-

monly referred to as a ‘long pulse’ while gaining the potential benefits of the

transmission of a ‘short pulse’, a pulse transmitted over a time duration which is

less than that of a long pulse. Typical long pulse and short pulse values are 2µ

seconds and 0.5µ seconds respectively.

The benefits of transmitting a short pulse are greater range resolution and

accuracy, better multipath resolution and therefore better target classification.

However, if a radar transmitter is peak-power limited, the shorter the pulse the

less energy transmitted. Therefore transmission of a short pulse results in a range

limited measurement in comparison to a long pulse measurement.By compressing a

long pulse, the benefits of greater range resolution and accuracy, better multipath

resolution and therefore better target classification is regained and the measure-

ment is not range limited.

Pulse compression can be described as applying some modulation to the trans-

mitted waveform such as another known waveform at a different frequency. The

response is analysed after the frequency modulated pulse is passed through a pulse-

compression filter. An example of this would be to send a waveform of a sine wave

whose frequency is increased linearly over the duration of the pulse. This is known

as ‘chirp’ pulse compression. The modulated sine wave is then passed through

a pulse compression filter which is designed so that the velocity of propagation

through the filter is proportional to frequency. The filter acts as a dispersive delay

line in that the velocity components of the wave are separated so that the higher

frequency components of the waveform increase in velocity at the trailing edge

of the pulse relative to the lower frequencies at the leading edge, sharpening the

pulse.

A metamaterial surface which supports surface waves is described as a disper-

sive device, with the mode on the surface exhibiting a wavelength which decreases

as a function of frequency faster than the wavelength of a free space mode. It

is suggested that such a surface could be used to modulated the transmitted and

received waveform from the a radar and result in pulse sharpening.

5.2.3 The Proposed Experiment

In this study, we experimentally demonstrate the spatial separation of frequency

components associated with a microwave surface wave supported on a tapered

metasurface. This slow-wave structure is composed of a linear array of constant

depth, closed-sided air-filled rectangular cavities obtruding from a planar metal

sheet. Two samples of this description are fabricated with their lateral widths

tapering from LStart to LFinish (where LStart � LFinish), the dimensions of which
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are schematically depicted in Figure 5.2. By increasing the lateral width of each

cavity as a function of distance from the point of excitation, we modify the disper-

sion of the surface wave by lowering its limiting frequency. In this way, frequency

components of the surface wave are slowed (due to an increase of their modal in-

dex, n =c/vg ), and consequently trapped so that they cease to propagate further

along the array. We demonstrate that local electric-field observations alone are

not sufficient to determine the trapping point of the mode, however utilisation of

the local phase provides a more accurate method to probe this condition.

Figure 5.2: (a) Schematic of Samples A (top) and B (bottom) as viewed from above
(white regions detailing internal structure are for illustrative purposed only). On
both samples the tapering begins at x = 0 with lateral width LStart = 1.6 mm.
The taper ends with LFinish = 48.5 mm at x = 200 mm for sample A, and x =
399 mm for sample B with LFinish = 50 mm. The position of the coaxial probe
providing near field excitation is also shown. Microwave foam absorber is used to
prevent reflections at each end (x = 297 mm and x = 286 mm) of samples A and
B. The small grey arrows indicate the x-position on the sample where L = 16.8
mm.

5.3 Experimental Setup

A vertically orientated antenna (2.5 mm of unshielded core) provides near-field

excitation of the surface wave. This is used instead of the edge coupling method

previously defined in Section 3.3 as comparitively larger amplitude of the mode

supported on the tapered array of larger and small width of the structure results

in the probe being able to approximately uniformly excite the surface modes. The

probe attached to port 1 of a vector network analyser (VNA) via a coaxial cable
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Figure 5.3: (a) A schematic illustration of a unit cell of the samples, where L is
the lateral width of the cavities, cavity height h = 3.75 mm, wall thickness t = 0.1
mm, periodicity a = 1.59 mm and cavity width w = a/2. (b) An photograph of a
small section of the sample as viewed from above, the position of the white arrow
indicates where y = 0 along the x-direction.

and is driven between the frequencies of 8 − 40 GHz. The probe remains in a

static position throughout the experiment at x = 289 mm, y = 0 mm (mid-width

of the array), and height z′ = 0.25 mm (above the obtruding metallic cavities).

Figure 5.4: Schematic measuring probe, a vertically oriented antenna, above the
tapered array. The white dashed line represents the path of the detecting antenna
above the tapered metasurface at y = 0 mm. Notice the path is at a height z’ =
0.25 mm above the metasurface. The position of x = 0 mm is also noted. At x¿
0 the width of the taper starts to increase.

A second identical probe is also positioned at the same coordinates in y and

z but is scanned along the length of the array (x) via operation of a computer

controlled motorised stage. Figure 5.4 is a schematic representation of this second

probe. Noted in this figure is the height, z, of the probe and the position along

the tapered array where x has been defined as 0. The local electric field amplitude

and phase of the surface wave is detected via connection of this second probe to

port 2 of the VNA.
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5.3.1 Spatially Dependent Dispersion

In order to fully understand the slow light phenomenon associated with the surface

wave excited on tapered samples A and B, it is first useful to study the dispersion

of surface modes associated with one-dimensional periodic array of rectangular

cavities with uniform widths. Figure 5.5 (b) displays the predicted dispersion of

surface waves supported by a one-dimensional array of cavities of uniform widths

L = 1.6, 16.8 and 48.5 mm.

Figure 5.5: Predicted dispersion of surface wave supported by a linear array of
identical cavities of height h = 3.75 mm, periodicity a = 1.59 mm and cavity
width w = a/2 in instances of L = 1.6, 16.8 and 48.5 mm. Inset: Predicted modal
index of the supported wave at different lateral widths L for 20.0 GHz. These
predictions have been obtained via FEM modelling [130] to find the eigenmodes
of a unit cell of the structure bounded by periodic boundary conditions in the xz-
planes). Since the modes of interest are TM polarised, and the unit cell is infinite
in the y-direction, perfect-magnetic boundary conditions are utilised on yz-planes
to limit the unit cell dimension. The model geometry is bounded 45 mm above
the metasurface by a free space boundary. The predictions of modal index are
calculated thus: n = c/vg.

5.3.1.1 An Array Composed of Finite Depth Cavities

Consider the regions defined by x ∈ [297, 0] and x ∈ [200, 285.25] (in units of

mm) along sample A that have a lateral width L of 1.60 and 48.5 mm respectively.

In both of these regions the width is constant and hence the modal index (n) of

the supported surface wave is dependent on frequency only. The surface mode

dispersion is asymptotic to a frequency, to a first approximation, dictated by the

lowest order Fabry-Perot resonance of the transverse electric (TE01) waveguide

mode supported in the cavity [67, 131, 132, 93].
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5.3.1.2 Modal index of the Tapered Metasurface

The exact limiting frequency is numerically determined via FEM modelling for

arrays of constant width L = 1.6 mm, 16.8 mm and 48.5 mm to be 84.6 GHz, 20.0

GHz and 16.4 GHz respectively (Figure 5.5(b)), i.e. we would expect the 20 GHz

component of the surface mode to have vg = 0 and be trapped when L = 16.8 mm.

5.3.1.2.1 Far below each limiting frequency, the surface mode is photon-like

(i.e. lies close to light line), with a modal index n ∼ 1. However the surface mode

supported by the tapered array propagates from the narrow width region (higher

limiting frequency) to the wider width region (lower limiting frequency). Therefore

the modal index is dependent on both frequency and x-position along the sample.

Consequently, frequency components of the surface wave between these limits will

be spectrally separated and prevented from propagating further with the highest

frequencies being slowed and trapped closest to the start of the taper. Further

to this we consider two samples with different gradients of taper (∆L/∆x) and

contrast the reflection of the surface mode in each case.

5.4 Discussion

Figure 5.6 illustrates measurements of local amplitude and phase of the electric

field as a function of position in x along Samples A and B at 20, 25 and 30

GHz. Note that the VNA measures local phase by sampling the fields of the

detected surface wave and excitation source. By comparing these values a local

phase difference is obtained, limited to the range π to π radians, which is periodic

in x and indicative of the surface mode wavelength λSW = λ0/n where λ0 is the

excitation wavelength.

Consider the global peak in the field amplitude data at x = 43 mm for Sample

A, and x = 77 mm for Sample B (Figure 5.6 (a) and (b)). These peaks are

indicative of an increase in the energy density of the surface mode associated with

a reduction in its group velocity as the sample is traversed. Naively, these peaks

may be viewed as an indication of the positions along the array at which the

surface mode is trapped [133], after which it is no longer supported. However

it should be remembered that the increase in the modal index (and propagation

constant, kx) is accompanied by a reduction in the decay length ( 1
2kz

) of the mode

above the surface, in order to conserve momentum. It is therefore clear that any

measurement of the field magnitude at a fixed height above the sample ( where

z’ = 0.25 mm, Figure 5.4) will be unable to accurately probe the exact trapping

location of a surface wave. After this peak, the locally measured field amplitude
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Figure 5.6: Experimental observations of local field amplitude (top) and phase
(bottom) of the surface wave at fixed frequency of 20.0 GHz as a function of
distance x along sample A (left) and sample B (right). Vertical black dashed line
indicates the position of the start of the taper (L = LStart). The dot-dash line
indicates the x-position of L = 16.8 mm along sample A where, for a 1D array of
fixed width cavities, 20.0 GHz is the limiting frequency. This position is indicated
by the grey arrow in Figure 5.2. The position of L = 16.8 mm on sample B is
indicated in the same fashion as on sample A; a dot-dash line. Thin vertical black
lines on the lower part of (a) indicate the spatial extent of the pitch.

gradually falls to zero, indicative that the mode eventually ceases to propagate

[128, 133, 127, 134] due to a combination of Bragg diffraction from the periodicity

of the array and dissipative loss into the metal. Subsequently the exact trapping

location of the surface wave is ambiguous as this zero condition occurs at some

distance after the field peak. However, by measuring the local phase of the surface

wave this condition can be more accurately observed and commented upon, as can

the increasing modal index of the surface wave on approach to this location.

It is clear from the periodicity of the oscillation in the phase data in Figure

5.6 that λSW has a value that is associated with the free space wavelength (λ0 =

15 mm at 20 GHz) at x = 0 where L = LStart = 1.6 mm (Figure 5.8(a)) and the

mode is photon-like (Figure 5.5). Beyond this position, λSW gradually decreases (n

increases) until some minimum value is reached. This recorded minimum occurs

at x = 70 mm and 135 mm on samples A and B respectively (Figures 5.6 (a),

(b) and 5.8(b)). Whereas the measured amplitude of the surface wave fields also

reduce to the noise floor at a similar position (i.e. propagation of the mode is

forbidden), the phase data is more resilient at low signal levels and is less sensitive

to variations in the background signal level. The phase information can therefore

be used to pinpoint the trapping location of the surface mode more precisely.
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Figure 5.7: Experimental observations of local field amplitude and phase of the
surface wave at fixed frequencies as a function of distance x along sample B at 25
and 30 GHz.

5.4.1 Modal Index Approaching the Limiting Frequency of

the Mode

Note that on approach to the trapping location modal index increases (Figure 5.9),

but is limited by the Brillouin zone boundary because the surface wave wavelength

becomes comparable to the pitch of the supporting structure. The pitch of the

structure in comparison to the locally measured phase of the surface wave can

be seen in Figure. 5.6). At this condition the surface wave is subject to Bragg

reflections due to this photonic effect. In addition, our probe is no longer able to

spatially resolve the phase in this limit due to its finite scattering cross section,

and the phase does not reach π. The observant reader will note that, after this

position, the periodicity of the phase data recovers its free space value, a subject

addressed in due course.

5.4.2 The Trapping Location of a Surface Wave

Also apparent in Figure 5.6 is that the trapping position occurs at a distance

along the sample beyond that which we would expect from our previous numerical

modelling. Experimentally (Figure 5.6) we observe this to occur at x = 70 mm and

x = 135 mm along Samples A and B respectively for the 20 GHz component of the

surface wave. In both cases, the trapping position corresponds to a lateral cavity
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Figure 5.8: Experimental observations of local field amplitude and phase of the
surface wave at a fixed frequency of 20 GHz as a function of distance x along
sample B. (a) and (b) Closer inspection of the local phase measured from the
mode supported by sample B on Figure 5.6. The periodicity of oscillation in
recorded phase corresponding to surface wave wavelength (λSW) supported on two
regions in x along Sample B at 20 GHz is highlighted by the arrows.

width of L = 18.0 mm on a non tapered sample. However numerical predictions

of the limiting frequency (inset Figure 5.5) suggest that this limit should occur on

a region of the waveguide corresponding to L = 16.8 mm.

To explore this discrepancy further, the experiment was replicated in two nu-

merical model. Figure 5.10 compares experimental data of locally measured ampli-

tude with numerical data obtained via FEM modelling of a surface wave supported

on sample B. Both data sets are normalised. A probe is used to excite a surface

wave in both of the numerical cases presented (red and grey curves). However, the

red data is indicative of the time-averaged electric field measurement in a model

where a probe is drawn at x = 127 mm, mimicking the location of the probe in

the actual experiment. The grey data represents the same system where the sur-

face wave is excited via a probe. However, in contrast to the previous numerical

model, the probe used to mimic the measuring probe in the experiment is not

drawn into the model. Comparison of these two models with experimental data

is used to ascertain what, if any, effect the scattering cross section of the probe

used to measure the fields of the surface wave might have on the supported surface

wave.

The modelled data is obtained by defining a line at height z = 0.25 mm above

the metasurface, sampling the modelled electric field amplitude at a height level

with the tip of the detecting probe. The experimental data is obtained by a probe

of exposed coaxial wire of length 2.5 mm therefore samples a larger volume in z of

the amplitude of the fields supported by the surface wave. The difference in the

spatial position of the overall peak in the experimental data in comparison to the
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Figure 5.9: Experimentally derived modal index as a function of distance along
samples A and B at 20 GHz illustrating an increasing modal index (decreasing
group velocity) with reduction of the asymptotic frequency. For both samples the
surface mode is supported at 20 GHz until the width of the supporting structure
becomes L = 18.0 mm.

numerical data can be attributed to this aforementioned difference in detection.

Further, the sharp spike in the red data at x = 127 mm after the overall peak can

be attributed to the tip of the detecting probe interacting with the electric field

of the supported surface wave. This spike is noted by the black arrow in Figure

5.10. There is no spike of this nature in the grey data as the model was solved

without a detecting probe in the geometry. In the experimental data this effect

is incorporated in the measurement of the surface wave and cannot be observed

directly.

By observation of the extension of the field associated with the surface wave

without a probe in comparison to the measured field with a probe it is clear that

there is a small extension of the local field amplitude due to near field coupling

between the detecting probe and the propagating surface wave. However, it is

too small a contribution to completely account for this discrepancy. Therefore we

propose this discrepancy is associated with the intrinsic width of the mode itself.

This conclusion is supported by the observation that the spatial separation of

cavities corresponding to L = 16.8 mm and L = 18.0 mm is different for the two

tapered samples.

5.4.2.1 Loss Mechanisms

The finite width of the mode can be attributed to three radiative decay channels

and one intrinsic loss mechanism that all surface waves supported by metamaterial

structures are subject to; ohmic loss. The three radiative decay channels include

the scattering of the mode out of the surface due to mode shape mismatch, Bragg
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Figure 5.10: Experimental (black) and numerical (red and grey) observations of a
surface wave supported on Sample B at 20 GHz. Numerical observations obtained
via FEM modelling and compare the amplitude of the surface wave at z = 0.25
mm above sample B, with(red) and without (grey) a measurement probe present
in the modelled system. The trapping location previously shown in Figure 5.6 is
also marked with a vertical black dot-dash line. The arrow indicated the spike in
the red numerical data illustrates the position of the measuring probe drawn into
the model and is due to the proximity of the probe.

reflection and loss due to coupling to the probe.

Consider the first mechanism, scattering of the mode out of the surface. A mi-

crowave surface wave is supported by a coherent oscillation of resonant elements,

such as cavities. If the geometry of one element differs significantly from a neigh-

bouring element, the shape of the electric fields supported by the element will be

modified with respect to that of the neighbour. In this case, the overall resonant

response of the array will be effected. In an extreme case, when there is no modal

overlap (as discussed previously in Section 4.4.3) or when a the medium through

which the surface wave is propagating changes suddenly (for example, a terminat-

ing metallic boundary) there will be a reflection. At this point the surface wave

will be scattered into free space, as well as back in the direction of propagation

and energy is dissipated.

The second mechanism, Bragg reflection, occurs when the period of the sur-

face wave becomes comparable to that of the pitch of the supporting structure.

Therefore, a reflection occurs.

Loss due to coupling to the probe can be due to a lack of field overlap between

the detected field and the measuring probe or excitation of the resonant condition

of the probe. This is minimised by ensuring the first resonant condition of the

probe occurs far above the frequency of measurement.

Ohmic loss is due to the interaction of the electric field decay of the surface
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wave into the supporting metallic structure and, for a real material is unavoidable.

At microwave frequencies a metal can be approximated to behave like a perfect

electrical conductor with and infinite conductivity, therefore electric field will not

penentrate into the surface. However, on approach to the resonant condition of

the surface wave structure this approximation fails and there is loss, due to an

increased density of states, into the metal.

5.4.3 Amplitude of Oscillations in Local Field Intensity

Consider next the oscillations in the local field amplitude data (Figures 5.6 and

5.7). They arise from a forward propagating surface wave mixing with a reflected

mode, to produce an oscillation with period of λSW/2. This reflection is due to Bragg

reflection, and also a mismatch in the overlap of the fields of the surface wave,

which is more significant for the shorter taper with a larger gradient (δL/δx). The

amplitude of these oscillations is indicative of the strength of reflection experienced

by the surface mode [127]. Therefore by inspection of Figure 5.6 it is clear that a 20

GHz surface wave supported by sample A experiences a reflection amplitude that

is over twice that of a surface wave supported by sample B. This is unsurprising

as the rate of change of limiting frequency and modal index in sample A occurs

spatially at more than twice the rate of sample B.

5.4.4 Oscillation Insensitivity

To ensure the amplitude of oscillations of the supported surface wave is not dictated

by the termination of the surface wave an experiment was carried out wherein the

terminating boundary condition at the end of a sample was changed.

Figure 5.11 presents the amplitude of the electric field associated with the sur-

face wave supported on sample A at 15 GHz. A comparison can be made between

the amplitude of the surface wave when sample A is terminated with absorber

and when the mode is terminated with a metallic sheet. This is represented by

the solid red and pink lines respectively. By inspection of both red and pink data

sets it is apparent that the terminating boundary at the end of the taper does not

effect the measured oscillations.

To contrast this the electric field associated with a surface wave supported by a

one-dimensional array of rectangular cavities of uniform lateral width L = 1.6 mm

was measured. When the array was terminated by an orthogonal metal wall the

oscillations in the measured field were large in comparison to the case of the same

supported surface wave terminated with an absorber boundary the oscillations,

as seen by the grey and black data sets respectively. The oscillations are much

greater when the surface wave is terminated by a metallic boundary supported by
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Figure 5.11: Experimental observation of the amplitude of the electric field associ-
ated with the surface wave supported by sample A. The pink and red data depict
measurement of a surface wave supported on sample A terminated in a metal wall
or an absorbing boundary, respectively. In contrast to this the black and grey data
depict a measure of the amplitude of electric field associated with a surface wave
supported by a 1D array of close-sided cavities with uniform width L = 1.6 mm.
The former (black) is terminated by absorber and the latter (grey) is terminated
by a metal wall, orthogonal to the propagation direction of the surface wave.

a uniform array and is shown to be sensitive to its termination boundary condition.

Therefore, the oscillations observed when measuring the amplitude of the elec-

tric field associated with the surface wave supported by samples A and B can

be attributed to both Bragg reflections and the non-adiabatic nature of each ta-

per. The oscillations are insensitive to the terminating boundary condition of the

sample.

5.5 Multi-Modal Excitation

Now inspect the local field amplitude and phase of the surface wave after the

trapping point is observed (Figure 5.6 and 5.12).

Quite unexpectedly the spatial periodicity of the oscillations in the phase re-

cover their free space value (n = 1) whereas we would expect there to be no

data beyond this point since the forward propagation of the fundamental mode is

forbidden. Figure 5.12 (a) shows an experimental field plot in the xy-plane just

above the top of the cavities while (c) shows field predictions obtained from FEM

numerical modelling of the entire geometry of sample A. The model geometry is

surrounded by absorbing (‘radiation’) boundaries positioned over one wavelength

away from the tapered cavity structure in the xz-planes and used as termination

boundaries in the yz-planes, similar to the microwave foam absorber in experiment.
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Figure 5.12: (a) Experimental field plot in the xy-plane (i.e. top down view) of
electric field amplitude at 25 GHz on sample B. White dashed line indicates the
edge of Sample B. (b) Experimental observations of local field amplitude of the
surface wave at 25 GHz as a function of distance x along samples A (solid black
line) and B (dotted black line). Vertical black dashed line indicates the position
of LStart. Both (a) and (b) are at the same fixed height above the sample, 0.25
mm. (c) Predictions of time-averaged electric field of the supported mode at 25
GHz on sample A in the xz-plane, note the re-radiation of the lowest order mode.
Regions of high and low field are red and blue respectively for (a) and (c).

Termination boundaries are further detailed in Chapter 3.

Figure 5.12 clearly illustrates that there exists a mode further along the array

with higher quantisation in lateral width (three antinodes). This is a surface wave

associated with the lowest order Fabry Perot resonance of the TE03 waveguide

mode in the cavities [100], with a limiting frequency greater than that of the

original TE01 mode. It is excited by fields scattered into free space at the original

trapping point (Fig. 5.12 (c)), and therefore both the fundamental and the higher

order surface mode of the array can be observed at the same fixed frequency.

Further experimental field plots of both sample A and B are observed in Figure

5.13 at 20 GHz, 25 GHz and 30 GHz which illustrate the concurrent excitation

of multiple modes of the supported surface wave. The excitation of the surface

wave associated with the TE05 waveguide is also apparent from inspection of the

amplitude data from Sample A in Figure 5.12 (b) at x = 163 mm and Figure 5.13,
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Figure 5.13: Experimentally obtained electric field maps at 20, 25 and 30 GHz (left
to right). The top three show the field of the surface wave excited on sample A, the
bottom three show the surface wave excited on sample B at the aforementioned
frequencies.

top right field plot.

5.5.1 Higher Order Mode excitation

Excitation of a mode requires the symmetry of the modal fields to match that of

the excitation source. In the case of samples A and B the excitation source is

probe or the previously excited mode. Consider the field associated with TE01,

TE02, TE03 in Figure 5.14.

Clearly, TE02 does not have an antinode at the mid-width of the cavity. As

the excitation source is a probe mid-width of the cavity, the field overlap of the

source means the mode that will be excited must also have an antinode at it’s
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Figure 5.14: Left: Electric field vector associated with the (a) TE01, (b) TE02 and
(c) TE03 supported in a rectangular cavity of h = 3.75 mm, pitch d = 1.6 mm and
width L = 10 mm. The plane of measurement is in the xy-plane and is equidistant
to the top of the closed-sided cavity. Right: Time-averaged electric field in the
xz-plane for the same three modes.(a), (b), (c) are measured on approach to the
resonant condition of the supported modes and are numerically calculated via
eignemode FEM modelling.

centre. Therefore surface modes associated with even lateral-quantisations of the

waveguide mode (e.g. TE02) cannot be excited.

Further consider the numerically calculated dispersion of a one-dimensional

array of cavities with uniform widths of L = 1.6 and 10 mm in Figure 5.15.

The first order quantisation of the surface wave supported on such a structure

is associated with the TE01 waveguide mode, the second order is associated with

the TE02 mode and the third order surface wave is associated with the TE03 mode.

At 30 GHz, when L = 10 mm, only the second order mode is excited. This can

be seen from the dotted red line in Figure 5.15, intersecting with the TE02 mode

in the propagating region of the dispersion curve. This is above the cut-off of the

fundamental mode and before the third order quantisation of the surface wave has

been excited.

To show that the second order mode cannot be excited by a probe in the

117



Microwave Surface Waves Supported by a Tapered Geometry Metasurface

Figure 5.15: Numerically calculated dispersion of one-dimensional array of cavities
with uniform widths of L = 1.6 and 10 mm. The dispersion associated with the
TE01, TE02 and TE03 modes of the L = 10 mm width of cavity are shown by the
dashed lines in comparison to L = TE01 mode shown by the thin solid black line.

experiment, numerical modelling of the system was carried out. Figure 5.16 shows

two electric field maps of the supported surface wave on (left) sample A (LStart=

1.6 mm) and (right) on a sample with LStart= 10 mm. The white dotted lines are

an indication of the outline of the supporting structure underneath the field map

only.

It is clear that the excitation of higher order modes is limited when LStart=

10 mm to excitation from residual far field effects of the probe only. Also, the

second order surface wave mode remains unexcited by the probe. By considering

the variation of the electric field and poytning vector (S) in x at mid-width of each

sample in Figure 5.17 and 5.18 the lack of higher order quantisations is clearly ob-

served. In particular, the direction of power across the top of a surface as is shown

by the Poynting vector is indicative of a propagating surface wave. Therefore the

complete lack of any magnitude of Poynting vector in the black data in Figure

5.18 is even more indicative that the mode is not supported. Therefore, the main

mechanism of excitation of higher order modes must primarily be scattering from

the reflection of the first mode approaching a stopping point.
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Figure 5.16: Top down view of numerically calculated time-averaged electric field
plots of a surface wave supported by a taper with a feed width of (a) L = 1. 6 mm
in comparison to a feed width (b) of 10 mm at 30 GHz. The black arrows note the
position and excitation surface wave. Excitation is achieved with a probe drawn
into the model. The length of the model is directly comparable to dimensions of
sample A and is terminated in radiation boundaries and the white dashed lines
are illustrative of the position of the supporting structure only.

Figure 5.17: Local electric-field amplitude of the surface wave supported by a taper
with a feed width of LStart = 1. 6 mm in comparison to a taper with LStart = 10
mm at 30 GHz (black).
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Figure 5.18: Normalised magnitude of the Poynting vector associated with the
surface wave supported by a taper with LStart = 1. 6 mm (red) in comparison to
a taper with LStart = 10 mm (black).

5.6 Conclusion

In conclusion, the spatial dependence of the group velocity associated with a mi-

crowave surface wave supported across a metasurface with a graded geometry is

studied. The metasurface consists of an array of closed-sided rectangular cavities

obtruding from a ground plane whose lateral widths are increased as a function

of distance from the point of excitation. This variation in cavity width results

in a spatially dependent modal index. Subsequently, frequency components of

the surface wave are slowed and trapped at different positions along the tapered

metasurface.

The use of a metamaterial surface as a dispersive device used for beam sharpen-

ing of a Doppler radar has been highlighted. Notably, the structure investigated in

this Chapter results in a spatially dependent modal index. A dispersive device can

be used to interact with a pulse transmitted by the radar. However, the dispersion

of that device will be tuned to a single frequency. If the radar was transmitting

pulses at two different frequencies, as is often the case for the purposes of velocity

unfolding [129], more than one dispersive device would be required for beam sharp-

ening. The structure outlined in this chapter is not limited by this constraint and

could be applied to sharpen the beam of a Doppler radar which transmits pulses

at different frequencies.

The trapping position and the behaviour of the supported mode approaching

this location have been experimentally observed with both local field amplitude

and phase data. Four notable aspects of this data have been discussed. Primarily,

the phase of the electric-field data provides a more accurate identification of the

trapping location compared to amplitude measurements alone. Secondly, the exact

stopping location of the surface wave does not correspond with numerical predic-
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tions obtained for a fixed-width one-dimensional array of cavities. Thirdly, the

oscillations observed in the local amplitude of the surface wave provide insight as

to the magnitude of reflection experienced by the surface mode close to this point.

The origin of the reflection mechanism is considered. Finally, higher order lateral

quantisations of the surface mode have been experimentally observed excited by

scatter of the fundamental mode from the trapping point.
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Chapter 6

Channelling a Microwave Surface

Wave

6.1 Introduction

The channelling of surface waves via the addition of dielectric overlayers to a

metamaterial surface is investigated in this chapter. The metamaterial surface

is composed of mushroom elements of a Sievenpiper array [68]. The Sievenpiper

array is designed such that it supports a TM surface wave both with and without

a dielectric overlayer placed directly upon the structure. However the dispersive

properties of the supported mode are modified by the addition of an overlayer,

resulting in a lower limiting frequency.

Initially, the dispersion of surface waves supported by an uncovered Sievenpiper

mushroom surface is analysed and measured. Then, a planar dielectric overlayer is

placed on the surface, covering it completely and the dispersion of the supported

TM mode of the modified system is measured. A lower limiting frequency of the

supported mode is observed in comparison to the limiting frequency of the mode

supported by an uncovered Sievenpiper mushroom array. The dispersions of the

TM mode supported by the covered and uncovered Sievenpiper mushroom surface

are compared and used to contrast to measurements concerning the channelling of

surface waves via the addition of dielectric overlayers to the Sievenpiper mushroom

surface supporting the mode. In the channelling case, the dielectric overlayers no

longer completely cover the Sievenpiper mushroom array.

Instead, the Sievenpiper surface is covered by a planar dielectric overlayer ex-

cept for a small central region, an uncovered channel of width L. The mode

associated with the uncovered region will continue to be supported at frequencies

above that of the mode associated with the surrounding covered regions. In this

way a TM surface wave is channelled across the metamaterial. By progressively
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narrowing the width of the channel, the interaction of the fields of the supported

mode within the surrounding dielectric overlayer increases.

The local electric field amplitude and phase of the supported mode in the

covered and uncovered regions of the Sievenpiper surface are experimentally and

numerically recorded. This data is compared with numerically and experimentally

determined dispersion measurements to gain insight as to the minimum possible

channel width before which perturbations due to the proximity of the bordering

overlayers are observed. Comment is made regarding the mechanism that dictates

the minimum width (L) of the uncovered channel.

6.2 Background

The addition of a dielectric overlayer to a conducting surface such as a metal

provides a mechanism by which a TM microwave surface wave can be confined

to the interface between the surface and free space [51]. This phenomenon was

extensively studied in the 1950’s ([33, 49, 135]) during the pursuit of more efficient

antennas composed of a metal wire coated in dielectrics [15]. More recently this

concept has been extended in the pursuit of surface wave Luneberg and Eaton

lens devices in the microwave [136] and optical wavelength regimes [137]. In these

cases the modal index varies as a function of radius from the centre of the lens by

varying the height of the dielectric overlayer. Modal index (n) has previously been

defined in Section 2.3.1.1 and measured in both Section 3.3.2.2 and in Chapter 5.

However, a dielectric overlayer is not the only mechanism by which a TM

surface wave can be confined to a metallic surface in the microwave regime. Indeed,

as discussed in Section 2.5.1, surface structures such as a 1D array of grooves,

2D holes or an array of ‘Sievenpiper mushrooms’ [18, 32, 51, 68] also provide

the necessary boundary conditions to support TM surface waves. These modes

exhibit limiting frequencies that are synonymous with a surface plasma frequency

in that the dispersion of the mode is limited by geometrically engineered resonances

in the same way a surface plasmon resonance is limited by the surface plasma

frequency. These structures have previously been described as metamaterials as

they gain their electrical properties from their geometric design and not their

intrinsic properties.

Dockrey et al. (2013) [94] recently demonstrated an example of an application

of designed surface structure via the fabrication of a Luneberg lens device, oper-

ating in the microwave regime. The limiting frequency of the mode supported on

the lens was spatially varied by engineering the dimensions of mushroom elements

of a Sievenpiper array. Consequently, the modal index (n) (discussed previously
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in Section 3.3.2.2) was spatially varied. Modal index can be described thus:

n =
λ0
λSW

(6.1)

where λ0 and λSW are representative of the wavelength of a free space mode and

the wavelength of the surface wave respectively. As the modal index was varied,

control of the propagation of the supported TM wave on the modified structured

was gained, resulting in Luneberg lens fabrication.

Anther application to result from of the study of a Sievenpiper mushroom array

includes beam steering of microwave patch antenna arrays via the control of surface

wave scattering off the array [138]. The resonant condition of the surface defines

the reflected phase from the surface, as is described shortly, and can be engineered

so that the collective response of the patches results in an antenna with a directed

beam profile.

Here, the fundamental mode supported by an array of the Sievenpiper ‘mush-

room’ structure with, without and in the proximity of dielectric overlayers is in-

vestigated experimentally. This mode is a TM surface wave, supported by the

structure at microwave frequencies [68]. The mode is a coherent oscillation of the

electric field associated with the mode supported by each element of the array, the

thickness of which is much less than λSW. The geometry of a Sievenpiper mushroom

structure and mechanism by which an array of such mushrooms support a surface

wave is discussed initially.

Highlighted in this discussion is the presence of a ‘band gap’ wherein propa-

gating modes are suppressed. The presence of a dielectric overlayer on the meta-

material surface modifies the lower band edge, a property which is subsequently

utilised to laterally confine the surface wave.

6.3 Sievenpiper ‘Mushroom’ Structure

The structure originally proposed by Sievenpiper et al. (1999) [68] is a three

layered system composed of a layer of dielectric sandwiched between a conducting

ground plane and a square array of square patches. Each patch is connected to the

conducting ground plane by a metallic via which perforates the dielectric layer.

The via connects to the mid-point of the patch, which in itself protrudes from

the layer of dielectric. Figure 6.1 (a) details the dimensions of the unit cell of the

Sievenpiper structure used in this chapter. The side length of the patch a < d and

resembles a mushroom when connected to the ground plane with a via, hence the

name Sievenpiper ‘mushroom’ structure. The two dimensional array composed of

the Sievenpiper unit cell used in this investigation is manufactured using standard
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printed circuit board (PCB) techniques with a dielectric core of Nelco NY-9220 (ε

= 2.2). An example of a Sievenpiper mushroom array is shown in Figure 6.1 (c).
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d

d

a
tmet

r

tε

d > a

tε

z

y x

Figure 6.1: (a)Unit cell of Sievenpiper mushroom array. Pitch d = 1.6 mm, patch
length a = 1.3 mm, via radius r = 0.15 mm, dielectric thickness tε = 0.787 mm
of Nelco NY-9220 (ε = 2.2) and metal thickness tmet = 0.0175 mm. (b) Photo of
a Sievenpiper mushroom array (c) Schematic of Sievenpiper mushroom LC model
[68].

The Sievenpiper mushroom array is frequently described as a high-impedance

surface. The general equation for impedance (Z) is given by the ratio between the

electric (E) and magnetic (H) fields.

Z =
E

H
(6.2)

propagating through a bulk medium. This is modified when describing the impedance

associated with a surface Zs which is specifically dependent on the ratio between

the tangential components of E and H in the air region above the structure only.

6.3.1 Application of the LC model to the Sievenpiper Mush-

room Structure

The Sievenpiper mushroom structure can be modelled as a parallel resonant cir-

cuit and by considering the impedance of each element acting in parallel, the

overall impedance of the surface Zs is described. As such, the inductive (L) and

capacitive (C) contributions to the impedance can be identified by considering the

interactions of an individual unit cell with incident electromagnetic radiation.

First consider the operation of the radio frequency (RF) source, a Vector Net-

work Analyser (VNA) used to generate microwave radiation, previously detailed
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in Section 3.2.1. A VNA is used as a microwave source to excite surface waves

on the Sievenpiper mushroom surface and is an AC source [71]. Therefore, the

nature of the therefore the direction of the electric field will oscillate in time.

The source is connected to a secondary device, which emits radiation with electric

field polarised in the xz-plane. Consider this excitation applied to a Sievenpiper

mushroom structure. Initially, the electric field component in the z-direction will

diffract in the gaps between the patches, inducing current in the top patch layer of

the Sievenpiper mushroom structure. The current induces a voltage which inter-

acts with the component of the electric field in the x-direction and charge becomes

concentrated at the edges of the patch.

Figure 6.2: (a) Schematic of Sievenpiper mushroom LC model [68]. Dimensions
include pitch d = 1.6 mm, patch length a = 1.3 mm, , dielectric thickness tε = 0.787
mm of Nelco NY-9220 (ε = 2.2) and metal thickness tmet = 0.0175 mm. Wavelength
of incident radiation λ >> tε (b) Schematic of the electric field direction on the
top of the patches when a TM surface wave is excited on an array of Sievenpiper
mushroom structures.

The resulting concentration of charge results in a capacitance, and is shown in

Figure 6.2 (a). The electric field interaction in the x-direction are shown in Figure

6.2 (b).

Due to the time dependent nature of the excitation field the capacitive charge

at the edge of the patches will oscillate back and forth, flowing around the longer

electrical path of the unit cell (i.e. through the vias and conducting metal ground

plate). Capacitance C is defined as

C =
Q

V
=

Q

E(d− a)
=

Qε

σ(d− a)
=

Aε

(d− a)
(6.3)

where Q is the charge on the patch, V is the voltage induced on the patch, ε is

the permittivity of the dielectric layer, E is the amplitude of the electric field, σ

is the charge density on the patch and A is the area of the side of the patch where

A = atmet). a is patch length and d is the pitch of the unit cell, shown in Figure

6.1. Therefore (d− a) is the separation distance between the patches.

To calculate the capacitance associated with one unit cell of the Sievenpiper
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array many variables must be considered. The voltage across the patch would

depend on the strength of the electric field emitted by the source, and the strength

of diffraction of the field in the gap between the patches. This, as well as the charge

density σ on the edge of the patch and total charge on the patch would also be

subject to variations depending on any resonant condition supported by an array

of Sievenpiper mushrooms, such as a TM mode. As such, the calculation is non-

trivial.

The charge oscillating around the longer electrical path length of the unit cell

has a magnetic field associated with it and therefore an inductive component due

to this resonance can be identified. Inductance (L) is described thus:

V(t) = L
δI

δt
(6.4)

where V(t) is time dependent voltage and I is current. The calculation of induc-

tance is non-trivial, for the same reasons as detailed Equation 6.3.

Due to the collection of charge at the edges of each patch the layer of metallic

patches in a Sievenpiper mushroom array act as a capacitive frequency selective

surface (FSS) [139].

The individual component contributions of capacitance and inductance asso-

ciated with an individual Sievenpiper mushroom have been defined. As an array

of these structures are connected by a conducting metallic ground plane, the re-

sponse of the Sievenpiper array is described as analogous to a parallel resonant

circuit when they are irradiated with a plane wave. A complex surface impedance

(Zs) associated with the Sievenpiper mushroom array is defined thus:

Zs =
iωL

1− ω2LC
(6.5)

The surface is inductive at low frequencies and capacitive at high frequencies.

Consider now the resonant condition associated with the inductance and capaci-

tance of a system, defined thus:

ω0 =
1√
LC

(6.6)

where ω0 is the resonance frequency of the mode. By substitution of Equation

6.6 into Equation 6.5 it is observed that the surface impedance Zs will increase

on approach to the resonant condition of a mode supported by the Sievenpiper

mushroom array, hence the description of the array as a high-impedance surface.

However, according to Equation 6.5, Zs is infinite when the Sievenpiper mushroom

array supports a mode it’s resonance frequency ω0. In practice this will never hap-

pen, impedance is maximal at 377 Ω. The surface impedance model does not take
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into account the whole system and is an approximation of field interaction tangen-

tial to the interface and does not include any consideration as to the interaction of

the electromagnetic fields in the dielectric overlayer of the Sievenpiper mushroom

structure.

However, the channelling experiment detailed in this chapter studies surfaces

with an area many times greater than the dimensions of the unit cell of an individ-

ual Sievenpiper mushroom element. As such, the impedance model is utilised for

numerical modelling of the channelling experiment. The resonant frequency of the

modes supported by the Sievenpiper mushroom array are measured, therefore the

wavevector as a function of frequency associated with the supported TM surface

wave, kTM, is known.

The dispersion relations of the modes supported on such an surface as described

using the effective surface impedance model is described thus:

kTM =
ω

c

√
1− Z2

TM

η2
(6.7)

kTE =
ω

c

√
1− η2

Z2
TE

(6.8)

where η is the impedance of free space (377 Ω), ZTM the impedance associ-

ated with the surface supporting a TM wave, ZTE the impedance associated with

the surface supporting a Transverse Electric (TE) wave and kTM and kTE are the

wavevectors of the mode. This has been discussed previously in Section 2.5.3. By

using Equations 6.7 and 6.8, the surface impedance at a given frequency is known.

This value can be assigned to a sheet in a model used to numerically calculate

mode resonances during FEM modelling, a process previously defined in Section

3.4.3.4. Numerical modelling with an impedance sheet is computationally less ex-

pensive and far more achievable than trying to represent a full Sievenpiper array

structure. Therefore this method is used for comparative purposes to investigate

the fields of surface waves above the top of the supporting array only.

6.3.2 The Band Gap

The Sievenpiper mushroom structure is used to investigate lateral confinement of

a TM surface wave primarily because it exhibits a ‘band gap’ in the dispersion

relation of the supported surface wave. In other words, there is a range of frequen-

cies over which surface waves are not supported by the structure. Consider Figure

6.3, reproduced with permission from Sievenpiper et al. (1999) [68]. Figure 6.3 (a)

depicts the dispersions numerically calculated using effective surface impedance
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model and (b) finite element method (FEM) modelling. The surface wave band

gap is labelled on Figure 6.3 (b) with a red box. Notice that the vias in Figure

6.3 (a)(inset) are cuboid, in comparison to the unit cell in Figure 6.1 (a) where

they are cylindrical. The surface wave band gap is insensitive to this change of

shape, as is discussed later in this chapter. The patch layer of the original array

as presented in [68] and the array composed of the unit cell represented in Figure

6.1 (a) are composed of square patches. Figure 6.3 was achieved via an eigenmode

model, a solution type that has been discussed previously in Chapter 3.

Figure 6.3: Figures reproduced with permission from D. Sievenpiper publication
[68]. (a) Dispersion diagram of the TM0 and TE surface wave predicted by the
effective surface impedance model. A schematic of the Sievenpiper mushroom
array investigated is inset.(b) Dispersion diagram of the modes supported by the
array as calculated by Finite Element Method (FEM) modelling. The presence of
the band gap above the first mode is marked by a red box. The array dimensions
are: pitch d = 2.4 mm, patch length a = 2.1 mm, width of square vias = 0.36 mm
and total thickness of structure = 1.6 mm. The volume between the patches was
filled with a dielectric of permittivity ε = 2.2.

Both TM and TE surface modes are represented on the dispersion diagram in

Figure 6.3 (b). The fundamental mode supported by the structure is TM and can

be seen to follow the light line at low frequencies. However, when the frequency

approaches 10 GHz the dispersion curve is seen to diverging perceptibly and quite

rapidly from the light line. The TE mode begins at a higher frequency within the

radiative region to the left of the light line. Consequently, there is a broadening

of the TE mode as indicated by the error bars. The TE0 mode continues to slop

upwards and crosses the light line whereupon it becomes a bound non-radiative

surface mode.

The band gap is defined as the frequency range over which no bound surface

waves are supported. In this case, the band occurs between the maximum fre-

quency at which the TM0 mode is supported and the frequency at which the TE0

mode crosses the light line. The resonant frequency as predicted by the effective
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surface impedance model (ω0) is centred in this surface wave band gap region.

An example of the electric and magnetic fields associated with the TM modes

supported by an isotropic Sievenpiper array will follow shortly in Section 6.4.

6.3.3 Disadvantages Associated with the Effective Surface

Impedance Model

Sievenpiper’s original paper [68] highlights the lack of comparison between the

effective surface impedance model and both experimental and numerical analysis

of the dispersion of the surface modes supported by the Sievenpiper array. Exper-

imental and numerical analysis of the modes supported by the array clearly show

the presence of a band gap whereas the effective surface impedance model does

not predict one.

Previous investigations regarding the tuning of the band gap by Clavijo et al.

(2003) [140] reveal that the lower band edge as defined by the asymptotic limit of

the TM0 mode is sensitive to the periodicity of the via layer and thickness of the

via layer. The TE mode which defines the upper band edge is only sensitive to the

FSS layer. Conversely, the TE mode was shown to be insensitive to the dimensions

of the array of vias and the TM0 insensitive to the FSS patch layer. This conclusion

was reached by approximating the Sievenpiper structure to an effective medium

(with effective permittivity εeff and permeability µeff) and is detailed in Clavajo

et al. [140]. Rance 2013 [141] experimentally investigated these dependencies by

measuring the dispersion of the surface waves supported by an array of rectangular

Sievenpiper mushrooms. The position of the lower band edge was shown to result

from the relative power flow of the surface wave on resonance in the dielectric layer,

a result of the frequency dependent effective permittivity (−εeff), in comparison

to the power flow of the mode in the region above the Sievenpiper array (+ε). The

band gap is not due to interaction with the Brillouin zone boundary imposed by

the periodicity of the structure, as is typical in photonics.

The effective surface impedance model for TM and TE surface waves as defined

by Equations 6.7 and 6.8 relies on the ratio between the tangential components of

electric and magnetic field above the surface of the structure. The model cannot

predict the band gap as it does not account for the interaction between the electric

and magnetic fields in the layer of vias surrounded by dielectric and the FSS layer

(patch array).

6.3.3.1 The Characteristics of the Sievenpiper Mushroom Array

The literature that evolved from Sievenpiper’s original publication refers the band

gap as a surface wave ‘suppression band’ [140, 142, 143, 144, 145, 146] and shall
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hence forth be referred to as such in this thesis. These publications focus on both

the position of the surface wave suppression band in frequency and the frequency

dependent characteristic of the phase on reflection from a Sievenpiper mushroom

structure. While it is not an attribute used in this chapter it has generated enough

interest to be worthy of a brief note.

The reflection of the electric field from the surface of a perfect electric conductor

(PEC) at which the tangential component of the electric field is forced to zero

exhibits phase shift of π radians relative to the incident field. Conversely, the

electric field reflection from a surface which acts as a perfect magnetic conductor

(PMC) exhibits no phase shift relative to the incident field. The PEC surface is

described as ‘low impedance’ as the ratio between the tangential components of

the electric and magnetic fields with respect to the plane of the surface is small

(Equation 6.2). For a PMC surface this ratio is very large, hence description of

the surface as ‘high impedance’.

The ‘in-phase reflection band’ associated with a Seivenpiper array describes a

range of frequencies between which the phase shift on reflection is ±π
2

and occurs

close to the PMC condition. Hence a Sievenpiper mushroom array can be described

as a high impedance surface. This is surprising as a large percentage of the surface

of a Sievenpiper array is composed of the metallic layer of patches. The in-phase

reflection band and the suppression band are not forced to occur over the same

range of frequencies. The ability to design each band by modifying the geometry

of the structure is a highly valued attribute of the Sievenpiper mushroom structure

in the pursuit of low gain antennas.

6.4 Addition of a Dielectic Overlayer

The addition of a dielectric overlayer to a structure that supports a surface wave

reduces the limiting frequency of that mode. When the Sievenpiper mushroom

array is uncovered, the electric field associated with the fundamental mode sup-

ported by the array extends from the top of the surface structure and penetrates

into free space. After the addition of the covering overlayer, the electric field of the

surface wave penetrate into the dielectric overlayer where εDielectric > εFree Space.

By inspection of Equation 6.3, this will result in an increase in the capacitance

of the array structure. By considering Equation 6.6 it is clear that the increased

capacitance will result in a lower resonant frequency.

The time-averaged electric and magnetic fields associated with the first two

TM surface modes supported by the Sievenpiper array are shown in Figure 6.4.

The fundamental mode, TM0, is represented in (a) and (c) and the TM1 mode is

represented in (b) and (d). The electric field is polarised parallel to the xz-plane

131



Channelling a Microwave Surface Wave

Figure 6.4: Field profiles of TM0((a) and (c)) and TM1 ((b) and (d)) modes of the
Sievenpiper array near resonance. The colour maps in (a) and (b) are indicative
of the time-averaged electric field strength, and arrows indicate the direction of
the instantaneous electric field. The colour maps in the xy-plane in (c) and (d)
represent the time-averaged magnetic field of the supported mode, and the arrows
are indicate the direction of the instantaneous magnetic field. The xy-plane bisects
the unit cell directly below the patch layer, within the Neltec 9220 dielectric. The
time-averaged electric field in the xz-plane previously displayed in (a) and (b) is
overlayed onto (c) and (d). Relative field strength is indicated by a range between
the colours of red (high field) and blue (low field).

for both modes. The time-averaged magnetic field and vector direction is shown

in Figures 6.4 (c) and (d) for the TM0 and TM1 modes respectively. The magnetic

field is plotted on a plane parallel to the xy-plane, directly beneath the patch layer

(FSS) of the Sievenpiper structure. The time-averaged electric field is overlaid

onto Figure 6.4 (c) and (d) in the xz-plane.
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6.4.1 The TM Suppression Band

A TM0 can only be excited with an electric field vector component normal to the

plane of the FSS layer. The method of excitation used here is a surface wave

launcher, detailed previously in Section 3.7.1. The launcher has a component of

electric field polarised primarily in the vertical direction, normal to the plane of

the FSS layer therefore will excite TM modes. By their very nature a TE mode

requires excitation via electric field polarised parallel to the horizontal y-direction.

Subsequently, no TE modes will be excited via the surface wave launcher device

so are not detailed. As a result, the TM0 and TM1 modes form the lower and

upper edges of the suppression band for the proposed investigation into surface

wave channelling.

Figure 6.5: Dispersion relation of the TM0, TE and TM1 modes of the Sievenpiper
array of dimensions described in Figure 6.1. Represented by the dot long-dash line,
the double-dot long-dash line and the triple-dot-long-dash line are the TM0, TE
and TM1 (respectively) as numerically calculated by FEM modelling. All dotted
black lines are representative of the modes supported by a Sievenpiper array of
infinite extent. All dotted blue lines represent the same array with a dielectric
overlayer ε = 2.6 of thickness 2.95 mm. The experimentally obtained dispersions
for a Sievenpiper array with and without a dielectric overlayer are plotted as
red and grey crosses (respectively). The suppression band associated with the
Sievenpiper array with a dielectric overlayer is noted by a band of red and the
Brillouin zone edge of the structure is marked by the vertical grey dashed line.

Figure 6.5 shows the dispersion of the first three modes of the Sievenpiper mush-

room array numerically obtained from finite element method modelling (FEM)

calculations via an Eigenmode solution. The dimensions of the modelled struc-

ture are the same as previously stated in Figure 6.1. The TM0, TE and TM1 are

represented by the black dot long-dash line, double-dot long-dash line and triple-
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dot long-dash line respectively. Overlaid on this plot are the first three modes

supported by the Sievenpiper mushroom array completely covered by a dielectric

overlayer of permittivity ε = 2.6 and thickness w = 2.95 mm. The TM0, TE and

TM1 modes supported by the Sievenpiper structure are represented by the blue

dashed lines on Figure 6.5.

Crucially, the dispersion relation of the TM0 mode after the addition of an

overlayer has been is shifted down in frequency. Dielectric overlayers on top of the

Sievenpiper mushroom structure reduce the limiting frequency of the structure as

the vertical component of electric field associated with the TM surface wave (kz)

is now propagating through a medium of permittivity ε >1.

6.5 Experimental Setup

6.5.1 Addition of a Dielectric Overlayer Completely Cov-

ering the Sievenpiper Mushroom Array

Consider again Figure 6.5. The red and grey crosses overlaid onto the numerical

data represent experimentally measured dispersions for the modes supported by an

uncovered Sievenpiper array and an array that is completely covered by a dielectric

overlayer. Figure 6.6 (a) and (b) schematically show the two experimental setups

associated with the dispersion measurement represented in Figure 6.5.

The numerical modes in Figure 6.5 agree well with the experimentally deter-

mined dispersions of the surface waves supported on Sievenpiper structure with

and without the dielectric overlayer. These initial measurement are later compared

to the measurements of a surface wave supported in an uncovered channel region

on the Sievenpiper mushroom array, which is surrounded by dielectric overlayers.

The experimental setup associated with the dispersion measurement of the channel

mode is shown schematically in Figure 6.6, (a) and (b).

6.5.2 TM Surface Wave Channel Using a Sievenpiper Mush-

room Array and Dielectric Overlayers

To investigate the lateral confinement of a TM surface wave, two regions of the

sample are each covered by a dielectric overlayer placed directly on top of the

Sievenpiper array surface with an uncovered region, of width L, in between the

layers. Figure 6.6 (c) and (d) shows schematics of this setup with two different

widths L of uncovered channel. The dielectric overlayer is a material known as

perspex.
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Figure 6.6: Schematics of four separate experimental setups, top down view. (a)
An uncovered Sievenpiper mushroom array (orange). (b) A Sievenpiper mushroom
array covered with a dielectric overlayer (grey). (c) A Sievenpiper mushroom
array with two dielectric overlayers covering the array. The region between the
overlayers remains uncovered, resulting in a channel. The width L between the
two dielectric layers (grey) on top of the Sievenpiper mushroom array (orange) is
shown. (d) Same experiment as (c) except that channel width L is smaller. The
direction of propagation of radiation from the excitation source, the surface wave
launcher (blue), is noted by the white arrows. Geometrically graded microwave
absorber lines the edges of the Sievenpiper mushroom array, with and without
dielectric overlayers to minimise reflections from the edge of the array. All dielectric
overlayers used are described by ε = 2.6 and have a thickness of w = 2.95 mm.
They are a material known as perspex.

The metamaterial surface supports a TM surface wave with a different lim-

iting frequency in the covered and uncovered regions respectively. Therefore the

frequency of the lower band edge of the TM suppression band will also differ

with respect to the covered and uncovered regions. Consequently, between these
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two overlayers, there is an uncovered region where the surface mode will continue

propagating at frequencies above that of the limiting frequency of the surrounding

region. In this section experiments investigate how narrow a channel between over-

layers can be made until the mode supported in the uncovered region is effected

by the proximity of the bordering dielectric layers.

6.5.2.1 Excitation and Measurement

A surface wave with planar wavefronts is excited by a microwave ‘surface wave

launcher’ as designed by Mr S. Berry. A top down view of the launcher has been

labelled in Figure 6.6 as a blue box with the direction of excitation of radiation

from the launcher noted by the white arrows. A schematic of the surface wave

launcher’s composition and details of its operation has been previously been de-

tailed in Section 3.7.1. However, it is now useful to briefly detail the launcher’s

operation when used to excite a surface wave on a Sievenpiper array covered by a

perspex overlayer.

Figure 6.7: Schematic of experiment for illustrative purposes, adapted from
‘Oblique Angle Scattering of Surface Waves from Surface Wave Absorbing Ma-
terials’ by Mr S. Berry [83]. Schematic of surface wave launcher in the xz -plane.
The lens is composed of two parallel metallic plates separated by a cavity with
a perspex lens placed inside the cavity. The plates are considered to be PEC at
microwave frequencies. The aperture of the lens occurs when x = 150 mm and
rests on the Sievenpiper array, schematically represented by the orange box. A
coaxial cable connects an RF source such as a VNA to the lens where a metallic
pin protrudes into the cavity, exciting a transverse electromagnetic (TEM) mode
within the cavity. This mode propagates radially away from the pin and results
in spherical wavefronts with an electric field polarised in the z-plane (red arrow in
(a)). Interaction with the perspex lens results in the mode’s transformation from
spherical wavefronts to planar wavefronts, resulting in uniform excitation of the
mode supported by the array. The perspex dielectric overlayer and the absorber
used to terminate the surface wave are also illustrated.

Figure 6.7 illustrates the surface wave launcher used to excite surface waves

on a Sievenpiper mushroom array covered by a perspex overlayer. The launcher

consists of a point source placed orthogonal to a pair of parallel metallic plates.
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The point source is marked by the pin in Figure 6.7. The radiation emitted by

the source is focused by a perspex lens so that emission from the aperture is

approximately collimated between the operating frequency range of 10 to 30 GHz.

The aperture of the lens is a distance of 150 mm away from the pin.

The launcher can excite surface waves approximately uniformly in the y-direction

via evanescent field associated with diffraction from the aperture between its oper-

ating frequencies. This will allow investigation of the phase of the mode supported

in the uncovered channel. Crucially, the electric field associated with the excitation

is oriented vertically (parallel to z-direction).

With respect to measurement of the supported surface waves, consider that the

position of the aperture of the launcher is at position (x,z) = (0 mm, 0 mm) and

is parallel the y-direction. The launcher is place upon the metamaterial surface

and aligned so that the intersection between array elements is parallel to and in

proximity of the edge of the aperture. Surface waves are excited and propagate

in the x-direction approximately uniformly as a result of careful alignment. This

alignment is subject to a small amount of experimental error through misalignment

of the aperture of the launcher by ±(d− a). The edges of the dielectric overlayers

shown in Figure 6.6 (c) and (d) are straight and aligned along the intersection

of neighbouring elements of the array layer. Therefore, the width of the channel

between the overlayers will remain constant regardless position in the x-direction.

Transmission of energy is mediated by the excitation of these modes and their

local electric field amplitude and phase are measured by connecting a vertically

oriented antenna to a Vector Network Analyser (VNA). This antenna is a coaxial

wire with the outer sheath and dielectric coating removed from the end of the

wire, leaving 2.5 mm of exposed core to detect the electric field allowing spatial

variation of the fields to be determined. The position of the detecting antenna is

modified by a computer controlled motorised stage. This method of field detection

has been previously elaborated upon in Chapter 3.

6.5.3 Measurement of Spatially Dependent Phase

The phase of the measured electric field as a function of position on the xy-plane is

shown in Figure 6.6 for (a) an uncovered Sievenpiper array and (b) a Sievenpiper

array with a dielectric overlayer. The two systems are shown schematically in

Figure 6.6 (a) and (b). The xy-plane of measurement is maintained at z = 3 mm

in height above the metamaterial surface for both Figures 6.6 (a) and (b). The

posistion of z = 0 mm has been noted previously on Figure 6.7 for clarity. The

dielectric overlayer placed upon the Sievenpiper array in Figure 6.6 (b) is with

perspex with ε = 2.6 and has a thickness w = 2.95 mm. Both plots are obtained
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Figure 6.8: Experimentally determined local phase of the electric field (Φ) detected
at 20 GHz over (a) the uncovered Sievenpiper array and (b) a Sievenpiper array
with a dielectric overlayer of permittivity ε = 2.6 and thickness t = 2.95 mm. The
detecting antenna is at a constant height of z = 3 mm above the surface so that the
overlayer can be placed underneath the antenna without modifying the position of
the probe. The surface wave launcher is used to uniformly excite the mode. The
launcher is placed at x = 0 mm and is not included in this figure.

at a frequency of 20 GHz and the starting point of the scanning antenna for both

measurements is at position (x,y,z) of (20 mm, 0 mm, 3 mm). Notice that the lines

of constant phase in Figure 6.6 are approximately parallel to the y-axis, indicating

that the launcher is exciting surface waves uniformly.

As a surface propagates across a surface, the phase of the supported mode

will vary spatially and oscillate between ±π. The frequency of this oscillation

is indicative of wavelength of the surface wave. This has been shown previously

in Chapter 3, Figure 3.10. Comparison of Figure 6.6 (a) and (b) reveals that the

phase of the supported modes measured as a function of distance differ significantly

in wavelength for the covered and uncovered Sievenpiper array.

Figure 6.5 displays the experimentally measured dispersion for both systems.

20 GHz has been marked on this graph and can be seen to lie in the suppression

band for a Sievenpiper mushroom with an overlayer. Therefore, a surface wave is

not expected to be supported. The electromagnetic mode detected in Figure 6.6
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is in fact a free space wave.

Inspection of Figure 6.6 (b) reveals the period of the wave is approximately

15 mm which is equal to λ20 GHz in free space. Notably, the wave being measured

simply corresponds to that of a grazing photon, and not that of a surface wave.

The wavelength of the field in Figure 6.6 (a) is observed to be much less than that

of a grazing photon (b) as without a dielectric overlayer this surface still supports

a TM0 surface wave at 20 GHz. This is crucial to the investigations of channelling

detailed further in this chapter.

6.5.3.1 Measuring Dispersion

Measurements of the dispersion of a surface wave supported by a Sievenpiper

mushroom array with and without a dielectric overlayer is achieved with the setup

schematically represented in Figure 6.6. In addition to measuring the dispersion

of the surface wave on the covered and and uncovered systems (Figure 6.6 (a)

and (b)), the same technique is used to measure the dispersion of surfaces waves

laterally confined between overlayers (Figure 6.6 (c) and (d)). Two perspex over-

layers of dimension (x,y,z) = (250 mm, 150 mm, 2.95 mm) are placed on top of the

array such that the width, L, between the overlayers can be varied. The detecting

antenna maintains a constant height of 0.25 mm ± 0.2 mm above the uncovered

Sievenpiper array and is located centrally in the channel between the overlayers.

It remains equidistant to the two overlayers as it is scanned in the x-direction away

from the lens source, directly above the intersection between two neighbouring ele-

ments of the Sievenpiper array. The tip of the antenna extends beyond the surface

of the dielectric overlayers with a starting position of ( 20 mm, 25 mm, 0.25 mm)

and final position of (270 mm, 25 mm, 0.25 mm)

The technique used to measure the dispersion of the surface wave within the

uncovered channel was developed by Mr J. Dockrey [82] and evolved from the

initial dispersion measurement technique as described in Section 3.3.2. The phase

of the surface wave is measured at a single frequency as a function of distance

along the supporting surface and is unwrapped as a function of position. kx is

determined by analysing the gradient of the unwrapped phase. This is repeated

for each frequency. Phase unwrapping has been discussed previously in Section

3.3.3 so will not be further detailed.

6.6 Results and Analysis

Experimentally obtained dispersion of a TM0 mode supported in a channel between

two dielectric overlayers are presented in Figure 6.9 (blue circles). The width of
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the channel L is varied between 3.2 mm and 25.6 mm in step sizes of 3.2 mm,

twice the pitch (d) of a Sievenpiper mushroom unit cell.

Figure 6.9 compares measurements of a mode supported in an uncovered chan-

nel between overlayers to the experimentally and numerically determined disper-

sions of a surface wave supported by a Sievenpiper array completely covered and

completely uncovered by a dielectric overlayer. The differences in these setups

has been shown schematically in Figure 6.6 and has been presented previously

in Figure 6.5. Experimental data has been overlaid as purple and black crosses

detailing the dispersion of the surface wave supported by the completely covered

and completely uncovered Sievenpiper array (respectively) and the numerical data

is represented by grey and red lines for the same two systems (respectively). At

20 GHz the TM0 mode is expected to be supported by a completely uncovered

Sievenpiper surface but not supported by a Sievenpiper surface covered with a di-

electric overlayer, as is depicted in the previous measurement displayed in Figure

.

As previously shown in Figure 6.4, the electric field of the TM0 mode extends

out of the surface in large loops in the xz-plane. The magnetic field remains

contained within the plane of the surface, parallel with the xy-plane and in the

dielectric layer of the Sievenpiper mushroom structure. The confinement of the

surface mode between two dielectric overlayers onto the surface of the array does

not change the boundary condition experienced by the magnetic field contained in

the dielectric layer, and the mode remains purely TM in character. If the edges of

the dielectric overlayers are aligned with the intersection between elements of the

array as well as invariant in thickness, there is no change of boundary condition

experienced by the electric field in the x-direction. In practice there will be a small

margin of experimental error concerning both the smoothness of the edges of the

layers and their placement on the array but this will be limited to the size of the

gap in between elements (± (d− a)).

6.6.1 Frequency Dependent Dispersion Characteristics

One might naively expect the dispersion of the mode supported in the channel

to strongly resemble the dispersion of an uncovered Sievenpiper mushroom array

until, at some critical width L, the presence of the bordering overlayers perturbs

the supported surface wave. By observation of Figure 6.9 one can see this is

not the case. The dispersion of the mode measured at a single channel width

strongly resembles both the dispersion of the mode associated with the uncovered

Sievenpiper mushroom array and the dispersion of the mode associated with the

covered Sievenpiper mushroom structure, for two different frequency ranges.
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Figure 6.9: Dispersion plots of a TM0 mode supported on a Sievenpiper mushroom
array in an uncovered channel between two dielectric overlayers at separation dis-
tance L (blue circles). Separation distance L is modified so that modes supported
in channels of widths 3.2 mm, 6.4 mm, 9.6 mm, 12.8 mm, 16 mm, 19.2 mm, 22.4
mm and 25.6 mm are measured. The dispersions of a mode supported on a com-
pletely covered (black crosses) and uncovered Sievenpiper array (purple crosses)
are compared to the dispersion associated with the channelled mode. Numerically
determined dispersions for the completely covered and uncovered cases are plotted
as solid red and grey lines (respectively). The solid black line represents a grazing
photon.
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At small channel widths the dispersion measured strongly resembles that of

the dispersion of the TM0 mode supported by a Sievenpiper array covered by a

dielectric overlayer. This is strong resemblance is consistent up to and includ-

ing the dispersion measured at 15 GHz, beyond which there are no longer any

modes measured. As the channel width is increased, this maximum frequency at

which a TM0 mode is supported reduces until the channel width L = 19.2 mm at

which point something quite unexpected is observed. To highlight this Figure 6.10

replicates the dispersion shown in Figure 6.9 (f) in greater detail.

Figure 6.10: Measured dispersion of a TM0 mode supported on a Sievenpiper
mushroom array in a channel between two dielectric overlayers (blue circles). The
separation distance L between the two overlayers is 19.2 mm. The overlayers
are invariant in thickness (w = 2.95 mm and place such that the edge of the
layer is parallel to the intersection between two lines of neighbouring elements in
the x-direction. Also shown is the numerically calculated dispersion of the TM0

mode supported by a Sievenpiper array with (grey) and without (red) a dielectric
overlayer of the aforementioned thickness. Experimentally determined dispersions
for the same two systems are represented by purple and black crosses (respectively).

Inspect Figure 6.10. Over the frequency range of 5 to 10 GHz, the mode sup-

ported in the uncovered channel of width 19.2 mm has a dispersion which strongly

resembles the dispersion of a mode supported by a Sievenpiper array completely

covered by a dielectric overlayer. The solid grey line and purple crosses denoted

the numerically calculated and measured dispersion for the covered system, re-

spectively. A schematic of the completely covered array and the array with an

uncovered channel region is shown in Figure 6.6 (b) and (c).
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As the frequency becomes greater than 10 GHz, the dispersion of the mode

supported by the channel is not measured again until 17 GHz. At this frequency

the dispersion in the uncovered channel strongly resembles the dispersion of a mode

supported by a completely uncovered Sievenpiper mushroom array. The solid red

line and black crosses denoted the numerically calculated and measured dispersion

for the covered system, respectively. A schematic of the completely uncovered

array and the array with an uncovered channel region is shown in Figure 6.6 (a)

and (c). The comparative similarity of the measured dispersion continues as the

frequency increases, ceasing when the mode is no longer measured on approach to

the resonant condition of the surface wave. Numerical modelling is achieved via

the FEM technique and has previously been discussed in conjunction with Figure

6.5.

The measurement of the dispersion of the mode supported in the channel is

clearly frequency dependent. Inspection of Figure 6.10 reveals that at lower fre-

quencies it compares well with the mode supported by the Sievenpiper mushroom

surface covered with an overlayer while at higher frequencies it resembles a mode

supported by an uncovered metasurface. The dispersion of the TM modes sup-

ported in channels with L > 19.2 mm continues to exhibit similar character however

this chapter will now continue to focus on the measurements of the surface waves

supported in a channel of width L = 19.2 mm.

6.6.2 Comparison of Numerical and Experimental Mea-

surements of Electric Field Amplitude and Phase

Figures 6.11 and 6.12 show numerically obtained phase (a) and time-averaged

electric field (b) compared with experimentally obtained local phase (c) and time-

averaged electric field (d) associated with the modes supported in an uncovered

channel region of a Sievenpiper mushroom array, surrounded by regions of the

Sievenpiper array which are covered by dielectric overlayers. This setup has pre-

viously been shown schematically in Figure 6.6 (c).

For both Figures 6.11 and 6.12, width of channel L = 19.2 mm, thickness

dielectric overlayers t = 2.95 mm with a permittivity ε = 2.6. Both the time-

averaged electric field and phase associated with the supported surface wave are

measured in the xy-plane, 3 mm above the top of the Seivenpiper mushroom

structure. This is similar to the previous measurement detailed for Figure 6.6.

In the numerical case, a plane is defined in the FEM model at z = 3 mm so

that time-averaged electric field and phase can be numerically calculated. In the

experimental case, the tip of the probe used to sample the field of the surface

wave is at z = 3 mm. In both Figures 6.11 and 6.12 the position of the white
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Figure 6.11: Numerical and experimental data of the local time-average electric
field and phase of a surface wave supported in an uncovered channel of a Sieven-
piper mushroom array, measured at 20 GHz. The channel is surrounded by the
Sievenpiper mushroom array covered by two dielectric overlayers of length 250 mm
and thickness t = 2.95 mm The uncovered channel between the two overlayers L =
19.2 mm. (a) and (b) are numerically calculated phase and time-averaged electric
field of the mode supported by the system. (c) and (d) display the experimentally
measured local phase and time-averaged electric field. The measurement is taken
in the xy-plane at a distance z = 3 mm above the Sievenpiper mushroom array The
location of the channel beneath the measurement plane is shown schematically by
the dashed white lines. The grey box at the bottom of (a) and (b) indicate the
position of the excitation source in the numerical FEM models. The surface wave
in (c) and (d) is terminated by geometrically graded absorber.

dashed line is indicative of the dielectric overlayers present beneath the xy-plane

of measurement.

The data presented in Figure 6.11 is measured when frequency is equal to 20
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Figure 6.12: Numerical and experimental data of the local time-average electric
field and phase of a surface wave supported in an uncovered channel of a Sieven-
piper mushroom array, measured at 10 GHz. The channel is surrounded by the
Sievenpiper mushroom array covered by two dielectric overlayers of length 250 mm
and thickness t = 2.95 mm The uncovered channel between the two overlayers L =
19.2 mm. (a) and (b) are numerically calculated phase and time-averaged electric
field of the mode supported by the system. (c) and (d) display the experimentally
measured local phase and time-averaged electric field. The measurement is taken
in the xy-plane at a distance z = 3 mm above the Sievenpiper mushroom array The
location of the channel beneath the measurement plane is shown schematically by
the dashed white lines. The grey box at the bottom of (a) and (b) indicate the
position of the excitation source in the numerical FEM models. The surface wave
in (c) and (d) is terminated by geometrically graded absorber.

GHz. The data presented in Figure 6.12 is measured when frequency is equal to

10 GHz.

Figures 6.11 (a) and (b) are achieved via FEM modelling by assigning a single
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sheet with an effective impedance, as previously outlined in Chapter 3. Two

dielectric overlayers of thickness w = 2.95 mm and length 250 mm are then added

with an uncovered region between the overlayers of width L = 19.2 mm. Exact

duplication of the experiment in the model is impractical due to computational

constraint. For example over the spatial distance of 250 mm, as modelled in Figure

6.11, there are over 156 Sievenpiper unit cells. The length scales of the model are

such that modelling such individual elements is simply not practical. However,

the effective impedance model produces similar dispersive behaviour as presented

in Figure 6.10.

The value of the surface impedance Zs is obtained via the effective impedance

model for a TM mode previously stated in Equation 6.7, using the value of kx

experimentally determined in Figure for 6.10 for an uncovered Sievenpiper array.

This method has been previously detailed in Section 3.4.3.4.

The entire geometry of Figure 6.11 (a) and (b) is surrounded by absorbing

(‘radiation’) boundaries in the xz-planes. These are used as termination boundaries

in the yz-planes. The length of the numerical model in the x direction is 250

mm, up to and including the whole length of the uncovered channel region. The

microwave surface wave launcher is modelled by assigning a waveport excitation

inside a waveguide so that the fundamental mode of the system has a vertically

polarised electric field vector only. Waveport excitations have been previously

discussed in Chapter 3 therefore will not be further elaborated upon. The position

of the launcher in the models is (x, y, z) = (0, 0, 3mm) and can be observed as the

grey box at the bottom of Figures 6.11, (a) and (b).

Figures 6.11 (c) and (d) show measurement of the time-averaged electric field

and phase of a surface wave supported in an uncovered channel region of a Sieven-

piper mushroom array. As previously stated, the channel has a width L = 19.2

mm and is surrounded by planar dielectric overlayers of thickness t = 2.95 mm

and ε = 2.6. The measurement technique using a probe and a VNA to sample the

surface wave fields has previously been detailed in Section 6.5.2.1, and shown in

Figure 6.6, so will not be reiterated here. The fields are sampled by the probe over

an area of 250 mm x 50 mm.

The measured time-averaged electric field and phase plots do not show the

position of the microwave lens and begin at coordinate (20 mm, 0 mm, 3 mm). The

dielectric layers cease to cover the metasurface when x = 250 mm. Consequently,

Figure 6.11 (c) and (d) measure the supported mode over the region directly above

the dielectric overlayers and 20 mm after they terminate.

By inspection of Figure 6.11, it is clear that the surface wave supported by the

uncovered channel is confined to the channel at 20 GHz. The phase of the surface

wave shown in Figure 6.11 (a) and (c) is indicative of this as the distance between
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the oscillation in phase between ±π is shorter within the channel in comparison

to this distance between the same oscillation for the mode measured above the

dielectric overlayer. The time-average electric field measured in (b) is also notice-

ably greater in the uncovered channel in comparison to the surrounding overlayer

regions. This is less noticeably in Figure 6.11 (d). This could be due to (b) being

a model which uses a sheet impedance to mimic a surface which supports a surface

wave and is not subject to loss in the structure. Conversely, the experimental mea-

surement in (d) is subject to loss due to the dielectric layer between the patches

and the ground plane of the Sievenpiper mushroom array structure.

Figure 6.12 is a measure of the same experiment detailed for Figure 6.12, mea-

sured at 10 GHz. The time-averaged electric field of the mode of the mode is most

highly concentrated in the dielectric overlayer region of the system, in contrast to

Figure 6.11.

6.7 Discussion

By inspection of Figures 6.11 and 6.12 a difference in the concentration of energy

of the supported mode is observed. At lower frequencies (10 GHz) the mode is

confined to the dielectric, at higher frequencies (20 GHz) there is a concentration

of energy in the non-dielectric region.

One would expect the dispersion of the channel mode to be similar to that of

either the metasurface covered by a dielectric overlayer or the dispersion of the

uncovered metasurface. However the mode is observed to propagate in both, for

two different frequency ranges. This is possible due to phase matching of the

electric field observed at the interfaces of the covered and uncovered regions. The

location of these interfaces is illustrated by the white dashed lines in Figures 6.11

and 6.12.

Thus far the reason for the dispersive character of the mode supported by

the uncovered channel at a lower frequency regime are not yet known. The data

presented in Figure 6.13 (reproduced from Figure 6.10 with only experimentally

determined data for clarity) shows the mode ceases to propagate at frequencies

higher than that of 10 GHz. If indeed two modes are supported simultaneously

then one would expect the mode associated with the covered metamaterial surface

to be detected up to 17 GHz, similar to the dispersion of the surface wave sup-

ported on the metamaterial surface in the completely covered case. This region

is indicated by the purple shaded region. However, both modes are not measured

within the indicate region. This could be due to coupling constraints or decay of

the mode in the perspex layer and is not investigated further.

The dispersion of the mode supported by an uncovered channel of a Seiven-
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Figure 6.13: The experimental dispersion of a TM0 mode supported on a Sieven-
piper mushroom array in a channel L = 19.2 mm between two dielectric overlayers
(blue circles). The separation distance L between the two overlayers is 19.2 mm.
Overlaid is the experimentally determined dispersion of the TM0 mode supported
by a Sievenpiper array that is complete covered (purple crosses) or completely
uncovered (black crosses) by a dielectric overlayer. The semi-transparent purple
region highlights the frequency region where both a completely covered and com-
pletely uncovered Sievenpiper array will support a TM mode. The grey arrows
highlight the contribution of ky to the mode supported in the channel.

piper mushroom array of width L = 19.2 mm closely resembles that of the mode

supported by the completely uncovered Sievenpiper array above 16 GHz. However,

inspection of the measured dispersion of these two systems reveals that the whole

profile of the dispersion of the channel mode has been shifted in the negative kx

direction, as highlighted by the arrows in Figure 6.13. This author suggests the

shift is due to the mode propagating in the uncovered channel being subject to

quantisation associated with a lateral boundary condition imposed on it by the

proximity of the dielectric overlayer.

Consider the lines of constant phase shown in Figure 6.11 (a) and (c). The

phase of the mode supported over the regions covered by dielectric compared to

the phase of the mode supported in the uncovered regions show that different wave-

lengths are supported at different spatial positions on each region. Therefore, lines

of constant phase and amplitude occur at different positions and are dependent on

the region measured. At the boundary between the covered and uncovered regions

the electric field values must be matched. By forcing the amplitude to zero at the
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boundary between the two regions this matching becomes possible.

Inspection of the experimental data at 20 GHz in Figure 6.11 is indicative if this

conclusion. The time-averaged electric field in (d) drops to zero at the boundary

between the covered and uncovered Sievenpiper array, noted by the white dashed

line in Figure 6.11. The phase within the uncovered channel in (c) changes from

a linear profile to a bent one in order to meet this boundary condition.

Figure 6.12 displays the local time-averaged electric field and phase of the

supported mode within the uncovered channel at 10 GHz. Figure 6.12 (c) and (d)

are not greatly effected by this boundary condition as the mode propagates only

in the dielectric region.

Numerically determined data of the phase over a covered and uncovered high

impedance sheet is presented in (a) and (b) in Figures 6.11 and 6.12. This shows

the lines of constant phase in the channel bending to match an isocontour of similar

value in close proximity at the boundary between the covered and uncovered region.

The postition of the boundary is once again illustrated by the dashed white line.

Therefore, the fields associated with the phase are matching across the bound-

ary. The time-averaged electric field in Figure 6.11 (b) falls to zero at the boundary.

The impedance sheet shows the boundary between the covered and uncovered re-

gions forcing time-average electric field to zero as well as the subsequent bending

of the phase in the channel associated with the supported modes to zero more

clearly than the experiment. A suggestion as to why this might be the case is that

the model is not subject to the influence of any free space propagating wave which

may be a source of interference.

The boundary condition outlined previously forces a quantisation of the mode

in the y-direction. The wavevector (k0) of an electromagnetic mode is described

as

k20 = k2x + k2y + k2z (6.9)

where kx is the wavevector of the mode in the x-direction and ky and kz represent

the wavevectors of the mode in the y and z direction respectively. For a TM

surface wave propagating in the x-direction on a Sievenpiper array, kx > k0 and

the contributions from ky and kz to k0 are considered to be zero. However, as

the mode under consideration is subject to a field matching boundary condition,

there is some contribution to the overall mode in ky. This effect is observed by

the bending of the phase fronts in the channel. As ky increases kx must decrease.

This results in kx being shifted to a lower value as highlighted by the grey arrows

in Figure 6.13.

The uncertainties associated with the present study are worthy of note. They

include surface wave scattering to higher order modes and measurement of a multi-
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modal system due to the cessation of the dielectric overlayers before the end of

the sample was reached as well as possible coupling constraints of associated with

the excitation source. The cessation of the dielectric layers before the end of the

sample was an experimental oversight. From inspection of Figure 6.11 it is clear

that the time-averaged field associated with the supported mode is not negligible

at x = 250 mm, therefore there may be reflections measured in this experiment

due to this boundary condition.

The coupling efficiency of the launcher when used to excite a surface wave on

the Sievenpiper mushroom array was not investigated. This is due primarily to

the fact that a uniform excitation over distances greater than that of 100 mm was

required for investigations detailed in Chapter 6, therefore coupling constraints

were not analysed. Further, there was never any experimental issues encountered

as regards to the strength of the mode excited on the Sievenpiper mushroom array

surface so an investigation was not warranted at that time.

Further, as the surface wave is supported on a Sievenpiper array or confined

with a single layer of dielectric to that surface it is dissimilar to a photonic crystal

device. A photonic crystal is composed of multiple periodic layers of different

refractive index which is relied upon to guide a mode and as such is a closed

system. The mode guided by the photonic crystal is also inherently lossy. It is the

structure of the Seivenpiper array which results in the support of a surface wave,

not a change of refractive index. As such, it is not considered to be comparable to

a photonic crystal waveguide. Further, although a surface wave supported on the

Sievenpiper array is subject to loss from the dielectric layer, it is not comparable

to the amount of loss a mode propagating through a photonic crystal is subject

to as the surface wave penetrates into free space which is considered as lossless.

This constraint also results in greater confinement of the surface wave mode to the

interface in comparison to the mode supported in the photonic crystal device [26].

Investigations on the subject of guiding surface waves can be read in the pub-

lication of Gregoire et al. (2011) [147] and most recently Quarfoth et al. (2013)

[148] numerically predicting the presence of a surface wave guided along a high

impedance region surrounded by free space impedance. To be exact, the work

in these publications focus on surface waves guided in regions where the imagi-

nary component of the surface impedance is greater than that of 377 Ω and is

surrounded by a region of surface impedance equal to 377 Ω.

The investigation detailed in this chapter is somewhat more complex as the

surface impedance varies depending on which mode is supported in the channel.

For example, a mode supported on a Sievenpiper array with an uncovered channel

of width L = 19.2 mm has a magnitude of surface impedance of less than 377 Ω

while the surface impedance of the surrounding covered region is 377 Ω for frequen-

150



Channelling a Microwave Surface Wave

cies associated with the suppression band of the covered region. At frequencies

of less than the suppression band it is possible to support both modes. However,

the relative strength of one mode in comparison to other may make detection

more difficult. While eigenmode modelling of such a channel system has yet to

be completed both in this investigation and in the wider literature as read by this

author, these experimental results show a promising step towards understanding

of a complex system.

Another application to result from of the study of a Sievenpiper mushroom

array includes beam steering of microwave patch antenna arrays via the control of

surface wave scattering off the array [138].
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6.8 Conclusions

This chapter investigates surface wave channelling between two dielectric overlay-

ers placed on a Sievenpiper mushroom array. The overlayers cover the metama-

terial surface which supports a surface wave. The lower edge of the suppression

band enforced on surface waves supported on the Sievenpiper surface is lowered

due to the presence of the overlayer. A region between the two overlayers is left

uncovered, and the lower edge of the suppression band is increased in frequency

in this uncovered region. Therefore there is a frequency regime in which surface

waves will only be supported on the uncovered channel region and not in the region

associated with the overlayers. Below this frequency regime surface waves will be

supported in both regions.

Experimental and numerical observations of the dispersion of the mode sup-

ported with and without the overlayer are compared. Experimental measurements

of the dispersion of the mode supported in the channel are conducted for a range

of channel widths including 3.2 mm, 6.4 mm, 9.6 mm, 12.8 mm, 16 mm, 19.2 mm,

22.4 mm and 25.6 mm. The smallest width for which a surface wave is supported in

the uncovered channel is experimentally determined to be 19.6 mm. Subsequent

investigation of the propagation of electric fields through materials of different

permittivity is discussed as well as the concept of electric field matching across a

boundary between two regions which support surface waves of different values of

kx.
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Conclusions and Future Work

7.1 Introduction

7.2 Summary of Thesis

Presented is compelling experimental evidence that the domino waveguide sup-

ports a surface wave whose dispersion (including its asymptotic limit) is surpris-

ingly insensitive to the lateral width of the structure. It is shown that the surface

wave supported by such a domino array structure is confined to that structure both

laterally and vertically. The dispersions of DPs for a range of lateral widths from

100 mm to 1.60 mm are experimentally determined, the latter being subwave-

length compared to the excitation wavelength. Even for such narrow dominos,

good agreement is found between the experimentally measured dispersion and the

analytical relation expected for cavity widths of infinite extent. The reason for

this insensitivity lies in the absence of a lateral quantization condition for the

mode when the waveguide is comprised of open-ended cavities. This is compared

and contrasted to experiments conducted on domino waveguide structures with

close-ended cavities to affirm the understanding of the mechanism responsible.

The spatial dependence of the group velocity associated with a microwave sur-

face wave supported across a metasurface with a graded geometry is studied. The

metasurface consists of an array of closed-sided rectangular cavities obtruding from

a ground plane whose lateral widths are increased as a function of distance from

the point of excitation. The variation in cavity width results in a spatially depen-

dent modal index. Subsequently, frequency components of the surface wave are

slowed and trapped at different positions along the tapered metasurface. The trap-

ping position and the behaviour of the supported mode approaching this location

have been experimentally observed with both local field amplitude and phase data.

Four notable aspects of this data have been discussed. Primarily, the phase of the
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electric-field data provides a more accurate identification of the trapping location

compared to amplitude measurements alone. Secondly, the exact stopping location

of the surface wave does not correspond with numerical predictions obtained for

a fixed-width one-dimensional array of cavities. Thirdly, the oscillations observed

in the local amplitude of the surface wave provide insight as to the magnitude

of reflection experienced by the surface mode close to this point. The origin of

the reflection mechanism is considered. Finally, higher order lateral quantisations

of the surface mode have been experimentally observed excited by scatter of the

fundamental mode from the trapping point.

Surface wave channelling between two dielectric overlayers is investigated. The

overlayers cover a metasurface which supports a surface wave and enforces a surface

wave suppression band on the modes supported. A region between the two over-

layers is left uncovered, thereby making a channel through which surface modes

are supported at the same frequency as the uncovered isotropic metasurface. The

surface wave supports a modified mode on the regions covered with a dielectric

overlayer. Therefore the modified mode is subjected to a suppression band which

is at a lower frequency in comparison to the suppression band associated with

the mode supported by an uncovered metasurface. Experimental and numerical

observations of the dispersion of the mode suppported with and without the over-

layer are compared. Experimental measurements of the dispersion of the mode

supported in the channel are conducted for a range of channel widths including

3.2 mm, 6.4 mm, 9.6 mm, 12.8 mm, 16 mm, 19.2 mm, 22.4 mm and 25.6 mm. The

smallest width for which a surface wave is supported in the uncovered channel is

experimentally determined to be 19.6 mm. Subsequent investigation of the prop-

agation of electric fields through materials of different permittivity is discussed as

well as the concept of field matching across a boundary between two regions which

support surface waves of different values of kx.

This thesis concludes that a microwave surface wave can be laterally confined

if there is no boundary condition present to quantise the mode. The phase of

the surface wave is found to be more indicative of the behaviour of the mode in

comparison to measurements of electric field amplitude as the modal index and

direction of propagation are more obvious.

7.3 Recent Publications Relating to this Work

The subject of this thesis, laterally confined microwave surface waves, is an ac-

tive area of research. As such, during the course of this PhD there were several

publications that which were closely linked to the work presented here. The first

is a paper by Ma et al. (2011) [149] wherein power splitting of a surface wave
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mode is investigated. The structure used to support the surface wave mode in the

study conducted by Ma et al. has been investigated in Chapter 4 and consists of

a periodic array of metallic cuboids protruding from a flat metallic ground plane.

The investigation in Chapter 4 outlines the insensitivity of the supported surface

wave mode to lateral confinement and is discussed forthwith. Ma et al. (2011)

used the structure to demonstrate power transfer over an array of metallic cuboids

which are arranged so that the supported mode propagated along 90 degree bends

in the supporting array and so investigated beam steering.

This was extended to investigate directional couplers and waveguide ring res-

onators, the later of which was estimated by Ma et al. to be 60 % efficient. This

was attributed to radiative loss in the system and manufacturing flaws in position-

ing of the metallic cuboids on the metallic ground plane. The amount of radiative

loss due to rate of change of direction to achieve a 90 degree bend in the supporting

waveguide was not investigated or optimised.

Surface wave guiding was recently taken to the extreme by Shen et al. (2013)

[150] when a mode was shown to be supported on an ultrathin flexible dielectric film

patterned with an ultrathin layer of metal. The metal printed onto the film is an

thin array of grooves so that the whole pattern resembles that of a two dimensional

comb. The film can be folded and wrapped around objects over multiple 360

degree turns while still supporting a surface wave mode. Such a mode was shown

numerically and experimentally to maintain a time-averaged power density at the

output side of the film of 95% in comparison to the input after one such 360

degree turn of direction, all at a frequency of 10 GHz. The surface wave mode

investigated by Shen et al. has a different modal shape in comparison to the study

presented in Chapter 4 due to a lack of ground plane. However lateral insensitivity

of the supported surface wave has been verified and successfully utilised for beam

steering with little loss and so is included in this literal study of laterally confined

surface waves.

Other publications concerning a surface wave supported on an array of cuboids

protruding from a metallic ground plane include the by Wu et al. (2013) [151]

where open waveguide geometry is discussed and Shen et al. (2013) [150] where

the grooves between each cuboid are bent to a 90 degree angle. However, the

work presented by Shen et al. (2013) [150] clearly shows the strongest evidence of

subwavelength confinement of a surface wave mode via good comparison of both

experimental and theoretical data as the dimensions of the supporting waveguide

in comparison to the operating wavelength is the most extreme.
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7.4 Future Work

The publications previously detailed occurred throughout the investigations de-

tailed in this work. Future work proposed on the topic of laterally confined

microwave surface waves is now detailed with respect to these publications and

suggestions as to the advancement and the potential impact of each chapter is

outlined.

7.4.1 Surface Wave Data Transfer

Of all the work presented, the subject of Chapter 4 has the highest potential impact

with regards to the design of wireless communication devices. Turner et al. (2012)

[152] have recently designed a device for surface wave data transfer. The device

operates at 60 GHz and is composed of a one-dimensional array of corrugations.

In contrast to the structure studied in Chapter 4, the array is fabricated on a

flexible material. A surface wave is supported on the corrugations. Coupling to

and from the near field of the surface wave allows data to be transferred. As the

material is flexible and the device is low loss, such devices could be worn on the

body. One example of the potential advancement this device could offer is possible

improvement of health monitoring. A patient’s vital statistics could be stored as

information on the body of the patient and transferred to a monitoring device in

close proximity to the corrugated surface.

Notably, the smallest lateral width of surface wave device tested in Turner et

al. [152] is 90 mm. Further, a publication used in reference to the work of Turner

by Hendry el a. (2010) [153] suggests that the corrugated device should not be

fabricated so that its lateral width is less than the depth of the corrugations or

the surface will not support a mode. Chapter 4 details a surface wave supported

on a one-dimensional array of corrugations of width L = 1.6 mm while the depth

of corrugation, height h = 3.75 mm. A surface mode is supported even though

L ¡ h, directly contradicting the statement made by Hendry el a. (2010) [153].

Subsequent work previously detailed by [150] supports the investigation detailed in

Chapter 4, the supported mode is insensitive to the lateral width of the supporting

structure. As a result it may be possible for the device designed by Turner et al.

[152] to be much less than 90 mm in width.

7.4.2 Beam Sharpening

The subject of Chapter 5 presents another potential application; beam sharpening

of a radar pulse. Notably, the structure investigated in this Chapter results in a

spatially dependent modal index. A dispersive device can be used to interact with
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a pulse transmitted by the radar. However, the dispersion of that device will be

tuned to a single frequency. If the radar was transmitting pulses at two different

frequencies, as is often the case for the purposes of velocity unfolding [129], more

than one dispersive device would be required for beam sharpening. The structure

outlined in Chapter 5 is not limited by this constraint and could be applied to

sharpen the beam of a Doppler radar which transmits pulses at different frequen-

cies. As of yet no references have been found regarding this application, other than

details of utilising surface acoustic wave (SAW) devices for beam sharpening [129].

Therefore an investigation as to the feasibility of this application is suggested as

an extension to the work presented in Chapter 5.

7.4.3 Further Investigation of Surface Wave Channelling

The work detailed in Chapter 6 can be expanded. Initially suggested is an investi-

gation as to the sensitivity of the mode supported in the uncovered channel region

of the Sievenpiper mushroom structure to the edges of the bordering dielectric

layers.

Figure 7.1 is a schematic of the experimental setup used to investigate chan-

nelling of the surface wave between dielectric overlayers. Suggested initially is the

modification of the sides of the dielectric overlayer from a square sided layer of uni-

form thickness w = 2.95 mm to a layer that is not uniformally thick at the edges.

Suggested is an investigation as to the gradual tapering of thickness w from 0 mm

to 2.95 mm as a function of distance from the edge of the layer. The measured

dispersion of the mode supported in the uncovered channel could be compared and

contrasted for different rates of dielectric tapering.

The confinement of the TM surface wave supported by the Sievenpiper mush-

room array covered by the overlayer is modified as a function of thickness of the

dielectric overlayer. As such, if the edge of a bordering dielectric overlayer as is

depicted in Figure 7.1 is tapered, the boundary condition at the edge of the layer

will result in a gradual change in the limiting frequency of the mode supported in

this covered region. This is in contrast to the sudden change in limiting frequency

of the mode that occurs when the taper sides remains square, as is presented in

Chapter 6. It is suggested that tapering the edge of the bordering dielectric over-

layer will modify the dispersion of the mode supported in the uncovered channel so

that more closely resembles a mode supported by an uncovered Sievenpiper array

and will not exhibit the shift in kx previously depicted in Figure 6.13.
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Figure 7.1: A Sievenpiper mushroom array (orange) with two dielectric overlayers
(grey) covering the array. The region between the overlayers remains uncovered,
resulting in a channel. The width L between the two dielectric layers (grey) on
top of the Sievenpiper mushroom array (orange) is shown. The direction of prop-
agation of radiation from the excitation source, the surface wave launcher (blue),
is noted by the white arrows. Geometrically graded microwave absorber lines the
edges of the Sievenpiper mushroom array, with and without dielectric overlayers to
minimise reflections from the edge of the array. All dielectric overlayers used are
described by ε = 2.6 and have a thickness of w = 2.95 mm. They are a material
known as perspex.

7.4.4 Quantifying the Reflections of a Surface Wave by

Measurement of Local Phase

Suggested is the characterisation of the magnitude of reflection experienced by a

surface wave when terminated by a metal or absorber via measurement of the local

phase associated with a surface wave.

Figure 7.2 schematically shows the experimental setup of a surface wave ex-

periment where the position of the terminating boundary is modified. The surface

wave is supported on an array of open-sided metallic corrugations of width L =

5 mm, a domino array and is excited via edge-coupling. Constants A1, A2 and

A3 represent the forward (blue), reflected(red) and total (green) surface wave am-

plitudes, respectively. The solid black line illustrates the initial position of the

terminating boundary. The position of the probe mid-width of the array is noted

by the red circle.

Initial data of the local phase associated with the surface wave supported on

the domino array as a function of distance from the source is shown in Figure 7.3.
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Figure 7.2: Schematic of experimental setup used to excite a surface wave on an
L = 5 mm domino array protruding from a metallic sheet. The blue boxes are
illustrative of the position of the array and not the dimensions of the structure.
Constants A1, A2 and A3 represent the forward (blue), reflected(red) and total
(green) surface wave amplitudes, respectively. The solid black line illustrates the
initial position of the terminating boundary. The dashed black lines and white
arrows denote the shifted position of the terminating boundary. The position is
always modified in the x-direction at a step size of λ

4
. For a frequency of 15 GHz, λ

4

= 5 mm. The probe used to measure the electric field associated with the surface
wave is noted by the red circle and the surface wave is excited via edge-coupling.
The broadband horn used for excitation is noted by the green triangle.

Figure 7.3: Phase as a function of distance of the electric field associated with
a 1D array of corrugations of width L = 5 mm, as studied in Chapter 4. The
supported surface wave is terminate by a metal (black) and an absorber (red) and
the data is representative of the mode at 15 GHz.

In this case, the surface wave was terminated with geometrically graded absorber
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(red) or a metallic boundary (black) at the position noted by the solid black line.

Of interest to this author is the characterisation of the phase of surface wave

measured as a function of distance when the supported mode is terminated by a

metal or by an absorber. The phase is measure at 15 GHz.

Notice that when the surface wave is terminated by an absorber boundary the

profile of the phase as a function of distance between the limits of ± π is linear.

Conversely, the profile of the phase as a function of distance of a surface wave

terminated by a metal boundary results in two sharp turning points in the profile

measured between ± π.

The sharp turning points observed on Figure 7.2 and are clearly indicative of

the surface wave’s reflection from a metallic boundary and is indicative of the

contributions of A1 and A2 (the forward and reflected amplitude of the surface

wave) to and A3, the total amplitude of the surface wave. Section 3.3.4 has already

noted the surface wave measured as an multi-modal system. The measurement of

the strength of reflection and therefore the contributions of A1 and A2 to the overall

amplitude of the mode A3 is proposed as a further investigation of this work.

The loss mechanisms of a surface wave supported by a domino array include

absorption into the supporting media or ohmic heating, absorption at termination

and scattering into free space at the termination of the surface wave. It is suggested

that the proposed analysis of the profile of the local phase of the surface wave would

result in a measure of the losses due to the boundary terminating the surface

wave absorbing the supported mode and a measurement of the energy lost to

scattering at a terminating boundary. Only after these two loss mechanisms have

been assessed can a calculation as to loss of energy of the surface wave due ohmic

heating be made.

This investigation was further continued by once again measuring the phase of

the surface wave reflected from a metal boundary. However, in this instance the

metal boundary was placed λ/4 increments closer to the source and the phase was

remeasured. Figure 7.2 depicts the starting position of the metallic boundary as

represented first by the solid black line. The the increments of λ/4 are indicated

by the dashed black lines and blue arrows in the upper right hand corner of Figure

7.2. The surface wave is measured at 15 GHz. As a result, the metallic boundary

in this investigation is moved at increments of 5 mm in the x-direction.

The results of this initial investigation show a clear period of the sharp turning

points in the phase measured as a function of distance. This is due to the reflecting

boundary being moved incrementally by a factor of λ/4 for every measurement.

Suggested is the use of the observed characteristic to measure the phase on reflec-

tion from a boundary, as well as the phase change of reflection of the surface wave

as dictated by that boundary.
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Figure 7.4: Phase as a function of distance of the electric field associated with a 1D
array of corrugations of width L = 5 mm, as studied in Chapter 4. The supported
surface wave is terminate by a metal boundary and moved in λ/4 increments
closer to the emitting antenna. Measurement of the surface wave was achieved at
15 GHz, therefore λ/4 = 5 mm. The surface wave is measured for five different
propagation lengths (in the x-direction), with the metallic boundary moved closer
to the source of excitation by λ/4 for each measurement. Notice the profile of the
locally measured phase of the surface wave is repeated when the metallic boundary
is incremented a distance of λ/2.

7.4.5 Impedance Matching Compared to Field Overlap

When a propagating mode is travelling from one impedance region to another

and those regions are matched, one might expect the mode not to be reflected.

However, the electric field of the mode between the two regions must also overlap

or reflection will occur. For example, Chapter 4 showed that the dispersion of

surface waves supported on an array of 1D corrugations were similar for a mode

propagating on an L = 100 mm array compared to an L = 1.6 mm.

Figure 7.5 shows the experimental measurement of the surface wave supported

by a domino array of width L = 1.6 mm and width L = 100 mm. The dispersions

are very similar, implying that the impedance of the mode as a function of fre-

quency would also be similar. This is true for all domino widths and is shown in

Chapter 4.

The similarity in dispersion between the surface wave supported on one domino

array is comparison to another of different width would suggest that the mode

could propagate between one array to another without reflection. However, the

mode overlap between one surface wave supporting structure and another would

also have to match or the result would be a reflection of the supported mode.

Figure 7.6 (a) displays the measured time-averaged electric field (left) and
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Figure 7.5: Measured dispersion of a surface wave supported on a domino array
of width L = 1.6 mm and L = 100 mm. Reproduced from Chapter 4.

Figure 7.6: (a) Measured time-averaged electric field (left) and schematic of sup-
porting structure (right) for two domino arrays aligned centrally. The two widths
are L = 5 mm and L = 100 mm. Propagation of the surface wave from one array
to the other is illustrated by the red arrow. (b) Measured time-averaged electric
field (left) and schematic of supporting structure (right) for a domino array that
is tapered in width as a function of distance from the start of taper. The width
at the start of the taper L = 1.6 mm and the propagation direction is once again
noted in (b). Both measurements are for a surface wave supported at 13 GHz.

schematic of supporting structure (right) for two domino arrays aligned centrally.

The two widths are L = 5 mm and L = 100 mm. Propagation of the surface

wave from one array to the other is illustrated by the red arrow. (b) Measured

time-averaged electric field (left) and schematic of supporting structure (right) for

a domino array that is tapered in width as a function of distance from the start

of taper. The width at the start of the taper L = 1.6 mm and the propagation

direction is once again noted in (b). Both measurements are for a surface wave

supported at 13 GHz.
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Preliminary data is shown in Figure 7.6 (a) indicates that the mode overlap

of the surface wave between the domino of width L = 5 mm and L = 100 mm is

small, hence the non-uniform distribution of the time-averaged electric field over

the L = 100 mm. However, field distribution of the surface wave supported by

the tapered structure shown in Figure 7.6 (b) is mush more uniform. Proposed is

an investigation into the rate of change of taper of a tapered open-sided domino

array to so that the surface wave is not reflected via a change in modal overlap.

Thus concludes the future work proposed as an extension to the investigations

of laterally confined microwave surface waves.
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