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Abstract

The field of shape description can be applied in domains ranging from medicine

to engineering. Defining new metrics may allow to better describe shapes. It is

therefore an essential process of development of the field. In this work, a new

family of compactness metrics is introduced. It is proven that they range over

(0, 1] and are translation, rotation and scaling independent. The sphere is the

shape that has the smallest volume for a fixed surface, this is a definition of com-

pactness. Therefore, the metrics of this family are called compactness measures

since they all reach 1 if and only if the considered shape is a sphere. The different

metrics of the family are obtained by the modification of a parameter β involved

in the mathematical definition of the metric. They are proven to be different from

each other and a thorough study of their behaviour resulted in the formulation of

two interesting conjectures concerning the limit cases of β. Finally several ex-

periments investigate how McGill’s database classes of shapes are represented

when using the new family.
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2 Introduction

Progress in the field of shape description, that is the specification of metric mea-

suring shape properties [25, 32], could benefit a number of fields, such as the

fields of information processing and computational chemistry. It would make it

possible to create performant search engine for 3D shapes. That is, applications

that would look for shapes similar to the one given as a resquest. The creation

would not need human intervention to fill in keywords describing the shapes. In

the context of engineering and design, it would help the users retrieve past design

or available components. Another approach would be to create search engines

based on the submission of a similar shape. In this case a 3D sketch should be

made and the program would then retrieve any similar shapes. The engineers

or the designers would only need to see if the retrieved shapes fit their needs,

without having to skim through the entire database. Shape description could also

benefit computational chemistry given how molecule interactions is related to their

shape [9, 31, 13].

The term shape in this thesis means the representation of an object in 2D

or 3D. In 2D, for instance, the classical format of a shape is a black and white

picture as shown in Figure 1. The 3D shape representation will be introduced

in section 3. The goal of shape description is to capture specific aspects of the

shapes. The aspects of a shape can be straightforward characteristics such as

elongation, rectilinearity or compactness; they can also be salient or specific fea-

tures of a shape, in face recognition an example would be the presence of eyes.

These examples have the positive property to be easily identifiable by humans.
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Other aspects can however represent shape properties that the human percep-

tion can not grasp. In a context of a fully automated application, working with

purely mathematical shape descriptors may not pose any problem. In the context

of human operated database, however, it is necessary that the shape descriptors

correspond to aspects identifiable by human perception.

Figure 1: Example of 2D shapes

A shape descriptor can be a numeric value between 0 and 1, evaluating a

specific aspect of a shape. It is worth mentioning that the merit of a descriptor

greatly depends on the context of application. One extremely challenging ques-

tion in computer vision is how to deal with occlusion. That is, how to describe or

recognise when some of it is not visible. An example of occlusion is a car passing

behind a bush, depending on the bush. Therefore finding shape descriptors that

are defined even when occlusion occurs is of interest to the field. Other applica-

tions, search engines for instance, do not necessarily need to cope with occlusion

and in that context it can be acceptable to work with descriptors that are not de-

fined in a context of occlusion. Another aspect to keep in mind is the computation

time, typically an application such as a search engine will need to use metrics

computable in a very short time. It would not be practical to have to wait several

minutes for a shape to be described, and the request on the database to be pro-

cessed. In other contexts, cancer diagnosis for instance, it is admissible to use
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techniques that need several hours of computation.

Another challenging problem is the ability to cope with deformation. A typical

example is the posture modification of an articulated object. The various postures

of a human shape can be considered deformation. If the descriptors prioritize the

general shape over the small features, they are likely to be significantly dependent

on any deformation. In some applications you could end up classifying dogs and

cats together because they are four-legged animals. Therefore it is important to

develop techniques that are deformation-independent.

For the field to fully benefit from the research on shape descriptors, it is im-

portant to assess if the newly introduced metrics are not redundant with the ones

previously defined. Redundant metrics are metrics that capture the same shape

aspects. A way to assess the redundancy of a set of metric is to see if the rank-

ing deduced from the metric value over a set of shapes differs depending on the

descriptor. If it does then the metrics are not redundant, if it does not and the

set seem representative of the landscape of shapes then the metric can be con-

sidered redundant. By definition, it is not interesting to use redundant metrics

in an application. Therefore, special care should be given to avoid introducing

redundant descriptors.

A way to easily introduce new metrics is to modify a previously defined mea-

sure and make it tunable. The concept of tuning involves a variable that can be

changed to modify the metric behaviour. For instance, a 2D metric could be used

to compare a shape to a circle of same surface area. A way of tuning this met-

ric could be to introduce a variable. The user would then be able to compare
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the shape, not only with a circle, but also with certain ellipses. Here, the variable

would represent the ratio of the two axes of the ellipse. Note that it is not sufficiant

to multiply the final result of a descriptor by a tunable parameter to introduce new

metrics . Indeed, the transformation being linear the resulting family of metrics will

be redundant. That is, changing the parameter value will not change the ranking

of the shapes with regards to their metric value.

This research introduces a new family of compactness metrics. The mathe-

matical definition of the metric is an extension to 3D of the circularity metric for

2D shapes defined in [35]. In fact it modifies the compactness metric described

in [33] in a similar fashion as proposed for the 2D circularity metric. Section 3

defines several technical terms and introduces some knowledge of the field es-

sential to understanding the contents of this research. It also reports the state of

the art research of this field. The first part of Section 4 will give the theoretical

definition of the metrics as well as the proof of its properties. The second part re-

ports the experimental work realised to better understand the metrics’ behaviour.

Finally, Section 6 discusses and interprets the experimental results. It also points

towards further interesting research. The aim of this thesis is to specify a new

family of descriptors. Enriching the landscape of descriptors offers application de-

velopers a greater choice of metric to select amongst. If these metrics are proven

non-redundant, it is also likely to improve the overall performance of classifica-

tion applications. Shape description is a domain of image processing offering

numerous application possibilities. The data collected through shape description

can be used for applications such as classification model [20] or shape retrieval
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[8, 17, 16]. Therefore, the validating experiment of this research will consist of

such applications.
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3 Shape description and applications

3.1 Definitions

There are different ways of representing shapes in a computer. These represen-

tations usually do not take colours into consideration since they rarely represent

shape related information. In 2D a black and white photograph of an object can

be considered a shape. A non-white pixel would be considered part of the shape.

Another possible way of representing a shape is to use a polygonal approximation

[14]. This consists of a set of line segments drawing the contour of a shape. It is

possible to change from one representation to the other. Note however, that this

change may involve a loss of precision and can be computationally expensive. In

3D, one possibility is to represent a shape with voxels. They are cubic units of

space and the representation is built in a similar way as 2D shapes with pixels.

That is, the space is divided into cubes, if the original shape fills more than half of

a cube then the whole cube is considered belonging to the shape [12]. Another

way is to use meshes [29], in this representation the original shape is sampled at

a number of points. The points are then linked together usually to form a triangle

mesh. This is analogous to the polygonal approximation for 2D shapes, but in a

3D context.

In most applications the data that is being dealt with is a set of shapes divided

into classes. That is each shape is considered belonging to one and only one

class. Examples of class can be cups, teddybears or crabs. Every shape in

these classes will share similarities. Shape descriptors evaluate certain aspects
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of a shape and return a certain value. Usually, several descriptors are used,

consequently each shape is represented by a set of features. Using such a set of

descriptors to represent shapes, results in the mapping of each shape in a space

where the coordinates are the descriptor values. If the descriptors are relevant to

describe a particular database, the shapes belonging to the same class will find

themselves mapped near each other. It is then possible to build a model of each

class [6, 30, 10]. That is, a representation based on spatial proximity.

The concept of classification will be mentioned several times in this thesis. A

classification application, or classifier, consists of using a set of data to create a

model able to find the class of any new shape. A set of training examples are

used to create a model of the classes relevant to the application. Each exam-

ple is represented by a set of measurements. In a medical context, they could

be measurements such as the body temperature and the blood pressure. In the

context of shape description, shape descriptors are used to describe the shapes.

One of the experiments uses a nearest centroid classifier [5, 15], this particular

approach to classification, consists of computing the mean value of each classes.

The prediction is then made by evaluating to which class mean the new piece of

data is closest. This obviously is a particularly naive approach to make predic-

tions since being close to the class centroid is not a sufficient condition to ensure

the belonging to that class. Although it does not inform on the expectable perfor-

mance of an application using this metric, it allows to compare the difference in

performance between classifiers. If a dataset is not large enough it can be diffi-

cult to compare classifiers because of the lack of robustness of the classification
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rate. A solution to solve this problem is to use cross-validation, which consists

of dividing the test set in several parts, training the classifier using all but one of

them and computing the classification rate on the part left out. This process is

then repeated for each part. When the dataset is too small, this technique offers

an accurate comparison between classifiers, even though the results cannot be

considered a fair evaluation of classifers’ performance.

This thesis aims at introducing a new family of compactness measures. The

notion of compactness understood by humans usually represents the sphere as

the most compact shape. Moreover, hollowed shapes, that is shapes having

empty space below their surface, would be considered less compact than filled

sphere-like shapes having an irregular surface. Since objects sharing a similar

compactness seems to have similar shapes, studying compactness metric could

lead to interesting outcomes in classification tasks. It could be argued that con-

sidering the sphere as the most compact shape is only a matter of which norm is

used. Indeed, there exist mathematical definitions that would justify considering

a cube as the most compact shape, the infinite norm is one of them. In this thesis

a tunable formula will be introduced, its tuning parameter is added in the formula

of a 3D Hu-invariant. The ordering resulting from the different tunings will be con-

sidered to define a specific notion of compactness that will differ from the classic

definition.
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3.2 Literature Review

3.2.1 2D Metrics

Time Complexity Shape description methods have been extensively studied

for 2D shapes. In [35] the authors introduce a measure of circularity based on a

Hu invariant, Zunic cirularity. The time complexity of the metric for a manageable

approximation can be as low as O(r), where r is the image resolution. The au-

thors of [23] introduce a convexity measure, Rahtu convexity, by interpreting the

gray-scale of an image as a probability of belonging to the shape. The metric is

shown to be computationally cheap, it is linear with regards to the number of pixel.

The elongation descriptor, Stojmenovic elongation, introduced in [27] is based on

a polygonal approximation of 2D shapes. This allows a good compromise be-

tween precision and computation time. In [34] a new measure of orientability for

2D shapes is described, Zunic orientability. Once again the computation time

is said to be of linear complexity. The paper [24] proves the redundancy of a

significant number of papers describing 2D roundness measurement by showing

that they derive from the same formula. It is also shown that they are resolution-

dependent. The two new non-redundant resolution independent metrics, Ritter

roundness metrics, they introduce are proven to have linear complexity. Given

the low time complexity of all these metrics, they could be a good choice for appli-

cations where time is an issue. As mentioned earlier, they could prove themselves

useful in the context of a search engine.
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Human Perception The authors of [35, 27] both mention that Zunic circularity

and Stojmenovic elongation are close to the human perception. [24] also ad-

dresses this problem. It specifies whether or not each of the studied metric fits

human perception. In particular, both Ritter roundness metrics are said to be

close to the human perception of roundness. This is a desirable property in that it

qualifies such metric in application involving human manipulation. The interface

of a search engine could ask the user to evaluate different aspects of a shape to

be found. It is essential in this sort of contexts that the metrics and the human

perception agree. Although [34] does not specify whether Zunic orientability fits

human perception. Orientability being a property measuring whether the shape

is contructed along a specific axis. It is mentioned that the orientability of shapes

plays an important role in the human visual system. A good orientability metric

could help adapt the set of shape descriptors depending on the orientability of the

shape.

Tuning and Redundancy In [35], Zunic circularity is extended to be tunable.

Some experiments show how the tuning changes the metric behaviour, that is

how the ordering of the shapes according the metric value is modified by a differ-

ent tuning. It is also shown how using several tunings may lead to an improvement

of performance in classification applications. It is mentioned in [23] that Rahtu

convexity could be tuned by considering different thresholds for the interpretation

of the gray-scale. The paper, however, lacks an illustration or a proof that this

tuning would alter the metric behaviour. Although it is not tunable, in [34], Zunic

orientability is explicitly shown to be non-redundant with the other measures of
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orientability.

Occlusion It is worth noting that the measurements mentioned in [23, 24, 27,

34, 35], namely Rahtu convexity, Ritter roundness, Stojmenovic elongation, Zunic

orientability and Zunic circularity, impose that a complete model of the shape

is available. The results in the case of occlusion would be meaningless, since

it must be applied to the complete model. It is also worth noting that in certain

applications, occlusion-robust techniques are essential. For instance, when trying

to classify objects in a scene.

Review and Further Work The authors of [25] published an extensive descrip-

tion and comparison of 2D descriptors. The experiments used for comparison

in this article may help users choose an adapted set of features. This study is

a significant piece of work as the state of the art in 2D shape descriptors. It is

specified that the performance of a given metric greatly depend on the dataset

on which it is used. That is the impact of the metric in increasing the rate of a

classification application, for instance, depends on the data.

Further experiments could be made to better the understanding of certain

metrics. For instance, a classification study of Stojmenovic elongation metric

introduced in [27] could provide useful information about how it completes other

metrics. It would also be interesting to explicitly investigate the redundancy of

the metrics, as was done in [24]. Being able to prove the redundancy of certain

descriptors would reduce the landscape of metrics available today. Making the

knowledge gained by numerous studies more practical to use by decreasing the
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number to investigate.

From 2D to 3D The field of research has started investigating metrics for 3D

shapes. The authors of [23] pointed out that Rahtu convexity could easily be

extended to 3D, by considering voxels instead of pixels. Stojmenovic elongation

is based on rotating the considered shape to find an angle minimizing or maxi-

mizing the projection on the associated vector. Therefore, extending it to 3D is

likely to be difficult since rotations are a lot more complex than in 2D. Similarly,

nothing is said in [34] concerning the possibility of extending Zunic orientability to

3D shapes. But for similar reasons as for Stojmenovic elongation a study could

reveal that the computation time increases so much that a new low complexity

algorithm would need to be formulated before it is practical to use. The authors

of [3] introduce two analogous metrics for 2D and 3D shapes. This compactness

measure is based on the discretisation of the shapes, namely pixels and voxels

for 2D and 3D respectively. They improve a previously introduced definition by

allowing a computation on fragmented and porous objects. It is worth mention-

ing that these metrics are not able to differentiate between differently scattered

compound shapes, that is, it can’t differentiate between two spheres separated

by 5cm and 5m. The computation time is, however, improved compared to their

last work.

3.2.2 3D Metrics

Time [2] describes a discrete compactness measure, Bribiesca compactness,

based on the division of a shape into multiple polyhedra. This is not a strong
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constraint since certain digitisation methods are based on this principle. The vox-

elisation is a particular case of such a division which makes the computations

straightforward. When dealing with meshes however, this technique involves a

prior treatment to subdivide the mesh into tetrahedron. Thus increasing the com-

putation time. The authors of [33] introduce a measure of compactness, Zunic

compactness, for 3D shapes based on a 3D Hu moment invariant. It is also men-

tioned that techniques can help reduce the computational complexity to make it

competitive. In [21] the authors introduce a metric that compare a shape to a

cube, Martinez-Ortiz cubeness. Its computation time is linear with respect to the

shape resolution. This measure is extended in [22] by adding tunability, Martinez-

Ortiz tunable cubeness, and keeps its computationally cheap property. Several

experiments are also run to illustrate the behaviour of the metric. A new family of

geometric descriptors is introduced in [28]. It is based on asymmetry detection,

Sukno asymmetry detection. The computation time is showed to be O(r5) with

regards to the size of the sampling. Even if the accuracy seems to be slightly less

competitive than for the other techniques, improving it may result in a performant

family of metrics. These descriptors are likely to be relevant in real-time appli-

cations. The authors of [19] describe a measure of rectilinearity for 3D shapes,

Lian rectilinearity. It is pointed out that the technique would benefit from further

improvements to speed up the computation time and become competitive. Note

that, a thorough study of the measure performance in different contexts of appli-

cation is given.
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Human Perception [19] references studies that suggest that the human per-

ception seems to be strongly based on rectilinearity measurements, this justify

the definition of Lian rectilinearity. Bribiesca compactness measure described in

[2] agrees with human perception to the extent that a stick will be less compact

than a cube. It is, however, worth noting that the most compact shape consid-

ering this metric is a cube rather than a sphere. This result is partly due to the

discretisation of the shape and the resulting definition of compactness. Some ex-

periments of [33] suggests that Zunic compactness fits the human perception. In

[21] and [22] nothing is said on this subject. It may be an interesting question for

future research.

Tuning and Redundancy The paper [22] also proves that using a combination

of different tuning of Martinez-Ortiz tunable cubeness can lead to better results

when used in a matching application. Thus, it is proven that the tuning changes

the ordering of the shape according to their measurement. Although no tuning

is involved, the experiments shown in [33] prove that Zunic compactness is not

redundant with previously defined compactness measures.

Occlusion and Drawbacks For most of these techniques, once again, the com-

putation in cases of occlusion is not defined. For Sukno asymmetry detection

metric, [28], however, particular care was taken to obtain non-occluded data. The

reason is that the technique being based on asymmetry detection, any occlusion

would likely have a dramatic effect.

As a drawback for Bribiesca compactness measure, [2], it is worth noting that
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it can only be applied to watertight shapes, that is whose surface define a single

volume. Indeed this technique cannot differentiate between identical compound

shapes scattered differently. Once again, this fact may or may not be of impor-

tance depending on the application and the dataset.

Application and Review Techniques have been developed to offer solutions

to the deformation problem. It consists of finding a canonical form for the de-

formed shape. That is, computing a non-deformed version of the shape. In 2D,

[1], introduces a method to compute an averaged shape. Even if it is not ex-

plicitly presented as a canonical form the results can certainly be used as such.

Moreover the approach seems to be extendable to 3D shapes. Unfortunately,

the computation time is not explicitly mentioned. The study presented in [7] aims

at computing the canonical form of different 3D shapes. The experimental re-

sults show that shapes obtained via deformation of the same original shape are

found to have the same canonical form, but the small features specific to each

shapes are lost. The paper [18], however, introduces a method to compute the

shape canonical form without losing these features. The method is computation-

ally expensive but its results are visually impressive and should encourage further

improvement and optimization.

A new dataset is also introduced in [18]. It allows to benchmark the ability of

an algorithm to differentiate between classes of similarly articulated shapes, like

cats and dogs for instance. Given that the individual features are lost in the metric

introduced in [7], it would be interesting to see how well the technique performs

on this new benchmark.
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In [4] a method to describe partial 3D shapes is introduced. It is divided in

a first step of feature selection and second that compares the features of differ-

ent shapes and decides if the shapes are similar. The authors of [8] describe a

method to realise 3D shape retrieval and recognition based on an hypergraph. It

offers a method in the case where the 3D models of the shapes are not available

and only views of the object are available. Thus the expensive process of re-

building the 3D objects from the 2D views is avoided. The displayed experiments

of [4], reveal classification rate of 92.44% which is a good result when compared

with the other techniques. Lower quality results should however, be expected

from an application in a real-world context because of choices made to speed up

the computation. Similarly, the performance displayed in [8] are better than the

other studied techniques but the computation cost of the process may disqualify

the technique in many cases.

It is worth noting that the technique presented in [4] is extremely dependent

on the kind of shapes considered, shapes with very few salient features would be

difficult to identify. The technique from [8] also suffers a major drawback. It is not

yet possible to update the database without recomputing the entire hypergraph.

Consequently, in its actual state the method does not seem to be practical but

further improvement may make it competitive. In future work, a performance

study on occluded shapes may reveal itself interesting. The method introduced in

[4] was designed to perform well in the case of occlusion by learning the salient

features of a shape , offering a solution to one of the most challenging problem of

computer vision.
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Metrics Reference Time Human perception Occlusion

Zunic circularity [35] O(r) close undefined

Rahtu convexity [23] O(r) not mentioned undefined

Stojmenovic elongation [27] O(n) close undefined

Zunic orientability [34] O(r) not mentioned undefined

Ritter roundness [24] O(r) close undefined

Bribiesca compactness [2] O(r) close undefined

Zunic compactness [33] O(r) close undefined

Martinez-Ortiz cubeness [21] O(r) not mentioned undefined

Martinez-Ortiz tunable cubeness [22] O(r) not mentioned undefined

Sukno asymmetry detection [28] O(r5) not mentioned not competitive

Lian rectilinearity [19] unknown close undefined

Table 1: Table summarizing the presented metrics.

In [17] a new non-rigid 3D shape benchmark is proposed. A study of sev-

eral retrieval algorithms is done using the benchmark. It is pointed out that the

field could benefit from large and diverse, as well as specific benchmarks. The

database proposed in [17] is based on several well-known benchmark and adds

new kind of shapes to the ones previously available. This benchmark should

be considered in future work. It seems to be a promising alternative to McGill’s

because the different classes are more balanced and thus avoid a consequent

bias.

where r is the resolution of the shape and n is the number of triangle or seg-

ment depending on the shape representation.

3.3 Defining a new family of metric

Table 3.2.2 summarizes the charateristics of the presented metrics. This review

showed how it is possible to formalise new metrics by extending previous def-

inition. Indeed, this process was used to define Martinez-Ortiz tunable cube-
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ness, [22], from Martinez-Ortiz cubeness [21]. Zunic compactness defined in [33]

could go through a similar process. Studying compactness is relevant since it

is expected that similarly compact objects seem to have similar shapes. In this

research we will answer the following questions. How to extend Zunic compact-

ness? What are the formal properties of the new family of metrics? Is the family

redundant? What are the most/least compact shapes for different metrics of the

family? Are they able to help increase the classification rate of a classification

application?
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4 Theory

This section is a theoretical work defining the new family of metrics. It also proves

properties essential for a shape descriptor, as well as others specific to this family

of metrics behaviour.

4.1 A tunable compactness measure for 3D shapes

The new family of metrics is based on the compactness metric introduced in [33].

In this paper, it is proven that the metric is ranging over (0, 1], is invariant with

regards to translation, rotation and scaling and equal to one if and only if the

shape is a sphere. Note that the exact value 0 is never reached. Similarly, in [35],

the extension of Zunic circularity is proven to tend towards 0 when the parameter

tends toward ∞. This subsection will focus on establishing a similar theoretical

basis for the definition of the new compactness measures. Theorems 1 and 2 will

establish bounds of a formula originally inspired by a Hu-invariant [11].

Theorems 1 and 2 prove what is the lower bound of

���

S

(x2+y2+z2)βdxdydz

V (S)(2β+3)/3 and

also establish that it is reached only in the case of a sphere. Let us consider the

centroid of a shape to be its center of gravity.

Theorem 1. Let S be a shape whose centroid coincides with the origin, β real

number such that β > 0 and V (S) the volume of the shape. Then:

���

S

(x2 + y2 + z2)βdxdydz

V (S)(2β+3)/3
≥

3

2β + 3

�

3

4π

�2β/3

(1)

���

S

(x2 + y2 + z2)βdxdydz

V (S)(2β+3)/3
=

3

2β + 3

�

3

4π

�2β/3

⇔ S is a sphere (2)
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Proof. Consider the sphere Sp having the same volume as S and whose cen-

troid coincides with the origin. Thus its radius r is such that r = 3
�

3V (S)/4π.

Let’s consider a real number β > 0 then:

(u, v, w) ∈ S\Sp, (x, y, z) ∈ Sp\S ⇒ (u2 + v2 + w2)β > (x2 + y2 + z2)β,

which gives:

���

S\Sp

(x2 + y2 + z2)βdxdydz ≥

���

Sp\S

(x2 + y2 + z2)βdxdydz (3)

and by extending the integration to the intersection of both shapes:

���

S

(x2 + y2 + z2)βdxdydz ≥

���

Sp

(x2 + y2 + z2)βdxdydz

and

���

Sp

(x2 + y2 + z2)βdxdydz

=

� 2π

θ=0

� π

φ=0

� r

ρ=0

�

(ρ cos θ sinφ)2 + (ρ sin θ sinφ)2 + (ρ cosφ)2
�β

ρ2 sinφ dθdφdρ

=
3

2β + 3

�

3

4π

�2β/3

V (S)(2β+3)/3.

This proves 1. To prove 2, it is enough to notice that:

• If S is not a sphere then the inequality 3 is strict, implying that 1 is also strict

- i.e. 2 does not hold.
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• If S is a sphere then the verification of 2 is straightforward.

Theorem 1 assumes β > 0 but the convergence of the integral is preserved

for −3
2
< β < 0. Moreover the reasoning stays valid except that the inequality is

opposed. This leads to the next theorem, given without proof.

Theorem 2. Let a shape S whose centroid coincides with the origin, and a con-

stant β, such that −3
2
< β < 0. Then:

���

S

(x2 + y2 + z2)βdxdydz

V (S)(2β+3)/3
≤

3

2β + 3

�

3

4π

�2β/3

���

S

(x2 + y2 + z2)βdxdydz

V (S)(2β+3)/3
=

3

2β + 3

�

3

4π

�2β/3

⇔ S is a sphere

The statements of the Theorem 1 and Theorem 2 leads to the definition of a

tunable 3D compactness measure.

The next definition defines the family of compactness measures by adapting the

previous formula such that the new metrics range over (0, 1].

Definition 1. Let S be a shape whose centroid coincides with the origin, and a

constant β > −3
2

such that β �= 0. Then the compactness measure Kβ(S) is

defined as:

Kβ(S) =























3
2β+3

�

3
4π

�2β/3 V (S)(2β+3)/3
���

S

(x2+y2+z2)βdxdydz
, β > 0

2β+3
3

�

4π
3

�2β/3

���

S

(x2+y2+z2)βdxdydz

V (S)(2β+3)/3 , −3
2
< β < 0.

(4)
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Note that by construction, the new compactness measures Kβ(S) range over

(0, 1] as is expected from such a descriptor. Moreover, the metric is continuous

with regards to β in 0, since both formalae are equal to 1 when β is equal to 0.

The reason why the metric in the case of β = 0 was chosen to be left undefined is

because in this case the compactness of every shape is worth 1. It is also worth

noting that the impact of β weight the points depending on their position inside

the shape. It is not clear however what value of β is associated with higher weight

for the points close to the center of gravity, for instance.

The next theorem summarises desirable properties of Kβ(S) measure.

Theorem 3. The new compactness measure Kβ(S), where β > −3
2

and β �= 0,

satisfies the following properties:

(a) Kβ(S) ∈ (0, 1] for all shapes S;

(b) Kβ(S) = 1 ⇔ S is a sphere;

(c) Kβ(S) is invariant with respect to the translation, rotation and scaling transformations;

(d) For each δ > 0 and fixed β there is a shape S such that 0 < Kβ(S) < δ

Proof. By definition of Kβ(S), (a), (b) and its invariance with respect to trans-

lation are true. Moreover, since the sub-integral
���

S

(x2 + y2 + z2)dxdydz is in-

variant with respect to rotation, the new compactness measure also have this

property, since the shape center of gravity coincides with the origin and no other

part of the metric formula could be dependent onthe shape rotation. As for the
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scaling invariant, it is sufficient to note that, in the case of a scaling of ratio r, the

substitution {x → rx; y → ry; z → rz} in
���

S

(x2 + y2 + z2)βdxdydz gives:

���

S

((rx)2 + (ry)2 + (rz)2)βr3dxdydz =

���

S

r2β+3(x2 + y2 + z2)βdxdydz (5)

= r2β+3

���

S

(x2 + y2 + z2)βdxdydz (6)

The volume resulting from such a scaling will be: r3V (S). Consequently, the

scaling related factors from the integral and the volume will cancel each other

out.

The proof of (d) is obtained by considering the hollow sphere Sa, for a ≥ 1, such

that Sa = (x, y, z) ∈ R
3|a ≤ (x2 + y2 + z2) ≤ a+ 1. Then for every β, lima→∞ = 0.

The details can be found in the appendix A.

Theorem 4. Let S be a shape different from a sphere. Then:

lim
β→∞

Kβ(S) = 0. (7)

Proof. Let a shape S, different from a sphere, whose centroid coincides with the

origin. Consider a sphere Sp having the same volume as S and whose centroid

also coincides with the origin. Thus its radius r is such that r = 3
�

3V (S)/4π. A

consequence of this definition is that the volume of S\Sp and Sp\S are equal and

strictly positive, since both shapes are centered on the origin. Hence Δ can be

32



defined as follow:

Δ = V (S\Sp) = V (Sp\S) > 0 (8)

Further, let another sphere Sext centered at the origin and having a radius rext

such that

rext =
3
�

3(V (S) +Δ)/4π. Note that r < rext and

V (Sext\Sp) = Δ. (9)

Similarly to the proof of Theorem 1 :

(u, v, w) ∈ S\Sext, (x, y, z) ∈ Sext\S ⇒ (u2 + v2 + w2)β > (x2 + y2 + z2)β,

which gives:

���

S\Sext

(x2 + y2 + z2)βdxdydz ≥

���

Sext\S

(x2 + y2 + z2)βdxdydz

and by extending the integration over (S ∩ Sext)\Sp:

���

S\Sp

(x2 + y2 + z2)βdxdydz ≥

���

Sext\Sp

(x2 + y2 + z2)βdxdydz (10)
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where

���

Sext\Sp

(x2 + y2 + z2)βdxdydz

=

� 2π

θ=0

� π

φ=0

� rext

ρ=r

�

(ρ cos θ sinφ)2 + (ρ sin θ sinφ)2 + (ρ cosφ)2
�β

ρ2 sinφ dθdφdρ

=
4π

2β + 3
(r2β+3

ext − r2β+3)

=
4π

2β + 3

�

�

3(V (S) +Δ)

4π

�(2β+3)/3

−

�

3V (S)

4π

�(2β+3)/3
�

=
4π

2β + 3

�

3

4π

�2β/3

· V (S)(2β+3)/3 ·

�

�

1 +
Δ

V (S)

�(2β+3)

− 1

�

.

A Taylor expansion together with the fact that Δ < V (S) imply that there is an

ω ∈ (0, 1) such that:

���

Sext\Sp

(x2 + y2 + z2)βdxdydz

=
4π

2β + 3

�

3

4π

�2β/3

· V (S)(2β+3)/3·

�

2β + 3

3

Δ

V (S)
+

2β + 3

3

2β

3

Δ2

V (S)2

�

1 + ω
Δ

V (S)

�(2β−3/)3
�

>
4π

2β + 3

�

3

4π

�2β/3

· V (S)(2β+3)/3 ·
2β + 3

3

Δ

V (S)
(11)

Thus deriving from (10) and (11):

���

S

(x2 + y2 + z2)βdxdydz ≥

���

S\Sp

(x2 + y2 + z2)βdxdydz

>
4π

2β + 3

�

3

4π

�2β/3

· V (S)(2β+3)/3 ·
2β + 3

3

Δ

V (S)
.
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Finally,

Kβ(S) =
4π

2β + 3

�

3

4π

�2β/3

·
V (S)(2β+3)/3

���

S

(x2 + y2 + z2)βdxdydz
<

3V (S)

3(2β + 3)Δ
. (12)

Since Δ > 0 and since Δ does not depend on β, 12 gives:

lim
β→∞

Kβ(S) = 0.

Hence the Theorem 4 has been proven for every shape S different from a

sphere.

One consequence of this theorem is that no matter how small is a shape

difference from a perfect sphere, there is a β such that the metric, Kβ(S) is able

to distinguish between them. Indeed, for all δ such that 0 < δ < 1, there is a

value of β such that the difference between a sphere and the measured shape is

greater than δ.

In this section a new tunable compactness measure was introduced theo-

retically. It extends Zunic compactness, [33], by introducing a parameter to its

definition, some of its formal properties were proven. Namely, the metrics range

over (0, 1], 0 being the lower bound. For any β different from 0, the compactness

is equal to 1 if and only if the shape is a perfect sphere. This property is coherent

with human perception, indeed it is expected that the most compact shape is a

sphere. It is also invariant with regards to translation, rotation and scaling. These
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are highly desirable properties, indeed as a result, the compactness value will not

be dependent on how the model is presented. That is, the metrics do not differen-

tiate between, for instance, a “view” from behind and one from above. Finally, the

last theorem proves that, the measurement for any shape differing from a sphere

will tend toward 0 as β increases. Consequently, it is possible to use this metric

to evaluate the difference between a sphere and the measured shape.

5 Experiments

This section presents a set of experiments that illustrates the relation between

the metric values and the shapes and proves its non-redundancy. Finally in the

last subsection, the combined use of the new metrics and the cubeness metrics,

described in [22], is studied as an example of application of the new metric in

association with a previouly defined metric.

5.1 Experiments

In this section, experiments are provided to answer whether the different metric of

the family are redundant, what are the most and least compact shapes depending

on the tuning and whether the new tunable compactness measure can increase

the classification rate of an application.

McGill’s dataset is used for the following experiments, it is a commonly used

dataset [26]. There are 457 shapes belonging to 19 classes. The list of the classes

is: Ants, Crabs, Glasses, Hands, Humans, Octopuses, Pliers, Snakes, Spiders,
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Non-Articulated Articulated

Airplanes Crabs

Birds Hands

Dinosaurs Octopuses

Fishes Snakes

Chairs Spiders

Cups Teddy-bears

Dolphins Ants

Four-limbed Humans

Tables Pliers

Glasses

Table 2: Repartition of McGill’s database classes between articulated and non-

articulated.

Teddy-bears, Tables, Cups, Chairs, Airplanes, Dolphins, Birds, Four-legged, Di-

nosaurs and Fishes. The classes themselves are divided into two kinds, objects

with articulating parts and objects without, Table 2 shows the repartition. Every

class of the non-articulated kind, is composed of essentially different objects. For

instance the class “Table” does not contain twice the same table. For the classes

belonging to the articulated kind, it is worth noting that most shapes of every class

are obtained by deformation of an initial shape. Typically, in the case of the crab

class, every shape was obtained by changing the posture of the crab legs. The

number of shapes in each class varies from 12 to 31 shapes. As pointed out in

[17], the unequal repartition of shapes among the different classes may cause a

bias. Since we will be evaluating the relative classification rate rather than their

numerical value, McGill’s dataset remains a satisfying choice.

The different experiments were realised with the software Matlab. Using the

“.im” version of the shape in the database. Appendix B gives the code used to

compute the measurement for a shape from the shape file. It defines the function
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Kbeta that takes a file name and a parameter beta and returns the compactness

value of the shape stored in the file for the parameter value beta. Kbeta expects

the filename to point to a file representing a shape in the format “.im”, the loading

function, namely kuim_load, import the shape as a matrix of voxels. A procedure

then called this function for every shape of the database and for 10 different val-

ues of β. These values were chosen to cover a range of values within the limit of

the metric computability. The different values of β are: -1.4, -1, -0.5, -0.1, 0.1, 0.5,

1, 2, 3. These will be enough to prove the non-redundancy and show an increase

in classification rate, it will also be possible to illustrate the difference between the

most and least compact shapes for various tunings. The compactness measure-

ments were stored to be post-processed later in the different experiments.

The formula defining the compactness metric is based on the integration of

the term (x2 + y2 + z2)β over the considered shape. In this work, this integral

is approximated by dividing the shape into “unit” of space and considering the

formula constant over this volume. The constant value of each “unit” of space is

chosen to be the value of the formula for its center of gravity. Each voxel was

subdivided into a sufficient number of cubes to obtain a satisfying precision. It

is important to specify that a voxel is unit of space with regards to the shape

repesentation but it is still possible to subdivide it mathematically. Note that, for

every β greater than 0, (x2 + y2 + z2)β is defined in (0, 0, 0). Consequently, the

integration converges rapidly, meaning that it is not necessary to consider an

extremely fine precision to reach a satisfying approximation. However when β

is lower than 0, (x2 + y2 + z2)β becomes 1
(x2+y2+z2)−|β| , which is not defined in
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(0, 0, 0), but
���

S

1
(x2+y2+z2)−|β| still converges, if −1.5 < β < 0. This implies that

as β tends toward −1.5 a much finer precision is needed to obtain an accurate

result. The consequence of these remarks from the point of view of the code

was that for positive value of β it is sufficient to subdivide each voxel into 4 cubes

to obtain satisfying results. The code shown in Appendix B, however, displays

a subdivision into 1000 cubes, it was used to compute the measurements for

negative values of β. As mentioned previously, the measurements were originally

computed for 10 values of β. The numerical values of the metric obtained for

certain shapes in the case of β = −1.4 revealed themselves to be higher than 1.

This is due to the fact that the chosen approximation was not fine enough. It was

decided not to use it and run the experiments using only nine different values of

β. It is important to note that the choice of the sample size, that is the number of

successive subdivision of the voxels, has an important impact on the computation

time. Indeed, the computation were a matter of seconds for positive values of β,

whereas it took an average of 15 minutes to compute the four negative values

of β for each shape. Consequently, for the metric to be practical in the context

of negative values of β a significant improvement of the computation method is

needed. This improvement is left for future work.

Figure 2 displays an illustration of the experimental process. The experiment

reported in Section 5.1.1, comparison between theory and implementation, gives

evidence to justify the correct implementation of the algorithm by comparing sev-

eral theoretical results to the ones obtained by computation. That is it is an at-

tempt at giving piece of evidence that the implementation actually compute the
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metric value. The following experiment, “named behaviour on a set of deformed

shape”, detailed in Section 5.1.2, investigate the ability to differentiate amongst

a set of deformed shape. In Section 5.1.3 the experiment, improving classifi-

cation by using several metrics, investigates how the use of the new family of

metrics can lead to an improvement in classification. These two experiments will

give valuable results to draw a conclusion on the non-redundancy of the metrics.

In Section 5.1.4, the illustration of the different notions of compactness gives a

graphic overview of the different compactness definitions described by the metric

tunings. Section 5.1.5 reports the results of a matching experiment which gives a

graphic illustration of the metric ability to describe a dataset. Finally, the investiga-

tion of the class clusterisation, in Section 5.1.6, attempts to better understand the

previous results by illustrating how the classes of McGill’s database are mapped

by the metrics.

Figure 2: Diagram illustrating the experimental process.
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5.1.1 Comparison between theory and implementation (Experiment #1)

In this subsubsection, theoretical calculation of the compactness of a cube for

three different values of β, namely 1, 2 and 3, will be compared with the results

from the implemented version of the computation. These values were chosen

because they were the only results obtainable through a hand written theoretical

calculation. This experiment is an attempt to justify the correctness of the metric

implementation and thus the relevance the data that will be used in subsequent

experiments. The calculation for β = 3 will be fully detailed. Given the similarity

of reasoning the values for the other β will be given without further justifications.

Let C be a cube centered on the origin and of volume 1. Since:

Kβ(C) =
3

2β + 3

�

3

4π

�2β/3
µ0,0,0(C)(2β+3)/3

���

C

(x2 + y2 + z2)βdxdydz

Then:

K3(C) =
3

9

�

3

4π

�2
1

���

C

(x2 + y2 + z2)3dxdydz
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The integral gives:

���

C

(x2 + y2 + z2)3dxdydz

=

���

C

x6 + 3x4(y2 + z2) + 3x2(y2 + z2)2 + (y2 + z2)3dxdydz

=

���

C

x6 + 3x4y2 + 3x4z2 + 3x2y4 + 3x2z4 + 6x2y2z2 + y6 + z6 + 3y4z2 + 3y2z4dxdydz

Since it is integrated over the same intervals, it is possible to rename the variables to obtain:

=

���

C

3x6 + 18x4y2 + 6x2y2z2dxdydz

=

� 0.5

x=−0.5

� 0.5

y=−0.5

� 0.5

z=−0.5

3x6 + 18x4y2 + 6x2y2z2dxdydz

=

� 0.5

x=−0.5

3x6dx+

� 0.5

x=−0.5

� 0.5

y=−0.5

18x4y2dxdy +

� 0.5

x=−0.5

� 0.5

y=−0.5

� 0.5

z=−0.5

6x2y2z2dxdydz

=
6

7
0.57 +

72

15
0.58 +

48

27
0.59

Finally:

K3(C) =
3

9

�

3

4π

�2
1

6
7
0.57 + 72

15
0.58 + 48

27
0.59

≈ 0.6569

Table 3 gives the difference between the theoretical calculation and the result of

the computer assisted computation. For the three values, the order of magnitude

of the difference is 10−5. These results are low enough to be confident about the

correctness of the implementation, if it wasn’t the case the measure would have
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likely resulted in a very different value. Since the computation on a cube are not as

complicated as on the shape of McGill’s database any results lower than 2.5e−03

will be considered not precise enough given the current implementation. The way

we proceded to determine how much we had to subdivide the voxels, was by

successively increasing the level of subdivision. Eventually, the computation time

for the metric reached a level where we wouldn’t have been to compute the data.

2.5e− 03 is greater than the highest value difference between the two last step of

the process. That is, the greatest difference between the results obtained when

subdividing each cube into 729 cubes and those obtained for a subdivision into

1000 cubes, was lower than 2.5e− 03. Note that this value is also higher than the

difference found between theoretical calculation and numerical computation.

β Difference value

1 1.4093e − 05
2 3.2194e − 05
3 4.8025e − 05

Table 3: Difference between the theoretical calculation and the numerical value

obtain with the implementation of the metrics in Matlab.

Conclusion The results obtained in this section gives us confidence that our

implementation correct, it also gave us the opportunity to evaluate the margin of

error that is being made with our implementation, namely 2.5e − 03.

5.1.2 Differentiation between deformed shapes (Experiment #2)

This experiment aims at illustrating how close the metrics value of a set of shapes

obtained by deformation are from each other. Figure 3 shows the set of shapes
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considered for this experiment and Table 4 their compactness measurements for

different values of β.

The data used in this experiment is composed of 5 shapes. Each shape was

obtained by deformation of an initial teddy-bear (Figure 3 teddy10). The different

shapes are in fact different postures of this teddy-bear.

In order to accept that the metric can differentiate between this set of shapes,

the measurement difference between any two shapes should be higher than the

error margin fixed in the previous experiment, namely 0.0025. The reason for

that is that any result based on a difference of value lower than this threshold

could potentially be proven wrong by a more precise approach. Consequently

if the mean value is found to be lower than 0.0025, the value of β to which it

corresponds will be disqualified in future experiment.

This experiment is also an opportunity to assess the redundancy of the metric.

A sufficient condition to prove that it is not redundant is to observe a difference

in the ranking of the shapes according to their compactness measurements for

different values of β. This is not a necessary condition because the dataset is

not representative of every shape. Consequently, although the ordering might not

change on this dataset, it might be possible to observe a modification with a more

representative one.

Table 5 shows the ordering resulting from the numerical value. Finally, Figure

4 displays the lowest compactness measure for the set and the lowest difference

between two shapes as a function of β. The plot also displays the threshold rep-

resenting the error margin.
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teddy1 teddy3 teddy10 teddy11 teddy13

Figure 3: The set of shapes considered for the second experiment. This experi-

ment aims at illustrating the impact of deformation on the metric values.

β −1 −0.5 −0.1 0.1 0.5
teddy1 8.8788e − 01 8.8672e − 01 9.6670e − 01 9.6210e − 01 7.8758e − 01
teddy3 9.0323e − 01 8.9108e − 01 9.6598e − 01 9.6011e − 01 7.6684e − 01
teddy10 8.9450e − 01 8.9293e − 01 9.6871e − 01 9.6449e − 01 8.0141e − 01
teddy11 9.0202e − 01 8.9725e − 01 9.6923e − 01 9.6461e − 01 7.9712e − 01
teddy13 8.9820e − 01 8.9583e − 01 9.6946e − 01 9.6524e − 01 8.0406e − 01

β 1 2 3 6
teddy1 5.5963e − 01 2.2496e − 01 7.4346e − 02 1.5399e − 03
teddy3 5.0711e − 01 1.6006e − 01 4.0043e − 02 4.0406e − 04
teddy10 5.8802e − 01 2.6426e − 01 1.0234e − 01 3.6021e − 03
teddy11 5.7071e − 01 2.3018e − 01 7.6237e − 02 1.6853e − 03
teddy13 5.8991e − 01 2.6067e − 01 9.7428e − 02 3.0857e − 03

Table 4: The measured compactness for the shapes displayed in Figure 3 and for

different values of β.

The results obtained for β = −0.1 and β = 0.1 are close to 1. From the theoreti-

cal analysis of the formula, it can be deduced that the compactness measurement

of each shape tends towards 1 when β tends toward 0. Moreover, Figure 4 right

plot illustrates this behaviour, indeed it is clear that when β tends towards 0 the

lowest and the highest compactness value of the set tends toward 1. Note also

that the two rows corresponding to these values of β in Table 5 are identical. This

may suggest that the two metrics behave in a similar way.

In the case of β = 0.5 and β = 2 the lowest difference between two shapes is

higher than the threshold, as shown Figure 4 left plot. Consequently, these two

metrics would qualify to differentiate between the different elements of this set of

shapes.
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β Ordered Shapes

−1

−0.5

−0.1

0.1

0.5

1

2

3

6

Table 5: The ordering resulting from the values displayed in Table 4. The com-

pactness measurement increases from left to right.
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Figure 4: On the left, the maximum and minimum difference between two com-

pactness measurements as a function of beta. On the right the highest and the

lowest value as a function of beta.

Figure 4 left plot clearly shows that the minimum difference obtained for β =

0.1, β = −0.1 and β = 6 are significantly below the threshold of the error margin

for this research. It means that the relative ranking can not be relied on. More

importantly, in the case of β = 6, Figure 4 right plot shows that the lowest com-

pactness measurements is below the threshold. Consequently it is safer to take

it away from further experiments, since it can not be relied on.

It is also worth noting that the lowest difference for β = 3, β = 1, β = −0.5 and

β = −1 are shown to be notably close to the threshold in Figure 4 left plot. Con-

sequently, an improvement in the precision of the metric could result in accepting

these metrics as able to differentiate between the shapes of this dataset. More-

over Table 5 shows that the shape ordering for these four metrics are different.

It suggests that a combined use would result in an improvement of performance

for a shape description application. This hypothesis will be further studied in the
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experiment #3, improving classification by using several metrics. As mentioned

earlier, the change of ordering observed in this part brings evidence that the fam-

ily of metrics is not redundant.

Conclusion This experiment investigated the ability of a single metric to dif-

ferentiate amongst the member of a particularly small dataset. The results pre-

sented clearly show that for our implementation and according to the margin of

error we chose certain tuning of the metric can appropriately differentiate between

the shapes, namely, β = 0.5 and β = 2. Note that on a larger dataset it is highly

unlikely to be able to differentiate between every shapes using only one metric.

Therefore, it makes more sense to rely on the non-redundancy of a set of metrics

to describe the shapes. Moreover, choosing an appropriate set of metrics may be

enough to compensate for a lack of precision. This experiment also brings some

piece of evidence that the metrics of the family are not redundant by displaying a

modification of the shape ordering.

5.1.3 Improving classification by using several metrics (Experiment #3)

This experiment consists of a numerical evaluation of the performance of different

classifiers based on the family of metrics.

In last experiment, it was shown that the metrics defined by β = 3, β = 1,

β = −0.5 and β = −1 may not be able to differentiate between the shapes of

the studied dataset, alone. It was also pointed out that the ranking that resulted

from their respective compactness value was different. As a consequence it was
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mentioned that a combined use may lead to an improvement of performance, in

a classification application for instance.

To assess whether or not a combined use of these metrics would improve the

performance of an application, five nearest-centroid classifiers were built. The

choice of not using advance machine learning techniques was made in order to

make sure that any performance improvement was due to the non-redundancy of

the family rather than a better convergence of the classification method. Four of

the five classifiers used a single metric defined by a specific value of β. These val-

ues were used as data for the classification task. The fifth classifier was obtained

by training on the four previously used metrics.

The classification rate was computed by 3-fold cross-validation on the entire

McGill’s database. This technique allow for a fair comparison between the differ-

ent classifiers.

Note that the classification task consisted of assigning a class among 19 to

each shape of the test sample. From here on the classes we will be refering to

are the on listed in Table 2. Consequently a random classifier would be charac-

terised by a classification rate of 0.05. If the classifiers succeed in outperforming

such a classifier, it would imply that the compactness measure are relevant in the

description of certain class of McGill’s dataset.

Figure 6 shows the results.

The classification rate of the classifiers using a single metric are all higher

than 0.05. Moreover, the classifier built using the four metrics has a classification
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β Classification Rate

{−1} 0.2122
{−0.5} 0.2429
{1} 0.2165
{3} 0.2428

{−1,−0.5, 1, 3} 0.3741

Table 6: Comparison between five classifiers, the four firsts use only one metric

defined by a value of β whereas the last one combines the four metrics.

rate higher than any of the others.

The first remark that can be made concerning the results displayed in Table 6

is that the classifiers using a single metric outperform a random classifier. Thus, it

can be deduced that compactness measurements are relevant in the description

of the shapes of McGill’s database. Experiment 5.1.6 will investigate whether cer-

tain classes are characterized by their compactness values. Indeed if every class

had a great diversity of compactness, the result from the classifier would likely

be worse than a random classifier. However, if the compactness was sufficient to

describe every class of the dataset, a much higher rate would be expected.

The second point that can be deduced from the results is that the combined

use of the metrics effectively result in a better classification performance. Indeed

the table clearly shows an increase between any single classifier and the classifier

using the combination of metrics. This proves that the family of metrics is not

redundant. Indeed if the different tuning of the metric were all redundant the

classification rates should all be equal. The fact that the classification rate doubles

is an indication that the notion of compactness defined by the different tuning are

relevant in the characterisation of certain classes.
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Conclusion This experiment successfully brought more evidence of the non-

redundancy of the family of metrics defined in this thesis. Indeed the difference of

performance is an indicator of this fact. It was also shown that the classifier using

a combination of metrics outperformed the classifiers using only one of them.

Moreover, they all outperform a random classifier, this suggests that the notions of

compactness defined by the family of metrics are relevant in the characterisation

of certain classes of McGill’s dataset. In a more general perspective it means that

a combined use of several metric of this family can result in an improvement of

performance.

5.1.4 Illustration of the different notion of compactness (Experiment #4)

This experiment gives an illustration of the most and least compact shapes for the

metrics, it will show the different notions of compactness defined by the family of

metrics.

The dataset used in this experiment is the entire McGill’s database. It is con-

sidered to be diverse enough to accurately illustrate the various compactness

definition rising from different tunings of the metric. Given the remark made in the

previous experiment concerning β = 6 the results for this metric are not studied.

For each value of β the shapes corresponding to the five highest and the five

lowest values of the metric were selected, Table 7 displays the results.

The shapes leading to the 5 lowest values can be considered the least com-

pact for the considered metric. Similarly, the 5 highest values are the most com-

pact shapes. A significant change in the retrieved shapes would be an indica-
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β Lowest Highest

−1
snakes13 snakes14 glasses23 glasses18 glasses4 octopuses63 fishes16 octopuses26 octopuses25 cups22

−0.5
glasses23 snakes13 snakes14 glasses4 glasses18 octopus26 octopus63 octopus25 fishes16 cups22

−0.1
glasses23 snakes19 glasses4 glasses18 snakes8 teddy11 teddy13 teddy20 fishes16 cups22

0.1
snakes19 glasses23 glasses4 snakes8 snakes20 teddy11 teddy13 teddy20 fishes16 cups22

0.5
snakes20 snakes19 snakes8 glasses23 glasses4 teddy10 teddy20 teddy13 cups22 fishes16

1
snakes20 snakes19 snakes8 glasses23 glasses20 teddy20 cups22 teddy10 teddy13 fishes16

2
snakes20 glasses20 glasses3 snakes19 glasses13 teddy8 cups9 teddy13 teddy10 cups4

3
snakes20 glasses3 glasses20 glasses12 glasses1 cups2 teddy13 teddy10 cups9 cups4

Table 7: The shapes giving the 5 highest and lowest values for different values of

β. The compactness increases from left to right.

tion that the metric behaviour is significantly modified as β changes. The study

of these modifications and the appearance of the shapes might reveal general

trends from which to formulate conjectures describing the metric behaviour.

The metric being continuous, a slight difference in the retrieved shapes for

successive value of β and a significant change when considering a large differ-

ence in the value of β is expected.

For β = −1 and β = −0.5, 3 octopuses are found to be amongst the most
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compact shapes of the database. All of them have a very spherical base that

would qualify as a high compactness, but their tentacles should reduce their com-

pactness value. The metric seem to consider compact the shapes having a

strong compact part around their center of gravity. The results obtained for

the least compact shapes seem to support this hypothesis. The 2 least compact

shapes in the case of β = −1 are spring-like shapes. It is clear for these shapes

that none of their points are close to the center of gravity. The other shapes that

are considered not compact are glasses with their arms unfolded. In these cases,

the center of gravity might belong to the shape but because the glasses arms are

not in the same plane as the lenses it is shifted in the arms direction. In extreme

cases it might be shifted enough not to belong to the shape. This would not be the

case if the arms were in the same plan. All these remarks tends to confirm that

the fewer point around the center of gravity, the lesser the compactness. Note that

this notion is fairly different from human perception in the sense that the tentacles

would likely result in classifying the octopuses as less compact than teddy-bears

for instance.

Some of the results for β = 2 and β = 3 are unexpected. Indeed, empty

cups are retrieved amongst the 5 most compact shapes. This suggests that as β

increases the metric considered cups as being more compact than, for instance,

teddy-bears. It seems that the points of the shapes far away from the center of

gravity have a more significant impact than the closer ones. That is, the metric

is evaluating how close the shape is to an hollowed sphere. The hollowed

sphere is considered to be a sphere with a concentric hole. The tinier the hole
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of the sphere, the more compact. This could explain why hollowed shapes are

retrieved. The cups are quite spherical when looking on the opposite side of

the handle. It is difficult to comment on the less compact shapes since their

compactness values happen to be of the same order of magnitude as the margin

error. From the conjecture the only prediction that can be made is that as β

increases the less compact shapes will be the ones with the smallest volume away

from their center of gravity. The retrieved shapes do not falsify the conjecture, it

is however difficult to precisely evaluate such a qualitative criteria. Another hint

that the conjecture might be true is that the octopuses retrieved in the case of

β = −1 and β = −0.5 are down to the 150th place in the overall ranking. It is

relevant because as β would increase the tentacles importance over the body is

supposedly going to increase. This would result in a decrease of compactness

and that is what is observed here.

In the previous experiment a remark was made considering the fact that the

ordering for β = 0.1 and β = −0.1 was similar and that it could be the sign

that it behaves in a similar manner. The results obtained for the most compact

shapes in these cases would tend to support this remark. Indeed, the five most

compact shapes are the same for both tunings. The least compact, however,

are significantly different. It is, therefore, safe to say that this two tunings of the

metric behave in a different manner. As mentioned previously the compactness

of every shape tends toward 1 as β tends toward 0. A consequence of this fact

is that the metrics are likely to loose being interesting if β is too close to 0, since

the metric value for all shapes tends toward 1. This is something to keep in mind
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when selecting a set of metrics. It is worth noting that the most compact shapes

are coherent with the human perception. Note that the cup, which is the most

compact shape is not empty. Therefore, there is no obvious difference with the

human perception of compactness. Similarly, the least compact shapes are rather

thin and as such agree with human expectations of a non compact shape. It could

however be argued that more linear shapes should be expected. That is, a stick

may be considered less compact than the displayed glasses.

The same sort of remarks holds for β = 0.5 and β = 1. That is, both the

least and the most compact retrieved shapes are fairly consistent with human

perception. Moreover, the results obtained for β = 1 seems to better address the

remark concerning a stick-like shape. One pair of glasses is swapped in favor of

another pair whose arms are in the same plan as the lenses. The general remark

that the metric for β = 1 is coherent with the human perception confirms what

had been said in [33]. This paper specifically studied the case where β was equal

to 1. In fact, the retrieved shapes for these two metrics are very similar to the

ones retrieved for β = 0.1 and β = −0.1. In particular, the results for β = 0.1,

β = 0.5 and β = 1 are composed of the same shapes. This suggests that the

metric behaviour does not vary very much when β belongs to (0, 1].

Conclusion As was expected, a slight change can be observed between suc-

cessive rows of the table. Indeed, for any two successive table rows at least two

shapes can be found in both. This is coherent with the fact that the metric is con-

tinuous with regards to β. Moreover, there is at least a slight change of ordering in

the retrieved shapes which is enough to confirm that the family is not redundant.
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In fact, in almost every two successive rows a new shape is introduced. This

illustrates that the behaviour of the metric changes significantly overall. One par-

ticularly satisfying result is that the first row and the last row of the table have no

shape in common. It is satisfying because it strongly suggests that as β is chang-

ing, the aspects of the shapes that are being evaluated change dramatically. It is

worth noting that the compactness metrics defined for β close to −1.5 seems to

weight more the points of the shape close to its center of gravity whereas when β

increases, the most important points in describing the shape compactness seem

to be the points away from the center of gravity.

5.1.5 Matching experiment (Experiment #5)

In this experiment, 10 shapes were randomly chosen so that they belong to differ-

ent classes. This was done as a way to give a broader illustration of the metrics.

The list of shapes is shown in Table 8.

teddy5 crabs18 glasses1 hands5 octopus26

airplane9 cups22 snakes30 humans9 four5

Table 8: The 10 selected shapes.

For each of these shapes, the 5 closest shapes were retrieved. Where close-

ness refers to the smallest distance computed by considering the metric values of

a shape as its coordinates. As mentioned in 3, computing the value of n different
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metrics result in the mapping of each shape in an n-dimensional space. That is,

each metric value is a coordinate and the shape itself can be considered to be

located at the corresponding position. Consequently, the distance between two

shapes is the euclidean distance. In this experiment the following values of β

were used: -1, -0.5, -0.1, 0.1, 0.5, 1, 2 ,3. Note that β = 6 was ruled out for the

reasons mentioned in the second experiment (differentiation between deformed

shapes).

Here, it is expected that a naive use of different metrics of the family will result

in a satisfying shape matching application. There are different ways to assess

it but the purpose of this thesis is to show the contexts in which the metrics are

interesting shape descriptors rather than to build the best matching model possi-

ble. Therefore, the general aspects of the retrieved shapes will be compared with

the submitted one. Strong similarities in compactness are expected, and possibly

shapes of the same class. Indeed, suppose that compactness measurements of

certain classes are more dependent on the kind of shapes than on the posture;

it results that the most similar compactness are more easily found in the same

class than in other classes. The class teddy-bear seem to be a good example of

that phenomenon. To improve the assessment, two other tables of an analogous

experiment are also shown. Table 10 is a personal selection, it is supposed to

represent a human answer to the question: “What are the most similar shapes

to the one submitted”. Table 11 is a random choice of shapes in the database.

This table is here to help the reader consider the difference between the retrieved

shapes and a random result.
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The results of this experiment could illustrate that on some database the merit

of this metric is straight forward. This experiment will also give an intuition of the

contexts in which the metric is a good descriptor.

Table 9 displays the results of this experiment. Note that the retrieved shapes

are not ordered in any way.

Submitted shape Five closest shapes

teddy5 teddy2 teddy8 teddy6 teddy16 teddy20

crabs18 crabs24 crabs11 crabs5 crabs21 crabs3

glasses1 snakes16 glasses10 glasses16 glasses3 glasses19

hands5 hands3 crabs4 hands8 hands7 crabs14

octopuses26 dinosaurs16 octopuses25 octopuses67 octopuses7 dinosaurs4

airplanes9 ants13 airplanes8 ants5 airplanes17 ants28
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humans9 cups12 ants32 birds14 ants23 ants28

cups22 fishes16 teddy11 teddy17 teddy20 teddy2

snakes30 cups6 cups1 cups3 cups7 cups24

four5 dinosaurs5 octopuses29 four20 fishes17 octopuses5

Table 9: Matching experiment results. The first col-

umn is the shape to match, the second is the closest

shapes.

Submitted shape Five closest shapes

teddy5 teddy2 teddy8 teddy7 teddy16 teddy1

crabs18 crabs28 crabs5 crabs4 crabs14 crabs11
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Submitted shape Five closest shapes

glasses1 glasses17 glasses10 glasses16 glasses15 glasses19

hands5 hands3 hands9 hands8 hands7 hands1

octopu26 octopu14 octopu25 octopu12 octopu7 octopu9

airpla9 airpla7 airpla8 airpla1 airpla23 airpla22

humans9 humans5 humans6 humans7 humans8 humans10

cups22 cups21 cups16 cups17 cups14 cups11

snakes30 snakes4 snakes14 snakes13 snakes2 snakes27

four5 four6 four12 four17 four15 four19

Table 10: The results that could have been expected

from a human.
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Submitted shape Five closest shapes

teddy5 dinosaurs17 chairs22 tables18 cups20 glasses18

crabs18 four25 crabs9 dolphins1 humans4 tables19

glasses1 hands20 tables4 spiders29 spiders25 humans25

hands5 humans11 crabs29 cups20 humans15 crabs12

octopu26 pliers12 hands20 chairs12 ants34 tables4

airpla9 cups17 teddy7 snakes12 glasses12 airpla24

humans9 teddy16 pliers9 ants23 cups13 teddy6
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Submitted shape Five closest shapes

cups22 octopu51 four9 tables8 chairs3 airpla14

snakes30 ants34 teddy13 glasses4 fishes2 hands5

four5 humans24 birds11 snakes19 chairs7 airpla3

Table 11: A set of results randomly generated.

The human perception is extremely performant but it has a major flaw. Indeed,

we evolved as a species to identify patterns. This ability is such that the human

brain can even find them where there is none. For instance, when looking up and

staring at clouds which are randomly shaped, it is not uncommon to recognise

identifiable shapes. In an attempt to avoid this process when interpreting the re-

sults Table 11 was generated randomly. This should give the reader a fair ground

to look at the results and draw accurate conclusions. The submitted shapes are

the same but the retrieved ones are randomly generated. As expected from a

randomly generated sample the retrieved shapes rarely belong to the class of the

submitted one. It is common to observe five retrieved shapes belonging to five

different classes.

Table 10 was not an attempt to evaluate which shapes have a similar compact-

62



ness. It was rather an illustration of what shapes a human could have considered

the closest. This is personal evaluation and therefore is not representative of hu-

man choices. For the teddy-bears, the crabs, the hands, the octopuses and the

humans different postures of the initial model were chosen. Whenever possible

the postures that looked the most like the submitted shape were prioritised. It

is worth mentioning that the selection was particularly difficult in the case of the

octopuses. Evaluating similar position, when taking into consideration the eight

tentacles is clearly a matter of opinion. Similarly, for the glasses, only the shapes

based on the same original model were selected. Their arms being in slightly

different positions. For the airplanes and the cups, the general appearance was

the main criteria. Therefore in the case of the airplanes the size and shape of

the wings vary slightly. For the cups, only the ones having a foot were selected.

The cups having a semi-spherical shape were prioritised over the more conic

ones. The snakes were only selected if they were in some kind of spiral. The

row submitting a dog was the most difficult. The class it belongs to is the four

legged animals. As a consequence there were virtually no similar shapes. The

other dog-like animals present in the class were chosen. To fill the two remaining

slots, the shapes that had a similar aspects with regard to the size of their body

and legs were chosen. In every case only shapes from the same class as the

submitted shape were selected.

The two first rows of Table 9 are notable because the retrieved shapes clearly

belong to the same class as the submitted ones. Namely, submitting the teddy-

bear resulted in the retrieval of five teddy-bears. Similarly, the five closest shapes
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to the crab were found to be crabs themselves. The pair of glasses were closest

to four other pairs and one snake. Among the four pairs of glasses only one of

them is not based on the same original model. The hand and the octopus were

associated with three shapes belonging to their respective class and two others

from a different class. Namely, the hand received two crabs as an answer and

the octopus two dinosaurs. It is worth noting that the two crabs are in a similar

posture and similarly the two dinosaurs also look alike. The five shapes that were

found the closest to the plane, are three ants and two planes. One of these two

planes is notably similar, whereas the other is clearly different. The three ants

have very different position but there legs only represent a small percentage of

their body. The cup was associated with four bears and one fish. The snake led

to the retrieval of five similar cups. The shapes retrieved in the case of the human

are three ants, one cup and one bird. The cup has a foot and is conic and empty.

The last row of the table shows that the dog was associated with another four

legged animal, two octopuses, one fish and one dinosaur. Table 12 summarises

this description by displaying the class of the retrieved shapes.

Submitted shape 5 closest shapes Personal evaluation Random

teddy5 5 teddy 5 teddy 1 dinosaur

1 chair

1 table

1 cup

1 glasses

crabs18 5 crabs 5 crabs 1 four
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Submitted shape 5 closest shapes Personal evaluation Random

1 crab

1 dolphin

1 human

1 table

glasses1 4 glasses 5 glasses 2 spiders

1 snake 1 hand

1 table

1 human

hands5 3 hands 5 hands 2 humans

2 crabs 2 crabs

1 cup

octopuses26 3 octopuses 5 octopuses 1 plier

2 dinosaurs 1 hand

1 chair

1 ant

1 table

airplanes9 2 airplanes 5 airplanes 1 airplane

3 ants 1 cup

1 teddy

1 snake

1 glasses

humans9 3 ants 5 humans 2 teddy
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Submitted shape 5 closest shapes Personal evaluation Random

1 bird 1 plier

1 cup 1 ant

1 cup

cups22 4 teddy 5 cups 1 octopus

1 fish 1 four

1 table

1 chair

1 airplanes

snake30 5 cups 5 snakes 1 ant

1 teddy

1 glasses

1 fish

1 hand

four5 1 four 5 four 1 human

2 octopuses 1 bird

1 fish 1 snake

1 dinosaur 1 chair

1 airplane

Table 12: Summary of the result obtained in this exper-

iment, it reports the classes of the retrieved shapes.
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The results displayed in the two first rows of Table 9 are clearly coherent with

human perception. Indeed the corresponding line in Table 10 is highly similar. As

reported in Table 12, for both, teddy5 and crabs18, the five closest shapes be-

long to the same class. This suggests that the different notions of compactness

defined by the family of metrics accurately describe teddy-bear like and crab like

shapes. It is difficult to evaluate how well the metric describes specific postures.

It can however be said that no obvious incoherence can be noted in the retrieved

postures for the two first lines. When comparing these results with the random re-

sults from Table 11 it is clear that the new metrics successfully describe essential

aspects of these two shapes.

The third line is slightly different from human perception. As shown in Table

12, four glasses and one snake are retrieved. Moreover, Table 9 shows that one

of the pair of glasses is not based on the same model. The fact that the least

compact shapes retrieved were consistently a mixture of glasses and snakes,

possibly explain the retrieval of snake. This also suggests that the compactness

measures defined by different tunings of the formula tend not to differentiate be-

tween glasses and snakes. That is, from the point of view of the different notions

of compactness these shapes are similar. This is not necessarily an undesirable

property. Although, it does not match, in a straight forward manner, human ex-

pectation, it is still possible to understand the qualities of the shape retrieved.

They are rather thin and positioned on a curvy path rather than on a straight line.

Obviously this criterion is very qualitative, as such it is possible that this would

only be one of these patterns that humans can find. When comparing the results
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with the corresponding line from the Table 11 the only retrieved shape that could

fit the description would be the table. Therefore this criterion is satisfying as a

description of what the metric is evaluating.

The three hands retrieved in the fourth line were among the ones selected

as a personal choice example. Table 12 specifies that together with these three

hands, two crabs were retrieved. Hence, the results clearly differs from human

expectations. A description of the general aspects of the shapes could be a fairly

compact basis with thinner parts along a single direction. That is, once again

human perception seems to be able to catch the kind of shapes that would qualify

as being the closest. Table 11 confirms that the criteria is restrictive enough to rule

out a random choice. It is clear that the retrieved shapes have a greater uniformity

than a random sample. The fact that crabs were retrieved when an hand was

submitted is something that should be further investigated. Indeed it could mean

that the closest shape to these crabs are not only crabs themselves. This would

falsify the remark made previously concerning the fact the crabs seem to be well

described by the metrics. Note that the space considered in this experiment has

eight dimensions. In such a space, it is fully possible that a shape A was retrieved

as the closest to a shape B, B belonging to another class, and that the five closest

shapes to A belong to the same class as A. Figure 5 illustrates this phenomenon

in 2D.

According to Table 12 the five closest shapes to octopuses26 are three octo-

puses and two dinosaurs. As shown in Table 9, one of the octopuses is not part of

the human selected sample. Therefore, it can be said that the results differs from
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Figure 5: Diagram illustrating a case where B1 is found closest to A1, B1 and

A1 belonging to different classes, but the five closest shapes to A1 belong to the

same class as A1.

human perception. Admittedly, the two dinosaurs are extremely similar but it is

hard to make the connection with the octopuses. One tentative explanation could

be provided by the fact that the metric is rotation independent. These shapes

happen to have a significant part of their volume concentrated around their cen-

ter of gravity in an almost spherical manner. From this base either tentacles or

an head and a tail depart. Since the metric is rotation independent and the basis

almost spherical, as long as the center of gravity is left unchanged, it is possi-

ble that moving the basis of the tentacles over the surface would not significantly

change the metrics values.

Applying this transformation, it seems possible to build a dinosaur-like shape

out of an octopus without significantly modifying its compactness measurements.

Therefore, this property could indeed account for the results. Once again com-

paring the result from Table 9 with the ones from Table 11, it is clear that there is

a pattern between the shapes retrieved that do not fit a random selection. These

results suggest that neither an hand nor an octopus are described accurately by

the metric family.
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The results obtained for the sixth studied shape, namely airplanes9, are diffi-

cult to reconcile with human perception. Indeed, as reported, in Table 12, there

are more ants being retrieved than airplanes and, according to Table 9, among

the two retrieved planes one is clearly different from the original. Moreover the

personally selected sample, displayed in Table 10, clearly shows that there were

at least three planes that were notably close, from a human perception perspec-

tive at least, to the one submitted. The results for this shape clearly show that

for certain set of data the family of metrics describe in this thesis are evaluat-

ing aspects of the shapes that are not coherent with human perception. When

compared with the results from Table 11, the results still appear fairly uniform.

A description of the retrieved shape could be a linear basis with lateral parts in

the same plan. The problem with this description is that the ratio between the

two components is expected to have an impact on the compactness measure. In

this case, the volume involved in representing the wings and fins of the plane is

clearly bigger comparatively than the one responsible for the limbs of the ants.

Eventually, the only thing that can be said for certain, is that from the metric point

of view ants and planes are similar. To further the understanding of the metric, it

would be interesting to study the closest shapes to an ant.

The row that shows the five closest shapes to the shape, human9, is the least

consistent with human perception. As shown in Table 12, none of the closest

shapes belong to the same class, indeed three ants, one bird and one cup were

retrieved. There is no argument that these shapes do not agree with the selected

sample found in Table 10. The fact that the shape is found to be closest to three
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ants might have an interesting interpretation. Indeed the plane was also found to

be close to three ants. It might be the case that ants and planes share a similar

description from the metric family point of view. This remark would tend to be

confirmed by the presence of a bird within the retrieved shapes. Indeed a bird

shares clear shape similarities with a plane. It is however difficult to explain the

presence of the cup and the human. As far as the comparison with the random

results goes, it is very difficult to find a set of criteria that would describe the

shapes and that would not be a random pattern. The fact that the retrieved cup is

empty and has this conic shape is probably the reason of this result. The aspects

of the shapes being evaluated in this case does not appear to be perceptible by

humans.

Once again the retrieved shape for the full cup does not fit the human expec-

tations. Indeed most retrieved shapes are bears and one fish is also selected.

Here it is clear that the description of the cup was greatly influenced by the fact

that it is full whereas the others are not. The fact that a cup is empty or not

is unlikely to be relevant in a classification application unless in a very specific

context. This behaviour should be kept in mind when choosing a set of metrics

because it can lead to undesirable results. It is worth mentioning that the shapes

that were retrieved could have been expected. Indeed these shapes are amongst

the most compact shapes retrieved for β ∈ [−0.1, 1] \{0} in last experiment. It is

clear that all these shapes have a similar compactness and therefore are close

to each other in the context of this experiment. These results lead to another re-

mark, classes with a great compactness disparity are less likely to be described
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accurately by whatever definition of compactness is proposed. This is an obvious

constatation, but it nevertheless is an essential aspect to consider for someone

interested in using the family of metrics. Once again as far as the random se-

lection goes the results displayed in Table 9 are clearly uniform in the sense that

they all are amongst the most compact shapes for certain values of β.

The ninth row of Table 9 displays the five shapes closest to snake30. The

human expectation would be to find other snakes in the same sort of spirally

position, hence the human selected results displayed in Table 10. As reported in

Table 12, the algorithm found that the five closest shapes were cups. This clearly

does not fit human perception but looking at the shapes of the cups it seems

to make sense. In fact, when considering compactness, the results reveal an

interesting behaviour of the metric family. The position of the snake is almost as

if it had been rolled over the surface of a cup. That is, the space created inside

the spiral could be similar to the one inside a cup. Moreover most of the shape

itself appears to be concentrated in a spherical layer away from the center of

gravity. This trait is shared by the cups that have been retrieved. It is certainly

the reason for the observed results. The consistency in the shapes retrieved

suggests a non-random behaviour. Even if it does not fit the human perception

this result is very interesting to further the illustration of the metric behaviour. In

this case, the layout of the shape impacts a lot on the measure of compactness,

consequently the described family is not a reliable choice to describe this class.

In other contexts however, it may be essential to describe shapes according to

whether or not they are mainly based on a compact part. This result clearly
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suggests that for such application, the described metric would be a good choice.

The final row of the table displays the results for a dog. The class this shape

belongs to is the four-limbed animals. As a consequence the diversity of shape

in this class is important. As mentioned earlier the human sample was selected

by considering their subclass, in this case being a dog, and their general shape

similarities. It is worth noting that in this case none of the shapes a human would

expect is retrieved. One reason for that is something that is that the diversity

of this class is such that human perception and compactness consideration do

not agree. Among the shapes retrieved, there are two octopuses, one fish, one

four-limbed animal and one dinosaur. This sample seem fairly random and it

is difficult to find uniformity in the aspect of the sample itself. That is, not only

does the shapes come from various different classes but they do not look alike.

The only aspect that the human perception seem to be able to interpret could

be that they all share a cylindrical part as the main component of their body.

This however does not seem to be a satisfying criterion. It is probably a good

example of where the metric family capture aspects that the human perception is

not trained to recognise. It seems here that the metric is not adapted to describe

accurately the shapes of the four-limbed class. Moreover, this example gives an

illustration of a situation where the human perception can not be reconciled with

the results obtained through the use of metrics.

Conclusion This experiment was using a combination of metrics in an attempt

to properly describe the different shapes. The examples of the snake and the

cup showed results that greatly diverge from human expectation. This illustrates
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the fact that if certain classes have a great diversity of compactness amongst

their shapes, the studied metric family is unlikely to succeed in describing them

accurately. In the case of classes with similar compactness however, the metric

seems to properly describe the different classes. The most notable examples

are teddy-bears and crabs. The dog and the human examples also illustrate

that the results obtained might not be interpretable by humans. Overall, it is

justified to use elements of this family of metrics when some of the classes of the

database have a consistent compactness. Another case where the metric could

reveal itself interesting would be in a case where specific compactness related

features needs to be identified. A good example of that is the case of the snake.

Although retrieving cups was not what was expected from a human point of view

the similarity in design might be useful to exploit. The metric could help retrieve

shapes having specific layout from a database.

5.1.6 Investigation of the class clusterisation (Experiment #6)

This experiment attempts to give an insight into the results obtained in the match-

ing experiment. It investigates the way the different classes of McGill’s dataset

are described by the metrics, in order to better understand their merit in matching

experiments.

As mentioned in Section 3, the abilty of a metric to describe a class is highly

dependent on the dataset. The fifth experiment stated that some classes seemed

to be accurately described by the metric. This supposition was based on the

fact that the five closest shapes of one of their elements was found to belong to
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the same class. It was decided to evaluate, for every shape, how many among

the five closest belonged to the same class. These results were then averaged

over each class to give a representation of the compactness similarities within

a class to formalise an index representing a class. This number will be called

index of coherence since it is an attempt to measure the coherence of a class

when mapped according to their compactness measurements. Another index is

studied, namely the standard deviation of the distance of each shape to the mean

of their class. The point of this experiment is to give an insight of the way the class

are mapped by studying these two indices. Table 13 displays the results of this

experiment. Figure 6 displays the standard deviation as a function of the index of

coherence.

A class will be considered well described by the family of compactness mea-

sures if in average more than four shapes among the five closest belong to this

class. The standard deviation is expected to decrease as the index increases.

Since that would mean that as more and more adjacent shapes are found to

belong to the same class the resulting cluster tightens.

It is expected that the remark made concerning the crabs and the teddy-bears

being well described by the family of metric will be confirmed by a mean higher

than four. Similarly, it is expected that the four-limbed class will have a rather low

result, between one and two.

The lowest value of index of coherence obtained in this experiment is 1 shape.

This value is reached for the octopuses class and the birds class. That is, for ev-
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Class Index of coherence Standard deviation

Airplanes 2.5 0.0191

Ants 2.5 0.1055

Birds 1.0 0.3144

Chairs 1.6 0.1555

Crabs 2.2 0.0808

Cups 2.2 0.2605

Dinosaurs 1.3 0.0140

Dolphins 1.2 0.0178

Fishes 1.2 0.0515

Four-limbed 1.8 0.0398

Glasses 3.4 0.1232

Hands 1.3 0.0181

Humans 2.4 0.1049

Octopuses 1.0 0.0631

Pliers 3.9 0.1767

Snakes 1.4 0.2525

Spiders 2.2 0.0160

Tables 1.6 0.1243

Teddy-bears 4.35 0.0058

Table 13: The index of coherence and the standard deviation for of each class.
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Figure 6: Standard deviation as a function of the index of coherence.
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ery shape of these two classes, in average, only one shape among the five closest

belong to the same class. The highest value is an average of 4.35 shapes, and is

reached in the case of the teddy-bears class. Amongst the 19 classes, only five

of them have an average higher than 2.5, that is, classes whose elements are

found closest to, in average, 2.5 shapes of the same class.

As expected, the teddy-bears class displays an index of coherence higher than

4. Moreover, its standard deviation is the lowest which suggest a rather compact

cluster. This confirms the remark made previously stating that the class was

well described by the new family of metric. Indeed, if a set of metrics describes

accurately a class, it is expected that the resulting mapping will lead to a cluster

containing the shapes of a same class. The prediction made concerning the four-

limbed animals is also confirmed, indeed it was expected to observe a coherence

index between 1 and 2 and the class index is 1.8. This clearly suggests that

the family of metrics does not represent accurately the class, indeed such an

index suggests that in average only 2 shapes among the five closest belong to

the same class for each member of the four-limbed animals. This is coherent

with what was observed in the experiment reported in Section 5.1.5. The reason

proposed in this part however was that this class displays a great diversity of

compactness. This supposition does not agree with the standard deviation found

here, namely 0.0398. The result obtained for the crabs class, however, differs

from the analysis made in this subsubsection. Indeed, Table 13, displays an

index of coherence of 2.2 for this class. Which is virtually equivalent to the one
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obtained in the case of the four-limbed animals. This would mean that the results

obtained in the matching experiment were not representative of the rest of the

class. This confirms the doubts raised from the results found in the case of the

hand in Section 5.1.5. Indeed, in this case two crabs were retrieved. The remark

made in the previous paragraph, stating that only five classes among 19 have an

index of coherence higher than 2.5 clearly suggests that the family of metrics is

not able to describe accurately every class of the database. It is interesting to

note that the standard deviation of the distance and the index of coherence have

a correlation of −0.084394. Indeed, Figure 6 shows a cloud of points rather than

any sort of curve. Note in particular that good clusterisation does not guarantee

a high index of coherence. Indeed if the clusters are superimposed, for instance,

a small standard deviation would not be sufficient to assure a good classification

performance. This phenomenon explains why the four limbed animals are not

well described even though they seem to be mapped in a fairly tight cluster. That

is, other shapes belonging to different classes must have a similar compactness

as the shapes of the four-limbed animals.

Conclusion The only class that appears to be accurately described by the fam-

ily of metrics is the teddy-bears class. It was shown that the previous remark

concerning the crabs class being properly described by the metrics is wrong.

The fact that only five classes have a coherence index higher than 2.5 suggests

that McGill’s database classes can not be described accurately by the new family

of metrics alone. As expected, it is essential not to limit oneself to the use of

this new family but to complete a set, based on it, with 3D shapes descriptors
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capturing other shape aspects.

5.2 Compactness and cubeness (Experiment #7)

This last study aims at showing how the new metric completes a previously de-

fined descriptor, namely Martinez-Ortiz cubeness, [22], in forming a set of de-

scriptors for classification. This study is composed of two experiments.

The first one is similar to the third experiment (Improving classification by using

several metrics), it aims at proving that a combined use from metrics belonging to

these two families can result in an improvement of performance of a naive clas-

sifier. The second experiment aims at showing how the clusterisation is modified

by the use of cubeness measures.

The cubeness metric described in [22] is defined by:

Cβ(S) =
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, β > 0
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R(S,θ,φ)

max(|x|,|y|,|z|)βdxdydz

µ0,0,0(S)(β+3)/3 , −3 < β < 0

(13)

where R(S, θ,φ) is the shape resulting from rotating S by θ and φ on the cor-

responding axis. Similarly as for the new compactness metrics, the cubeness

metrics were proven to range over (0, 1] and to be rotation, translation and scal-

ing independent. A value of 1 is however equivalent to the shape being a cube

rather than a sphere, hence the name cubeness metric.

In the classification experiment, the values of β considered for the compact-

ness and the cubeness measures were −1, 2. These values are different enough
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Type of metric β Classification Rate

Compactness {−1} 0.2210
{2} 0.2473

Cubeness {−1} 0.2560
{2} 0.2626

Compactness {−1, 2} 0.3065
Cubeness {−1, 2} 0.4070

Compactness, Cubeness {−1, 2}, {−1, 2} 0.4157

Table 14: Comparison between seven classifiers, the four firsts use only one

metric of compactness or cubeness. The next 2 classifiers are based on the

combination of two of the previous metrics chosen to be of the same type whereas

the last one is the result of the combination between compactness and cubeness

metrics.

for the resulting metrics to evaluate significantly different shape aspects [22].

Therefore, a classifier based on these cubeness measures will perform better

than a classifier based on a single cubeness measure and the effect on the clas-

sification rate of the combination of cubeness measures and compactness mea-

sures will be observable. Table 14 shows the results of this experiment. In a

similar manner as for experiment #3 it is expected to observe an improvement, of

the classification rate, between the classifiers using the compactness measures

and the one using them in combination with cubeness metrics.

Table 14 shows that the classification rate associated with the single classifiers

are different from each other. The classifier based on the two compactness met-

rics has a classification rate higher than any of the single classifiers, it is however

significantly below the one based on the cubeness measures. Finally, the clas-

sifier based on all four metrics display a slight improvement from the cubeness

based one.
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Conclusion The difference of result between the classifiers based on two met-

rics indicate that the two tunings of the cubeness metric describe McGill’s database

better than the chosen compactness descriptors. Moreover, the low classification

rate improvement between the two last rows of the table shows that the compact-

ness does not help much in improving the result obtained for a cubeness based

classifier. That is, in the case of McGill’s database, the compactness metrics do

not add much information to what was obtained using cubeness metrics. It may

be the case that cubeness is more suited to describe the dataset.

These results show that the compactness base classifier can be improved

using cubeness metrics, although its impact on McGill’s database is low. The

compactness metrics may however be better suited to the description of another

database.

6 Discussion

In this part, the main conclusions deduced from the experiments will be high-

lighted. The approach that was chosen as well as several technical aspects and

further experiments will be discussed.

6.1 Approximation and proof of implementation

The shapes of McGill’s database released in the “.im” are defined using vox-

els. It is worth noting that the voxelisation process is not rotation invariant. It

can therefore result in different measurements for the same original shape. An-
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other problem is that voxelisation involves a significant loss of precision. Indeed,

the voxelisation process triggers a paradox. As the precision of the process in-

creases, the volume of the representation tends toward the volume of the original

model. The surface of the representation however tends toward ∞, in a similar

way as Menger sponge. This implies that it is not possible to run any surface

based computation. For instance a metric whose definition is the ratio between

surface and volume would not be computable. A solution to this problem would be

to use a mesh representation of the shapes. Such a version of McGill’s database

is available in “.ply” format. Consequently, another approach was considered in

an attempt to reach a better approximation. The idea was to import the shapes

as triangle meshes, to divide them into tetrahedra and integrate the formula over

each tetrahedron. A first version of this approach has been coded. The first at-

tempts to use it revealed themselves far to expensive with regard to their compu-

tation time, in fact we haven’t been able to compute the result for a cube. Indeed

the version was coded in Octave, a clone of Matlab. Octave being python based,

any code runs in average several time slower than with Matlab, whose functions

are C-based. More importantly, this thesis aim is to introduce and illustrate a new

metric rather than compute extremely precise values it was therefore decided to

rule away this approach.

The results are computed by subdividing each voxel into cubes and approxi-

mating the formula over each of them as being the value in its center multiplied by

its volume, this was chosen as a compromise between an exact value and a com-

putation time for 35000000 voxels inferior to 90 seconds. A different approach that
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might reveal itself more practical in the case of negative beta would be to integrate

over each voxel rather than increase the subdivision to obtain a better precision.

The computation of an integral over a cube might reveal itself quicker than over a

tetrahedron and may outperform the computation time involved by too fine a sam-

pling of each voxel. This method also has the advantage to solve another problem

that arose from the implementation made to approximate the integral. Indeed, as

can be seen in Appendix B, the computation were made by sampling each voxel.

As mentioned earlier the precision of the calculation is greatly dependent on the

size of the sampling but a sampling too great can result in a computation time

for the entire database whose order of magnitude is several months. Therefore,

in the cases were the integral converged quickly, namely for positive values of

β, a smaller sample was used. This involved changing hard coded values in the

code and resulted in computation errors, that were later solved. It was particularly

unpleasant since the computation took several days and the errors could only be

found by comparing them to already existent results. Therefore future work could

improve the way the voxels are sampled. Such an improvement should be made

so that the user would fix the size of the sample rather than hard code the sam-

ple. In that context a particular care should be taken to generate the sampling in a

way that avoids any bias. In the actual version of the code a very naive approach

was used. The sampling was done by subdividing the cube into smaller cubes,

although the method works the computation time increases exponentially with the

number of subdivision. It is not proven that such an approach is needed to obtain

precise enough values.
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The results obtained in the first experiment do not prove the correctness of the

implementation. They merely suggest that the implementation is not grossly false.

There is a whole field of computer science dedicated to the proof of correctness

of programs. It involves using automatic provers. The problem of interest in

this thesis being extremely mathematical, it is likely that these techniques could

have given satisfying results. Unfortunately, the time did not allow to obtain this

formal result. Another way to comfort our confidence in the correctness of the

implementation is through the reproducibility of the numerical values. Indeed, if

other research groups were to obtain the same figures for McGill’s benchmark,

it would increase the confidence in the results. Obviously, this approach is not

practical in the context of a Master Thesis. Another, approach can be to reuse

the code in other contexts. Indeed, studies in the field of software engineering

suggested that reusing a piece of code in numerous application resulted in an

improvement of its quality by correcting the bugs.

6.2 Database

It was suggested to use McGill’s shape database to illustrate how the family of

compactness measures is behaving. The original format of the shapes is the “.im”

format, it seemed to have been described by the group responsible for the KUIM

Image Processing System (http://infocom.cheonan.ac.kr/ nykwak/kuim/kuim.html).

Unfortunately, no open source description of the format is available which make

it impossible to develop new tools. This led to the issue of importing the shapes

in Matlab, it was solved thanks to Carlos Martinez-Ortiz who gave us a piece of
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code based on the KUIM package. It imports the “.im” format files in the form of

a matrix of voxels. Another, problem came with the visualisation of the shapes,

indeed the tools available on the website seem not to have been updated since

2008 and certain libraries they use, are not standard anymore. It is mentioned

on McGill’s benchmark website that their source code is to be released, unfortu-

nately there is no way of knowing how long ago this announcement was made

and if it is still to be expected. Therefore, a text file was generated from the ma-

trix of voxels, this text file was then imported by ArtOfIllusion thanks to another

of Carlos Martinez-Ortiz’s script. The software gives a 3D representation of the

shapes and allows the user to easily rotate them. This process was then used

to obtain the shape representation missing from the website. It also allowed to

check if certain cups were empty. The field would greatly benefit from an unified

open-source interface to import and interact with the shapes.

Some of the issues mentioned here may be solved by the work described

in [17]. Indeed, the authors built a new benchmark of 600 watertight triangle

meshes. Each shape was obtained from the deformation of 30 original models. A

class consequently consist of the original shape and 19 deformed version. This

allows for a reduction of the bias due to an uneven repartition of the shapes

in different classes. For the purpose of this work, namely an illustration of a

metric family behaviour McGill’s is sufficient. Moreover, it is a commonly used

database which make it easier to compare performance of different techniques

but the mentioned bias should encourage the community to move toward more

recent and less biased benchmark.
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6.3 Non-redundancy of the metric

The results of the second experiment (differentiation between deformed shapes)

clearly showed a modification in the ordering of several tuning of the metric. This

modification suggests that changing the value of β effectively changes the be-

haviour of the metric. That is, tuning β allows the metric to capture different

aspects of the shapes.

In order to confirm the non-redundancy of the metric it is sufficient to observe

a change in the classification rate. This is what has been investigated in the

third experiment. As expected, the performance of the classifiers based on single

metric are different from each other. Moreover the combined use increases the

performance of the classifier. At least in the context of McGill’s database, the

different captured aspects are relevant in the description of the shapes.

These two results prove that the described family of metrics is not redundant.

Moreover it illustrates the fact that a combined use of metrics can increase an

application performance.

It should be reminded that the numerical value of the classification rate can

not be relied on because of the small size of the test sample. Therefore it should

be considered as a gross estimate. As such, it is worth noting that this value is

too low for the classifier to be accepted as performant. Note that no advanced

machine learning techniques were used. These techniques could increase the

classification rate. Moreover, in a real-life application, it is recommended to use

other metrics than the ones from the family being studied in this thesis. Indeed

considering metrics that are evaluating aspects of the shapes other than their
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compactness is likely to increase the performance of any application, as long as

these metrics are relevant to the dataset description.

6.4 Human perception and metric behaviour

In the case of certain applications it may be important to connect the metric be-

haviour with the human perception. The fourth experiment, reported in Subsub-

section 5.1.4, gives an illustration of the notion of compactness defined by the

different values of β. The classic human perception of compactness seems to

agree more with values of β close to 1. Indeed, the most compact shapes are

mostly teddy-bears, the two other shapes are a full glass and a rather spherical

fish. The fact that the glass is full clearly justify its high compactness measure.

When β increases it was pointed out that the metric seems to be evaluating how

close to an hollowed sphere is the shape. Similarly, as β tends toward −1.5 the

metric seems to behave more and more like a metric that would value more the

shapes having an important ratio of their volume close to their center of gravity. It

is worth noting that the results of this experiment were compared with a personal

selection. This was aimed at representing the human perception. This obviously

induces a bias since the selection was made by a non neutral subject. Therefore,

it would be interesting to gather a proper human sample and compare the result-

ing ordering of the shapes with the one obtained for different values of β. This

would better illustrate how the metric relates to human perception. Moreover, the

comparison was done using 2D representation of the 3D shapes, comparing resin

models of the 3D shapes could further decrease the bias.
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The results from the fifth experiment clearly shows that the family of metric’s

ability to describe a dataset is highly dependent on the database it is applied to.

In the results analysis, it was mentioned that certain classes seemed to be well

described by the new family of metrics. For a teddy-bear or a crab the five closest

shapes turn out to be from the same class, whereas other results suggested that

the metric seemed enable to describe certain classes accurately. Good exam-

ples of that are the case of the four-limbed animals and humans. Consequently

the sixth experiment was realised to further the understanding of how the metrics

describe the different classes. It revealed that only 1 class among the 19 appears

to be accurately described, namely the teddy-bears class. Indeed for this class

both the defined index of coherence and the standard deviation of the distance

to the class mean were minimum. This suggests that the class is mapped in a

consistent cluster and no other class is superimposed with it. Moreover, only 5

classes have an index of coherence higher than 2.5, which suggests a signifi-

cant difference between the mapping resulting from the use of the family metric

and the classification expected from the database. This results must however be

taken with caution, a lot of choices in the way to evaluate this index are arbitrary.

Moreover this study is highly dependent on the database. It was also shown that

a tight cluster did not necessarily implied a high index of coherence.

An ideal case i.e. where the metrics would perform well, is when there is no

diversity of compactness amongst the shapes within a class, and if each class

have a different representative model of compactness. That is, a case like the

teddy-bears class, indeed the class is shown to be well clustered and the index
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of coherence suggests that few shapes from other classes are found close to the

center of the cluster. That is, the measurements corresponding to the position of

the cluster are representative of the class teddy-bear. If a set of metrics was able

to obtain such a result for every class of database the classification rate would be

the highest.

6.5 Conjectures

The behaviour of the metric when β tends toward −1.5 was described as valuing

more the points closest to the shape center of gravity than the points furthest

from it. Consequently, if most of the shape is part of fairly compact base the

overall compactness measurement will tend to be high. For these values, the

metric could be described as the density of the shape around its center of gravity.

Whereas the metric seems to value the point furthest from its center more than

the closest. Therefore, the metric seems to behave as a measure of surface

sphericity. It is satisfying that the least compact shapes from one end of the

spectrum are not the most compact from the other end. If that was so, the merit

of the family would have been greatly decreased. Indeed, it is aimed to capture

different aspects of a shape rather than opposite aspects. Here, on one end of

the spectrum the metric focus on how compact the core of the shape is. On the

other end, it is evaluating how close the surface of the shapes are from a sphere.

These are complementary aspects but not opposite ones.

It is worth noting that these definitions of the metric seem to relate more eas-

ily to human perception, but these described behaviours have not been proven.
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Consequently, two conjectures are going to be formulated, they aim at describing

the behaviour of the metrics in these extreme cases. In the case of β tending

toward −1.5:

Conjecture 1. For every pair of shapes S and C such that S is an hollowed sphere

and C differs from a sphere, there exists a β0 such that for every −1.5 < β < β0,

Kβ(S) < Kβ(C).

In the context hollowed sphere denotes a sphere with a concentric spherical

hole. Obviously the radius of the inner sphere because it would make S a perfect

sphere. The conjecture in the case of β tending toward ∞ is the following:

Conjecture 2. For every pair of shapes S and C such that S is an hollowed

sphere and C differs from a sphere, there exists a β0 such that for every β > β0,

Kβ(S) > Kβ(C).

Note that it does not contradict the results from Theorem 4 since it only says

something about the relative ordering of the shapes. If these conjectures were

proven true, it would confirm the previously described behaviour. It would also

increase the confidence of the implementation since these conjectures were de-

duced from the experiments results. In fact if these conjectures could also falsify

this work, if they were proven false, since the experimental results would clearly

differs from the theoretical basis. A suggestion to begin a proof of these two con-

jectures is to compare the relative measurements of an hollowed sphere and a

sphere having a spherical defect on its surface. A 2D illustration is given Figure

7.
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Figure 7: Example of shapes to consider to realise the proof.

6.6 The metrics in a more general context

The seventh experiment investigates how well the new family describes McGill’s

database when used in combination with other previously defined metrics. The

results show that when used to improve the results obtained by using cubeness

metrics the merit of the compactness metrics are limited. It would be interesting

to evaluate how different the compactness family and the cubeness family are

from each other. Indeed, the only conclusion that can be made from the pre-

sented work is that the specific case of compactness for β = −1 and β = 2 are

not redundant with the cubeness for the same value of β. Even though the results

are not as clear as one would have expected they still confirm that the new com-

pactness family can by used in combination with other metrics in order to better

the results of an application.
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7 Conclusion

The work reported in this thesis consisted of the description of a new family of

3D compactness measures, named Kβ(S). The metrics are based on a 3D Hu

invariant but a tuning parameter β was introduced to be able to modify the metrics

behaviour. They were proven to be ranging over the interval (0, 1] for every β.

Similarly, for every tuning, Kβ(S) = 1 is equivalent to S is a sphere. Finally, it

is invariant to translation, rotation and scaling. These results are the extension

to the whole family of the properties of the compactness measure described in

[33]. Moreover the new family was proven to display a similar property as the

2D family of circularity metrics described in [35], namely for any shape S different

from a sphere, the compactness measurement of S tends towards 0 when β tends

toward ∞.

The experiments showed that the ordering of the shapes according to their

compactness measurements was changing with β and that the classification per-

formance of an application was different for different values of β. These two

results prove that the metrics of the family are not redundant.

The experiments also allowed to formulate two conjectures further explaining

the metric behaviour as β changes. For every two shapes S and C such that S

is an hollowed sphere and C differs from a sphere, there exists a β0 such that for

every −1.5 < β < β0, Kβ(S) < Kβ(C). The other being the inverse behaviour, for

every two shapes S and C such that S is an hollowed sphere and C differs from

a sphere, there exists a β0 such that for every β > β0, Kβ(S) > Kβ(C). These

conjectures interpretation is that the metrics will value more the point close to the
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center of gravity as β tends toward −1.5, whereas the point further away will be

considered when β tends toward ∞.

Some experiments investigated how McGill’s database was mapped by the

family of compactness measures. Thus, it was shown that the teddy-bears class

was well described, indeed the results suggest that it forms a cluster and that

no other class seem to be close to its center. The ants and airplanes classes

however seem to be well clustered by the process but the experiment results

suggests that shapes belonging to other classes are located in their clusters. This

makes them difficult to model, and reduces the performance of a classification

application.

Finally, the new family of metric was used in combination with the family of

cubeness metrics defined in [22]. The results shows an improvement of perfor-

mance that proves that on certain datasets it could be a good choice to use the

two families.

A Proof of Theorem 3 (d)

Consider the hollow sphere Sa, for a ≥ 1, such that

Sa = (x, y, z) ∈ R
3|a ≤ (x2 + y2 + z2) ≤ a+ 1.
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Let Spa be the sphere of radius a. Then for every β:

���

Sa

(x2 + y2 + z2)βdxdydz =

���

Spa+1

(x2 + y2 + z2)βdxdydz

−

���

Spa

(x2 + y2 + z2)βdxdydz

=
4π

2β + 3

�

(a+ 1)2β+3 − a2β+3
�

(14)

=
4π

2β + 3
a2β+3

�

(1 +
1

a
)2β+3 − 1

�

(15)

Note that the volume of Sa is the case where β = 0. From (14):

µ0,0,0(S) =
4π

3

�

(a+ 1)3 − a3
�

=
4π

3
(3a2 + 3a+ 1)

∼ a2 (16)

Then from (15) and (16), for β ≥ 0:

Kβ(Sa) =
3

2β + 3

�

3

4π

�2β/3
µ0,0,0(S)

(2β+3)/3

���

S

(x2 + y2 + z2)βdxdydz

∼
a

2
3
(2β+3)

a2β+3
�

(1 + 1
a
)2β+3 − 1

�
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The Taylor expansion of (1 + 1
a
)2β+3 and θ ∈ [0; 1] leads to:

Kβ(Sa) ∼
1

a
1
3
(2β+3)

�

(1 + 1
a
)2β+3 − 1

�

∼
1

a
1
3
(2β+3)

�

1 + (2β + 3) 1
a
(1 + θ · 1

a
)2β+2 − 1

�

∼
1

a
1
3
(2β+3)

�

1
a
(1 + θ · 1

a
)2β+2

�
(17)

Note that (1 + θ · 1
a
)2β+2 ≥ 1, then:

1

a
2
3
β
�

(1 + θ · 1
a
)2β+2

�
≤

1

a
2
3
β

(18)

And:

lim
a→∞

1

a
2
3
β
= 0 (19)

Finally for every β > 0, from (17), (18), (19)

lim
a→∞

Kβ(Sa) = 0

For every −3
2
< β < 0, (17), (18) results are their inverse, and then give:

lim
a→∞

Kβ(Sa) = lim
a→∞

a
2
3
β = 0

This proof Theorem 3 (d) assessment.
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B Implementation of the compactness measure

The function takes the address of a file in “.im” format and a value for the param-

eter β. It returns the compactness value for the given β.

function k = Kbeta(filename, beta)

k=-1;

obj = kuim_load(filename);

vol = getVolume(obj);

mom = getMoment(obj, beta);

if (beta > 0)

k = 3/(2*beta + 3)*(3/(4*pi))^(2*beta/3)*vol^((2*beta+3)/3)/mom;

elseif (-1.5 < beta && beta < 0)

k = (2*beta + 3)/3*((4*pi)/3)^(2*beta/3)*mom/vol^((2*beta+3)/3);

end

end

function vol = getVolume(T)

vol = sum(sum(sum(T)));

end
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function mom = getMoment(T, beta)

mom = 0;

Cx = 0;

Cy = 0;

Cz = 0;

tabx = [0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9]

taby = [0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9]

tabz = [0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9]

for i = 1:size(T,1)

for j = 1:size(T,2)

for k = 1:size(T,3)

if (T(i,j,k) == 1)

for l = tabx

for m = taby

for n = tabz

Cx = Cx + i + l;

Cy = Cy + j + m;

Cz = Cz + k + n;

end

end
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end

end

end

end

end

nbpt = length(tabx) * length(taby) * length(tabz);

Cx = Cx/((sum(sum(sum(T))))*nbpt);

Cy = Cy/((sum(sum(sum(T))))*nbpt);

Cz = Cz/((sum(sum(sum(T))))*nbpt);

for i = 1:size(T,1)

for j = 1:size(T,2)

for k = 1:size(T,3)

if (T(i,j,k) == 1)

for l = tabx

for m = taby

for n = tabz

x = i+l;

y = j+m;

z = k+n;
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mom = mom + ((x-Cx)^2 + (y-Cy)^2 + (z-Cz)^2)^beta/nbpt;

end

end

end

end

end

end

end

end
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[35] Joviša Žunić, Kaoru Hirota, and Paul L. Rosin. A hu-moment invariant as a

shape circularity measure. Pattern Recognition, 43(1):47–57, January 2010.

104


