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Abstract

Myosins are key components of the eukaryotic cytoskeleton, providing motility for a broad diversity of cargoes. Therefore, under-

standing the origin and evolutionary history of myosin classes is crucial to address the evolution of eukaryote cell biology. Here, we

revise the classification of myosins using an updated taxon sampling that includes newly or recently sequenced genomes and

transcriptomes from key taxa. We performed a survey of eukaryotic genomes and phylogenetic analyses of the myosin gene

family, reconstructing the myosin toolkit at different key nodes in the eukaryotic tree of life. We also identified the phylogenetic

distribution of myosin diversity in terms of number of genes, associated protein domains and number of classes in each taxa. Our

analyses show that new classes (i.e., paralogs) and domain architectures were continuously generated throughout eukaryote evo-

lution, with a significant expansion of myosin abundance and domain architectural diversity at the stem of Holozoa, predating

the origin of animal multicellularity. Indeed, single-celled holozoans have the most complex myosin complement among eukaryotes,

withparalogsofmostmyosinspreviously consideredanimal specific.We recover adynamicevolutionaryhistory,with several lineage-

specific expansions (e.g., the myosin III-like gene family diversification in choanoflagellates), convergence in protein domain

architectures (e.g., fungal and animal chitin synthase myosins), and important secondary losses. Overall, our evolutionary scheme

demonstrates that the ancestral eukaryote likely had a complex myosin repertoire that included six genes with different protein

domain architectures. Finally, we provide an integrative and robust classification, useful for future genomic and functional studies on

this crucial eukaryotic gene family.
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Introduction

The evolution of molecular motors was key to the origin and

diversification of the eukaryotic cell. There are three major

superfamilies of motor proteins: kinesins, dyneins, and myo-

sins. The first two act as motors on microtubule filaments,

while myosins function on actin (Vale 2003). Myosins

participate in a variety of cellular processes, including cytoki-

nesis, organellar transport, cell polarization, transcriptional

regulation, intracellular transport, and signal transduction

(Hofmann et al. 2009; Bloemink and Geeves 2011; Hartman

et al. 2011). They bind to filamentous actin and produce phys-

ical forces by hydrolyzing ATP and converting chemical energy

into mechanical force (Hartman and Spudich 2012). Both ac-

tivities reside in the myosin head domain (PF00063). This head

domain is accompanied by a broad diversity of N-terminal and/

or C-terminal domains that bind to different molecular cargos,

providing the functional specificity of the protein. Some my-

osins, such as myosins V and II, act as dimers that contact

through their C-terminal coiled-coils, while others, such as

myosins I, III, VI, VII, IX, X, XV, and XIX, act as monomers

(Peckham 2011).

The identification of gene orthologs can be best accom-

plished by phylogenetic analyses, especially when complex

architectures that are likely to undergo rearrangements are
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involved (Koonin 2005; Sjölander et al. 2011; Leonard and

Richards 2012; Gabaldón and Koonin 2013). Thus, myosin

phylogenetic analysis is important to classify myosin paralog

families and identify the ancestry of different gene architec-

tures. Previous efforts have been made to classify the myosin

family and to reconstruct its evolutionary diversification

(Richards and Cavalier-Smith 2005; Foth et al. 2006;

Odronitz and Kollmar 2007), although information from

some key eukaryotic groups that have recently become avail-

able were missing from all of these studies. Therefore, there is

a need to revise schemes of myosin evolution using improved

taxon sampling and phylogenetic methods. This is important

both to update the classification of myosins diversity and also

understand the origin and evolutionary history of the wider

gene family. Moreover, a precise reconstruction of the ances-

tral eukaryotic myosin toolkit (along with that of the other

motor proteins [Wickstead and Gull 2007; Wickstead et al.

2010]) has important implications for understanding the phy-

logenetic patterns and functional attributes of early eukary-

otes (Richards and Cavalier-Smith 2005).

Previous analyses, using different genome datasets and dif-

ferent phylogenetic methods provided conflicting hypotheses

on myosin classification and the reconstruction of this ances-

tral toolkit. For example, Richards and Cavalier-Smith (2005)

provided a classification of myosins based on two criteria:

phylogenetic reconstruction and analysis of protein domain

architecture. They inferred that the last eukaryotic common

ancestor (LECA) had 3 of the 37 defined eukaryotic myosin

types, including Myo_head-MYTH4/FERM, Myo_head-

SMC-DIL, and Myo_head-TH1. In contrast, Foth et al.

(2006), in a study focused on apicomplexan myosins, defined

29 classes and did not infer an ancestral complement. Also

based on phylogeny, Odronitz and Kollmar (2007) defined 35

different myosin classes, most with an extremely restricted

phylogenetic distribution. To make things more complex, dif-

ferent authors have used different criteria for classification,

leading to inconsistencies in the classification and nomencla-

ture between studies.

In this article, we present a new evolutionary history and

classification of eukaryotic myosins. We use a significantly ex-

panded taxon sampling than previous studies, in which, for

the first time, all major eukaryotic lineages are represented. In

particular, we include data from four previously unsampled

eukaryotic lineages (Apusozoa, Rhizaria, Haptophyta, and

Cryptophyta) so that all the major eukaryotic supergroups

are represented (Roger and Simpson 2009). Evolutionary anal-

yses have consistently demonstrated that the evolution of par-

asitic phenotypes is often accompanied by large-scale gene

losses (Peyretaillade et al. 2011; Pomberta et al. 2012; Wolf

et al. 2013). To overcome this problem, we here include free-

living representatives of lineages that were previously repre-

sented only by parasitic taxa (such as Ectocarpus siliculosus

and unicellular brown algae in Heterokonta/Stramenopiles

and Naegleria gruberi in Excavata). Furthermore, we include

data from taxa occupying phylogenetic positions that are key

to understand major evolutionary transitions, including deep-

branching fungi (the Chytridiomycota Spizellomyces puncta-

tus), green algae, deeply derived plants, unicellular holozoan

lineages (choanoflagellates, filastereans, and ichthyosporeans)

and early-branching metazoans (ctenophores and sponges).

We also use improved alignment and phylogenetic inference

methods. We do not aim to infer a eukaryotic tree of life from

the myosin genomic content (Richards and Cavalier-Smith

2005; Odronitz and Kollmar 2007). Convergence (Zmasek

and Godzik 2012) (discussed later), gene fission (Leonard

and Richards 2012), duplication, gene loss (Zmasek and

Godzik 2011), and horizontal gene transfer (HGT)

(Andersson et al. 2003; Andersson 2005; Marcet-Houben

and Gabaldón 2010; Richards et al. 2011) are important phe-

nomena in eukaryotes and, therefore, molecular markers such

as the distribution pattern of gene orthologs need to be tested

using gene phylogeny and updated as new genome se-

quences are released (Dutilh et al. 2007; House 2009;

Shadwick and Ruiz-Trillo 2012). We based our myosin classi-

fication exclusively on phylogenetic affinity, which allowed us

to identify: gene and domain loss, paralog groups, and con-

vergent evolution of gene domain architecture. The use of

updated phylogenetic methods and improved taxon represen-

tation allowed us to analyse the classification, evolutionary

history, and functional diversification of myosins in new detail.

Materials and Methods

Taxon Sampling and Sequence Retrieval

Myosin sequences were queried in complete genome or tran-

scriptome sequences of 62 taxa representing all known eu-

karyotic supergroups. Taxon sampling included 8 animals, 10

unicellular holozoans, 12 fungi, 1 apusozoan, 3 amoebozo-

ans, 5 plants, 4 chlorophytes, 2 rhodophytes, 5 heterokonts, 5

alveolates, 1 rhizarian, 1 haptophyte, 1 cryptophyte, and 4

excavates (supplementary table S2, Supplementary Material

online). The complete proteomes of all included species

were analysed using Pfamscan (a HMMER search-based algo-

rithm; Punta et al. 2012) with the default gathering threshold.

Using custom Perl scripts, the resulting output files were

parsed and all proteins containing a Myosin_head (PF00063)

domain were extracted.

Phylogenetic Analyses

The sequences retrieved were aligned using the Mafft L-INS-i

algorithm, optimized for local sequence homology (Katoh

et al. 2002, 2005). The alignment was then manually in-

spected and edited in Geneious. This resulted in a matrix con-

taining 353 amino acid residues, belonging to the

Myosin_head domain (as this is the only conserved domain

across all myosin classes). This way we avoid as well any effect
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that convergently acquired protein domain architectures may

have while inferring the phylogeny.

Maximum likelihood (ML) phylogenetic trees were esti-

mated by RaxML (Stamatakis 2006) using the

PROTGAMMALGI model, which uses the Le and Gascuel

(LG) model of evolution (Le and Gascuel 2008) and accounts

for between-site rate variation with a four category discrete

gamma approximation and a proportion of invariable sites

(LG + � + I). Statistical support for bipartitions was estimated

by performing 1,000-bootstrap replicates using RaxML with

the same model. Bayesian inference trees were estimated with

Phylobayes 3.3 (Lartillot et al. 2009), using two parallel runs

for 500,000 generations and sampling every 100 and with the

LG + � + I model of evolution. Bayesian posterior probabilities

(BPP) were used for assessing the statistical support of each

bipartition.

Concurrent Domain Analysis

The domain architecture of all retrieved sequences was in-

ferred with Pfamscan (Punta et al. 2012), using the gathering

threshold as cutoff value. Then, the number of different con-

current domains (domains encoded within the same predicted

open reading frame [ORF]) was calculated for each species

using custom Perl scripts (excluding the myosin head

domain itself). This information was further used to build

Venn diagrams of shared concurrent domains between

groups, using custom Bash scripts and the website: http://

bioinformatics.psb.ugent.be/webtools/Venn/ (last accessed

January 29, 2014).

Results and Discussion

Myosin Classification

Our genomic survey and phylogenetic analyses defined 31

myosin classes. Figure 1 displays their distribution across eu-

karyotic taxonomic groups and their canonical protein domain

architecture for each class and subclass. Our data corrobo-

rated previous findings (Richards and Cavalier-Smith 2005;

Foth et al. 2006; Odronitz and Kollmar 2007) and also iden-

tified a number of new families. This was somewhat expected,

given that the number of myosin classes discovered has grown

considerably since the pioneering studies of Cheney et al.

(1993) and Goodson and Spudich (1993). For the sake of

clarity, we incorporated the nomenclature used in previous

studies (Cheney et al. 1993; Goodson and Spudich 1993;

Hodge and Cope 2000; Berg et al. 2001; Thompson and

Langford 2002; Richards and Cavalier-Smith 2005; Foth

et al. 2006; Odronitz and Kollmar 2007; Syamaladevi et al.

2012), except for a number of classes in which there were

conflicting names (see table S1, Supplementary Material

online, for a comparison of nomenclature among studies).

We dismissed and/or reused class names only on those cases

in which we unambiguously inferred a different phylogenetic

relationship, and therefore alternative classification, to that

identified in previous analyses. Thus, our new updated and

integrative classification provides a useful systematic frame-

work for myosins.

Myosin I, the Largest Myosin Class, Has Five Subclasses

Myosin I (bootstrap support [BS]¼ 64%, BPP¼ 1.0; see fig. 2

and supplementary fig. S1, Supplementary Material online)

comprises five subclasses including myosin Ik, newly identified

here (BS¼ 79%, BPP¼0.99). Subclasses c/h, d/g, and a/b

(named according to their vertebrate co-orthologs) have a

tail composed of IQ domains (PF00612) and a myosin TH1

domain (PF06017). Co-orthologs of these four subclasses

are present in several eukaryotic taxa (fig. 1). Interestingly,

we find orthologs of each subclass in unicellular holozoans.

Myosin Ik, which is found in choanoflagellates, filastereans,

ichthyosporeans, and, with weaker support, in Thecamonas

trahens, was lost in metazoans, and thus the diversification of

these four subclasses (Ia/b, Ic/h, Id/g, and Ik) most likely oc-

curred in the common ancestor of Holozoa prior to the radi-

ation of Metazoa.

Myosin II Is Not a Valid Molecular Synapomorphy for
Amorphea

Myosin II is the second largest class of myosins, and is charac-

terized by a myosin N-terminal domain (PF02736) and a tail

containing an IQ domain and a myosin tail domain (PF01576),

consisting of several coiled-coil domains. Although myosin II

was previously thought to be exclusive to amorpheans (also

known as unikonts [Adl et al. 2012]) and was used as a phy-

logenetic marker (Richards and Cavalier-Smith 2005), a

myosin II homolog was recently identified in the excavate

N. gruberi (Odronitz and Kollmar 2007; Fritz-Laylin et al.

2010). Myosin II therefore probably had a deeper ancestry,

although a HGT event from Amoebozoa to Excavata cannot

be ruled out—especially considering the several cases of HGT

that have recently been described between Heterolobosea

and Amoebozoa (Andersson 2011). However, myosin pro-

teins form numerous and specific interactions with actin fila-

ments, plasma membrane, and numerous secondary protein

complexes. Proteins with complex protein–protein interaction

networks have been shown to be less likely to undergo HGT

probably because integration into foreign protein interactions

is limited (Jain et al. 1999; Cohen et al. 2011). Therefore, our

favoured explanation for aberrant taxon distribution of myosin

orthologs and domain architecture patterns identified in this

study (as in the case of myosin VI discussed below) are pat-

terns of multiple secondary loss or convergence, rather than

HGT. Irrespective of whether the N. gruberi myosin II is a result

of HGT or not, this shows that myosin II is no longer a valid

molecular synapomorphy for amorpheans.
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FIG. 1.—Phylogenetic distribution of myosin classes in eukaryotic genomes. The domain architectures for each class are shown, with a red asterisk on the

right indicating that a single myosin head domain is also found in some sequences within that particular class. Filled circles indicate the presence of orthologs

of a myosin class in a particular lineage. Unclear putative orthologs are shown with empty circles (see text). The presence of orphan myosins (i.e., species-

restricted myosin classes) is also indicated. The total number of classes in each linage is indicated in the lower row. The number of species included in each
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FIG. 2.—ML tree of myosin head domains. The tree is collapsed at key nodes and rooted using the midpoint-rooted tree option. Myosin classes are

indicated. Nodal support was obtained using RAxML with 1,000 bootstrap replicates and BPP. Both values are shown on key branches. Taxa are color-coded

according to taxonomic assignment (indicated in the upper right). The abbreviations are indicated in supplementary table S1, Supplementary Material online.

Specific domain architectures are highlighted for myosin classes I and II (see text). **See figure 3 and supplementary figure S3 (Supplementary Material

online) for more detail on the phylogeny of MyTH4-FERM and V-like myosins, respectively.
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Striated Muscle Myosin II in Holozoa

Interestingly, myosin II is the major motor protein involved in

actomyosin contraction in metazoan muscle and nonmuscle

cells (Clark et al. 2007), providing contractile force during cy-

tokinesis in the latter (Matsumura 2005), a function also per-

formed by members of yeast myosin class II (East and Mulvihill

2011). Metazoans have two subclasses of myosin II, referred

to here as smooth (Myo2) and striated (Myo11/zipper) muscle

myosins (fig. 1), which have been shown to have architectural

differences in the composition of their coiled-coil domains and

to have originated most likely at the stem of Holozoa,

although striated muscle myosin was later lost in unicellular

holozoans (Steinmetz et al. 2012). We confirm this hypothesis

by showing that an extant filasterean species, Ministeria

vibrans, has a striated myosin homolog (BS¼72%,

BPP¼ 1.0) with the extra 29 aa-based coiled-coil that is typical

of striated muscle myosin II (fig. 2) (Steinmetz et al. 2012).

We therefore infer that myosin II was derived early in the ra-

diation of the eukaryotes and diverged into two classes in

the holozoan lineage (smooth and striated), the latter being

secondarily lost in ichthyosporeans and choanoflagellates.

Myosin III-Like: An Expanded Holozoan Clade

The myosin III class is characterized by an N-terminal Protein

kinase domain (PF00069) and several IQ domains (fig. 1). It is

strictly metazoan-specific, although a larger group of choano-

flagellate, sponge, and filasterean sequences appear to be

related to it (BS¼68%, BPP¼1.0) (figs. 1, 2, and 6). This

group represents a choanoflagellate-specific expansion of

myosin genes, with different domain arrangements, including

some members with protein kinase domains, WW domains

(PF00397), SH2 domains (PF00017), PH domains (PF00169),

Y-phosphatase domains (PF00102), and others (discussed

later; fig. 3). The metazoan-specific myosin XVI is also related

to myosin III and myosin III-like sequences. Our data demon-

strate that myosin III-like originated at the stem of the Filozoa

clade (i.e., Filasterea, Choanoflagellata, and Metazoa), acquir-

ing its definitive domain configuration (with an N-terminal

protein kinase domain) and leading to the birth of an addi-

tional paralog class (myosin XVI) at the base of the Metazoa.

Myosin IV Is Not an Orphan Acanthamoeba castellanii
Myosin

All myosin IV proteins have WW domains that can either be N-

terminal or C-terminal to the Myosin_head domain, and a tail

with a MyTH4 domain (PF00784), followed in some cases by a

SH3 domain (in T. trahens and ichthyosporeans) (fig. 1).

Previously considered an orphan myosin of the amoebozoan

Acanthamoeba castellanii (Odronitz and Kollmar 2007), our

results show that many other lineages have class IV myosins

namely, ichthyosporeans, apusozoans, rhizarians, and hetero-

konts (BS¼67%, BPP¼1.0; figs. 1 and 2). Thus, despite its

patchy distribution, it is likely that this myosin class was

present in the LECA (fig. 4).

Myosin V and Related Myosins: A Large Assembly of
Related Proteins

Class V myosins have an N-terminal Myosin_head domain and

a C-terminal tail with IQ and a globular DIL domains (PF01843)

(fig. 1). Myosin V and the structurally similar plant myosin XI

carry a remarkable variety of cargo, including organelles, ves-

icles, and protein complexes (Li and Nebenführ 2008; Loubéry

and Coudrier 2008). A relationship between myosin V and

plant myosin XI has long been proposed due to their similar

domain architectures (Richards and Cavalier-Smith 2005; Li

and Nebenführ 2008). Moreover, the orthology between

opisthokont myosin V and amoebozoan myosin V (renamed

here as myosin XXXIII) was assumed but not well-supported

phylogenetically (Foth et al. 2006; Odronitz and Kollmar

2007). Here, we show that all myosin V-like proteins cluster

together phylogenetically with low ML nodal support in the

global analysis (BS¼2%, BPP¼0.85), but maximum nodal

support (BS¼ 100%, BPP¼ 1.00) if a closer outgroup is

used (supplementary fig. S3, Supplementary Material

online). This group includes other bikont myosins with differ-

ent domain architectures. Therefore, we propose a unique

ancestral origin in the LECA for the progenitor of this para-

logous family (fig. 2; supplementary figs. S1–S3,

Supplementary Material online). We group them in several

classes, including plant myosin XI (BS¼ 87%, BPP¼ 1.0),

opisthokont myosin V (BS¼73%, BPP¼ 1.0), amoebozoan

myosin XXXIII (BS¼ 44%, BPP¼0.99) (formerly called

myosin V, but phylogenetically not related to it), stramenopi-

le + haptophyte myosin XXI (BS¼ 68%, BPP¼ 1.0),

stramenopile + alveolate myosin XXVII (BS¼65%,

BPP¼ 1.0), and a group of Guillardia theta orphan myosins

(BS¼38%, BPP¼ 0.9) (these last three do not have the con-

sensus myosin V architecture, presenting a wide variety of

alternative domain architectures) (fig. 1). In the case of

opisthokont myosin V, we confirm that myosin XIX is related

to it (BS¼66%, BPP¼1.0), but we demonstrate that it is not

a metazoan-specific class because it is also present in ichthyos-

poreans. Moreover, our phylogenetic trees strongly suggest

that myosins V and Vp originated in the last common ancestor

of opisthokonts (BS¼73%, BPP¼ 1.0) (supplementary fig.

S3, Supplementary Material online). Myosin Vp was second-

arily lost in fungi, metazoans, and choanoflagellates.

Interestingly, the two filasterean species analysed have differ-

entially lost one or the other, as Capsaspora owczarzaki has

myosin Vp and M. vibrans has myosin V (fig. 1).

Myosin VI Is Mostly Specific to Opisthokonta and
Apusozoa

The unique class VI myosins move toward the minus end of

actin filaments, in contrast to all other known myosins.
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by RAxML with 1,000 bootstrap replicates and BPP. Both values are shown on key branches. Taxa are color-coded according to taxonomic assignment as in
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Myosins from this class are involved in diverse processes such

as cytokinesis, transcription regulation, and endocytosis

(Roberts et al. 2004; Sweeney and Houdusse 2010). Our phy-

logeny shows that homologs of this class are present in meta-

zoans, choanoflagellates, filastereans, Corallochytrium

limacisporum, and apusozoans, but not in fungi or amoebozo-

ans (fig. 1). Foth et al. (2006) found putative VI-like genes in

alveolates, but our analysis places them within myosin XXIII

(supplementary table S1, Supplementary Material online). Yet,

we identified an ortholog in the haptophyte Emiliania huxleyi

(BS¼25%, BPP¼0.99). It is not clear whether this non-

amorphean myosin VI represents an ancestral member that

was lost in all other bikonts, or whether it derives from a HGT

event. The fact that this and a T. trahens homolog share a

unique C-terminal RUN domain (PF02759) that is not found in

any other myosin supports the latter possibility.

Myosins VII, IX, X, XV, XVIII, and XIX Are Holozoan
Specific

Myosins VII, IX, X, XV, XVIII, and XIX were previously consid-

ered to be unique to animals (Odronitz and Kollmar 2007), but

we demonstrate the presence of clear orthologs in unicellular

holozoans as well. In mammals, myosin VII is a MyTH4-FERM

myosin class found in structures based on highly ordered actin

filaments, such as stereocilia and microvilli (Henn and De La

Cruz 2005). Its members have a tail with two MyTH4 domains

(PF00784), two FERM (PF00373) domains, likely the product

of a partial gene tandem duplication, and addition of a SH3

domain. Myosin VII homologs are found only in metazoans,

choanoflagellates and Co. limacisporum (fig. 1). Some authors

described a group of amoebozoan proteins with a similar ar-

chitecture, involved in chemotaxis and cell polarization

(Breshears et al. 2010), and identified them as VII myosins.

Yet, our phylogenetic analysis does not place them with the

Holozoan VII class and, therefore, we reclassify them as

myosin XXV (discussed later).

Myosin VII is phylogenetically related to myosins X and

XV (the other MyTH4-FERM myosins found in metazoans,

discussed later) and to a group of apusozoan orphan myo-

sins, although with low nodal support in ML analysis

(BS¼10%, BPP¼ 0.96) (fig. 2; supplementary figs. S1 and

S2, Supplementary Material online). Our results therefore

suggest that all three originated from a single ancestral pro-

tein in the last common ancestor of Holozoa (being differ-

entially lost in some unicellular lineages; only the unicellular

Co. limacisporum has orthologs of all three classes, XV, X,

and VII). Interestingly, ctenophores have lost these three

myosin classes. Myosin IX is composed of a N-terminal RA

domain (PF00788) and a tail with IQ domains, a C1_1

domain (PF00130) and a RhoGAP domain (PF00620).

Homologs of this class are found only in metazoans and

filasterea (fig. 1).

Myosin X and XV are MyTH4-FERM classes of crucial

importance for metazoan filopodia (Zhang et al. 2004;

Bohil et al. 2006; Liu et al. 2008). The tail of myosins X is

composed of a variable number of IQ motifs, two PH

(PF00169), one MyTH4, and one FERM domain; while

those of myosins XV are composed of two MyTH4, one

FERM, and one SH3 domain. Myosin XVIII often has an N-

terminal PDZ domain and has a C-terminal myosin tail

domain. This family is present in the filasterean C. owczar-

zaki and all metazoans examined (BS¼ 95%, BPP¼1.0)

(fig. 1). Although not statistically supported, myosin XVIII

could be closely related to myosin II, as previously described

(Foth et al. 2006). Finally, myosin XIX has a variable number

of IQ domains and it is only found in eumetazoans and

ichthyosporeans (BS¼ 92%, BPP¼ 1.0) (fig. 1). It is closely

related to myosin V (BS¼ 66%, BPP¼ 1.0) (fig. 2; supple-

mentary figs. S1–S3, Supplementary Material online).

Myosin VIII and XI: The Green Lineage Myosins

Myosins VIII and XI are the only myosin classes present in

plants and several chlorophytes (Peremyslov et al. 2011;

fig. 1). Myosin VIII, whose monophyly is strongly supported

(BS¼90%, BPP¼1.0), has a tail with IQ domains. As for

myosin XI, several authors have pointed out its strong similarity

to myosin class V in terms of domain architecture (Thompson

and Langford 2002; Foth et al. 2006; Li and Nebenführ 2008).

Here, we show that this class is found in embryophytes and

chlorophytes and is well supported (BS¼87%, BPP¼1.0;

fig. 1). This class is phylogenetically related to myosin V, and

is included in a major myosin cluster that we name myosin V-

like (fig. 2; supplementary figs. S1–S3, Supplementary

Material online).

Myosin XIV: Myosins with a MyTH4-FERM Protein
Domain Combination in a Ciliate

Myosin XIV has been shown to be involved in phagosome

motility and nuclear elongation in the ciliate Tetrahymena

thermophila (Williams and Gavin 2005; Foth et al. 2006).

We find that this is an alveolate-specific class that has ex-

panded in many species (specifically in ciliates) and that

shows various domain architectures. Interestingly, the ciliate

Te. thermophila has several myosin XIV homologs with MyTH4

and FERM domains, and is the only known bikont (non-

amorphean) taxon with myosins that have a MyTH4-FERM

protein domain combination. This configuration is very

common in amorphean myosins, and was probably conver-

gently acquired in the ciliates.

Myosin XVI and XVII: Convergence of Fungal and Animal
Myosins with a C-terminal Chitin Synthase

Myosin XVII, also called chitin synthase, is a fungus trans-

membrane myosin with Cyt-b5 (PF00173), chitin synthase 2
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(PF03142) and DEK_C (PF08766) domains in its tail, a

domain combination unique to this class. Its monophyly is

well supported (BS¼ 91%, BPP¼0.99), and it is phyloge-

netically related to amorphean FERM domain myosins. This

chitin synthase class was thought to be specific to Fungi

(James and Berbee 2012). Interestingly, the holozoan Co.

limacisporum has a highly derived myosin that is associated

with a chitin synthase domain and that is phylogenetically

related to the fungal myosin XVII (fig. 3). This implies that

class XVII chitin synthase precedes the appearance of the

Opisthokonta and was lost in most holozoan lineages

(except for Co. limacisporum) and so is not a valid synapo-

morphy for the fungi (James and Berbee 2012). Moreover,

we also identified myosins with chitin synthases in annelids

and molluscs (figs. 1 and 3), which are members of the XVI

class. Thus, they are not orthologous to fungus chitin

synthases, but rather appeared convergently in annelids

and molluscs (fig. 3).

Myosin XXII: An Opisthokont-Specific Myosin with a
Scattered Taxonomic Distribution

Myosin XXII is a MyTH4-FERM domain myosin found in some

opisthokonts, including the chytrid fungus S. punctatus, filas-

tereans, choanoflagellates, poriferans, and Drosophila mela-

nogaster. Its tail is composed of an IQ, two MyTH4 and two

FERM domains, with a RA domain (PF00788) between the first

MyTH4 and the first FERM domain. It was secondarily lost in

Co. limacisporum, ichthyosporeans, and many metazoans

(fig. 1). Myosin XXII seems to be related to amoebozoan

myosin XXV (fig. 2). They may comprise a single class, al-

though there are some architectural differences between

them (discussed later).

Myosin XXI, XXX, and XXXI: Heterokonta and
Haptophyta Share Unique Myosins

These three myosin classes are found in heterokonts and hap-

tophytes, which suggests that they were secondarily lost in

rhizarians and alveolates (figs. 1 and 4) as these groups are

thought to branch closer to heterokonts than haptophytes

(Burki et al. 2012). Myosin XXI homologs present diverse

myosin tail architectures, including IQ, WW (PF00397), PX

(PF00787), and Tub (PF01167) domains. This class has

become considerably expanded in the oomycete

Phytophthora infestans. Myosin XXX homologs in E. siliculosus

have a C-terminal PH domain and P. infestans homologs have

a PX domain. Finally, the myosin XXXI class, in which we also

include the old myosin XXXIII (Odronitz and Kollmar 2007),

has a characteristic tail architecture in several heterokonts ho-

mologs, with a variable number of IQ domains, a PH domain

flanked by two ankyrin domains, and a C-terminal Aida_C2

domain (PF14186).

Myosin XXV, XXVI, and XXXIII: Renamed Amoebozoa-
Specific Myosins

The myosin XXV class (BS¼62%, BPP¼1.0) comprises amoe-

bozoan sequences that were previously considered to be

myosin VII homologs. They are MyTH4-FERM myosins

known to have a role in cell adhesion and filopodia formation

(Breshears et al. 2010). They show remarkable architectural

similarities with both myosin XV and myosin VII (fig. 1), but

seem to be phylogenetically related to myosin XXII (although

they have different tail architectures and their sister-group

relationship is low supported) (fig. 2; supplementary figs. S1

and S2, Supplementary Material online), and thus were clas-

sified as an independent class. Myosin XXVI (BS¼100%,

BPP¼ 1.0) is another class of amoebozoan MyTH4-FERM my-

osins, which does not cluster with either myosin VII or myosin

XXV. We suggest a common ancestry for a group of amor-

phean myosin classes that are generally characterised by the

presence of MyTH4 domains. This group includes these two

amoebozoan classes (XXV and XXVI; fig. 2; supplementary

figs. S1, S2, and S4, Supplementary Material online), as well

as myosins III, XVI, IX, XVII, XX, XXXIV, X, XV, VII, and XXII

(fig. 3; supplementary fig. S4, Supplementary Material online).

Myosin XXXIII includes the amoebozoan sequences previ-

ously considered as class V myosin, and shares the same

domain architecture as plant myosin XI. Our phylogenetic

analysis does not support a close relationship between

myosin XXXIII and myosin V; it rather demonstrates that

they are related to the myosin V-like clade (fig. 2), leading

us to rename the group as myosin XXXIII (fig. 2; supplemen-

tary figs. S1–S3, Supplementary Material online).

The Evolution of the Myosin Repertoire in Eukaryotic
Genomes

Phylogenetic analysis allowed us to define broader groups of

myosin classes and to reconstruct the evolution of the myosin

toolkit across the eukaryotes. This reconstruction is based on

the favored hypothesis for the root of eukaryotes, the

unikont–bikont split (Stechmann and Cavalier-Smith 2002;

Richards and Cavalier-Smith 2005), that has recently been re-

covered in a rooted multi gene concatenated phylogeny with

a modification with regards to the placement of the apu-

sozoan T. trahens within the unikonts (Derelle and Lang

2012). Based on this root, our data suggest that the LECA

had at least six myosin types, with different protein domain

architectures (fig. 4 for the reconstruction of LECA and other

ancestral nodes). According to our reconstruction, LECA had

the following: 1) an ancestral myosin I (progenitor paralog of

the myosin I a/b/c/h/d/g/k ortholog subfamilies) with an archi-

tecture consisting of a myosin head domain followed by 0 to 2

IQ repeats and a C-terminal myosin TH1 domain; 2) a myosin

If, with a myosin head domain followed by a myosin TH1

domain and a C-terminal SH3 domain; 3) a myosin II, with a

myosin N-terminal domain, a myosin motor domain, 0 to 1 IQ
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domains and a myosin tail domain; 4) a myosin IV with a

myosin head domain followed by a MyTH4 domain and a

characteristic WW domain (either C-terminal or N-terminal);

5) a myosin V-like myosin with a myosin head followed by

variable number of IQ repeats and a C-terminal DIL domain;

and 6) a myosin VI, with a myosin N-terminal domain followed

by a myosin head domain.

In figure 4, we show the diversity of the myosin comple-

ment in the LECA genome under a modified version of the

unikont–bikont root. Our reconstruction indicates that LECA

possessed a minimum of six paralog families all encoding dif-

ferent protein domain architectures. Even if alternative rooting

hypothesis are taken into account (Rodrı́guez-Ezpeleta et al.

2007; Wideman et al. 2013) the inferred number of myosin

paralog families in the LECA is still high (supplementary figs. S5

and S6, Supplementary Material online). This result is

consistent with the pattern observed in the kinesin gene

family, which also demonstrated a diverse repertoire of
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paralog families present in the LECA (Wickstead et al. 2010).

Together these data suggest that the LECA possessed a com-

plex and diversified actin and tubulin cytoskeleton and that

this ancestral cell possessed a large number of complex eu-

karyotic cellular characteristics prior to the diversification of

extant and sampled eukaryotic groups. Assuming this root,

these results have two implications: 1) they strongly suggest

that a large quantity of protein diversification and cellular

complexity evolved between the point of eukaryogenesis

(Martin et al. 2001) and LECA, and 2) indicate that gene

loss and subsequent reduction in cytoskeletal systems played

a significant role in the diversification of eukaryotes, a pattern

that is increasingly apparent on other gene families and cellu-

lar systems (Wolf and Koonin 2013).

Our analysis reconstructed the LBikCA (Last Bikont

Common Ancestor) with the same complement of myosins

as the LECA (fig. 4). New classes appeared later in bikont

evolution, such as myosin XIII at the stem of

Kinetoplastida + Heterolobosea and myosin XXI, XXX, and

XXXI at the stem of SAR + Haptophyta. Assuming the uni-

kont–bikont root, our analyses demonstrate that many

groups underwent secondary losses, with two extreme cases

of complete loss of the myosin toolkit in the following: 1)

metamonads (including Trichomonas vaginalis and Giardia

lamblia) and 2) rhodophytes (including the unicellular

Cyanidioschyzon merolae and the multicellular alga

Chondrus crispus) (figs. 4 and 5).

The LACA (Last Amorphean Common Ancestor, modified

by inclusion of Apusozoa [Derelle and Lang 2012]) added a

new myosin type from LECA, a MyTH4-FERM myosin (Berg

2001; Richards and Cavalier-Smith 2005) that includes several

phylogenetically related myosin classes (supplementary figs.

S1, S2, and S4, Supplementary Material online). These myo-

sins have a complex protein domain architecture including a

myosin head domain followed by 0 to 2 IQ repeats, a MyTH4

domain, a FERM domain, in some cases a SH3 domain, and an

additional MyTH4 and FERM domains (fig. 4). This ancestral

protein domain architecture is found in diverse myosins from
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FIG. 5.—Phylogenetic patterns of myosin diversity. Taxa are color-coded according to taxonomic assignment. (A) Number of myosin genes (right Y-axis,

columns) and number of myosin classes (left Y-axis, black line) in each species. (B) Number of concurrent protein domains (Y-axis) compared with the number

of myosin genes (X-axis) in each species.
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extant amoebozoans (classes XXV and XXVI) to holozoans

(class VII and, with some variations, classes XV and X). In any

case, the putative ancestral MyTH4-FERM myosin underwent

major architectural rearrangements as the family expanded

during diversification of the amorpheans (figs. 3 and 4).

The LOCA (Last Opisthokont Common Ancestor) had an

even more complex myosin complement, with the addition of

new myosin classes (as a consequence of the diversification of

ancestral myosin types, such as myosin V-like or MyTH4-FERM

myosins), including myosin V, myosin Vp, myosin XVII (a chitin

synthase that is present in all fungi and in a single holozoan

species, Co. limacisporum, discussed earlier), and myosin XXII.

This complexity became even greater in the LHolCA (Last

Holozoan Common Ancestor), which had the highest diversity

of myosin types among all reconstructed ancestors (fig. 4).

This diversity was further expanded during holozoan evolu-

tion, with little innovation at the stem of Metazoa.

Phylogenetic Patterns of Myosin Diversity and Protein
Domain Combinations

Our data show that there are strong phylogenetic patterns

across lineages, in terms of abundance and number of classes,

and the diversity of concurrent domains (i.e., domains that

appear together with the myosin head domain in a given

protein or ORF).

The number of myosin genes varies markedly between lin-

eages (fig. 5A). Holozoan genomes, as well as some amoe-

bozoans and heterokonts, have the highest numbers of

myosins of all eukaryotes. In particular, the haptophyte

Em. huxleyi has the highest number of myosin genes (53),

followed by the ichthyosporean Pirum gemmata (43), the filas-

terean M. vibrans (39), and the metazoan Homo sapiens (38).

On the other hand, dikaryan fungi, plants, green algae, alve-

olates, and some excavates have few or no myosins.

A comparison of the abundance of myosin proteins with

the diversity of myosin classes (fig. 5A), reveals that Em. hux-

leyi, which has a high number of myosins, has only six myosin

classes. This implies that the high number of myosin homologs

found in this species is due to class-specific expansions rather

than possession of a wide diversity of ancestrally derived

myosin types. In contrast, many unicellular holozoans, espe-

cially choanoflagellates and filastereans, and some metazoans

(such as H. sapiens and the homoscleropmorph sponge

Oscarella carmela) have a high diversity of myosin classes. In

general, our data reveal a marked increase in the number of

myosin classes at the origin of Holozoa, although some spe-

cific taxa, such as the ctenophore Mnemiopsis leidyi and the

ichthyosporeans Sphaeroforma arctica and Creolimax fragran-

tissima, secondarily reduced their repertoire of myosins.

Myosin motor domains are found in a diverse collection of

protein domain architectures, therefore another aspect that

reflects differences in myosin diversity is the number of con-

current protein domains found associated with the motor

domain (fig. 5B). The richest species in terms of protein

domain diversity attached to the myosin motor domain

within a putative ORF are the choanoflagellate Salpingoeca

rosetta, the filastereans M. vibrans and C. owczarzaki and the

metazoan H. sapiens. This implies that myosins were highly

diversified prior to the origin and divergence of metazoans.

Indeed, the sponge O. carmela also has a rich repertoire of

concurrent domains, which corroborates (together with the

fact that it has the richest range of myosin classes among

analysed taxa) that the myosin repertoire was already rich

and diverse in early metazoan evolution.

Interestingly, the oomycete plant pathogen P. infestans,

which has a high number of myosin genes, also shows a re-

markable diversity of concurrent protein domains (Richards

and Cavalier-Smith 2005), a feature that has already been

described for other gene families (Grau-Bové et al. 2013).

In contrast, the myosin-rich taxon Em. huxleyi is relatively

poor in both class diversity (fig. 5A) and protein domain diver-

sity. The poorest taxa in protein domain diversity are plants,

chlorophytes, excavates and alveolates. The cryptophyte G.

theta represents an extreme case with no identified protein

domains within the predicted ORF of any of its 11 myosins.

An examination at the concurrent protein domain compo-

sition of myosin in different taxa (fig. 6) reveals that 14 protein

domains are conserved between amorpheans and bikonts

(fig. 6A) with similar levels of innovation in both clades (20

and 21 new concurrent protein domains, respectively). A com-

parison of the most widely studied eukaryote clades (meta-

zoans, embryophytes, and fungi [fig. 6B]) reveals that there

are no specific concurrent domains in plants (only those pre-

sent in myosin XI, which are shared by metazoan and fungus

myosin class V) and in fungi there are only two specific

domains (those associated with myosin XVII, i.e., DEK_C and

Cyt-b5). In contrast, metazoans have many specific domains

associated with myosins.

Within amorpheans (fig. 6C) there is a core of conserved

domains (such as Myosin_tail_1 or Myosin_TH1) and a burst of

innovation in the Holozoa. A closer look reveals that most of

these domain combinations are present in unicellular holozo-

ans, while little actual innovation occurred at the origin of

metazoans (only the PDZ domain) (fig. 6D). In contrast,

every single unicellular holozoan lineage has new specific as-

sociated domains: three in choanoflagellates (Mcp5_PH,

SAM_2 and Y_phosphatase), two in filastereans (Rap_GAP

and zf-MYND) and two in ichthyosporeans (AIP3 and LIM).

Within bikonts (fig. 6E) there are no protein domains shared

by all major lineages and little innovation in protein domain

combinations is observed, except in the case of haptophytes

(five domains) and particularly in the SAR clade (Stramenopiles/

Heterokonta, Alveolata, and Rhizaria). A closer look at the SAR

clade (fig. 6F) reveals that this diversification of protein do-

mains is largely lineage-specific, with five new domains in al-

veolates and thirteen new domains in heterokonts.
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It is interesting to note that some of these shared protein

domains were acquired convergently, for example the LIM

domain in haptophytes and ichthyosporeans, the Mcp5_PH

domain in haptophytes and choanoflagellates and the

FERM_M domain in alveolates and amorpheans. This points

to another source of homoplasy when considering protein

domain architectures as evolutionary synapomorphies.

Lineage-Specific Myosin Diversifications

Our data show several lineage-specific expansions, often

accompanied by major protein domain architecture

rearrangements. This is the case, for example, of myosin

class XXVII, which is expanded in both the oomycete P. infes-

tans and the alveolate Perkinsus marinus, with unique protein

domain architectures. Another example is the ciliate Te. ther-

mophila, which has 12 myosin homologs of the alveolate-

specific class XIV. In addition to the consensus architecture

found in most alveolates, Te. thermophila myosin XIV is the

only bikont myosin with the MyTH4-FERM domain combina-

tion, a domain architecture that was convergently acquired

(compared with amorphean MyTH4-FERM myosins, discussed

earlier).
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The most spectacular lineage-specific expansion is that ob-

served in choanoflagellate myosin III-like myosins (fig. 3). This

phylogenetically defined group includes bona fide eume-

tazoan myosin III homologs, the related metazoan myosin

XVI class (including annelid and mollusc chitin synthases), filas-

terean sequences (comprising a unique group), a single se-

quence of the sponge Amphimedon queenslandica, a single

sequence of the sponge O. carmela, and several choanofla-

gellate myosins (15 from Monosiga brevicollis and 18 from

Sa. rosetta). These choanoflagellate sequences have a wide

diversity of protein domain rearrangements (fig. 3).

Interestingly, many of these domains, like SH2 and Y-

phosphatase domains, are related to tyrosine kinase signaling

(Liu et al. 2011), a prominent feature of choanoflagellates

(Manning et al. 2008). Sequences belonging to the myosin

III-like group with a C-terminal SH2 domain were also identi-

fied in filastereans, which also have an extensive tyrosine

kinase toolkit (Suga et al. 2012). Another interesting configu-

ration found within this myosin III-like group is an Sa. rosetta

and an O. carmela sequence with a C-terminal MH2 PF03166

domain. This domain is typically present in Smad transcription

factors, where it is found at the C-terminal of the MH1 DNA-

binding domain and acts as a protein binding motif that

mediates cofactor interactions (Massagué et al. 2005).

Interestingly, the MH2 domain is only found in choanoflagel-

lates and metazoans, while Smad transcription factors are ex-

clusive to animals (Sebé-Pedrós et al. 2011). The fact that the

single MH2 domain found in choanoflagellates is associated

with a myosin, together with that fact that the sponge O.

carmela also has this configuration, suggests that MH2 initially

appeared associated with myosins as a protein–protein inter-

action domain. Later on, early in metazoan evolution, MH2

was fused by domain shuffling to a MH1 DNA-binding

domain to create the Smad transcription factors.

The Origin of the Metazoan Myosin Repertoire

Our results show that all metazoan myosin classes but one

(Myosin XVI, also known as Dachs) have a premetazoan

origin, many of them being holozoan innovations (fig. 6) (in-

cluding myosin III-like, VII, IX, X, XV, XVIII, and XIX). Moreover,

several subclass diversifications occurred in unicellular holozo-

ans, for example in Myosin V (Myosin V and Myosin Vp), in

Myosin I (Myosin I a/b, I/c/h, Id/g, and Ik) and in Myosin II

(smooth and striated). In terms of number of myosins and

diversity of concurrent domains (fig. 5), unicellular Holozoa

have the highest counts among eukaryotes (even higher

than most Metazoa). In fact, the choanoflagellate Sa. rosetta

has the most diverse repertoire of myosin concurrent domains

(fig. 5B), followed by another choanoflagellate (Mo. brevicol-

lis), the filasterean C. owczarzaki and the metazoan H. sapiens.

Overall, we can infer that the complexity of the myosin toolkit

was extremely high before the advent of animal

multicellularity and that this system is of paramount impor-

tance in extant unicellular holozoans.

Conclusions

We provide a robust updated myosin classification, based on

ML and Bayesian phylogenetic methods and broad genomic

taxon sampling that includes, for the first time, all major eu-

karyotic lineages. We provide a redefinition and/or confirma-

tion of previously defined myosin classes (with an effort to

reconcile myosin nomenclature between various previous clas-

sifications), and we assess the presence/absence of myosin

classes in eukaryotes. Furthermore, we reconstruct a more

complex myosin complement in the LECA genome than pre-

viously proposed, with six different myosin types and six dif-

ferent inferred domain architectures under the modified

unikont–bikont root. Notably, we find strong phylogenetic

patterns related to the complexity of the myosin system.

Finally, we infer an intricate evolutionary history of the

myosin gene family, including multiple lineage-specific expan-

sions (such as the myosin III-like group in the choanoflagellate

lineage), domain diversifications (specially in holozoans), sec-

ondary losses (in metamonads and rhodophytes), and conver-

gences (e.g., in the fungal and metazoan myosin–chitin

synthases). Taken together our results demonstrate that

myosin gene family underwent multiple large-scale expan-

sions and contractions in paralog families combined with ex-

tensive remodelling of domain architectures. As the diversity

of this gene family directly relates to the function of the actin

cytoskeleton, these results tell a story of extensive remodelling

of this cytoskeleton system across the eukaryotes. These re-

sults also suggest that evolutionary inference of species rela-

tionships based on myosin distribution patterns is difficult

without reliable phylogenetic analysis and comprehensive

sampling. As such, the expansion of available genome data

will provide a more accurate inference of the relative phylo-

genetic age of myosin classes and types—likely expanding the

repertoire of myosins, and therefore the cellular complexity, of

ancestral eukaryotic forms.

Supplementary Material

Supplementary data S1, figures S1–S6, and tables S1 and S2

are available at Genome Biology and Evolution online (http://

www.gbe.oxfordjournals.org/).
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Massagué J, Seoane J, Wotton D. 2005. Smad transcription factors. Genes

Dev. 19:2783–2810.

Matsumura F. 2005. Regulation of myosin II during cytokinesis in higher

eukaryotes. Trends Cell Biol. 15:371–377.

Odronitz F, Kollmar M. 2007. Drawing the tree of eukaryotic life based on

the analysis of 2,269 manually annotated myosins from 328 species.

Genome Biol. 8:R196.

Peckham M. 2011. Coiled coils and SAH domains in cytoskeletal molecular

motors. Biochem Soc Trans. 39:1142–1148.

Peremyslov VV, et al. 2011. Expression, splicing, and evolution of the

myosin gene family in plants. Plant Physiol. 155:1191–1204.

Peyretaillade E, et al. 2011. Extreme reduction and compaction of micro-

sporidian genomes. Res Microbiol. 162:598–606.

Pomberta J-F, et al. 2012. Gain and loss of multiple functionally related,

horizontally transferred genes in the reduced genomes of two micro-

sporidian parasites. Proc Natl Acad Sci U S A. 109:12638–12643.

Punta M, et al. 2012. The Pfam protein families database. Nucleic Acids

Res. 40:D290–D301.

Richards TA, Cavalier-Smith T. 2005. Myosin domain evolution and the

primary divergence of eukaryotes. Nature 436:1113–1118.

Richards TA, et al. 2011. Horizontal gene transfer facilitated the evolution

of plant parasitic mechanisms in the oomycetes. Proc Natl Acad Sci U S

A. 108:15258–15263.

Roberts R, et al. 2004. Myosin VI: cellular functions and motor properties.

Philos Trans R Soc Lond B Biol Sci. 359:1931–1944.

Rodrı́guez-Ezpeleta N, et al. 2007. Toward resolving the eukaryotic tree:

the phylogenetic positions of jakobids and cercozoans. Curr Biol. 17:

1420–1425.

Roger AJ, Simpson AGB. 2009. Evolution: revisiting the root of the eukary-

ote tree. Curr Biol. 19:R165–R167.
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