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Abstract 
 

 This thesis focuses on soft sensor development based on fuzzy logic used for 

real time online monitoring of anaerobic digestion to improve methane output and for 

robust fermentation. Important process parameter indicators such as pH, biogas 

production, daily difference in pH and daily difference in biogas production were 

used to infer alkalinity, a reliable indicator of process stability. Additionally, a fuzzy 

logic and a rule-based controller were developed and tested with single stage 

anaerobic digesters operating with cow slurry and cellulose. Alkalinity predictions 

from the fuzzy logic algorithm were used by both controllers to regulate the organic 

loading rate that aimed to optimise the biogas process. 

 The predictive performance of a software sensor determining alkalinity that 

was designed using fuzzy logic and subtractive clustering and was validated against 

multiple linear regression models that were developed  (Partner N° 2, Rothamsted 

Research 2010) for the same purpose. More accurate alkalinity predictions were 

achieved by utilizing a fuzzy software sensor designed with less amount of data 

compared to a multiple linear regression model whose design was based on a larger 

database. Those models were utilised to control the organic loading rate of a two-

stage, semi-continuously fed stirred reactor system. 

 Three 5l reactors without support media and three 5l reactors with different 

support media (burst cell reticulated polyurethane foam coarse, burst cell reticulated 

polyurethane foam medium and sponge) were operated with cow slurry for a period 

of seven weeks and twenty weeks respectively. Reactors with support media were 

proven to be more stable than the reactors without support media but did not exhibit 

higher gas productivity. Biomass support media were found to influence digester 

recovery positively by reducing the recovery period. Optimum process parameter 

ranges were identified for reactors with and without support media. Increased biogas 

production was found to occur when the loading rates were 3-3.5g VS/l/d and 4-5g 

VS/l/d respectively. Optimum pH ranges were identified between 7.1-7.3 and 6.9-7.2 

for reactors with and without support media respectively, whereas all reactors 

became unstable at ph<6.9. Alkalinity levels for system stability appeared to be 

above 3500 mg/l of HCO3
- for reactors without media and 3480 mg/l of HCO3

- for 

reactors with support media. Biogas production was maximized when alkalinity was 
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between 3500-4500 mg/l of HCO3
- for reactors without support media and 3480-

4300 mg/l of HCO3
- for reactors with support media. Two fuzzy logic models 

predicting alkalinity based on the operation of the three 5l reactors with support 

media were developed (FIS I, FIS II). The FIS II design was based on a larger 

database than FIS I. FIS II performance when applied to the reactor where sponge 

was used as the support media was characterized by quite good MAE and bias 

values of 466.53 mg/l of HCO3- and an acceptable value for R2= 0.498. The NMSE 

was close to 0 with a value of 0.03 and a slightly higher FB= 0.154 than desired. The 

fuzzy system robustness was tested by adding NaHCO3 to the reactor with the burst 

cell reticulated polyurethane foam medium and by diluting the reactor where sponge 

was used as the support media with water. FIS I and FIS II were able to follow the 

system output closely in the first case, but not in the second. 

 FIS II functionality as an alkalinity predictor was tested through the application 

on a 28l cylindrical reactor with sponge as the biomass support media treating cow 

manure. If data that was recorded when severe temperature fluctuations occurred 

(that highly impact digester performance), are excluded, FIS II performance can be 

characterized as good by having R2= 0.54 and MAE=Bias= 587 mg/l of HCO3-. 

Predicted alkalinity values followed observed alkalinity values closely during the days 

that followed NaHCO3 addition and water dilution. In a second experiment a rule-

based and a Mamdani fuzzy logic controller were developed to regulate the organic 

loading rate based on alkalinity predictions from FIS II. They were tested through the 

operation of five 6.5l reactors with biomass support media treating cellulose. The 

performance indices of MAE=763.57 mg/l of HCO3-, Bias= 398.39 mg/l of HCO3-, 

R2= 0.38 and IA= 0.73 indicate a pretty good correlation between predicted and 

observed values. However, although both controllers managed to keep alkalinity 

within the desired levels suggested for stability (>3480 mg/l of HCO3-), the reactors 

did not reach a stable state suggesting that different loading rates should be applied 

for biogas systems treating cellulose. 
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 Chapter 1 Monitoring and control of anaerobic digestion  
 

1.1 Introduction and aim of study 
 

Anaerobic digestion (AD) is a biochemical conversion process that is 

considered highly attractive for the treatment and recycling of biomass wastes.  AD 

application can lead to the reduction of waste volume, simple and reliable generation 

of energy-rich gas in the form of methane that can be burnt with limited generation of 

pollutants, and the production of nutrient-containing final products (Mata-Alvarez et 

al. 2000)(Evangelisti et al. 2014). Energy generation from biomass and waste is 

regarded as one of the most promising and consistent future renewable energy 

sources (unlike solar energy and wind energy) and offers increased benefits over 

other conversion technologies in terms of energy efficiency such as combustion, 

pyrolysis and gasification (Appels et al. 2011). Hence, AD technology has been 

identified as the means to try and produce half of UK’s renewable target 

requirements by 2020 (Mezzullo et al. 2013). Currently there are 106 AD plants in 

UK, outside of the water industry, processing up to 5.1millions tonnes of food and 

farm waste per year with an installed electrical capacity of more than 88 MWe (The 

Official Information Portal on Anaerobic Digestion 2013).    

 In AD, a series of reactions are performed by a variety of microorganisms that 

co-exist in the same environment and the bioconversion of organic compounds to 

methane is affected by their activity (Gujer & Zehnder 1983)(Lee et al. 2008). The 

interdependence of different microbial groups can be the cause of system instability 

(Liu et al. 2004a) since micro-organisms are highly sensitive to disturbances and 

changes in operating conditions (Steyer et al. 2006). Operating an AD reactor below 

the theoretical reactor capacity (under-loading) is a way to avoid system instability. 

However, low loadings result in limited biogas productivity and consequently low 

turnover. On the other hand, high loading rates offer increased biogas production 

rates but maximise the risk of reactor overloading that can lead to poor gas 

production rates and an acidified or sour digester that will require a lot of time to 

recover (Spanjers & Lier 2006). So, additional costs are required due to the absence 

of gas productivity and digester restart operations. Therefore, the challenge is to 

design a monitoring and control system to operate an AD reactor with optimized 
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biogas production. At the same time, the risk of digester instability, hence, digester 

failure has to be avoided (Liu et al. 2004a)(Boe 2006). 

 There are a series of process indicators utilised to characterise process 

stability and evolution. This is possible with the indirect measurement of activity of 

the different groups of microorganisms that reflect the current metabolic status of the 

active organisms in the system (Gujer & Zehnder 1983)(Björnsson et al. 2000). 

Easily measurable indicators include gas production rate, gas composition, VFAs, 

pH, alkalinity (Hawkes 1993)(Björnsson, Murto, et al. 2001), ammonia and indirect 

measurements of organic matter (Pind et al. 2003). In most cases, several process 

monitoring indicators are utilised in anaerobic digestion applications because they 

provide complementary information (Hickey et al. 1991). Therefore, a process model 

(Wang et al. 1996) or an estimation algorithm (Chéruy 1997) can be implemented to 

estimate the biological state of the AD system. Soft sensor application is considered 

to be a suitable method of continuous monitoring of easily measured key process 

variables. Then, the information acquired can be used to make decisions mostly 

regarding the digester loading that can lead to reduced capital costs and enhanced 

biogas output (Simeonov et al. 2012). Several soft-sensor applications have been 

developed in the past to predict the unmeasured on-line variables of acidogenic and 

methanogenic bacteria, Chemical Oxygen Demand (COD), alkalinity, Volatile Solids 

(VS), inorganic carbon concentration, volatile fatty acids (VFA) or the state of the AD 

system (Aubrun et al. 2001)(Bernard et al. 2001)(Alcaraz-González et al. 2002) 

(Ward et al. 2011)(Gaida et al. 2012)(Montiel-Escobar et al. 2012)(Oppong et al. 

2013). 

Alkalinity is an indicator of process stability in AD and enables the detection of 

changes in the buffer capacity of the system (Palacios-Ruiz et al. 2008)(Hawkes 

1993). Also, alkalinity is a good indicator of future failure due to reactor acidification 

(Guwy, Hawkes, Wilcox, et al. 1997). A drop in alkalinity might result in having a 

‘sour’ digester and will take a huge effort to bring the system back to full operation 

(Sanin et al. 2010). Many control applications utilise the VFA to alkalinity ratio. VFA 

accumulation can lead to a decrease in pH and cessation of gas production. This 

justifies why VFAs are widely used to determine the stability of digestion processes. 

Alkalinity and VFA are two of the most sensitive indicators of process stability 

(Schoen et al. 2009) which led to a wide application of the VFA/ Alkalinity ratio for 

the purpose of system monitoring. VFA sensors have been implemented in the past 

23 
 



using analytical instruments. Those include the use of gas chromatography (GC), 

titrimetry, IR-spectometry (Spanjers & Lier 2006), spectrophotometry and capillary 

zone electrophoresis (Zygmunt & Banel 2009). However, on-line sensors have 

proven to be quite unreliable delivering wrong measurements due to disturbances 

(e.g. interference of chemical species) (Lardon et al. 2004). Other methods were 

limited by the fact that the VFA measurement system would only work in a reliable 

manner if serviced regularly (Boe, Batstone, et al. 2007). In recent years, more 

accurate VFA sensors have been developed based on headspace gas 

chromatography (HSGC). A method that applies ex-situ VFA stripping with variable 

headspace volume and gas analysis by gas chromatography-flame ionization 

detection (GC-FID) has been proposed (Boe, Batstone, et al. 2007). 

Alkalinity is a good process indicator of AD process stability. Literature based 

VFA/Alkalinity ratios are variable and VFA in-line sensors are quite difficult to 

construct, contain a high level of complexity when it comes to their operation, and 

can be quite expensive. Therefore, this thesis focuses on the design of a software 

sensor based on the utilization of cost-effective on-line sensors predicting alkalinity 

in a more accurate manner than the multiple linear regression models presented in 

(Partner N° 2, Rothamsted Research 2010) that were developed based on the work 

presented in (Ward 2009)(Ward et al. 2011).  

Takagi-Sugeno-Kang (TSK) Fuzzy Logic (FL) models have been developed to 

predict alkalinity. TSK FL does not require extensive knowledge of the processes or 

of the systems under examination. This is useful for AD processes which are highly 

complex nonlinear microbial processes. However, this technique is capable of 

providing a good description of those processes (Lauwers et al. 2013). The main 

advantage of the TSK model over other classes of fuzzy models lies in the fact that it 

can model a system with great accuracy either locally or globally (Quah & Quek 

2006).  

The improved performance of fuzzy models over multiple linear regression 

models in predicting alkalinity is presented in Chapter 3. Two FL models predicting 

alkalinity are presented in Chapter 4 based on experiments conducted with cow 

manure. The soft-sensor was validated against process disturbances that included 

the addition of a buffering agent (NaHCO3) and water dilution. Additionally, optimum 

process and stability operating conditions were identified for organic loading rate 
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(OLR), pH and alkalinity, during the experiments conducted with three different types 

of biomass support media. 

A second fuzzy model developed in Chapter 4 (FIS II) has been utilised to 

predict alkalinity in a reactor of different configuration and size treating cow manure 

(Chapter 5). Additionally, it was tested through application in five reactors treating a 

different substrate than cow manure, cellulose.  

Fuzzy logic control (FLC) applications and rule-base controllers designed for 

AD systems have been successfully developed in the past  (Estaben et al. 1997) 

(Carrasco et al. 2002)(Murnleitner et al. 2002)(Carrasco et al. 2004)(Liu et al. 

2004a)(Liu et al. 2004b)(Yordanova 2004)(Scherer et al. 2009) (Ward 2009) (Partner 

N° 2, Rothamsted Research 2010).The development of two controllers that serve the 

same purpose (which is to control the OLR of an anaerobic digester): a Mamdani 

fuzzy logic controller and a rule-based controller, is also presented in Chapter 5. The 

determination of optimum operating parameter ranges for pH, OLR and alkalinity 

presented in Chapter 4 forms the basis of the design of the two controllers. These 

two types of control system are suitable for applications where the user experience 

can be easily embedded in the controller design. FIS II was set to predict alkalinity, 

and the alkalinity predictions were then fed into the corresponding controller that 

would vary the OLR accordingly. 
 

1.1.1 Anaerobic digestion definition, Advantages-Disadvantages 
 

 Anaerobic digestion (AD) is the process that involves the production of 

methane and carbon dioxide through a series of degradation processes that occur as 

the metabolic outcome of bacterial communities present in organic matter  (Skiadas 

& Lyberatos 1999). Methane and carbon dioxide are the main products of the AD 

process. Traces of hydrogen and hydrogen sulphide are also present. 

AD can be used to process waste organic matter that may only contain less 

that 5% w/w dry matter. Energy generation and processed organic material are the 

outputs. Some advantages are listed below:  

• Organic wastes treated include municipal sludge, animal manure, industrial 

sludge, industrial and municipal wastewaters.  
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• Energy production can be boosted with the addition of energy crops to organic 

wastes. This is growing in popularity over the past 20 years. The development 

of bioenergy is due to increasing oil prices and improved legal framework 

conditions in Europe (Braun et al. 2009). The methane yields of a number of 

different feedstock materials can be found in literature (Braun 2007). The use 

of energy crops is disputed due to the apparent replacement of food growing 

areas, however energy crops will help maintain higher fossil fuel replacement.  

•  Biogas can be utilised to heat the reactors, instead of consuming extra 

energy, and biogas can be stored for future use whereas, aerobic treatment 

facilities consume but do not generate heat. 

• When digesting manure, odours can be reduced and the manure contains 

less solids and is easier to manage because of a reduced viscosity.  

• Greenhouse gas emissions of methane and nitrous oxide are reduced.  

• AD has low nutrient requirements especially compared to aerobic treatment 

processes (Lettinga et al. 1979). Less than 10% of the organic matter 

removed from an organic waste is transformed into microbial cells using AD, 

whereas up to 50% of the organic matter removed from the waste can be 

converted to microbial sludge using aerobic treatment (Wilkie 2005b). 

• Digestate is the residual material after the AD of the feedstock and represents 

(Bermejo & Ellmer 2010) 90-95% of the material fed in the digester. Digestate 

can be used as a fertiliser with a more immediate crop response because the 

nutrients nitrogen and phosphorus are more mineralised. For example, 

different treatments for potato and forage crops in Peru were investigated 

(Garfí et al. 2011) focusing on the use of guinea pig manure. The results 

indicated that digestate boosted the potato yield compared to the usage of 

manure and mixtures of manure and digestate. On the other hand, it was 

concluded that further investigations have to be made to validate the 

effectiveness of dry and wet digestate by comparing it with mineral fertilizer 

applied at several stations characterised by different soil conditions, as the 

results were mixed (Bermejo & Ellmer 2010).  

However, like any process, AD has its limitations. These include: 
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• Complicated set-up and design of AD units due to legislation. Under the 

Environmental permitting (EP) scheme, all AD UK plants have to obtain a 

permit or exception to operate and spread digestate. Further details can 

be found (Environmental protection England and Wales 2012)  

• Significant set-up (planning and legal costs) and operational costs (low 

values of digestate and heat) (Gebrezgabher et al. 2010) for large scale 

units.  

• Digester processes are unstable (Graef & Andrews 1974) especially 

during changes in the environment or in the nature of the feedstock 

(Simeonov et al. 2012). 

• Limited knowledge ‘surrounding’ the digester microbiology and operational 

data exists. 

• The start-up process of a digester at the industrial scale takes several 

weeks to several months (Lardon et al. 2004). Therefore, it has to be 

ensured that the system will not collapse. 

• High performance and process stability are difficult to be satisfied at the 

same time since the maximum digester loading rates vary according to the 

substrate utilised (Staubmann et al. 1997).   

1.1.2 Bacteria 
 

 Sufficient monitoring of the AD process requires knowledge of the metabolic 

states of the process (Ahring et al. 1995) because of a series of different microbial 

reactions and metabolic transformations (Chartrain & Zeikus 1986). Vital symbiosis 

of bacteria leads to the production of methane, carbon dioxide and new bacterial 

cells. Biogas production is affected by a series of events that take place in an 

anaerobic environment (Figure 1.1). 
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Operational conditions

Digester performance

Substrates available for 
methane-forming bacteria

Concentrations of acids and 
alcohols that are produced

Dominant bacteria

 

Figure 1.1 Bacterial chain of influence (summarised from (Gerardi 2003)) 

   

 It may be possible to influence the type of bacteria that will enhance biogas 

production at each stage of the process, or to try and limit the growth of the type of 

bacteria that inhibits the process (where possible), or to diagnose an AD process by 

monitoring bacterial community shifts (Lee et al. 2008). Bacteria are divided in three 

groups according to the substrates utilised by each group: the acetate-forming 

(acetogenic) bacteria, the sulfate-reducing bacteria and the methane-forming 

bacteria. The basic properties of these bacterial groups (Gerardi 2003) appear in 

Figure 1.2.  
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BACTERIAL 
GROUPS IN 
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Acetate-forming 
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hydrogen producers
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concentrations of 
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• Can only survive if 
their metabolic 
waste (hydrogen) is 
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• They multiply in the 
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• Their multiplication 
or reproduction 
often requires the 
use of hydrogen and 
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• The same need for 
hydrogen signals a 
competition 
between them and 
the methane-
producing bacteria

• Are oxygen-sensitive
• Fastidious anaerobes
• Free-living terrestrial 

and aquatic organisms
• Have an unusually high 

sulfur content
• Only them can produce 

methane
• Obtain energy by 

reducing simplistic 
compounds or 
substrates

• Some can fix molecular 
nitrogen

• Grow as microbial 
consortia

• Tolerate high 
concentrations of salt

 

Figure 1.2 Bacterial groups in digesters 

 

 Acetate-forming bacteria are responsible for producing acetate and hydrogen 

that is consumed by methane-forming bacteria. On the other hand, sulphate-

reducing and methane forming bacteria compete for acetate and hydrogen which is 

vital to their multiplication. Experiments using an anaerobic biofilm have shown 

(Yoda et al. 1987) that at low acetate concentrations sulphate-reducing bacteria 

(SRB) dominate over methane-producing bacteria (MPB). Whereas due to the higher 

maximum growth rates of MPB over SRB, MPB populations are larger at higher 

acetate concentrations. Finally, high concentrations of sulphate inhibit methane 

production and ways of limiting SRB activities are suggested in (Hilton & Archer 

1988) that include the use of support media and the low level usage of sodium 

molybdate during start-up and intermittent usage thereafter.  
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1.1.3 Anaerobic Digestion Process Stages 
 

 The AD process is a multi-stage process. Three stages are mostly used to 

describe the sequence of metabolic reactions that take place amongst the microbial 

communities. These stages include  hydrolysis, acid-forming (acetogenesis) and 

methanogenesis (Gerardi 2003)(Kaspar & Wuhrmann 1978). However, different 

separations of the process exist. For instance, at (Park et al. 2005) four stages are 

proposed that include hydrolysis, acidogenesis, acetogenesis and methanogenesis. 

At (Boe 2006) the stages suggested are hydrolysis, fermentation, acetogenesis and 

methanogenesis. 

 It is important to avoid inhibition of each stage of the methanogenesis 

process. In order to maximise methane production (Vavilin et al. 2008) and achieve a 

balance between the reaction rates of the steps involved in AD with a series of 

reactions where some steps are slower than others (Hill 1977). Hydrolysis and 

methanogenesis are considered to be the slowest steps in AD with suspended or 

dissolved wastes (Vavilin et al. 1996). If hydrolysis is inhibited the available 

substrates for the other stages will be reduced which can result in low methane level 

production. On the other hand, methanogenesis inhibition will also result in low 

methane production, an organic acid accumulation and an alkalinity and pH drop. In 

this case, methanogenic bacteria will not survive (Koster & Cramer 1987). 

 This plethora of bacterial communities varies in terms of (Ghosh & Fredrick G. 

Pohland 1974) physiology, nutritional requirements, growth kinetic capabilities and 

sensitivity to environmental stresses. The products of one group are the substrates 

of another in a sequential degradation process. The three stages of the process 

along with the chemical reactions appear in Figure 1.3.  
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Figure 1.3 Anaerobic Digestion process (Originally taken and modified from (Khanal 2008)) 

1.1.3.1 Hydrolysis 
 

 Hydrolysis is defined as (Gerardi 2003) the splitting (lysis) of a compound with 

water (hydro). In an anaerobic digester complex substrates consisting of (Angelidaki 

et al. 2009) high molecular weight carbohydrates, fats and/or proteins are being 

hydrolysed. In this way, large insoluble molecules can be hydrolysed into smaller 

soluble ones. Hydrolysis is also considered to be a rate-limiting step in processes 

treating wastes that are high in lipids and/or particulate matter (e.g. sewage sludge, 

animal manure, food waste) (Khanal 2008). 

1.1.3.2 Acid-forming Stage 
 

 In the second stage of the AD process, the soluble molecules (intermediates) 

that are either produced in the hydrolysis stage or in the digester are (Eastman & 

Ferguson 1981) used as substrates for energy and growth leading to the production 

of fermentation products and cellular material.  Those products include (Cohen et al. 

1979)(Toerien et al. 1967) hydrogen, carbon dioxide, alcohols, fatty acids and 
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organic acids. Acetate, formate, methanol and methylamine are used directly by 

methane-forming bacteria (as a substrate), whereas ethanol, butyrate and 

propionate are used indirectly (fermentative bacteria degrade them to acetate). The 

indirect use is also known as the process of acetogenesis. Acetogenesis occurs in 

the acid-forming stage and is another way to produce acetate (apart from the 

fermentation of soluble organic compounds). This is achieved by the acetate-forming 

bacteria (Gerardi 2003). 

The most important acid produced in this stage is acetate. The reason is that 

acetate accounts for a very high percentage of the methane produced that can even 

reach up to 90% in some cases (Mountfort & Asher 1978). In another experiment 

(Weber et al. 1984) where (UC-14) acetate was used, it was discovered that 65%-

96% of the total methane produced came from acetate. 
 

1.1.3.3 Methanogenesis 
 

 Methanogenesis is the final stage of the AD process. Acetate, carbon dioxide 

and hydrogen are responsible for the methane formation. However, there are other 

organic compounds that are responsible for the indirect methane formation such as 

propionate, butyrate, ethanol and lactate (Figure 1.4). 

 

Figure 1.4 Relationships of the three general metabolic groups of bacteria or fermentation stages involved in 

methane fermentation (Bryant 1979) 
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A rate-limiting step in methane fermentation involves the (Mackie & Bryant 

1981) insufficient degradation of fatty acids for digesters that operate under high 

organic loading rates (OLRs) or short retention times (RT) or both. Therefore, the 

interspecies hydrogen transfer is also affected due to the inability of methanogenic 

bacteria to use hydrogen. 

 Methanogenic bacteria are the most sensitive bacteria involved in the AD 

process and although ammonia might be a nutrient for bacteria reacting in an 

anaerobic environment, (Koster & Koomen 1988) increased ammonia concentrations 

that are found in e.g. livestock waste can inhibit the methanogenesis state. As a 

consequence, a big drop in pH will limit methane production(Angelidaki & Ahring 

1993). 

The activity and adaptation of microbes in AD environment can be determined 

as specific methanogenic activity (SMA) with acetate and hydrogen and culturing 

techniques can be utilised  (Ahring 1995).Research has shown that molecular DNA 

sequencing techniques are a very effective means of determining the microbial 

community profile (Delbès et al. 2001). 

 In conclusion, temperature, OLR, RT, ammonia, pH, alkalinity, stirring rates 

and feedstock composition affect methanogenic substrate uptake rates and system 

stability. Therefore, these parameters should be tuned accordingly in order to 

optimise anaerobic digestion operation.   

1.2 Operational & process influencing parameters and conditions 

1.2.1 Introduction 
 

 The key to anaerobic digestion performance is the effective production of 

methane by encouraging the growth and metabolism of methane-forming bacteria. 

So, in order to influence their activity, attention has to be given to the maintenance of 

optimal operational conditions.  

The difficulty in controlling anaerobic digesters derives from the fact that due 

to the large number of operational conditions that depend on each other 

(interdependence), it is difficult to maintain the dynamic balance of intermediate AD 

processes. Changes in parameters that might favour one condition could affect 

others and vice versa. The cohabitation of many bacterial groups that function 
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efficiently within different optimum ranges is a challenge since each group has its 

own optimum operating conditions and is sensitive to several process parameters. 

Section 1.2 will focus on analyzing these parameters and conditions. 
 

1.2.2 Substrate and products 
 

 The consumption of substrates or nutrients is important towards the 

development of microorganisms. The composition and type of substrate along with 

the environmental conditions that exist inside a biogas reactor directly influence the 

biogas process. Therefore it is important to determine the characteristics of the 

substrate. Substrates are determined by (Angelidaki et al. 2009) the total solids (TS) 

and volatile solids (VS), chemical oxygen demand (COD), nitrogen and phosphorus.  

The composition of particulate substrates plays a vital role in high-solid 

digestion systems by affecting the process of hydrolysis (Zaher et al. 2009). 

Hydrolysis rates vary depending on the (Mata-Alvarez et al. 2000) particulate 

component and the operational conditions when hydrolysis takes place. Substrates 

that are initially available for degradation include carbohydrates, lipids and proteins 

(Skiadas & Lyberatos 1999). 

The degradation of carbohydrates, lipids and proteins results in the production 

of intermediates that are further degraded into other intermediates or even methane 

and carbon dioxide (Pind et al. 2003). Furthermore, monitoring those intermediates 

can characterise microbial activity. Carbohydrates are (Gerardi 2003) 

macromolecules or polymers that contain numerous monomers of sugars. They are 

converted to (Miron et al. 2000) simple sugars before taking the form of volatile fatty 

acids (VFA). Lipids are hydrolysed to glycerol and long-chain fatty acids (LCFA). 

LCFA are then used to produce acetate and propionate (Sousa et al. 2007). Proteins 

are hydrolysed to amino acids and are further degraded through anaerobic oxidation 

that is linked to hydrogen production or via fermentation according to the Stickland 

reaction (Kumar et al. 2010) (Miron et al. 2000).  

 Fatty acids or VFA are not only substrates for methane-producing bacteria, 

but intermediary products in the AD process as well. However, it has to be ensured 

that the accumulation of this type of intermediary products will not inhibit the growth 

of microbial populations that contribute to methane production (Aguilar et al. 1995). 
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Study cases where volatile acids were utilised as the limiting substrate in the 

development of kinetic models appear in (Saravanan & Sreekrishnan 2006).   
 

1.2.3 Start-up 
 

 The rate of acidogenesis and methanogenesis is highly affected by the 

bacterial selection during start-up (Morgan et al. 1991). Substrates encourage the 

selection of the microbial community during start-up that  is constantly influenced by 

the changes in the dominant species of bacteria (Anderson et al. 1994). A study that 

identified (mainly methanogenic) bacterial shifts through several stages during start-

up in a laboratory-scale continuously mixed anaerobic reactor operating at 

mesophilic temperatures appears in Leclerc (2001).  

 Poor start-up can result in having a prolonged period of acclimation and 

ineffective removal of organic matter (Angelidaki et al. 2006). The amounts of 

inoculum and the initiation of the feeding should be designed to avoid the 

accumulation of anaerobic degradation intermediate products such as propionic acid 

and other VFA and hydrogen, which could inhibit methanogenesis and acetogenesis 

(Lepistö & Rintala 1995). In this way the optimum loading rate will be reached 

quicker and the start-up process will be successful.  

Start-up operations can be categorised with respect to the loading rate (Biey 

et al. 2003). Start-up operation can involve low loading rate ensuring that 

overloading is avoided but results in having a slow and undynamic state of microbial 

population. On the other hand, a less conservative start-up operation involves a 

gradual increase of the loading rate leading to a boost in biogas production, but if the 

reactor overloads process failure will definitely occur. It is pointed out (Liu et al. 

2006) that overload can be avoided by process operation below maximum reactor 

capacity. In this case however, process efficiency, degree of capital investment and 

operational costs are sacrificed. What is more, modern energy systems demand 

biogas production and quality to be stable and reliable through economically feasible 

operations. 
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1.2.4 Volatile solids 
 

 Material degradation of particulate and colloidal wastes, sludge feed or OLRs 

to digesters are expressed in terms of VS (Gerardi 2003). VS destruction is 

considered to be a stress indicator parameter suitable for detecting gradual changes. 

However, it is often too slow to detect sudden changes (Ahring et al. 1995). Biomass 

feed consists of VS and ash (Figure 1.5). VS except for lignin is considered the 

degradable and methane convertible biomass (Chan & Holtzapple 2003). VS are 

converted to gas (methane and carbon dioxide), liquid (carboxylate acids, 

extracellular proteins, energy storage polysaccharides) and solid phases (undigested 

VS, ash). 
 

 

 

 

Figure 1.5 Biomass feed digestion and definition (Chan & Holtzapple 2003) 

 

 

 VS are 80-90% of the approximately 8-13% of the total solids content range. 

One half are converted to the substances that appear in the gas phase and typical 

solid separation of the influent removes 4% of solids from the influent (Abu Qdais et 

al. 2010). Solids content varies according to the type of digester used in the AD 

process.  

36 
 



 OLR is normally defined as the amount of VS that are inserted in the digester 

daily. VS represent the material that can be digested, whereas the remainder of the 

solids are fixed (Babaee & Shayegan 2011).  “Fixed” solids and a part of VS are non-

biodegradable. OLRs are usually expressed in terms of chemical oxygen demand 

(COD)/m3 day or in g VS/l/d. OLR is a very important factor whose manipulation has 

been the interest of many studies (Pind et al. 2003). Table 1.1 provides 

recommended COD loading rates with several reactor configurations (Rajeshwari et 

al. 2000). It can be seen than UASB reactors, anaerobic filter reactors, AAFEB 

reactors and AFB reactors can operate with increased OLRs of up to 30 kg 

COD/m3/d, 40 kg COD/m3/d, 50 kg COD/m3/d and 100 kg COD/m3/d respectively. 

Whereas CSTRs and contact reactors operate at much lower loading rates reaching 

3 kg COD/m3/d and 4 kg COD/m3/d respectively.    
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Anaerobic 
reactor type 

Start-up 
period (d) 

Channeling 
effect 

Effluent 
recycle 

Gas solid 
separation device 

Carner 
packing 

Typical loading rates 
(kg COD/m3 day) 

HRT 
(d) 

CSTR - Not present Not required Not required Not essential 0.25-3 10-60 

Contact - Non-existent Not required Not required Not essential 0.25-4 12-15 

UASB 4-16 Low Not required Essential Not essential 10-30 0.5-7 

Anaerobic filter 3-4 High Not required Beneficial Essential 1-40 0.5-12 

AAFEB 3-4 Less Required Not required Essential 1-50 0.2-5 

AFB 3-4 Non-existent Required Beneficial Essential 1-100 0.2-5 
Table 1.1 Characteristics of different reactor types (Rajeshwari et al. 2000) 
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Along with the solid content, hydraulic retention times (HRTs) and solids 

retention times (SRTs) differ as well. Typical amounts of solid content and HRTs for 

different types of digesters can be found in (Wilkie 2005a). Retention times are 

important in solids destruction and will be examined in the next section. 
 

1.2.5 Retention Times 
 

 Solids retention time or sludge retention time (SRT) and hydraulic retention 

time (HRT) play an important role in the process control of AD systems. SRT 

corresponds to the mean residence time of microorganisms (solids) inside the 

anaerobic digester (Clara et al. 2005). HRT refers (Ekama & Wentzel 2008) to the 

time the liquid and the dissolved material spends inside the reactor. 

 Bacterial growth and maintenance is influenced by SRT which ensures that 

AD fermentation remains functional and stable (Zhang & Noike 1994),(Nges & Liu 

2010). A connection between the specific gas production rate (SGP) and SRT exists. 

More specifically, prolonged SRT results in low biogas production and vice versa 

(Bolzonella et al. 2005). However, shortening of SRT can cause insufficient 

destruction of volatile solids and an increase in the quantity of residual sludge for 

further disposal (Nges & Liu 2010), (Appels et al. 2008). In a study (Moen et al. 

2003a) using both lab-scale and pilot-plant digesters it was concluded that the 

destruction efficiency of VS increased from 53% to 66% as SRT augmented from 6 

to 20 days. However, laboratory scale studies utilizing a (semi-)continuous stirred-

tank reactor (CSTR) indicated that RT< 5 days are insufficient for stable digestion 

(Stichting Toegepast Onderzoek Reiniging Afvalwater (STORA) 1985) cited in 

(Appels et al. 2008). Table 1.2 contains suggested SRT values when SRT is utilised 

as a design parameter for mixed high-rate digesters. It is also worth mentioning that 

for low rate digesters SRT is more than 30 days. 
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Operating Temperature 
(oC) 

Minimum SRT 
(d) 

Minimum design SRTdes 
(d) 

18 11 28 

24 8 20 

30 6 14 

35 4 10 

40 4 10 
Table 1.2 Suggested SRT for the design of completely mixed high-rate digesters (Tchobanoglous et al. 2003)  

(SRTdes: design value of SRT including a safety margin (d))  

 

 Methane generation is highly affected by HRT (Wang et al. 1997). HRT and 

OLR variation can also influence digester performance. Semi-continuously fed 

laboratory scale digesters treating poultry slaughterhouse wastes working under 

mesophilic temperature (31 oC), HRT of 50-100 days and maximum loading of 0.8 kg 

VS/m3 d, resulted in a methane yield of 0.52-0.55 m3/kg VSadded. However, increased 

loading (1.0-2.1 kg VS/m3 d) and shorter HRT (13-25 days) caused VFA 

accumulation and drop in methane production that resulted from process inhibition 

(Salminen & Rintala 2002). On the other hand, a laboratory scale study that focused 

on the maximisation of acetic acid production (acidogens produce substrates for 

methanogens) concluded that  optimum production took place while operating at 

HRT close to the washout point (Hwang et al. 2001). However, even at long HRT, 

low pH values will not boost methane production (LW et al. 2001). 

 Literature studies contain mixed results whether HRT should be short or long, 

although long HRT do not destabilise the AD process. There are many parameters 

that affect HRT and by manipulating those parameters HRT can be minimised 

without having catastrophic effects on digesters. Those parameters include  

temperature (thermophilic temperatures shorten HRT) (Espinoza-Escalante et al. 

2009), pretreatment techniques (e.g. ultrasonic sludge disintegration (hydrolysis) 

(Kim & Lee 2012)), type of digester and material characteristics. 
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1.2.6 Temperature 
 

 Temperature is the most important parameter in controlling the speed of the 

metabolic activities of microorganisms in anaerobic environments (Westermann et al. 

1989), (Angelidaki & Sanders 2004). Methanogens can be divided into three 

categories according to the optimum performance and temperature ranges within 

which they are able to grow and metabolise. These are: psychrophilic, mesophilic 

and thermophilic. The absence of clear differences between these categories 

demonstrates a response for (Lettinga et al. 2001) overlapping temperature ranges 

(Figure 1.6). 
 

 
Figure 1.6 Relative growth of methanogens (Wiegel 1990), (Lettinga et al. 2001) 

 

 The dependence of optimum methane production on temperature has been 

investigated by many researchers. Biogas production starts at 0 oC and as the 

temperature increases so does gas volume. Many studies focus on comparing AD 

performances under mesophilic and thermophilic temperatures for optimal gas 

production and a number of studies appear in (Kardos et al. 2011). Digesters 

operated under thermophilic temperatures (with an optimum temperature of 55 oC) 

have several advantages over digesters operating under mesophilic temperatures. 

These include a faster degradation rate, higher metabolic rate, higher gas production 

rate, improved solid-liquid separation and increased disinfection of pathogenic 

organisms (El-Mashad et al. 2004), (Yang et al. 2003), (Park et al. 2008). However,  

thermophilic bacteria frequently experience higher death rates as compared to 
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mesophilic bacteria (El-Mashad et al. 2004), a lack of diversity resulting in high 

residual values of volatile acids and are characterised by the inability to treat sludge 

consistently while operation parameters vary (Gerardi 2003). Also heat is required to 

maintain the desired operational temperature ranges in a thermophilic digester. 

Heating requirements can be satisfied by (Sreekrishnan et al. 2007) adopting the 

auto-heated thermophilic process approach where the digestion process generates 

the energy needed to keep itself under the thermophilic temperature range.  

Another issue regarding temperature is the fact that it should be uniform 

inside the reactor to avoid accumulation of different microbial populations resulting in 

partial undesired bacteria performance. Moreover, due to the sensitivity of the 

thermophilic bacteria population it has to be ensured that temperature does not 

fluctuate more than 1 oC per day for thermophilic reactors  and changes less than 

0.5 oC per day are more desirable (Tchobanoglous et al. 2003).  A stop in biogas 

production, a rapid VFA accumulation, a decrease in pH values and the conclusion 

that when temperature drops inside a thermophilic reactor it should be restored as 

soon as possible to reach a steady state condition quicker were the findings of a 

study that simulated heating failure by instant drops of temperature levels from 55 oC 

to 20 oC (Wu et al. 2006). Low temperature (20 oC) durations were 1, 5, 12 and 24 h 

respectively and the operating temperature returned to 55 oC within 2 h.    
 

 

1.2.7 pH and buffering capacity 
 

 pH has an impact on the enzymatic activity of microorganisms because each 

enzyme is active within a specific pH range (Lay et al. 1997). The ideal pH range for 

the majority of anaerobic bacteria including methanogenic bacteria is 6.8- 7.2 

(Sharma, Testa, Cornacchia, et al. 1999), (Ward et al. 2008). However, the optimal 

pH value for maximum biogas production depends on the substrate and the 

digestion technique (Liu & Yuan 2008). Rapid acidification that takes place in one-

stage reactors results in a decrease in pH, an increase in VFA production and 

inhibits methane formation compared to two-stage digesters (Bouallagui et al. 2004). 

This is the reason why separation of stages (hydrolysis, acid-forming and methane-

forming stage) is often preferable. 
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 Ideal pH for hydrolysis and acid-forming stages are acidic. This  might be due 

to the weak fermentative ability of acidogenic bacteria while the exoenzyme activity 

for hydrolysis is still high (Veeken et al. 2000). Optimum pH for acidogenesis of 

gelatine-rich wastewater is 6.0 (Yu & Fang 2003). In general, optimum pH of 

hydrolysis and acidogenesis has been reported to be 5.0- 6.0 according to (Ghosh et 

al. 1975)(Ghosh & Klass 1978)(Droste 1997)(Babel et al. 2004) and 5.5- 6.5 

according to (Yu & Fang 2002)(J. Kim et al. 2003)(M. Kim et al. 2003)(Ward et al. 

2008). The optimum pH value for methanogenesis is 7.0 (Babel et al. 2004)(Ward et 

al. 2008). However, in a two-stage anaerobic process treating high concentration 

methanol wastewater, it was shown that some methanogenic bacteria were able to 

withstand acidic conditions at pH values 4.9-6.2 (for both reactors) with the aid of 

granular sludge (Zhou & Nanqi 2007). 

Buffer capacity or alkalinity is the equilibrium of carbon dioxide and 

bicarbonate ion with ammonium ion as a major cation that provides substantial 

resistance to pH changes (Dohanyos & Zabranska 2001). As bicarbonate is 

responsible for neutralising VFAs it is considered to be the main buffer (Yang & 

Anderson 1992). pH is also very dependent on the buffering capacity of the system 

(Ahring et al. 1995), (Björnsson, Murto, et al. 2001). This is justified in the studies 

where sugar beet silage was used as a mono-substrate. Sugar beet silage without 

the leaves is a poor substrate in terms of buffering capacity and the addition of 

nitrogen and buffering agents was used to maintain pH at stable levels  (Demirel & 

Scherer 2008), (Demirel et al. 2009).  

Digester stability is highly influenced by alkalinity. Bicarbonate alkalinity (BA) 

values above 2500 mg/l enhance digester stability. However, VA accumulation will 

reduce alkalinity preceding a rapid drop in pH (Fannin 1987). Therefore, monitoring 

buffering capacity gives an early warning of pH decline than pH alone especially in 

systems that exhibit a higher buffer capacity (Palacios-Ruiz et al. 2008). A drop in 

alkalinity that might result in having a ‘sour’ digester and will take a huge effort to 

bring the system back to full operation can be prevented by the addition of alkaline 

chemicals (Sanin et al. 2010). Those chemicals include sodium bicarbonate, 

potassium bicarbonate, calcium carbonate (lime), calcium hydroxide (quick lime) and 

sodium nitrate whose addition should be done slowly to avoid disrupting bacterial 

activity. Finally, due to the fact that methane-forming bacteria require BA, chemicals 
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that directly release BA are mostly preferred for addition (e.g. sodium bicarbonate 

and potassium bicarbonate)  (Nayono 2009). 
 

1.2.8 Toxic/ inhibiting compounds 
 

A variety of inhibitory compounds that are either present in wastewaters and 

sludges or are released during the degradation can be responsible for digester upset 

and/or failure. Inhibition can be detected when the steady-state of methane 

production and/or VA concentration is decreased, whereas a total cessation of 

methanogenic activity (Kroeker et al. 1979) and/or decreased substrate removal 

efficiency (Gruden et al. 2001) is a sign of toxicity. However, detection of inhibition 

might take either a short or a long time depending on the type and the concentration 

of the toxic compound. After the exposure of granular or crushed granular sludge to 

a specific toxicant concentration, it was observed that the derivatives with a higher 

chlorine content (CCL4,C2H2CL4) did not exhibit inhibition that was present for the 

derivatives with a lower chlorine content (CHCL3, trans-C2H2CL2) (Rodríguez & Sanz 

1998). The main inhibitors of AD process are considered to be ammonia, sulphide, 

heavy metals, light metal cations, several organic compounds and oxygen. 
 

1.2.8.1 Ammonia 
 

 Nitrogen is a nutrient for anaerobic microorganisms (Mah et al. 1978) and 

while it should be present in excess of at least 40-70 mg N L-1 to avoid reduction of 

biomass activity, high ammonia concentrations inhibit the AD process (Strik et al. 

2006). However, significant differences can be found in the literature regarding the 

inhibiting ammonia concentration (Siles et al. 2010). Methane forming bacteria have 

the ability to acclimate to ammonia-nitrogen concentrations as high as 5 g l-1 in 

digested sewage sludge. On the other hand, considerable time is required to 

acclimatise concentrations of 730- 4990 mg l-1 (Van Velsen 1979). 

The protein content of food waste especially, is a source of high nitrogen 

content leading to increased ammonia or ammonium ion concentrations inside the 

digester and their relative toxicity is pH dependent (Banks et al. 2011), with the more 

toxic form (NH3) dominating at high pH (Mata-Alvarez 2011). High temperatures also 
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boost ammonia production beyond a desired point. High hydrolysis rates that are 

present in thermophilic reactors boost ammonia concentrations and inhibition of the 

activities of thermophilic methanogens can become significant (Sung & Liu 2003a). 

The addition of clay minerals to thermophilic reactors and more specifically 

increased treatment amounts of zeolite (doses 8 and 12 g l-1) can reduce the toxic 

effect of ammonia (Kotsopoulos et al. 2008).  
 

1.2.8.2 Sulphide 
  

 Food processing, pharmaceutical, and pulp and paper industries produce high 

sulphate concentrations. High amounts of sulphate can cause significant problems in 

the AD process due to the formation of hydrogen sulphide due to sulphate reduction 

(Valdes et al. 2006). SRB are a group of anaerobic microorganisms capable of 

coupling the oxidation of reduced organic or inorganic compounds to the reduction of 

sulphate for bio-energetic purposes (Colleran et al. 1995) and out-compete MPB for 

hydrogen and acetate as mentioned in section 1.1.2. The main problem of sulphide 

production is that it can be toxic for both methanogenesis and sulphate reduction 

(Wei et al. 2007) and causes reduced biogas (methane) production. Increased H2S 

concentrations in biogas are unwanted as H2S is corrosive, toxic and its removal is a 

costly process (Isa et al. 1986). It also results in producing odour, an increase of 

liquid effluent COD and reduced quality and quantity of biogas (Lens et al. 2002).  

Sulphate can be also beneficial by satisfying the sulphur requirements of 

various methanogens that are expressed in terms of compounds such as cysteine 

and glutathione. Therefore, sulphide production by several species may enhance 

methanogenesis (O’ Flaherty & Colleran 2000). Moreover, sulphate benefits 

wastewater treatment as its production precipitates toxic heavy metals such as Co, 

Cu, Ni, Pb and Zn (Isa et al. 1986).  
 

1.2.8.3 Light metal anions 
 

 Light metal anions include sodium (Na), potassium (K), magnesium (Mg), 

calcium (Ca), and aluminium (Al). They can have an impact on AD operation and are 

found in effluents of anaerobic digesters that originate mainly from industrial 
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wastewaters or are pH regulator additives (Grady Jr et al. 1999). The light metals are 

always present but rarely at toxic concentrations (Alkalay et al. 1998) and can only 

cause problems when present at high concentrations (e.g. heavy pig diet 

supplementation with bone meal) (Stanogias & Pearce 1987). Moderate 

concentrations of light metals are needed to stimulate microbial growth (Nayono 

2009). 

 

Cation 
Concentration in mg l-1 

Stimulatory Moderately 

Inhibitory 

Strongly 

Inhibitory 

Na 100-200 3500-

5500 

8000 

K 200-400 2500-

4500 

12000 

Ca 100-200 2500-

4500 

8000 

Mg 75-150 1000-

1500 

3000 

Table 1.3 Stimulatory & inhibitory concentration of light metals sited at (Handajani 2004) modified from (Grady Jr 

et al. 1999) 

 

1.2.8.4 Heavy Metals 
 

 Heavy metals like cobalt (CO), copper (Cu), iron (Fe), nickel (Ni), and zinc 

(Zn) exist in wastewaters and sludges and eventually end up inside anaerobic 

digesters (Gerardi 2003). Heavy metal accumulation that is boosted by the efficiency 

of the digester degradation process might result in increased metal concentrations in 

the digestate which makes it unsuitable to be utilised as a biofertiliser (Selling et al. 

2008). Depending upon their concentration heavy metals can be stimulatory, 

inhibitory or toxic. While a trace level is sufficient enough to enable enzyme and co-

enzyme function or activation, excessive amounts can cause inhibition and toxicity 

(Kugelman & Mccarty 1965). Heavy metal toxicity is mostly governed by the nature 

of the physical and chemical environment in which they exist (Mosey et al. 1971) 
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which explains the variation (from several to several hundred mg/l) in both the 

reported dosages of heavy metals and their relative toxicity (Chen et al. 2008). 

As methanogens are probably the most sensitive members of the bacteria 

consortium they are highly affected by heavy metal toxicity (Codina et al. 1998). 

Circumstantial evidence suggests that other trophic groups or organisms within 

anaerobic digesters other than the methanogenic populations might be affected 

more by heavy metals  (Hickey et al. 1989). Lin discovered that VFA-degrading 

acetogens were more sensitive than acetic acid-utilising methanogens, some metals 

can be more toxic to bacteria than others, and that mixtures of heavy metals caused 

synergistic inhibition on acetic acid degradation (Lin 1992)(Lin 1993)(Lin & Chen 

1999). Heavy metal concentrations causing 50% inhibition of methanogenesis were 

investigated using 100 ml serum vials (Lin 1992)(Lin 1993). Seed sludges originated 

from a mesophilic sewage sludge digester. The relative sensitivity of acidogenesis 

and methanogenesis to heavy metals is Cu>Zn>Cr>Cd>Ni>Pb and 

Cd>Cu>Cr>Zn>Pb>Ni respectively (Lin 1992)(Lin 1993).   

In three semicontinuous digesters under thermophilic conditions that were 

step-fed with cadmium, copper and nickel, a tendency of acclimatisation was 

observed up to a certain concentration.  This acclimatisation was probably due to a 

variety of processes including enzyme reduction, development of tolerance and 

changes in metabolism (Ahring & Westermann 1983). The order of decreasing 

solubility and toxicity was Ni>Cu>Cd. Finally, the addition of Ni, Zn and Cd up to 2.5 

ppm considerably enhanced biogas production in a mesophilic digester (37±1oC) 

treating a mixture of cattle manure and potato waste (Kumar et al. 2006). 
 

1.2.8.5 Organic compounds 
 

 A number of organic compounds can have adverse effects on methane 

production in anaerobic digesters. Poor solubility and sludge solid absorbance may 

lead to accumulation of organic chemicals whose accumulation will cause leakage 

on the cell membrane and eventually in lysis of the cell (Heipieper et al. 1994)(Chen 

et al. 2008). Organic compounds that are found to be toxic are reported in  (Chen et 

al. 2008). Those include: alkyl benzenes, halogenated benzenes, nitrobenzenes, 

phenol and alkyl phenols, halogenated phenols, nitrophenols, alkanes, halogenated 
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aliphatics, alcohols, halogenated alcohols, aldehydes, ethers, ketones, acrylates, 

carboxylicacids, amines, nitriles, amides, pyridine and its derivatives, some LCFAs, 

surfactants, and detergents. The parameters that influence toxicity of organic 

compounds are related to (Yang & Speece 1986): the kind of  substance, 

concentration of toxicant, SRT, biomass concentration, toxicant exposure time, cell 

age, toxicant administration pattern and temperature. 
 

1.2.8.6 Oxygen 
 

 As AD takes place as the definition implies in the absence of oxygen, oxygen 

is regarded as a toxic compound. Especially for methanogens that are characterised 

as strict anaerobes (Kato et al. 1997). Therefore, the presence of oxygen can cause 

digester instability and poor performance. However, oxygen can be depleted by 

oxidation of readily available substrate or sulfide (Boe 2006). 
 

1.2.9 Mixing  
 

 Mixing is one of the most important factors governing the operation of 

anaerobic reactors and its benefits are summarised as follows (Gerardi 2003): 

 

• The bacteria, the substrate and the nutrient distribution favours the digestion 

process. 

• The temperature is maintained stable. 

• Acetate-forming and methane-forming bacteria metabolic activities are 

enhanced due to them being in close range. 

• Waste hydrolysis is greatly improved. 

• The production of organic acids and alcohols by acid-forming bacteria is 

enhanced. 

• Limits grit settling. 

• Restricts scum production. 

• Minimises toxicity through quick distribution of toxic content that enters the 

system. 
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The main parameters that influence mixing are the intensity and duration of mixing, 

and the mixing method. 
 

1.2.9.1 Intensity and duration 
 

Mixing intensity influences the rheological and mechanical characteristics of 

conditioned sludge (Abuorf & Dentel 1997). Measurement of rheological properties 

can be used as a control parameter for the optimisation and dewatering operations 

at wastewater treatment plants (Ormeci 2007). The intensity of mixing affects 

digester performance of municipal sludges (e.g. activated sludge). High mixing 

intensities reduce particle size and diffusion limitation that result in an increase of 

processing capacity for a digester treating this type of waste (Lanting 2003). And 

although intense mixing should be avoided during start-up to prevent digester failure, 

during steady-state conditions intensity variations have minimum effect on digester 

performance (Hoffmann et al. 2008). Low mixing intensity favours hydrogen 

utilisation without inhibiting propionate and butyrate degradation. Lower or 

intermediate mixing intensity was recommended for anaerobic reactors as they 

exhibit higher methane yield and increased process stability than when under high 

intensity mixing (Stroot et al. 2001). On the same level, Vavilin and Angelidaki (2005) 

concluded that  at high OLRs intensive mixing inhibits methanogenic activity and 

growth, suggesting that low mixing intensity favours digester operation. Moreover, 

lower mixing intensity will reduce operational costs (Luo et al. 2012).  

 Mixing intensity and duration appear to have different effects as far as 

different types of anaerobic digester environments are concerned. A series of studies 

and experiments on mixing duration appear in (Karim et al. 2005)(Kaparaju et al. 

2008). The conclusions drawn therein are summarised as follows: 

• Adequate mixing improves the distribution of substrates, enzymes and 

microorganisms in digesters. 

• A floating layer of solids due to insufficient mixing can be developed in 

digesters with low solids. This formation is avoided by increased mixing 

duration. 

• Unmixed digesters might experience floating layers of solids but at the same 

time produce higher methane yield compared to mixed digesters (Karim et al. 
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2005). However, different results appeared in (Kaparaju et al. 2008) where 

higher gas production for continuously mixed digesters compared to unmixed 

digesters was concluded. 

• A shift from continuous to intermittent mixing (2 min of mixing/h) can boost 

biogas production.  

• Intermittent mixing is probably the most optimal for substrate conversion 

compared to continuous mixing. A biogas yield increase from 2.5% to 14.6% 

respectively was recorded during the operation of the 800 l reactor 

thermophilic reactor (54±1oC) treating cow manure(Kaparaju et al. 2008).  

1.2.9.2 Mixing systems 
 

 Different types of anaerobic digestion mixing techniques exist. Those include: 

• Natural mixing that is a result of rising gas bubbles and thermal conversion 

currents that are produced by heating (Schlicht 1999) 

• Unconfined gas injection systems that collect gas at the top of the digester, 

compress it and discharge it through bottom diffusers or through a series of 

radially-placed top mounted lances (EPA Design information Report 1987). 

• Confined gas injection systems that also collect the gas from the top, 

compress it and discharge it through confined tubes (EPA Design information 

Report 1987). 

• Mechanical stirring systems that might be constituted of large blade impeller-

based systems or draft tubes (Cumiskey et al. 2003).   

• Jet mixing systems that combine physical modeling and fluid dynamics. The 

pumped jet recirculation system that is applied in (Harrison et al. 2005) 

consists of a centrally located at the surface and a base located point where 

sludge is being drawn from. Then, duty pumps recirculate the digested sludge 

through six nozzles around the circumference of the digester at three levels.  

• Mechanical pumping systems that circulate liquid and are mounted either 

inside or outside the digester.    

• A recent trend in mixing systems involves the utilisation of piston-bubble 

mixers that not only combine mixing with heating aiming at keeping 
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temperature stable, but reduce electrical costs and exhibit increased VS 

destruction (Claro global 2012), (Infilco Degremont 2012).  

It is worth mentioning that some of the above mentioned methods (gas injection 

systems) are based on the principle of gas recirculation which appears to be one of 

the most efficient ones (Maeng 1995). This is validated by the fact that mechanical 

mixing consumes a lot of electrical power (Massart et al. 2008) and boosts capital 

cost (Beddoes et al. 2007). Figure 1.7 contains some mixing system configurations. 
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Figure 1.7 Mixing system configurations. 

 Top left (unconfined gas injection system), Bottom left (confined gas injection system), top right (mechanical stirring system), bottom right (mechanical pumping system). 

Modified from (EPA Design information Report 1987). 
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1.2.10 Digester Design and Types 
 

 An efficient reactor set-up must be able produce high amounts of methane 

and should exhibit high OLR and short HRT. Digester designs vary according to the 

operational factors that influence the AD process. Based on the critical operating 

parameters and design, digesters can be characterised as follows (Gerardi 2003),(Li 

et al. 2011), (Nizami & Murphy 2010): 

• Wet or dry depending on the content of solids. 

• Plug-flow, complete-mix, fixed-film and covered lagoons based on the design. 

• Single- stage (phase) or multi-stage (phase) where separation of the 

processes usually exists. 

• Psychrophilic, mesophilic or thermophilic depending on the operating 

temperature. 

• Batch or continuous where the way of feeding the digester varies. 

• High-rate that exhibit high SRTs and high OLRs. Those include anaerobic 

hybrid reactors, upflow anaerobic sludge blanket and anaerobic membrane 

reactors.  

• Large scale or compact biogas units. 

A combination of the above configurations usually exists (e.g. a high-rate, multi-

stage thermophilic reactor).  
 

1.2.10.1 Wet and dry digesters 
 

 The TS content of the feedstock is used to characterise a digester as wet or 

dry. There is no clear boundary in the literature between dry and wet fermentation. 

Wet fermentation processes are applied when the TS content does not exceed 15%, 

whereas in dry or high-solids fermentation the TS content is between 15% and 35% 

(Weiland 2003)(Weiland 2010)(Li et al. 2011). However, <16% and 22%-40% of TS 

are the cut-off limits for wet and dry fermentation processes respectively according to 

(Mata-Alvarez 2002), and 20-40% is considered as the TS content for dry digestion 

in (Guendouz et al. 2010). Wet processes are operated continuously, whereas dry 

digestion can be applied either by batch or continuously operated processes. Wet 
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anaerobic systems are mostly utilised through vertical stirred tank digesters (Weiland 

2010). Finally, although high-solids digestion is proving to be more difficult to control, 

gas production efficiency and OLR are higher (Guendouz et al. 2010).  
 

1.2.10.2 Plug-flow, complete-mix, fixed-film and covered lagoons 
 

 Plug-flow reactors are unmixed reactors that often function horizontally 

handling a solid content of 10-14% and are mostly operated at mesophilic 

temperatures. Complete mix digesters or CSTR are systems where material is mixed 

and ideally should be dispersed evenly in the reactor. However, mixing does not take 

place constantly, but is discontinuous (Wilkie 2005a).  Fixed-film digesters contain 

supportive media or immobilizing surfaces for bacterial attachment. They mostly 

operate as flow-through processes where while the material passes through a bed of 

fixed-film of bacteria growth, soluble organic compounds are absorbed by the 

bacteria and insoluble organic compounds  are attached to their surface (Gerardi 

2003). Finally, covered lagoons are impoundments capable of capturing biogas that 

often operate at ambient temperatures. Common digester types and characteristics 

are available in Table 1.4. 
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Table 1.4 Common digester types and characteristics referenced in (Wisconsin Manure Management 2010) from (Gould & Crook 2009) 

 

55 
 



1.2.10.3 Single- stage and Multi-stage digesters 
  

 AD can occur in single-stage, two-stage or multi-stage configurations. In the 

single-stage configuration a series of different bacteria populations interact in the 

same environment. Acid-forming and methane forming bacteria which are the 

dominant bacteria communities coexist in the same environment and when changes 

in operational conditions occur (pH, temperature and retention times) their population 

may be disturbed leading to poor performance and even digester failure. Single 

stage reactors are characterised by decreased loading rates, long retention time 

requirements, and are not as stable and flexible in terms of operation compared to 

two-stage systems. However, the majority of commercial anaerobic digestion units 

are single stage. They are preferred for their reduced complexity and expense of 

building despite the fact that two-stage systems can produce higher yields and rates 

(Nasr et al. 2012). Single phase operation can take place in either parallel reactors 

or sometimes in reactors in series (multi-stage) (Sharma, Testa & Castelluccio 

1999). 

 Two-stage or multi-stage two-phase digesters are those where the AD stages 

do not take place on the same reactors. The first phase involves the acid production 

stage and the second phase involves methane production stage. The benefit of 

separating these processes has to do with the fact that different stages share 

different optimum operational conditions. So, by separating these key processes, 

optimised microbial phases, high loading rates, short retention times, reduced 

digester costs and enhanced net energy recovery are witnessed (Ghosh et al. 1985).  

Recent studies have shown that thermal hydrolysis at 70 Co and above is 

implemented as a separate stage before anaerobic treatment. This leads to an 

increased hydrolytic activity that can boost VS reduction and biogas yield as appears 

in (Hartmann & Ahring 2005). However, two-stage systems do not always manage to 

achieve higher rates and yields and are more expensive to design (Weiland 1993) 

cited in (Vandevivere et al. 2002). The main advantage of two-stage systems is that 

they are biologically more reliable for wastes that can cause performance instability 

in single-stage systems (Vandevivere et al. 2002). Different types of two-stage 

systems exist. In some, sludge digestion and methane production take place in the 

same (first) tank and the second tank is used for sludge thickening and storage 

(Gerardi 2003).  
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1.2.10.4 Psychrophilic, mesophilic and thermophilic digesters 
 

 Psychrophilic, mesophilic and thermophilic digesters operate at different 

temperatures. Thermophilic digesters can display better solids destruction and 

biogas yield compared to mesophilic digesters, but the reactor stability can be easily 

affected and cause process instability. This was observed in the pilot scale study that 

was carried out in (Banks et al. 2008).  

Mesophilic and thermophilic temperature co-phase digestion has also been 

investigated (Song et al. 2004) in an attempt to overcome the limitations of 

mesophilic and thermophilic single-stage digestion. The sludge exchange rate 

between the digesters operating at different temperature was the performance 

regulating factor. A 13.6l flow-through mesophilic digester and a 5l retention 

thermophilic digester were used for the co-phase AD system. Two completely mixed 

digesters of 12.2l and 5l were used for the single-stage mesophilic and thermophilic 

digesters treating sewage sludge respectively. The results demonstrated that effluent 

quality expressed in terms of soluble COD (SCOD) and VFA, specific methane yield 

and process stability were superior in the co-phase digestion system compared to 

the single-stage mesophilic reactor. Although pathogen destruction in the co-phase 

digestion system was almost the same compared to the single-stage thermophilic 

reactor, higher VS reduction was observed.   Temperature-phased systems can 

outperform two-phase systems treating primary wastewater sludge (PS) and the 

organic fraction of municipal solid waste (OFMSW) where separation of stages exists 

(Schmit & Ellis 2001). Temperature-phased anaerobic sequencing batch reactors  

(TPASBR) can exhibit higher VS removal efficiency and balanced conversion of 

organics to CH4 at OLRs of approximately 6.1 g VS/l/d compared to mesophilic two-

stage sequencing batch reactors treating a mixture of sewage sludge and food waste 

(Kim et al. 2011). The advantages of temperature phased anaerobic digestion 

(TPAD) include high-rate production of biogas and maximised stabilisation efficiency 

of OFMSW by combining rapid thermophilic and stable mesophilic anaerobic 

digestion (Kim et al. 2002)(Lv et al. 2010)(Kim et al. 2011).  
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1.2.10.5 Batch and continuous digesters 
 

 Batch digesters are only loaded once with feedstock and are left to go through 

all the degradation steps in a sequence. Batch digesters are simple, low-technology, 

robust when dealing with coarse and heavy contaminants and their low-cost makes 

them suitable for developing countries. However batch reactors have problems with 

clogging, produce low biogas yield and operate at low OLRs (Bouallagui et al. 

2005)(Vandevivere et al. 2002). 

 In contrast to batch digesters, continuous digesters are loaded at a regular 

basis and the feeding rate is variable and suit for the purpose. It is worth mentioning 

that 90% of the full-scale plants located in Europe focusing on the AD of organic 

fraction of municipal solid wastes and biowastes rely on continuous one-stage 

systems (Bouallagui et al. 2005). 
 

1.2.10.6 High-rate digesters 
 

 High-rate reactors are characterised by their ability to produce increased 

amounts of gas in shorter time than conventional digesters. High-rate systems 

exhibit higher SRTs over HRTs and although low-solid wastewaters were mainly 

treated in the past, during recent years anaerobic sequencing batch reactors (ASBR) 

and baffled reactors have enabled the treatment of  high-solids wastes such as 

animal waste (Angenent et al. 2002). Focus is given on keeping increased amounts 

of digested material inside the reactor using immobilisation. High sludge 

concentration can boost conversion rates to 40-60 kg COD m-3d-1 at 30-40o C for 

soluble wastewaters (Rebac et al. 1995). This is mostly achieved by either single or 

multi-stage digesters that display higher gas volume production under thermophilic 

conditions. Staged-reactors are more robust under high loading conditions (Lier 

1996), however when operated under thermophilic conditions temperature variations 

can destabilise the conversion process or even result in reactor failure as mentioned 

before in this chapter. 
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1.2.10.7 Large scale and compact biogas units 
 

Large biogas units have the benefit of producing amounts of biogas 

proportional to their size following an extensive start-up period. However installation, 

maintenance, occupying space, costs, lack of effective control systems that 

maximise biogas production and the fact that in order to prevent system failure the 

unit must not operate at its full potential have started to change the design trend.  

Compact biogas units that can handle less material can provide faster results, 

saving money at the same time. Start-up times are greatly reduced and more 

efficient control systems can be designed. A very good example, though not from a 

control point of view, when it comes to working efficiency of small scale biogas 

systems is the ARTI compact biogas plant that works on waste food. ARTI was 

developed and distributed to 2000 urban households in India. ARTI is normally 1m3 

and is designed to treat 1-2kg (dry weight) of kitchen waste per day (ARTI 2012). 

2kg of starchy or sugary feedstock can produce approximately 500g of methane 

within 24 hours (Vij 2011). The ARTI design and performance was evaluated in 

Tanzania and many improvements were suggested in order to maximise its 

efficiency (Volegeli et al. 2009).   
 

 

1.2.11 Seeding- Immobilisation & Co-digestion 
 

Seeding, immobilisation and co-digestion represent the means to increase 

biogas production efficiency. Seeding of anaerobic filters was used to develop a 

sufficient bacterial population in order to minimise start up time (Mccarty 1964), 

(Young & McCarty 1969).  A thorough analysis of immobilisation is performed in 

(Lettinga 1995) where the importance of developing well-balanced bacterial 

community is underlined. Different types of media through which immobilisation can 

be carried out are also listed.  

Co-digestion is more beneficial than the digestion of one substrate because it 

offers (Sosnowski et al. 2003) dilution of potential toxic compounds, increased load 

of biodegradable organic matter, improved biogas yield, as well as hygienic 

stabilisation and increased degradation rate under thermophilic conditions. The 
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development of positive synergism formed in the digestion medium and the 

existence of the needed nutrients provided by the co-substrate is influential towards 

biogas production and increased feedstock degradation (Mata-Alvarez et al. 2000). 

Moreover, it offers a decrease in costs by treating different feedstocks using one 

plant, better moisture and nutrient content and dilution of inhibiting compounds (e.g. 

ammonia and degradation products of lipids) (Luostarinen et al. 2009). 

1.3 Process monitoring indicators 
 

 In order to optimise and control the anaerobic digestion process, important 

process inputs and outputs have to be monitored during each stage of the process. 

Ideally, process indicators should be easily acquired and have an impact on process 

stability and evolution (Pind et al. 2003). This can be achieved by the indirect 

measurement of the activity of the different groups of microorganisms that reflect the 

current metabolic status of the active organisms in the system (Gujer & Zehnder 

1983)(Björnsson et al. 2000). Common monitoring indicators include gas production 

rate, gas composition, VFAs, pH, alkalinity (Hawkes 1993)(Björnsson, Murto, et al. 

2001), ammonia and indirect measurements of organic matter (Pind et al. 2003). In 

most cases, several process monitoring indicators are utilised in anaerobic digestion 

applications because they provide complementary information (Hickey et al. 1991). 

This section contains a brief overview of some of the most commonly used process 

monitoring indicators.         

1.3.1 Gas production rate 
 

Biogas is mainly composed of methane gas and carbon dioxide gas and 

contains traces of hydrogen sulphide, ammonia, nitrogen and other gases. Gas 

production rates and methane yield in particular can indicate the metabolic status of 

the digester. A reduction in methane production rates in comparison to the influent 

rate of organic matter is indicative of soluble acid product accumulation in the liquid 

phase (Switzenbaum et al. 1990). On the other hand, fairly constant gas production 

rates are representative of steady state operation (Lin et al. 1997). Gas production is 

also indicative of a stressed digester. Digester overloading can initially boost biogas 

production but results in reduced methane yields and  inconsistent gas production 
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rates (Marchaim & Krause 1993). However, in case gas production rate values 

indicate process imbalance it is often too late to stabilise the process efficiently 

(Kleyböcker et al. 2012). Therefore, gas production rate is not a reliable early 

warning indicator (Switzenbaum et al. 1990). 

1.3.2 Methane and carbon dioxide 
 

 Biogas is a renewable energy source therefore methane yield and methane 

percentage are of high importance. As mentioned in the previous section, during 

stable operation gas production rates are constant. The same principle applies to the 

CH4 to CO2 ratio. During stable operation biogas (volume) consists of approximately 

60-70% methane and 30-40% carbon dioxide (Mallon & Weersink 2007). This ratio is 

affected by the primary substrate composition, temperature, the duration of 

preservation, the bioreactor workload, the homogenous material activation, pressure 

and pH (Deublein & Steinhauser 2008)(Vilniskis et al. 2011). CO2 composition 

depends on pH and alkalinity and has been proven to be an unsuitable parameter for 

control. Since variations in CO2 percentage are dependent of the CO2 ‘stored’ in the 

liquid phase as bicarbonates (Guwy, Hawkes, Wilcox, et al. 1997) and changes in 

pH and alkalinity can affect system performance and consequently gas composition 

(CH4 to CO2 ratio) (Ryhiner et al. 1993). However, methane production is suggested 

as a better indicator (Liu 2003) as cited in (Boe 2006).  

1.3.2 Hydrogen 
 

 Hydrogen is an important intermediate and energy carrier in anaerobic 

digestion that is produced during the degradation of organic matter. The reduction of 

carbon dioxide by hydrogen is responsible for approximately 30% of methane 

production generated during anaerobic digestion (Mara & Horan 2003). Hydrogen is 

produced by fatty acid degradation (especially propionate and butyrate) (Schmidt & 

Ahring 1993). Therefore, dissolved hydrogen concentration influences the amounts 

of various end-products of the anaerobic digestion process (Harper & Pohland 

1986)(Cord-Ruwisch et al. 1997). High hydrogen concentrations can result in VFA 

accumulation which justifies the use of hydrogen concentration as an early indicator 
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for process stability (Archer et al. 1986)(Pauss & Guiot 1993)(Björnsson, Murto, et al. 

2001)(Steyer et al. 2002). 

 Studies have shown that the hydrogen liquid-to-gas mass transfer is limited 

(Pauss et al. 1990)(Björnsson et al. 2001). This limitation and biological reasons 

including hydrogen transfer between interspecies in the liquid is the reason that gas-

phase hydrogen concentrations are not representative of hydrogen concentrations in 

the liquid (Whitmore et al. 1987)(Pauss et al. 1990)(Pauss & Guiot 1993)(Guwy et al. 

1997)(Björnsson et al. 2001).  
 

1.3.3 pH 
 

 As discussed in 1.2.7, pH values inside an anaerobic digester vary depending 

on the stage of the process (different pH values are optimal during the hydrolysis 

and acid-forming stage compared to the methanogenesis stage), on the substrate 

utilised in the process, digester configuration and the pH of the feed. A pH decrease 

can indicate VFA accumulation and can be a useful indicator in anaerobic digestion 

systems with a low buffering capacity (Boe et al. 2010). In systems with high 

buffering capacity, reductions in pH values that are a result of VFA accumulations 

might take a while to be recorded and will not be able to indicate process imbalance 

until the process becomes highly unstable (Chapter 5). This phenomenon has also 

been recorded in the past (Björnsson et al. 2000)(Boe 2006). Therefore, it is 

suggested that pH should be used an additional measurement to characterise the 

state of the digester (Pind et al. 2003).  

1.3.4 Alkalinity or buffering capacity 
 

 As mentioned in the previous section, sometimes changes in pH are not 

representative of the anaerobic digestion process. Alkalinity is a more suitable 

process imbalance indicator since a VFA accumulation will result in reducing the 

buffering capacity before a noticeable change in pH value occurs (Chapter 5). 

Reductions in the loading rate, addition of strong bases or carbonate salts and 

bicarbonate addition (Chapter 4-Chapter 5) can be used to increase a low buffering 
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capacity in an anaerobic digestion system (Guwy et al. 1997)(Van Lier et al. 

2001)(Ward et al. 2008).          

1.3.5 Volatile fatty acids  
 

 VFAs are the most important intermediates in the anaerobic digestion 

process. VFA accumulation is representative of the kinetic decoupling between acid 

producers and consumers and is considered to be typical for stress situations 

(Ahring et al. 1995). Monitoring of the VFA concentration has been identified as one 

of the most important parameters for anaerobic digestion (McCarty & McKinney 

1961)(Chynoweth & Mah 1971)(Fischer et al. 1984)(Hill & Holmberg 1988)(Hill & 

Bolte 1989)(Hickey & Switzenbaum 1991)(Anderson & Yang 1992)(Ahring et al. 

1995)(Mechichi & Sayadi 2005)(Molina et al. 2009)(Rani et al. 2012). In systems with 

low buffering capacity pH, alkalinity and VFAs are considered to be efficient in 

characterizing process activity and stability. However, only VFAs (Murto et al. 

2004)(Boe 2006) and VFAs along with alkalinity (Rozzi 1991) (Palacios-Ruiz et al. 

2008) are suggested for accurate monitoring of digester stability in system with high 

buffering capacity.   

 Methane production was inhibited by more than 50% above 13, 15 and 3.5 g/l 

of acetate, butyrate and propionate added to granular sludge respectively (Dogan et 

al. 2005) cited in (Fotidis et al. 2013). Monitoring individual VFA concentrations can 

provide even more useful information with respect to process stability (Hickey & 

Switzenbaum 1991)(Ahring et al. 1995)(Pind et al. 1999)(Pind et al. 2003)(Boe et al. 

2010). Studies have underlined the importance of using VFA concentration in 

determining instability in anaerobic digestion systems. However, there are 

differences regarding which of the individuals VFAs are the most suitable depending 

on the substrate (Bruni et al. 2013).    

Propionate was found to be a good indicator of process imbalance in 

laboratory scale reactors treating mixed cattle and pig manure when meat and bone 

meal and lipids were added (Nielsen et al. 2007).  Propionate was suggested as a 

good indicator of process stress under gradual overload (Boe, Steyer, et al. 2007) in 

a study that concluded that propionate can be used as an overriding alarm 

parameter  for well-buffered anaerobic digestion systems. However, propionic acid 

accumulation as high as 2750 mg/l might not impact methane production negatively 
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since it could be a result and not the cause of imbalance (Pullammanappallil et al. 

2001). Acetate concentrations exceeding 13 mM were suggested as indicative of 

process imbalance (Hill et al. 1987) cited in (Ahring et al. 1995). Propionate and 

acetate were proven to be sensitive to organic overloads in a small scale anaerobic 

digester treating manure (Boe et al. 2010) and combined with biogas production 

could indicate both performance and process stability. Propionic acid to acetic acid 

ratio have also been proposed as indicators of process imbalance (Norstedt & 

Thomas 1985)(Marchaim & Krause 1993). Ahring (1995) concluded that the 

propionate/acetate ratio was an insufficient stability indicator and suggested that a 

parameter reflecting the concentrations of butyrate and isobutyrate could be used for 

early detection of system instability.  
 

1.3.6 Indirect measurements of organic matter 
 

 Measurements of organic matter are important especially in AD systems that 

focus on stabilizing the organic material before being disposed. This aims to 

minimise environmental impacts from air and water emissions rather than 

maximizing biogas productivity. The majority of these AD systems treat industrial and 

food processing wastewaters prior to discharge (Rapport et al. 2008). As mentioned 

in section 1.2.4, organic matter destruction is a stress indicator parameter suitable 

for detecting gradual changes in anaerobic digesters. Therefore, organic matter 

measurements of the influent and effluent of AD systems can provide useful 

information regarding process efficiency (Pind et al. 2003). Organic matter removal 

can be measured in terms of TS, VS (Section 4.3.6), TOC , COD or BOD (Garcia-

Calderon et al. 1998)(Steyer et al. 2002)(Amani et al. 2011)(Martin Garcia et al. 

2013). 

1.3.7 Microbial activities 
 

 In order to optimise the performance of an AD system, it is important to know 

the most effective metabolizing microorganisms that participate in each step of the 

AD process and to identify their reaction to system disturbances (Delbès et al. 2000). 

Studies towards the identification of the microbial community structure by using 
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culture-dependent and culture-independent molecular approaches have been 

conducted (Sekiguchi et al. 2001)(Sekiguchi 2006). Latest research also focuses on 

describing the community transitions (population dynamics) during different 

operational periods (or conditions) (Narihiro & Sekiguchi 2007). Community 

transitions have been investigated during start-up, successful start-up is important 

for long-term stability and efficiency, of a batch process (Shin et al. 2010). 

Identification of dominant bacterial groups by utilizing two-stage AD systems where 

separation of stages exists can lead to optimisation of specific treatments and 

loading rates (Rincón et al. 2013). Studies have also proved that different feedstocks 

impact bacterial communities in different ways. Bacterial communities proved to be 

quite stable during AD operation using conventional feedstock like maize silage and 

cattle manure (Ziganshin et al. 2013). However, the same study showed that distinct 

and less diverse bacterial communities participate in the anaerobic digestion of 

materials such as chicken manure or Jatropha press cake.  Microbial and molecular 

techniques and chemical indicators are utilised to examine microbial activities and 

further details are available in (Pind et al. 2003)(Sanz & Köchling 2007)(O’Flaherty et 

al. 2006)(Lauwers et al. 2013). Monitoring of microbial activities is mostly conducted 

off-line and is used to give an insight of the AD process rather than controlling it.   

 

1.4 Soft sensors 
 

  In an industrial process, such as AD, some process parameters (1.2) and 

indicators (1.3) cannot be measured directly by a sensor. However, they are 

important for control and monitoring of the process. In order to solve this problem, a 

process model (Wang et al. 1996) or an estimation algorithm (Chéruy 1997) can be 

implemented to estimate the unmeasurable variables. Soft sensor application is 

considered to be a suitable method where based on the monitoring of easily 

measured process parameters and/or the utilisation of an AD mathematical model, 

important process variables can be estimated. Then, the information acquired for the 

process variables can be used to make decisions mostly regarding the digester 

loading that can lead to reduced capital costs and enhanced biogas output 

(Simeonov et al. 2012). 
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Soft sensors can be split in two categories that include data-based soft 

sensors and model-based soft sensors (Dewil et al. 2011). Data-based soft sensors 

are designed as black-boxes in order to predict the unmeasurable variables and 

some of the most popular techniques are (Dewil et al. 2011): (1) Principle component 

regression (PCR) (Martens & Næs 1991), (2) Partial least squares (PLS) (Wold et al. 

2001), (3) Artificial neural networks (ANN) (1.5.9), (4) Neuro-fuzzy systems (1.5.10), 

(5) Support Vector Machines (SVM) (Vapnik 1999), (6) Fuzzy systems 

(1.5.8)(Chapter 3- Chapter 5). Model-based soft sensors include (Dewil et al. 2011): 

(1) extended Kalman filters (EKF), (2) extended Luenberger observers, (3) adaptive 

observers (1.5.7), (4) asymptotic observers, (5) internal observers. Different types of 

observers that have been developed for AD applications are available (Costa et al. 

2008).   

Several soft sensor applications exist in the literature through which different 

process parameters and/or process indicators have been predicted. Soft sensors 

have been used to predict the unmeasured variables of acidogenic and 

methanogenic bacteria, COD and alkalinity (Alcaraz-González et al. 2002). pH, ORP 

and EC have been utilised to predict alkalinity (Ward et al. 2011). A soft sensor has 

been designed to predict VS based on feed flow and gas production rate (Oppong et 

al. 2013). Inorganic carbon concentration, alkalinity and VFAs have been predicted 

by software sensors that were designed based on a mass balance model 

representing the dynamic behaviour of an AD system (Bernard et al. 2001). COD 

has been estimated based on influent flow rate, methane flow rate and pH of the 

effluent (Aubrun et al. 2001). Also, models like the widely used Anaerobic digestion 

Model No. 1 (ADM1) (Batstone et al. 2002), have been proposed to develop state 

estimators (Gaida et al. 2012)(Montiel-Escobar et al. 2012). ADM1 is a common 

platform combining 19 biochemical and 2 physicochemical processes describing the 

way several components within an AD environment evolve (Antonopoulou et al. 

2012). 
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1.5 Process control  

1.5.1 Introduction 
 

Despite the fact that anaerobic digesters have many desired characteristics 

(e.g. reduction of chemical oxygen demand (COD) of the influent leading to the 

production of methane), AD is known to be an unstable and difficult to control 

process. This difficulty is due to the fact that there is an inadequate knowledge of the 

anaerobic digester microbiology, the potential lack of commercial interest, the lack of 

operator training, the nonexistence of appropriate operational data for installed 

digesters, the absence of research and academic status, as well as the regrowth 

required after industrial toxicity episodes (Gerardi 2003).  

Anaerobic technology application is strongly linked with the research 

advances in the field of anaerobic reactors, whose design also influences digester 

performance (Bouallagui et al. 2005). Efforts regarding system efficiency with 

respect to control have been made in the direction of optimality and improved 

performance. Those include the monitoring of microbial populations (Boe 2006) that 

aims to provide information regarding the changes in the microbial activity 

throughout the AD process and the way it is related to monitoring and essentially 

controlling process parameters by exploiting different techniques. It is also pointed 

out (Van Lier et al. 2001) that the need for successful biological process modelling is 

essential towards process design, and therefore, process control. Consequently, 

monitoring and control of the parameters that influence AD processes mostly in the 

liquid or gaseous phases (not so in the solid phase) is required. On-line monitoring of 

process parameters (e.g. bicarbonate alkalinity, volatile fatty acids (VFAs), COD) 

that enables more effective process control has led to more effective controller 

designs (Alferes et al. 2008). However, one has to take into consideration the sensor 

and operational costs when those are applied to industrial plants.  

Industrial evolution can be strongly linked with control evolution and it would 

also follow that behind the successful system operation is an effective controller 

design. Despite the fact that different types of controllers and several control design 

techniques exist, the concern is whether a controller is suitable for a specific 

application. The purpose of such a controller especially when it comes to high rate 

anaerobic digesters is to provide stability, to assure system performance and to 
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protect the system from collapsing. With the term “collapsing” we refer to the 

situation where while trying to maximise methane production the system’s 

robustness deteriorates, indicating a trade-off between robustness and productivity 

as witnessed in the analysis performed in (Shen et al. 2006). 

A control system is usually composed of the manipulated variables, the output 

variables and the disturbances. The most important manipulated variables include 

OLR, RT, pH, alkalinity, temperature and waste composition (Pind et al. 2003). 

Operational and process influencing parameters and conditions were presented in 

Section 1.2 and the most important process monitoring indicators were presented in 

Section 1.3. This section presents a basic short introduction to control systems 

beginning with the simplest closed loop and open loop control systems. Conventional 

controllers are examined in the next two sections. These include the On-Off 

controllers, the P (Proportional), PI (Proportional Integral) and PID (Proportional 

Integral Derivative), as well as Feedforward and Feedback-Feedforward controllers. 

More complex and/or intelligent control techniques are analysed next. Starting with 

Cascade controllers, and advancing to Model Predictive and Adaptive Control 

techniques, concluding with Fuzzy Logic (FL), Neural Networks (NN) and Hybrid 

Control implementations. Finally, each technique is accompanied by application 

examples in the field of biotechnological processes focusing on AD.    
 

1.5.2 Open-loop and Closed-loop systems 
 

 In open-loop systems the output does not influence or affect the control action 

of the input signal, which is the reason why these systems are also known as non-

feedback control systems. On the other hand, a closed-loop system operates with 

feedback by comparing the control parameter of interest with the desired system set-

point and acting accordingly. In other words, the plant is being driven by the control 

signal regulations indicated by feedback. 

 Although open-loop control is rarely utilised in practice as the majority of 

systems experience some sort of disturbance, it can be applied under certain 

conditions. Furthermore, open-loop control is an essential tool for engineers and is 

employed to check and compare the behaviour and response of the system with 

different control applications (e.g. feedback control). Therefore, open-loop control 
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can indicate system efficiency that has been achieved with the application of 

different control techniques. Finally, it is able to identify parameters to control as well 

as to discover the limitations of controllable behaviour.  
 

Applications 
 

Open-loop control has been used in anaerobic digestion (AD) systems. 

However, due to the major disadvantage, that the output is input-controlled without 

taking into consideration any disturbances that might exist, it can be employed only 

under certain conditions. The majority of control applications in the field of AD are 

closed-loop. Closed-loop systems can be split into feedback and feedforward 

systems. However, in this area mostly feedback systems have been utilised.   

 A hybrid control strategy employed in an anaerobic wastewater treatment 

process was proposed (Belmonte-Izquierdo et al. 2009) that consists of a neural 

observer and a fuzzy supervisor utilised in a continuous stirred tank reactor (CSTR). 

In general, problems that arise from the on-line unavailability of several process 

measurements can be overcame by utilising a process model along with a limited set 

of measurements namely state observer (Dochain 2003). The Takagi-Sugeno 

algorithm-based supervisor, assigned to perform a control action based on the 

operating conditions, is capable of deciding whether the system should operate in 

open-loop in case of a small input disturbance (Belmonte-Izquierdo et al. 2009). 

Therefore, two fuzzy sets are assigned for the “needs” of the supervisor, based on 

the quantity of organic load that can be treated within a day by a biomass unit. A low-

defined fuzzy set is used to limit open-loop control while considering a critical value 

of the organic load (stability threshold), and a high fuzzy set triggers the proposed 

closed-loop control action.  

 A model developed to calculate the risk of foaming in AD systems caused by 

the microbiological activity was proposed (Dalmau et al. 2010), where a knowledge-

based model was utilised to investigate system performance through both open-loop 

and closed-loop simulation models by making use of the IWA Benchmark Simulation 

Model No. 2 (Jeppsson et al. 2007). Furthermore, an estimation of the risk of 

foaming was used as the evaluation criterion, based on the assessment performed 

on literature parameter findings causing foaming (i.e. filamentous bacteria in the 
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influent, organic loading rate (OLR), daily OLR variation). The approach followed, 

investigated different AD system configurations by the comparison of the simulation 

results in both open-loop and two types of closed-loop systems, providing a clearer 

idea of the change of parameters. So, in this case, it can be stated that if operational 

cost was not an issue, the open-loop system and the first closed-loop configuration 

have the same range and trend regarding OLR and foaming respectively.      

 Similarly to the previous paper, a nonlinear adaptive control was presented 

(Mailleret et al. 2004) for bioreactors with unknown kinetics. Once again, the AD 

system simulation in open-loop proved effective, justifying by comparison the 

efficiency of the nonlinear controller with an application on an actual wastewater 

treatment plant.   
 

1.5.3 Feedback Control Systems 
 

 A standard feedback control system (Fig. 1.8) relies on the appropriate 

selection of the feedback loop components. The simplest on-off and more 

complicated proportional –integral and derivative (PID) controllers are preferred in 

most applications. These two cases will be discussed in this section, along with the 

equally popular techniques of P and PI control. 
 

CONTROLLER PLANT

SENSOR

Reference
Input Error Output

+

-

 

Figure 1.8 Typical Feedback Control System 

 

1.5.3.1 On-Off Control 
 

 The simplest and cheapest feedback control applications are on-off 

controllers. The purpose of using such a controller is to maintain a variable within 
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certain limits or to manipulate it according to a predefined program. Also referred to 

as bang-bang control (Love 2007) where small, yet finite, errors result in switching 

the controller output between maximum and minimum values, based on the sign of 

the error. 

 The on-off controller application usually produces variable oscillations around 

the set-point as shown in the example presented in Figure 1.9.  

Several modifications of the on-off controller have been proposed. For 

example, the introduction of a deadzone (also known as hysteresis) aimed to limit 

high frequency noise around the desired value and protect the actuating device that 

might be practically used (Bräunl 2006). However, hysteresis is known to cause 

some delay (time lag) of the control action. Figure 1.10 shows an example of the 

hysteresis curve along with the control signal. 
 

 

 

Figure 1.9 Behaviour of an on-off controller (Bräunl 2006). 

Process variable (motor speed): solid line, Control variable (constant voltage): shaded area 
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Figure 1.10 Behaviour of an on-off controller with hysteresis band (Bräunl 2006)  

Process variable (motor speed): solid line, Control variable (constant voltage): shaded area 

Applications 
 

Despite the fact that on-off controllers are quite unstable and their application 

comes with increased overshoot that affects system stability, they have been utilised 

in several cases to control AD.  

A neural network along with an on-off controller had been employed to control 

the bicarbonate alkalinity (a measure of fermentation stability) in a fluidised-bed 

anaerobic digester (Guwy, Hawkes, Wilcox, et al. 1997). The designed controller 

aimed to maintain bicarbonate alkalinity within certain limits, and its operation was 

tested during organic overload. This on-off controller was capable of maintaining the 

required bicarbonate concentration, but during organic overloads, a boost in 

overshoot was observed.  Another on-off utilisation was performed (Denac et al. 

1990), by tuning the feed rate and by using alkaline consumption as the controlled 

variable, to control the effluent quality (expressed in total acids concentration). In this 

case, the controller operation had been proven to be successful. Furthermore, 

efficient on-off controller application was achieved with pH regulation (through the 

removal of a weak acid) (Graef et al. 2010). pH regulation was suitable to determine 

the control action that involved scrubbing carbon dioxide from the gas produced and 

recirculating the scrubbed gas to the digester. Gas scrubbing and recycle are 
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presented as a possible solution to problems related to organic overload in 

anaerobic digesters (e.g. cation toxicity). 
 

1.5.3.2 PID Control 
 

 PI/PID controllers represent the most common “tool” utilised in process control 

industry including AD. The controllers are tuned to equip systems with optimal 

responses to load disturbances (Couper et al. 2009). Essentially, the PID is a 

controller:  

• With an output proportional to the input dictated by a tuning parameter known 

as controller gain KP (P). The P term varies according to the amount of error 

(e) between measured value and set-point 

• That monitors the offset of the set-point and takes action when, and if, such a 

correction is needed over time (I).I is the integral part whose integral gain is 

KI. 

• That enforces the controller to take action based on the rate of the error 

change producing a derivative (D) term. 

So basically, a PID controller represents a summation of the proportional, 

integral and derivative terms which together calculate the controller output. Figure 

1.11 contains a block diagram of a typical PID controller.  

The typical mathematical representation of a PID controller is as follows: 

 

In the time domain: 

Equation 1.1 

 𝑢(𝑡) = 𝐾𝑃𝑒(𝑡) + 𝐾𝐼 � 𝑒(𝜏)𝑑𝜏 + 𝐾𝐷
𝑑𝑒(𝑡)
𝑑𝑡

 
𝑡

0
 

 

 

 

or 
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Equation 1.2 

 𝑢(𝑡) = 𝐾𝑃 �𝑒(𝑡) +
1
𝜏𝐼
� 𝑒(𝑡)𝑑𝑡 + 𝜏𝐷

𝑑𝑒(𝑡)
𝑑𝑡

𝑡

0
�  

 

 

 

 

In the frequency domain by applying the Laplace transformation on Eq.1.1: 
 

Equation 1.3 

 𝑈(𝑠) = �𝐾𝑃 + 𝐾𝐼
1
𝑠

+ 𝑠𝐾𝐷� 𝑒(𝑠) 

 

 

 

Here: 

• y measured process variable 

• u control signal 

• e control error (ysetpoint- y) 

• KP proportional gain 

• τI integral time 

• τD derivative time 

In order to utilise a PID controller, the tuning parameters (proportional gain, 

integral time and derivative time) should be properly defined. This is the reason all 

PID manufacturers provide reference tuning parameter values. In the literature, 

several tuning methods are presented (Van der Zalm 2004).  
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Figure 1.11 Block diagram of a PID controller  

 

Applications 
 

Extended use of PID controllers has been made for AD. In a study (Steyer et 

al. 2002), where an AD fixed-bed process was utilised to treat distillery vinasses, 

hardware PID implementation was part of the pH measuring and regulating system. 

Furthermore, a study aimed at developing and testing a nonlinear output feedback 

control law with applications for biological wastewater treatment processes, such as 

treating industrial wine distillery wastewater, was shown to be possible (Antonelli et 

al. 2002). Therein, a local PID was designed to regulate the steam temperature of 

the heat exchanger. The exchanger treats the fresh substrate with recycled stream, 

at the optimal temperature of 35o C. And in this case, the PID was programmed to 

assist in monitoring pH inside the recycling stream. Similarly, a PID has been utilised 

in (Antonelli et al. 2003). 

In a scheme indirectly related to anaerobic digestion, an attempt had been 

made to maintain the digester temperature within the mesophilic bacterial growth 

and activity range of 40o C (Alkhamis et al. 2000). The novelty of this effort was that 

solar energy would provide the digester with the energy required to maintain the 

temperature level. So, after witnessing a lack of sensitivity in small temperature 

variations of the designed on-off controller, a PID has been employed for proper 

temperature control. The reason behind this controller application was mainly that 
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the PID had increased sensitivity to input value oscillations, operation easiness and 

capability in the predicting input variations. 
 

1.5.3.3 P and PI control 
 

P and PI controllers are utilised whenever the derivative action is not required 

for an efficient controlled system application. Thus, they are simply PID controllers 

where the respective ID (in the P controller case) and D (when PI controllers are 

concerned) gains are set to 0 (ki, kd= 0 and kd= 0). Despite the fact that in industrial 

applications whenever a system can be satisfactory controlled by either a P and a PI 

controller, P control is rarely, if ever, utilised in AD systems. However, its behaviour 

is very close to the behaviour of on-off controllers that have been examined above. 

On the other hand, PI controller implementations might not be found regularly, but 

still they exist even if they are only utilised for comparison purposes in order to 

investigate and demonstrate the efficiency of another more robust controller.  

Applications  
 

 Regulation of effluent composition for AD through the utilisation of direct 

feedback control had been investigated in (Alvarez-Ramirez et al. 2002). The 

effectiveness of a PI controller applied to regulate the effluent Chemical Oxygen 

Demand (COD) concentration around a specific set-point was proven. However, as 

observed time-delays adversely affect controller performance, a cascade controller 

of an integral feedback and a PI feedback was employed to achieve maximum 

convergence and disturbance rejection attributes. In another study, a PI controller 

tuned under the Internal Model Control (IMC) guidelines (a detailed analysis of IMC 

can be found in (Rivera et al. 1986)) was designed (Neria-Gonzalez & Aguilar-Lopez 

2007). The PI controller was utilised for comparison purposes pointing out that the 

proposed control law, a class of nonlinear proportional control law with adaptive gain, 

was superior because it could track trajectories in the presence of sustained 

disturbances. This work was performed while investigating the tracking of sulfate 

concentration trajectories in a continuous anaerobic bioreactor containing the 

bacterium Desulfovibrio Alaskensis.   
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1.5.4 Feedforward Control  
 

 In contrast with feedback control applications, feedforward control strategies 

enable the system to act as soon as a process disturbance occurs. So, instead of 

tackling disturbances and system upsets based on error measurement, under 

circumstances that enable disturbance measurement before it is introduced into the 

system, a corrective action can be taken (usually in a form of a control signal) to 

anticipate the incoming disturbance.  

  A typical feedforward controller scheme is presented in Figure 1.12. The 

controller takes into consideration the disturbance that affects the system. However, 

no information is obtained regarding the effects of its action towards the system 

output. Usually, this application aims to interfere with the system’s manipulated 

variables and so, force the output to stay within the desired limits. As a result, in 

order to plan an efficient control strategy, experience and very good knowledge of 

the model describing the behavior of the system is required. The absence of 

feedback does not induce any instability to the system (Gujer 2008) provided that the 

above mentioned system prerequisites are satisfied.  
 

 

PLANT

Reference
Input Output

+

FEEDFORWARD
CONTROLLER

Disturbance

+

 

Figure 1.12 A Typical Feedforward Controller 

 

 It is also worth mentioning that the basic principles of feedforward control 

have been applied through another control technique that will be discussed later. 

Indeed, the foundation in which the neural network control approach has been 

developed is based on the feedforward concept. Finally, in many cases, hybrid 
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intelligent control schemes (e.g. neuro-fuzzy controllers) incorporate the same 

feedforward ideas.  

 The combination of feedforward and feedback control, namely feedforward-

feedback control, can exploit the strengths of both strategies towards the design of a 

powerful controller. The possibility that feedback control strategies need to 

incorporate feedforward control in order to analyse the dynamic behaviour of the 

system (Andrews 1974) can be extended to AD systems 

Applications 
 

 Numerous applications of feedforward control systems can be found in 

wastewater treatment processes, as well as activated sludge processes. Most of 

them involve either predicting the dissolved oxygen concentration (Cordera & Lee 

1986), or manipulating sludge recycle rate based on changes in the incoming 

substrate concentration and flow rate (Vonjeszenszky & Dunn 1976), or even in 

processes such as the control of phosphate precipitation and pH (Gujer 2008). 

Furthermore, nitrogen removal (Stare et al. 2007) and comparison of dissolved 

oxygen control techniques involving feedforward control (Yong et al. 2005) have 

been examined. 

 Because of the feedforward philosophy, there was not much use made in AD 

processes. This is mainly due to the nonlinearities of biochemical processes and the 

absence of accurate mathematical models. Therefore, a feedforward approach is 

insufficient on its own to be applied (at least at the moment) to AD processes. 

Nevertheless, the combination of feedforward and feedback control, namely 

feedforward-feedback control, can exploit the strengths of both strategies towards 

the design of a powerful controller. Such a controller was proposed (Mendez-Acosta 

et al. 2005), where the feedforward signal was utilised as the prescribed reference, 

with the tracking error being the feedback signal. Furthermore, the possibility that 

feedback control strategies need to incorporate feedforward control in order to 

analyse the dynamic behaviour of the system (Andrews 1974) can be extended to 

AD systems.  
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1.5.5 Cascade Control 
 

  Cascade control is a control structure that consists of two or more feedback 

controllers. To illustrate the idea we will restrict to the simple case of two controllers. 

The first (primary controller) C2 is designed to provide the second (secondary 

controller) C1 with the system set-point (or reference value). C1 and the secondary 

process P1 form the secondary control loop that is embedded inside the primary loop. 

The effect of the first disturbance (d1) is limited within this loop, minimising its effect 

on the primary process. Finally, the outer feedback loop is responsible for coping 

with the third system input d2. A typical cascade control system is presented in 

Figure 1.13. 
 

PRIMARY
CONTROLLER
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Figure 1.13 A Typical Cascade Control System 

 

 The main role of a cascade system is to reduce the effect of external 

disturbances (Tan et al. 2000) and also to minimise the influence of the actuator or 

the secondary process gain variations on the control system performance (Cooper et 

al. 2004). For the controller design, it is common to design the secondary controller 

(slave) first while keeping the outer loop open. Next, the primary controller (master) 

should be introduced to the system implementation including the primary process 

(Morari & Zafiriou 1989). Therefore, in order to obtain a system with maximum 

effectiveness, the inner loop should demonstrate increased dynamical response 

compared to the outer one (Tan et al. 2000). 

 However, despite the fact that practical implementation of such a controller is 

relatively easy compared to more complex techniques, some difficulty can be 

witnessed in tuning the two controllers. An example is the case where simple PID’s 

are chosen to perform the control task.   
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Applications  
 

 The most common industrial cascade implementations involve the application 

and tuning of the conventional P, PI and PID, with P being proposed as a suitable 

selection for inner loops due to its design simplicity (Visioli 2006). However, in most 

AD systems, a fusion is performed between conventional controllers (e.g. PI) and 

more advanced control techniques (e.g. FLC) to form a cascade controller.  

 A cascade Fuzzy PI-PI controller (Martínez-Sibaja et al. 2007) was designed 

to operate an upflow anaerobic sludge blanket (UASB) digester. The control system 

consists of a conventional PI controller (slave) that feeds the reactor pH back to the 

influent flow rate, and a Fuzzy PI controller (master) that measures the biogas flow 

rate and adjusts the pH set-point. Several simulation comparisons of the proposed 

cascade controller scheme with a conventional PI-PI cascade control implementation 

demonstrated the superiority of the cascade controller under two operational 

situations:  the start-up process and high load situations where also sufficient 

disturbance rejection occurred.  

 The same goals, efficient performance during start-up under high load 

conditions, rejection of disturbances, as well as solid performance during steady-

state running operations characterised the controller proposed in (Liu et al. 2004a) 

and (Liu et al. 2004c). The controller was applied to an upflow anaerobic fixed 

reactor. It consisted of a rule-based system that served as a supervisory loop, and 

two inner feedback loops (cascade system) designed to operate with two P 

controllers.  The secondary controller of the cascade system utilised the reactor pH 

and manipulated the influent flow rate, whereas the primary controller monitored the 

biogas flow rate and adjusted the pH set-point value of the slave. However, it is 

noted that despite the fact that the cascade control consisted of two P controllers an 

integral action is present in the pH control loop, provided that the feeding rate was 

continuously tuned. Finally, the reason behind the inclusion of the supervisory 

system is the maximisation of gas production at all times independently of the offset 

value off the gas-flow control loop. 
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1.5.6 Model Predictive Control 
 

 Model predictive control (MPC) aims to mimic the human decision support 

system, where we seek to take control actions that will influence a system to produce 

the best possible predictable output over some limited horizon (Rossiter 2003). 

Furthermore, this is achieved by making a proper selection of the internal model of 

the process in question.  More specifically, MPC characterises the family of 

controllers in which there is a direct use of an explicit and separately identifiable 

model (García et al. 1989). The reader is referred to (Camacho & Bordons 2004), 

(Rossiter 2003), (Van Den Boom & Stoorvogel 2010) and (Wang 2009) for a 

thorough analysis of the MPC method. 

 MPC is an optimisation-based control strategy that utilises a plant model to 

predict the effect of a possible control action on the continuously changing state of 

the plant. An open-loop optimal control problem is solved at each time step and the 

new input profile updates the plant while anticipating a new measurement to 

continue with the input profile updating (Rao & Rawlings 1999). At this updating 

point, the updated plant is in the middle of a new optimal control problem and the 

same optimisation process is repeated. 

 As MPC systems are constructed depending on the process model and 

process measurements that provide the feedback (and possibly feedforward) 

element in the MPC structure, a number of possibilities exist according to (Nikolaou 

2001): 

• Input-output model 

• Disturbance prediction 

• Objective 

• Measurement 

• Constraints 

• Sampling Period (that depicts the frequency of the on-line optimisation 

solution) 

 However, as mentioned in (Marlin & Hrymak 1997) and (Skogestad 2000), the 

appropriate selection of the above should target on-line optimisation, and for this 
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reason MPC systems can be quite complicated. Figure 1.14 and Figure 1.15 show 

the typical MPC structure.  
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Figure 1.14 Basic structure of Model Predictive Control (Camacho & Bordons 2004) 
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Figure 1.15 A Typical Model Predictive Control Scheme in more detail modified from (Nikolaou 2001) 

 

Applications  
 

 The term predictive can be used to describe processes that perform exactly 

what the word implies following several formats (e.g. prediction is a key in controlling 

techniques based on monitoring of microbial performance). However, MPC schemes 

involve the utilisation of the main idea of this method, which is foreseeing the control 

action that should be taken based on the receding horizon principle aided by an on-

line solution of an optimisation problem.  

 We will not expand on reviewing models that are used in general. So, as focus 

will be given to applications, the reader is referred to (Rawlings 2000) and the 

references within for an extended review that involves linear and nonlinear models, 

neural, fuzzy and local network models. Moreover, an overview of the commercially 
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available MPC technology is presented in (Qin 2003). Lastly, a framework for multi-

parametric programming and control is addressed in (Narciso et al. 2008), where the 

authors discuss the issue of how balanced truncation and multi-parametric 

programming techniques can be combined to solve MPC problems posed as 

quadratic convex problems. 

 A study focused on determining the transition of ethanol-producing bioreactors 

from batch to continuous operation and subsequent control subject to constraints 

and performance considerations (Mhaskar & Aumi 2007). Therein, based on a 

Lyapunov non-linear model predictive controller and after setting the appropriate 

stability constraints needed to ensure the feasibility of the optimisation problem, a set 

of stabilising initial conditions was utilised to determine the time length  of the reactor 

operation in batch mode. 

  The effect of varying the length of the prediction horizon as well as the input 

influence on the system behaviour for different initial conditions was examined 

(Ramaswamy et al. 2005). MPC application in a continuous stirred tank bioreactor 

was proved to be successful, managing to control it to an unstable operating set-

point while examining biomass concentration. 

 Neural network implementations are going to be analyzed and examined in 

the Neural Network Section. However, due to the fact that neural network control 

designs are based on the philosophy of MPC, wide usage has been done by 

researchers in the field of AD. The suitability of neural network implementation in 

controlling AD processes is justified in (Azlan Hussain 1999).  

 Briefly, an identification and control scheme using adaptive on-line trained 

neural networks applied to an AD process was performed in (Emmanouilides & 

Petrou 1997). Hydrogen production rates in a sucrose-based bioreactor system 

(Özkaya et al. 2008) were predicted by employing an artificial neural network. 

Moreover, by employing MPC strategies through the Matlab Neural Network 

Toolbox, trace compounds in biogas from AD were predicted (Strik et al. 2005) even 

under dynamical conditions. Finally, different optimising methods in order to design 

an external recurrent neural network based Smith predictive controller are analysed 

(Tan 1996), and the evaluation of the proposed control algorithms was performed 

with the simulation of an AD process in wastewater treating.  
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1.5.7 Adaptive control 
 

 An early definition of an adaptive system is given in (Mishkin & Ludwig 1961), 

where it is described as “any physical system that has been designed with an 

adaptive viewpoint”. A pragmatic attitude towards the definition of adaptive 

controllers is considered (Åström & Wittenmark 1995) where: “an adaptive controller 

is a controller with adjustable parameters and a mechanism for adjusting the 

parameters”. Furthermore, an extension of the adaptive control definition to adaptive 

optimal control appears in (Bitmead et al. 1990) that reflects the adaptive control 

scheme where the controller is designed based on methods of optimal control 

theory. A block diagram of an adaptive system is shown in Figure 1.16. 
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Figure 1.16 Block diagram of an adaptive system consisting of two loops (Åström & Wittenmark 1995). 

The first loop consists of the feedback, the process and the controller. The second loop is the one where the 

parameter adjustment takes place. 

 

 Adaptive control can provide automatic process control under uncertainties 

and fluctuations in system parameters and dynamics. Moreover, it can tackle 

changes in disturbance characteristics. A variety of adaptive control applications in 

several industrial areas is listed in (Chalam 1987). 
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Applications 
 

First of all, bioprocesses are known to be non-linear and are characterised by 

complicated dynamics. Second, there is a shortage of cheap and reliable on-line 

measurement and real-time monitoring equipment (Bastin & Dochain 1990). An 

adaptive control approach can be considered efficient enough (Petre et al. 2008) to 

tackle the non-linearity of the processes and the uncertainty of kinetics. For this 

reason, software sensors (Petre et al. 2008) are utilised to handle the measurement 

of the state variables. A list of adaptive control applications is available in (Astrom & 

Wittenmark 1995), underlining their application in the entire industry spectrum.   

 A model for a single bioreaction occurring in a continuous stirred tank reactor 

with unknown kinetics was considered (Mailleret et al. 2004). Eventually, after 

developing a stabilizing non-linear controller around the equilibrium representing the 

set-point, the control law was extended. In this way, an adaptive version of the 

controller arose that did not require any prior information of two out of the three 

parameters considered previously, because they are determined by the value of the 

targeted set-point for substrate concentration. Based on this work, Dimitrova and 

Krastanov (Dimitrova & Krastanov 2010) developed a non-linear adaptive feedback 

law in order to asymptotically stabilise a system that models methane fermentation 

towards an unknown maximum methane production rate.  

Observer-based estimators were implemented and tested while trying to 

predict the kinetic rates inside a bioreactor (Farza 1998). Furthermore, an adaptive 

extremum seeking control scheme is presented in (Guay 2004). Moreover, an 

adaptive observer-based control strategy attempted to tackle with the uncertain 

models that are present in bioreactor processes (Boskovic 1995). Where, following 

the stability analysis the simulation results reported satisfactory system response. 

A nonparametric statistical approach of process identification (Hilgert 2000) 

resulted in the design of an adaptive controller capable of handling unpredictable 

internal changes and process disturbances. A fluidized bed reactor treating industrial 

wine distillery liquid wastes was used to demonstrate the controller’s improved 

robustness while handling reference set-point changes, as well as ease of 

implementation and tuning.  
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The on-line estimation of influent disturbances was the goal in (Theilliol 2003). 

A novel approach to perform a fusion of non-linear dynamics and control tools was 

developed (Rincon et al. 2009), where normal form theory and adaptive control were 

brought together to control an anaerobic digester. Here, based on the system model, 

a local bifurcation analysis was performed related to the phenomenon of interest. 

Next, a computation of the corresponding non-linear normal form for this scenario 

was performed for the controller to be designed. 

The pollution level of non-linear bioprocesses with not fully known dynamics 

has been a subject for control. Adaptive controllers were implemented (Petre et al. 

2008), coupled with a state observer and a parameter estimator that served the role 

of software sensors.  

Temperature and pH regulation has been the subject for control in the 

industry by applying adaptive control (Bastin & Dochain 1990). An adaptive scheme 

was utilised to control temperature (Brazauskas & Levisauskas 2007), by 

implementing an adaptive feedback/feed-forward controller in an industrial methane 

tank operating in municipal sewage plants. A very good example of pH regulation is 

the controller consisting of a non-linear state feedback law and a gain adaptation that 

was applied in a biogas tower reactor treating wastewater (IIchmann & Pahl 1998). 

However, the controller could only function properly if the input constraints were not 

too tight. 

1.5.8 Fuzzy Logic 
 

The theory surrounding fuzzy sets was originally established by Zadeh in 

(1965). However, it was Mamdani’s work (1974) that led to the acceptance of fuzzy 

control as a worldwide acceptable control strategy, based on Zadeh’s original ideas.  

 The concept behind the development of fuzzy systems is that a machine is 

programmed to operate as a human being, by giving the control system the 

structured reasoning of an experienced operator so that real-time (most of the time) 

decisions can be performed. The most common way to represent human knowledge 

is by forming language expressions (linguistic rules) of the type: 

“IF (antecedent), THEN (consequent)”, which is called the IF- THEN rule-based form. 

In this way, the complexity of the systems that cannot be successfully modelled 

mathematically can be overcome by the use of linguistic variables, which can 
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represent and describe the system uncertainties as fuzzy sets and logical 

connectives of those sets (Ross 2004). Each fuzzy set consists of membership 

functions that consist of elements which map to a membership value between 0-1 

(Cakmakci 2007). 
 

 

 

Figure 1.17 A Fuzzy Control System (Jamshidi 2003) 

 

 Figure 1.17 shows the relationship between a human expert and a fuzzy 

system. The fuzzy inference process can be summarised with the following steps 

(Cakmakci 2007) (Jamshidi 2003), as presented in the above figure: 

• Obtain process values (inputs) 

• Fuzzy operations are applied to antecedents through a fuzzy rule-based 

system 

• A new set of consequents arises from the above operations 

• The rules outputs are aggregated into a new fuzzy set 

• The fuzzy set is defuzzified in order to obtain a crisp value  

FL is a control method suitable for applications where there is a lack of 

knowledge regarding the specific model of the system, or if the model is too complex 

to be controlled by utilizing classic control methods (e.g. PID). FL can be applied 

when the most optimal solution to the control problem is not required often because 

it is not possible to achieve one. Furthermore, it enables human experience to be 

embedded in the controller. 

FL is a method like NNs where the controller is considered a “black box” and 

data acquisition and classification can prove to be difficult tasks. Another important 
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issue to be addressed is the fact that it is not that easy to investigate optimality and 

robustness of the designed controller. However, FLC stability studies have been 

performed (Berenji 1993). Moreover, controller tuning can be complicated because 

there are no guidelines regarding this process. The most common tuning method is 

trial and error which can be a time-consuming task as is testing the controller which 

mainly depends on the rule-size.  
 

Applications 
 

The FL AD controller can be utilised to achieve different goals (Puñal et al. 2003) 

(Yordanova 2004): 

• Keep the required concentration of organic matter at the reactor output 

• Reach an optimal methane production level 

• Succeed in producing a stable operation in case of systems treating high 

OLRs affected by input concentration and/or flow rate oscillations.    

Several FLC applications can be found in the literature. Yordanova (2004) 

developed a two-level FLC for the biogas production rate in the anaerobic 

wastewater treatment plant (WWTP), pointing out the efficiency of the fuzzy 

approach compared to the application of a conventional PI controller. Another FLC 

was developed (Scherer et al. 2009) to control biogas reactors using energy crops. 

The resulting system proved to be successful during start-up and while recovering 

from failure. The FLC achieved the desired process performance under high OLR 

and low hydraulic retention time (HRT) without utilizing any special mathematical 

model or detector or self-learning network. OLR was determined based on pH, 

specific gas production rate (GPR) and CH4 content. Specific GPR was chosen 

instead of volume GPR, as the latter was proven unable to support pH control 

efficiently. Although redox is widely used as a process parameter, it was not utilised 

in this case as it was found to be lacking reliability. The number of the FLC rules was 

selected as 3x, where x is the input number. Finally, it is recommended that the FLC 

process variables should be reconfigured for different substrates.  

A FLC based on the utilisation of cheap on-line sensors (Estaben et al. 1997) 

enables the system to function around a set-point and achieves good chemical 
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oxygen demand (COD) reduction. Stable operation was possible around a working 

point with perturbations or overloading conditions. 

A two-stage anaerobic wastewater pre-treatment was controlled (Murnleitner 

et al. 2002) with a FLC system predicting the biological state of the reactors. Control 

was based on which control actions were taken to maintain process stability and this 

approach proved to be suitable for applications involving strong volume and 

concentration variations, or where additional feed can achieve higher biogas 

production. Finally, the main control issue in the design that appears in (Carrasco et 

al. 2002) is successful operation recovery in the case of disturbances and, similarly 

to the previous work, proper state detection of the WWTP. 
 

1.5.9 Neural Networks 
 

Artificial intelligence (AI) is the field of computer science that tries to construct 

intelligent machines. Several definitions of AI are listed in (Russel & Norvig 2003). 

NNs or, more specifically, artificial neural networks (ANN)s represent one of the tools 

that are utilised to solve computer science problems. 

A NN is an interconnection consisting of simple processing units (or nodes) 

that are an abstraction of the behaviour of a human neuron, and is characterised by 

the ability to learn and respond (Gurney 1997) (Jamshidi 2003). A non-linear model 

of a neuron is shown in Figure 1.18.  
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Figure 1.18 A non-linear model of a neuron modified from (Haykin 1998).  

The typical neuron consists of: (1) a set of connecting links named as weights, (2) a summing junction for the 

input signals, and (3) an activation function. This single-layer neural network is known as perceptron. 

 

 The above neuron (k) is characterised by the following equations: 

Equation 1.4 

 𝑢𝑘 = �𝑤𝑘𝑗𝑥𝑗

𝑚

𝑗=1

 

 

 

 

Equation 1.5 

 𝑦𝑘 = 𝜑(𝑢𝑘 + 𝑏𝑘)    

 

where x1, x2,..., xm are the input signals; wk1, wk2,...,wkm are the weights of the 

neuron; uk is the linear output of the input signals; bk is the bias; φ is the activation 

function; and yk is the output signal.  

However, neurons are part of a network and the way they operate is 

influenced by their (MacKay 2003): 

• Architecture 

The term architecture involves the network structure, referring to the network 

variables and their topological relationship. These include single layer 
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feedforward networks, multi-layer feedforward networks and recurrent 

networks. A multi-layer NN, a feedforward NN with more than one layer of 

neurons that is known as a multi-layer perceptron (MLP), is presented in 

Figure 1.19. 

• Activity Rule 

Involves the manner in which the neuron activity is modified through 

interaction between neurons. 

• Learning rule 

The most important ability of ANN is the ability to learn that can lead to an 

improved system performance through environmental adaptation. Several 

methods can be applied with respect to learning. These methods cover a vast 

area but Haykin (1998) provides a thorough analysis. A popular example is 

the back-propagation algorithm that is utilised to train an ANN efficiently, 

being capable of performing the required massive amount of computation 

required when complicated topologies are involved (Rojas 1996).  
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x2

Input 
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Figure 1.19 A feedforward neural network with one hidden layer 

 

 NN are popular because of their powerful properties and abilities (Haykin 

1998) that include: 

• Nonlinearity 
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• Input-Output mapping 

• Adaptivity 

• Evidential response 

• Contextual information 

• Fault tolerance 

• Very large scale integrated (VLSI) implementability 

• Uniformity of analysis and design 

• Neurobiological Analogy 

On the other hand, the reasons behind not adopting this control method include: 

• Slow learning when it comes to several applications (e.g. data mining) 

• Explicit process or model knowledge is not present due to complex and/or 

hidden network structure and weights.  

• The sample size has to be large enough for the model to be able to 

generalise (Vogt & Bared 1998). 

Applications 
 

As already mentioned in the MPC section, ANN design incorporates predictive 

capacities. Therefore, a list of ANN applications is available in that section. Several 

applications that involve different control parameters and objectives will be examined 

here. 

 In an extended review of ANN under the scope of MPC (Arumugasamy & 

Ahmad 2009), the authors point out the efficiency of such control implementations 

with regard to set-point tracking, as well as disturbance and noise rejection. 

Furthermore, loading rate regulation during start-up and recovery (Holubar et al. 

2003) was achieved with the optimisation of the feeding profile for future time steps, 

based on gas production and gas composition, through the design of two hierarchical 

network levels. 

 The implementation of different MPC strategies involving generic model 

control (GMC), direct inverse control (DIC) and internal model control (IMC) in a 

batch reactor using NN techniques has been performed (Mujtaba et al. 2006). NNs 

were used as a dynamic estimator (for heat release); a predictor (for reactor 
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temperature) and controller (for jacket temperature) respectively. The above control 

applications were successful at dynamic set-point temperature tracking. However, 

the robustness analysis of all three schemes underpinned the superiority of the GMC 

controller compared to the other two. 

 A control application to manage bicarbonate alkalinity (BA) in a fluidised-bed 

anaerobic digester (Guwy, Hawkes, Wilcox, et al. 1997), consisted of an on-off 

controller and a NN. The NN controller’s goal was to classify the BA data (under 

steady-state or overload) by using the backpropagation algorithm and successfully 

kept BA levels under overload conditions without experiencing any overshoot. 

However, BA control was not sufficient to regulate the entire process, as other 

undesired parameter level changes (e.g. H2 and VFA concentrations, %CO2) were 

witnessed.  

 An example of ANN modelling of non-linear processes is presented (Horiuchi 

et al. 2001). Instead of describing the system process with differential equations, 

output data resulting from input changes were used to model the transient system 

response. More specifically, the response to pH changes in an acid reactor under 

different retention times was used to model the transient behaviour of the system. 

However, during the evaluation of this method, some differences were encountered 

between the simulation and the experimental results. It is stated that those are due 

to the dissimilar dynamic behaviours encountered for pH up-shift and pH down-shift 

in the acid reactor. Finally, an ANN capable of utilizing the pH response for on-line 

measurement of the buffer capacity and alkali consumption during a fermentation 

process was developed (Hur & Chung 2006) in the absence of expensive sensor 

equipment to provide biomass estimates of reasonable accuracy. 

1.5.10 Hybrid Control 
 

Hybrid systems are dynamic systems that inter-mix discrete (modelled by 

means of automata) and continuous-time components (based on differential 

equations) (Manna & Pnueli 1993) (Chiou & Wang 2008). The need for hybrid control 

applications lays in the fact that (Lunze 2002) hybrid phenomena can neither be 

analyzed nor symbolised through techniques that are meant to be applied in either 

the discrete or the continuous domain. 
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A hybrid controller (Fig. 1.20), consists of (Hespanha 2004) several different 

(two or more) controllers that are either utilised in the control process or not, 

depending on the on-line measurements. This switching process aims to (Lemmon 

et al. 1998) expand the efficient operating scope. Moreover, the element that 

controls the switching between controllers is called a “supervisor” and is responsible 

for deciding which controller should participate in the control process at each time. 
 

 

Figure 1.20 Hybrid System Architecture I (Hespanha 2004) 

 

 A different approach to hybrid control (Fig.1.21) architecture was introduced 

(Godbole et al. 1995) based on the basic two-level (layer) structure. The lower level 

contains the plant and conventional controllers, whereas the upper level consists of a 

more abstract plant description (e.g. FL, Petri nets). The interface is responsible for 

communication between those levels. 

As mentioned above, continuous systems dynamics are usually modelled by 

differential equations. However, discrete phenomena generally consist of four types: 

autonomous switching, autonomous jumps, controlled switching and controlled 

jumps. Discrete and continuous phenomena and a summary of five models of hybrid 

systems arising from dynamical systems with respect to control are described by 

(Branicky et al. 1994).  
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Figure 1.21 Hybrid System Architecture II (Godbole et al. 1995) 

 

Hybrid controller design is based on a combination of control techniques 

which mainly utilise fuzzy, NN, MPC and adaptive control ideas. With such control 

implementations controller efficiency can be maximised by minimising the limitations 

of an individual controller. Another popular control technique usually considered 

under the hybrid framework is the ANFIS (adaptive-network-based fuzzy inference 

system) controller, which is a fuzzy inference system whose design is based on the 

adaptive network concept (Jang 1993). The controller incorporates the knowledge 

(e.g. human expertise) and the predictive capabilities of the FIS, as well as the 

adaptation provided by the NN. So, it is feasible to achieve automated FLC tuning 

and/or to predict future behaviour more accurately than NN would have predicted. 

Therefore, the ANFIS system can also learn from the data being modelled, and as 

the creator of ANFIS states (Jang 1993) it can replace any adaptive or learning 

control application based on NNs with the same efficiency. The above is also valid in 

those cases where process understanding in mechanistic sense is poor and NN 

have to be equipped with other source of knowledge (Zulkeflee & Aziz 2007) that 

hybrid control is capable of providing. 
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However, hybrid systems are difficult to be analysed and designed compared 

to entirely discrete or entirely continuous systems, because (Lygeros 2004) the 

dynamics may affect system performance with time and system performance with 

time may affect the dynamics. For example, whereas both discrete and continuous 

states can be altered with a discrete “jump”, a continuous state can be altered by 

flowing in continuous time with respect to a differential equation. 
 

Applications  
 

The combination of logical decision-making and continuous control law 

generation has led to hybrid industrial applications involving (Branicky et al. 1998) 

programmable logic controllers (PLCs), flight management systems, motors, 

constrained robotic systems and highway systems. Consequently, hybrid controller 

implementations have been considered in the field of biotechnological processes. 

The lack of sensors for the quantification of control output variables led Seok 

(Seok 2003) to design a hybrid adaptive control system applying an off-line and an 

on-line system identification routine in the process. Eventually, the system was 

tested for the degradation of propylene glycol (PG) in an anaerobic fluidized bed 

reactor. The overall hybrid adaptive optimal controller performance was successful. 

However, poor system identification was present during the first hours of operation 

which could be due to initial model parameter set selection. 

Hybrid intelligent control of an anaerobic wastewater treatment process in a 

CSTR was possible (Belmonte-Izquierdo et al. 2009). A recurrent high order neural 

observer (RHONO) was designed to estimate biomass and substrate, and an 

extended Kalman filter was utilised to train the observer. Next, a fuzzy supervisor 

was applied to control the dilution rate depending on the operating conditions. 

However, as the resultant controller’s main goal was to avoid washout, it is 

concluded that although it is capable of doing so, this is not the most ideal solution. 

A process for identifying hybrid models in bioprocesses in proposed in (Chen 

et al. 2000). Whereas a hybrid model based first on the knowledge of the mass 

balances of the process components, and second on a feedforward network was 

constructed (Karama et al. 2001). NN implementation within a hybrid approach was 

able to overcome process difficulties that are encountered due to the lack of 
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accurate kinetic modelling. Furthermore, it was underlined that as the NN training 

was based on the overall hybrid model performance and not solely on the NN 

performance, the direct use of standard training procedures (e.g. backpropagation 

algorithms) was not an option. Therefore, the standard NN model was trained by the 

Levenberg Marquardt algorithm, whereas backpropagation combined with a 

conjugate gradient optimisation method trains the hybrid NN model.  

An ANFIS was designed in order to predict the effluent COD reduction from a 

sugar factory anaerobic WWTP (Perendeci et al. 2009). The model’s predictive 

capabilities were enhanced by the addition of COD data values that exceeded in 

time those of the overall retention time of the wastewater in the system. In this way, 

system output estimates showed that despite the data need for appropriate NN 

training, the model performed satisfactorily. 
 

1.5.11 Discussion and Conclusion  
 

There are a series of control techniques capable of handling non-linear 

processes including anaerobic fermentation. The lack of accurate modelling resulting 

from the non-linear nature of the process makes control a difficult task and is the 

main reason behind the increasing interest in this field, where a diversity of 

approaches exists.  

Control laws are designed to (Steyer et al. 2006) tackle the specific problem 

they were designed for. Consequently, it is necessary to combine control laws or 

incorporate them in an advanced scheme, enabling the control system to cope with 

all kinds of disturbances. Each technique examined in this review can provide 

adequate control results for specific processes. However the review addresses 

improvement of process control as no such perfect technique exists. Therefore, 

control simplicity, expressed in terms of conventional control applications, or control 

complexity, involving advanced control schemes, is something that should be taken 

into consideration in the system design. Furthermore, control limitations and/or 

design parameters that have to be accounted for in each design are also explored.  

Open-loop systems are shown to be implemented in order to prove, through 

comparison, the improved system performance that can be achieved through closed-

loop approaches. The application of conventional industrial controllers that include 
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on/off P, PI and PID approaches can sometimes be inefficient, due to nonlinearities 

that are inherent in biological systems are not taken into consideration resulting in 

process instability (Antonelli et al. 2002), or are used in either single input single 

output (SISO) models or linear cases (Steyer et al. 2006). However, they tend to be 

utilised for handling vital, yet not very complicated parts of the process (e.g. 

preventing system failure, controlling one process parameter like pH). 

MPC and adaptive control are some of the most effective approaches, but rely 

on successful process modelling and require advanced mathematical models and 

calculations. Furthermore, as these methods are linked with AI techniques (e.g. 

NNs), efforts have been made over the past decade to concentrate on hybrid 

approaches by overcoming the limitations of each technique (e.g. lack in kinetic 

modelling,) while exploiting the corresponsive advantages (e.g. robustness).  The 

ability of intelligent controllers (e.g. FLCs) to handle nonlinear processes, despite 

design complexity, is most of the time synonymous with enhanced control accuracy. 

The majority of FLC system designs for AD purposes are mainly based on 

experience, and extreme care has to be taken to ensure that the system will never 

encounter situations, or more specifically parameter values, that have not been 

taken into consideration in the design process. Moreover, with respect to NN 

implementations, the learning process should be performed effectively, equipping the 

controller with the knowledge to handle all types of operational situations that might 

occur. On the other hand, linearised models of the process where stability and 

convergence properties are local, make it difficult to generalise for the entire 

operation spectrum (Harmand et al. 2005). Furthermore, insufficient process 

knowledge can lead to a non-linear model usually lacking in robustness under 

uncertainties (Belmonte-Izquierdo et al. 2009). In this case, the utilisation of NNs or 

FL in the control scheme (e.g. a RHONO observer), can help address this issue.  

For the future advanced control techniques are growing in popularity and 

seem to be suitable for non-linear processes. However, optimisation and robustness 

has to be ensured in order to make such a control system suitable for industrial 

applications.  
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 Chapter 2 Fuzzy Logic 
 

 This chapter is an introduction to fuzzy logic (FL), off-line data clustering 

methods and Mamdani FISs with a detailed analysis of the subtractive clustering 

method and type-1 Sugeno fuzzy logic systems (FLS).  

2.1 Introduction to Fuzzy Logic 
 

 The typical architecture of a Fuzzy Inference Systems (FIS) (Figure 2.2) 
consists of four components: the fuzzifier, the rule-base, the inference engine and 

the defuzzifier. There are three types of fuzzy inference that have been employed in 

a series of applications: the Mamdani fuzzy inference (Mamdani & Assilian 1974), 

the Takagi-Sugeno-Kang (TSK) fuzzy inference also known as Sugeno fuzzy 

inference (Takagi & Sugeno 1985) and the Tsukamoto fuzzy inference (Tsukamoto 

1979) with the first two being the most popular. The main differences between these 

fuzzy models are the consequents of the fuzzy rule and the aggregations and 

deffuzification procedures. This chapter will mostly focus on examining the Sugeno 

FIS.  

2.1.1 Fuzzy Sets 
 

 Crisp set theory is used to define the membership or the non-membership of 

individuals in a given universe of discourse. However, fuzzy set theory, established 

originally by Zadeh in the 1960’s (Zadeh 1965), states that a grade of membership 

can be assigned to each individual belonging to a certain class. The membership of 

an element (individual) in a fuzzy set (class) is given by number between 0 and 1.   

 Let  𝑈 be a collection of points, where U is the universe of discourse.  For a 

given element 𝑥 ∈ 𝑈, a set 𝐶 is characterised as crisp only if 𝑥 ∈ 𝐶 or 𝑥 ∋ 𝐶. 

However, a fuzzy set 𝐹 in the same universe of discourse is characterised by a 

membership function 𝜇𝐹: 𝑈 → [0,1]. An example of crisp versus fuzzy set is shown in 

Figure 2.1 by illustrating the possible definition of cold temperature (oC). 
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Figure 2.1 Cold temperature membership function for (a) crisp set C and (b) fuzzy set F 

 

2.1.2 Fuzzification 
 

 Fuzzification is the first key component of a FL system. As described in the 

previous section, the fuzzification operation is the process of mapping from a crisp 

point to a fuzzy set and involves the decomposition of system inputs and outputs into 

one or more fuzzy sets. Fuzzification is important because many quantities that are 

crisp and deterministic are not deterministic at all. Imprecision, ambiguity or 

vagueness might lead to uncertainty so that fuzzy representation through a 

membership function is more suitable (Ross 2004). 

Fuzzifier

Fuzzy Rule Base

Defuzzifier

Fuzzy Inference Engine

Input 
(crisp)

Fuzzy Fuzzy

Output
(crisp)

INFERENCE SYSTEM

 

Figure 2.2 Fuzzy Logic System configuration 
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 Two types of fuzzifiers exist: singleton and non-singleton. The most common 

fuzzyfier is the singleton fuzzifier. In this case, the crisp point 𝑥 ∈ 𝑈 is mapped into a 

fuzzy set F with support x’ where 𝜇𝐹(𝑥′) = 1 𝑓𝑜𝑟 𝑥 ′ = 𝑥 ∈ 𝑈 and 𝜇𝐹(𝑥′) = 0 𝑓𝑜𝑟 𝑥 ′ ≠

𝑥 ∈ 𝑈. Non-singleton fuzzyfiers are those in which the support is more than one 

point. In these fuzzifiers, 𝜇𝐹 achieves a maximum value at 𝑥 ′ = 𝑥 (𝑥 ′might be more 

than one point) and decreases as it moves away from that point. Singleton FL 

systems can be found in (Lee 1990) and non-singleton FL systems are available 

(Mouzouris & Mendel 1997) and the references within. The most common non-

singleton fuzzyfiers are the Gaussian, the triangular and the trapezoidal fuzzyfiers. 

2.1.3 Rule base 
 

 The rule-base is comprised of a set of rules that are developed based on 

system knowledge and aim to approximate the relationship between input and output 

(Kim et al. 2006). If-then rule statements are used to formulate these conditional 

statements and are usually of the following form: 

𝐼𝐹 𝑋 𝑖𝑠 𝑋1 𝐴𝑁𝐷 𝑌𝑖𝑠 𝑌1 𝑂𝑅 𝑍 𝑖𝑠 𝑍1 , 𝑇𝐻𝐸𝑁 𝑈 𝑖𝑠 𝑈1, 
 

where X, Y, Z are fuzzy input variables, U is a fuzzy output variable, X1, Y1, Z1, U1 

are fuzzy linguistic values defined by fuzzy sets on the range of X, Y, Z, U 

respectively (Saemi & Ahmadi 2007)(Jamshidi 2003), ‘AND’, ‘OR’, ‘NOT’, are 

connectives of the rule. The IF-part of the rule statement 

‘𝑋 𝑖𝑠 𝑋1 𝐴𝑁𝐷 𝑌𝑖𝑠 𝑌1 𝑂𝑅 𝑍 𝑖𝑠 𝑍1 ′ are called the antecedents or premises, and the 

THEN-part of the rule ‘𝑈 𝑖𝑠 𝑈1’ is the consequent. Depending on the type of FIS that 

we are dealing with the consequent can take the form of a fuzzy set or a function. 

 

2.1.4 Inference Engine 
 

 The inference engine considers all the fuzzy rules in the fuzzy rule-base and 

transforms an input (or a set of inputs) to the corresponding output(s) based on the 

fuzzy inference method applied. The Sugeno and the Mamdani inference engines 

vary in the way that the output is calculated. The Sugeno output membership 
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functions are either linear or constant and are expressed as an equation or an 

analytical expression, whereas the Mamdani membership functions are linguistic. 

2.1.5 Defuzzification 
 

 Defuzzification is the last step in the fuzzy inference process and involves the 

conversion of the fuzzy output from the inference engine to a crisp number. Several 

defuzzification methods exist: the weighted average, maximum membership, 

average maximum membership, centre of gravity etc. The most common is the 

centre of gravity due to its simplicity and accuracy.    
 

2.2 Clustering 
 

Data clustering is a method that identifies similarities in data and aims to 

group the data based on those similarities. Data plays an important role in the 

construction of data-driven models, especially in cases where data contains noise, 

conflicts (same input(s) result in having different output(s)) or are inconsistent. 

However, if data is treated carefully by utilising a suitable clustering technique to 

identify data patterns, deal efficiently with conflicting data and remove any outliers, 

then an accurate model based on those groupings can be constructed. Therefore, 

clustering techniques are widely used for fuzzy modelling.  

Several clustering techniques exist. The most representative off-line 

techniques include: K-means (or Hard C-means) clustering, Fuzzy C-means 

clustering, Mountain clustering and Subtractive clustering. 
 

2.2.1 K-means clustering 
 

The K-means clustering (MacQueen 1967)(Hartigan & Wong 1979) is an 

algorithm that aims to  locate data clusters in a dataset by partitioning M points in N 

dimensions into K clusters  so that a cost function (or objective function) is 

minimised. The algorithm proceeds by selecting the initial position of the cluster 

centres and then updates them until there is no further improvement of the cost 
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function. The main disadvantage of this method is that the algorithm is sensitive to 

the initial cluster locations. Therefore, several runs with different initial clusters 

centres have to be performed to obtain the optimal solution to the problem (Ray & 

Turi 1999) (Likas et al. 2003). 

2.2.2 Fuzzy C-means clustering 
 

The Fuzzy C-means clustering method (FCM) was presented (Dunn 1973) 

and further developed (Bezdek 1981). The basic idea behind FCM is that (Bezdek et 

al. 1984) each data point has a membership in each cluster that is specified by a 

degree that varies between 0 and 1. FCM is an unsupervised method that also 

minimises a cost function and always converges. However, FCM requires (Guillaume 

2001) some parameters to be set in advance (e.g. the number of the cluster 

centres), is sensitive to noise and requires a long computational time (Hung & Yang 

2001). 
 

2.2.3 Mountain clustering 
 

Mountain clustering (Yager & Filev 1994) is based on the construction of a 

function related to the density of data points, a so called the mountain function. After 

forming the grid of the data space, the construction of a mountain function from the 

data at every grid point is followed by the destruction of the mountains to obtain the 

cluster centres. The performance of this method is affected by the rise in the 

computational time that increases exponentially with the dimension of input data 

(Hammouda 2000).  
 

2.2.4 Subtractive clustering 

 
The Subtractive Clustering Method (SCM) was introduced by Chiu (Chiu 

1994)(Chiu 1997). This method is a modification of the mountain clustering method. 

The main differences between these two methods are mainly the potential value 

estimation method, the way a neighbouring data point is influenced, and how a new 
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cluster centre is acquired (Doan et al. 2005). SCM is a fast method with reduced 

computational time compared to mountain clustering. The computational time and 

the data dimension are analogous as the computational time does not increase 

exponentially with the dimension of input data.  

Each data point is considered as a potential cluster centre and the higher the 

density around a specific data point the higher are the chances that this data point 

will become a cluster centre.  

A group of n data points {x1, x2, ..., xn} in an M- dimensional normalised space 

where all the data points are bounded by a hypercube is considered. The potential Pi 

for each data point to become a cluster centre is calculated as follows: 

 

Equation 2.1 

 𝑃𝑖 =  �𝑒−𝑎||𝑥𝑖−𝑥𝑗||2
𝑛

𝑗=1

 

 

 

where 

Equation 2.2 

 𝑎 =
4
𝑟𝑎2

 

 

 

𝑟𝑎 is a positive constant of the radius defining a neighbourhood and data points 

outside this radius have little influence on the potential and ||. || denotes the 

Euclidean distance. 

 After the computation of the potential of every data point has been completed, 

the data point 𝑥1∗   with the highest potential 𝑃1∗ is selected as the first cluster centre. 

Then, the potential of the remaining data points is revised according to 

Equation 2.3 

 𝑃𝑖 ⇐  𝑃𝑖 − 𝑃1∗𝑒−𝛽 ||𝑥𝑖−𝑥1∗||2 

 
 

where 

𝛽 = 4
𝑟𝑏
2 and  𝑟𝑏 = 𝜂 ∗ 𝑟𝑎 
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𝑟𝑏 is the radius that defines the neighbourhood which will have measurable 

reductions in potential and 𝜂 is called the squash factor. Since closely spaced cluster 

centres are not desired, 𝑟𝑏 is typically chosen to be greater than 𝑟𝑎. 

 After the potential of all data points have been revised by using Equation 2.3, 

the data point with the highest remaining potential is chosen as the second cluster 

centre. Then further reduction of the potential of each data point according to their 

distance from the second cluster centre is performed. After the 𝑘th cluster centre has 

been obtained, the potential of each point is revised by the formula 

Equation 2.4 

 𝑃𝑖 ⇐  𝑃𝑖 − 𝑃𝑘∗𝑒−𝛽 ||𝑥𝑖−𝑥𝑘
∗ ||2 

 
 

where 𝑥𝑘∗ is the location of the 𝑘th cluster centre and 𝑃𝑘∗ is its potential value. 

 

 The process of acquiring a new cluster centre and revising potential is 

repeated until the remaining potential of all data points is below some fraction of the 

potential of the first cluster centre 𝑃1∗. Additional criteria are used for accepting or 

rejecting cluster centres to avoid marginal cluster centres: 

 

if 𝑃𝑘∗ > 𝜀𝑃1∗ 

Accept 𝑥𝑘∗ as a cluster centre and continue 

else if 𝑃𝑘∗ > 𝜀𝑃1∗ 

 Reject 𝑥𝑘∗ and end the clustering process 

else 

 Let 𝑑𝑚𝑖𝑛 =shortest of the distances between 𝑥𝑘∗ and all previously found 

cluster centres  

  

 if  𝑑𝑚𝑖𝑛
𝑟𝑎

+ 𝑃𝑘
∗

𝑃1∗
≥ 1  

  Accept 𝑥𝑘∗ as a cluster centre and continue 

 

 Else 
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Reject 𝑥𝑘∗ and set the potential at 𝑥𝑘∗ to 0. Select the data point with the 

next highest potential as the new 𝑥𝑘∗ and test again. 

 

𝜀 (accept ratio) specifies a threshold for the potential above which we will definitely 

accept the data point as a cluster centre and 𝜀 (reject ratio) specifies a threshold 

below which we will definitely reject the data point. 

 Subtractive clustering has four parameters that directly influence the number 

of rules and the error performance measures: the cluster radius 𝑟𝑎,  the squash factor 

𝜂, the accept ratio 𝜀 and the reject ratio 𝜀. For example a small value of 𝜂 will 

generate fewer clusters that might not be a precise representation of the system 

(model) investigated. On the other hand, a very large value of 𝜂 will generate a large 

number of rules leading to an over defined system. As a consequence, a parameter 

search has to be performed to find the optimal values for a given dataset. 

Recommended values for those parameters were introduced by Chiu. Also a 

parametric search on various clustering parameters to identify the best model by 

proposing  an extended subtractive clustering method by identifying the ranges that 

provide the best models was performed (Demirli et al. 2003) (Table 2.1). 

 

Symbol Chiu Demirli 

Cluster radius [0.25, 0.50] [0.15, 1] 

Squash factor 1.25 [0.05, 2] 

Reject ratio 0.15 [0, 0.9] 

Accept ratio 0.5 [0, 1] 
Table 2.1 Recommended values for parameters in subtractive clustering (Ren et al. 2006) 

2.3 Mamdani Fuzzy logic 
 

 As mentioned in 2.1, the major difference between the Mamdani and the TSK 

FISs lies in the way the consequent of the fuzzy rules are represented. This means 

that the aggregation and the way the deffuzification process is performed are 

different (Al-Jarrah & Abu-Qdais 2006). 

 The first two parts of the Mamdani fuzzy inference process involve the 

fuzzification of the inputs and the application of the fuzzy operators (Puñal et al. 

2003). Then fuzzy operations are applied to the antecedents through the rule-base 
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that can be developed based on human expert knowledge (Murnleitner et al. 2002). 

The ability to include expert knowledge in the form of linguistic rules and combine 

them with rules that can be automatically generated from datasets, representing the 

behavior of the system, makes Mamdani FLSs attractive (Casillas et al. 2000). The 

consequents of the rules have the form of fuzzy sets and the next step involves the 

aggregation of the rule outputs into a new fuzzy set. The defuzzification process is 

then performed in order to obtain a crisp output value. The selected defuzzification 

method for the fuzzy controller developed in Chapter 5 will be the centroid approach 

which is one of the most commonly used techniques (Turkdogan-Aydinol & 

Yetilmezsoy 2010).   

 Let us consider a fuzzy system with two noninteractive inputs (Ross 2004) x1 

and x2 (antecedents) and a single output y (consequent) that is described by a 

collection of r linguistic IF-THEN propositions of the form: 

Equation 2.5 

 𝐼𝐹 𝑥1 𝑖𝑠 𝐴1𝑘 𝑎𝑛𝑑 𝑥2 𝑖𝑠 𝐴2𝑘 𝑇𝐻𝐸𝑁 𝑦𝑘 𝑖𝑠 𝐵𝑘 𝑓𝑜𝑟 𝑘 = 1,2, … , 𝑟   

 
 

where 𝐴1𝑘  and 𝐴2𝑘 are the fuzzy sets representing the kth antecedent pairs, and 𝐵𝑘 is 

the fuzzy set representing the kth consequent. Also, let us consider x1 and x2 to be 

the crisp value inputs of the fuzzy system whose membership functions are 

described by   

Equation 2.6 

   𝜇(𝑥1) = 𝛿�𝑥1 − 𝑖𝑛𝑝𝑢𝑡(𝑖)� = �1,     𝑥1 = 𝑖𝑛𝑝𝑢𝑡(𝑖)
0,             otherwise 

 

 

Equation 2.7 

   𝜇(𝑥2) = 𝛿�𝑥2 − 𝑖𝑛𝑝𝑢𝑡(𝑗)� = �1,     𝑥2 = 𝑖𝑛𝑝𝑢𝑡(𝑗)
0,             otherwise 

 

 

By choosing to use a max-min Mamdani implication method of inference and for a 

set of disjunctive rules, the aggregated output for the r rules is: 
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Equation 2.8 

 

  𝜇𝐵𝑘(𝑦) = 𝑚𝑎𝑥𝑘 �min �𝜇𝐴1𝑘�𝑖𝑛𝑝𝑢𝑡(𝑖)�, 𝜇𝐴2𝑘�𝑖𝑛𝑝𝑢𝑡(𝑗)���  

𝑓𝑜𝑟 𝑘 = 1,2, … , 𝑟  

 

 

Figure 2.3 Graphical Mamdani (max-min) inference method with crisp inputs (Ross 2004). 

 

 The graphical analysis of the two rules is depicted in Figure 2.3. A11 and A12 

correspond to the first and second antecedents of the first rule respectively and B1 is 

the fuzzy consequent of the first rule. Similarly, A21 and A22 correspond to the first 

and second antecedents of the second rule respectively and B2 is the fuzzy 

consequent of the second rule. The minimum function (Equation 2.8) is illustrated in 

Figure 2.3 and results from the logical ‘and’ connection of the antecedents that is 

present in the rule structure (Equation 2.5). The minimum membership value results 

in shaping the membership function for the consequent of each rule (grey shaded 

area corresponding to the consequent membership function of each rule in Figure 

2.3). The resultant consequent membership functions for the two rules are then 

aggregated (aggregation operation ‘max’, Equation 2.8). Therefore, the output is 

represented with an aggregated membership function comprising of the outer 
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envelope of the individual membership forms of each rule. Finally, a crisp value (y*) 

can be obtained from the output membership function using the desired 

defuzzification method (2.1.5).       
  

2.4 TSK Fuzzy logic 
 

 TSK FL was introduced (Takagi & Sugeno 1985)(Sugeno & Kang 1988) in 

order to approximate and/or identify a variety of systems and functions by utilising 

input-output data. System approximation is achieved with the generation of fuzzy 

rules. The fuzzy sets in the consequent are substituted by a linear equation of the 

input variables. Linear models are used to locally represent the dynamics of the 

state-space regions, and an interpolation of those represents the overall system 

model (Figure 2.4). TSK FL does not require extensive knowledge of the processes 

or of the systems under examination, especially for AD processes which are highly 

complex nonlinear microbial processes. However, it is capable of providing a good 

description of those (Lauwers et al. 2013). The main advantage of the TSK model 

over other classes of fuzzy models lies in the fact that it can model a system with 

great accuracy either locally or globally (Quah & Quek 2006).  

For a multiple-input and single-output (MISO) system with 𝑛 rules, similar to 

the ones that will be presented in this thesis, the nth rule of in a TSK FLS is of the 

following form: 

Equation 2.9 

 
𝑅𝑛: 𝑖𝑓 𝑥1 𝑖𝑠 𝐴1𝑛, … , 𝑎𝑛𝑑 𝑥𝑘 𝑖𝑠 𝐴𝑘𝑛 

 

𝑡ℎ𝑒𝑛 𝑦𝑛 = 𝑝0𝑛 + 𝑝1𝑛 ∙ 𝑥1 + ⋯+ 𝑝𝑘𝑛 ∙ 𝑥𝑘 

 

 

where 𝑥1, … , 𝑥𝑘 and 𝑦 are respectively the linguistic input and output variables, 

𝐴1, … , 𝐴𝑘 are the fuzzy sets representing a fuzzy subspace, and 𝑝0𝑛, … , 𝑝𝑘𝑛 are the 

consequent parameters. The final output 𝑧 of the fuzzy model is computed as follows 

(weighted average aggregation): 
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Equation 2.10 

 𝑧 = ��𝜇𝑖𝑦𝑖

𝑛

𝑖=1

� ÷ ��𝜇𝑖

𝑛

𝑖=1

�  

 

where 𝜇𝑖 represents the degree to which the 𝑛th rule is fired (firing strength) and is 

derived using a T-norm operator (the product operator ∗ or the minimum operator ⋀). 

  

 

Figure 2.4 TSK model as a smooth piece-wise linear approximation of a non-linear function. Modified from 
(Lohani et al. 2006). 

 

 There is an absence of a systematic way to derive rules and parameters of 

the membership functions of the antecedent part of the fuzzy model. However, data 

clustering (or fuzzy clustering) techniques are utilised to solve this problem. System 

identification is achieved by “embedding” the cluster centres into rules. 
 

2.5 TSK based on subtractive clustering  
 

 By implementing the subtractive clustering algorithm the number of fuzzy 

rules, that is equal to the number of clusters, and the rule premises (cluster centres) 

are established (Chiu 1994)(Chiu 1997).  

Consider a set of 𝑚 cluster centres {𝑥1∗, 𝑥2∗, … , 𝑥𝑚∗ } found in an 𝑀 dimensional 

space where the first 𝑁 dimensions correspond to the input variables and the last 
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𝑀 −𝑁 dimensions correspond to the output variables. Each vector 𝑥𝑖∗ is 

decomposed into two component vectors 𝑦𝑖∗ and 𝑧𝑖∗. The vector 𝑦𝑖∗ contains the first 

𝑁 elements of 𝑥𝑖∗ corresponding to the cluster centre coordinates in the input space 

and the vector  𝑧𝑖∗ contains the 𝑀−𝑁 elements corresponding to the cluster centre 

coordinates in the output space.  

 Each cluster centre 𝑥𝑖∗ is considered to be a fuzzy rule of the following form 

that is representative of the system’s behaviour: 

 

𝑅𝑢𝑙𝑒 𝑖: 𝑖𝑓 {𝑖𝑛𝑝𝑢𝑡 𝑖𝑠 𝑛𝑒𝑎𝑟 𝑦𝑖∗} then the output is near 𝑧𝑖∗. 

 

Given an input vector 𝑦, the degree of fulfilment of rule 𝑖 is defined as: 

Equation 2.11 

 𝜇𝑖 = 𝑒−𝑎||𝑦−𝑦𝑖
∗||2  

where 𝑎 is defined in Equation 2.2. Then the output vector 𝑧 is given by: 

Equation 2.12 

 𝑧 = ��𝜇𝑖𝑧𝑖∗
𝑚

𝑖=1

� ÷ ��𝜇𝑖

𝑚

𝑖=1

�  

The above computational model can be viewed in terms of a FIS employing 

fuzzy if-then rules of the following form: 

Equation 2.13 

 𝑖𝑓 𝑌1 𝑖𝑠 𝐴𝑖1 & 𝑌2 𝑖𝑠 𝐴𝑖2& … 𝑡ℎ𝑒𝑛 𝑍1𝑖𝑠 𝐵𝑖1 & 𝑍2 𝑖𝑠 𝐵𝑖2 … 

 
 

where  𝑌𝑗 is the jth input variable and 𝑍𝑗 is the jth output variable, 𝐴𝑖𝑗 is an exponential 

membership function in the ith rule associated with the jth input and 𝐵𝑖𝑗 is a 

membership function in the ith rule associated with the jth output. 

 The membership function of the ith rule that is represented by cluster centre 𝑥𝑖∗ 

is: 
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Equation 2.14 

 𝐴𝑖𝑗�𝑌𝑗� = 𝑒𝑥𝑝 �−
1
2
�
𝑌𝑗 − 𝑦𝑖𝑗∗

𝜎𝑖𝑗
�
2

�  

 

𝐵𝑖𝑗 is a symmetric function centred around 𝑧𝑖𝑗∗ ,  𝑦𝑖𝑗∗  and 𝑧𝑖𝑗∗  are the jth elements of 𝑦𝑖∗ 

and 𝑧𝑖∗ respectively and 𝜎𝑖𝑗 = 1 √2𝑎⁄ .  

 Chiu (Chiu 1994)(Chiu 1997) showed that the accuracy of the TSK model can 

be improved by implementing a Type-1 FLS by setting the consequent parameter 𝑧𝑖∗ 

in Equation 2.8 to be a linear function of the input variables (the consequent 

parameters in a zero order TSK FLS are constants): 

Equation 2.15 

 𝑧𝑖∗ = 𝐺𝑖𝑦 + ℎ𝑖  

Then, the process of obtaining the optimal consequent parameters (matrice 𝐺𝑖, 

constant ℎ𝑖) involves substituting Equation 2.15 in Equation 2.12 and solving a linear 

least squares estimation problem (Takagi & Sugeno 1985). 

 

2.5.1 TSK example based on subtractive clustering (function approximation) 
 

 Let us consider the problem of modeling the nonlinear function in Equation 

2.16. 

Equation 2.16 

 𝑧 =
sin (𝑦)2

𝑦
  

Equally spaced y values were used to generate 100 training data points for the range 

[-2*pi, 2*pi]. Then, all training data were normalised so that they were bounded by a 

unit hypercube. The recommended parameter values for subtractive clustering were 

chosen as suggested by Chiu (Table 2.1). Therefore, the squash factor was set to 

1.25, accept ratio= 0.5, reject ratio= 0.15 and cluster radius was set to 0.25. By 

applying the process described in 2.2.4, eight cluster centres were found. 
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After the potential for each data point to become a cluster centre was 

calculated using Equation 2.1 (Figure 2.5), the data point with the highest potential 

was selected as the first cluster centre as depicted in Figure 2.5 and in Figure 2.6 

(1).  

 

Figure 2.5 Potential values using Subtractive Clustering 

Next, the potential of the remaining data points was revised (Equation 2.3). The data 

point with the highest remaining potential was selected as the second cluster centre 

((2) in Figure 2.6). Then, further reduction of the potential of each data point 

according to the distance from the second cluster centre was performed. Equation 

2.4 was used to calculate the revised potential for each point after obtaining the 

cluster centres. Additional criteria are being used for accepting and rejecting cluster 

centres and revising potential (2.2.4), which resulted in having eight cluster centres 

that were acquired in the order depicted in Figure 2.6.    
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Figure 2.6 Comparison of training data with the first order TSK model 
 ((1)-(8): position of the eight cluster centres)  

 
The clusters determined from the data identified eight regions in the input 

space that map into the associated class. Therefore, each cluster centre can be 

translated into a fuzzy rule for identifying the class. 

As soon as the clustering process was completed, the fuzzy system in 

Equation 2.12-Equation 2.14 was designed. There, the consequent parameter 𝒛𝒊∗ 

(Equation 2.12) was set to be a linear function of the input variables. The ‘if-then’ 

rules then became the TSK type of the form of Equation 2.9 (Table 2.2). The degree 

of fulfillment of each rule is depicted in Figure 2.7 and the membership function 

parameters are shown in Table 2.3. This is a single input-single output problem. 

Therefore, in Equation 2.13 and Equation 2.14, j=1and is omitted for simplicity of 

representation (e.g. A1 instead of A11). The process of obtaining the optimal 

consequent parameters involves solving a least-squares estimation problem (2.4). 

Figure 2.5 shows the output of the fuzzy model that produced an output close to the 

desired system output. 
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Figure 2.7 Degree of fulfillment of each rule 

 

Rule Rule description of the form 
If ... Then 𝒛 = 𝒑𝟏𝒚𝟏 + 𝒑𝟎 

1 If  y is A1 Τhen z1= 0.8988∙y+3.5258 
2 If  y is A2 Τhen z2= 0.8988∙y-3.5258 
3 If  y is A3 Τhen z3= 6.106∙y-25.87 
4 If  y is A4 Τhen z4= 6.106∙y+25.87 
5 If  y is A5 Τhen z5= 0.2568∙y-1.8393 
6 If  y is A6 Τhen z6= 0.2568∙y+1.8393 
7 If  y is A7 Τhen z7= 36.288∙y-78.814 
8 If  y is A8 Τhen z8= 36.288∙y+78.814 

Table 2.2 TSK fuzzy model rules 
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Cluster Membership 
functions 

Centres (y) Width (y) 

1 A1 -3.89 1.11 
2 A2 3.89 1.11 
3 A3 1.508 1.11 
4 A4 -1.508 1.11 
5 A5 5.906 1.11 
6 A6 -5.906 1.11 
7 A7 0.377 1.11 
8 A8 -0.377 1.11 

Table 2.3 Membership function parameters obtained using subtractive clustering 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

117 
 



 Chapter 3 Development of a software sensor for Alkalinity 
monitoring based on fuzzy logic 

 

In this chapter a software sensor predicting alkalinity was developed using 

fuzzy logic and subtractive clustering. It is compared with the software sensors 

based on multiple linear regression models that were developed (Partner N° 2, 

Rothamsted Research 2010) to predict alkalinity. Those models were utilised to 

control the OLR of a two-stage, semi-continuously fed stirred reactor system.  

3.1 Introduction- Alkalinity as a monitoring parameter 
 

 The AD process is difficult to control and can become unstable especially 

when changes in fermentation are induced by rapid OLR changes or variations in the 

feedstock composition (Spanjers & Lier 2006). High loading and in most cases 

overloading result in poor gas production rates and an acidified or sour digester that 

will require a lot of time to recover. The recovery period varies according to the 

substrate added, the size of digester and the nature of the controller that regulates 

the OLR in automated processes. Gentle recovery strategies are suggested, an 

example of which can be found in Scherer et al. (2009) and Demirel & Scherer 

(2008). To avoid a sour digester that will require between two days and two months 

to recover, introducing a control system that will prevent overloading has to be 

designed. 

Gas production of AD systems is optimised for increased OLRs and in certain 

cases control systems focus on preventing system imbalance rather than driving the 

system towards maximum gas production (Pullammanappallil et al. 1998). However, 

efficient operation at high load rates is vital to get the most out of AD systems 

ensuring that the system will be protected against disturbances and overloading 

situations (Liu et al. 2004c). 

 Alkalinity is an indicator of process stability in AD and enables the detection 

of changes in the buffer capacity of the system (Palacios-Ruiz et al. 2008)(Hawkes 

1993). Moreover, alkalinity is a good indicator of future failure due to reactor 

acidification (Guwy, Hawkes, Wilcox, et al. 1997).  

118 
 



Many control applications utilise the VFA to alkalinity ratio. VFA accumulation 

may lead to a decrease in pH and cessation of gas production. This justifies why 

VFAs are widely used to determine the stability of digestion processes. Alkalinity and 

VFA are two of the most sensitive indicators of process stability (Schoen et al. 2009) 

which led to a wide application of the VFA/ Alkalinity ratio for the purpose of system 

monitoring. Alkalinity is influenced by the VFA concentration which is the reason why 

it should be monitored together with alkalinity to provide as accurate and complete 

information as possible of the digester stability (Ahring & Angelidaki 1997). Values 

between 0.1 and 0.4 are considered to be indicative of stable process operation 

avoiding any risks of acidification bounds (Switzenbaum 1990)(Zickefoose & Hayes 

1976). Tighter bounds have also been proposed.  A ratio between 0.1-0.25 is 

considered favourable, a rise above 0.3-0.4 dictates that corrective measures should 

be taken and values that exceed 0.8 result in severe digester failure (Khanal 2008). 

A ratio of at least 1.4:1 of bicarbonate/VFA should be maintained for a well-buffered 

and stable digestion process despite the fact that the stability of the ratio, and not its 

level, is of prime importance (Appels et al. 2008).  

VFA sensors have been implemented in the past using analytical instruments. 

Those include the use of gas chromatography (GC), titrimetry, IR-spectometry 

(Spanjers & Lier 2006), spectrophotometry and capillary zone electrophoresis 

(Zygmunt & Banel 2009). However, on-line sensors have proven to be quite 

unreliable by delivering wrong measurements due to disturbances (e.g. interference 

of chemical species) (Lardon et al. 2004). Other methods were limited by the fact 

that the VFA measurement system would work in a reliable manner if serviced 

regularly (Boe, Batstone, et al. 2007). In most recent years, more accurate VFA 

sensors have been developed based on headspace gas chromatography (HSGC). A 

method that applies ex-situ VFA stripping with variable headspace volume and gas 

analysis by gas chromatography-flame ionization detection (GC-FID) has been 

proposed (Boe, Batstone, et al. 2007). The sample analysis might be time 

consuming (sampling duration is 25-40 minutes) but the individual VFA component 

analysis is in good agreement with off-line analysis. 

Due to the fact that alkalinity is a good process indicator of AD process 

stability, that literature based VFA/Alkalinity ratios are variable and that VFA in-line 

sensors are quite difficult to construct, contain a high level of complexity when it 
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comes to their operation and can be quite expensive, it was decided to proceed with 

the design of a software sensor that predicts alkalinity.  
 

3.2 Materials and methods 

3.2.1 Input selection 
 

 pH, electrical conductivity (EC), organic redox potential (ORP) and 

temperature (in one of the designs) were selected as the inputs of the FIS that would 

predict alkalinity. These parameters were chosen to form the input set because they 

could be obtained by cheap and easy to maintain sensors performing the 

measurements with the use of simple electrodes (Ward et al. 2008). Moreover, they 

have been used in the past to predict alkalinity and assess stability of AD plants 

(Partner N° 2, Rothamsted Research 2010)(Ward et al. 2008)(Ward et al. 2011). 

Finally, by utilizing the same inputs and the same data used to predict alkalinity a 

comparison of the proposed fuzzy logic design could be made with the regression 

models.  
 

3.2.2 Description of the AD plant setup  
 

3.2.2.1 Digester configuration 
 

 The pilot scale anaerobic digester consisted of a two stage, semi-continuously 

fed stirred reactor system treating manure. The first tank was used for the hydrolysis 

process and the second tank for the methanogenesis process. The two tanks were 

based at North Wyke Research and were designed to be 1m3 and 1.5m3 

respectively. Both tanks had several ports on the top to allow for a number of probes 

to be installed. The digester was operated with cattle slurry at mesophilic 

temperatures (37o C).   
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3.2.2.2 Sensors- Data acquisition 
 

 Partech Waterwatch 2610 flow cells (St Austell, Cornwall UK) provided pH, 

ORP, EC and temperature measurements. Sensors were installed in each tank and 

data was downloaded into files with the utilisation of LabViewTM software. 

 

3.2.2.3 Process control configuration 
 

 LabView software (version 8.2, National Instruments Ltd.) was used to record 

process parameter data, regulate pumping and mixing events and control the AD 

process by adjusting the OLR according to the magnitude of alkalinity.  

When the OLR was controlled through a rule-based system configuration, it 

would be increased or decreased following the predicted alkalinity evolution. The 

OLR adjustment was defined by the rule-based system based on the alkalinity 

deviation from an established midpoint.  

If the predicted alkalinity was higher than its midpoint, then the OLR would 

increase according to the distance from the midpoint. Consequently, if the predicted 

alkalinity was below the midpoint, then the feeding rate would decrease according to 

the distance from the midpoint. In addition, the current alkalinity prediction value was 

compared to the previous alkalinity prediction value and their difference also 

influenced the following feeding rate.  

Derivative weighting was also utilised to control the rate of OLR change due 

to alkalinity adjustments. Therefore, a high derivative weighting value corresponded 

to a high rate change in accordance with the alkalinity value. 

The system operation was also governed by a maximum OLR value that 

would prevent system failures due to alkalinity predictions and/or sensor 

malfunctions 
 

3.2.3 Order of experiments 
 

 The experiments that were performed so as to evaluate the proposed control 

methodology were as follows: 

1. 07/05/2008- 26/07/2008 
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During the first experiment (M-A(1)) the OLR was adjusted manually 

and focused on developing and evaluating the proposed alkalinity 

prediction algorithm. 

2. 28/07/2008- 02/10/2008 

The second experiment (RB- A(2)) tested the developed algorithm and 

the OLR was determined by the rule-based system based on the soft-

sensor predictions. 

3. 02/10/2008- 20/10/2008 

An improved alkalinity prediction algorithm was designed based on 

data collected from the previous experiments. Experiment (M-B(3)) 

aimed to test the new adjusted soft-sensor. OLR was controlled 

manually in order to test the system response to higher OLRs. 

4. 20/10/2008- 07/12/2008  

During the experiment (RB-B(4)), a new algorithm was implemented 

and a rule-based system was responsible for varying the OLR 

accordingly.  
 

3.2.4. Chemical analysis (Alkalinity) 
 

 Alkalinity was measured using off-line titration (Metrohm 716 DMS Titrino, 

Metrohm House, Unit 2, Top Angel, Buckingham Industrial Park, Buckingham MK18 

1TH). Alkalinity concentration was measured in the form of CaCO3 and was 

converted to HCO3
- by multiplication of the result by a factor of 1.22 as suggested in 

the operating procedure. 
 

3.2.5. Multiple linear regression alkalinity prediction models 
 

 An algorithm was developed to predict alkalinity values based on sensor data 

(Partner N° 2, Rothamsted Research 2010). Although the algorithm remained the 

same throughout the duration of all four experiments, the factors of the equation 

differed. More specifically, as data accumulated during the experiments the algorithm 

was improved by incorporating newly available data. The factors for the alkalinity soft 
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sensor equation were determined using multiple linear regression based on the pH, 

ORP and EC values provided by the sensors: 

 

Algorithm 1 (MLR1) 

 The first algorithm (MLR1) was developed during the first experiment (M-A(1)) 

and utilised during the first and the second experiment  (RB- A(2)). Equation 3.1 

corresponds to the predicted alkalinity value: 

Equation 3.1 

 𝐴𝑙𝑘𝑎𝑙𝑖𝑛𝑖𝑡𝑦 = −8906 + (1678 ∗ 𝑝𝐻) + (1.998 ∗ 𝑂𝑅𝑃) + (384.2

∗ 𝐸𝐶) 
 

Algorithm 2 (MLR2) 

 The second algorithm (MLR2) was an improved version of MLR1 since its 

constituting parameters were based on more data. MLR2 was used during the third 

(M-B(3)) and the fourth (RB-B(4)) experiment. Equation 3.2 corresponds to the 

predicted alkalinity value from the soft-sensor: 

Equation 3.2 

 𝐴𝑙𝑘𝑎𝑙𝑖𝑛𝑖𝑡𝑦 = 4876 + (22 ∗ 𝑝𝐻) + (0.16 ∗ 𝑂𝑅𝑃) + (−223 ∗ 𝐸𝐶)  

Algorithm 3 (MLR3) 

 A third algorithm that incorporated temperature as well was proposed in future 

co-digestion (manure and grass were used as substrates) experiments that were 

conducted between 02/02/2009- 23/07/2009 (Partner N° 2, Rothamsted Research 

2010). The reason why temperature was incorporated is because it provided a better 

regression. Sufficient data were not collected (four alkalinity samples were analyzed 

off-line for alkalinity) and therefore this algorithm cannot be part of the comparison 

that will be conducted in the thesis. However, for the sake of completeness the 

proposed algorithm (Equation 3.3) is provided: 
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Equation 3.3 

 𝐴𝑙𝑘𝑎𝑙𝑖𝑛𝑖𝑡𝑦 = 𝑘 + (𝑘 ∗ 𝑝𝐻) + (𝑘 ∗ 𝑂𝑅𝑃) + (𝑘 ∗ 𝐸𝐶)  

where the first k is a general constant and each remaining k is a unique constant 

associated with each process parameter. 

3.2.6. FIS Design to predict alkalinity 
 

3.2.6.1 Introduction 
 

 Two different FISs were implemented in order to demonstrate the improved 

efficiency of FL systems in variable prediction compared to multiple linear regression 

models. The FISs were designed using the same inputs that the multiple linear 

regression models used: pH, ORP and EC. First order Takagi-Sugeno FISs based 

on subtractive clustering were constructed to predict alkalinity.  

The first FIS (FIS1) was designed and tested from data that were collected 

during (M-A(1)) and (RB- A(2)). FIS1 will be compared with MLR1 which is the soft-

sensor that predicted alkalinity for the duration of the first two experiments. FIS1 will 

then be compared with MLR2 which is an improved version of MLR1 and was 

applied in the last two experiments. This evaluation will demonstrate that the 

performance of an improved multiple linear regression model is inferior to the FL 

system proposed.  

The second FIS (FIS2) was designed based on data from the first three 

experiments. Because the comparison results between the first two regression 

models and FIS1 favoured FIS1, the second fuzzy model implementation aimed to 

demonstrate that as the database increases, so does the accuracy of the model. 

Moreover, systematic data acquisition also under extreme operational conditions 

enhances the model performance and robustness. 

The training, checking and validation datasets for the design of FIS1 and FIS2 

were selected in a random way but followed certain rules. Since the off-line alkalinity 

measurements were recorded in a sequential way, the training, checking and 

validation sets follow the same pattern.  
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The maximum and minimum values of each input/output variable are part of 

the training set. Since all the samples were collected in a sequential way it was 

ensured that the training, checking and validation sets followed the same pattern. 

The most representative way to divide the database into the three aforementioned 

sets is to select 10% of the samples for the validation set, 65% of the samples for the 

training set and the remaining 25% for the checking set. Observed alkalinity values 

from all experiments are depicted in Figure 3.1. 
 

 

Figure 3.1 Samples analysed for alkalinity for experiments M-A(1), RB-A(2), M-B(3) and RB-B(4). 

 

3.2.6.2 Fuzzy modelling algorithm  
 

 The flow diagram of the fuzzy modelling algorithm is presented in Figure 3.2. 

The process followed is quite similar to the one utilised (Ren et al. 2011). Subtractive 

clustering (Chiu 1994) was  used to locate the position and number of cluster centres 

and a first order Takagi-Sugeno FIS (Takagi & Sugeno 1985)(Sugeno & Kang 1988) 

was implemented based on the clustering performed.  

Based on the investigation performed by varying the cluster radius, the 

squash factor, the reject ratio and the accept ratio, the cluster radius appeared to 

have the most important influence in the cluster estimation. Even after identifying a 

FIS that exhibited the best performance based on the statistical indices (3.2.7) with a 

specific cluster radius, the variation of all the other three parameters had very little, if 
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any, positive influence to our fuzzy system. Therefore, based on the parameter 

identification presented (Chiu Table 2.1) it was decided to vary only the cluster 

radius from 0.15 to 1.0 with a step of 0.01 and not to vary any of the other 

parameters. It is also worth mentioning that any FIS with a cluster radius greater 

than 0.5 exhibited similar behaviour. The Fuzzy Logic Toolbox within the framework 

of Matlab 7.10 was used to implement the FISs. 
  

Input- Output Data

Subtractive clustering

TSK FIS
Identification

Statistical Indices
Satisfactory?

END

TSK FIS

YES

NO

 

Figure 3.2 Sugeno FIS based on subtractive clustering design 

 

3.2.7 Performance Indicators 
 

There are two ways to evaluate how good model estimations are: using 

numerical methods and visual methods. Visual methods include the use of several 

plots (e.g. plotting of predicted against observed values) and can give a general idea 
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about the model performance. Numerical methods can accurately characterise the 

model performance and in some cases suggest how to improve the model. 

The multiple linear regression models and the FISs performance were 

evaluated with the use of several statistical measures. The performance indices that 

follow were used because each index provides information about a different aspect 

of the model and some indices provide a better overall performance description if 

they are used in conjunction. Also, considering the application under examination 

some of them influence the model design more than others. In this case for example 

bias is considered quite important whereas in other applications the coefficient of 

determination (R2) might be the crucial indicator. We denote by Oi an observed value 

and by Pi a predicted value. Om and Pm represent the average value of the observed 

and predicted values respectively. 

The coefficient of determination (R2) also known as the multiple correlation 

coefficient provides information about the proportion of variability taken into 

consideration by the model. R2 is frequently used in classical regression analysis as 

a measure of successful prediction (Nagelkerke 1991) and takes values between 0 

(poor performance) and 1 (best performance). 

Equation 3.4 

 𝑅2 =
(∑ (𝑂𝑖 − 𝑂𝑚)(𝑃𝑖 − 𝑃𝑚))𝑛

𝑖=1
2

∑ (𝑂𝑖 − 𝑂𝑚)2𝑛
𝑖=1 ∑ (𝑃𝑖 − 𝑃𝑚)2𝑛

𝑖=1
  

 

 The mean absolute error (MAE) measures the distance of the estimates from 

the observed values (Equation 3.5). MAE gives information about the error in its 

original magnitude and scale and is less sensitive to extreme values than squared 

errors. The reason why MAE is preferred over root mean square error (RMSE) is that 

although it is used in the evaluation of many FL designs, RMSE is only indicative of 

the model ability to predict a value away from the mean (Nayak et al. 2005). RMSE 

gives a relatively higher weight to larger errors and is mostly useful when large errors 

are particularly undesirable (Shahi 2009). Finally, it is concluded (Willmott & 

Matsuura 2005) that MAE is an unambiguous measure of average error magnitude 

and should be used over RMSE which tends to be higher or equal to MAE at all 

times.   
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Equation 3.5 

 

 
𝑀𝑒𝑎𝑛 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟 (𝑀𝐴𝐸) =

1
𝑛
�|𝑃𝑖 − 𝑂𝑖|
𝑛

𝑖=1

  

 

 Bias is a performance index similar to MAE but it does not use the absolute 

value in the difference between the predicted and observed values. Bias provides 

information about how much the model under predicts or over predicts. Bias values 

should ideally be 0. 

Equation 3.6 

 𝐵𝑖𝑎𝑠 =
1
𝑛
�(𝑃𝑖 − 𝑂𝑖)
𝑛

𝑖=1

  

 The index of agreement (IA) was introduced by Willmott (1981) to 

characterise the degree of the model prediction error and varies between 0 (no 

agreement) and 1 (perfect agreement). IA can help to identify additive and 

proportional differences in the observed and predicted means and variances (Moriasi 

et al. 2007). 

Equation 3.7 

 

 

𝐼𝐴 = 1 −
∑ (𝑃𝑖 − 𝑂𝑖)2𝑛
𝑖=1

∑ (|𝑃𝑖 − 𝑂𝑚| + |𝑂𝑖 − 𝑂𝑚|)2𝑛
𝑖=1

 

 

 

 

 Normalised mean square error (NMSE) is mostly used in conjunction with 

MAE and measures the deviation between predicted and observed values and 

ideally should have a value of 0 indicating a perfect agreement. However, high 

NMSE values do not imply that the model under examination is completely 

unreliable. 

Equation 3.8 

 𝑁𝑀𝑆𝐸 =
∑ (𝑃𝑖 − 𝑂𝑖)2𝑛
𝑖=1
∑ (𝑃𝑖)2𝑛
𝑖=1
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 Fractional Bias (FB) is a measure of agreement between mean observed and 

predicted values (Cakmakci 2007) and a value of 0 signifies a perfect agreement. 

Equation 3.9 

 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝐵𝑖𝑎𝑠 (𝐹𝐵) =
𝑃𝑚 − 𝑂𝑚

0.5(𝑃𝑚 + 𝑂𝑚)
  

3.3 Results and discussion 
 

3.3.1 FIS1 design and comparison with MLR1 
 

 The maximum and the minimum input/output values were selected to be part 

of the training set of the FIS. 78% of the data was part of the training set and 22% of 

the data constituted the checking set. Since the data were collected in a sequential 

manner the training and checking set values followed the same pattern (one 

checking set data point every four training data points). This selection came as a 

result of previous attempts where both datasets were selected in random, ensuring 

though that the maximum and minimum values were always part of the training set, 

but the results were not satisfactory and in many cases although the resulting FIS 

performance appeared to be really good the evaluation using newly available data 

proved to be poor mainly due to the poor spread of the training dataset values. 

 The FIS design was based on the process described in Figure 3.2. Least-

square estimation  was used to identify the consequent parameters of the TSK FIS 

(Chiu 1994). The consequent functions of the model are linear. The premise 

structure and parameters as well as the consequent structure and parameters were 

set and tuned in a recursive manner.  

During the variation of the cluster radius, the squash factor, the reject ratio 

and the accept ratio, the cluster radius appeared to have the most influence in the 

cluster estimation. After identifying the best data fitted FIS with a specific cluster 

radius, the variation of all the other three parameters had very little, if any, positive 

influence to our fuzzy system. Therefore, it was decided to vary only the cluster 

radius from 0.15 to 1.0 with a step of 0.01 and not to vary any of the other 

parameters.  
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 The parameters based on which the best FIS was designed were:  cluster 

radius 0.5, squash factor 1.25, reject ratio 0.15 and accept ratio 0.5. Two cluster 

centres were identified using subtractive clustering (Table 3.1) based on which the 

Gaussian membership functions for each input were defined. Each input had two 

fuzzy sets based on the clustering performed (Figure 3.4) and two rules governed 

the fuzzy system’s function (fuzzy model) (Table 3.2). For EC there is a uniform 

distribution of the fuzzy sets which is depicted by the distance in the location of the 

cluster centres. For pH there is a higher degree of overlap. This is probably due to 

the fact that the range of pH values is limited between 5.9 and 8.9 and the majority of 

them have values close to 7. This explains why the two cluster centers are both 

located quite close to this value. All the ORP values apart from a very few exceptions 

are centered around -500. This is the reason why there is a high amount of overlap 

between the two membership functions.       

 

 

Figure 3.3 3D representation of subtractive clustering for FIS1 
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Cluster 
Membership 
Functions 

Centres Width (spread) 

pH ORP EC pH ORP EC 

1 MF1 7.03 -503 6.78 0.263 107.66 1.473 

2 MF2 7.2 -521 0.02 0.263 107.66 1.473 
Table 3.1 Membership function parameters obtained using subtractive clustering for FIS1 

 

Rule Rule description of the form 
If ... Then 𝒚 = 𝒑𝟏𝒙𝟏 + 𝒑𝟐𝒙𝟐 + 𝒑𝟑𝒙𝟑 + 𝒑𝟎 

1 𝐼𝑓 𝑝𝐻𝑖𝑛 𝑖𝑠 𝑝𝐻𝑖𝑛𝑀𝐹1 𝑎𝑛𝑑 𝑂𝑅𝑃𝑖𝑛 𝑖𝑠 𝑂𝑅𝑃𝑖𝑛𝑀𝐹1 𝑎𝑛𝑑 𝐸𝐶𝑖𝑛 𝑖𝑠 𝐸𝐶𝑖𝑛𝑀𝐹1 𝑇ℎ𝑒𝑛 

𝐴𝑙𝑘𝑎𝑙𝑖𝑛𝑖𝑡𝑦 = −43.545 ∙ pH + 1.186 ∙ ORP − 33.244 ∙ EC + 4485.959 

 

2 𝐼𝑓 𝑝𝐻𝑖𝑛 𝑖𝑠 𝑝𝐻𝑖𝑛𝑀𝐹2 𝑎𝑛𝑑 𝑂𝑅𝑃𝑖𝑛 𝑖𝑠 𝑂𝑅𝑃𝑖𝑛𝑀𝐹2 𝑎𝑛𝑑 𝐸𝐶𝑖𝑛 𝑖𝑠 𝐸𝐶𝑖𝑛𝑀𝐹2 𝑇ℎ𝑒𝑛 

𝐴𝑙𝑘𝑎𝑙𝑖𝑛𝑖𝑡𝑦 = 4411.727 ∙ pH − 3.8 ∙ ORP + 534.276 ∙ EC − 29215.7 

 
Table 3.2 TSK fuzzy model rules and consequent parameters for FIS1 
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Figure 3.4 Fuzzy sets for FIS1 

 

 FIS1 was compared with MLR1 in order to evaluate its performance (Figure 

3.5). Since both MLR1 and FIS1 were designed based on data obtained during the 

experiment M-A(1), the performance indices provided in Table 3.3 do not correspond 

to the evaluation of these models with newly available data. They demonstrate 

however, whether these techniques (multiple linear regression and fuzzy logic) are 

suitable to predict the system’s output (alkalinity) in an accurate manner. 

 The data points used to train both models were few (52 data points for FIS1 

and 68 for MLR1) and in a nonlinear process like anaerobic digestion data-based 

approaches require a much larger amount of data for the designed model to be quite 

accurate. This is one of the reasons why the performance indices for MLR1 

appeared to be very poor.   
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Figure 3.5 Observed and predicted alkalinity values using FIS1 and MLR1 

 

 

 

Performance indices MLR1 FIS1 

R2 0.122 0.494 

MAE 1383.3 344.23 

Bias 976.3 27.219 

IA 0.475 0.824 

NMSE 0.103 0.013 

FB 0.24 0.008 
Table 3.3 Alkalinity performance for MLR1 and FIS1   

 

 MLR1 was poor in predicting alkalinity values (Table 3.3). Taking into 

consideration that alkalinity ranged between 1600-6700, a MAE of 1383 and a bias 

value of 976.3 indicate that the regression model is unsuitable to predict the process 
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parameter under investigation. The rest of the performance indices also indicate an 

insufficient input-output mapping. 

 FIS1 demonstrated an improved efficiency in predicting alkalinity. Although 

the coefficient of determination was 0.494, the low MAE value, the even lower value 

for bias and the almost zero NMSE and FB values indicate that the fuzzy logic model 

could be possibly control the OLR based on alkalinity predictions. However, since 

some of the observed alkalinity values were outside the training range of FIS1, the 

fuzzy model is not considered to be reliable for future applications.  
 

3.3.2 Comparison between FIS1 and MLR2 
 

MLR2 was developed based on data from the first two experiments M-A(1)) 

and RB- A(2) and was applied to predict alkalinity during the third M-B(3) and the 

fourth RB-B(4) experiment. MLR2 was essentially an improvement of MLR1 since its 

design was based on more data that described the anaerobic digestion evolution 

process in a larger range of operation.  

MLR2 was compared with FIS1 against newly available data from M-B(3) and 

RB-B(4) to demonstrate that an improved multiple linear regression model could not 

predict alkalinity more accurately than a fuzzy model that was designed with less 

amount of data. Additionally, certain input values laid outside the FIS1 training range 

since changes in the anaerobic digestion environment over that period resulted in 

having new extreme input values. The response of the FIS to these extreme values 

was positive as indicated by the performance indices in Table 3.4.  
 

Performance indices MLR2 FIS1 

R2 0.004 0.127 

MAE 733.86 591.28 

Bias 319.74 99.494 

IA 0.361 0.4 

NMSE 0.057 0.048 

FB 0.09 0.03 
Table 3.4 Alkalinity performance for MLR2 and FIS1 
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 It appears that the performance of both models was quite inadequate for the 

FIS1 and inadequate for MLR2 (Figure 3.6). However, by taking into consideration 

that the system did not operate during extreme conditions (e.g. really high loading 

rates) during the first experiment, FIS1 cannot be considered as a reliable alkalinity 

predictor. Therefore, it needs to be ensured that input/output values that were 

outside its design range are embedded in the design of the fuzzy model.  

 The MLR2 performance indices indicate that the regression model is quite 

unsuitable for this application. A coefficient of determination with a value of zero is 

indicative of the model performance and only the MAE value is quite satisfactory. 

Still, a model that was designed based on data over a five month period should 

provide more accurate results especially compared with an undertrained model such 

as FIS1.    

Although the R2 value is extremely low for FIS1, the MAE and the bias 

indicate that the predicted values do not deviate by a huge amount from the actual 

values. However, an IA value of 0.4 is really low and the NMSE and FB values are 

slightly high.  Figure 3.6 shows that the FIS1 predictions do not deviate that much 

and that the fuzzy model is not very sensitive to alkalinity changes based on pH, 

ORP and EC fluctuations.  
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Figure 3.6 Observed and predicted alkalinity values using FIS1 and MLR2 

3.3.3 FIS2 design 
 

 A new FIS was designed in order to demonstrate that by increasing the 

training data base a more accurate model can be designed. However, systematic 

data acquisition is required (preferably on a daily basis) to sufficiently monitor the 

evolution of the input/output parameters. During all four experiments samples were 

not analyzed for alkalinity on such a frequent basis which resulted in a not so 

accurate process representation.  

MLR3 was superior to the previous multiple linear regression models 

presented above because temperature was also part of the system inputs. By 

including temperature a more precise alkalinity value could be forecasted 

considering the fact that temperature fluctuations severely impact the anaerobic 

digestion process. Moreover, by including temperature as an input a better 

regression was achieved (Partner N° 2, Rothamsted Research 2010). However, 
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FIS2 did not include temperature as an input parameter because the fuzzy models 

did not respond positively to this addition. 

Data from the first three experiments M-A(1), RB- A(2)), and M-B(3)) were 

used in the fuzzy logic implementation that was validated with data from the fourth 

experiment(RB-B(4)). It was ensured that the fuzzy logic model would accommodate 

maximum and minimum input values. The selection process of the training and 

checking sets for the model implementation was performed in a similar manner to 

the process followed for the implementation of FIS1. 

 FIS2 implementation was based on the process depicted in Figure 3.2. The 

consequent parameters were determined by utilizing the least-square estimation 

method (Chiu 1994). The consequent functions of the model are linear. The premise 

structure and parameters as well as the consequent structure and parameters were 

set and tuned in a recursive manner.  

The cluster radius was varied from 0.15 to 1 with a step of 0.01 during the 

best model identification process. The values of the squash factor, the reject ratio 

and the accept ratio were set to 1.25, 0.15 and 0.5 respectively.  

 The parameters based for the best FIS designed were:  cluster radius 0.27, 

squash factor 1.25, reject ratio 0.15 and accept ratio 0.5. Three cluster centres were 

identified using subtractive clustering (Table 3.5) based on which the Gaussian 

membership functions for each input were defined. Each input had three fuzzy sets 

based on the clustering performed and three rules governed the fuzzy system’s 

function (fuzzy model) (Table 3.6). 
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Figure 3.7 3D representation of subtractive clustering for FIS2 

   

 

Cluster 
Membership 
Functions 

Centres Width (spread) 

pH ORP EC pH ORP EC 

1 MF1 7.03 -503 6.78 0.142 58.135 0.795 

2 MF2 7.18 -501 0.02 0.142 58.135 0.795 

3 MF3 6.76 -525 4.51 0.142 58.135 0.795 
Table 3.5 Membership function parameters obtained using subtractive clustering for FIS2 
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Rule Rule description of the form 
If ... Then 𝒚 = 𝒑𝟏𝒙𝟏 + 𝒑𝟐𝒙𝟐 + 𝒑𝟑𝒙𝟑 + 𝒑𝟎 

1 𝐼𝑓 𝑝𝐻𝑖𝑛 𝑖𝑠 𝑝𝐻𝑖𝑛𝑀𝐹1 𝑎𝑛𝑑 𝑂𝑅𝑃𝑖𝑛 𝑖𝑠 𝑂𝑅𝑃𝑖𝑛𝑀𝐹1 𝑎𝑛𝑑 𝐸𝐶𝑖𝑛 𝑖𝑠 𝐸𝐶𝑖𝑛𝑀𝐹1 𝑇ℎ𝑒𝑛 

𝐴𝑙𝑘𝑎𝑙𝑖𝑛𝑖𝑡𝑦 = −29.329 ∙ pH + 1.171 ∙ ORP − 28.395 ∙ EC + 4349.795 

 

2 𝐼𝑓 𝑝𝐻𝑖𝑛 𝑖𝑠 𝑝𝐻𝑖𝑛𝑀𝐹2 𝑎𝑛𝑑 𝑂𝑅𝑃𝑖𝑛 𝑖𝑠 𝑂𝑅𝑃𝑖𝑛𝑀𝐹2 𝑎𝑛𝑑 𝐸𝐶𝑖𝑛 𝑖𝑠 𝐸𝐶𝑖𝑛𝑀𝐹2 𝑇ℎ𝑒𝑛 

𝐴𝑙𝑘𝑎𝑙𝑖𝑛𝑖𝑡𝑦 = 5716.502 ∙ pH − 0.081 ∙ ORP − 36581.335 ∙ EC − 36068.709 

 

3 𝐼𝑓 𝑝𝐻𝑖𝑛 𝑖𝑠 𝑝𝐻𝑖𝑛𝑀𝐹2 𝑎𝑛𝑑 𝑂𝑅𝑃𝑖𝑛 𝑖𝑠 𝑂𝑅𝑃𝑖𝑛𝑀𝐹2 𝑎𝑛𝑑 𝐸𝐶𝑖𝑛 𝑖𝑠 𝐸𝐶𝑖𝑛𝑀𝐹2 𝑇ℎ𝑒𝑛 

𝐴𝑙𝑘𝑎𝑙𝑖𝑛𝑖𝑡𝑦 = 350.181 ∙ pH + 22.5 ∙ ORP − 484.338 ∙ EC + 14956.646 

 
Table 3.6 TSK fuzzy model rules and consequent parameters for FIS2 

  

FIS2 proved to be much better than FIS1 in predicting alkalinity values by 

examining the statistical performance indices (Table 3.7). FIS2 predicted values 

were much closer to the actual values during the validation process than the training 

and checking process. This indicates that the model is capable to predict alkalinity 

values more accurately than FIS1, MLR1 and MLR2.  

A 0.534 value for R2 and a similar value of the IA indicate that the observed 

values are quite close to the actual values. The MAE and the bias point out that the 

deviation from the actual values is not high and that the predictions follow the 

measurements relatively closely. Finally, quite low values for NMSE and FB signify 

that the fuzzy model values are in quite good agreement with the actual output 

parameter values. Training and checking alkalinity values are depicted in Figure 3.8, 

and observed and predicted alkalinity values for the RB-B(4) experiment are 

depicted in Figure 3.9. 

 

 

 

 

 

 

 

139 
 



Performance indices 
FIS2 

Training Validation 

R2 0.496 0.534 

MAE 334.66 468.72 

Bias 16.233 130.97 

IA 0.814 0.594 

NMSE 0.013 0.024 

FB 0.005 0.039 
Table 3.7 Training and validation performance for FIS2 

 

Figure 3.8 Observed and predicted alkalinity values for FIS2 during M-A(1), RB- A(2)) and M-B(3)) 
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Figure 3.9 Observed and predicted using FIS2 alkalinity values during RB-B(4) 

 

3.4. Conclusions 
 

 This chapter presented a fuzzy logic technique to predict an important 

process parameter (alkalinity) using subtractive clustering. Two first order Takagi-

Sugeno (TS) FISs based on subtractive clustering were developed and tested 

against already applied multiple linear regression models. 

 The FISs (FIS1 and FIS2) demonstrated an improved ability to predict 

alkalinity values from known input parameters such as pH, ORP and EC compared 

to MLR1 and MLR2. However, even the fuzzy model performance was only 

adequate indicating a need to either identify different input parameters or even better 

record data systematically in order to improve the model response.  

 Multiple performance indices were used to evaluate how each model 

performed. Since alkalinity off-line measurements can also vary while analyzing the 

1 2 3 4 5 6 7 8 9
2500

3000

3500

4000

4500

5000

Alkalinity samples during RB-B(4)

A
lk

al
in

ity
 (m

g/
l o

f H
C

O
3-

) 

 

 

FIS 2
Observed
 values

141 
 



same sample for alkalinity, MAE values of up to 500-600 can be considered as 

acceptable. This implies that R2 and IA values will not be as high as in other AD 

applications where different input/output parameters are utilised.  

 Although (Partner N° 2, Rothamsted Research 2010) a newly developed 

model that included temperature as an input was able to successfully control the 

OLR that dictated the operation of the system, approaches that included this input 

parameter and applied fuzzy logic principles were unsuccessful. This means that the 

three input parameters used in the fuzzy designs were suitable for the purpose and 

that the addition of temperature would not improve the model. Moreover, sufficient 

validation data for MLR3 could not support the argument that its predictions were 

superior to the other regression models as only four samples were analyzed for 

alkalinity during the five month application of MLR3. 

 The modelling approach proposed is suitable for AD applications provided 

that the training database consisted of continuous samples over a long period of 

time, based on which the loading rate of an AD system is controlled. Daily sample 

analysis for alkalinity would result in having a more precise representation of 

alkalinity evolution since OLR was varied on the same basis.  
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 Chapter 4 Monitoring of anaerobic digestion, 

identification of key process parameters and process 
investigation of anaerobic digesters with and without 
support media 

 

 The development and evaluation of two fuzzy logic models predicting 

alkalinity based on the operation of small scale anaerobic digesters is presented in 

this chapter. The suitability of first order TSK FIS using the design process proposed 

in Chapter 3 is evaluated through application on three 5l reactors with different 

support media. However, different inputs were utilised in the design of the FISs. 

Those were pH, daily difference in pH, gas production volume and daily difference in 

gas production volume for the first FIS and pH, daily difference in pH, gas production 

volume/reactor volume and daily difference in gas production volume/reactor volume 

for the second FIS. The performance of the reactors with support media is compared 

with the performance of three 5l reactors without support media and optimum 

performance and stability OLR, pH and alkalinity process parameters are identified 

for all six reactors.   

 

4.1 Introduction 
 

 Anaerobic digestion research is a time consuming task due to the large time 

periods required for start-up, especially for high capacity biogas units, for digester 

stabilisation and for observing the influence that a variation in the process 

parameters has on system performance.  

As mentioned in Chapter 1 (1.2.5), hydraulic retention times vary. The 

experimental work presented in this chapter focuses on the operation under 

thermophilic conditions that generally require lower retention times than digesters 

operating at mesophilic temperatures. Indicatively, at thermophilic temperatures 

solids retention times can vary from a couple of days (4 days) to 20 days (Table 1.2), 

(Moen et al. 2003b). In order to maximise methane productivity, SRT has to be 
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decreased and loading rates have to be increased up to a point to avoid overloading 

that might produce a sour digester (such an investigation is presented (Ferrer et al. 

2010)). Also, in order to draw safe conclusions regarding the operation of an 

anaerobic reactor under a specific OLR, the system should be allowed to complete 

at least three retention times.      

An anaerobic digester that consisted of three 120l tanks with support surfaces 

was constructed to investigate the stages of start-up, stable operation, failure and 

recovery. Also, a fuzzy model predicting alkalinity would be developed based on the 

manual digester operation. In this way, a controller that would vary the OLR based 

on alkalinity predictions would be implemented aiming to stabilise the AD process 

and maximise biogas productivity. However, although operational failures did not 

allow for this system to work, important lessons were leant concerning the design of 

anaerobic reactors (Appendix I).  

Instead, three 5l reactors without support media were operated for a period of 

about three months (18/07/2012- 01/10/2012) and three 5l reactors with different 

support media were operated for a five month period (18/07/2012-21/12/2012). Data 

from the first four months were examined since temperature problems resulted in 

having corrupted measurements during the last month of operation. 

The aim of the experiments was that all the reactors would undergo the 

processes of start-up, failure, recovery and stable operation with different retention 

times. In this way, results could be drawn with respect to: 

• Performance differences between different types of reactors (reactors with 

and without biomass support media)  

• Performance differences between reactors with different support media. 

• Optimum operational conditions for performance and stability (pH, alkalinity, 

OLR) 

• Stabilisation and maximisation of biogas production 

• Alkalinity evolution 

 

Data from these experiments were used in the design and evaluation of two 

first order TSK fuzzy logic systems to predict alkalinity. TSK FISs were implemented 

to predict alkalinity levels in all reactors with support surfaces. So, based on the 
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alkalinity predictions a controller that would vary the OLR would be developed 

(Chapter 5) and its function would be tested in further experiments.   

4.2 Small scale experiments Materials and Methods 
 

4.2.1 Construction of single-stage reactors 
 

 Six 5l vessels were used to construct the single stage reactors (Figure 4.1). 

Each reactor was filled with 4l of substrate to allow for head space. A mechanical 

stirrer was utilised to mix the contents through a stirring rod that existed in the middle 

of the vessel sealed with silicone to avoid gas leakages. 
 

 

Figure 4.1 Single-stage digester without support media 

 

 Different biomass support media were lining the inside of three of the tanks 

after being formed into a cylinder. Stainless steel wire was utilised to keep it in its 

place to prevent the support media from collapsing after extensive period of usage 

(section 4.2.2 provides detailed analysis of the support media).     

The gas outlet located at the top of the vessel was connected to a liquid 

displacement system made out of cells of known volume capacity. The cell system 
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was designed to work based on the principle of buoyancy. Magnetic reed switches 

were connected to each cell to providing information about the switching behaviour 

of each cell. Side profile diagram of a cell is depicted in (Figure 4.2).  

 

Figure 4.2 Gas outlet tubes are connected through the bottom of the water bath directing gas into each cell. 
Magnetic reed switches record gas production volumes. 

 

 The magnetic reed switches were connected to a system of mechanical 

counters to enable off-line recording of gas volume production (Figure 4.3).  
 

 

Figure 4.3 Mechanical counters connected to the magnetic reed switches 

  

4.2.2 Biomass support media 
 

 Three of the reactors were equipped with support media (Figure 4.4). 

Biomass support media were attached to the reactors to enhance stability during 

system operation under different OLRs, high OLRs and short HRTs  (Show & Tay 

1999)(Demirer & Chen 2005). The chosen support material for the first reactor was 

burst cell reticulated polyurethane foam coarse with a ca. 2.5 mm pore diameter.  

Magnetic
Switch

Gas tube
outlet
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Burst cell reticulated polyurethane foam medium with a ca. 1 mm pore diameter was 

inserted to the second reactor, and sponge with a ca. 1mm pore diameter was 

selected as the biomass support surface for the third reactor. 

 

Figure 4.4 Biomass support media. (1) Burst cell foam coarse, (2) burst cell foam medium, (3) sponge 

 

 The size of the support material in each reactor was approximately 35 cm×20 

cm×3 cm. Experiments with both water and cow slurry were conducted under room 

temperature to measure the density of each material (Equation 4.1). The total solids 

(TS) percentage was 4.55% and the volatile solids (VS) percentage was 4.13% of 

the cow slurry. 

Equation 4.1 

 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =  
𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 (𝑘𝑔)

𝐿𝑒𝑛𝑔𝑡ℎ × 𝑊𝑖𝑑𝑡ℎ × 𝐻𝑒𝑖𝑔ℎ𝑡 (𝑚3)
  

 The porosity of each material was also determined with the use of water by 

Equation 4.2: 

Equation 4.2 

 𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦 =
𝑉𝑜𝑖𝑑 𝑣𝑜𝑙𝑢𝑚𝑒

𝑇𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒
× 100  

The support media were also examined with respect to how much volume of 

slurry they can absorb using water and cow slurry with the same characteristics as 

above. The absorptive capacity measurement would indicate the amount of working 
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volume that exists inside each reactor by determining how much volume each 

material could absorb. This experiment was conducted under room temperature. 

Absorbency (%) was calculated as: 

Equation 4.3 

 𝐴𝑏𝑠𝑜𝑟𝑏𝑒𝑛𝑐𝑦% =
(𝑊𝐴 −𝑊𝐵)

𝑊𝐵
× 100  

 

where WA= support media weight after immersion (g) and WB= weight of dry 

support surface before immersion (g). The process followed was similar to the one 

presented (Das et al. 2009) with the difference that in the experiments conducted 

with slurry the materials under investigation were left in the liquid for 24 hours. 

Two samples of each support media were used to determine density, porosity 

and absorbency with water. Each material was tested for a second time after being 

left to dry out and an average value was recorded. Three samples of each support 

media (nine samples in total) were used to determine density and absorbency with 

the use of slurry. Then an average value was calculated for each material. Table 4.1 
contains the experimental results. 

 

 Foam coarse Foam medium Sponge 

Dry density 0.030 0.023 0.024 

Wet density 0.369 0.510 0.605 

Porosity 60.00 57.37 47.53 

Absorbency 1136.65 2032.43 2399.03 

Slurry density 0.35 0.44 0.37 

Slurry absorbency 1390.00 1933.33 1731.58 
Table 4.1 Biomass support media characteristics at room temperature 

  

Maintenance reactor operations that took place during the operation period 

(4.2.4) (the tanks were operated under thermophilic conditions 55oC) provided 

different results regarding slurry absorbency. A higher temperature value (55oC), a 

larger surface area or the fact that the total solids and the volatile solids percentage 

were lower than the original experiments influenced all three biomass surfaces to 

absorb higher amounts of slurry. Each support material volume was measured once 
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and the recorded absorbed volume was validated by weighting the remainder 

volume inside each vessel. All three support surfaces were able to hold similar 

amounts of slurry varying between 1.470 kg- 1.490 kg for TS%= 2.8-3.1 and VS%=  

2.35-2.7. Therefore, slurry absorbency percentage was much higher compared to 

the original experiments by holding an average value of 5710 which is approximately 

2.5 times greater than the values in Table 4.1.       

4.2.3 Feedstock  
 

 Cow manure was used for the operation of the six 5l reactors. Cow manure 

originating from the beef cattle located at North Wyke Research was collected every 

seven days. Cow manure was diluted with water and screened through a mesh with 

a 10 mm× 10mm hole size to remove most of the hay present in the manure. Cow 

Slurry was then stored in a deep freezer at +4o C during this period to delay the 

anaerobic digestion process. The feed material was inserted on a daily feeding basis 

in a water bath that was kept at 55oC for 5-6 hours. This period corresponds to the 

time that cow slurry takes to reach this temperature from room temperature. This 

process would ensure that temperature inside each reactor would remain stable at 

all times.    

4.2.4 Reactor operation 
 

 The experimental work initiated in 18/07/2012 using cow slurry that contained 

4% total solids and 2.6% of volatile solids and had an alkalinity value of 3350 mg/l 

HCO3- . The total solid content and volatile solid content of the feed material was 

slightly different every week due to the collection of fresh cow manure. Each reactor 

was fed on average once a day five days a week due to working rules. The feeding 

process was carried out manually by disconnecting the gas tube from the top of each 

reactor and by withdrawing and inserting equal amounts of volume.   

The operation of the six reactors, three without support media (1, 2, 3) and 

three with support media (4, 5, 6) lasted approximately seven weeks until 

06/09/2012. Burst cell foam coarse was attached to reactor 4, burst cell foam 

medium was attached to reactor 5 and sponge was the selected support media for 
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reactor 6. All reactors were filled with 4l of fresh cow slurry with the above 

characteristics and no other inoculum was used. 

 

4.2.5 Mixing 
 

 Experiments regarding the impact of mixing were not conducted. An adequate 

mixing regime was selected. The contents of each reactor were mixed with a stirring 

rod inserted through the top of each vessel. The mixing speed was approximately 

120 rpm. A 24 hour mechanical time switch provided power for 15 minutes every 

hour. 

4.2.6 Off-line monitoring  
 

 The six reactors were monitored once a day for pH and CH4%. Gas volume 

measurements were recorded once a day between 19/07/2012- 10/09/2012 and 

twice a day between 10/09/2012- 20/11/2012 to enable the identification of possible 

leakages in the gas collection system or the reactors. Influent and effluent total solids 

and volatile solids content were determined at regular intervals. Samples were 

analyzed for alkalinity on an average of four days a week. 

 pH was measured off-line after feeding using a HANNA INSTRUMENTS 

HI9025 microprocessor-based pH meter. The pH meter was calibrated on a weekly 

basis using pH 4 and pH 7 buffer solutions. 

4.2.6.1 Methane 
 

CH4% was measured before feeding using a Crowcon Triple + plus IR gas 

monitor. The device utilises an infrared sensor to determine methane levels between 

5- 100% volume scale as well as 0-100% LEL (lower explosive limit). Therefore, 

since there is no numerical display for % volume until the level of gas exceeds 100% 

LEL, 100% LEL corresponds to CH4= 5 %.  
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4.2.6.2 Biogas volume 
 

Daily gas volume production was recorded by multiplying the number of times 

that each switch was activated that was displayed on the mechanical counters 

(Figure 4.3) with the volume that each cell could hold. 

4.2.6.3 Total solids 
 

Samples for total solids percentage and volatile solids percentage were taken 

at regular intervals from both the feedstock (after heating) and the effluent originating 

from each tank. Total solids are determined as the residue that is left following the 

evaporation of liquid from a sample that resulted from drying the sample in an oven 

operating between 103o C to 105o C to a constant weight or mass. Samples were 

inserted in aluminium foil trays and were weighted before entering the oven.  The 

samples remained inside the oven for 24 hours to ensure that the sample was dry 

and then weighted again.  
 

4.2.6.4 Volatile solids  
 

Volatile solids are calculated by measuring the sample weight loss after 

ignition. Volatile solids determination was performed by using the dried samples 

above, placing them in ceramic trays and inserting them in a muffle furnace at 550o 

C for 4 hours to achieve a constant mass. Then, the samples were weighed again to 

determine the volatile solids percentage. TS and VS percentages were calculated 

using Equation 4.4 and Equation 4.5 respectively. 

Equation 4.4 

 % 𝑇𝑜𝑡𝑎𝑙 𝑆𝑜𝑙𝑖𝑑𝑠 =
𝐷𝑟𝑦 𝑠𝑜𝑙𝑖𝑑𝑠 𝑤𝑒𝑖𝑔ℎ𝑡 
𝐿𝑖𝑞𝑢𝑖𝑑 𝑤𝑒𝑖𝑔ℎ𝑡

× 100  

Equation 4.5 

   % 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑒 𝑆𝑜𝑙𝑖𝑑𝑠 = 1 −
𝑠𝑎𝑚𝑝𝑙𝑒 𝑎𝑓𝑡𝑒𝑟 𝑎𝑠ℎ𝑖𝑛𝑔

𝑑𝑟𝑦 𝑠𝑎𝑚𝑝𝑙𝑒
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Volatile solids reduction (VSR) which is indicative of the anaerobic digestion process 

performance and is expressed as a percentage was also calculated using Equation 

4.6: 

Equation 4.6 

 𝑉𝑆𝑅 =
𝑉𝑆𝑖𝑛 − 𝑉𝑆𝑜𝑢𝑡

𝑉𝑆𝑖𝑛 − (𝑉𝑆𝑖𝑛 × 𝑉𝑆𝑜𝑢𝑡)
× 100  

where VSin= volatile solids that enter the digester and VSout= volatile solids that are 

removed from the digester.  
 

 

4.2.6.5 Alkalinity 
 

Samples that were collected after the feeding process were examined for total 

alkalinity. Samples were first centrifuged for five minutes at 3000 rpm. Then a 

mixture that contained 0.25 ml of the sample and 80 ml of deionised water was 

analyzed for total alkalinity with the use of an auto-titrator (Metrohm 716 DMS 

Titrino). The auto-titrator calculated total alkalinity in terms of CaCO3 concentration. 

Next, alkalinity was converted from CaCO3 to HCO3- because alkalinity in terms of 

HCO3- provides a more accurate measure of the buffering capacity in anaerobic 

digestion environments (Hattingth et al. 1967)(Lahav & Morgan 2004). Also, because 

digester pH is controlled by the CO2 concentration in the gas phase and by the 

HCO3- alkalinity in the liquid phase (Appels et al. 2008). The alkalinity conversion 

from mg/l as CaCO3 to mg/l as HCO3- was conducted as follows:  Consider the 

reaction 

 CaCO3 +H2O +CO2→ Ca(HCO3)2  

and the fact that the molecular weight of CaCO3 is 100 g/mol and the molecular 

weight of HCO3- is 61 g/mol. So, one mol of Ca(HCO3)2 is equivalent to one mol of 

CaCO3 and holds 2× 61= 122 g of HCO3-.  Therefore, alkalinity in expressed 

(California department of public health 2013) in terms of HCO3- (mg/l)= 1.22× 

alkalinity as CaCO3 (mg/l).   
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4.3 Results and discussion 

4.3.1 Start-up 
 

 Identical loading rates for all of the reactors without support and identical 

loading rates for the three reactors with support were applied. The difference in 

performance under similar OLRs would provide data for the performance evaluation 

of all reactors. 

 For the duration of the start-up period, which is defined as the period that is 

required for the system to start producing biogas, all reactors were fed manually at 

variable organic loading rates that did not always influence the system operation 

positively. This was a result of inexperience but was also due to the intention to 

record process parameter data during variable operating conditions. In this way the 

database that would be utilised to form the alkalinity inference system would be as 

complete as possible by incorporating extreme operating condition data. This 

involved operation at really low loading rates (<1.5 g VS/l/d), at high loading rates 

(>3.5 g VS/l/d) and rapid changes in the feeding regime aiming to calibrate the fuzzy 

soft sensor as accurately as possible.  

During start-up, AD systems should be operated under low loading rates so 

as to form a proper microbial community. Failure could result in (Angelidaki et al. 

2006) having extended acclimatisation periods (Wu et al. 2001) and poor organic 

matter removal (Griffin et al. 1998). High OLRs during the first two weeks of 

operation hindered the stabilisation of the reactors and resulted in reducing the 

feeding rate to an average of 3 days a week. Despite the fact that OLRs were more 

than 3 g VS/l/d and the reactors were expected to become quite acidic, the pH 

remained at quite high levels 7.39- 8.14 in all reactors. However, gas production 

volumes and gas composition values were very low.  

OLRs were reduced during the following three weeks to boost system 

stabilisation and microbial growth and were set to higher levels the week after 

20/08/2012 (week six) in an effort to increase biogas production. However, drops in 

pH values resulted in adjusting the OLR from 5.8 g VS/l/d to 1.96 g VS/l/d for 

reactors without support media and from 6.6 g VS/l/d to 2.2 g VS/l/d for reactors with 

support media to avoid acidification. Further increases in loading rates to 4.6 g VS/l/d 

and 5.18 g VS/l/d for reactors with, and without, support media respectively, drove 
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the system towards acidification and OLRs were reduced on 31/08/2012 (week 8) to 

force pH values to go higher than 6.9. Figure 4.5 depicts the average loading rates 

for each reactor during the start-up period.  

Extreme OLR variations resulted in having massive changes in pH. The OLR 

was doubled on 16/08/2012 (week five) in all reactors to 2 g VS/l/d and pH dropped 

by 0.5 within four days. OLR was further increased to 5.87 g VS/l/d for reactors 

without support and to 6.6 g VS/l/d for reactors with support media on the 

22/08/2012 (week six) to examine the systems’ reaction to even higher OLR that 

would help identify the maximum loading rate that the reactors could tolerate. As a 

result, pH went down by approximately 0.5 in all reactors. The pH trend indicated 

that OLR should be decreased dramatically to enable all reactors to recover. 

However, OLRs were further increased during week seven to 4.6 g VS/l/d and 5.18 g 

VS/ l/ d for vessels 1, 2 and 3 and vessels 4, 5 and 6 respectively. This loading boost 

aimed to drive the reactors to acidification and see how they recover followed a week 

of low feeding rates of approximately 1.5 g VS/l/d. Figure 4.6 and Figure 4.7 depict 

the pH evolution of reactors without and with support media.  

The evaluation of the data collected from the operation of the six reactors, 

especially during the periods that followed overloading incidents, proved very useful 

especially when it comes to future variations of the organic loading rate. It was 

observed that reactors without support media were becoming unstable when the 

loading rates exceeded 3-3.5 g VS/l/d. Reactors 4,5 and 6 were able to cope with 

higher feeding rates due to the biomass support media installation ranging between 

4- 5.5 g VS/l/d.   
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Figure 4.5 Average OLR (g VS added/ l/ day) for reactors with and without biomass support media 

       

 

Figure 4.6 Start-up pH values for reactors without biomass support media (Reactors 1-3). 
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Figure 4.7 Start-up pH values for reactors with biomass support media (Reactors 4-6).    

 

 Since the reactors were initially operated under relatively high loading rates, 

two weeks were approximately required for each vessel to start producing gas. Gas 

and methane production levels were relatively low and varied according to the 

loading rate. However, since the reactors were still in the start-up phase, changes in 

the OLR heavily influenced pH and consequently alkalinity values. So, although 

biogas production reached 0.8 l/l/d for reactor 3, 5 and 6 on certain occasions 

(Figure 4.8), OLR decreases aiming to avoid system destabilisation resulted in 

reducing the amount of biogas produced to 0.2 l/l/d. 

 Reactor 1 did not perform well in terms of biogas production compared to 

reactors 2 and 3 although these reactors were supposed to behave in a similar way. 

This was probably due to the fact the vessel had to be serviced at regular intervals 

for gas leakages which is validated by the fact that pH and alkalinity values between 

tanks 1-3 were quite similar. 

 Although reactors 4, 5 and 6 were operated under the same OLRs, pH and 

gas production values of reactor 4 were lower than the values that characterised the 

operation of reactors 5 and 6 especially between 21/08/2012 and 07/09/2012 (weeks 

six and seven). Vessels 5 and 6 produced the most amount of gas during the start-

up phase followed by reactor 3. The average biogas and methane production values 

during start-up are presented at Table 4.2.  
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 Reactor 
1 

Reactor 
2 

Reactor 
3 

Reactor 
4 

Reactor 
5 

Reactor 
6 

Average 

Biogas 

Production 

(l/l/d) 

0.12 

 

0.18 

 

0.23 

 

0.16 

 

0.29 

 

0.28 

 

Average CH4 

Production 

(l/l/d) 

0.024 

 

0.055 

 

0.049 

 

0.019 

 

0.063 

 

0.101 

 

Table 4.2 Average biogas and methane production during start-up for reactors with (Reactors 4-6) and without 

biomass support media (Reactors 1-3). 

 

 

Figure 4.8 Gas and methane production during start-up. Top left (gas production for reactors without biomass 

support media), top right (gas production for reactors with biomass support media), bottom left (CH4 production 

for reactors without biomass support media), bottom right (CH4 production for reactors with biomass support 

media) 

 

 Alkalinity results are depicted in Figure 4.9. Since pH and alkalinity values of 

reactor 1 are similar to reactors 2 and 3 it can be concluded that the low gas 

production values of reactor 1 were due to gas leakages. Alkalinity evolution followed 
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the same trend for all reactors and was due to the loading regime. Overloading 

resulted in reducing the buffering capacity of the reactors by driving the alkalinity to 

values close to 2500 mg/l of HCO3-. On the other hand, corrective operation actions 

that involved drastic drops in OLR enhanced alkalinity. An alkalinity value between 

3490-4000 mg/l of HCO3- appeared to be, based on the data collected so far, the 

threshold for maintaining a pH value above 6.9 in reactors 1, 2 and 3 and between 

2700-3890 mg/l of HCO3- for reactors 4, 5 and 6. This suggests that threshold 

alkalinity concentrations are probably lower for digesters containing support 

surfaces. Alkalinity concentrations <2700 mg/l of HCO3- result in having reduced gas 

production and consistent high loading rate application will lead to gas cessation.     
 

 

Figure 4.9 Start-up alkalinity values for reactors with (Reactors 4-6) and without biomass support media 

(Reactors 1-3).  

 

 Volatile solids reduction rates (VSR) for all six reactors are depicted in Figure 

4.10. The maximum VSR in reactors 1-3 was around 50% and declined during the 

periods that followed the overloading of the reactors (15/08/2012 and 28/08/2012). 

Such low VSR percentages were expected as all the reactors became acidic. Also, 

VSR calculated shortly after recovery incidents were significantly higher (e.g. on 

05/09/ 2012 for reactors 1, 2 and 3) since anaerobic digestion systems become more 

stable. 

 VSR rates for reactors 4-6 were much higher compared to the reactors 

without support surfaces by reaching 70% and exhibiting higher rates even when the 

anaerobic environment was becoming unstable. However, low reduction rates for all 

reactors approximately ten days before the end of the start-up period corresponded 

to low alkalinity and pH that signalled a process decline. 
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Figure 4.10 Volatile solids reduction (VSR) during start-up for reactors with (Reactors 4-6) and without biomass 
support media (Reactors 1-3). 

Reduction rates were expected to stabilise during steady state operation 

especially for the reactors with support media unlike start-up where overloading 

incidents ceased gas production and volatile solid destruction.    

 

4.3.2 Stable operation 
 

 After the process stabilisation in all reactors following the last overloading 

incident that took place on 30/08/2012, all reactors reached a steady state around 

07/09/2012 (week eight). Stabilisation was determined by the fact that pH was above 

6.9, biogas production was consistent, methane composition was around 40% and 

alkalinity values were above the values suggested as the threshold during start-up. 

After that point the aim was to maximise biogas production by increasing the OLR, 

yet ensuring that each system was stable and did not become acidic. Unsupported 

Reactors 1, 2 and 3 were operated for a short period of time (four weeks) since focus 

was given on the performance of reactors 4, 5 and 6.  

4.3.2.1 Reactors 1, 2, 3 
 

 Based on the response of the reactors to OLR variations during the start-up 

phase each reactor was driven by a similar loading rate trying to raise biogas 

productivity. Vessels 1, 2 and 3 were operated from week 8-18 (06/09/2012- 

26/09/2012) at loading rates varying from 1-5 g VS/l/d exceeding the limits that were 

previously suggested (3-3.5 g VS/l/d). This was done to validate the OLR thresholds 
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and to examine the changes in operating conditions not only between digesters with 

similar set-up (without support media) but also between digesters with different set-

up (with biomass support media). 

 When the reactors recovered, the loading rate was reduced to 1.2 g VS/l/d 

and was gradually increased to 4.55 g VS/l/d before getting reduced again on the 

ninth week (21/09/2012) to avoid process destabilisation (Figure 4.11) and record 

alkalinity fluctuations. 
  

 

 

Figure 4.11 Stable operation OLR for reactors without biomass support media (Reactors 1-3). 

 

  As soon as pH reached the value of 7, OLR was decreased to boost pH 

values after 13/09/2012 (week eight). OLR was steadily increased to achieve higher 

biogas generation levels while aiming to maintain pH at stable levels and above 6.9 

(Figure 4.12). However, in order to maintain a steady pH inside the three tanks a 

decrease in OLR was needed after the 21/09/2012 otherwise both alkalinity and pH 

would be below the thresholds suggested during start-up. This is validated by the 

fact that both pH and alkalinity started to rise after the decrease in OLR, boosting the 

buffering capacity of the reactors. 
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Figure 4.12 Stable operation pH for reactors without biomass support media (Reactors 1-3). 

Alkalinity remained within acceptable levels at all times (Figure 4.13). 

However, when trying to boost biogas production by operating close to the limit of 

destabilizing the biogas process, alkalinity will always be very close to the detected 

threshold. Therefore, OLR variations should aim at keeping its value above 3490 

which was achieved throughout this three week period. Alkalinity continued to rise 

through the duration of the stable operation. The alkalinity value dropped on 

21/09/2012 (week ten) as a result of increased OLR and was positively influenced 

again by dropping the loading rate.    
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Figure 4.13 Stable operation alkalinity for reactors without biomass support media (Reactors 1-3). 

Gas production and methane production were quite erratic for all reactors 

(Figure 4.14) during the first ten days. Both of them peeked between 11/09/2012 and 

12/09/2012 which resulted from system recovery during start-up. A drop was 

witnessed during the next day but that was caused by temperature fluctuations due 

to problems experienced with the heating of the water bath (temperature was around 

20oC). This event signifies the importance of maintaining stable temperature as 

temperature fluctuations lead to a cessation in biogas production. Overheating of the 

reactors has similar results as witnessed on 18/09/2012 when the temperature 

reached 64oC and gas production dropped in all reactors. 

Tank 1 did not produce much gas although system conditions were similar to 

the other tanks which might be due to gas leakages. Tank 3 exhibited the best 

behaviour by having an average daily gas production of 0.447 l/l/d, followed closely 

by tank 2 with 0.38 l/l/d and tank 1 with 0.26 l/l/d (without taking data from 

13/09/2012 and 18/09/2012 into consideration). Also, methane percentages were not 

very high (especially for tank 1) but remained stable during this period with average 

values of 30% CH4, 40% CH4 and 40% CH4 for reactors 1, 2 and 3 respectively 

(Figure 4.15). 
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Figure 4.14 Stable operation average daily gas and methane production for reactors without biomass support 
media (Reactors 1-3). 

 

   

Figure 4.15 Stable operation methane percentage for reactors without biomass support media (Reactors 1-3). 

 
Very few samples were analyzed for %TS and %VS for reactors 1, 2 and 3 

during this period (four in total) and three of them were collected during the days that 

temperature fluctuations affected the reactors. This resulted in having VSR between 

3-5 % which might not be representative of the reactors’ operation, but certainly 

justify the cessation of gas production due to temperature fluctuations.  
 

4.3.2.2 Supported Reactors 4, 5, 6 
 

 Following start-up, all reactors reached a stable-state between 07/09/2012- 

10/09/2012 (week eight) after which severe pH fluctuations were not witnessed. 
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Process parameter data during start-up suggested that reactors with biomass 

support media could cope with loading rates up to 4-5.5 g VS/l/d. All vessels were 

operated with loading rates up to 6 g VS/l/d. High OLRs aimed to push all reactors to 

function close to the limit were maximum biogas production occurs yet an 

overloading incident could easily result in system failure.  

Stable operation took place between 07/09/2012- 11/10/2012. Identical 

loading rates were applied to all digesters during this period (Figure 4.16) to assess 

the differences and similarities involving the utilisation of different support media in 

small scale digesters. On 03/10/2012 (week eleven) glass reactor 5 broke and 

although comparable performance conclusions to reactors 4 and 6 could not be 

drawn until 08/10/09 when the loading process was reinitiated for reactor 5, rapid 

digester recovery due to the existence of biomass support media provided valuable 

data and underlined the supplementary role that support media could play in AD 

systems.     
 

 

Figure 4.16  Stable operation OLR for reactors with biomass support media (Reactors 4-6). 

 

After the reactors reached a stable state OLR was increased on 11/09/2012 to 

4.3 g VS/l/d trying to force the system to increase biogas production. However, a 

slight decline in pH values suggested a decrease in loading rates (0.5 g VS/l/d) that 

were applied over the next four days. Experimentation with the loading rates that 
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also aimed to capture process parameter data under various OLR ended on 

20/09/2012 (week ten). High OLRs started being applied for three weeks trying to 

examine the systems’ reaction under high loading rates (with the exception of reactor 

5).   

The impact of OLR on the pH in all three vessels was positive (Figure 4.17). 

pH remained stable through the entire seven week period having values above 6.9. 

Data dictated that 6.9 was the critical pH value for process stability (values below 6.9 

correspond to reactor 5 during the days following the breakage incident). pH values 

also indicate that reactors with support media can maintain a stable pH. pH levels 

were lower compared to the values acquired from reactors 1, 2 and 3, however, 

under higher loading rates than reactors with support media. This implies that the 

support surfaces provide stability to the reactors and result in having a less sensitive 

to changes environment more suitable for microbial activities. 
 

 

Figure 4.17 Stable operation pH for reactors with biomass support media (Reactors 4-6). 

 

 Gas and methane production were much higher compared to reactors 1-3 

(Figure 4.18). Their levels remained stable, especially after 24/09/2012 when 

reactors were operated under higher loading rates, ranging between 0.5-1.1 l/l/d for 

gas production and 0.2-0.5 l/l/d for methane production. Reactor 6 exhibited the best 

performance with respect to gas and methane production by delivering an average of 

0.73 l/l/d of gas followed closely by reactors 4 and 5 that produced 0.62 l/l/d and 0.61 
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l/l/d. Methane production was similar with reactor 6 generating an average of 0.3 

l/l/d, reactor 4 generating an average of 0.29 l/l/d and reactor 5 an average of 0.28 

l/l/d. 
   

 

 

Figure 4.18 Stable operation gas and methane production for reactors with biomass support media (Reactors 4-
6). 

 

CH4% remained stable and at high levels (Figure 4.19) considering that some 

oxygen intake took place during loading and unloading the reactors. Average 

methane composition levels were 46%, 44% and 43% for reactors 4, 5 and 6 

respectively. Fixed methane composition values around 45% validated the fact that 

all reactors remained stable throughout this period. The exception was methane 

percentages with values varying between 20%- 37% that were recorded around the 

18/09/2012. Those were a result of the decrease in OLR aiming to maintain pH 

values above the threshold of 6.9.  

 Reactor 5 operation was re-initiated on 03/10/2012 (week eleven) and the 

biomass support media massively assisted in the reactor recovery. The anaerobic 

digester did not stop producing gas despite the fact that the working volume not 

attached to the support media was lost. This suggests that biomass media could 

help anaerobic digesters by minimizing recovery periods. In the case of reactor 5, 

although a week was needed for pH to climb beyond 6.9, gas production was quite 

consistent despite the fact the system was still recovering.      
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Figure 4.19 Stable operation methane percentage for reactors with biomass support media (Reactors 4-6). 

 

 Gas and methane yield remained stable from week nine to week eighteen 

following the pattern of gas and methane production despite the minor variations 

applied in the loading rate (Figure 4.20). 
 

 

Figure 4.20 Stable operation gas and methane yield for reactors with biomass support media (Reactors 4-6). 

 

 Alkalinity values remained between 3500 mg/l of HCO3- and 5600 mg/l of 

HCO3- during the stable operation period (Figure 4.21). Values below the 

aforementioned threshold that characterised the material inside reactor 5 are due to 

process re-start and the positive trend of alkalinity values after 03/10/2012 signalled 

the beginning of a recovery period. OLR declines influenced the buffering capacity of 

the system (13/09/2012) and system operation at increased loading rates drove 
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alkalinity close to 3500 mg/l of HCO3-. Massive alkalinity drops were recorded after 

24/09/2012 (week 10) which was when loading rates peaked at 6 g VS/l/d indicating 

that the system would fail if loading rates were not reduced. Alkalinity was stabilised 

slightly above the minimum measured values for reactors 4 and 6 at loading rates of 

3.8 g VS/l/d. This suggests that OLR should definitely not exceed a value of 5.5 g 

VS/l/d and should ideally be close to 4 g VS/l/d to achieve maximisation of biogas 

production and maintain a stable system at the same time.  
 

 

Figure 4.21 Stable operation alkalinity for reactors with biomass support media (Reactors 4-6). 

 
 Volatile solids reduction (Figure 4.22) ranged between 20%-60 % after 

25/09/2012 (week ten). Higher VSR reduction percentages were recorded when 

OLRs were around 5.5 g VS/l/d and at the same time biogas production was 

maximised and remained stable. Especially between 26/09/2012 and 02/10/2012 

VSR in all reactors was between 40%-56%. However, to avoid process instability 

OLRs were lowered and as a result reduction rates declined. Although a reduction of 

above 40% continued to exist in reactor 4, the percentages in reactor 6 dropped 

below 30% while the rates in reactor 5 that was still recovering were similar.     
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Figure 4.22 Stable operation volatile solids reduction percentage for reactors with biomass support media 
(Reactors 4-6). 

 

4.3.3 Under loading, failure and FIS evaluation  
 

 Following the stable operation period each reactor was run at different loading 

rates in an effort to capture each system’s behaviour to severe OLR fluctuations that 

included not feeding the reactors on a daily basis. This resulted in having low pH 

values (<6.9), alkalinity values below the suggested threshold of 3500 mg/l of HCO3- 

and reduced gas and methane production. Recording process parameter data after 

periods of keeping OLRs to a minimum and then suddenly boosting loading rates 

would provide useful data regarding process parameter evolution.  

FISs that predicted alkalinity (to be presented in 4.4.5) that were designed 

with data from the start-up and stable operation period would be validated against 

these newly available data. Previous experiments showed that maximum gas 

production occurs when the reactors operated close to the limit of becoming 

unstable. The predicted alkalinity values of the fuzzy models proposed should follow 

real alkalinity values closely especially between the range of 2500 mg/l of HCO3- and 

4000 mg/l of HCO3-.  Therefore, it was necessary to conduct experiments where 

reactors 4, 5 and 6 would also exhibit a poor behaviour by keeping pH, alkalinity and 

gas production at low levels. 
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 Experiments with severe loading rate fluctuations initiated on 11/10/2012 and 

lasted until 28/11/2012 (weeks nineteen to twenty one). Part of those experiments 

included studies of how NaHCO3 addition, that aims to boost pH and alkalinity 

values, and water dilution influence gas production. Also, apart from investigating the 

effects of buffer addition to the system, it was intended to examine whether the 

proposed fuzzy inference mechanism would be able to predict alkalinity values 

accurately by introducing some form of disturbance into the system.  

 The loading rate varied from 0-6.6 g VS/l/d for all reactors. OLRs that did not 

exceed 2.5 g VS/l/d were applied on average until 30/10/12. Then a shock load of 

6.6 g VS/l/d was deliberately applied in all reactors (31/10/2012- 02/11/2012) 

causing system failure. Reactor 4 broke shortly after (07/11/2012) and was replaced. 

This explains the absence of loading until 16/11/2012. 

3 g/l of buffer (NaHCO3) were added to reactor 5 (09/11/2012 and 

10/11/2012) and 1.6 l of substrate was replaced with fresh water in reactor 4 

(09/11/2012). Buffer addition was chosen because it increases the biodegradability 

of the organic fraction of solid waste, biogas productivity and VSR (Abdulkarim & 

Evuti 2010). Water dilution combined with addition of fresh cow slurry was selected 

for tank 6 for practical reasons. Because although water dilution is not the best 

strategy to help in digester recovery, fresh manure could not be inserted inside the 

reactors due to mixing restrictions and the small diameter of the inlet hole. The 

results presented (Palatsi et al. 2009) where seven recovery strategies were tested 

against long chain fatty acid inhibition in manure thermophilic digestion indicated that 

feeding cessation was proved to be the most poor approach whereas reactor dilution 

with inoculum was proven to be the most process influential approach. Water dilution 

accompanied by the addition of reactor effluent and manure also influences the 

recovery speed of ammonia-inhibited thermophilic anaerobic digesters (Nielsen & 

Angelidaki 2008). However, ammonia inhibition usually takes place at higher pH 

values (Sung & Liu 2003b) than the ones existing inside tanks 4, 5 and 6 at that 

point.  Average loading rates and pH values are depicted in Figure 4.30 and Figure 

4.31 respectively. 
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Figure 4.23 Under loading, failure and FIS evaluation OLR for reactors with biomass support media (Reactors 4-
6). 

 

 pH values ranged, as intended, from 6.6-7.45, reaching the highest value 

following the buffer addition. The maximum loading rate applied forced pH to drop 

around 6.7 on 08/11/2012 before going up again while all reactors were recovering. 

pH variations covering a big range around the desired operating point where 

maximum biogas production occurred during steady state conditions (6.9-7.1) would 

provide a good validation set.   

 Water dilution did not have an obvious impact on reactor 6 pH since lowering 

the loading rate would result in lifting pH values which is believed to be the reason 

for the pH trend after 09/11/2012. On the other hand, NaHCO3 addition rocketed pH 

values in reactor 5 from 6.7 to 7.3 in three days as expected. pH remained at higher 

levels and slightly oscillated according to the OLRs applied.  
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Figure 4.24 Under loading, failure and FIS evaluation pH for reactors with biomass support media (Reactors 4-
6). 

 

 Gas and methane production were low compared to the volumes that the 

reactors were able to produce during stable operation. Their levels dropped to half 

(Figure 4.32) indicating process imbalance. The addition of NaHCO3 in reactor 5 and 

the water dilution accompanied by slurry feeding in reactor 6 were not enough to 

boost gas production even three weeks after their application. Reactor performance 

is also reflected by the average methane percentages of 28%, 27% and 34% for 

reactors 4-6 respectively. Methane percentages are available in Figure 4.33.  
 

 

Figure 4.25 Under loading, failure and FIS evaluation gas and methane production for reactors with biomass 
support media (Reactors 4-6). 
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Figure 4.26 Under loading, failure and FIS evaluation methane percentage for reactors with biomass support 
media (Reactors 4-6). 

 

 Alkalinity for reactors 4 and 6 was close to the border of indicating process 

imbalance and reactor 5 values were below 3500 mg/l of HCO3- since it was still 

recovering from the accident that took place a week before 11/10/2012 (Figure 4.34). 

The sudden boost in the feeding regime drove alkalinity to levels around 3000 mg/l 

of HCO3- signifying system failure. Water dilution with fresh slurry did not force 

alkalinity to reach higher levels but on the contrary, alkalinity remained around 2600 

mg/l of HCO3- demonstrating that dilution on its own is not suitable to reinstate 

digester stability at loading rates between 1.5-3 g VS/l/d. On the other hand, 

buffering addition rocketed alkalinity similarly to pH from 3300 mg/l of HCO3- to 6860 

mg/l of HCO3-.  
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Figure 4.27 Under loading, failure and FIS evaluation alkalinity for reactors with biomass support media 
(Reactors 4-6). 

 

 

 Volatile solids reduction rates were quite high for reactor 4 ranging between 

40%- 75% with the exception of the rates for 16/10/2012-17/10/2012 where the low 

percentages are probably due to the loading rate adjustment from 0.27 g VS/l/d to 2 

g VS/l/d that eventually resulted in boosting VSR rates even further. Reactor 5 

destruction rates were slightly lower with a median value of 34% which is 

characteristic of the percentages existing after the addition of NaHCO3 to the 

system. Reactor 6 rates had the same trend with those of reactor 5 resulting from the 

similarities in the feeding regime. 
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Figure 4.28 Under loading, failure and FIS evaluation volatile solids reduction percentage for reactors with 
biomass support media (Reactors 4-6). 

4.3.4 Performance comparison of reactors 1-6 and identification of optimum 
process parameter values. 
 

 Reactors 1, 2 and 3 were able to withstand maximum loading rates between 

3- 3.5 g VS/l/d and higher OLRs caused system imbalance. Vessels with biomass 

support surfaces were operated at higher loading rates and could produce higher 

amounts of gas when the loading rate varied between 4- 5 g VS/l/d. During the 

aforementioned experiments a vast range of feeding regimes was applied and tested 

in all reactors and although systems could operate after being supplied with higher 

amounts of cow slurry their stability declined.  Also, despite the fact that reactors 4, 5 

and 6 worked with different types of support surfaces the upper OLR limit was similar 

for all of them. 

 pH fluctuated in all vessels during extreme loading rate alterations especially 

when the aim was either to avoid reactor destabilisation or deliberately enforcing the 

digesters to fail. However, during start-up operations when the reactors were 

overloaded, pH declined fast in reactors 1, 2 and 3 whereas a gradual reduction was 

recorded in vessels 4, 5 and 6. This means that systems with support surfaces are 

more stable to OLR fluctuations and pH variations. pH variations are indicative of 

process stability and can help in applying corrective loading rate actions before AD 

systems reach a point where recovery will require a longer time to be completed.  
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During stable operation pH was kept at steady levels for all reactors by 

fluctuating between 7-7.5 and 6.9-7.35 for reactors 1, 2, 3 and 4, 5, 6 respectively. 

Consequently, pH levels where maximisation of biogas production occurred were 

different for reactors with and without support surfaces. As depicted in Figure 4.29, 

the optimum pH ranges were 7.1-7.3 and 6.9-7.2 for reactors 1-3 and 4-6 

respectively and were identified from data collected during stable state (Reactor 1 

values appear to be low due to gas leakages).  pH <6.9 indicated process imbalance 

in all vessels and suggested the application of a reduced loading rate aiming to 

increase the buffering capacity of the digester. 
 

 

Figure 4.29 Optimum pH for all reactors 

 Gas production was not much higher for reactors with support media 

throughout the duration of all experiments. From the reactors without support 

surfaces reactor 3 exhibited the best performance followed by reactors 1 and 2 that 

had slightly lower cumulative production values. Sponge appeared to be able to 

provide a more suitable environment for the growth of methanogens compared to the 

two types of reticulated foam inserted in the other two reactors. Reactor 6 was the 

most productive of the systems with support surfaces. This leads to the conclusion 

that biomass media do not have a huge impact in enhancing biogas production. 

Stability is what they mostly offer to AD systems. Cumulative gas production data 

during stable operation are depicted in Figure 4.30. 
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Figure 4.30 Stable operation cumulative gas production for reactors 3, 4, 5 and 6 

 

 Stability was guaranteed in all reactors for alkalinity values above 3500 mg/l 

of HCO3-. Biogas productivity was maximised when alkalinity was close to the 

threshold that signified system failure. This value was different for reactors 1-3 and 

4-6. Reactors without support media had increased biogas yields when alkalinity was 

approximately above 3500 mg/l of HCO3- and below 4500 mg/l of HCO3-. However, 

alkalinity levels that boosted methane yield for reactors 4-6 were slightly lower 

varying between  3480- 4300 mg/l of HCO3-. These rates suggested that loading 

rates should focus on keeping alkalinity close to the limit where the system is prone 

to become unstable for maximisation of biogas production. On the other hand, 

maintaining higher levels would limit reactor productivity but provide a stable 

environment.          

 

4.3.5 Software sensor development based on Fuzzy Logic   
 

4.3.5.1 Introduction 

 

 As mentioned in 1.3, common process monitoring indicators include pH and 

gas production rate (Hawkes 1993)(Ahring & Angelidaki 1997)(Boe et al. 2010). A 

survey of 400 full-scale AD plants worldwide, installed by Biomethane, concluded 
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that in 95% of the plants, pH and biogas flow in-line meters were installed (Spanjers 

& Lier 2006). Biogas production rate has been proposed as a means to measure 

stability in methanogenic treatment plants (Steyer et al. 2006), and along with pH 

and the difference between the actual biogas flow and its set point have been 

identified as the most realistic variables for monitoring AD processes efficiently at 

high load (Liu et al. 2004b). pH, gas production rate and hydrogen content have 

been used to calculate the variation of the feed rate (Ehlinger et al. 1994)(Moletta et 

al. 1994) as cited in (Liu et al. 2004b). Similarly, the feed rate was controlled only by 

gas flow rate and pH (Estaben et al. 1997)(Steyer et al. 1999) since these sensors 

could be easily used in industrial applications and were characterised as cost-

effective. Additionally, it was proven that the aforementioned sensors were sufficient 

for control. Therefore, methane composition was not part of the control algorithm. 

The selection of the input parameter set was made based on the ability of pH 

and gas production rate to effectively determine the stability status of AD systems. 

Alkalinity, which is a stability indicator, is closely related to pH (1.2.7)(1.3.4)(3.1) and 

consequently the gas flow rate (as mentioned above). Additionally, pH and gas flow 

can be measured by low maintenance sensors suitable for the development of a cost 

effective software tool for process optimization through stability.  

Data collected during the experiments conducted with reactors 4, 5 and 6 

were used to design at first a fuzzy inference system that would predict alkalinity 

levels based on pH, daily gas volume, daily difference in pH and daily difference in 

gas volume. Next, a second FL system was designed that had pH, daily gas 

volume/reactor volume, daily difference in pH and daily difference in gas 

volume/reactor volume. The change in input selection was performed to make the 

software sensor applicable in different reactor setups (e.g. different shape reactors, 

higher capacity). The two fuzzy inference systems that were developed were applied 

in the reactors containing biomass support media. 

The first fuzzy system was designed during the early stages of the 

experimentation process aiming to prove that data-based models can be improved 

with the addition of more data. More specifically, the first FIS (FIS I) was designed 

based on data collected during the start-up phase and during the first ten days of the 

stable operation period (22/07/2012- 13/09/2012). The second FL system (FIS II) 

was constructed on 06/10/2012 towards the end of the stable operation period. FIS II 

implementation aimed not only to prove that a model trained with more data would 
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exhibit a better performance, but also to check the model suitability through 

validation with newly available data. Validation data included those that were 

collected throughout the further experimentation period where loading rates were 

deliberately varied, buffering agent (NaHCO3) was added inside reactor 5, and water 

dilution was performed in reactor 6. In this way, fuzzy model performance could be 

evaluated against disturbances. Data utilised for each design are depicted in Figure 

4.31.    
 

 

 

Figure 4.31 Data used in fuzzy logic design and validation (F.E. corresponds to FIS evaluation) 

 

 First order fuzzy inference systems based on subtractive clustering were 

developed based on the method presented in Chapter 3 (Figure 3.2). Approximately 

75% of each database constituted the training set and 25% of the data formed each 

checking set. Since random categorisation of training and checking sets resulted in 

having overdefined fuzzy models, the selection of each set was conducted similarly 

to Chapter 3 by following a time sequential pattern in order to get clear data 

representation of all input values. 
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4.3.5.2 FIS I design 
 

 FIS I was developed based on data from reactors 4 and 5 and was initially 

validated from data originating from reactor 6 until 13/09/2012. This selection was 

made because the proposed model was intended to be able to determine alkalinity in 

all reactors. It was ensured that minimum and maximum input values were part of 

the training set. Least squares estimation was used to determine the consequent 

functions of the TSK FIS. Premise parameters and structure, consequent parameters 

and structure were set and tuned in a recursive manner and the consequent 

functions were linear. 

  Cluster radius was varied from 0.15 to 1 with a step of 0.01. The squash 

factor was set to 1.25, the reject ratio to 0.15 and the accept ratio to 0.5. The cluster 

radius of the FIS that provided the best statistical indices during the evaluation 

process was 0.15. Twenty-nine cluster centers were identified using subtractive 

clustering (Table 4.3) and resulted in having the same amount of membership 

functions for every input (Figure 4.32) and the same number of rules that regulated 

system output.  The third rule is characteristic of all the rules and is of the following 

form: 

 

If pHin is pHinMF3 and Gas volumein is Gas volumeinMF3 and Daily pH differenceinis 

Daily pH differenceinMF3 and Daily gas volume differencein is  Daily gas volume 

 differenceinMF3 

Then Alkalinity=699.9∙pH-149.8∙Gas volume+0∙Daily difference in pH-  

9.568∙Daily difference in gas volume+0 
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Figure 4.32 Fuzzy sets for FIS I 

   

 

Cluster 
centres width (spread) 

Input 
1 

Input 
2 

Input 
3 

Input 4 Input 1 Input 2 Input 3 Input 4 

1 7.76 0.748 0.24 0.748 0.159 0.35 0.127 0.763 

2 7.01 1.75 0.07 -0.21 0.159 0.35 0.127 0.763 

3 7.87 1.156 -0.07 -1269 0.159 0.35 0.127 0.763 

4 7.49 0.034 -0.32 -0.533 0.159 0.35 0.127 0.763 

5 6.55 0.714 0.25 0.034 0.159 0.35 0.127 0.763 

6 7.52 0 -0.09 0 0.159 0.35 0.127 0.763 

7 6.22 1.904 -0.33 1.19 0.159 0.35 0.127 0.763 

8 7.16 3.465 0.13 0.56 0.159 0.35 0.127 0.763 

9 6.32 0.408 -0.22 -1.19 0.159 0.35 0.127 0.763 

10 7.09 0.49 -0.19 -0.035 0.159 0.35 0.127 0.763 
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11 6.67 0.204 -0.59 -0.272 0.159 0.35 0.127 0.763 

12 7.08 5.44 0.29 2.176 0.159 0.35 0.127 0.763 

13 6.79 3.264 0.57 1.36 0.159 0.35 0.127 0.763 

14 6.65 1.12 -0.1 1.103 0.159 0.35 0.127 0.763 

15 7.96 2.065 0.1 1.47 0.159 0.35 0.127 0.763 

16 7.19 4.522 0.11 -0.918 0.159 0.35 0.127 0.763 

17 7.16 4.445 0.06 2.835 0.159 0.35 0.127 0.763 

18 6.75 0.018 -0.47 -2.152 0.159 0.35 0.127 0.763 

19 7.14 3.185 0.05 2.695 0.159 0.35 0.127 0.763 

20 7.22 2.17 0.08 -1.015 0.159 0.35 0.127 0.763 

21 6.3 0.68 0.02 -1.768 0.159 0.35 0.127 0.763 

22 7.86 0.595 0.14 -0.245 0.159 0.35 0.127 0.763 

23 6.28 2.448 -0.19 2.049 0.159 0.35 0.127 0.763 

24 6.57 0.374 -0.1 0.17 0.159 0.35 0.127 0.763 

25 7.13 2.94 0.07 0.1867 0.159 0.35 0.127 0.763 

26 6.94 1.96 -0.19 -0.98 0.159 0.35 0.127 0.763 

27 6.81 0.816 0.24 0.442 0.159 0.35 0.127 0.763 

28 7.28 0.525 -0.39 0.49 0.159 0.35 0.127 0.763 

29 7.51 0 0.16 -0.14 0.159 0.35 0.127 0.763 

Table 4.3 Membership function parameters obtained using subtractive clustering for FIS I 

 

 FIS was evaluated with data from all reactors following the design period. 

Despite the fact that the TSK system was developed with data based from reactors 4 

and 5 alkalinity predictions were more accurate when the model was applied to 

reactor 6 (Table 4.4). R2 values were quite low for all reactors and almost 0 for 

reactor 4. MAE was satisfactory averaging around 700 for all reactors but the Bias 

values were encouraging since they were kept at minimum levels considering the 

application especially for reactor 5 where bias= 76.344. IA was quite good for 

reactors 5, 6 and at acceptable levels for reactor 4 by being just under 0.44. NMSE 

was not kept very close to 0 in all reactors but FB was particularly good for reactor 5 

by having a value of 0.018. 
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Figure 4.33 Observed and predicted alkalinity values for FIS during training 

 

 

Performance indices 
FIS I 

Reactor 4 Reactor 5 Reactor 6 Training 

R2 0.042 0.242 0.398 0.823 

MAE 686.18 747.28 692.23 328.78 

Bias 181.6 76.344 251.34 46.405 

IA 0.439 0.666 0.702 0.947 

NMSE 0.04 0.05 0.04 0.014 

FB 0.045 0.018 0.066 0.01 
Table 4.4 Alkalinity performance for FIS I during training and based on newly available data 

 

 Alkalinity predictions for all three reactors are depicted in Figure 4.34. 

Although the bias values are kept at quite low levels a visual representation of the 

results shows that the fuzzy model overpredicts most of the alkalinity values that are 
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below 3500 mg/l of HCO3- in the second reactor and under predicts the majority of 

the values in all reactors that are over 5000 mg/l of HCO3-. This is probably due to 

the fact that alkalinity values over 5000 mg/l of HCO3- were mostly recorded during 

the first few days of reactor operation since loading rate increases managed to 

reduce alkalinity to levels below 4500 mg/l of HCO3-.  

 
Figure 4.34 Observed and predicted alkalinity values using FIS I 

 

Around the seventy-fifth data point a boost in alkalinity values is present in 

reactor 5. The FIS output seems to be following the real alkalinity values quite 

closely during that period which is when pH started to reach higher levels due to the 

addition of NaHCO3. However, the last twelve predicted values in Figure 4.34 that 

correspond to the period following the water dilution that took place in reactor 6 

indicate a huge deviation from the actual values. 

By taking into consideration that: 

• The FIS was designed with the inclusion of minimum amount of data from the 

stable operation period 
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• Only data from two out of the three reactors were utilised in each design  

• The fuzzy model responded positively to one out of the two disturbances that 

were inserted to the systems  

Embedding reactor 6 data to increase the training set data base and adding data 

from the majority of the stable operation period would increase the functionality of 

the fuzzy predictor.   

 

4.3.5.3 FIS II design 
 

 FIS II was constructed with data from all three reactors (4, 5 and 6). Data until 

06/10/2012 were used to train and check the model and alkalinity measurements 

that were taken until the end of the further experimentation period constituted the 

validation set. FIS consequent functions were set following least squares estimation. 

The premise and consequent parameters and structure were determined and tuned 

recursively and FIS consequent functions were linear. 

Cluster radius was varied from 0.15 to 1 with a step of 0.01. The squash 

factor was set to 1.25, the reject ratio to 0.15 and the accept ratio to 0.5. The cluster 

radius of the FIS that was selected to determine alkalinity was 0.41. Five cluster 

centres were determined using subtractive clustering (Table 4.5) which correspond 

to an equal amount of membership functions and rules that regulated system output. 

Fuzzy rules are depicted in Table 4.6. 

FIS II had fewer cluster centres compared to FIS I (the number was reduced 

from twenty to five). This was a result of the higher value that was assigned to the 

cluster radius (0.41) which probably resulted in a more accurate system 

representation. It is possible that the smaller ra value (0.15) that was selected during 

the design of FIS I, might have led to an over defined system characterized by an 

excessive number of rules (Mollaiy Berneti 2011). 
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Cluster centres width (spread) 
Input 1 Input 2 Input 3 Input 4 Input 1 Input 2 Input 3 Input 4 

1 7.08 0.683 0.11 -0.026 0.167 0.197 0.186 0.176 

2 7.3 0.411 0 -0.003 0.167 0.197 0.186 0.176 

3 7.13 0.663 -0.04 0.128 0.167 0.197 0.186 0.176 

4 6.9 0.978 -0.11 0.145 0.167 0.197 0.186 0.176 

5 7.1 0.645 0.02 0.48 0.167 0.197 0.186 0.176 
Table 4.5 Membership function parameters obtained using subtractive clustering for FIS II 

 
 

 

Rule Rule description of the form 
If ... Then 𝒚 = 𝒑𝟏𝒙𝟏 + 𝒑𝟐𝒙𝟐 + 𝒑𝟑𝒙𝟑 + 𝒑𝟎 

1 𝐼𝑓 𝑝𝐻𝑖𝑛 𝑖𝑠 𝑝𝐻𝑖𝑛𝑀𝐹1 𝑎𝑛𝑑 𝐺𝑉 𝑅𝑉⁄ 𝑖𝑛  𝑖𝑠 𝐺𝑉 𝑅𝑉⁄ 𝑖𝑛 𝑀𝐹1 𝑎𝑛𝑑 𝑝𝐻 𝑑𝑖𝑓𝑖𝑛 𝑖𝑠 𝑝𝐻 𝑑𝑖𝑓𝑖𝑛𝑀𝐹1  

𝑎𝑛𝑑 𝐺𝑉 𝑅𝑉⁄  𝑑𝑖𝑓𝑖𝑛 𝑖𝑠 𝐺𝑉 𝑅𝑉⁄  𝑑𝑖𝑓𝑖𝑛 𝑀𝐹1 𝑇ℎ𝑒𝑛 

𝐴𝑙𝑘𝑎𝑙𝑖𝑛𝑖𝑡𝑦 = −1082.98 ∙ pH + 65.827 ∙ 𝐺𝑉 𝑅𝑉⁄  𝑑𝑖𝑓 + 4147.465 ∙ pH dif − 

4033.91 ∙ 𝐺𝑉 𝑅𝑉⁄  𝑑𝑖𝑓 + 8873.479 

 

2 𝐼𝑓 𝑝𝐻𝑖𝑛 𝑖𝑠 𝑝𝐻𝑖𝑛𝑀𝐹2 𝑎𝑛𝑑 𝐺𝑉 𝑅𝑉⁄ 𝑖𝑛  𝑖𝑠 𝐺𝑉 𝑅𝑉⁄ 𝑖𝑛 𝑀𝐹2 𝑎𝑛𝑑 𝑝𝐻 𝑑𝑖𝑓𝑖𝑛 𝑖𝑠 𝑝𝐻 𝑑𝑖𝑓𝑖𝑛𝑀𝐹2  

𝑎𝑛𝑑 𝐺𝑉 𝑅𝑉⁄  𝑑𝑖𝑓𝑖𝑛 𝑖𝑠 𝐺𝑉 𝑅𝑉⁄  𝑑𝑖𝑓𝑖𝑛 𝑀𝐹2 𝑇ℎ𝑒𝑛 

𝐴𝑙𝑘𝑎𝑙𝑖𝑛𝑖𝑡𝑦 = 5103.667 ∙ pH − 3814.17 ∙ 𝐺𝑉 𝑅𝑉⁄  𝑑𝑖𝑓 + 1193.006 ∙ pH dif − 

1035.44 ∙ 𝐺𝑉 𝑅𝑉⁄  𝑑𝑖𝑓 − 32529.7 

 

3 𝐼𝑓 𝑝𝐻𝑖𝑛 𝑖𝑠 𝑝𝐻𝑖𝑛𝑀𝐹3 𝑎𝑛𝑑 𝐺𝑉 𝑅𝑉⁄ 𝑖𝑛  𝑖𝑠 𝐺𝑉 𝑅𝑉⁄ 𝑖𝑛 𝑀𝐹3 𝑎𝑛𝑑 𝑝𝐻 𝑑𝑖𝑓𝑖𝑛 𝑖𝑠 𝑝𝐻 𝑑𝑖𝑓𝑖𝑛𝑀𝐹3  

𝑎𝑛𝑑 𝐺𝑉 𝑅𝑉⁄  𝑑𝑖𝑓𝑖𝑛 𝑖𝑠 𝐺𝑉 𝑅𝑉⁄  𝑑𝑖𝑓𝑖𝑛 𝑀𝐹3 𝑇ℎ𝑒𝑛 

𝐴𝑙𝑘𝑎𝑙𝑖𝑛𝑖𝑡𝑦 = 9275.63 ∙ pH − 4479.68 ∙ 𝐺𝑉 𝑅𝑉⁄  𝑑𝑖𝑓 + 2642.83 ∙ pH dif − 

11848.7 ∙ 𝐺𝑉 𝑅𝑉⁄  𝑑𝑖𝑓 − 55558.3 

 

4 𝐼𝑓 𝑝𝐻𝑖𝑛 𝑖𝑠 𝑝𝐻𝑖𝑛𝑀𝐹4 𝑎𝑛𝑑 𝐺𝑉 𝑅𝑉⁄ 𝑖𝑛  𝑖𝑠 𝐺𝑉 𝑅𝑉⁄ 𝑖𝑛 𝑀𝐹4 𝑎𝑛𝑑 𝑝𝐻 𝑑𝑖𝑓𝑖𝑛 𝑖𝑠 𝑝𝐻 𝑑𝑖𝑓𝑖𝑛𝑀𝐹4  

𝑎𝑛𝑑 𝐺𝑉 𝑅𝑉⁄  𝑑𝑖𝑓𝑖𝑛 𝑖𝑠 𝐺𝑉 𝑅𝑉⁄  𝑑𝑖𝑓𝑖𝑛 𝑀𝐹4 𝑇ℎ𝑒𝑛 

𝐴𝑙𝑘𝑎𝑙𝑖𝑛𝑖𝑡𝑦 = 5083.47 ∙ pH − 2472.1 ∙ 𝐺𝑉 𝑅𝑉⁄  𝑑𝑖𝑓 − 2345.85 ∙ pH dif + 

1686.734 ∙ 𝐺𝑉 𝑅𝑉⁄  𝑑𝑖𝑓 − 28906.5 
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5 𝐼𝑓 𝑝𝐻𝑖𝑛 𝑖𝑠 𝑝𝐻𝑖𝑛𝑀𝐹5 𝑎𝑛𝑑 𝐺𝑉 𝑅𝑉⁄ 𝑖𝑛  𝑖𝑠 𝐺𝑉 𝑅𝑉⁄ 𝑖𝑛 𝑀𝐹5 𝑎𝑛𝑑 𝑝𝐻 𝑑𝑖𝑓𝑖𝑛 𝑖𝑠 𝑝𝐻 𝑑𝑖𝑓𝑖𝑛𝑀𝐹5  

𝑎𝑛𝑑 𝐺𝑉 𝑅𝑉⁄  𝑑𝑖𝑓𝑖𝑛 𝑖𝑠 𝐺𝑉 𝑅𝑉⁄  𝑑𝑖𝑓𝑖𝑛 𝑀𝐹5 𝑇ℎ𝑒𝑛 

𝐴𝑙𝑘𝑎𝑙𝑖𝑛𝑖𝑡𝑦 = 189.851 ∙ pH + 145.331 ∙ 𝐺𝑉 𝑅𝑉⁄  𝑑𝑖𝑓 − 1155.1 ∙ pH dif + 

1135.225 ∙ 𝐺𝑉 𝑅𝑉⁄  𝑑𝑖𝑓 + 1672.771 

 
Table 4.6 TSK fuzzy model rules and consequent parameters for FIS II (GV/RV is gas volume/reactor volume, 

and dif stands for difference) 

 

 During the evaluation of FIS II it was observed that the supposedly more 

accurate model did not have many differences with FIS I. However, the most 

important finding was that during the design process there was always a tradeoff 

between R2 and MAE and Bias. Throughout the design process of FIS II, models that 

had high R2 values ranging up to 0.7 had MAE and Bias values that were higher by 

at least 25% of the MAE and Bias values that characterise FIS II. Since the latter 

statistical indices are considered to be more important in this design, FIS II 

coefficient of determination values are kept at low levels (<0.5), for all three reactors. 

MAE values averaged at 629 and Bias values averaged at 568 which are sufficient 

enough since the alkalinity stability and optimum operation range is between 3500 

mg/l of HCO3- and 4500 mg/l. Predicted and observed alkalinity values are depicted 

in Figure 4.35 demonstrating that bias is kept at desired levels.  

 Index of agreement had an average value of 0.52 for all reactors, which 

shows an acceptable agreement between predicted and observed values, and 

fractional bias had an average value of 0.17 which is not as close to 0 as desired. 

FIS II was able to characterise alkalinity levels in reactor 6 with more accuracy than 

reactor 4 and reactor 5 (Table 4.7)    
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Figure 4.35 Observed and predicted alkalinity values using FIS II 

 

 Similarly to FIS I, FIS II was able to detect boosted alkalinity levels due to 

addition of NaHCO3 in an accurate manner, however when water dilution was 

applied to reactor 6 the predicted alkalinity levels started rising compared to the 

measured values and declined by 1300 mg/l of HCO3- on average. So, it is 

concluded that in order to enable the reactors to detect values after dilution this data 

should be embedded in the fuzzy design (Figure 4.36). 
 

Performance 
 indices 

FIS II 

Reactor 4 Reactor 5 Reactor 6 

R2 0.143 0.281 0.499 

MAE 621.77 800.81 466.53 

Bias 621.77 616.93 466.53 

IA 0.3 0.66 0.603 

NMSE 0.045 0.082 0.031 

FB 0.188 0.197 0.155 
Table 4.7 Alkalinity performance for FIS II based on newly available data 
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Figure 4.36 Observed and predicted alkalinity values for all reactors using FIS II 

 

4.4 Conclusions 
 

 Evaluation of the performance of six 5l reactors was conducted. Three 

reactors did not contain any support surfaces and three reactors had burst cell foam 

coarse, burst cell foam medium, and sponge respectively attached as biomass 

support media. All reactors were operated under similar loading regimes to observe 

and determine differences in the way they function.  

Reactors with biomass support media proved to be more stable compared to 

the reactors without support media, but did not exhibit significantly higher gas 

productivity. Biomass support media appeared to play a vital role in digester 

recovery which was also witnessed after reactor breakages, where the system had 

to be restarted, by speeding up the recovery period. Sponge had a higher positive 

influence on gas production followed by burst cell foam coarse and burst cell foam 
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medium. From reactors without support surfaces (reactors 1-3) only reactor 3 

managed to reach gas productions levels similar to reactors with support media 

during its limited time of operation.  

Maximum sustainable loading rates varied between different types of reactor 

set-ups and increased biogas production was found to exist between 3-3.5 g VS/l/d 

for reactors without support media and 4-5 g VS/l/d for reactors with support media. 

Optimum pH ranges were identified for reactors 1, 2 and 3 between pH 7.1- 7.3 and 

were slightly lower for reactors 4-6 (pH 6.9-7.2). All reactors became unstable when 

pH was <6.9. Also, alkalinity levels for system stability appeared to be above 3500 

mg/l of HCO3- for reactors with no media and 3480 mg/l of HCO3- for digesters with 

support media. Biogas production was boosted when alkalinity was between 3500-

4500 mg/l HCO3- for vessels 1-3 and between 3480-4300 mg/l of HCO3- for vessels 

4-6. 

 A reformulation of the inputs that would be part of the fuzzy logic system 

designed to predict alkalinity was performed. A new selection of inputs based on low 

cost reliable sensors that included gas volume production which is indicative of the 

digester performance was conducted. Therefore, instead of having pH, ORP and EC 

as system inputs pH, gas volume/reactor volume, daily pH difference and daily gas 

volume/reactor volume difference were selected as the new inputs. 

 Two first order TSK fuzzy systems were developed during different periods 

throughout the experiments trying to capture alkalinity behaviour. These software 

predictors intended to form the basis of a controller that would regulate the loading 

rate based on alkalinity. FIS I appeared to be better than FIS II, however due to the 

limited input range during the evaluation process some values were outside the 

specified range making it more unstable for future utilisation. FIS II was supposed to 

perform better than FIS I since a larger database was utilised during the design 

process. FIS II behaviour was slightly inferior to FIS I, however a higher degree of 

completeness in the training data set would enhance the accuracy of this software 

predictor in future applications. FIS II was characterised by quite good MAE and bias 

values of 466.53 mg/l of HCO3- for reactor 6 and an acceptable value for R2= 0.498. 

NMSE was close to 0 with a value of 0.03 and a slightly higher FB= 0.154 than 

desired. 

 Data collected throughout the duration of the experiment contained some 

uncertainties mainly due to practical problems encountered during reactor operation. 
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Those included gas leakages, oxygen intake during reactor loading and unloading, 

reactor breakages and the fact that water from the water bath containing the cells 

would flow into the reactors through the gas collection tubes during high loading 

periods taking place at start-up. However, these uncertainties make the fuzzy system 

more robust since they are contained in the inputs and the outputs that were used to 

determine the system structure itself (Ross 2004). System robustness was tested by 

adding NaHCO3 to reactor 5 and by diluting reactor 6 with water. FIS I and FIS II 

were able to follow the system output closely in the first case, but not in the second. 

This means that process data recorded during the days that followed water dilution 

should be embedded in the system design to enable it to detect similar changes in 

the future.  
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 Chapter 5 Alkalinity software sensor application and 

development of rule-based and fuzzy logic organic 
loading rate control systems for anaerobic digesters 

 

 FIS II (developed in Chapter 4) is utilised as an alkalinity predictor. FIS II 

functionality is tested through the application on a 28.34l cylindrical reactor with 

biomass support media treating cow manure. In a second experiment a rule-based 

and a Mamdani fuzzy logic controller are developed to regulate the organic loading 

rate based on alkalinity predictions from FIS II. They are tested through the 

application in five 6.46l reactors with biomass support media treating cellulose. 

5.1 Introduction 
   

Process control plays an important role in AD systems to stabilise the 

fermentation as well as optimise the biogas output primarily by regulating the amount 

of volatile solids that enter the digester on a routine basis. High OLR can require 

continuous digester feeding (hourly) whereas when lower loading rates are applied 

the digester needs to be fed once a day (Mattocks 1984). OLR is adapted to the 

biological conversion capacity of AD systems (Verma 2002) by process control and 

is directly associated with the retention time via the active biomass reactor 

concentration (Schoen 2009). Also, biogas production depends on the organic 

matter that is biodegraded by anaerobic microorganisms.  OLRs depend on the 

substrate utilised which is the reason why optimum OLR values range according to 

the substrate and operating conditions (e.g. differences exist between mesophilic 

and thermophilic AD plants operating with identical substrates). Reactor set-up is an 

additional factor that influences OLR. Van Lier (1996) provides a table of optimal 

OLR values for different substrates operated under thermophilic temperatures. 

A fuzzy logic AD controller can be utilised to achieve different goals (Puñal et al. 

2003) (Yordanova 2004): 

• Keep the required concentration of organic matter at the reactor output 

• Reach an optimal methane production level 
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• Succeed in producing a stable operation in case of systems treating high 

OLRs affected by input concentration and/or flow rate oscillations.    

Several FLC applications can be found in the literature. Yordanova (2004) developed 

a two-level FLC for the biogas production rate in the anaerobic wastewater treatment 

plant (WWTP), pointing out the efficiency of the fuzzy approach compared to the 

application of a conventional PI controller. Another FLC was developed (Scherer et 

al. 2009) to control biogas reactors using energy crops. The resulting system proved 

to be successful during start-up and while recovering from failure. The FLC achieved 

the desired process performance under high OLR and low hydraulic retention time 

(HRT) without utilizing any special mathematical model or detector or self-learning 

network. OLR was determined based on pH, specific gas production rate (GPR) and 

CH4 content. Specific GPR was chosen instead of volume GPR, as the latter was 

proven unable to support pH control efficiently. Although redox is widely used as a 

process parameter, it was not utilised in this case as it was found to be lacking 

reliability. The number of FLC rules was selected as 3x, where x is the input number. 

It is recommended that the FLC process variables should be reconfigured for 

different substrates. A FLC based on the utilisation of cheap on-line sensors 

(Estaben et al. 1997) enables the system to function around a set-point and achieves 

acceptable reduction of chemical oxygen demand (COD). Stable operation was 

possible around a working point with perturbations or overloading conditions. A two-

stage anaerobic wastewater pre-treatment was controlled (Murnleitner et al. 2002) 

with a FLC system predicting the biological state of the reactors. Control was based 

on which control actions were taken to maintain process stability and this approach 

proved to be suitable for applications involving strong volume and concentration 

variations, or where additional feed can achieve higher biogas production. Finally, 

the main control issue in the design that appears in (Carrasco et al. 2002) is 

successful operation recovery in the case of disturbances and, similarly to the 

previous work, proper state detection of the WWTP. 

 Knowledge based rule structures have also been applied to control AD 

systems. Some of the applications were based on fuzzy logic and were implemented 

as a rule-base (Carrasco et al. 2002) (Carrasco et al. 2004). Other designs include 

the utilisation of rule-based supervisory systems  to control the influent flow rate (Liu 
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et al. 2004a)(Liu et al. 2004b)and the OLR (Ward 2009) (Partner N° 2, Rothamsted 

Research 2010). 

This chapter focuses on the development of two controllers that serve the 

same purpose which is to control the OLR of an anaerobic digester: a fuzzy logic 

controller and a rule-based controller. The determination of optimum operating 

parameter ranges for pH, OLR and alkalinity was presented in Chapter 4 and formed 

the basis of the design of the two controllers. FIS II (Chapter 4) was set to predict 

alkalinity which is indicative of digester stability. Alkalinity predictions were then fed 

into the controller that would vary the OLR accordingly. 

Both approaches were very similar since they were designed based on the 

alkalinity and OLR optimum parameter ranges identified in Chapter 4. The first 

controller is a Mamdani fuzzy logic controller that regulates the OLR based on the 

daily alkalinity value and the daily difference in alkalinity. The second controller is a 

rule based system that varies the OLR using the FIS II alkalinity predictions and the 

daily difference in alkalinity.  
 

5.2 Materials and methods 
 

5.2.1 Order of experiments  
 

 The experiments that were performed are as follows: 

1. Evaluating  the alkalinity predictor FIS II using a different reactor set-up 

(02/10/2012- 03/12/2012) 

During the first experiment, fuzzy test 1 (FT1), the OLR was adjusted 

manually and focused on evaluating FIS II using a 28.34l reactor 

2. Evaluation of a rule-based system to control OLR  (09/01/2013- 

08/03/2013) 

The second experiment, controller test 1 (CT1), tested FIS II. OLR was 

determined by a rule-based controller (07/02/2013- 08/03/2013) using 

control strategy II and was applied on two 6.46l reactors treating 

cellulose. 
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3. Evaluation of a fuzzy logic system to control OLR (09/01/2013- 

08/03/2013) 

The third experiment, controller test 2 (CT2), tested FIS II. OLR was 

varied using a Mamdani fuzzy logic controller (07/02/2013- 08/03/2013) 

using control strategy I and was applied on three 6.46l reactors treating 

cellulose. 

 The order of experiments is depicted in Figure 5.1 where FLC corresponds to 

the fuzzy logic controller and RBC to the rule-based controller. 

 

Figure 5.1 Order of experiments and controller application 

 

 5.2.2 Reactor construction  
 

5.2.2.1 Reactor used in experiment FT1 

 

 The anaerobic digester used in FT1 consisted of a 28.34l single stage 

cylindrical reactor with a working volume of 25l to provide a headspace (Figure 5.2). 

Biomass support media lined the inside of the tank after being formed into a cylinder 

and stainless steel wire was utilised to keep the support media in place. 

02/10/12 11/11/12 21/12/12 30/01/13 11/03/13 20/04/13

FT1

CT1-CT2

FLC- RBC
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(1) (2)

(3)

 

Figure 5.2 Schematic of larger digester.  Mixing was implemented by pumping digestate from inlet 1 to inlet 2. (3) 

is the gas outlet. 

 

 The gas outlet located at the top of the reactor was connected to a liquid 

displacement system made of a cell of known capacity that operated based on the 

principle of buoyancy. A magnetic reed switch provided information with respect to 

the number of times each cell was moved (Figure 4.2). The switch was connected to 

a mechanical counter that recorded gas production off-line (Figure 4.3). The reactor 

was placed at a c.a. 30o angle inside a water bath to prevent the gas outlet from 

getting blocked. 

5.2.2.2 Reactors used to evaluate fuzzy logic and rule-based controllers  
 

6.46l cylindrical reactors with a working volume of 5l were used in CT1-CT2. 

These reactors were placed vertically inside a water bath. The reactor-set up was 

similar to the one used in FT1 (inlet-outlet for mixing, gas outlet) and off-line gas 

volume production was recorded in the same way. 

5.2.3 Biomass support media 
 

 All reactors were equipped with biomass support media attached around the 

inside of each reactor. Based on the reactor performance presented in Chapter 4 
(where it was concluded that the reactor with the sponge produced the highest 

amount of biogas), sponge with a c.a. 1 mm pore diameter was selected as the 

biomass support surface. The size of the support material in the 28.34l reactor was 

80 cm× 38 cm× 3cm and 56 cm× 20 cm× 3 cm in the 6.46l reactors. 
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5.2.4 Feedstock 
 

 Cow slurry was used for the reactor operated during the first experiment 

(FT1). Manure was collected from the beef cattle located at North Wyke Research 

every seven days. Cow manure was diluted with water and then screened through a 

10 mm diameter mesh to reduce the amount of straw bedding that would enter the 

digester. Cow slurry was then stored in deep fridge below +4o C to reduce 

degradation processes. Cow slurry was heated to 55oC for 5-6 hours on a daily basis 

prior to feeding in order to minimise temperature imbalance inside the reactor. 

Cellulose was used as a feedstock for experiments CT1- CT2.  
 

5.2.5 Reactor operation start up procedures 
 

5.2.5.1 Reactor used in experiment FT1 

 

 The reactor used in experiment FT1 was initially loaded with 25l. Of the 25l, 

14l was digestate originating from reactors 1-3 (Chapter 4) that used cow slurry 

containing 4.35% total solids and 3.07% volatile solids holding a total alkalinity value 

of 5400 mg/l HCO3- . The remaining 11l were fresh cow slurry with 3.9% total solids 

and 3.27% volatile solids with a total alkalinity value of 1826 mg/l HCO3-.   
  

5.2.5.2 Reactors used in experiments CT1-CT2 
 

The five 6.46l reactors that were used in CT1 and CT2 were originally filled 

with 5l of cow slurry of 3.35% total solids and 2.93% of volatile solids. For the 

duration of all experiments each reactor was fed once a day on an average of five 

days during the working week. The feeding process was conducted manually during 

FT1 by connecting the peristaltic pump to point (1) for substrate withdrawal and point 

(2) for substrate insertion (Figure 5.2). During CT1-CT2 each reactor was fed 

manually by removing the top of each 6.46l reactor.   
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5.2.6 Mixing  
 

 The pump that was used in all experiments was a Watson-Marlow 323 U/D 

peristaltic pump (Watson-Marlow Bredel pumps, Falmouth, Cornwall TR11 4RU, 

UK). Mixing was performed manually for 10 min before every feeding incident and for 

10 min after every feeding during FT1 because the pump blocked when operated 

automatically. The mixing time corresponds to the amount of time it took for the 

pump to mix the contents of the reactor twice. 

 Although the substrate viscosity and composition should enable the peristaltic 

pump to function automatically during experiments CT1-CT2, however the pump 

would block most of the time. Therefore, gentle stirring with a rod manually took 

place for 1 min before sample collection and 1 min after daily feeding.     

5.2.7 Off-line monitoring 
 

Throughout the duration of all experiments each reactor was monitored once 

a day for pH and CH4 content in the biogas. Gas volume was recorded twice a day to 

ensure that no gas leakages existed in the gas collection system or the reactors. 

Total solids and volatile solids analysis was conducted at frequent intervals during 

FT1. Samples were analyzed for alkalinity on an average of five times a week. 

pH was measured off-line using a HANNA INSTRUMENTS HI9025 

microprocessor-based pH meter during FT1, CT1-CT2. The pH meter was calibrated 

weekly using pH 4 and pH 7 buffer solutions. During FT1 pH was recorded during 

the feeding incident. During experiments CT1-CT2 pH was measured five hours 

before the feeding incident. 

Methane content, biogas volume, total solids, volatile solids and alkalinity 

were measured using the same methods described in section 4.2.6. 
 

5.2.8 Fuzzy Inference System predicting alkalinity 
 

 First order fuzzy logic systems FIS I and FIS II were developed and tested in 

Chapter 4. FIS II was developed with a bigger database than FIS I and although it 
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proved to be slightly inferior to FIS I, data size would make it more robust than FIS I 

in future applications. 

 FIS I and FIS II were tested against disturbances that included bicarbonate 

addition and water dilution. Both systems reacted positively to bicarbonate addition 

but their predictions were not as accurate as expected regarding alkalinity values 

that existed in the reactors during the days that followed water dilution. Therefore, 

previous data were included in a design of a new FIS as suggested in the previous 

chapter. This inclusion produced a less accurate model for normal operation.  So, 

since the aim of the design of a software sensor for an AD process is also to 

maintain a stable system, it should also aim at avoiding correcting actions that might 

include diluting reactor contents with water. For these reasons FIS II was selected as 

the alkalinity predictor for all experiments. 
   

5.2.9 Control strategy I (Fuzzy Logic) 
 

 A fuzzy logic system (Mamdani) was developed to determine the OLR 

variation to control the fermentation during experiments CT2 and CT4. The controller 

was based on Mamdani’s fuzzy inference method (Mamdani & Assilian 1975). 

 Fuzzy Logic Toolbox within the framework of Matlab 7.10 was used to create 

the FIS. Input variables representing alkalinity and daily difference in alkalinity and 

the output variable representing the change in OLR expressed in g/l/d were 

developed using the FIS editor (Figure 5.3). 
 

 

 

Figure 5.3 Inputs and output variables of the Mamdani FIS 
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 Four linguistic values corresponding to the same number of membership 

functions were assigned for alkalinity (very low, low, medium, and high). The very 

low membership function was assigned for alkalinity values below 2600 mg/l of 

HCO3- that are typical values of a system during the start-up process or a system 

that has become unstable. The low membership function included alkalinity values 

between 2400 mg/l of HCO3- and 3500 mg/l of HCO3- that characterise a digester 

that is either recovering, or is about to become unstable or has optimum gas 

production but can become unstable. The medium membership function was 

assigned for values ranging between 3300 mg/l of HCO3- and 4200 mg/l of HCO3- 

that can be indicative of a system that is about to become unstable (below 3500 mg/l 

of HCO3-) or a stable system exhibiting optimum biogas production (3500> mg/l of 

HCO3-). The high membership function contained alkalinity values 4000> mg/l of 

HCO3- that signify a stable system that might have not reached the highest gas 

production rates. 

Three linguistic values were set for the daily difference in alkalinity (negative, 

stable and positive) that could be indicative of the stability state of the system. The 

negative fuzzy set contained the negative changes in alkalinity values (a very low 

value signifies a digester that is overloaded). The stable set corresponded to 

changes in alkalinity values between -200 mg/l of HCO3- and 200 mg/l of HCO3-. The 

positive set included positive alkalinity value changes.  

Three linguistic values were assigned for the change in OLR (negative, stable 

and positive) that ranged between -1 g VS/l/d and +1 g VS/l/d (Figure 5.4).  
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Figure 5.4 Membership functions of (a) alkalinity, (b) daily difference in alkalinity, (c) change in OLR 

 

 Ten rules were established based on the experience that was obtained while 

conducting the experiments presented in Chapter 4. For simplicity alkalinity is 

symbolised as A, daily difference in alkalinity is symbolised as DDA and change in 

OLR as C. For the same reason, an abbreviation of each linguistic value is used in 

the rule-base description (VL= very low, L= low, M= medium, H= high, N= negative, 

S= stable, P= positive) as follows: 

 

If A is VL and DDA is N then C is S 

If A is VL and DDA is S then C is S 

If A is VL and DDA is P then C is P 

If A is L and DDA is N then C is N 

If A is L and DDA is S then C is S 
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If A is L and DDA is P then C is P 

If A is M and DDA is N then C is S 

If A is M and DDA is S then C is S 

If A is M and DDA is P then C is P 

If A is H then C is P 

 

 For experiment CT2 the OLR was kept below 5.5 g VS/l/d to ensure than the 

reactors would not be massively overloaded and so avoid system failure. Therefore, 

in case the rate of change in OLR was suggesting an increase above the 5.5 g 

VS/l/d, which never happened during the fuzzy control application, the OLR would 

remain stable until a decrease would be applied by the fuzzy system. The minimum 

OLR was set at 1.5 g VS/l/d. This value would also provide a starting OLR point for 

the initial system operation. 
 

5.2.10 Control strategy II (Rule-based) 
 

 A rule-based system was implemented based on the same principles with 

which control strategy I was formulated. The same inputs (alkalinity and daily 

difference in alkalinity) were used to predict the rate of change in OLR. The major 

differences between Control strategy I and Control strategy II are that the alkalinity 

partition ranges and the OLR variations are crisp, and that the daily difference in 

alkalinity can be either positive or negative. The flow chart of the rule-based system 

is depicted in Figure 5.5. 
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Figure 5.5 Flow chart of the rule-based system where DDA= daily difference in alkalinity, OLR (g VS/l/d), 

Alkalinity (mg/l of HCO3-) 

 The rule-based system was implemented based on the analysis of the data 

acquired from the experiments that were conducted in Chapter 4. It was ensured that 

during CT1 the OLR would not exceed 5.5 g VS/l/d even if the rule-based system 

suggested a higher increase although this action was never suggested by this 

system as will be presented later in this chapter. The minimum OLR of the rule-

based system was set at 1.5 g VS/l/d.  

5.3 Results and discussion 
 

5.3.1 FT1 reactor operation 
 

 Experiment FT1 was performed for nine weeks to evaluate FIS II model to 

determine alkalinity using sensors and a digester of different size and configuration. 

The FIS II model was also tested by disturbing the reactor by dilution with water, 

addition of NaHCO3 and by temperature fluctuations. The OLR was varied manually 

based on the experience acquired from the operation and the data recorded during 

the experiments presented in Chapter 4. The aim was to maximise biogas 

productivity while maintaining a stable digester environment. Also, based on the 
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reactor performance controller strategy I and controller strategy II were formulated. 

However, stability was not always achieved due to circumstances that are explained 

below.  

Following week one (Figure 5.6) where OLR was kept to zero to allow the 

inoculation of the biomass support media, OLR averaged around 3.3 g VS/l/d during 

week two and week three. At the beginning of week four, the reactor gas outlet 

blocked and 16.5l of the working inoculum was lost and was replaced with cow slurry 

with TS%= 3.9 and VS%= 3.25. The loading process was reinitiated during week five 

when 2.5 g VS/l/d were added in the reactor on a daily basis.  During week six, a 

1/5th water dilution and a NaHCO3 addition of 3 g/l were performed. An average 

loading rate of 2.4 g VS/l/d was applied on week six till week nine. OLR was kept at 

low levels averaging at 2 g VS/l/d especially during weeks eight and nine due to 

temperature fluctuations that were a result of the water bath heater malfunction. 
 

 

Figure 5.6 OLR during FT1 operation 

  

 pH was kept within values indicating stability varying between 6.9- 7.24 until 

the beginning of week four when most of the working volume was lost (Figure 5.7). 

Following restart, the reactor was quite acidic with pH values varying between 6.41- 
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6.92. On week six, water dilution and NaHCO3 addition boosted pH that reached a 

value of 7. After week seven severe temperature fluctuations destabilised pH that 

varied from 6.83- 6.94. 

 

Figure 5.7 pH during FT1 operation 

 

 Gas and methane production levels (Figure 5.8) were on average 0.56 l/l/d 

and 0.28 l/l/d respectively until week four before the process restart. During weeks 

four and five when pH values were low, gas and methane production values were 

halved, averaging at 0.27 l/l/d and 0.13 l/l/d respectively. Water dilution and NaHCO3 

addition boosted these levels to 0.5 l/l/d and 0.23 l/l/d until temperature fluctuations 

(weeks eight and nine) heavily impacted gas productivity resulting in a drop in both 

gas and methane production to 0.36 g/l/d and 0.16 g/l/d.  Methane percentages 

(Figure 5.9) remained stable at quite high levels averaging at 47% throughout the 

entire reactor operation. This suggests that methane percentage might be indicative 

of an effective anaerobic fermentation but only when used in conjunction with other 

process parameters. This is validated by the fact that after the process restart and 

before the water dilution and NaHCO3 addition, methane percentage was kept stable 

around 47%. However, pH, daily gas volume production and alkalinity indicated that 

the system was not stable by having values outside the stability range that was 

identified during Chapter 4 for stable operation. 
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Figure 5.8 Gas and methane production during FT1 operation 

 

 

Figure 5.9 Methane percentage during FT1 operation 

 

 Gas and methane yield (Figure 5.10) remained below 0.2 l/g of VSfed/d and 

0.11 l/g of VSfed/d respectively even after week four. Buffer addition resulted in a 

yield increase that reached 0.76 l/g of VSfed/d and 0.36 l/g of VSfed/d respectively 

during week eight. However, temperature fluctuations occurring in week eight 

resulted in minimisation of biogas yield.  
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Figure 5.10 Gas and methane yield during FT1 operation 

 

 Since the beginning of the experiment alkalinity (Figure 5.11) was below 4000 

mg/l of HCO3- and during the first three weeks remained between 3077 mg/l of 

HCO3- and 3985 mg/l of HCO3-.  These alkalinity values are lower than values that 

dictated stable operation in Chapter 4 where digester stability occurred when 

alkalinity was above 3500 mg/l of HCO3-. However, in this case gas production was 

steadily increasing until the reactor had to be restarted (week four) and methane 

percentages averaged at 52% not indicating process imbalance. This suggests that 

a biogas reactor with higher capacity is more stable and can maintain stability at 

lower alkalinity values than smaller scale reactors. From week four to week six 

alkalinity values were below 2500 mg/l of HCO3- and followed the positive pH trend 

when NaHCO3 and water dilution were applied to the system reaching 4454 mg/l of 

HCO3-. Temperatures fluctuations had a negative impact on alkalinity that started to 

drop after week eight below 3000 mg/l of HCO3- 
.  
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Figure 5.11 Alkalinity during FT1 operation 

 

 Volatile solids reduction (Figure 5.12) ranged between 22%-79% after the 

water dilution and NaHCO3 addition.  An OLR reduction from 5.3 g/l/d to 3.9 g/l/d 

during weeks two and three resulted in a VSR decline which is in accordance with 

the results from Chapter 4 where higher reduction rates had the same loading rate 

trend especially during stable operation. However, after week seven VSR reached 

79 % when OLR was around 2.5 g VS/l/d much less than during the first weeks of 

operation. This is probably due to the buffering addition and water dilution that aimed 

to boost digester recovery.   
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Figure 5.12 Volatile solids reduction percentage during FT1 operation 

 
 

5.3.2 FIS II evaluation during FT1 operation 
 

 FIS II that was introduced in Chapter 4 was utilised to predict alkalinity levels 

during FT1. FIS II predicted alkalinity based on daily pH, daily gas volume/reactor 

volume, daily pH difference and daily difference in gas volume/reactor volume. FIS II 

performance was evaluated based on the coefficient of determination, MAE, Bias, IA, 

NMSE and FB (Equations 3.4- 3.9). Data from process restart due to accidental loss 

of working volume, data following water dilution and NaHCO3 addition and alkalinity 

evolution during severe temperature fluctuations were utilised during the evaluation. 

Fuzzy model predictions are depicted in Figure 5.13.  

0

25

50

75

100

1 2 3 6 7 8 9 10

Vo
la

til
e 

so
lid

s 
re

du
ct

io
n 

(%
) 

weeks 

209 
 



 

Figure 5.13 Observed and predicted alkalinity values using FIS II 

 

 FIS II alkalinity predictions are slightly higher than actual alkalinity values. 

This might be due to the fact that the system appeared to be stable even while 

alkalinity was lower than 3500 mg/l of HCO3- as mentioned in 5.3.1. By utilizing the 

complete dataset, FIS II performance is adequate (Table 5.2) by having a poor R2 

value, acceptable MAE and bias values, a relatively normal IA=0.45 and slightly high 

NMSE and FB values. However, since temperature fluctuations result in a cessation 

of biogas production it can be clearly seen that severe differences in prediction 

values exist mainly when system operation under temperature fluctuations occurred. 

The fuzzy model might not have responded in a positive manner after the process 

was restarted, but was able to closely predict alkalinity the days that followed the 

combination of water dilution and NaHCO3 addition. Therefore, if the five last data 

points are removed from the evaluation process, FIS II performance can be 

characterised as good. Considering the fact that it was designed based on data from 
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different digester set-up, R2= 0.54 and MAE=Bias= 587 indicate a slight deviation 

from the actual data.     
 

 

Performance 
indices 

FIS II 

A B 

R2 0.099 0.54 

MAE 762 587 

Bias 762 587 

IA 0.45 0.646 

NMSE 0.089 0.046 

FB 0.2587 0.2 
Table 5.1 Alkalinity performance for FIS II ((A) full dataset, (B) dataset without temperature fluctuation data) 

 

5.3.3 CT1 and CT2 reactor operation 
 

 Experiments CT1 and CT2 lasted for approximately nine weeks. The aim was 

to test FIS II and the proposed control approaches (fuzzy logic for CT2 and rule-

based for CT1) using reactors of different configuration and inputs as substrate. This 

would test the FIS II ability to predict alkalinity in reactors of different configuration 

than the ones utilised in its design and also to check the suitability of the proposed 

controllers. 

 OLR was varied manually during the first five weeks of operation and control 

approaches I and II were applied during the next four weeks of operation.  The 

loading rates were identical for all five reactors during the first five weeks after which 

the proposed control methodologies were applied (Figure 5.14). From week five to 

week nine, reactors 1-3 were controlled by control strategy I and reactors 4-5 by 

control strategy II.  OLR averaged at 1.25 g VS/l/d during the first three weeks to 

allow sufficient time for the immobilisation of the support media and was gradually 

increased to 5.5 g VS/l/d until week five aiming to increase biogas production. From 

week five to week nine OLR was varied individually for each reactor based on the 

two control strategies ranging between 1.5 g VS/l/d and 5.42 g VS/l/d.    
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Figure 5.14 OLR during CT1 and CT2 operation 

 The impact of OLR to pH was positive in all reactors. pH remained at values 

below 7 (Figure 5.15) during the first ten days of operation despite the fact that OLR 

was kept at minimum (1.25 g VS/l/d). This was expected since the reactors were still 

trying to reach a stable state. pH started rising and reached a value between 7.07 

and 7.18 in all reactors at the beginning of week three. From week three to week 

nine (when experiments CT1 and CT2 ended) the controllers were able to maintain 

stable pH values inside all reactors. pH remained above the bottom pH limit of 6.9 

and within the range where maximum gas production occurs (6.9-7.42). These limits 

were established based on the experiments presented in Chapter 4. The only 

exceptions were the pH values recorded for reactor 1 during week six when pH was 

between 6.81 to 6.86. These low pH values were probably the result of an accident 

that took place the day that the first drop in pH was recorded. The gas outlet tube got 

blocked due to which half of the substrate inside the reactor was lost since a part of 

the reactor got detached. This was the probable cause for the pH decrease from a 

value of 7.12 to 6.86.     
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Figure 5.15 pH during CT1 and CT2 operation 

 Gas and methane production (Figure 5.16) remained at relatively low levels 

averaging between 0.26-0.35 l/l/d and 0.07-0.12 l/l/d respectively after the controller 

application. Additionally, methane percentages (Figure 5.17) were kept below the 

limit where a biogas system is considered stable (around 45%). The average 

methane values for all reactors were between 30%-33% CH4 from week four to week 

nine. These values indicate that the reactors never reached a stable state that would 

enable the maximisation of biogas production. Even in reactor 1 (CT2) and reactor 4 

(CT1) where the OLR was kept at lower levels that the other reactors (with average 

values of 2.17 g VS/l/d and 2.87 g VS/l/d respectively) gas production was equally 

low.     

 

 

Figure 5.16 Weekly average gas and methane production during CT1 and CT2 operation 
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Figure 5.17 Weekly average methane percentages during CT1 and CT2 operation 

 Alkalinity levels (Figure 5.18) started rising after two weeks of operation 

peaking between 5673 mg/l of HCO3- and 6349 mg/l of HCO3- after three weeks of 

CT2 and CT1 operation. Alkalinity remained at similar levels during week four. When 

controller strategy I and controller strategy II were applied, alkalinity remained at 

desired stability levels (>3500 mg/l of HCO3-) for reactors 2-3 (CT2) and reactor 4 

(CT1). A drop in alkalinity was recorded for reactor 1 that was not due to the 

controller application after the sixth week when the loss of substrate occurred as 

explained above. A similar drop in alkalinity was observed for reactor 5 (CT1) later 

during the same week. This drop was initially caused by oxygen intake. Gas 

pressure created by the outlet gas tube blockage resulted in the removal of the top of 

the reactor. However, alkalinity remained below 3000 mg/l of HCO3- for the 

remainder of the experiment. Such low values were due to relatively high loading 

rates that were applied by the rule-based controller averaging at 3.88 g VS/l/d.       
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Figure 5.18 Alkalinity during CT1 and CT2 operation 

5.3.4 Control strategy and FIS II evaluation during CT1 and CT2 operation 
 

 Alkalinity predictions of FIS II despite the accidents that occurred during the 

operation of reactors 1, 3 and 5 were quite accurate. The FL soft sensor was able to 

provide both the fuzzy logic controller and the rule-based controller with predicted 

values that deviated slightly from the observed values. Increased accuracy was 

present when alkalinity was between 2900 mg/l of HCO3- and 4660 mg/l of HCO3- in 

all reactors. Predicted alkalinity values outside this range might suggest that 

changes in the fuzzy structure should be applied. Especially for alkalinity values 

below 2700 mg/l of HCO3- the maximum differentiation between observed and 

predicted values recorded was approximately 1700 mg/l of HCO3- for reactors 1, 2 

and 5 and 3450 mg/l of HCO3- for reactors 3 and 4. However, this fact was taken into 

consideration during the formulation of both controller approaches and when the 

predicted alkalinity is at such low levels minimum OLR changes are applied.  

 The goal of the controller OLR variations was to keep alkalinity within the 

optimum operating limits for system stability and biogas maximisation as suggested 

in Chapter 4 (3500 mg/l of HCO3- and 4300 mg/l of HCO3-).  The performance 

indices for FIS II when applied to all reactors indicated relative small variations 

between predicted and observed values(Table 5.3). These indices are definitely 

improved as far as alkalinity values within the optimum alkalinity operating range are 

concerned. FIS II application was most successful in reactor 2 as suggested by a 
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very low bias value of 154 and an equally low value for MAE of 660. An IA value of 

0.72 and a NMSE value of 0.06 for all reactors indicate a pretty good correlation 

between predicted and observed values. FB was not as low as expected as it not 

very close to 0 (0.1).      
 

 

Performance 
 indices 

Reactors 

1 2 3 4 5 1-5 

R2 0.541 0.389 0.294 0.284 0.43 0.381 

MAE 754.39 660.75 845.501 706.617 853.722 763.574 

Bias 468.876 154.12 584.53 373.508 411.376 398.392 

IA 0.763 0.748 0.678 0.701 0.741 0.727 

NMSE 0.063 0.046 0.072 0.062 0.06 0.06 

FB 0.14 0.04 0.155 0.101 0.116 0.11 
Table 5.2 Alkalinity performance for FIS II during CT1 and CT2 operation 

 Predicted and observed alkalinity values for reactors 1-5 are depicted in 

Figure 5.19. All data appear in chronological order for each reactor where it can be 

clearly seen that alkalinity followed a similar trend in all reactors. 
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Figure 5.19 Observed and predicted alkalinity during CT1 and CT2 operation 

 During CT2 and CT1 when controller strategy I and controller strategy II were 

implemented pH and alkalinity remained within the desired operated ranges for 

digester stability and increased biogas production. When values deviated from the 

desired range it was a result of accidents that took place during the operation of 

reactor 1 and reactor 5. Therefore it can be stated that both controller applications 

were successful. However, the system was never stabilised which is reflected in the 

low biogas production levels. This is probably due to the fact that no mixing was 

present and the fact that loading rates should differ when operating a biogas reactor 

with cellulose instead of cow slurry (Chapter 4).  

It was quite difficult for cellulose to be dissolved especially when loading rates 

were above 3.5 g VS/l/d. During the feeding incidents and sampling, substrates 

appeared to contain huge amounts of undissolved cellulose, as suggested by 

substrate colour and the sediment that remained after centrifuging samples while 

preparing them for alkalinity analysis. Even reactor 4 (CT1), where the lowest 

loading rates were applied compared to the other reactors, exhibited the same 
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behaviour. On the other hand, feeding rates of less than 1.5 g VS/l/d may not 

maximise biogas production. Especially since a slightly lower average OLR value of 

1.25 g VS/l/d was applied during the first two weeks to drive the system to start 

producing gas.   

To sum up, both controller strategies were able to maintain alkalinity and pH 

within the desired ranges. Biogas production was not maximised due to the absence 

of mixing, the fact that different loading rates should be probably applied to reactors 

treating cellulose or the fact that the digesters should be supplemented with other 

nutrient sources to enhance their operation and stability. These conclusions are in 

accordance with other studies that showed: 

• Micro and macro nutrients can influence the degradation rate and bacterial 

activity under thermophilic conditions (Golkowska & Greger 2013). 

• Cellulose must be first liquefied or hydrolysed to produce methane and the 

successful initial hydrolysis function highly contributes to the rate of 

stabilisation and methane fermentation (Parkin & Owen 1986). 

• Mesophilic cellulose digestion can be more effective than thermophilic 

anaerobic digestion (Yang et al. 2004). 

• Gas production is limited for high OLRs both for mesophilic and thermophilic 

cellulose digestion (batch experiments with organic loading >16.3 g VS/l) 

(Golkowska & Greger 2013). This digestion retard combined with low 

degradation levels (77-89%) lead to the conclusion that system overloading 

can be more easily achieved for single-component substrates. In addition, 

these systems are susceptible to undesired system conditions that include 

nutrient shortage and ammonia inhibition. 

• Permanent acidosis can be avoided even under extremely high loading rates 

(up to 34.3 g VS/l) applied during batch tests (Golkowska & Greger 2010). 

High OLRs result in prolonged degradation times and OLRs higher than 22.9 

g VS/l resulted in dropping pH up to 6.83.   

Therefore, although both controllers achieved what was expected in terms of 

maintaining process parameters within the desired ranges by supplying each reactor 

with different OLRs, neither system reached stability or was even close to 

maximisation of biogas production. So, loading rate adjustment should probably be 
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performed in reactors treating cellulose since system performance is different 

compared to reactors treating manure. 

 

5.4 Conclusions 
 

  An evaluation of a fuzzy logic inference system (FIS II) to determine alkalinity 

using different digester configurations was conducted. During experiment FT1 a 

larger reactor than those used in the development of FIS II was utilised to test the 

proposed FIS. FIS II was able to predict alkalinity values with sufficient accuracy 

even when the digester was diluted with water and buffered with bicarbonate. It was 

also concluded that since gas production was used as an input, the system can be 

affected by temperature fluctuations.  Therefore temperature has to be kept stable to 

in order to obtain meaningful alkalinity predictions. 

  Two controller strategies were implemented based on FIS II predictions. 

Control strategy I included a Mamdani FIS with two inputs (alkalinity and daily 

difference in alkalinity) and control strategy II was based on a rules-based system 

that worked with the same inputs. Both controllers were developed using the same 

design principles and both controlled the rate of change in OLR. They were tested 

against reactors containing cow slurry treating cellulose (experiments CT1 and CT2). 

Both control approaches worked in the same way and managed to maintain alkalinity 

within the ranges that were identified in Chapter 4 as optimum operating ranges 

(>3500 mg/l of HCO3-) for process stability and biogas maximisation. Only 

interruptions for reactor 1 and reactor 5 caused alkalinity to drop below operational 

levels. However, gas production was relatively poor. This was most probably not due 

to the controller operation, but can be attributed to the absence of a consistent 

mixing system (since the mixing pump failed), the need for additional micro and 

macro nutrients, the absence of an initial hydrolysis function for cellulose and the fact 

that gas production for high OLRs is limited and can lead to prolonged degradation 

times in systems treating cellulose (5.3.4). 
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Chapter 6 Conclusions and future work 
 

 Improving the performance of anaerobic digestion by process control proved 

to be a challenging task since changes in environmental conditions can heavily 

impact process stability, especially when operating under thermophilic temperatures. 

Process stability and optimisation can be achieved through the development of an 

online monitoring and control system. Reliable process monitoring indicators, as 

identified in Chapter 1, have to be utilised in the development of a cost-effective 

process control system. Process indicators should easily provide useful information 

and ideally indicator selection should lead to successful control of anaerobic 

digestion processes operating across different feedstocks. The conclusions drawn 

from the present work are as follows: 

• Alkalinity was identified as an important process stability indicator especially 

for systems with low buffering capacity which was supported by the 

literature review presented. Also, fuzzy logic was identified as the data-

driven control technique suitable to infer alkalinity. Data collected during the 

work presented in (Partner N° 2, Rothamsted Research 2010) were used in 

Chapter 3 to design a fuzzy logic system that inferred alkalinity based on 

pH, electrical conductivity (EC) and organic redox potential (ORP).  Two 

first order Sugeno fuzzy inference systems (FIS1 and FIS2) were 

developed and compared with the two multiple linear regression models  

(MLR 1 and MLR2) that were used to infer alkalinity in (Partner N° 2, 

Rothamsted Research 2010). FIS1 and FIS2 alkalinity predictions were 

proved to be more accurate compared to MLR1 and MLR2 predictions. It 

was proven that by increasing the training fuzzy model database the 

predicted model values achieved a better convergence with the observed 

values. A FIS trained with less data-points was proven to be more accurate 

than a multiple linear regression model designed with a larger database. 

Also, systematic recording (ideally daily) of observed alkalinity values was 

suggested as a means to improve fuzzy model predictions. 

• Reactors without support media were able to withstand maximum loading 

rates between 3- 3.5 g VS/l/d whereas reactors with support could produce 
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higher amounts of gas when the loading rate varied between 4- 5 g VS/l/d 

without being destabilised. Optimum pH operating ranges were between 

7.1-7.3 and 6.9-7.2 for reactors with and without support media 

respectively. pH values <6.9 indicated process imbalance in all reactors. It 

was found that biomass media do not have a huge impact in enhancing 

biogas production but can highly enhance stability. However, sponge 

provided a more suitable environment for the growth of methanogens. 

Stability was guaranteed in all reactors for alkalinity values above 3500 mg/l 

of HCO3- and biogas production maximisation occurred between 3500 mg/l 

of HCO3- and 4500 mg/l of HCO3-  for reactors without biomass support 

media and between 3480- 4300 mg/l of HCO3- for reactors with support 

media.  

• Two first order Sugeno fuzzy systems were developed during different 

periods throughout the experiments presented in Chapter 4 trying to 

capture alkalinity behaviour. Instead of having pH, EC and ORP as inputs, 

pH, gas volume/reactor volume, daily pH difference and daily gas 

volume/reactor volume difference were selected as the new inputs. The 

second FIS (FIS II) that was developed using a larger database than the 

first FIS (FIS I) provided more accurate alkalinity predictions for future 

applications. FIS II was characterised by quite good MAE and bias values 

of 466.53 mg/l of HCO3- and an acceptable value for R2= 0.498 for the 

reactor containing sponge. NMSE was close to 0 with a value of 0.03 and a 

slightly higher FB= 0.154 than desired. During the design of FIS I and FIS II 

the fuzzy systems that exhibited a high R2 were characterised by a high 

MAE value and vice versa. Since low bias and MAE values are considered 

to be more desirable, the developed FISs presented in this work focused 

more on keeping these values as low as possible. Also, FIS II responded 

positively to disturbances such as NaHCO3 reactor addition but predicted 

alkalinity values declined by 1300 mg/l of HCO3- on average when water 

dilution was performed. 

• FIS II was tested by operating a 25l reactor treating cow slurry supported by 

sponge (Chapter 5). Data from process restart due to accidental loss of 

working volume, data following water dilution and NaHCO3 addition and 
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alkalinity evolution during severe temperature fluctuations were utilised 

during the evaluation. Temperature fluctuations resulted in poor alkalinity 

predictions. However, predicted alkalinity values followed the observed 

values closely during the days following water dilution and NaHCO3 

addition. By excluding the temperature fluctuation period from the 

evaluation process, R2= 0.54 and MAE=Bias= 587 indicated a slight 

deviation from the actual data.    

• A rule based system and a fuzzy logic system were designed to regulate 

the OLR during the operation of 6.46l cylindrical reactors treating cellulose 

that used sponge as the biomass support media (Chapter 5). Alkalinity and 

daily difference in alkalinity were used to set the daily OLR variation. The 

goal of the controller OLR variations was to keep alkalinity within the 

optimum operating limits for system stability and biogas maximisation as 

suggested in Chapter 4. An IA value of 0.72, a NMSE value of 0.06 and 

MAE= 763 for all reactors indicate a good correlation between predicted 

and observed values. Both controllers managed to maintain alkalinity and 

pH within the desired stability and biogas maximisation ranges. However, 

the systems were never stabilised which is reflected in the low biogas 

production levels. Poor cellulose degradation was also reflected in the 

substrate colour and the sediment that remained after centrifuging samples 

for alkalinity analysis.  

Further research should focus on developing individual fuzzy systems that 

would predict alkalinity for hydrolyzed substrates other than cow slurry. Then 

depending on the type of substrate and after reformulating OLR variations, the fuzzy 

system should drive the controllers in a similar manner to the one presented in this 

work aiming to maximise biogas productivity while maintaining stability. More 

specifically, since different substrates have different optimum process parameter 

operating ranges (higher gas production volumes, buffering capacity and pH), OLRs 

should be adjusted based on alkalinity predictions and according to the substrate 

utilised. Also, embedding EC and ORP in the inference mechanism might have a 

positive impact on alkalinity predictions since these parameters might not exhibit 

such value variations as pH and gas production. Finally, this work should be 

expanded to two stage systems where hydrolysis takes place in the first stage and 
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methanogenesis in the second stage. By controlling both stages separately, a more 

robust system operation can be achieved.    
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 Appendix A: Operation of a high-rate biogas reactor 

A.1 Introduction 
 

 Two different digester designs were implemented to investigate the AD 

process. Data collection of important process parameters: pH, ORP, EC, gas 

volume, gas composition, and solid destruction rate aimed to provide sufficient 

information for the design of a controller. Based on the online measurements (pH, 

ORP, EC, temperature) and the evaluation of off-line measurements (gas volume, 

gas composition, solid destruction rate) a fuzzy logic based software sensor that 

would infer alkalinity could lead to the development of a controller that would 

regulate the OLR. However, system operational failures led to unsuccessful 

implementation of that design. The designs and lessons learnt from the unsuccessful 

digester operation are presented in this section. 

 

A.2 Digester design I 
 

 The anaerobic biogas reactor consisted of three 120l cylindrical reactors that 

were connected in series through a system of pipes. Support surfaces in the form of 

reticulated polyurethane foam were attached to the sides of the each reactor and 

also to an inner cylinder through which the substrate would be pumped and mixed 

(Figure A.1).  

An immersion heater with a 3 kW thermostat was used to heat up the system 

with a system of induction heating coils, located inside each tank, with hot water to 

enable the reactors to reach and maintain the required temperature. Altech CPS 

130-5 pumps were responsible for regulating the hot water circulation. Horstmann 

F222M motorised valves were selected to control the water stream from entering the 

coil systems present in each tank. 

Each digester was mixed with a Zoeller Waste-Mate 260 series submersible 

pump (Zoeller Pump Company, 3649 Cane Run Rd., Louisville, KY 4021) that was 

located at the bottom of each tank inside a 28.85l cylindrical shaped box. 

Experiments conducted with water showed that the pumping speed was 170l 

water/min. 
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Ch-air CH042 pneumatic actuators (Figure A.1) were programmed 

accordingly to control the flow of the substrate between and within the three tanks 

during mixing and while applying the software specified substrate transferring 

methods.  

Two reed switches were installed in each tank to provide measurements with 

respect to the amount of substrate present in each tank. Since the working volume 

(90l) would be less than the size of the reactors to allow headspace, the level sensor 

located at the top would be activated when 88393cm3 of substrate were inserted in 

each tank. The bottom level sensor corresponded to 66786cm3. So, by having two 

level sensors the OLR could be calculated and the tanks would be protected from 

inserting higher amounts of material.  

One sample port was available in each reactor to allow for sample collection 

and one port at the top would allow for gas volume measurement. 
 

 

Figure A.1 Anaerobic digester design I 

A.2.1 Sensors- Data acquisition 
 

 Sensorex S8000 series pH and ORP electrode platforms were used to 

measure pH and ORP. Sensorex CS 650TC series model (Sensys Limited, Unit 9 

Pond Close, Walkern Road, Stevenage, Herts, SG1 3QP) was used to measure 

electrical conductivity and provide measurements through a CT1000 PT transmitter.  
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Nine sensors (three of each kind) were located inside the boxes that contained the 

pumps. 

 Three thermocouple sensors were located at different places inside each 

cylinder to provide an accurate temperature profile (Figure A.2).  

Gas volume measurements were conducted off-line using KumHo Metertech 

Inc. KG-2 gas meters and CH4% values were also recorded off-line using  a 

Crowcon Triple + plus IR gas monitor(Crowcon Detection Instruments Ltd, 2 

Blacklands Way, Abingdon Business Park, Abingdon, Oxfordshire OX14 1DY, UK). 

 All the sensor outputs were connected to Measurement Computing data 

acquisition devices. Measurement Computing USB-1208LS data acquisition devices 

received level and process sensor readings and were the means through which all 

control actions were applied. Temperature sensors were connected to Measurement 

Computing USB-TEMP temperature measurement devices. Finally, process 

monitoring, control and recording was carried out using National Instruments 

Labview version 11.0.  
 

 

Figure A.2 Temperature sensors located in each tank 

A.2.2 Labview Architecture- System operation 
 

 Labview software was designed to operate on a manual feeding regime. The 

user could specify how often the unit would be fed and regulate the OLR by 

specifying the amount of time required between each feeding. The space between 

(1)

(2)

TANK 1

(3)

226 
 



the two level sensors provided information regarding the quantity of the material that 

was substituted in the digesters. The pumps and valves of the system were 

programmed to function automatically for the unloading and loading operation of the 

unit.   

The developed software program recorded and displayed process parameter 

values (pH, ORP, EC and temperature) every minute and 30 seconds respectively. It 

allowed the user to have manual control over all stages of the process (tank mixing, 

feeding, temperature control, initial loading of the unit) to ensure that any process 

could be overridden at all times. Also, a live visualisation of the material inside the 

tanks was provided based on the pumping speed (the user could see the level of the 

liquid changing during loading and unloading the tanks). 

 All initial experiments were conducted with water and mixing was used to 

maintain the temperature at the required level of 55o C allowing for a strict ±0.5o C 

deviation. This deviation is suggested for thermophilic anaerobic digestion processes 

(Tchobanoglous et al. 2003). A combination of ON-OFF and FL control was used to 

control temperature levels by stopping or allowing the hot water supplying the 

heating coils to flow and by varying the pump operating time respectively. The press 

of a button allowed the user to record the time of sampling from each tank and on-

line measurements were recorded every second for 10 minutes since the press of 

the button in order to obtain accurate measurements during sampling.  

The operating process flow chart is depicted in Figure A.3 and all the tabs that 

formed the front panel of the Labview software designed are available Figure A.4- 

Figure A.6. 
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Figure A.3 Flow chart of the process operation. (1)- (7) correspond to the manual control buttons that appear in Figure A.4 
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Figure A.4 Labview front panel showing the manual control buttons and process operation. When manual controls are disabled automatic control actions appear on the screen. 
Operating valves, pumps, level sensors are displayed in green color 
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Figure A.5 ‘Heating and temperature’ panel displays the heating status of each tank on the left (Heating ON, Heating OFF), and the temperature values of each sensor. The 
user can specify the set point that is normally set at 55oC. ‘Process parameter values’ tab displays pH, ORP and EC values for each tank. 
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Figure A.6 ‘Sample recording’ tab contains a button to record continuous process parameter data while sampling and ‘Feeding time’ tab displays the elapsed time since last 
feeding. The ‘Start feeding?’ button enables the user to override the feeding regime that is configured at the background. 
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A.2.3 Results 
 

 After the installation of the AD plant the pumps were unable to pump any 

material. Manure tends to form lumps. As a result, the submersible pumps would 

block and were unable to mix any of the cylindrical tanks. Therefore, the temperature 

inside the tanks was not uniform and the process of either loading or unloading had 

to be carried out manually by opening the top of the tanks.  

 Since mixing was the only way to maintain a stable temperature, temperature 

values varied between 40oC to 65oC inside each tank since the sensors were 

installed at different places inside the digesters. The sensors that were located at the 

top and close to the heating coil system displayed high temperature values.  

Also, process parameter values could not be recorded. All the sensors were 

located inside the boxes that contained the pumps and with the absence of mixing 

they could not provide any accurate measurement. Therefore a need to replace the 

submersible pumps and to redesign the method of mixing arose.  
 

 

A.3 Digester design II 
 

 The anaerobic digester set-up was modified. The three submersible pumps 

were replaced by one progressive cavity pump made by Mono (model CML 263) that 

would be responsible for mixing all the tanks. The new system configuration is 

depicted in Figure A.7. 
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Figure A.7 Anaerobic digester design II 

 

A.3.1 System operation -Sensors- Data acquisition 
  

The system operation was the same as for the first design with some slight 

modifications to accommodate for changes in the mixing regime since only one 

pump was available for mixing. Labview software was modified and ON-OFF control 

was used for temperature and all tanks were mixed for 20 minutes every hour. The 

new mixing regime was due to the new pump’s lower flow rate (23 l/min).  

Only three process parameter sensors were connected to the system (pH, 

ORP, EC) and data from each tank were recorded when the contents of a specific 

tank were mixed.  
 

A.3.2 Results 
 

 The unit was operated unsuccessfully for a short period of time (19/05/2012- 

12/08/2012) and consistent measurements could not be recorded. The experimental 

design operation failed due to the following reasons: 
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• The low speed of the pump resulted in having huge temperature variations 

inside the tanks. The temperature set-point was 55o C, however the 

temperature varied from 45oC to 60oC inside all tanks. Also, the temperature 

variation in all three tanks was different for similar mixing regimes which made 

it even harder to establish a uniform mixing approach.  

• The substrate temperature profile in all tanks started to vary shortly after 

initializing the experimental work with cow manure. Therefore, a uniform 

strategy aiming to maintain stable temperature levels in all three tanks could 

not be applied. This behavioural difference was probably due to either 

leakages in the coil heating system or the unreliable performance of one of 

the Altech CPS 130-5 pumps.  

• Since three sensors (pH, ORP, EC) were responsible for measuring the 

process parameters for all tanks, similar values were recorded for all tanks at 

all times mainly due to the flow rate of the pump. 

• The level sensors were unable to detect the level of the slurry because they 

blocked due to slurry and scum accumulation on a regular basis. Even after 

cleaning the level sensors, one mixing cycle of maximum 10 minutes was 

enough to cause blockages and resulted in irresponsive behaviour. 

• The level sensor failure resulted in abandoning the automatic loading regime 

and instead the feeding and unloading process had to be done manually by 

opening the top of the lids and exposing the anaerobic microbes to oxygen at 

regular intervals. This was a result of several overflowing incidents. 

• The level sensor failure combined with the long pipe network that connected 

the feeding tank and the tanks together made it impossible to accurately 

calculate the OLR. 

• The EC sensor was either not suitable for slurry operation or very sensitive to 

changes and provided a huge range of values even when samples were 

continuously recorded for a period of 2-5 minutes. 
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