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THESIS ABSTRACT 

 

Two-component signaling systems are found in bacteria, fungi and plants. They mediate many 

of the physiological responses of these organisms to their environment and display several 

conserved biochemical and structural features. This thesis identifies a potential functional role 

for two commonly found architectures in two-component signaling system, the split kinases 

and phosphate sink, which suggests that by enabling switch-like behaviors they could underlie 

physiological decision making.  

I report that split histidine kinases, where autophosphorylation and phosphotransfer activities 

are segregated onto distinct proteins capable of complex formation, enable ultrasensitivity and 

bistability. By employing computer simulations and analytical approaches, I show that the 

specific biochemical features of split kinases “by design” enable higher nonlinearity in the 

system response compared to conventional two-component systems and those using 

bifunctional (but not split) kinases. I experimentally show that one of these requirements, 

namely segregation of the phosphatase activity only to the free form of one of the proteins 

making up the split kinase, is met in proteins isolated from Rhodobacter sphaeroides. While 

the split kinase I study from R. sphaeroides is specifically involved in chemotaxis, other split 

kinases are involved in diverse responses. Genomics studies suggest 2.3% of all chemotaxis 

kinases, and 2.8% of all kinases could be functioning as split kinases. 

Combining theoretical and experimental approaches, I show that the phosphate sink motif 

found in microbial and plant TCSs allows threshold behaviors. This motif involves a single 

histidine kinase that can phosphotransfer reversibly to two separate response regulators and 

examples are found in bacteria, yeast and plants. My results show that one of the response 
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regulators can act as a “sink” or “buffer” that needs to be saturated before the system can 

generate significant responses. This sink, thereby allows the generation of a signal threshold 

that needs to be exceeded for there to be significant phosphoryl group flow to the other 

response regulator. Thus, this system can enable cells to display switch-like behavior to 

external signals. Using an analytical approach, I identify mathematical conditions on the 

system parameters that are necessary for threshold dynamics. I find these conditions to be 

satisfied in both of the natural systems where the system parameters have been measured. 

Further, by in vitro reconstitution of a sample system, I experimentally demonstrate threshold 

dynamics for a phosphate-sink containing two-component system.    

This study provides a link between these architectures of TCSs and signal-response 

relationship, thereby enabling experimentally testable hypotheses in these diverse two-

component systems. These findings indicate split kinases and phosphate as a microbial 

alternative for enabling ultrasensitivity and bistability - known to be crucial for cellular 

decision making. By demonstrating ultrasensitivity, threshold dynamics and their mechanistic 

basis in a common class of two-component system, this study allows a better understanding of 

cellular signaling in a diverse range of organisms and will open the way to the design of novel 

threshold systems in synthetic biology. Thus, I believe that this study will have broad 

implications not only for microbiologists but also systems biologists who aim to decipher 

conserved dynamical features of cellular networks.  
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CHAPTER 1: Introduction 

 

1.1 Microbial cell communication and decision making 

Cells detect and respond to external cues, messages they receive and transmit using signaling 

networks that allow bacteria to adapt this behavior.  Cellular decision making is the process 

through which cell takes information from its surroundings (including neighbouring cells), 

processes these data through complex signal transduction and genetic circuits, and modulate 

cellular phenotypes in response. Cellular decision making together with environmental sensing 

and cell-cell communication are three main processes underlying development and pattern 

formation from microbes to mammals. Cell communication and decision-making underpins 

microbial behaviour and is vital for their ability to survive in different environments, utilize 

environmental sources properly, infect plants, animals and humans and fight against the 

immune system. Two-component signalling (TCS) networks enable microbial communication 

and decision-making. Understanding these networks can thus lead to understanding of the 

molecular basis of behaviour, developing strategies to treat infections by pathogenic microbes 

and facilitating the engineering/reengineering of microbes for biological and biotechnological 

applications. 

1.2 Overview of two-component signalling networks 

 TCS networks are generally comprised of two protein modules, a sensor protein or histidine 

kinase (HK) and its cognate response regulator (RR). The activity of the HK is controlled by 

an environmental stimulus, which controls the rate of autophosphorylation. Once 

phosphorylated, the HK transfers its phosphoryl group to a cognate RR, which in its 

phosphorylated form mediates the output of the signaling pathway (1) (Figure 1.1).  
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Figure 1.1: Phosphotransfer process occurring between the histidine kinase (HK) and cognate 

response regulator (RR). Adapted from (2). Following detection of its environmental stimulus, 

the HK autophosphorylates on a histidine residue.  CA domain binds ATP and phosphorylates 

the histidine residue in the DHp domain. The phosphoryl group is then transferred from the 

HK to its cognate RR protein. The phosphorylated RR protein can control gene regulation by 

binding to promoter regions upstream of its target genes. 

 

In Bacteria and Archaea, two component signaling systems are the principle devices for 

signaling.  The first studies into the biochemical reactions in TCSs started in the model 

organism, Escherichia coli (3). Some bacteria extensively employ two component systems; for 

example, over 30 distinct HK-RR circuits operate in E. coli alone and Myxococcus xanthus has 

over 200 two-component systems (4); whereas, no likely HK homologs are found in 

Mycoplasma genetilium genome (5) suggesting that not all prokaryotes use two component 
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systems to the same extent as E. coli. In the case of eukaryotes, two component pathways 

constitute a small proportion of signalling systems: some (Arabidopsis thaliana) have around 

50 two component systems whereas; Saccharomyces cerevisiae seems to employ only a single 

two component system (6).  

 

1.3 Eukaryotic TCS 

In fungi, TCS is involved in environmental stress responses (7, 8) and hypal development (9-

11). In amoeba Dictyostelium and in plants, they mediate important processes, like cell 

growth, differentiation and osmoregulation (12, 13).  Hybrid kinases are very common in 

eukaryotes; the only known exception is Arabidopsis ERS (14). In hybrid kinase system, the 

phosphoryl group is passed to the intramolecularly to a C-terminal receiver domain 

(conservation of the aspartate residue), similar to that found in response regulators and then to 

its RR usually via an Hpt domain (Figure 1.2).   



16 

 

 

Figure 1.2: Phosphotransfer process occurring between the hybrid histidine kinase and its 

cognate response regulator (RR) (2). An environmental stimulus activates autophosphorylation 

of a hybrid HK. The phosphoryl group is then passed intramolecularly to a C-terminal receiver 

domain, similar to that found in response regulators. A histidine phosphotransferase (HPt) then 

shuttles the phosphoryl group from the hybrid kinase to a soluble response regulator 

containing an output domain. 

 

Phylogenetic analyses suggest that the eukaryotic HKs evolved from a single bacterial source 

represented by a cluster of bacterial hybrid HKs (BarA, RcsC, ArcB) (15). There is only one 

known eukaryotic RR with a DNA-binding domain (S. cerevisiae SKN7) (16); although, 

bacterial RRs are mainly transcription factors (at least 25 of 32 in E. coli). Other signaling 
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components that are themselves regulated by two-component proteins can potentially effect 

the final response in eukaryotes. This more-complex strategy allows a greater number of 

potential steps for regulation, facilitating signal transmission from the cytoplasm to the 

nucleus, where transcription takes place. The modular domains of the proteins are conserved 

in terms of their structures and functions in both eukaryotic and bacterial TCS networks. 

Therefore, characterization of individual components generates a strong basis for 

understanding other family members. 

 

1.4 Applications of TCS system 

TCS systems enable bacteria to sense, respond, and adapt to a wide range of environments, 

stressors, and growth conditions. These pathways have been adapted to respond to a wide 

variety of stimuli, including  nutrients, cellular redox state, changes in osmolarity, quorum 

signals, antibiotics, temperature, chemoattractants, pH and more (17). Most bacteria will 

contain multiple TCS and these can be involved in the regulation of a large number of genes 

or sets of genes. Indeed any one TCS may interact with one or more other TCS, and activation 

of a single TCS can induce both negative and positive regulation of different sets of genes. 

Understanding and manipulating TCS pathways are required for beneficial environmental 

applications such as nitrogen fixation and bioremediation for agricultural purposes, although 

most research has prioritized TCSs of pathogens (18). Because of their complete absence from 

animals (although present in some eukaryotes such as yeasts (19) and plants (20)), two-

component proteins have been targeted for the development of antibacterial drugs (21). 
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1.5 Biochemical basis of TCS 

1.5.1 Signal transduction 

The chemistry of basic two component pathway involves the following events: 

1. Autophosphorylation: HK-His +ATP         HK-His-P+ADP 

2. Phosphotransfer: HK-His-P+RR-Asp         HK-His+ RR-Asp-P 

3. Dephosphorylation: RR-Asp-P +H2O        RR-Asp 

Generally HKs function as homodimers and autophosphorylate. Many are associated with the 

cytoplasmic membrane and contain a periplasmic sensory input domain which is coupled to 

cytoplasmic catalytic kinase domain (22). Biochemical and mutagenesis studies have shown 

that an ATP-dependent autophosphorylation reaction is catalyzed by the core kinase domain in 

which one subunit of the dimer phosphorylates a specific His residue. The activity of a RR is 

regulated by phosphotransfer from its cognate HK-P. Autodephosphorylation of RR-P then 

takes place allowing signal termination. Some HKs are also found to have phosphatase 

activities towards their cognate RRs (23, 24). RRs are phosphorylated on an aspartate residue 

and most of them contain two domains: a receiver domain which is fused to an output domain 

that has output activity e.g. DNA binding transcription factor (25). However, the activity of 

the output domain is controlled by phosphorylation of the receiver domain. 

1.5.2 Histidine kinases 

In a canonical two component signaling pathway, sensor HKs can sense the extracellular 

stimuli and transmit the information to their cognate RRs. The autophosphorylation activity of 

HKs can be controlled by the input signals to the sensing domain. The HK catalyzes an ATP-

dependent autophosphorylation of its conserved histidine residue within the HK dimerization 
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domain and then the phosphorylated HK transfers the phosphoryl group to the specific 

aspartate residue within the receiver domain of the cognate RR. Two-component pathways are 

controlled by the ability of the HK to the phosphorylation state of the cognate RR. Many HKs 

have phosphatase activity towards their cognate RRs in addition to their ability to 

phosphotransfer (26-28). Additional complexity has been also appeared in these pathways 

where several HKs can phosphorylated a single RR or a single HK can phosphorylate several 

RRs (29-31). 

1.5.2.1 Sensory domain: The N-terminal periplasmic sensory domain of HKs can detect 

external stimuli either directly or indirectly (32). There are some HKs that contain cytoplasmic 

sensory domains which can detect intracellular changes. In general, diverse sensory domains 

of HKs show little primary sequence similarities which is consistent with the ability to respond 

to a wide range of stimuli. In the simplest mechanism, the sensory domain interacts with the 

stimulus molecule directly for signal perception, for example, in the control of respiratory 

nitrate reductase synthesis, the HK NarX directly senses periplasmic nitrate (33). There are 

also indirect ways of sensing stimuli, for example, in nitrogen sensing the cytoplasmic HK 

NtrB responds to the uridylylation state of PII, which is controlled by the relative levels of 2-

oxoglutarate and glutamine (which reflects cellular nitrogen levels) (34). However, in many 

cases the specific stimulus remains unknown for the HKs. A number of periplasmic and 

cytoplasmic sensory domains have been identified in recent times (35-40). 

1.5.2.2 ATP binding catalytic domain (CA) and histidine containing phosphotransfer 

domain (DHp): The length of the core kinase is ~350 amino acid and is essential for ATP 

binding and autophosphorylation. There are five conserved sequence motifs are present in 

HKs. The core catalytic ATP binding domain (CA domain) of HKs consists of a conserved set 

of sequence motifs, named as N, G1, F and G2 boxes. These specific sequences are needed for 
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Mg
+2

 and ATP binding (41, 42). The conserved phosphorylatable His substrate is a part of H-

box sequence motif bound in the DHp domain. In CheA, unlike classical HKs, the 

phosphorylated histidine residue is present on a separate N-terminal Hpt domain (named P1). 

The sequence around the CheA phosphorylation site does not resemble the H box of most 

HKs. 

1.5.3 Response regulators  

Response regulators are found at the terminal end of the pathway, acting as phosphorylation-

activated switches that generate output responses. RRs can transfer phosphoryl group from 

phosphorylated kinase to its conserved Asp residue. Most of the RRs possess 

dephosphorylation activities, limiting the lifetime of their active states. Most RRs have two 

domains: a conserved N-terminal receiver (REC) domain and a variable C-terminal output 

domain. 

1.5.3.1 Receiver domain: The REC domain has approximately 125 amino acids which 

contain the aspartic acid residue that accepts the phosphoryl group from the phosphorylated 

histidine kinase in an Mg
2+-

dependent reaction (43). The receiver domain of any response 

regulator generally exhibits 20-30 % amino acid sequence homology to other receiver domain, 

and also contains several invariant residues. These include a pair of acidic residues (an 

aspartate and a glutamate residue) near the N-terminus of the domain, one near the centre and 

a lysine residue near the C-terminus border. These conserved residues cluster within an acidic 

pocket that serves as the site for phosphorylation. The gain of a phosphoryl group within this 

domain generally activates the output domain located at the C-terminus, which consequently 

results in activation and/or (44) repression of a given set of genes (45). The conserved REC 

domains can also be found within hybrid HKs or as isolated proteins within phosphorelay 

pathways. 



21 

 

1.5.3.2 Output domain: Output domains are diverse in terms of their structure and function. 

Hence, their regulation is controlled by the receiver domains through different mechanisms. 

Based on the homology of their DNA-binding domains, the majority of RRs (around two 

third) are transcription factors with output domains that can be divided into three major 

subfamilies:  

The OmpR/PhoB domains: a novel subclass of winged-helix transcription factors was 

discovered by crystal structures of the DNA-binding domain of OmpR (46, 47). The fold, 

conserved in all members of the subfamily (48,49), contains a recognition helix that interacts 

with the major groove of DNA and flanking loops or “wings” that are proposed to contact the 

minor groove. 

The NarL domains: a four-helix fold for the 62-residue DNA-binding domain was found by 

the crystal structure of NarL (50). The fold contains a typical helix-turn-helix motif that has 

allowed postulation of specific interactions between residues of the recognition helix and 

bases in the NarL heptamer (50).  

The NtrC ATPase-coupled transcription factors: The output region of this subfamily contains 

two domains: an ATPase domain and a helix-turn- helix DNA-binding domain (51-53). NtrC 

dimers are able to bind to DNA (54) and upon phosphorylation, oligomerize into octamers 

(55). Oligomerization stimulates ATP hydrolysis (56, 57). 

In most response regulators, phosphorylation of the receiver domain causes a conformational 

change that is propagated to the output domain of the response regulator, which then brings 

about an appropriate response. However, in the case of CheY, there is no output domain; the 

phosphorylated receiver domain is capable of binding directly to the FliM component of the 

switch complex of the flagellar motor, bringing about a change in the direction of flagellar 
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rotation (58). Not all output domains include DNA binding activities; for example, the output 

domain of the chemotaxis response regulator, CheB, is a protein methylesterase (59). 

1.5.4 Signal termination 

Signal termination is a necessity of all signalling pathways. Once the original stimulus is 

removed then the signalling pathway should return to its previous state, allowing it to respond 

properly to further stimuli. Within two component signal transduction systems, the input 

domains deactivate the HKs once the stimulus is removed. Response regulators have an 

autodephosphorylation activity, which hydrolyses the phosphoaspartate bond. This 

dephosphorylation reaction has a half time varying from seconds (the chemotaxis proteins 

CheY and CheB) to hours (the osmoregulating response regulator OmpR) (60, 61). In some 

systems, the rate of response regulator dephosphorylation is accelerated by other proteins. A 

specific protein phosphatase is involved in the most common mechanism. Frequently, these 

phosphatases are encoded on the same polypeptide chain as the HK, and are inversely 

regulated by the stimuli. For example, NtrB has two activities; a HK activity and an NtrC 

phosphatase activity. The autophosphorylation of the HK is activated in response to low levels 

of unmodified PII (indicative of low levels cellular nitrogen) and the phosphatase is activated 

by high levels of unmodified PII (indicative of high levels of cellular nitrogen) (62). In E. coli 

chemotaxis a dedicated phosphatase protein, CheZ, binds to the response regulator CheY and 

catalyses the autodephosphorylation reaction of CheY-P (60). 

1.6 Diverse architectures of TCS 

Evolutionary processes seem to have exploited the modular structure of these TCS proteins to 

produce a distinct set of biochemical features and network structures that reoccur in diverse 

TCS. Therefore, different two-component systems control RR phosphorylation through 
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somewhat different mechanisms. Phosphorelays, bifunc[ptional HKs, sink RRs, and split HKs 

are some examples of this diversity.  

 

1.6.1 Phosphorelays These are composed of several proteins (or domains), which act as a 

relay between the HK and RR (Figure 1.3). All phosphorelays characterised to date have a 

length of four, where the intermediary layers are composed of a response regulator receiver 

domain (REC) and a histidine domain (Hpt) resulting in a HK–REC–Hpt–RR relay. Signal 

transduction in this pathway starts when histidine kinase autophosphorylates a histidine 

residue upon signal stimulation. The phosphoryl group is in turn transferred to an aspartic acid 

residue in the receiver domain (REC). Subsequently, the phosphoryl group is transferred to the 

phosphotransmitter (Hpt) and then to the receiver domain of the response regulator (RR), 

which generates the ultimate output response. The core characteristics of phosphorelay length, 

and presence and location of hydrolysis and reverse phosphorylation reactions are combined 

with extra features in different systems. For example, additional RRs can be found at the end 

of the relay (63, 64), on the other hand, a bifunctional HK can act as both a kinase and a 

phosphatase (64), and some nested relays are also found within transcriptional feedback loops 

(65,66). Beside bacteria, phosphorelays are also found in eukaryotic microbes, such as yeast, 

and in plants, and are shown to be involved in the regulation of virulence (67), sporulation (68, 

69), stress responses (70) and cytokinin signalling (71). A detailed study of these systems is 

lacking with the exception of the sporulation phosphorelay from B. subtilis, which has been 

shown to receive several signals on its different layers (68, 69). While it has been suggested 

that such signal integration is the main functional role of phosphorelays (69, 72), there are 

relays that do not involve signal integration (67). 
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Figure 1.3: Mechanism in phosphorelays. A phosphorelay system usually begins with a 

hybrid HK that has an additional RR regulatory domain at the C-terminus. The scheme 

generally involves a His-containing phosphotransfer (HPt) protein that serves as a His-

phosphorylated intermediate and more than one His–Asp phosphoryl transfer reaction takes 

place in the system.  Adapted from (73). 

 

1.6.2 Bifunctional kinases These HKs display both phosphatase and kinase activity towards 

their cognate RR. Therefore, they can transfer phosphoryl group to their RRs and also 

facilitate dephosphorylation of those RRs in the signal cascade (Figure 1.4). The input stimuli 

can regulate either the kinase or phosphatase activity of the bifunctional HK. There are several 

examples of bi-functional HKs including the DegS – DegU network in Bacillus subtilis (27), 

the VanS - VanR network of Enterococcus faecium (74), and the FixL – FixJ network of 

Sinorhozium meliloti (75), CheA3/CheA4-CheY6 network in Rhodobacter sphaeroides (30). 

Among them, the most-studied bifunctional HK is the osmosensor EnvZ from E. coli, which 

regulates the cognate RR, OmpR (28). It has been proposed that an osmotic signal regulates 

the ratio of the kinase to the phosphatase activity of EnvZ to modulate the level of cellular 

OmpR-P primarily by altering the phosphatase activity (76). Hence, when not active for 

autophosphorylation, bifunctional histidine kinases can effectively suppress any inadvertent 

cross phosphorylation of their cognate regulators by other kinases (77). 

 

http://en.wikipedia.org/wiki/Kinase
http://en.wikipedia.org/wiki/Phosphatase
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Figure 1.4: Mechanism in Bifunctional kinase. A bifunctional HK system in which the kinase 

gets autophosphorylated and it can also dephosphorylate its cognate RR. Adapted from (73). 

 

1.6.3 Phosphate Sinks This architectural motif has been identified in several microbial and 

plant systems (31, 78-81). In this pathway, two RRs can receive phosphoryl group from a 

single HK ((Figure 1.5). There has been previous research demonstrating that such systems 

feature competition between the two RRs for the phosphoryl group from the HK (31). It has 

been shown that one of the two RRs displays high affinity for phosphoryl group from the HK, 

but has a low rate of reverse phosphorylation back to the HK (31, 78-81). This RR can thus 

function as a sink with respect to the other one. This sink mechanism is well described in 

Sinorhizobium meliloti chemotaxis pathway, Helicobacter pyroli chemotaxis pathway and in 

yeast osmoregulation (31, 78, 80).  In S. meliloti for example, two response regulators CheY1 

and CheY2 are phosphorylated by their kinase CheA. The main RR, CheY2 in its 

phosphorylated form can bind to flagellar motor and alters rotation. CheY2-P can also back 

transfer its phosphoryl group to CheA, which in turn phosphorylates the other RR, CheY1. 

Given its higher phosphorylation rate (from HK) and low reverse phosphorylation rate (to 

HK), CheY1 is proposed to act as a sink for the phosphoryl group from CheY2-P (31). This is 

expected to allow faster signal termination, and it is proposed that this sink mechanism 

replaces the function of a dedicated phosphatase for CheY2 in S. meliloti (31). 
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Figure 1.5: Mechanism in phosphate sink. A phosphate sink system where two RRs compete 

each other for the phosphate group from the same HK. Adapted from (73). 

 

1.6.4 Split Histidine Kinases Split kinases are a complex where the ATP binding and 

phosphotransfer activities of a conventional HK are split onto two distinct proteins (Figure 6). 

They are predicted in several bacterial genomes (82, 83) and are biochemically characterized 

in Rhodobacter sphaeroides (84, 85). In this organism, the split kinase system is composed of 

CheA3 and CheA4, which form a bipartite histidine kinase that phosphorylates the response 

regulator CheY6 (30). CheA4 lacks the phosphorylatable P1 domain, whereas CheA3 lacks 

the dimerization (P3) and catalytic kinase (P4) domains. Neither CheA3 nor CheA4 can 

autophosphorylate when incubated separately with ATP; however, when a mixture of CheA3 

and CheA4 is incubated with ATP, then CheA3 becomes phosphorylated, indicating that these 

proteins can act as a histidine kinase only by forming a complex (30). Activated by incoming 

signals, the P4 domain of CheA4 binds ATP and phosphorylates the P1 domain of CheA3. 

Subsequently, CheA3-P acts as a phosphodonor for its cognate response regulator, CheY6 

(30), which control flagellar rotation (86). In essence split kinases are unusual bifunctional 
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HKs, where the autophosphorylation and subsequent phosphotransfer and phosphatase 

activities are encoded on two separate proteins. 

 

Figure 1.6: Mechanism in  split kinase. A split HK system where two HKs form a complex 

together so that they can act as a conventional kinase and then transfer phosphoryl group to the 

cognate RR. Adapted from (73). 

 

1.7.1 Sensory pathways involving split kinases 

1.7.1.1 Chemotaxis in Rhodobacter sphaeroides 

Rhodobacter sphaeroides has much more complex chemotaxis signalling pathway with 

multiple copies of the signalling proteins encoded by three major chemosensory operons and 

two sets of flagellar genes (fla1 and fla2) (87) compared to the single pathway of E. coli. Cells 

using the Fla1 flagellum have on average one flagellum per cell which rotates unidirectionally. 

The rotation of this flagellum is controlled by the proteins encoded by cheOp2 and cheOp3; 

whereas polar flagellum Fla2 is controlled by cheOp1 (87). In R. sphaeroides the signal 

cascade proteins controlling rotation of the Fla1 flagellum are localized and organized into 

two distinct sensory clusters: one chemotaxis system is polarly localized while the other forms 
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cytoplasmic clusters and the signals from the both clusters is needed for chemotaxis (88) 

(Figure 1.7).  

 

 

Figure 1.7: The distribution of chemosensory proteins in R. sphaeroides. There are two 

distinct clusters. Most of the proteins from cheOp3 localise to the cytoplasmic cluster whereas 

those from cheOp2 locate to the polar cluster. Adapted from (88). 

R. sphaeroides has three CheA homologues that are essential for Fla1 driven chemotaxis – 

CheA2, CheA3 and CheA4 (92). CheA2 localises to the polar chemoreceptor cluster and has a 

similar domain structure as E. coli CheA. CheA3 and CheA4 are both in the cytoplasmic 

cluster. CheA3 and CheA4 together form an unconventional split kinase, in the sense that one 

(CheA4) lacks the conserved P1 containing the autophosphorylatable histidine residue 

whereas the other (CheA3) lacks the catalytic kinase domains (P3 and P4). These proteins can 

act as a conventional histidine kinase only by forming a complex (30) in which CheA4 acts as 

the histidine kinase and phosphorylates the P1 domain of CheA3, CheA3-P then catalyses 

phosphotransfer to the response regulators (Figure 1.8). 
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Figure 1.8: A split kinase and bifunctional kinase/phosphatase in bacterial chemotaxis. A 

CheA4 dimer phosphorylates the P1 domain of CheA3. Then CheA3-P acts as a phosphodonor 

for CheY6. CheY6-P can autodephosphorylate; however, CheA3 acts as a phosphatase for 

CheY6-P (red arrow) and can speed up the rate of dephosphorylation. Taken from (86). 

However, the CheAs show specific phosphotransfer to the different response regulators in 

vitro (89). CheA2‐P can activate all eight chemotaxis response regulators; whereas CheA3‐P is 

specific for CheY1, CheY6 and CheB2. CheY6, CheY4 and CheY3 all bind to the fla1 motor 

switch protein, FliM; in all cases phosphorylation enhances binding (90). However, CheY6 

with either CheY3 or CheY4 are required for chemotaxis in vivo (88). CheY6 is 

predominantly phosphorylated by CheA3‐P which is located in the cytoplasmic cluster. 

Phosphorylated CheY6 can switch the component of the motor upon binding and change in the 

direction. In addition, CheA3 has an aspartyl-phosphate phosphatase activity that is specific 

for CheY6-P (and this is thought to be required for rapid signal termination and hence, 

necessary for the chemotactic response (86)). 
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1.7.2 Sensory pathways involving phosphate sinks 

1.7.2.1 Chemotaxis in Sinorhizobium meliloti 

Another diverse TCS architecture is found in soil bacteria, Sinorhizobium meliloti. In this 

organism, the chemotaxis signal transduction system consists of a single HK, CheA and two 

RRs, CheY1 and CheY1 and there is no such dedicated phosphatase like E.coli CheZ. 

Deletion mutations in CheA, CheY1, CheY2 and both CheY1, CheY2 confirmed that these 

three proteins are the main regulators in controlling flagellar rotation (91).  From that study, it 

was shown that CheY2 can act as a main regulator which binds the motor and regulates the 

rotation. However, there is a moderate effect on chemotaxis due to CheY1 mutation, 

suggesting the role of CheY1 is to compete with CheY2 for phosphorylation by CheA as the 

phenotype resembles an E.coli CheZ mutant which takes a much longer time for signal 

termination. These phenotypic observations lead to biochemical analysis of the 

phosphorylation/dephosphorylation events that take place in the system and it was found that 

CheY1 can act as phosphate sink for the main RR, CheY2 (31). In this organism, the two 

response regulators CheY1 and CheY2 are phosphorylated by their cognate kinase CheA. 

Both CheYs can also undergo reverse phosphotransfer, where they return their phosphoryl 

group to CheA. The phosphoryl group from excess CheY2-P (and to a much lesser extent from 

CheY1-P) is shuttled back to CheA, which in turn phosphorylates free CheY1 (31) (Figure 

1.9). Reverse-phosphorylation via CheA thus accelerates the deactivation of CheY2-P and this 

is how a phosphate sink can mimic the activity of a ‘traditional phosphatase’. More recently, 

another small protein CheS has been found to work in this pathway by enhancing the 

interaction between CheY1 and CheA (92). It has been proposed that CheS directly or 

indirectly promotes CheY1 dephosphorylation and thus make the sink more efficient in the 

system (92).  
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Figure 1.9: A phosphate sink system in S.meliloti.  HK, CheA get autophosphorylated and 

two RRs, CheY1 and CheY2 compete for the phosphate from the single kinase CheA. CheY2 

as a main RR can bind to the motor and alter rotation speed while CheY1 can act as a 

phosphate sink in this pathway. Adapted from (93). 

 

1.7.2.2 Osmoregulation in yeast 

Although TCS networks are not as common in eukaryotes as in bacteria, but they are still 

found in some key pathways, for example in yeast osmoregulation pathway. In Saccharomyces 

cerevisiae, high osmolarity activates the high-osmolarity glycerol (HOG) response mitogen-

activated protein (MAP) kinase pathway (94-96). The downstream HOG MAPK pathway is 

regulated by the upstream phosphorelay signaling transduction system which is homologous to 

bacterial two component network (95, 96). A membrane bound histidine kinase Sln1 

phosphorylates itself at its histidine residue and the phosphoryl group is then transferred to the 

aspartic residue of its receiver domain. Subsequently the phosphotransmitter Ypd1 is 

phosphorylated by the phosphorylated kinase and finally phosphoryl group is transferred to the 

response regulator Ssk1. High osmotic pressure inhibits the Sln1 histidine kinase activity and 
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thus maintains lower level of phosphorylated RR, Ssk1. Then unphosphorylated Ssk1 can 

activate HOG MAPK pathway which in turn can activate the transcription of those genes 

needed for the response to high osmolarity (Figure 1.10). In yeast, another RR, Skn7 can be 

phosphorylated by the same signal cascade, using Sln1 as the HK and Ypd1 as the 

intermediate phosphodonor (Figure 9). Skn7p has a DNA-binding domain homologous to heat 

shock transcription factors, as well as a receiver domain, acting as a transcription factor for 

genes involved in various stress related responses (97-99). 

 

 

Figure 1.10: Yeast osmoregulation pathway. HOG1–dependent gene expression is activated 

upon accumulation of dephosphorylated Sln1 (Sln1) and SKN7-dependent gene expression is 

activated upon accumulation of phosphorylated Sln1 (Sln1-P) and aspartyl phosphorylation of 

Skn7p. Adapted from (100). 

 



33 

 

1.8 Dynamical and signal-response relationship studies of TCS 

Significant analyses of TCS networks have been carried out but these are mainly focused on 

genomic identification of their components and experimental identification of the biochemical 

reactions among their components in selected model organisms. Collecting a broad 

understanding of a TCS network in a specific model organism through the combined 

application of these approaches requires lots of research efforts. Hence, it might be difficult to 

have a broad and predictive understanding of signaling in microbes, which often utilise 

structurally diverse TCS architectures for the same function. Therefore, understanding the 

signal-response relationships in diverse TCS architectural motifs by combining systems and 

synthetic biology approaches would be possibly a more efficient and safer route to a broad and 

predictive understanding of microbial signaling.  

 

The physiological responses of cells to external and internal cues are driven by genes and 

proteins interacting in complex networks. Dynamical properties of those complex networks 

are difficult to understand only by intuitive reasoning. Recent advances in theoretical biology 

have shown that biological networks can be perfectly modeled in mathematical terms. These 

models then throw light on the design principles of biological systems and create predictive 

ideas that can be verified experimentally (101). 

 

In multidisciplinary research, a key issue is to understand the connections between network 

structure and network dynamics (102). The multidisciplinary research community studying 

biological networks has recently seen important progress towards understanding the 

implications of structural features for network dynamics and functions (103, 104). As, these 

networks are characterized by their dynamic behaviour, the extensive biochemical knowledge 
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about these systems is predominantly represented in a static and qualitative manner by 

drawing arrows connecting interacting components of the network. It was stated correctly in a 

recent editorial in Nature: “But, to really understand the biochemical networks thus 

represented, one needs to have numbers attached to the arrows" (105). A first step in this 

direction of analyzing the dynamics is the simulation of these networks. Here, the qualitative 

reaction scheme is translated into a set of parameterized differential equations. Then, 

mathematical and computational methods are applied for finding the solution of the governing 

those equations in the model. The investigation of the steady-state solution as well as the time-

dependent solution is carried out which explains how the system will be at the final stage. 

Therefore, the functional behaviour of a signaling cascade is defined by the way it acts to 

transmit an input signal (arising from a stimulus) into an output response (usually the 

expression level of an output protein of interest). They may be characterized by their input–

output behavior either by considering steady-state response in concentration space, or transient 

dynamics in time space. Signal-response curves (106) capture the concentration-space, steady-

state behaviour and allow researchers to determine the behavior of the pathway. Signal-

response curves are generally formulated in terms of the response to a given signal. Around 

the core HK-RR interaction, different two-component systems have diverse architectures, 

which could underpin specific signal processing capabilities. The signal-response relationship 

can be obtained by measuring both the transient dynamics and the steady state level of system 

output (i.e. phosphorylated RR) for different inputs (i.e. signal sensed by the HK). The 

kinetics of the biochemical reactions that make up the specific TCS network structure can 

determine the relation between the signal and the response and potentially give rise to 

remarkable complexity even in the simplest implementations of two-component networks 

(68,77). A detailed understanding of this relation can be achieved for the chemotaxis network 

of Escherichia coli (107), however, this understanding does not permit quantitative prediction 
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of chemotaxis responses in other bacteria (108), which harbour structurally diverse chemotaxis 

networks (82). The diversity in TCS networks is the result of evolution extending the core 

HK-RR reaction both through duplication and diversification of specific proteins and domains, 

and through acquisition of new genes by horizontal transfer (109). Evolution can also fine tune 

signal-response relationships by adjusting reaction kinetics and dynamical features such as 

stability of complexes formed during certain biochemical reactions. In certain cases, these 

“small” changes can have drastic effects on the overall network and the signal response 

relationship it mediates (77, 110). 

 

1.8.1 Dynamical and signal-response relationship studies in diverse architectures of TCS 

As stated in section 1.7, most of the structural diversity in TCS networks can be found in four 

common structural arrangements (TCS-motifs); phosphorelays, phosphate sinks, bi-functional 

and split HKs. In a theoretical analysis, a generic model of phosphorelays was developed 

(111). This analysis showed that the level of phosphorylated RR responds in a linear fashion to 

incoming signals, while intermediary layers of the relay display ultrasensitivity. In the case of 

ultrasensitivity, the response of the system is low until signal levels increase above a certain 

threshold, after which the response increases disproportionately to reach a high level. The 

ultrasensitivity of intermediate layers allows these to act as a noise-filter, so that the final layer 

achieves a significant signal-to-noise ratio that is higher than all the other layers. Further, it 

was found that this relay structure to favour signal integration through additional phosphatase 

action on intermediary layers. Ultrasensitivity and noise-filtering can be improved with 

increasing relay length but this saturated at a relay length of four, which is the maximum 

length found so far in nature.  
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Bifunctional HKs have been shown to enable robustness in system output with respect to 

fluctuations in the amount of the signaling proteins (112,113). Also, bifunctionality is 

predicted to suppress cross-talk among different TCSNs (77,114). Further, theoretical work 

indicates that bifunctional HKs can generate flexible signal-response relationships (115,116) 

and allow higher signal amplification compared to monofunctional HKs that lack phosphatase 

activity under certain parameter regimes (77). 

 

To date, there are no theoretical or experimental analyses of the signal-response relation in 

systems with phosphate sinks and split kinase. Although a split kinase system is the part of the 

overall chemotaxis network in R. sphaeroides where several CheA and CheY proteins are 

found, the exact role of these proteins is still unclear.  A recent mathematical modelling study 

suggested that CheY6 acts as a phosphate sink with respect to other CheYs and enable the 

bifunctional kinase/phosphatase activity of CheA3 to integrate and tune the sensory output of 

each signaling cluster to produce a balanced response (117). These architectures are 

commonly found. There are numerous examples of phosphate sinks found in bacteria and 

yeast, for example S. meliloti and H. pylori chemotaxis pathway and yeast osmoregulation 

pathway (31, 78, 80). The split kinase motif is also common, with over 700 possible examples 

found in the Genbank database (118). 

 

As the highly modular TCSNs are used by bacteria to control many of their physiological 

responses, it will be valuable to explore mechanisms which can enable specific response 

dynamics in these systems and to determine the evolutionary drivers that were responsible for 

their emergence. This would increase our ability to better understand microbial signaling and 

exploit it in synthetic biology applications. 



37 

 

1.9 Mathematical approaches to modeling biochemical reaction network 

Many biochemical systems such as signal transduction pathways, enzymatic reaction networks 

and gene regulatory networks are modelled as biochemical reaction networks. To describe the 

dynamics of these systems, mathematical methods and computational tools have been used. 

Specially, mathematical modeling of biochemistry has been revisited by ‘systems biologists’.  

Changes in the concentrations or molecular numbers of biochemical species occur through 

various reactions in a cell of living organisms. Researchers have tried to find appropriate 

mathematical and computational ways of modelling to describe such changes. A common way 

for describing chemical reaction is the mass action approximation. This simply states that the 

rate of a reaction is equal to a constant multiplied by the product of the concentration of the 

reactants (119). The time-dependent dynamics of such reaction networks has been traditionally 

modelled deterministically using differential equations. For large scale biological models 

which have sufficiently many species and reactions, deterministic description is generally 

accurate, and mathematical and computational methods have been developed for finding the 

solution of the governing equation for deterministic models. The investigation of the steady-

state solution as well as the time-dependent solution is also important in that it shows how the 

system will be at the final stage and the stability of the system at the equilibrium. The steady-

state solution plays a key role in many subsequent treatments of coupled multienzyme systems 

(120), allosteric regulation in the concerted MWC (Monod, Wyman, and Changeux) (121), or 

induced-fit KNF models (Koshland, Nemethy, and Filmer) (122). Throughout the 1960’s and 

1970’s, advances in research were made by combining graph theory, differential equation and 

chemical reaction network theory, on the existence and importance of the steady state solution 

(123-126). Especially, Feinberg determined a very important property about the steady-state 

solution (126); According his theorem ‘one can determine the existence and uniqueness of the 
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stable steady-state for a general class of reaction networks that satisfy an easy-checkable 

topological property’. It can be usefully applied to large complex networks whose dynamical 

properties at the equilibrium are difficult to analyse. 

Frequent movement of molecules causes important stochastic effects in reaction networks with 

small number of reactions and molecular species (127). Therefore, stochastic modelling and 

probabilistic methods can be used for describing the system. Stochastic models mainly are 

based on the chemical master equation (CME). Stochastic modeling has come to the attention 

of molecular biologists through studies like single-molecule enzymology (128-131) and live-

cell analysis of stochastic processes in living cells, such as gene transcription (132-134) and 

protein translation (135-138), but it is also true that many physiological processes can be 

described quite well using deterministic models. It might be easier to analyze for relationships 

among rate constants or initial protein concentrations and product dynamics (e.g., sensitivity 

analysis) using deterministic models. Deterministic models may explore fundamental concepts 

in modeling cellular biochemistry more simply that rely on a simplified representation of 

space. In many cases, such ordinary differential equation (ODE) models are entirely sufficient 

as a modeling formalism, and their relative simplicity promotes detailed model analysis, 

representation of elaborate mechanisms and multi protein networks, and proper comparison of 

model-based prediction of experimental data (139). 

1.9.1 Overview of modeling approaches used in the thesis 

Protein network can be described by a mathematical model consisting of ordinary differential 

equations (ODEs). Bifurcation analysis is a mathematical technique that can determine of the 

stability of a system with respect to a parameter (140, 141). This can describe the dependence 

of a state variable on a continuous change in a chosen system parameter. A bifurcation is taken 

place when there is a change in the number or the stability of solutions of a system. For 
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example, steady-state solutions for the values of the dependent variables may appear, 

disappear, change stability, or multiple steady-state solutions may coexist. The coexistence of 

multiple steady-state solutions is known as multistability. Here, I created the ODEs model and 

solutions derived from the model give traces of the deterministic behaviour of the 

concentrations of biochemical species over time, from which the input–output (signal–

response) behaviour was computed. Sensitivity analyses were also carried out as they are rapid 

and easily performed. A complex parameter space generally has too many dimensions to be 

explored thoroughly by bifurcation analysis. Therefore, sensitivity analysis is needed to 

determine a class of control parameters, defined as those that strongly affect the stimulus 

response of a system. Bifurcation analysis can then focus, at least initially, on characterizing 

how the dynamics are altered by larger changes in the subset of control parameters. Various 

kinds of tools are available which allow the construction of qualitative biochemical pathway 

models using kinetic data and their simulation and analysis (142). However, I used XPPAUT 

and Oscill8 to perform bifurcation analysis and time-course analysis. I also used Chemical 

reaction theory toolbox for checking the system whether it can be bistable or not (Figure 11). 

Chemical reaction network theory toolbox is a framework for modeling the evolution of 

chemical concentrations resulting from simultaneously occurring chemical reactions. A key 

feature of the theory is the relationship between the graphical structure of the reaction network 

and the resulting dynamics. A strong emphasis, consequently, is placed on results which hold 

regardless of the parameter values of the network, i.e. results which depend on the network 

structure alone. Biochemical models that exhibit bistability are of interest to biologists and 

mathematicians simililarly. Chemical reaction network theory can provide conditions for the 

existence of bistability, and on the other hand can rule out the possibility of emergence of 

multiple steady states. Systematic study of mass-action kinetics models– which may or may 

http://reaction-networks.net/wiki/Chemical_reaction_network_theory


40 

 

not admit multiple steady states–constitutes chemical reaction network theory (CRNT), 

pioneered by Horn, Jackson, and Feinberg (126, 143). Certain classes of networks, such as 

those of deficiency zero, do not exhibit multistationarity. A generalization of deficiency-zero 

systems is the class of toric dynamical systems which have a unique steady state (144). Also, 

there are conditions that are sufficient for establishing whether a network allows multiple 

steady states. The CRNT Toolbox developed by Feinberg and improved by Ellison 

implements the Deficiency One and Advanced Deficiency Algorithms (145, 146); this 

software is available online (147). For a large class of systems, the CRNT Toolbox either 

provides a possibility for multiple steady states or concludes that it is impossible. 

 

 

 

Figure 1.11: A workflow diagram of using mathematical model and tools for analyses, carried 

out in the thesis. 
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1.10 Introduction to the Current Study 

 

The main focus of this thesis is the exploring and understanding signal-response relationships 

and response dynamics of microbial two-component signaling systems. This thesis is 

submitted for examination for the award of a PhD at the University of Exeter. These are 

briefly described below. 

 

In chapter 2, I explore the functional role of “split kinases” where the ATP binding and 

phosphotransfer activities of a conventional histidine kinase are split onto two distinct proteins 

that form a complex. I show that this unusual configuration enable ultrasensitivity and 

bistability in the signal-response relationship of the resulting system. These dynamics are 

displayed under a wide parameter range but only when specific biochemical requirements are 

met (the kinase activity cannot be increased without reducing the phosphatase activity and 

vice versa). I experimentally show that one of these requirements, namely segregation of the 

phosphatase activity predominantly onto the free form of one of the proteins making up the 

split kinase, is met in proteins isolated from Rhodobacter sphaeroides. This chapter was 

published in PLoS Computational Biology (Amin M, Porter S and Soyer OS, 2013). This 

study provides a linkage between response dynamics, behavior and system architectures. 

  

In chapter 3, I present the signal-response relationship arising from a diverse motif found in 

two-component signaling. In this motif two response regulators (RRs) can compete with each 

other for the phosphoryl group from the single kinase (HK),  whereby one of the RRs acts as a 

phosphate sink towards the other (i.e. output RR). I first show that this motif allows rapid 

signal termination, under the experimentally observed parameters from examples of these 

systems from bacteria and yeast. Secondly, I demonstrated that phosphate sink containing two-
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component systems display a sigmoidal signal-response relationship. I identify two 

mathematical conditions on system parameters that are necessary for sigmoidal signal-

response relationships and define key parameters that control threshold levels and sensitivity 

of the signal-response curve. I confirm these findings experimentally, by in vitro reconstitution 

of the one HK-two RR motif found in the S. meliloti chemotaxis pathway and derive an 

experimental signal-response curve. I find that the presence of the sink RR can control the 

level of sigmoidality experimentally and also that an auxiliary protein shown to bind to the 

HK can further tune the signal-response relationship. These findings show that the one HK-

two RR motif allows bacteria and yeast to implement tunable switch-like signal processing 

and provides an ideal basis for developing threshold devices for synthetic biology 

applications. This study is submitted in PLoS Computational Biology (Amin et al., 2013). 

Except for deriving the mathematical conditions on system parameters and Ordinary 

differential equation (ODE) model of yeast, I contributed the rest of the paper. 
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CHAPTER 2 

 

Split histidine kinases enable ultrasensitivity and bistability in two-component signaling 

networks 

 

2.1 Introduction 

Bacterial responses to many external stimuli are underpinned by two-component signaling 

networks (TCSNs). These are found in most bacterial species and are also present in Archaea, 

eukaryotic microbes, and plants [1,2]. TCSNs are built upon the core reactions involving a 

histidine kinase (HK) that autophosphorylates on a conserved histidine residue in response to a 

signal, and a cognate response regulator (RR) that is activated when the HK phosphorylates 

one of its conserved aspartate residues [3]. Evolutionary processes seem to have exploited the 

modular structure of these proteins to produce a distinct set of biochemical features and 

network structures that reoccur in diverse TCSNs; bifunctional HKs [4], sink RRs [5], 

phosphorelays [6] and split HKs [7]. In order to achieve a broad and predictive understanding 

of bacterial signaling, it is important to assess whether these features enable specific signaling 

dynamics and properties [8]. 

 

There has already been progress towards this goal. Firstly, bifunctional HKs, which display 

both phosphatase and kinase activity towards their cognate RR, enable robustness in system 

output with respect to fluctuations in the amount of these signaling proteins [4,9] and reduce 

cross-talk among different TCSNs [10,11]. Further, theoretical work indicates that bi-

functional HKs can generate flexible signal-response relationships [12, 13] and allow higher 

signal amplification compared to monofunctional HKs that lack phosphatase activity [10]. 

Secondly, sink RRs, which compete with another RR for phosphoryl groups from a single 
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cognate HK, are suggested to allow faster response termination [5, 14]. Finally, 

phosphorelays, which contain several proteins (or domains) acting as a relay between the HK 

and RR, are suggested to integrate several signals received on their different layers [15-17] 

and implement both ultrasensitive and linear responses [18,19]. Taken together, these studies 

suggest that specific biochemical and structural features in TCSNs could enable specific 

functional roles. 

 

Of the different features of TCSNs, split kinases are predicted in several bacterial genomes 

[1,2] and are biochemically characterized in Rhodobacter sphaeroides [7,20]. In this 

organism, the split kinase system is composed of CheA3 and CheA4, which form a bipartite 

histidine kinase that phosphorylates the response regulator CheY6 [21] (Figure 2.1). CheA4 

lacks the phosphorylatable P1 domain, whereas CheA3 lacks the dimerization (P3) and 

catalytic kinase (P4) domains. Neither CheA3 nor CheA4 can autophosphorylate when 

incubated separately with ATP; however, when a mixture of CheA3 and CheA4 is incubated 

with ATP, then CheA3 becomes phosphorylated, indicating that these proteins can act as a 

histidine kinase only by forming a complex [21]. Activated by incoming signals, the P4 

domain of CheA4 binds ATP and phosphorylates the P1 domain of CheA3. Subsequently, 

CheA3-P acts as a phosphodonor for its cognate response regulator, CheY6 [21], which 

controls flagellar rotation [22]. 
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Figure 2.1 A cartoon diagram of the CheA3-CheA4-CheY6 split kinase system. The diagram 

is arranged so to highlight the role of free CheA3 acting as a branching point for the two arms 

that form competing cycles leading to phosphorylation and dephosphorylation of CheY6. Rate 

constants are shown on the relevant reactions. In the case of reversible reactions, two rate 

constants are given (kforward/kreverse). 

 

 In vivo, CheA3 and CheA4 co-localize to the cytoplasmic chemotaxis cluster [23] and are 

both essential for chemotaxis [7,24]. CheA3 and CheA4 bind to the cytoplasmic cluster via 

their P5 domains [25]. Whilst part of this cluster, CheA3 and CheA4 dynamically interact with 

one another. To allow phosphorylation of CheA3, the P4 domain of CheA4 must transiently 

bind to the P1 domain of CheA3 (in the subsequent analysis we refer to this complex as 

CheA3:CheA4). Once phosphorylated, the P1 domain of CheA3 is released by CheA4, and 

CheA3-P can then donate its phosphoryl group to the corresponding response regulator CheY6 

[21, 26]. In addition to its phosphotransfer function, CheA3 is also a phosphatase towards 

CheY6-P [7]. cheA3 mutants retaining phosphotransfer functions but lacking phosphatase 

activity do not support chemotaxis, similarly, cheA3 mutants retaining phosphatase activity 
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but lacking phosphotransfer activity also fail to support chemotaxis, indicating that chemotaxis 

requires both activities of CheA3 [7,21]. In addition, to being phosphorylated and 

dephosphorylated by the split kinase comprising CheA3 and CheA4 [21], CheY6 is also 

phosphorylated by CheA2 at the polar chemotaxis cluster [27]. 

 

Despite this wealth of information, the general role of split kinases in bacterial signaling is not 

clear. In essence split kinases are unusual bifunctional HKs, where the autophosphorylation 

and subsequent phosphotransfer and phosphatase activities are encoded on two separate 

proteins. Since the complex formed by these proteins is functionally equivalent to a 

bifunctional HK, it is not clear what the role of splitting biochemical activities in this way 

might be. Using the biochemical reactions of CheA3, CheA4, and CheY6 as a model system, 

we developed a mathematical model and analyzed the response dynamics mediated by this 

split kinase. Repeating this analysis with a bifunctional HK and a conventional HK-RR pair 

featuring a separate phosphatase, we found that in contrast to these configurations, split 

kinases enable ultrasensitivity and bistability in the signal-response relationship. We show that 

these dynamical features are maintained under a wide parameter range, provided certain 

biochemical assumptions are met. These requirements indicate that the source of 

ultrasensitivity and bistability in split kinases is the inverse coupling between their kinase and 

phosphatase activities; i.e. the kinase activity cannot be increased without reducing the 

phosphatase activity and vice versa. Through measurements of phosphatase activity, we show 

that this condition is met in the R. sphaeroides system in vitro. These findings suggest that 

bacteria might be utilizing split kinases as a means of implementing ultrasensitivity and 

bistability in cellular decision making.  
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2.2 Results 

2.2.1 Construction of a mathematical model of a split kinase 

Since our aim is to study the general response dynamics that split kinases can mediate, we use 

the CheA3, CheA4, and CheY6 triplet as a model system and study its dynamics in isolation 

through in vitro experiments, numerical simulation and analytical approaches. We developed a 

mathematical model of the system and parameterized it with in vitro and in vivo measured 

kinetic rates and protein concentrations respectively (see Methods and Table 2.1). We then 

analyzed the response dynamics of the resulting model and its variants both through numerical 

simulations and deriving analytical solutions of steady state behavior using approximations 

and the chemical network theory[28,29] (see Methods and Text S 2.1 in Appendix A). In the 

subsequent sections, we use the terms free CheA3 and free CheA3-P to indicate CheA3 

species where the P1 domain is not interacting with the P4 domain of CheA4; in vivo, 

however, these species are expected to be always joined to the chemotaxis cluster by their P5 

domains.  

 

Parameter  Description Value  Unit  Ref  

k1  On rate for binding of CheA3 and 

CheA4  

100  (µMs-
1
 )   [21] see also Results  

k2  Off rate for binding of CheA3 and 

CheA4  

10  s
-1

   [21] see also Results  

 k3      Forward rate for phosphorylation 

complex  

1  (µMs)
 -1

   [21] 

 k4  Reverse rate for phosphorylation 

complex  

39  s
-1

   [21] 
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k5  Kcat for phosphorylation of CheA3 

by CheA4  

varied  s
-1

   

k6  CheA3-P to CheY6 

Phosphotransfer  

0.775  (µMs)
 -1

   [21] 

k7  CheA3-P to CheY6 Reverse 

phosphotransfer  

0.00283  (µMs)
 -1

   [21] 

k8 Autodephosphorylation  0.169  s
-1

   [7] 

     

k9 Association of phosphatase 

assisted dephosphorylation 

complex  

5.6  (µMs)
 -1

   [48] 

k10 Dissociation of phosphatase 

assisted dephosphorylation 

complex  

0.04  s
-1

   [48] 

k11 Kcat for phosphatase assisted 

dephosphorylation  

2.5  s
-1

  See Methods  

[A3]tot  Total concentration of CheA3  90  µM   [7] 

[A4]tot  Total concentration of CheA4 40 µM   [34] 

[Y6]tot  Total concentration of CheY6 225  µM   [34] 

[ATP]  Total concentration of ATP 1000  µM   

 

Table 2.1: Literature source and parameter values used in the analysis of the basic model. 
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2.2.2 The input-output relationship for the split kinase shows ultrasensitivity and 

bistability 

A primary property of interest for any signal transduction system is the signal-response 

relationship it implements [30]. To analyze the signal-response relationship in systems 

featuring a split kinase, we defined the system response as the steady state level of 

phosphorylated CheY6 (CheY6-P) at a given signal level, and derived this relationship for 

different parameters and biochemical assumptions (see Methods). This analysis revealed that 

when assuming free CheA3 as the sole phosphatase for CheY6-P, the system has a high 

potential for displaying ultrasensitivity and bistability (Figure 2.2 and Figures S2.1 – S2.3 in 

Appendix A). Both of these dynamics result in a switch-like behavior; the response of the 

system is low until signal levels increase above a certain threshold, after which the response 

increases disproportionately to reach a high level (e.g. Figure 2.2A). In the case of bistability, 

the low and high response levels correspond to stable states of the system, separated by an 

unstable region, resulting in abrupt switching dynamics and hysteresis (i.e. the switching 

threshold is different depending on the past state of the system).  
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Figure 2.2 Effects of varying key parameters of the model and addition of different 

phosphatases.  The x- and y-axis show the signal (k5) level and the corresponding steady state 

CheY6-P level respectively. Each panel shows a signal-response analysis for varying model 

parameters (A-C) or the inclusion of additional phosphatases (D). The results of the basic 

model are shown in red. Where present, the dark region indicates the region of unstable steady 

states and hence the presence of bistability. Arrows on panels A, B and C indicate increasing 

value of the changed parameter. (A) The on rate (k1) for CheA3:CheA4 complex formation 

was varied from basic model value [100(µMs)
-1

] to 10, 1, and 0.208. (B) Concentration of 

CheA4 was varied from 30 µM, 40 µM (basic model) and 80 µM. (C) The rate of CheA3 

mediated dephosphorylation of CheY6-P (k11) was varied from 1s
-1

, 2.5 s
-1

 (basic model) and 

5s
-1

. (D) The basic model has free CheA3 as the sole phosphatase; the effect of having either 
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CheA3-P or CheA3:CheA4 and CheA3:CheA4: ATP as additional phosphatases is shown. See 

also Figures S2.1-2.4 in Appendix A for additional sensitivity analyses. 

The in vitro and in vivo measured kinetic rates and protein concentrations from R. sphaeroides 

constitute “biologically meaningful” values that could be representative for two-component 

systems in general. To analyze the potential effects of these rates on the observed nonlinearity 

of the signal-response relationship, we have performed a sensitivity analysis by varying the 

base parameter values over a large range and quantifying the shape of the resulting signal-

response curve (see Methods). This analysis shows that the level of ultrasensitivity in the 

signal-response relationship is most sensitive to the parameters controlling the complex 

formation between CheA3:CheA4 (k1) and the dephosphorylation of phosphorylated CheY6 

(k9 and k11) (Figure 2.2 and Figures S2.1 – S2.3 in Appendix A). The association rate constant 

(k1/k2) we used in the basic model is approximately 500-fold higher than that measured in 

vitro, using purified R. sphaeroides proteins [21]. We still consider this high value 

“biologically relevant” as in vivo conditions can result in confining of split kinase components 

to small regions of the cell, resulting in much higher effective concentrations than are 

attainable under the in vitro conditions as used in [21]. For example, in R. sphaeroides, CheA3 

and CheA4 localize to the cytoplasmic chemoreceptor cluster [23], which - using immunogold 

electron microscopy - is estimated to occupy less than 5% of the cross-sectional area of the 

cell [31]. Assuming a spherical shape for both the cell and this cluster, the volume of the latter 

could be estimated to be approximately 1% of the total cell volume. Thus, the effective 

concentrations of CheA3 and CheA4 in this cluster could be increased by as much as 100-fold, 

resulting in a significantly higher effective association rate constant than measured in vitro (up 

to 10,000 fold).  
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Besides parameter values, several modeling choices could also alter the finding of bistability 

and ultrasensitivity arising in a split kinase system. In particular, the basic model presented 

above assumes that free CheA3 is the sole phosphatase in the system (besides the intrinsic 

autodephosphorylation activity of CheY6-P). Relaxing this assumption and considering 

increasing phosphatase activity by the CheA3:CheA4 and CheA3:CheA4:ATP complexes (see 

Text S1, section 1), significantly reduced ultrasensitivity in the system (Figure 2.2D and S2.4 

in Appendix A). In contrast, the presence of ultrasensitivity was much more robust to 

increasing phosphatase activity by CheA3p (Figure 2.2D, S2.4 and S2.5 in Appendix A). 

Another mechanistic choice in the modeling of the split kinase system is the fate of the 

CheA3:CheA4 complex after phosphorylation of CheA3. In the basic model analyzed in 

Figure 2.2, this is modeled as phosphorylation resulting in the dissociation of the complex and 

release of CheA4 and CheA3-P. An alternative would be that the CheA3:CheA4 complex 

remains intact post phosphorylation, resulting in a CheA3-P:CheA4 complex (see Text S2.1, 

section 2 in Appendix A). When we assume the presence of CheA3-P:CheA4 complex that 

can phosphotransfer to CheY6, bistability was lost, but not ultrasensitivity (Figure S2.6 in 

Appendix A). Finally, we found that including an additional (monofunctional, non-split) 

kinase in the model, as seen for example in R. sphaeroides CheA2 (see Text S2.1, section 3 in 

Appendix A), does not affect the ultrasensitivity but can result in the loss of bistability (Figure 

S2.7 in Appendix A).  

 

It is important to note that the basic model and all of these variants arising from specific 

modeling choices are “nested” in the sense that the basic model can be recovered through 

appropriate choice of parameters (e.g. setting dephosphorylation activity of CheA3p very 

low). In line with this observation, we find that the basic model and all of the alternative 

structures discussed so far can be analytically shown to possess the “ability” to attain 
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bistability (see Methods). More particularly, each of the chemical reaction systems arising 

from these models have the capacity for multiple steady states according to the higher 

deficiency theorem [32,29]; i.e. these chemical systems permit bistability for some set of non-

zero parameter values and under the assumption of mass action kinetics (see Text S2.2 in 

Appendix A).  

 

2.2.3 Segregation of kinase and phosphatase activities allows ultrasensitivity and 

bistability 

Taken together, these analyses suggest that the ability of a split kinase to mediate 

ultrasensitivity and bistability relates to the segregation of kinase and phosphatase activities. 

To better understand how this relates to ultrasensitivity and bistability, we simulated the time 

evolution of the system in the presence of step signals. As expected from the ultrasensitive 

signal-response relationship, system response (i.e. increase in free CheY6-P) was low for step-

signals below the threshold and displayed a sudden large jump for step-signals crossing the 

threshold (Figure 2.3). Before the threshold, increasing signal levels resulted in an increase in 

the CheA3:CheY6-P complex, while the crossing of the threshold and subsequent increases in 

signal caused it to decrease. The reason for this behavior is that before the threshold there is 

enough free CheA3 in the system to bind and dephosphorylate the CheY6-P that is formed, 

while after crossing of the threshold there is no free CheA3 left in the system (Figure 2.3).  
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Figure 2.3 Time-course analyses. The model is simulated with increasing and decreasing 

signal levels (k5) in course of time. k5 is increased from 2 to 6 and decreased in similar 

fashion at indicated time points (top most, left panel), and changes in each species were 

measured (as indicated on each panel). The dotted line represents the highest signal level, with 

equal signal steps on each side of it. The noted asymmetry around this line shows the presence 

of hysteresis in the system. The x- and y-axis represent time and species concentration 

respectively, where the latter is normalized by the appropriate total protein levels.  

 

These observations can be understood if we consider the cyclic nature of the reactions in this 

system as shown in Figure 2.1. The free CheA3 can be seen as a branching point in the 

system, with one branch leading to binding to CheA4 and ultimately to more CheY6 
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phosphorylation (phosphorylation branch), while the other leading to binding to CheY6-P and 

subsequent dephosphorylation (dephosphorylation branch). While the phosphorylation branch 

is regulated externally of the system by signals sensed by the cytoplasmic cluster (i.e. through 

altering k3 and/or k5), the dephosphorylation branch is controlled internally by the covalent 

modification of CheY6. This results in a dynamical motif that is similar to that seen in 

metabolic branching points and that can embed ultrasensitivity [33]. The split kinase system 

can embed a high level of nonlinearity as it contains both an inverse coupling of the two 

branches themselves (via CheY6) and their regulation (via CheA3). At low signals, these two 

branches allow enough free CheA3 in the system so to result in equally fast phosphorylation 

and dephosphorylation of CheY6. As the signal increases, however, the rate of the 

phosphorylation branch increases, while at the same time shutting down the dephosphorylation 

branch. In other words, the phosphorylation and dephosphorylation branches are coupled 

inversely, such that the kinase activity cannot be increased without reducing the phosphatase 

activity and vice versa. These dynamics can be observed in Figure 2.3; the loss of free CheA3 

in the system coincides with an abrupt increase in CheA3-P and CheY6-P, while the 

CheA3:CheA4 complex maintains a fast turnover. This dynamical picture also explains the 

parameter effects observed in Figure 2 (and Figures S2.1-S2.4 in Appendix A). For example, 

the decrease in ultrasensitivity from the reduction of CheA3-CheA4 association rate constant 

(k1) can be explained by a slowing down of the phosphorylation branch. Similarly, the 

decrease in ultrasensitivity from the inclusion of additional phosphatase activity via species 

other than free CheA3 can be explained by its perturbing effects on the inverse coupling 

between the phosphorylation and dephosphorylation branches (Figure S2.4 and S2.5 in 

Appendix A). It must also be noted that the total level of CheA4 in the cell allows additional 

(internal) control on the dynamics of the system (Figure 2.2B and Figure S2.3 in Appendix A), 

through its effects on the phosphorylation branch. 
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To further test whether the inverse coupling of kinase and phosphatase activities through free 

CheA3 is the underpinning mechanism of ultrasensitivity, we considered dynamics in two 

alternative models where such coupling is missing; (i) a bifunctional HK that is not split, and 

(ii) a traditional HK that is neither bifunctional nor split, with a dedicated auxiliary 

phosphatase for the phosphorylated RR. An analytical treatment of the dynamics arising in the 

former scenario suggests that non-split bifunctional HKs (where the phosphorylated/non-

phosphorylated HK acts as kinase/phosphatase on its cognate response regulator) gives rise to 

hyperbolic signal-response relationships and provides the system with robustness towards 

variations in component concentrations [9]. For the latter scenario (e.g. CheA-CheY-CheZ 

system found in the E. coli chemotaxis system) we developed a simplified model and solved it 

for the steady state levels of phosphorylated response regulator. We compared this analytical 

solution to that derived from a simplified model of a split kinase system (see Text S2.1, 

section 4 in Appendix A). This analytical treatment shows that the latter displays a higher 

level of nonlinearity for the steady state expression of phosphorylated RR. More importantly, 

we find that of the three possible alternative structures - bifunctional and split, monofunctional 

and split, bifunctional and non-split - only the chemical reaction system arising from the 

bifunctional and split kinase have the capacity for multiple steady states according to the 

higher deficiency theorem [32,29] (see Text S2.3-2.6 in Appendix A for detailed results). 

Taken together, these analytical findings show that for bistable and ultrasensitive dynamics to 

be realized in a split kinase system, both bifunctionality of the HK and the splitting of these 

two functionalities (i.e. kinase and phosphatase activity) are needed.  
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2.2.4 Experimental verification that free CheA3 is a better phosphatase than 

CheA3:CheA4 

As shown above, the ability of the split kinase to achieve both segregation and inverse 

coupling of kinase and phosphatase activities requires that free CheA3 is the predominant 

phosphatase with other CheA3 containing species (in particular CheA3:CheA4 and 

CheA3:CheA4:ATP) showing much lower phosphatase activity. Testing this requirement, or 

directly the level of ultrasensitivity in vivo, is complicated both by the presence of additional 

components in the system and our lack of knowledge of the signal identity in split kinase 

systems studied to date. As an alternative, and to achieve an approximate test of our 

theoretical understanding of split kinase response dynamics, we performed in vitro 

measurements of CheY6-P dephosphorylation in the presence of CheA3 and CheA4. In these 

experiments we used a purified phosphorylated P1 domain of CheA3 (CheA3P1-P) as the sole 

phosphodonor in the environment. As CheA3P1-P is known to lack phosphatase activity [7], 

this setup allows us to test directly the phosphatase activity of free CheA3 and the 

CheA3:CheA4 complex. If kinase and phosphatase activities are segregated into the 

complexed and free CheA3 respectively, these measurements should reveal a decrease of 

phosphatase activity with increasing CheA4 concentration, as this would sequester free CheA3 

into the CheA3:CheA4 complex. In contrast, such an effect would be absent if the 

CheA3:CheA4 complex possessed the same level of phosphatase activity as free CheA3. We 

found evidence for such a decrease, with increasing CheA4 concentrations reducing the rate of 

CheA3 mediated dephosphorylation of CheY6-P (Figure 2.4 and Figure S2.8 in Appendix A). 

To rule out the possibility of any interference from free CheA4, we have also confirmed the 

lack of dephosphorylation activity by CheA4 (Figure 2.4B). This observation qualitatively 

matches predictions from a specific model of this in vitro experimental setup where we 

assumed phosphatase activity to be restricted to only free CheA3 (see Text S2.1 in Appendix 
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A and Figure 4). These experimental findings strongly suggest that the CheA3:CheA4 

complex has much lower phosphatase activity than free CheA3. 

 

Figure 2.4 Measurement of CheY6-P dephosphorylation rates under different conditions (as 

indicated). An excess of CheY6 was phosphorylated using CheA3P1-P as phosphodonor. The 

phosphotransfer reaction was complete within 10s of adding CheY6 to the reaction mixture. 

Subsequently the decay in CheY6-P levels was followed over time. (A) Phosphorimages 

showing the decay in CheY6-P levels over time. (B) Graph comparing the observed pseudo-

first order rate constant (kobs) for CheY6-P dephosphorylation with and without CheA3 and 

CheA4. The values predicted by the modeling are shown with a dashed line, while the 

experimentally measured values are shown in black. Results from a control experiment 

(without CheA3 and solely CheA4) is shown in grey. Error bars show the standard error of the 

mean obtained from eight independent experiments. 
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2.3 Discussion 

Two component signaling systems mediate many of the physiological responses of bacteria 

and display several conserved biochemical and structural features. Here, we analyzed how one 

such feature, the split kinase, affects response dynamics. Our theoretical treatment proved that 

the chemical reaction system arising from a bifunctional split kinase gives rise to the 

possibility of bistability, whereas systems arising from bifunctional, non-split and 

monofunctional, split kinases lack such capability (unless featuring dead-end complex 

formation [12]). Sampling the parameter space around kinetic rates and protein concentrations 

measured in (or estimated from) R. sphaeroides, we found that a split kinase system set in a 

“biologically relevant” parameter regime has potential for an ultrasensitive and bistable signal-

response relationship. These nonlinear dynamics arise from the bifunctional and split nature of 

the kinase, which introduce a branching point into the system between phosphorylation and 

dephosphorylation reactions. Thus, the level of ultrasensitivity (and emergence of bistability) 

in the system is determined by the parameters and the biochemical mechanisms found in the 

reaction cycles linked to this branching point.  

 

We found that the one crucial biochemical aspect enabling ultrasensitivity and bistability in 

the split kinase system is the predominant allocation of phosphatase activity to the free protein 

(rather than any of the complexes in the system). Using in vitro phosphotransfer assays in the 

CheA3-CheA4-CheY6 split kinase system isolated from R. sphaeroides, we found support for 

free CheA3 being the principal phosphatase in that system (Figure 2.4). It remains to be shown 

whether this system enables ultrasensitivity or bistability in vivo. The theoretical findings of 

this study suggest that the switch-like dynamics resulting from ultrasensitivity and bistability 

could be relevant in the physiological context of the CheA3-CheA4-CheY6 system, which is 

involved in the integration of cytoplasmic and extracellular signals for proper chemotaxis [7, 
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34]. It would be plausible for example, if the switching dynamics described here allowed cells 

to override external chemotaxis signals in favor of internal signals such as those related to 

metabolism, which could contribute to motility decisions [35-37]. As shown in Figure 2.2, 

several internal parameters of the system, including the total expression level of CheA4, allow 

control of the dynamics mediated through CheA3:CheA4 and might enable further tuning of 

such decision making mechanisms.   

 

While our results highlight split kinases as a potential strategy for implementing 

ultrasensitivity in bacterial two-component systems, it is not the only one. Previous theoretical 

studies have found that ultrasensitivity can be achieved in phosphorelays [18, 19], in classical 

HK-RR systems embedding specific spatial dynamics [38] and in systems with bifunctional 

HKs, where unphosphorylated HKs and RR form a dead-end complex that is incapable of HK 

autophosphorylation [12, 39]. These findings suggest that there are several diverse structural, 

spatial and dynamics that are possible in bacterial two-component systems and that have the 

potential to enable nonlinear response dynamics. Our theoretical findings extend this list with 

split kinase systems. Further, we provide experimental support for a condition that increases 

their potential for generating ultrasensitivity and bistability. Such responses are known to be 

common in eukaryotes and can enable decision making at the cellular level [40-42]. Thus, it is 

perhaps not surprising that bacterial signaling systems harbor mechanisms to enable similar 

levels of ultrasensitivity. 

 

Although rare, split kinases are found in several other bacteria. A recent study looking at 

CheAs identified 11 split CheAs (2.3 %) versus 470 complete CheAs (97.7%) in fully 

sequenced non-redundant genomes [1]. In addition to these split CheAs, there is the potential 

for other HKs to be split where the HisKA (dimerization and histidine phosphotransfer) and 
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the catalytic HATPase (histidine kinase ATPase) domains are found on separate proteins. In 

vitro studies of the osmosensing histidine kinase, EnvZ, have shown that it possible to split the 

HATPase and HisKA domains onto separate polypeptides whilst retaining their activity [43]. 

Interrogation of the SMART database reveals that of the 42417 proteins containing HisKA 

domains (dimerization and histidine phosphotransferase), 1556 (3.66%) lack a HATPase 

(histidine kinase ATPase) domain (expect value <0.01) and of these, 711 (1.7%) have the 

phosphatase sequence motif (HE/DxxN/T;[44] and could therefore be split bi-functional 

kinases. The results presented here suggest that cells may use such split kinases to allow high 

sensitivity and bistability enabling switch-like physiological responses to environmental 

stimuli. 

 

As the highly modular TCSNs are used by bacteria to control many of their physiological 

responses, it will be valuable to explore other mechanisms which can enable specific response 

dynamics in these systems and to determine the evolutionary drivers that were responsible for 

their emergence. This would increase our ability to better understand microbial signaling and 

exploit it in synthetic biology applications. 

 

2.4 Models and methods 

2.4.1 A mathematical model for a split kinase 

To model the CheA3-CheA4-CheY6 split kinase system, we considered its dynamics in 

isolation of other cellular components. The reactions in this system that we have included in 

the “basic model” are (see also alternative reaction schemes shown in Text S1); 
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A3 A4
k1

k2

   A3A4

A3A4  ATP
k3

k4

   A3A4ATP
k5  A3p  A4  ADP

A3p Y 6
k6

k7

   A3Y 6p

Y 6p
k8  Y 6  Pi

A3Y 6p
k9

k10

   A3Y 6p
k11  A3Y 6  Pi

 

where A3, A4, Y6 stand for CheA3, CheA4 and CheY6 respectively and the -p suffix 

represents phosphorylated forms of these proteins. Variant models which include additional 

CheY6-P de-phosphorylation reactions involving alternative phosphatases such as CheA3-P, 

and CheA3:CheA4 complex are shown in supplementary text S1, and their effects are 

analyzed in Figure 2D and S4. The above “basic model” reaction scheme can be used to derive 

a system of ordinary differential equations (ODEs), which describe the changes in 

concentrations of proteins over time; 

d[A3p]

dt
 k5 [A3A4ATP] k7 [A3] [Y 6p] k6 [A3p] [Y 6p]

d[A3A4]

dt
 k1 [A3] [A4] k4 [A3A4ATP] [A3A4]  k2  k5 [ATP] 

d[A3A4ATP]

dt
 k3 [A3A4] [ATP] [A3A4ATP]  k4  k5 

d[A3Y 6p]

dt
 k9 [A3] [Y 6p] [A3Y 6p]  k10  k11 

d[Y 6p]

dt
 k10 [A3Y 6p] k6 [A3p] [Y 6] [Y 6p]  k7 [A3] k8  k9 [A3] 

 

In addition, we have a set of three conservation equations; 

[ 6] [ 6] [ 6 ] [ 3 6 ]

[ 3] [ 3] [ 3 ] [ 3 4] [ 3 4 ] [ 3 6 ]

[ 4] [ 4] [ 3 4] [ 3 4 ]

tot

tot

tot

Y Y Y p A Y p

A A A p A A A A ATP A Y p

A A A A A A ATP

  

    

  

 

To analyze the behavior of the split kinase motif with increasing signal, we simulated the 

incoming signals from receptors as an increase in the autophosphorylation rate of the kinase 

(k5). The model was parameterized with data from literature (see Table 2.1). In the case of the 
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dephosphorylation of CheY6-P by CheA3, we derived the relevant parameters (k9, k10, and 

k11) through fitting simulation data to previously published in vitro dephosphorylation 

measurements [7]. Fitting was done using a hybrid genetic algorithm (functions ga and 

fmincon from the MATLAB Global Optimization Toolbox). 

 

We numerically integrated the model to derive time course and steady state signal-response 

relationships. The latter analysis gives the steady state CheY6-P level at a given signal (k5) 

where signal was taken as the rate of autophosphorylation of split kinase and allows deriving a 

so-called signal-response curve. This curve is found by numerically integrating the system to 

steady state at a fixed signal level and then numerically “following” this steady state (i.e. 

steady state CheY6-P level), while changing the signal. This analysis is equal to allowing the 

system to reach steady state under different signal values. Both time course and signal-

response analyses were performed using the software packages XPPAUT  

(http://www.math.pitt.edu/~bard/xpp/xpp.html) and Oscill8 (http://oscill8.sourceforge.net/).  

 

2.4.2 Sensitivity analysis. We have quantified the sensitivity of the shape of the signal-

response curves to variations in each of the parameters from their described base values (Table 

2.1) and in a biologically relevant range. For these analyses, we measured the “sigmoidality” 

of the signal-response curve, RS, as its maximum slope (smax) multiplied by the signal level at 

which this slope occurs (k5s) (i.e. RS = k5s × smax). This measure is similar to the “response 

coefficent”, which measures the slope between 90% and 10% saturation [33], but is better able 

to distinguish between hyperbolic and sigmoidal dose-response curves. For each parameter, 

we varied it in a wide range around its basic value and measured “sigmoidality” of the 

resulting dose-response curves, as well as the maximum response of the system (Figures S2.1-

http://oscill8.sourceforge.net/
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S2.3 in Appendix A). The same analysis is also applied for alternative models featuring 

additional phosphatase species (Figure S2.4 in Appendix A). 

 

2.4.3 Analytical comparison of different models. To perform a formal check for the 

potential of bistability in the different models (discussed in the main text and Supplementary 

Information), we have utilized the chemical network theory [28, 29]. This theory provides 

several analytical tests that can provide a definite answer on the possibility of existence of 

multiple stationary states in a given reaction network. We have applied these tests to the basic 

and alternative models we had devised using the Chemical Network Tool v2.2 

(http://www.chbmeng.ohio-state.edu/~feinberg/crntwin/). The model files used with this tool 

and describing the chemical reaction systems, as well as the analytical results from the tool are 

provided as Text S2.2-2.4 in Appendix A.  

 

2.4.4 Plasmid and strains. See Table 2.2 for the plasmids and strains used. E. coli strains 

were grown in LB medium at 37
o
C. Antibiotics were used at concentrations of 100 μg ml-1 for 

ampicillin and 25 μg ml-1 for kanamycin, where needed. E. coli M15pRep4 cells were made 

competent using the calcium chloride technique [45]. Transformations were performed 

according to [46]. 

 

 

 

 

 

 

http://www.chbmeng.ohio-state.edu/~feinberg/crntwin/
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Strains/plasmid Description Source/Reference 

E.coli strains 

M15pREP4 

Expression host containing pREP4; 

kanamycin resistant 

Qiagen 

pQE30 IPTG inducible expression vector. 

Introduces RGS(H)6 at the N terminus of 

the expressed protein. Confers ampicillin 

resistance 

Qiagen 

pQE60 IPTG inducible expression vector. 

Introduces RGS(H)6 at the C terminus of 

the expressed protein. Confers ampicillin 

resistance 

Qiagen 

pQE60A3P1 Plasmid for overexpressing C-terminally 

His-tagged CheA3P1 from R.sphaeroides. 

pQE60 derivative 

 [7] 

pQEY6 Plasmid for overexpressing C-terminally 

His-tagged CheY6 from R.sphaeroides. 

pQE30 derivative 

 [24] 

pQEA3 Plasmid for overexpressing C-terminally 

His-tagged CheA3 from R.sphaeroides. 

pQE30 derivative 

 [21] 

pQEA4 Plasmid for overexpressing C-terminally 

His-tagged CheA4 from R.sphaeroides. 

pQE30 derivative 

 [21] 

 

Table 2.2: Plasmids and strains used and the associated literature source. 
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2.4.5 Protein purification. His tagged R. sphaeroides CheA3, CheA4, CheA3P1 and CheY6 

proteins were purified as described previously [47]. Protein purity and concentration was 

measured as described in [24]. Purified proteins were stored at -20
o
c. 

 

2.4.6 Preparation of CheA3P1-
32

P. CheA3P1 was phosphorylated using [γ-
32

P] ATP and 

CheA4 and purified as described before with the following modifications [7]. Proteins were 

phosphorylated in reactions performed at 20°C in phosphotransfer buffer (50 mM Tris HCl, 

10% (v/v) glycerol, 5 mM MgCl2, 150 mM NaCl, 50 mM KCl, 1 mM DTT, pH 8.0). The final 

reaction volumes were 2 ml. For production of CheA3P1-
32

P, reaction mixtures contained 300 

μM CheA3P1 and 20 μM CheA4. Reactions were initiated by addition of 2 mM [γ-
32

P] ATP 

(specific activity 14.8 GBq mmol
−1

; PerkinElmer). After 1 hour incubation, samples were 

purified by using Ni-NTA columns (Qiagen) as described previously for unphosphorylated 

His-tagged CheA3 [47]. This purification step removed the unincorporated ATP and also 

removed the CheA4 protein from the CheA3P1-
32

P preparation. Purified proteins were stored 

at -20°C. 

 

2.4.7 Measurement of CheY6-P dephosphorylation rate. Assays were performed at 20 
o
C 

in phosphotransfer buffer. Purified CheA3P1-
32

P was used as the phosphodonor. An excess of 

CheY6 (100 μM) was added to 30 μM of purified CheA3P1-
32

P in the presence of 2.5 μM 

CheA3 and 0-60 μM CheA4. Following the addition of CheY6, reaction aliquots of 10 μl were 

taken at the indicated time points and quenched immediately in 10 μl of 2 X SDS-PAGE 

loading dye(7.5% (w/v) SDS, 90 mM EDTA, 37.5 mM Tris HCl, 37.5% glycerol, 3% (v/v) β- 
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mercaptoethanol, pH 6.8). Quenched samples were analyzed using SDS-PAGE and 

phosphorimaging as described previously [24]. 
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CHAPTER 3 

 

Phosphate sink containing two-component signaling systems as tunable threshold devices 

3.1 Introduction 

Cells process external cues in order to produce appropriate responses that ensure survival and 

efficient proliferation. They achieve this goal through a myriad of signaling and gene 

regulatory networks, which implement specific signal processing capabilities such as switch-

like threshold dynamics, logic gates, oscillations, and noise filtering (1-8). Understanding the 

architecture and response dynamics of these systems is of fundamental value, providing us 

with a better insight into cell biology and allowing us to engineer de novo biological systems. 

The field of synthetic biology exploits the understanding and components from natural 

systems to rationally design synthetic systems that implement specific signaling dynamics. So 

far, this led to the development of oscillatory systems (9, 10), systems with threshold 

dynamics (1, 11-12) and logic gates (13-15). In most cases, these studies use transcriptional 

regulation to implement the desired dynamics, while a few studies have explored the 

possibility of extending synthetic design approaches to signaling networks (16-18). 

Bacterial systems are particularly attractive for attempting synthetic engineering of signaling 

networks. All bacteria and certain eukaryotic microbes and plants utilize the so-called two-

component signaling systems for signal transduction (19-21). In their most simple 

implementation, these systems consist of a histidine protein kinase (HK) and a response 

regulator (RR). The activity of the HK is controlled by an environmental stimulus, which 

controls the rate of autophosphorylation. Once phosphorylated, the HK transfers its 

phosphoryl group to a cognate RR, which in its phosphorylated form mediates the output of 
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the signaling pathway (21). The phosphotransfer reaction is at the core of all two-component 

systems, and regulating its specificity could allow direct control over microbial (and to some 

extent plant) physiology, as well as creating synthetic signaling systems. Thus, several studies 

have attempted to decipher the coupling specificity of HK and RR proteins (22-25) and have 

generated chimeric HKs with specified and controllable inputs (26-30). More recently, 

scaffolding of HK and RR proteins has been shown to allow significant control over the 

phosphotransfer specificity (17).    

Generating synthetic systems with specified signal processing capabilities, however, requires a 

deeper understanding of system properties such as the signal-response relationship they 

embed. Around the core HK-RR interaction, different two-component systems have diverse 

architectures, which could underpin specific signal processing capabilities. For example, the 

commonly observed phosphorelays, where the flow of phosphoryl groups from the HK to the 

RR is relayed through several proteins, are believed to allow signal integration and specific 

response properties such as control of noise and ultrasensitivity (31-35). Other architectural 

features such as presence of a bifunctional or a split HK, formation of specific “dead-end” 

complexes and also transcriptional feedbacks have been shown to allow ultrasensitivity and 

even bistability (36-38). Of such different architectural features, one that has not attracted 

much attention is the “sink” system, where two RRs can compete for the phosphoryl group 

from a single HK. This architectural motif has been identified in several microbial and plant 

systems (39-43). In the Sinorhizobium meliloti chemotaxis pathway, the two response 

regulators CheY1 and CheY2 are phosphorylated by their cognate kinase CheA. Of these, only 

CheY2 in its phosphorylated form can bind to the flagellar motor and control its rotation (39). 

Both CheYs can also perform reverse phosphotransfer, where they return the phosphoryl 

group to CheA. Given its high phosphorylation rate (from HK), low reverse phosphorylation 
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rate (to HK), and the observation that the S. meliloti chemotaxis system lacks a dedicated 

phosphatase, it is proposed that CheY1 acts as a sink that accelerates dephosphorylation of 

CheY2 (39). A similar situation is described in the Rhodobacter sphaeroides and Helicobacter 

pylori chemotaxis pathways (40, 41) and the yeast osmoregulation pathway (43, 44). In the 

latter case, the HK, SLN1 autophosphorylates in response to changes in the membrane 

structure and phosphorylates two downstream RRs, SSK1 and SKN7. In vitro phosphotransfer 

studies found similar dynamics as in the S. meliloti chemotaxis pathway with SKN7 displaying 

significant reverse phosphotransfer to SLN1, while SSK1 showing no such activity (44). 

Interestingly, both SSK1 and SKN7 are functionally active in this system, with SSK1 

activating the downstream HOG1 MAP kinase cascade (45,46) and SKN7 acting as a 

transcription factor for genes involved in various stress related responses (47,48). 

Here, we use mathematical and experimental approaches to identify the full signal processing 

capabilities of this two-component system. We first develop a generic model of the one HK – 

two RR motif and perform both analytical and simulation-based analyses. These reveal that 

this system is capable of both enhancing signal termination time and implementing a threshold 

signal-response relationship, i.e. the system displays a sigmoidal signal-response relationship 

in which the steady state levels of the phosphorylated output RR remains low until a threshold 

level of signal is crossed. We then verify these dynamics experimentally by in vitro re-

constitution of the two-component proteins from the chemotaxis pathway of S. meliloti. Using 

this in vitro setup, we further show that specific properties of the threshold dynamics can be 

controlled through the concentrations of the core components, as well as through presence of 

an auxiliary protein that is known to bind the HK in S. meliloti (49). These findings allow 

better understanding of the physiological responses mediated by phosphate sink-containing 
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two-component systems in microbes and plants, and will facilitate design of synthetic 

threshold devices using two-component signalling proteins.   

3.2 Results 

3.2.1 Analysis of response dynamics in the one HK – two RR motif 

While the implementation of the phosphate sink motif in diverse two-component systems 

could differ in the molecular details of the proteins involved and their exact kinetic rates, the 

sink mechanisms can be formulated as a general architectural motif (Figure 3.1A and S1A); a 

two-component system comprising a single HK and two RRs, namely the output-RR and the 

sink-RR (as referred to, in the rest of the text). We have developed a generic model of this 

motif and parameterized it using experimental measurements from the reaction kinetics of the 

S. meliloti chemotaxis and yeast osmoregulation systems (see Methods). To monitor temporal 

dynamics in the presence of a signal, we simulated two conditions, one with the sink-RR and 

one without the sink-RR. Using the “controlled comparison” approach (50), we simulated each 

scenario at a signal level that resulted in 90% phosphorylation of the output-RR at steady state. 

The signal was then removed and the half-time for the decay of phosphorylated output-RR 

measured. We found that under the experimentally measured parameters, the presence of the 

sink-RR decreases the half-time for the output-RR dephosphorylation by more than 2 fold in 

both S. meliloti and yeast (Figure 3.1B and S3.1B in Appendix B). These simulation results 

are consistent with previous experimental results (39), which led to the sink hypothesis, and 

show that in the experimentally observed parameter regime, a sink-RR can accelerate the 

dephosphorylation of the output-RR.  
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Figure 3.1 The one HK – two RR motif as seen in the S. meliloti chemotaxis signaling 

pathway (A) A cartoon diagram of the CheA-CheY1-CheY2 system. The diagram is arranged 

to highlight the role of CheY1 as a phosphate sink for CheY2. Rate constants are shown on the 

relevant reactions. In the case of reversible reactions, two rate constants are given as kforward 

and kreverse. (B) Role of the sink, RR1 (CheY1) in signal termination (i.e. dephosphorylation of 

RR2 (CheY2)). The x- and y-axis show the time and the corresponding steady state levels of 

phosphorylated RR2, respectively. A value of ka was selected that resulted in ~90% of the 

total RR2 being phosphorylated at steady state. At t=0, ka was reduced to zero and the progress 

of the reaction to the new steady state simulated. The solid line represents the presence of the 

sink, while the dashed line shows the absence of the sink. (C) Signal-response relationship in 

the presence (solid line) and absence (dashed line) of sink, RR1 (CheY1). The x- and y-axis 
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show the signal (ka) and the corresponding steady state level of phosphorylated RR2 (CheY2), 

respectively. 

 

3.2.2 The one HK – two RR motif can exhibit a sigmoidal signal-response relationship 

Besides temporal dynamics, another key characteristic of any signaling system is the signal-

response relationship it implements, i.e. the steady state output of the system for any given 

signal level (51). Focusing again on experimentally measured parameters, we found that the 

presence of the sink-RR changes the signal-response relationship in the system from 

hyperbolic to sigmoidal (Figures 3.1C and S3.1C in Appendix B). In other words, the presence 

of the sink-RR allows threshold dynamics in these natural systems, whereby the steady state 

level of the phosphorylated output-RR remains low until a threshold signal level is reached. At 

the threshold point, the steady state level of phosphorylated output-RR is highly sensitive to 

small changes in signal.  

To understand better whether the sensitivity and threshold levels in the sigmoidal signal-

response curve can be controlled, and by which parameters, we performed a sensitivity 

analysis around experimentally measured kinetic rates from S. meliloti and yeast (Figures 3.2, 

S3.4, S3.5 and S3.2 in Appendix B). This revealed several kinetic features for ensuring a 

sigmoidal signal-response relationship (see below for exact necessary conditions). For 

example, we found that a key kinetic feature is for phosphotransfer to the sink-RR (parameter 

kS) to be faster than reverse phosphotransfer from the sink-RR back to the HK (parameter krS). 

Under this condition, the steady state phosphorylation level of output-RR remains low until 

the sink-RR is almost fully phosphorylated (Figure S3.3 in Appendix B), resulting in a high 

level of sigmoidality in the signal-response curve (Figures 3.2A and S3.2A in Appendix B). 
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We also found that both the sharpness of the sigmoidal signal-response relationship and the 

threshold signal level can be controlled through changes in parameters. In particular, the 

phosphotransfer rate constant between the HK and sink-RR (Figures 3.2A and S3.2A in 

Appendix B), and the autodephosphorylation rate constant of the sink-RR (Figures S3.4 and 

S3.2 in Appendix B) can affect the sharpness of the signal-response curve, while the threshold 

signal level is determined by the amount of sink present (Figures 3.2B and S3.2B in Appendix 

B). 

 

 

Figure 3.2 The effect of parameter changes on the “sigmoidality” of the signal-response 

curve. The level of sigmoidality, Hill coefficient, is shown as a heat map on each panel. (A) 

Effect of varying the forward and reverse phosphotransfer rates for the sink RR (CheY1; x-

axis; kS and y-axis; krS). (B) Effect of varying the total concentration of the output RR (CheY2; 

y-axis) and sink RR (CheY1; x-axis). (C and D) Signal-response curves for models 
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corresponding to parameter values indicated as colored circles on the heat maps, in which the 

black circle represents the basic model and the other circles show the models with varying 

parameter values. 

3.2.3 Necessary conditions for the one HK – two RR motif to exhibit sigmoidal signal-

response relationships 

To understand more completely the effects of parameters on the signal-response curve, we 

derived an analytical description for this curve and computed its second derivative at zero (see 

Appendix B section 1). The second derivative at zero can be used as an indicator of sigmoidal 

or hyperbolic nature of the signal-response relationship; a hyperbolic shape of the signal-

response curve implies that the second derivative of this function is constantly negative on its 

domain (i.e. positive signals), while a sigmoidal shape implies that the second derivative is 

initially positive and then it changes sign. Thus, the sign of the second derivative of the signal-

response curve at zero can be taken as a test for sigmoidality (52). Using this approach we 

found two necessary conditions on the parameters of the system for achieving a sigmoidal 

signal-response relationship (i.e. conditions that are required for a positive second derivative at 

zero): (i) kS·khS·[RR1]tot ≠ 0 and (ii) kS>krS, where khS is the autodephosphorylation rate 

constant of the sink-RR, [RR1]tot is the total amount of sink-RR, and kS (kM) and krS (krM) are 

the forward and reverse phosphotransfer rate constants of the sink-RR (output-RR) 

respectively (see Supplementary Information). The first condition shows that the sink-RR is 

necessary for the system to exhibit sigmoidality. Provided these two conditions are satisfied 

and, additionally krS/kS < krM/(kM+krM), having high concentrations of the HK and the sink-RR 

(i.e. the RR with no/weak reverse phosphotransfer to the HK), and low concentration of the 

output-RR further ensures sigmoidality. It is important to note that experimentally measured 

values from both the S. meliloti chemotaxis and yeast osmoregulation systems fit with these 
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analytical conditions for sigmoidality (see Tables 1 and S1). We found that these analytical 

results on the necessary conditions for the sigmoidality of the signal-response relationship are 

further simplified when assuming complex formation in the phosphotransfer reactions 

(Supplementary Information). In particular, the second condition (i.e. of having kS/krS > 1) is 

not a strict requirement for the second derivative of the signal-response curve at zero to attain 

a positive value. In this extended model, the second necessary condition becomes either kS/krS 

> 1 or kS/krS > (kyM-kyS) / kyrS, where kyM, kyS, kyrS are the inverse of the Michaelis-Menten 

constants of the added complexes in the forward phosphotransfer reactions of the sink-RR and 

output-RR, and the reverse phosphotransfer reaction of the sink-RR, respectively (see 

Supplementary Information). We conclude that for sigmoidality to arise, the quotient kS/krS 

must be larger than some quantity that depends on the parameters of the system and, further, 

sigmoidality cannot arise simply by the introduction of complex forming reactions in a system 

without a sink-RR.  

The finding that achieving a sigmoidal signal-response relationship for the single HK- two RR 

system is facilitated by the presence of complexes, prompted us to use the chemical reaction 

network toolbox (53) to analytically assess the potential of bistability. We found that when the 

phosphotransfer reactions are modelled as bi-molecular reactions, the system is not capable of 

bistability (see in Appendix B). However, when considering complex formation and 

alternative reaction schemes involving the different possible binding events among the HK, 

the two RRs and their complexes, we found that a certain scenario allows for the presence of 

bistability in the system (see in Appendix B). In this scenario, the HK can bind to both of the 

RRs, irrespective of its own phosphorylation state and the phosphorylation states of the two 

RRs. The resulting system contains four complexes between the 
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phosphorylated/unphosphorylated HK and the phosphorylated/unphosphorylated RRs, and can 

permit bistability under certain parameter regimes (see in Appendix B). 

3.2.4 Experimental verification of the sigmoidal signal-response relationship in a one HK 

– two RR motif 

To test the model findings experimentally, we re-constituted in vitro the CheA, CheY1 (sink-

RR) and CheY2 (output-RR) proteins from S. meliloti. In vivo, CheA kinase activity is 

controlled by interaction with the signaling domain of chemoreceptor proteins (54). Since it is 

experimentally difficult to re-constitute chemoreceptors in the in vitro system, we varied the 

kinase activity of CheA by varying the concentration of its substrate, ATP, as a proxy for the 

in vivo signal. This allowed us to monitor the steady state levels of phosphorylated CheY1 and 

CheY2 at different levels of kinase activity, i.e. to derive an experimental signal-response 

curve. We found excellent quantitative agreement between the signal-response curves 

resulting from the model and experiments. In the presence (absence) of CheY1, the steady 

state levels of phosphorylated CheY2 displayed a sigmoidal (hyperbolic) relation with 

increasing ATP levels (Figure 3.3). Thus, these experiments strongly suggest that the S. 

meliloti one HK – two RR motif displays a sigmoidal signal-response relationship in vivo and 

could potentially function as a threshold device. 
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Figure 3.3 Experimental validation for the role of the sink RR in shaping the signal-response 

curve. The steady-state level of phosphorylated CheY2 was measured in the presence or 

absence of the sink (i.e. CheY1) at different 
32

P-ATP concentrations. (A) Phosphorimages 

showing phosphorylated CheY2 levels in the presence or absence of CheY1 at low (0.2 mM) 

and high (2 mM) ATP levels. The indicated quantity of [
32

P] ATP was added to a reaction 

mixture containing 10 M CheA, 2.5 M CheY2, and where indicated 2.5 M CheY1. (B) 

Graph comparing the observed steady state levels of phosphorylated CheY2 with and without 

the sink, CheY1. The phosphorylated CheY2 levels predicted by the model are shown with a 

solid line (in absence of sink) and with a dashed line (in presence of sink), while the 

experimentally measured values are shown by squares (in absence of sink) and circles (in 

presence of sink). Error bars show the standard error of the mean obtained from three 

independent experiments. 
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3.2.5 CheS sharpens the signal-response curve  

In the S. meliloti system, the behavior of the sink-RR (CheY1) was found to be altered by a 

small auxiliary protein, CheS (49). In particular, it was shown that CheY1 binds 100-fold 

more strongly to the CheA-CheS complex than to CheA alone and that the decay of 

phosphorylated CheA (CheA-P) in the presence of CheY1 is faster with CheS than without. 

This lead to the suggestion that CheS might directly or indirectly promote CheY1 

dephosphorylation and thus make the sink-RR more efficient in allowing signal termination 

(49). In light of our results, an alternative explanation for how CheS could reduce CheA-P 

levels is that CheS may accelerate phosphotransfer from CheA-P to CheY1 (i.e. the forward 

phosphotransfer to the sink, controlled by the parameter kS) and thus enhancing the possibility 

of the analytical conditions for sigmoidality to be fulfilled (see above). 

Towards obtaining a better understanding of the role of CheS in the system and quantifying its 

potential effects on the signal-response curve, we first re-constituted CheS in the in vitro assay 

along with CheA, CheY1 and CheY2. We found that the presence of CheS in the system 

resulted in the sharpening of the signal-response curve (Figure 3.4). We found that the 

observed effects of CheS can be explained by the model either by increasing the rate of the 

phosphotransfer reaction between CheA and CheY1 (ks) (Figure 3.4) or the dephosphorylation 

rate of CheY1-P (khs) (Figure S6). The former model alteration better fits the experimentally 

observed sharpening of the signal-response curve (Figure 3.4), suggesting that the CheS effect 

on the sigmoidality of the signal-response relationship might be due to increasing the rate of 

the phosphotransfer reaction between CheA and CheY1. Regardless of which of these 

mechanisms is employed by CheS, it functions to sharpen the threshold of the sigmoidal 

signal-response curve given by the system comprising CheA, CheY1 and CheY2.  
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Figure 3.4 Effect of CheS on the signal-response curve. The x- and y-axis show the ATP level 

and the corresponding steady state level of phosphorylated CheY2, respectively. The 

phosphorylated CheY2 levels predicted by the model are shown with a dashed line (absence of 

CheS) and with a solid line (presence of CheS; where phosphotransfer reaction between CheA 

and CheY1, ks was increased 100 fold), while the experimentally measured values are shown 

in circles and squares on respective graph. See also Figure S6 for an alternative approach to 

modeling the presence of CheS. Error bars show the standard error of the mean obtained from 

three independent experiments.  

3.3 Discussion 

We have analyzed the system dynamics of an architectural motif found in bacterial two-

component signalling pathways where a single HK can reversibly phosphorylate two RRs. We 

have shown that this one HK-two RR motif can accelerate signal termination, i.e. act as a sink, 

as hypothesized before (39), but more interestingly, allows the system to exhibit a sigmoidal 

signal-response relationship. We have shown that such threshold behavior is observed under 
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experimentally measured parameters from the S. meliloti chemotaxis and yeast osmoregulation 

pathways. Further, theoretical analyses showed that the presence of a sigmoidal signal-

response relationship necessitates two conditions on the system; (i) the sink-RR to be present 

and (ii) kS > krS, where kS and krS are the forward and reverse phosphotransfer rate constants of 

the sink-RR respectively. By reconstituting the one HK – two RR motif from the S. meliloti 

chemotaxis pathway in vitro, we verified these findings experimentally, showing that the 

system displays a sigmoidal signal-response relationship, and that the auxiliary protein, CheS, 

can modulate sensitivity levels by sharpening the response threshold.  

These findings have important implications for understanding bacterial physiology and 

designing synthetic signaling circuits. In broad terms, the findings of this study will have 

implications for any two-component signaling circuit where multiple response regulators 

compete for phosphorylation by a single HK, i.e. where the one HK – two RR motif is 

implemented. This includes the majority of bacterial chemotaxis systems (which employ 

CheY and CheB as response regulators), fungal osmoregulatory circuits (39-42) and certain 

plant signaling systems (43). This study indicates that these systems might be acting as a 

threshold device, whereby cells commit to a specific outcome only above certain signal 

thresholds. Alternatively, the threshold behavior could be used for regulating the noise 

characteristics of the system (34, 55). It is important to note however, that the one HK – two 

RR architectural motif is able to display sigmoidal signal-response relationships, but does not 

preclude hyperbolic relationships. In other words, this motif cannot be taken as proof for 

threshold behavior but should be taken as indicative and be considered in experimental design 

when analyzing the response dynamics in associated signaling systems. 

Synthetic biology has so far concentrated on designing small circuits based on transcriptional 

regulation. While two-component proteins have been recognized as potential candidates for 
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synthetic design, the main efforts have concentrated on engineering chimeric proteins and 

interaction specificity (15, 17, 26-30). Our findings show that a system dynamics perspective 

can allow understanding of the signal processing capabilities of natural bacterial signaling 

pathways and new avenues for reengineering these. Exploiting the single HK - two RR system 

in the construction of synthetic signaling circuits will require coupling of an appropriate 

output (e.g. an RR that can as a transcription factor) to a useful signal that can control HK 

activity. This could be accomplished through mutational alterations on the signal and output of 

an existing natural system (such as the one used here), using chimeric proteins, or by 

artificially engineering phosphate sinks into existing two-component systems. 

Two-component proteins are highly modular, and evolution seems to have exploited this 

feature in creating diverse architectures in signaling. Studies like this one should allow us to 

understand these functionalities and ultimately lead to their exploitation in synthetic biology. 

3.4 Methods 

3.4.1 A mathematical model for a phosphate sink 

To model the one HK - two RR motif, the dynamics was considered in isolation of other 

cellular components. The reactions in this system that we have included in the model are; 
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system (Figure S3.1). The -p suffix represents phosphorylated forms of these proteins. The 

above reaction scheme can be used to derive a system of ordinary differential equations 

(ODEs), which describe the changes in concentrations of proteins over time; 
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To analyze the behavior of the system with increasing signal, the incoming signals were 

simulated (e.g. chemoreceptors in case of the chemotaxis system or membrane alterations in 

the yeast system) as an increase in the autophosphorylation rate constant of the HK (ka). The 

model was parameterized with data from literature (see Table 3.1). In the case of the S. 

meliloti chemotaxis system the parameters for phosphotransfer to CheY1 and CheY2 (kS, krS, 

kM and krM) were derived through fitting the simulation data to previously published in vitro 

experiments (39). Fitting was done using a hybrid genetic algorithm (functions ga and fmincon 

from the MATLAB Global Optimization Toolbox). 

3.4.2 Temporal simulations and signal-response curve. The model was numerically 

integrated to derive time course and steady state signal-response relationships. The latter 



104 

 

analysis gives the steady state phosphorylated RR levels at a given signal (ka), where signal 

was taken as the rate constant of HK autophosphorylation and allows deriving a so-called 

signal-response curve. This curve is found by numerically integrating the system to steady 

state at a fixed signal level and then numerically “following” this steady state, while changing 

the signal. This analysis is equivalent to allowing the system to reach steady state under 

different signal values. Both time course and signal-response analyses were performed using 

the software packages XPPAUT (http://www.math.pitt.edu/~bard/xpp/xpp.html) and Oscill8 

(http://oscill8 .sourceforge.net).  An explicit description of the inverse of the signal-response 

curve was also obtained, using a recently developed recursive technique (34, 56) (see in 

Appendix B). The resulting analytical function for the signal-response curve was then used to 

verify the results of the numerical approach and to derive the necessary conditions that the 

parameters must fulfill for the signal-response curve to be sigmoidal. This analytical approach 

is also used to extend the analysis to the case with complex formation (see in Appendix B).  

3.4.3 Measuring “sigmoidality” of signal-response curves and sensitivity of this feature to 

parameters. To measure sigmoidality of the signal-response curve the Hill coefficient was 

used as previously described (57, 58). The Hill coefficient is measured as ln81/ln(S90/S10) 

where S90 and S10 are the signal levels for achieving 90 and 10 percent of output saturation 

respectively. Using alternative measures, such as the maximum value of the response 

coefficient across the signal domain produces qualitatively similar results as those shown in 

Figures 3.2, S3.4 and S3.5. To quantify the sensitivity of sigmoidality of the signal-response 

curve to variations in each of the parameters, these were varied from their described 

experimentally measured values (Table 3.1) and in a biologically relevant range. Each 

parameter was varied around its basic value up/down 10-fold and the “sigmoidality” of the 

resulting signal-response curves measured.  

http://www.math.pitt.edu/~bard/xpp/xpp.html
http://oscill8/


105 

 

3.4.4 Experimental design. The CheA, CheY1, and CheY2 system was reconstituted in vitro 

to measure the signal-response curve in the presence/absence of CheY1. For this, 

phosphorylated CheY2 levels were measured under increasing ATP levels as a proxy for 

signal. The protein concentrations used for these experiments were 10 µM, 2.5 µM, 2.5 µM 

for CheA, CheY1 and CheY2 respectively. This gives a ratio of 4:1:1, which is different from 

the in vivo measured ratio of 1:10:10 (39), but the higher HK concentration gave increased 

capacity to measure CheY1 and CheY2 phosphorylation levels at low levels of signal. It was 

found that the exact ratio among these proteins does not alter the conclusions on the shape of 

signal-response curve and sigmoidality is not affected by altering the level of sink- and output-

RRs with respect to the level of the HK (Figure S3.5.) 

3.4.5 Plasmids and strains. See Table 3.2 for the plasmids and strains used. E. coli strains 

were grown in LB medium at 37 
o
C. Antibiotics were used at concentrations of 100 μg ml

-1
 for 

ampicillin, 34 μg ml
-1

 for chloramphenicol and 25 μg ml
-1

 for kanamycin, where needed. E. 

coli M15pREP4 cells were made competent using the calcium chloride technique (59). 

Transformations were performed according to (60). 

3.4.6 Protein purification. His tagged S. meliloti CheA, CheA-CheS, CheY1 and CheY2 

proteins were purified as described previously (49). Protein purity and concentration was 

measured as described in (61). Purified proteins were stored at -20
o
c. 

3.4.7 Preparation of CheA-
32

P and CheA-
32

P-CheS.  CheA-
32

P and CheA-
32

P-CheS were 

phosphorylated using [γ-
32

P] ATP and purified as described before (62), but with the 

following modifications: Proteins were phosphorylated in reactions performed at 20°C in 

phosphotransfer buffer (50 mM Tris HCl, 10% (v/v) glycerol, 5 mM MgCl2, 150 mM NaCl, 

50mM KCl, 1 mM DTT, pH 8.0). The final reaction volumes were 2 ml. Reactions were 
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initiated by addition of 2 mM [γ-
32

P] ATP (specific activity 14.8 GBq mmol
−1

; PerkinElmer). 

After 1 hour incubation, samples were purified by using Ni-NTA columns (Qiagen) as 

described previously (63). This purification step removed the unincorporated ATP from the 

CheA-
32

P and CheA-
32

P-CheS preparation. Purified proteins were stored at -20°C. 

3.4.8 Measurement of CheY2-P at different 
32

P- ATP concentrations with and without 

CheS and CheY1: Assays were performed at 20
o
C in phosphotransfer buffer. Either CheA 

(10 μM) or CheA-CheS (10 μM) was added to 2.5 μM of purified CheY2 in the presence and 

absence of 2.5 μM CheY1 under different ATP concentrations. Following the addition of 
32

P -

ATP, reaction aliquots of 10 μl were taken at the indicated time points and quenched 

immediately in 10 μl of 2 X SDS-PAGE loading dye (7.5% (w/v) SDS, 90 mM EDTA, 37.5 

mM Tris HCl, 37.5 % glycerol, 3 % (v/v) β- mercaptoethanol, pH 6.8). Quenched samples 

were analyzed using SDS-PAGE and phosphorimaging as described previously (64). 

Table 3.1: The parameters used for the model of the S. meliloti phosphate sink  

Parameter  Description  Value  Unit  Reference  

k1  Forward rate constant for 

phosphorylation complex  

1  (µMs)
 -1

  [39] 

k2  Reverse rate constant for 

phosphorylation complex  

100  s
-1

  [39] 

ka  kcat  for phosphorylation of 

CheA  

Varied  s
-1

   

kS  CheA-P to CheY1 (sink 

RR) phosphotransfer  

1  (µMs)
 -1

  Fitted to data 

from [39] (see 

Methods) 

krS CheA-P to CheY1 Reverse 

phosphotransfer  

0.01  (µMs)
 -1

  Fitted to data 

from [39] (see 

Methods) 

kM  CheA-P to CheY2 (main 

RR) phosphotransfer  

2  (µMs)
 -1

  Fitted to data 

from [39] (see 

Methods) 
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krM  CheA-P to CheY2 Reverse 

phosphotransfer  

1  (µMs)
 -1

  Fitted to data 

from [39] (see 

Methods) 

khS  Autodephosphorylation of 

CheY1 (sink RR) 

0.05  s
-1

  [39] 

khM  Autodephosphorylation of 

CheY2 (main RR) 

0.06  s
-1

  [39] 

[A]tot Total concentration of CheA 10 µM Based on ratios 

from [39] (see 

Methods) 

[Y1]tot Total concentration of 

CheY1 

2.5 µM Based on ratios 

from [39] (see 

Methods) 

[Y2]tot Total concentration of 

CheY2 

2.5 µM Based on ratios 

from [39] (see 

Methods) 

 

Table 3.2: The strains and plasmids used in this study 

Strains/plasmid Description Source/Reference 

E. coli strain 

M15pREP4 

Expression host containing pREP4; 

kanamycin resistant 

Qiagen 

pQE30 IPTG inducible expression vector. 

Introduces RGS(H)6 at the N terminus of 

the expressed protein. Confers ampicillin 

resistance 

Qiagen 

pQE60 IPTG inducible expression vector. 

Introduces RGS(H)6 at the C terminus of 

the expressed protein. Confers ampicillin 

resistance 

Qiagen 

pRU1735 

(pQE60Y1) 

Plasmid for overexpressing C-terminally 

His-tagged CheY1 from S. meliloti. 

pQE60 derivative 

 [39] 

pRU1736 

(pQE60Y2) 

Plasmid for overexpressing C-terminally 

His-tagged CheY2 from S. meliloti. 

pQE60 derivative 

 [39] 

pRU1742 

(pQEA) 

Plasmid for overexpressing N-terminally 

His-tagged CheA from S. meliloti. pQE30 

derivative 

 [39] 

 

 

pBS174 

(pET27bmodA/S) 

Plasmid for coexpressing S. meliloti N-

terminally His-tagged CheA and CheS. 

pET27bmod derivative 

 [49] 
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CHAPTER 4: General Discussion 

 

In this thesis, I characterised two structurally diverse motifs found in TCS networks (the split 

HK motif and the phosphate sink motif). Genomic studies suggest that there are over 700 split 

kinases found in bacteria (SMART database) (1); on the other hand, phosphate sink motifs are 

found commonly in bacteria, plants and yeast (2-4).  I used both theoretical and experimental 

approaches to elucidate the underlying mechanisms of TCS signal processing by the networks 

employing these motifs. I demonstrated the ultrasensitive and bistable behavior in TCS 

network featuring either split HKs or phosphate sink. Also, this study identifies key 

parameters and proteins, required for ultrasensitivity in these pathways. In addition, I reported 

in vitro experimental conditions and validations of our theoretical findings that generate 

ultrasensitive/sigmoidal signal-response relationships in TCS.  

4.1 Summary of findings 

In the first study (Chapter 2), we developed a mathematical model and analyzed the response 

dynamics mediated by the split kinase motif, using the biochemical reactions of CheA3, 

CheA4, and CheY6 from the R. sphaeroides chemotaxis pathway as a model system. 

Repeating this analysis with a bifunctional HK and a conventional HK-RR pair featuring a 

separate phosphatase, we found that in contrast to these configurations, split kinases enable 

ultrasensitivity and bistability in the signal-response relationship. We show that 

ultrasensitivity and bistability are maintained under a wide parameter range. A key 

requirement for ultrasensitivity and bistability in split kinases is the inverse coupling between 

their kinase and phosphatase activities such that kinase and phosphatase activity are conducted 
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by separate complexes (Figure 2D and 3 in chapter 2). We also show that this condition is 

observed in the R. sphaeroides system in vitro through measurements of phosphatase activity, 

which showed that binding of CheA4 to CheA3 reduced the phosphatase activity of CheA3 i.e. 

the CheA3.CheA4 complex has less phosphatase activity than free CheA3 (Figure 4 in chapter 

2). 

In the second study presented in this thesis (Chapter 3), we first developed a generic model of 

the one HK – two RR (phosphate sink) motif and performed both analytical and simulation-

based analyses. These revealed that this system is capable of both enhancing signal 

termination time and implementing a threshold signal-response relationship, i.e. the system 

displays a sigmoidal signal-response relationship in which the steady-state levels of the 

phosphorylated output RR remains low until a threshold level of signal is crossed (Figure 1and 

S1 in chapter 3). We then verified these dynamics experimentally by in vitro re-constitution of 

the two-component proteins from the chemotaxis pathway of S. meliloti (Figure 3 in chapter 

3). Using this in vitro setup, we further demonstrated that the sharpness of the threshold 

behavior can be controlled through the concentrations of the core components, as well as 

through presence of an auxiliary protein that is known to bind the HK in S. meliloti (Figure 4 

in chapter3)(5).  

4.2 Insights and perspectives of the study on signaling networks 

In order to achieve a broad and predictive understanding of bacterial signal processing and 

communication, it is important to assess whether structural diversity within signaling networks 

enables specific signaling dynamics and properties (6). Research on the diverse architectures 

of TCSs and associated protein dynamics, their functions and the underlying regulatory 

processes, are areas of active investigation which can expand our understanding of the 

complex regulatory networks in terms of their signal- response relationship in this pathway.  
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Therefore, for understanding dynamics in signaling networks, we need to identify model 

systems and study the role of specific biochemical reactions. Here, we explored two diverse 

architectural TCS motifs, using three different model systems: the chemotaxis pathways of R. 

sphaeroides and S.meliloti and yeast osmoregulation system. We considered biochemical 

reactions happening in those systems in our mathematical models to identify their functions in 

shaping the signal-response relationship. 

This study provides the first analysis of the split HK mediated signal-response relationship and 

response dynamics. Our model shows that a split kinase system set in a “biologically relevant” 

parameter regime enables an ultrasensitive and bistable signal-response relationship. We 

found that the predominant allocation of phosphatase activity to the free CheA3 protein (rather 

than any of the complexes in the system) in the split kinase system is one significant 

biochemical feature that generates ultrasensitivity and bistability in this signaling pathway. If 

free CheA3 was the major phosphatase, then the system has the potential to show bistable and 

ultrasensitive input-output relationships (Figure 2D in chapter 2).  

We further showed experimental support for free CheA3 being the principal phosphatase in 

that system (Figure 4 in chapter 2). In vitro phosphotransfer assays in the CheA3-CheA4-

CheY6 split kinase system isolated from R. sphaeroides, we experimentally measured the 

effect of CheA4 on the activity of the CheA3 phosphatase, and found that CheA4 reduces the 

activity of the CheA3 phosphatase indicating that indeed the CheA3 is the main species with 

phosphatase activity. This experimental result is consistent with the theoretical findings 

showing bistability and ultrasensitivity in the split kinase system. Whether this system 

displays ultrasensitivity and bistable responses in vivo still needs to be investigated, although 

such experiments are presently difficult due to our lack of our knowledge of the exact ligands 

that bind to the chemoreceptors and control split kinase signaling. 
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We identified some key parameters and alternative models that can alter the response 

dynamics and hence affect the ultrasensitivity and bistability (see section 2.4.2). These 

nonlinear dynamics arise from the bifunctional and split nature of the kinase, which introduces 

a branching point into the system between the phosphorylation and dephosphorylation 

reactions. Thus, the level of ultrasensitivity (and emergence of bistability) in the system is 

determined by the parameters and the biochemical mechanisms found in the reaction cycles 

linked to this branching point.  For example, the total concentration of CheA4 allows the 

control of the dynamics mediated via formation of the CheA3:CheA4 complex. CheA3 

mediated dephosphorylation of CheY6-P are also found to be very crucial in altering the 

dynamics (Figure 2 in chapter 2). We showed that some alternate biochemical/structural 

assumptions made in the model might not affect the ultrasensitivity that much but could seem 

to affect the bistability in the system (Figure 2D, S4, S6 and S7 in chapter 2). For example, 

bistability is maintained in the system for a significant range of phosphotransfer rates from an 

additional kinase to CheY6, and that ultrasensitivity is maintained in even a larger range for 

this parameter (Figure S7 in chapter 2). This raises the interesting possibility that cross-talk 

between a non-split kinase and a split-kinase can confer nonlinearity on the system output of 

the non-split kinase (in this case CheA2), which it would not have, when operating on its own. 

These all can potentially participate in further tuning cellular decision making mechanisms. 

We also demonstrate through theoretical treatment that the chemical reaction system arising 

from a bifunctional split kinase gives rise to the possibility of bistability. In contrast, we found 

that this bistability was lost for systems comprising a bifunctional, non-split kinase or a 

monofunctional, split kinase with separate phosphatase [unless featuring dead-end complex 

formation (7)]. Therefore, in conjunction with parameter sensitivity analyses, the analytical 

results from the Chemical reaction network theory toolbox has allowed us to conclude that the 
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split kinase architecture allows high level of ultrasensitivity and bistability as long as 

phosphatase activity is mainly confined to the free form of one of the proteins making up the 

split kinase (section 2.10). 

As, the CheA3-CheA4-CheY6 system is involved in the integration of cytoplasmic and 

extracellular signals for proper chemotaxis (8, 9), the switch-like dynamics resulting from 

ultrasensitivity and bistability (observed from the theoretical analyses) might play an 

important role in the physiological context.  Two distinct sensory clusters: one chemotaxis 

system is polarly localized while the other forms cytoplasmic clusters; are found in R. 

sphaeroides chemotaxis system and it has been thought that polar clusters sense external 

stimuli while cytoplasmic clusters might sense metabolic signals. As, CheY6 is predominantly 

phosphorylated by CheA3‐P which is located in the cytoplasmic cluster, it would be plausible 

if the switching dynamics described here allowed cells to override external chemotaxis signals 

in favor of internal signals such as those related to metabolism, which could contribute to 

motility decisions (10-12). 

Genomics studies suggest 2.3% of all chemotaxis kinases, and 2.8% of all kinases could be 

functioning as split kinases (1). The SMART database shows that 1.7% of the proteins with 

HisKA domains could form part of a split bifunctional kinase. These genomic analyses 

indicate that cells may use such split kinases to allow high sensitivity and bistability enabling 

switch-like physiological responses to environmental stimuli. 

 

In the second study, we used a systems biology approach to explore the factors that control 

ultrasensitivity and threshold dynamics in two-component signaling networks containing a 

phosphate sink motif. We used mathematical modeling to predict the behavior of the system 

having a phosphate sink, such as rapid signal termination and sigmoidality/ultrasensitivity. We 
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also used the proteins from S. meliloti in an in vitro system to validate our theoretical findings 

experimentally.  

Our model was used to investigate the role of a sink in the response dynamics. Firstly, we 

found that, in agreement with a previous study, the phosphate sink RR is able to speed up the 

signal termination by enhancing dephosphorylation of the main RR (2) (Figure 1 and S1 in 

chapter 3). However, our second finding, which is novel, is that systems containing a 

phosphate sink have the potential to show a ultrasensitive signal response relationship (Figure 

1 and S1 in chapter 3). Therefore, the role of a sink could be to generate an ultrasensitive 

response coupled with rapid signal termination in the system. We also provide experimental 

support for an ultrasensitive signal response relationship in the presence of a sink in this 

pathway (Figure 3 in chapter 3). As, ultrasensitive responses are central to many complex 

biological behaviors (13), perhaps phosphate sink containing bacterial signaling network could 

potentially display similar switch functions. 

We demonstrated that varying the relative concentrations of the RRs and the measured kinetic 

rates from S. meliloti chemotaxis and yeast osmoregulation pathway under parameter spaces 

enable tuning the threshold behavior in the system featuring a phosphate sink (Figure 2, S2 

and S4 in chapter 3). Further, theoretical analyses showed that the presence of sigmoidal 

signal-response relationship necessitates two conditions on the system; (i)the sink-RR to be 

present and (ii) kS > krS, where kS and krS are the forward and reverse phosphotransfer rate 

constants of the sink-RR respectively. An ultrasensitive activation profile can be tuned in a 

signaling cascade through controlling protein expression levels (14). Thus our system is very 

promising for building up a tunable synthetic cascade. 

We also identified the role of an auxiliary protein CheS (5) in the dynamics of this pathway. 

This small protein was found to play a key role in sharpening the response and we have 
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investigated its role again both theoretically and experimentally. The regulatory mechanism of 

this protein in this pathway is still not confirmed, as there are several possibilities that it can 

enhance the binding of CheY1 to CheA or/and it can accelerate the dephosphorylation of 

phosphorylated CheY1. However, we modeled each of these possible roles of CheS and 

compared them with our experimental data. We found that in each case, CheS sharpens the 

threshold of the ultrasensitive signal-response curve (Figure 4 and S6 in chapter 3) but that the 

experimental data fits better to the model where CheS enhances the binding of CheY1 to 

CheA (Figure 4 in chapter 3). By allowing complex formation and alternative reaction 

schemes in this system featuring a single HK and two RRs, we found that a certain scenario 

where four complexes between the phosphorylated/unphosphorylated HK and the 

phosphorylated/unphosphorylated RRs, generates bistability in the system (section 3.3.3).  

4.3 Conclusions and significance  

TCS networks are the principal device for cell signaling in bacteria. Communication and 

decision-making underpins bacterial behaviour including their ability to infect plants, animals 

and humans, fight off the immune system, survive harsh environmental conditions through 

spore and biofilm formation, and utilise environmental resources efficiently, both as an 

individual, and as a community, through cooperation. The signal-response relationships in 

four common structural arrangements that capture most of the structural diversity found in the 

TCS networks, decipher their functional role and evolutionary significance, and exploit them 

for engineering an adaptable synthetic signalling module. The insight gained from these 

systems will  allow translating genomics-derived knowledge of TCS networks into an ability 

to predict their signal-response relationships, extending experimental results obtained in model 

organisms to other bacteria, designing novel intervention strategies with bacterial infection 

and enhancing the use of bacterial signalling components. 
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In this study, we found that two-component systems containing either split kinases or 

phosphate sink have the potential to show ultrasensitivity and bistability. Overall we found 

that split HK motif regulates ultrasensitivity and bistability due to the inverse coupling of 

kinase and phosphatase activities;  for phosphate sinks, if the sink RR is more competitive for 

phosphoryl groups than the main RR, then a response is not produced until a threshold signal 

is reached where the sink is filled. These findings were never suggested before and are not 

intuitively evident from the knowledge of the functions of the individual proteins and only by 

combining modeling and experiments; it has been possible to gain this level of understanding. 

However, competition-based ultrasensitivity and threshold-generating mechanisms have been 

described before in regulatory networks as “molecular titration” (15), in metabolic networks as 

the “branch-point effect” (16), in signal transduction cascade due to sequestration (17) and in a 

specific signaling protein (the eukaryotic mitotic regulator Wee1) that has multiple 

phosphorylation sites (18). Therefore, this study suggests that these systems could be acting as 

a threshold device, whereby cells commit to a particular outcome only above certain signal 

thresholds. Alternatively, the noise characteristics of the system can be regulated by such 

threshold behavior (19, 20).  

Ultrasensitive switches are potential engineering targets as they can produce various important 

cellular behaviors, such as amplification, threshold, oscillation etc (21-23). Our system 

provides all the potentiality to act as an ultrasensitive and threshold device in a natural 

process. But it would be really a useful device tool if we can apply synthetic biology to re-

engineer those biological functions through designing the synthetic cascade. Our findings 

show that a system dynamics perspective can allow understanding and engineering specific 

system dynamics from relatively few two-component proteins. While our in vitro 

implementation of a single HK-two RR system can already be seen as a synthetic threshold 
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device, exploiting this motif fully in synthetic biology applications will require coupling of an 

appropriate output (e.g. an RR that can as a transcription factor) to specific signals. This could 

be done through mutational alterations on the signal and output of an existing natural system 

(such as the one used here), or by implementing this architectural motif with existing chimeric 

proteins (fusion of a chemoreceptor with a sensor kinase) or transcription factors.  

The principle signal transduction system of prokaryotes called the two-component system 

(TCS) is a one-step phosphorelay system composed of a histidine kinase (HK) and a response 

regulator (RR) while the main signal transduction system of eukaryotes is a multi-step system 

composed of serine/threonine/tyrosine kinases (STYKs). These systems are also different in 

their phosphorylation mechanisms. HK in the TCS transfers its own phosphate group to the 

response regulator protein while STYKs phosphorylate other proteins using ATP. It has been 

proposed that STYKs are more appropriate for signaling cascades than HK because of their 

efficient regulation of duration of response signals and secondly, in the case of multi-step 

signaling cascade, the transphosphorylation mechanism of STYKs is faster in signaling than 

that of HKs (24). In eukaryotes, the mitogen-activated protein kinase (MAPK) cascade system 

(MCS) is the most common signal transduction system, composed of three kinases (MAPK 

kinase kinase (MAPKKK), MAPK kinase (MAPKK), and MAPK). A phosphorylated 

MAPKKK activates MAPKKs by phosphorylating two conserved serine residues, and then the 

phosphorylated MAPKK activates MAPKs by phosphorylating the conserved threonine and 

tyrosine residues. Finally, the phosphorylated MAPK phosphorylates and regulates several 

cellular proteins and nuclear transcription factors (25-30). Ultrasensitivity in MAPK activation 

is a critical, systems level property and it can produce the fundamental nonlinearity required to 

achieve stable, potentially irreversible cellular decisions. Also, a number of experimental 

studies of bistable MAPK activation report ultrasensitive activation profiles (31-33). 
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Therefore, such switch like responses is known to be common in eukaryotes which can enable 

decision making at the cellular level (25, 34, 35).  In this study, split kinases and phosphate 

sink motifs set examples as microbial alternative for enabling ultrasensitivity and bistability - 

response behaviors known to be essential for cellular decision making.  

This study bridges between these proteins and response dynamics which also lead to test the 

theoretical concepts through experiments in real systems. I believe that this study will have 

broad implications not only for microbiologists but also systems and synthetic biologists who 

aim to decipher conserved dynamical features of cellular networks involved in decision 

making. Overall, it is our hope that the work presented here, will aid in the formulation of 

concrete hypotheses about the dynamic nature of TCS involving split HKs and phosphate 

sinks. Therefore, they will serve as a launching pad for future investigations to explore more 

of such diverse architectures in cellular processes. 

The studies provided in this thesis represent major steps towards unravelling the dynamic 

nature and functions of diverse architectural motifs in TCS. While we have found clear 

relationships between cell signaling, communication, response dynamics and behaviors, we 

have just started to explore what we believe could be an exciting new area at the interface of 

different motifs of TCS, response dynamics and signal-response relationships. Clearly much 

remains to be learned, but to conclude, we can state that these studies have broadened our 

understanding of how ultrasensitive and bistable responses can be generated and regulated in 

two-component signaling systems. 
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Appendix A 

 

In this appendix additional information, analyses and figures needed for chapter 2 are 

described for better understanding. 

S2.1 Alternative models and their analyses 

S2.1.1 Models considering additional species with phosphatase activity 

In the basic model describing a split kinase system we have assumed that only free CheA3 

has phosphatase activity towards the phosphorylated response regulator CheY6. Here, 

we relax this assumption by considering additional molecular species with phosphatase 

activity. We create two  alternative  models  where  we  separately  consider  the  ability  of  

phosphorylated  and complexed CheA3 to act as a phosphatase.  These models contain one 

and two additional reactions respectively, in addition to those reactions considered in the 

basic model. Below, we list these additional reactions and the resulting ordinary differential 

equations (ODEs) for each model. Model parameters are given in Table S2.1 and are mostly 

derived from the basic model parameters. The effect of having these additional phosphatases 

on signal-response relationship is shown in Figure S2.4. 

 

S2.1.2 Model with CheA3-CheA4 and CheA3-CheA4-ATP complexes as 

phosphatases Additional reaction; 

 

 

 

which, combined with the original reactions listed in chapter 2, results in the following 

new set of ODEs; 
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d[A3p]

dt
 k5 [A3A4ATP] k7 [A3] [Y 6p] k6 [A3p] [Y 6]

d[A3A4]

dt
 k1 [A3] [A4] k4 [A3A4ATP] [A3A4Y 6p]  (k13  k14 )  [A3A4]  k2  k3 [ATP] k12 [Y 6p] 

d[A3A4ATP]

dt
 k3 [A3A4] [ATP] [A3A4ATP]  (k16  k17 )  [A3A4ATP]  k4  k5  k15 [Y 6p] 

d[A3Y 6p]

dt
 k9 [A3] [Y 6p] [A3Y 6p]  k10  k11 

d[A3A4Y 6p]

dt
 k12 [Y 6p] [A3A4] [A3A4Y 6p]  (k13  k14 )

d[A3A4ATPY 6p]

dt
 k15 [Y 6p] [A3A4ATP] [A3A4ATPY 6p]  (k16  k17 )

d[Y 6p]

dt
 k10 [A3Y 6p] k6 [A3p] [Y 6] k13 [A3A4Y 6p] k16 [A3A4ATPY 6p]

[Y 6p]  k7 [A3] k8  k9 [A3] k12 [A3A4] k15 [A3A4ATP] 

 

 

S2.1.3 Model with CheA3p as phosphatase 

Additional reactions; 

 

 

which, combined with the original reactions listed in the main text, result in the following 

new set of ODEs; 

d[A3p]

dt
 k5 [A3A4ATP] k7 [A3] [Y 6p] [A3pY 6p]  (k19  k20 ) k6 [A3p] [Y 6] k18 [A3p] [Y 6p]

d[A3A4]

dt
 k1 [A3] [A4] k4 [A3A4ATP] [A3A4]  k2  k3 [ATP] 

d[A3A4ATP]

dt
 k3 [A3A4] [ATP] [A3A4ATP]  k4  k5 

d[A3Y 6p]

dt
 k9 [A3] [Y 6p] [A3Y 6p]  k10  k11 

d[A3pY 6p]

dt
 k18 [A3p] [Y 6p] [A3pY 6p]  k19  k20 

d[Y 6p]

dt
 k10 [A3Y 6p] k6 [A3p] [Y 6] k19 [A3pY 6p] [Y 6p]  k7 [A3] k8  k9 [A3] k18 [A3p] 

 

 

S2.1.4 Model with an alternative reaction scheme 

In the basic model describing a split kinase system and discussed in chapter 2, we have 
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assumed that the phosphorylation of the CheA3 by CheA4 results in the dissociation of the 

CheA3:CheA4 complex. Here, we relaxed this assumption to create an alternative model. In this 

model, we allowed for the possibility that phosphorylated CheA3 remains in complex with 

CheA4 and that this CheA3p:CheA4 complex is also capable of acting as phosphatase towards 

CheY6p (corresponding reaction rates k’5, k’6 and k’’6). We find that having these reactions in the 

model does not affect the level of ultrasensitivity but can lead to loss of bistability (Figure S2.6). 

Note, that besides these reactions, this alternative model is the same as the basic model and only 

considers phosphatase activity by free CheA3. Model parameters are given in Table S2.2 and 

are mostly derived from the basic model parameters. As in the basic model (Figure 2.2D and 

S2.4), considering alternative phosphatases in this alternative model significantly reduces 

ultrasensitivity and leads to loss of bistability (data not shown). This alternative model contains 

the following reactions; 

 

 

 

 

 

 

 

 

 

resulting in the following set of ODEs; 
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1 2 4 3

6 7

3 4 5 5

5 7 6

[ 3 4]
[ 3] [ 4] [ 3 4] [ 3 4 ] [ 3 4] [ ]

[ 3 4] [ 6] ' [ 3 4] [ 6 ] '

[ 3 4 ]
[ 3 4] [ ] [ 3 4 ] ( ' )

[ 3 ]
[ 3 4 ] [ 6 ] [ 3] [ 3 ] ([ 6] [ 4]

d A A
A A k A A k A A ATP k A A ATP k

dt

A pA Y k A A Y p k

d A A ATP
A A ATP k A A ATP k k k

dt

d A p
A A ATP k Y p A k A p Y k A

dt

         

     

      

         1

2

1 2 6 6 5

7 7

9 10 11

6

' )

[ 3 4] '

[ 3 4]
[ 3 ] [ 4] ' [ 3 4] ( ' [ 6] ' [ 6] '' ) [ 3 4 ] '

[ 3 4] [ 6 ] ' [ 3] [ 4] [ 6 ] ''

[ 3 6 ]
[ 3] [ 6 ] [ 3 6 ] ( )

[ 6 ]
[ 3 ] [ 6] [ 6 ] [

k

A pA k

d A pA
A p A k A pA k Y k Y k A A ATP k

dt

A A Y p k A A Y p k

d A Y p
A Y p k A Y p k k

dt

d Y p
A p Y k Y p A

dt



 

          

      

     

     7 7 6 6

7 10 9 8

3] [ 3 4] [ 6 ] ' [ 3 4] ([ 6] ' [ 6] '' )

[ 3] [ 4] [ 6 ] '' [ 3 6 ] [ 3] [ 6 ] [ 6 ]

k A A Y p k A pA Y k Y k

A A Y p k A Y p k A Y p k Y p k

        

            

 

S2.1.5 Model with additional kinase, CheA2 

In the basic model describing a split kinase system we have only considered 

phosphorylation of the response regulator (i.e. CheY6) by the split kinase. In vivo, cross-talk 

from other kinases could also result in the phosphorylation of the response regulator. For 

example, in Rhodobacter sphaeroides, another kinase, CheA2 is known to phosphorylate 

CheY6 [27]. Here, we determine the effect of having such an additional kinase on the 

response dynamics generated by the split kinase. We created a model having this additional 

kinase activity and analysed the signal-response relationship in the system under a range of 

phosphotransfer rates from such an additional kinase (Figure S2.7). Model parameters are 

given in Table S2.3 and are mostly derived from the basic model parameters. This model 

contains two additional reactions: 
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which, combined with the original reactions listed in the main text, results in the following 

new set of ODEs; 

1 2 4 3

3 4 5

5 7 6

5 7 6

3 4

[ 3 4]
3 4 3 4 3 4 3 4

[ 3 4 ]
3 4 3 4 ( )

[ 3 ]
3 4 6 3 3 6

[ 2 ]
2 * 6 2 * 2 6 *

[ 2 ]
2 * 2 ( *

d A A
A A k A A k A A ATP k A A ATP k

dt

d A A ATP
A A ATP k A A ATP k k

dt

d A p
A A ATP k Y p A k A p Y k

dt

d A p
A ATP k Y p A k A p Y k

dt

d A ATP
A ATP k A ATP k

dt

         

     
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* )

[ 3 6 ]
6 3 3 6 ( )
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k

d A Y p
Y p A k A Y p k k

dt

d Y p
A p Y k Y p A k A Y p k Y p A k

dt

A p Y k Y p A k Y p k



     

          

       

 

 

S2.2 Analytical solutions for simplified systems with a bifunctional, split kinase vs. 

split kinase with a stand-alone phosphatase. 

Besides using the chemical reaction network theory to analse different models (see 

discussion in chapter 2), we have also derived analytical solutions for a simplified 

reaction scheme for a bifunctional split kinase and also for a monofunctional split kinase 

with a stand-alone phosphatase (i.e. where dephosphorylation of the response regulator is 

mediated by a separate phosphatase). 

 

S2.2.1 Simplified reaction scheme and analytical solution for a system with 

bifunctional, split kinase. 

In  this  simplified  scheme,  we  assume  that  all  phosphotransfer  and  

dephosphorylation reactions occur  very fast and that complex formation can be 

ignored. The reaction scheme we consider is; 
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which results in the following ODEs;  

1 2 5

5 6

6 9 8

[ 3 4]
[ 3] [ 4] [ 3 4] ( )

[ 3 ]
[ 3 4] [ 3 ] [ 6]

[ 6 ]
[ 3 ] [ 6] [ 6 ] [ 3] [ 6 ]

d A A
A A k A A k k

dt

d A p
A A k A p Y k

dt

d Y p
A p Y k Y p A k Y p k

dt

     

    

       

  

We first define the conservation relations in the system: 

[A3]tot  [A3] [A3p] [A3A4]

[A4]tot  [A4] [A3A4]

[Y 6]tot  [Y 6] [Y 6p]

   

At steady state, all of the above ODEs would be equal to zero, allowing us to derive the steady 

state expression for phosphorylated CheY6. Following simple algebra, we arrive at a quartic 

equation; 
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Solving equation 2 and 3, we get
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From equation 1, 
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         (6)                           

Putting value of A3p and A3A4 from eq 4&5 into 6, we get 
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Putting back the value of N and solving it we get, 
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    
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The emergence of the quartic expression for the steady state level of phosphorylated CheY6 

indicates the potential of this system to reach bistability and high level of nonlinearity even 

without considering complex formation. To confirm bistability, we have analysed the model 

shown above and a similar one (see Text S2.2) using chemical reaction network theory. This 

confirmed the potential of bistability in both of these models (see also discussion in chapter 

2). Furthermore, we have analysed the above simplified model by evaluating the analytical 

solution over the same signal range as for the basic model. For reactions that were modeled 

as bi- or uni-molecular both in the basic model and this simplified model, we have used the 

parameters as in the basic model. For reactions that were modeled via complex formation in 

the basic model (e.g. the A3p mediated dephosphorylation of Y6p), we have explored 

different parameter values. In line with the results of the chemical reaction network theory, 

this analysis confirmed that the modeled system displays bistability (i.e. multiple permissible 

steady states) in a biologically permissible parameter regime. 

 

S2.2.2 Simplified reaction scheme and analytical solution for a system with a 

monofunctional, split kinase and stand-alone phosphatase.  

As before, we assume that all phosphotransfer and dephosphorylation reactions occur very 

fast and ignore the formation of complexes. The reaction scheme we consider is; 
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We first define the conservation relations in the system: 
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[ 3] [ 3] [ 3 ] [ 3 4]

[ 4] [ 4] [ 3 4]

[ 6] [ 6 ] [ 6]

[ ] [ ]

tot

tot

tot

tot

A A A p A A

A A A A

Y Y p Y

X X

  

 

 



 

 

which results in the following ODEs;  

1 2 5

5 6

6 9 8

[ 3 4]
[ 3] [ 4] [ 3 4] ( )

[ 3 ]
[ 3 4] [ 3 ] [ 6]

[ 6 ]
[ 3 ] [ 6] [ 6 ] [ ] [ 6 ]

d A A
A A k A A k k

dt

d A p
A A k A p Y k

dt

d Y p
A p Y k Y p X k Y p k

dt

     

    

       
 

At steady state, all of the above ODEs would be equal to zero, allowing us to derive the 

steady state expression for phosphorylated CheY6. Following simple algebra, we arrive at a 

cubic equation;

 

                    (1) 

                           (2) 

6 9 83 6 6 6 0A p Y k Y p X k Y p k       

          

(3) 

Solving equation 2 and 3, we got 
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Where a is given by; 
5

9 8tot

k
a

X k k

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From equation 2,
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
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Where c is given by; 
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1 2 53 4 3 4 ( ) 0A A k A A k k     
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From equation 1, we get 

3 4 ( 3 3 3 4) ( 4 3 4)tot totA A b A A p A A A A A            (4) 

Putting A3A4 and A3p values in equation 4, we get 

3 2

2 2

2
)

6 6 6 ( 3 4 6 )

6 ( 6 4 3 4

6 4 3 6 3 6 4 0

tot tot tot tot

tot tot tot tot
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Y p Y Y p A a b a c a A a Y

Y p b a Y A c a A A a
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            

         

         

 

Where b is given by;
2 5

1

( )k k
b

k


  

The emergence of the cubic expression for the steady state level of phosphorylated CheY6 

indicates less nonlinearity in the system compared with the system with a bifunctional split 

kinase (previous section). A numerical analysis using this analytical expression (as done in 

the previous section), shows that in the similar parameter ranges where the previous model 

shows bistability, this one does not. Again, this is inline and as expected from the results of 

the chemical reaction network theory, which shows no possibility of bistability in this model 

(see chapter 2 and Text S2.3). 

 

S2.3 Mathematical model of the phosphotransfer experiments 

We developed a mathematical model of the specific in vitro experimental setup used to test 

whether CheA4 can inhibit the phosphatase activity of CheA3. In particular, these 

experiments employed a truncated form of CheA3, CheA3P1, that lacks phosphatase activity 

and that can be isolated in a fully phosphorylated form (7). We mixed CheA3P1-P with 

CheY6 in the absence of ATP and monitored phosphotransfer to CheY6 and its subsequent 

dephosphorylation by CheA3. In the model, CheA3P1-P was assumed to have the same 

phosphotransfer kinetics as CheA3. We also assumed that CheA3P1 and CheA3P1-P can 

bind to CheA4 at the same rate as CheA3. The resulting set of reactions in the system are; 
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giving rise to the following ODEs; 
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We  numerically  solved  this  system using parameter values given in Table S2.4 and  in  

the  presence  of  different  levels  of  CheA4. By fitting a first-order exponential decay 

curve to this simulation data, we estimated the half-time of phosphorylated CheY6 (kobs) 

shown in Figure 4. Under the assumption that CheA4 and CheA3:CheA4 complex are not  

capable of CheY6-P dephosphorylation, this model predicts that increasing  CheA4  levels  

would  slow  the   CheY6-P  dephosphorylation  kinetics  by sequestering  free  CheA3. We 
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found that this model provides a good qualitative match to the experimental observations 

(Figure2. 4 in chapter 2). 

 

S2.4 Results of the analytical analysis of models 

 These contain the reaction system considered and the report produced with the Chemical 

Network Tool v2.2 (http://www.chbmeng.ohio-state.edu/~feinberg/crntwin/). In these 

reaction systems A, B, Y and X stand for CheA3, CheA4, CheY6 and an hypothetical 

separate phosphatase respectively. 

 

S24.1 Results of the analytical analysis of the basic model 

                          

                                    BASIC REPORT 

                             ===================== 

  

 Reaction network: 

                                  A + B <-> AB 

                                     AB <-> Ap + B 

                                 Ap + Y <-> Yp + A 

                                 Yp + A <-> YpA 

                                    YpA -> Y + A 

                                     Yp -> Y 

  

http://www.chbmeng.ohio-state.edu/~feinberg/crntwin/
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                               Graphical Properties 

                              ==================== 

  

 Number of complexes = 9 

Number of linkage classes = 3: 

  

  Linkage class no. 1: {A + B, AB, Ap + B} 

  Linkage class no. 2: {Ap + Y, Yp + A, YpA, Y + A} 

  Linkage class no. 3: {Yp, Y} 

  

 Number of TERMINAL strong linkage classes = 3: 

   Strong linkage class no. 1: {A + B, AB, Ap + B} 

  Strong linkage class no. 2: {Y + A} 

  Strong linkage class no. 3: {Y} 

  

 Number of NON-TERMINAL strong linkage classes = 2: 

 Strong linkage class no. 4: {Ap + Y, Yp + A, YpA} 
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  Strong linkage class no. 5: {Yp} 

  

 The network is neither reversible nor weakly reversible. 

 

                                 Rank Information 

                                ================ 

 Rank of entire network = 4 

 

                             Deficiency Information 

                             ====================== 

 Deficiency of entire network = 2 

  Deficiency of linkage class no. 1 = 0 

 Deficiency of linkage class no. 2 = 0 

 Deficiency of linkage class no. 3 = 0 

                                    Analysis 

                                    ======== 

 This is a deficiency two network. It is an excellent candidate for application of 

HIGHER DEFICIENCY THEORY (tailored mostly to networks with deficiencies greater 

than one). 
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 Whether results will be obtained, will depend on whether or not the reaction network has 

certain additional structural attributes that help reduce the problem to a study of systems of 

linear inequalities. 

 If a network is "good", higher deficiency theory will determine, either affirmatively or 

negatively, whether there are positive rate constant values such that the corresponding mass 

action differential equations admit multiple (positive) steady states. If the answer is 

affirmative, higher deficiency theory will generate a sample set of rate constants and a pair of 

distinct steady states that are consistent with those rate constants. 

  If a network is "bad", some additional nonlinear analysis might be required, and the program 

might not be able to ascertain the network's capacity for multiple positive steady states. If 

definite conclusions can be reached they they will be reported. Otherwise the program will 

tell you that it cannot reach a conclusion. 

Higher deficiency theory will also determine, either affirmatively or negatively, whether 

there can exist a set of rate constants such that the corresponding mass action differential 

equations admit a positive steady state having a zero eigenvalue (corresponding to an 

eigenvector in the stoichiometric subspace).  When the answer is affirmative, the theory will 

produce such a set of rate constants, a positive steady state, and an eigenvector (in the 

stoichiometric subspace) corresponding to an eigenvalue of zero. Results of this kind are 

contained after running the Zero Eigenvalue Report. 

  

                       HIGHER DEFICIENCY REPORT: NoName1 

                       ================================= 
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                                    Analysis 

                                    ======== 

Taken with mass action kinetics, the network DOES have the capacity for multiple 

steady states. That is, there are rate constants that give rise to two or more positive 

(stoichiometrically compatible) steady states.  

S2.4.2 Results of the analytical analysis of a model with a monofunctional kinase  

 

                             BASIC REPORT: NoName1 

                             ===================== 

  

 Reaction network: 

                                 Ap + Y <-> Yp + A 

                                 Yp + A <-> YpA 

                                     Yp -> Y 

                                      A <-> Ap 

  

                              Graphical Properties 

                              ==================== 
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 Number of complexes = 7 

  Number of linkage classes = 3: 

  

 Linkage class no. 1: {Ap + Y, Yp + A, YpA} 

  Linkage class no. 2: {Yp, Y} 

  Linkage class no. 3: {A, Ap} 

  

 Number of TERMINAL strong linkage classes = 3: 

   Strong linkage class no. 1: {Ap + Y, Yp + A, YpA} 

  Strong linkage class no. 2: {A, Ap} 

  Strong linkage class no. 3: {Y} 

  

 Number of NON-TERMINAL strong linkage classes = 1: 

  Strong linkage class no. 4: {Yp} 

  

 The network is neither reversible nor weakly reversible. 

  

                                Rank Information 
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                                ================ 

 Rank of entire network = 3 

  

  

                             Deficiency Information 

                             ====================== 

 Deficiency of entire network = 1 

  

Deficiency of linkage class no. 1 = 0 

 Deficiency of linkage class no. 2 = 0 

 Deficiency of linkage class no. 3 = 0 

   

                                    Analysis 

                                    ======== 

 This is a regular deficiency one network. It is an excellent candidate for application of 

DEFICIENCY ONE THEORY. 

 Deficiency one theory will determine, either affirmatively or negatively, whether there are 

positive rate constant values such that the corresponding mass action differential equations 

admit multiple (positive) steady states. If the answer is affirmative, deficiency one theory will 
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generate a  sample set of rate constants and a pair of distinct steady states that are consistent 

with those rate constants. To get this informatoin, you should run the Deficiency One Report. 

Deficiency one theory will also determine, either affirmatively or negatively, whether there 

can exist a set of rate constants such that the corresponding mass action differential equations 

admit a positive steady state having a zero eigenvalue (corresponding to an eigenvector in the 

stoichiometric subspace).  When the answer is affirmative, the theory will produce such a set 

of rate constants, a positive steady state, and an eigenvector (in the stoichiometric subspace) 

corresponding to an eigenvalue of zero. To get this information, run the Zero Eigenvalue 

Report (after running the Deficiency Zero Report). 

                         DEFICIENCY ONE REPORT: NoName1 

                         ============================== 

  

                                    Analysis 

                                    ======== 

 Taken with mass action kinetics, the network CANNOT admit multiple positive steady 

states or a degenerate positive steady state NO MATTER WHAT (POSITIVE) VALUES 

THE RATE CONSTANTS MIGHT HAVE. 

S2.4.3 Results of the analytical analysis of a model with a split kinase and a separate 

phosphatase 

                                       BASIC REPORT 

                             ===================== 
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 Reaction network: 

                                  A + B <-> AB 

                                     AB <-> Ap + B 

                                 Ap + Y <-> Yp + A 

                                 Yp + A <-> YpA 

                                 X + Yp <-> XYp 

                                    XYp -> X + Y 

                                     Yp -> Y 

   

                              Graphical Properties 

                              ==================== 

  

 Number of complexes = 11 

  

Number of linkage classes = 4: 

  Linkage class no. 1: {A + B, AB, Ap + B} 

  Linkage class no. 2: {Ap + Y, Yp + A, YpA} 
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  Linkage class no. 3: {X + Yp, XYp, X + Y} 

  Linkage class no. 4: {Yp, Y} 

  

 Number of TERMINAL strong linkage classes = 4: 

  Strong linkage class no. 1: {A + B, AB, Ap + B} 

  Strong linkage class no. 2: {Ap + Y, Yp + A, YpA} 

  Strong linkage class no. 3: {Y} 

 Strong linkage class no. 4: {X + Y} 

 Number of NON-TERMINAL strong linkage classes = 2: 

 Strong linkage class no. 5: {X + Yp, XYp} 

Strong linkage class no. 6: {Yp} 

  

 The network is neither reversible nor weakly reversible. 

    

                               Rank Information 

                                ================ 

 Rank of entire network = 5 
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                              Deficiency Information 

                             ====================== 

 Deficiency of entire network = 2 

 Deficiency of linkage class no. 1 = 0 

 Deficiency of linkage class no. 2 = 0 

 Deficiency of linkage class no. 3 = 0 

 Deficiency of linkage class no. 4 = 0 

               

                                    Analysis 

                                    ======== 

This is a deficiency two network. It is an excellent candidate for application of HIGHER 

DEFICIENCY THEORY (tailored mostly to networks with deficiencies greater than one). 

 Whether results will be obtained, will depend on whether or not the reaction network has 

certain additional structural attributes that help reduce the problem to a study of systems of 

linear inequalities. 

                        

                          HIGHER DEFICIENCY REPORT 

                       =================================  

                                    Analysis 
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                                    ======== 

 Taken with mass action kinetics, the network CANNOT admit multiple positive steady 

states or a degenerate positive steady state NO MATTER WHAT (POSITIVE) VALUES 

THE RATE CONSTANTS MIGHT HAVE. 

S2.4.4 Results of the analytical analysis of a model with a bifunctional, non-split kinase 

                                  BASIC REPORT 

                             ===================== 

 Reaction network: 

                                 Ap + Y <-> A + Yp 

                                 A + Yp <-> AYp 

                                    AYp -> A + Y 

                                     Yp -> Y 

                                      A <-> Ap 

  

                                   Graphical Properties 

                              ==================== 

  

 Number of complexes = 8  

Number of linkage classes = 3: 
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  Linkage class no. 1: {Ap + Y, A + Yp, AYp, A + Y} 

  Linkage class no. 2: {Yp, Y} 

  Linkage class no. 3: {A, Ap} 

 Number of TERMINAL strong linkage classes = 3: 

  Strong linkage class no. 1: {A, Ap} 

  Strong linkage class no. 2: {Y} 

  Strong linkage class no. 3: {A + Y} 

  

 Number of NON-TERMINAL strong linkage classes = 2: 

  Strong linkage class no. 4: {Ap + Y, A + Yp, AYp} 

  Strong linkage class no. 5: {Yp} 

 The network is neither reversible nor weakly reversible. 

                                Rank Information 

                                ================  

 Rank of entire network = 3 

  

                            Deficiency Information 

                             ====================== 
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Deficiency of entire network = 2 

 Deficiency of linkage class no. 1 = 0 

 Deficiency of linkage class no. 2 = 0 

 Deficiency of linkage class no. 3 = 0 

                                    Analysis 

                                    ======== 

This is a deficiency two network. It is an excellent candidate for application of HIGHER 

DEFICIENCY THEORY (tailored mostly to networks with deficiencies greater than one). 

  

Whether results will be obtained, will depend on whether or not the reaction network has 

certain additional structural attributes that help reduce the problem  to a study of systems of 

linear inequalities. 

 

                               HIGHER DEFICIENCY REPORT      

                           =========================== 

                                    Analysis 

                                    ======== 

 Taken with mass action kinetics, the network CANNOT admit multiple positive steady 

states or a degenerate positive steady state NO MATTER WHAT (POSITIVE) VALUES 

THE RATE CONSTANTS MIGHT HAVE. 
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S2.4.5 Results of the analytical analysis of a model with a monofunctional, split kinase 

                                   BASIC REPORT 

                               =============== 

  

 Reaction network: 

                                  A + B <-> AB 

                                     AB <-> Ap + B 

                                 Ap + Y <-> Yp + A 

                                 Yp + A <-> YpA 

                                     Yp -> Y 

  

                              Graphical Properties 

                              ==================== 

  

 Number of complexes = 8 

 Number of linkage classes = 3: 

 Linkage class no. 1: {A + B, AB, Ap + B} 

 Linkage class no. 2: {Ap + Y, Yp + A, YpA} 
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 Linkage class no. 3: {Yp, Y} 

  Number of TERMINAL strong linkage classes = 3: 

  Strong linkage class no. 1: {A + B, AB, Ap + B} 

  Strong linkage class no. 2: {Ap + Y, Yp + A, YpA} 

  Strong linkage class no. 3: {Y} 

 Number of NON-TERMINAL strong linkage classes = 1: 

   Strong linkage class no. 4: {Yp} 

  

 The network is neither reversible nor weakly reversible.  

  

                                Rank Information 

                                ================ 

  

 Rank of entire network = 4 

  

                             Deficiency Information 

                             ====================== 

 Deficiency of entire network = 1 
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 Deficiency of linkage class no. 1 = 0 

 Deficiency of linkage class no. 2 = 0 

 Deficiency of linkage class no. 3 = 0 

  

                                    Analysis 

                                    ======== 

This is a regular deficiency one network. It is an excellent candidate for application of 

DEFICIENCY ONE THEORY. 

Deficiency one theory will determine, either affirmatively or negatively, whether there are 

positive rate constant values such that the corresponding mass action differential equations 

admit multiple (positive) steady states. If the answer is affirmative, deficiency one theory will 

generate a sample set of rate constants and a pair of distinct steady states that are consistent 

with those rate constants. To get this informatoin, you should run the Deficiency One Report. 

  

                               DEFICIENCY ONE REPORT 

                         ============================= 

                                    Analysis 

                                    ======== 
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Taken with mass action kinetics, the network CANNOT admit multiple positive steady 

states or a degenerate positive steady state NO MATTER WHAT (POSITIVE) VALUES 

THE RATE CONSTANTS MIGHT HAVE. 

 

S2.5 Figures 

 

 

Figure S2.1:  The sensitivity of the signal response curve “sigmoidality” to parameter 

changes. The “sigmoidality” of the signal-response curve, RS, is measured as its maximum 

slope (smax) multiplied by the signal level at which this slope occurs (k5s) (i.e. RS = k5s × 

smax). On each panel, the y-axis shows the ratio of RS, resulting from models with different 

values of a specific parameter, to that resulting from the basic model. x-axis shows the ratio 

of this parameter value to its corresponding value in the basic model. Data points in red 
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indicates presence of bistability in the signal-response relationship. Note the log scale on both 

axes.   

 

Figure S2.2:  The sensitivity of the maximum phosphorylation level of CheY6 to parameter 

changes. On each panel, the y-axis shows the ratio of the maximal CheY6 phosphorylation, 

resulting from models with different values of a specific parameter, to that resulting from the 

basic model. x-axis shows the ratio of this parameter value to its corresponding value in the 

basic model. Data points in red indicates presence of bistability in the signal-response 

relationship. Note the log scale on both axes.  
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Figure S2.3: The sensitivity of the signal response curve “sigmoidality” to changes in the 

concentration of CheA3 (A) and CheA4 (B). The “sigmoidality” of the signal-response curve, 

RS, is measured as its maximum slope (smax) multiplied by the signal level at which this slope 

occurs (k5s) (i.e. RS = k5s × smax). On panel A (B), the y-axis shows the ratio of RS, resulting 

from models with different values of CheA3 (CheA4) concentration, to that resulting from 

the basic model. x-axis shows the ratio of this concentration to its corresponding value in the 

basic model. Data points in red indicates presence of bistability in the signal-response 

relationship. The sensitivity of the maximum phosphorylation level of CheY6 to changes in 

the concentration of CheA3 (C) and CheA4 (D). On panel C (D), the y-axis shows the ratio of 

the maximal CheY6 phosphorylation, resulting from models with different values of CheA3 

(CheA4) concentration, to that resulting from the basic model. x-axis shows the ratio of this 

concentration to its corresponding value in the basic model. Data points in red indicates 

presence of bistability in the signal-response relationship. Note the log scale on both axes on 
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all panels. 

 

Figure S2.4: Analysis of signal-response relationship, in an alternative model considering 

phosphatase activity from additional species (see Supplementary Information, section 1). (A) 

Signal-response curves resulting from a model where both CheA3:CheA4 and 

CheA3:CheA4:ATP are considered to have phosphatase activity in addition to CheA3. For 

comparison, signal-response curve from the basic model is shown in red. Where present, the 

dark region indicates the region of unstable steady states and hence the presence of 

bistability. The different curves correspond to increasing levels of phosphatase activity 

(shown with the arrow) from the additional species. Phosphatase activity is varied in the same 

way for both CheA3:CheA4 and CheA3:CheA4:ATP by assuming that kon and kcat for these 

species are the same (i.e. k12 = k15 and k14 = k17) and by varying one set of rates 

simultaneously. The ratio between these rates (k12 and k14) to their corresponding values for 
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CheA3 (k9 and k11) is shown on the x-axis of panel C. (B) Signal-response curves resulting 

from a model where CheA-P is considered to have phosphatase activity in addition to CheA3. 

For comparison, signal-response curve from the basic model is shown in red. Where present, 

the dark region indicates the region of unstable steady states and hence the presence of 

bistability. The different curves correspond to increasing levels of phosphatase activity 

(shown with the arrow) from CheA3-P. Phosphatase activity is varied by changing both kon 

and kcat for CheA3-P (i.e. k18 and k20) simultaneously. The ratio between these rates (k18 and 

k20) to their corresponding values for CheA3 (k9 and k11) is shown on the x-axis of panel D. 

(C) The sensitivity of the signal response curve “sigmoidality” to increasing phosphatase 

activity from CheA3:CheA4 and CheA3:CheA4:ATP. The “sigmoidality” of the signal-

response curve, RS, is measured as its maximum slope (smax) multiplied by the signal level at 

which this slope occurs (k5s) (i.e. RS = k5s × smax). y-axis shows the ratio of RS, resulting 

from models with increasing phosphatase activity by additional species, to that of resulting 

from the basic model. X-axis shows the ratio of kinetic rates governing phosphatase activity 

(k12 and k14) to those in the basic model (k9 and k11). Data points in red indicates presence of 

bistability in the signal-response relationship. (D) The sensitivity of the signal response curve 

“sigmoidality” to increasing phosphatase activity from CheA3-P. The “sigmoidality” of the 

signal-response curve, RS, is measured as its maximum slope (smax) multiplied by the signal 

level at which this slope occurs (k5s) (i.e. RS = k5s × smax). Y-axis shows the ratio of RS, 

resulting from models with increasing phosphatase activity by additional species, to that of 

resulting from the basic model. x-axis shows the ratio of kinetic rates governing phosphatase 

activity (k18 and k20) to those in the basic model (k9 and k11). Data points in red indicates 

presence of bistability in the signal-response relationship. Note the log scale on both axes in 

panels C and D. 



162 

 

 

 

Figure S2.5:  Time-course analysis using an alternative model where both CheA3:CheA4 

and CheA3:CheA4:ATP are considered to have phosphatase activity in addition to CheA3 

(see Supplementary Information, section 1). The model is simulated with increasing and 

decreasing signal  levels (k5) in course of time. k5 is increased from 2 to 6 and decreased in 

similar fashion at indicated time points (top most, left panel), and changes in each species 

were measured (as indicated on each panel). The x- and y-axis represent time and species 

concentration respectively, where the latter is normalized by the appropriate total protein 

levels.  
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Figure S2.6: Signal-response curves resulting from an alternative model that allows for the 

possibility that phosphorylated CheA3 remains in complex with CheA4 and that this 

CheA3p:CheA4 complex is also capable of acting as phosphatase towards CheY6p (see 

Supplementary Information, section 2). The y-axis shows steady state Y6-P level normalised 

by total Y6, while x-axis shows signal (k5) level. Where present, a dark region indicates the 

region of unstable steady states and hence the presence of  bistability. (a) The signal-response 

curve from the basic model (included for comparison). (b) Signal-response curve from the 

alternative model and simulating signal level  through changing both k’5 and k5 

simultaneously. (c) Signal-response curve from the alternative model and simulating signal 

level  through changing k5, while k’5=0.1 s-1. 
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Figure S2.7: Analysis of signal-response relationship, in an alternative model considering 

additional kinase activity (see Supplementary Information, section 3). (A) Signal-response 

curves resulting from a model where additional kinase activity (from CheA2) is considered. 

For comparison, the signal-response curve from the basic model is shown in red. Where 

present, the dark region indicates the region of unstable steady states and hence the presence 

of bistability. The different curves correspond to increasing levels of autophosphorylation 

rates for CheA2 (i.e. increasing background signalling through CheA2). (B) The sensitivity of 

the signal-response “sigmoidality” with increasing background kinase activity (from CheA2). 

The “sigmoidality” of the signal-response curve, RS, is measured as its maximum slope (smax) 

multiplied by the signal level at which this slope occurs (k5s) (i.e. RS = k5s × smax). y-axis 

shows the ratio of RS, resulting from models with increasing background kinase activity (k*5) 

to that of the case where such activity is minimal (i.e. k*5 ~ 0). Data points in red indicates 

presence of bistability in the signal-response relationship. Note the log scale on both axes. 
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Figure S2.8: CheY6-P dephosphorylation time course data (circles) along with the fitted 

first-order exponential decay curves (red line) and simulated data (black line). The 

exponential fits are used to derive an estimate for overall CheY6p dephosphorylation rate 

(kobs), which are shown in Figure 4. 

S2.6 Tables 

Parameter  Description Value  Unit  

k9 Association of phosphatase (CheA3) assisted 

dephosphorylation complex  

5.6  (µMs)
 -1

  

k12 Association of phosphatase (CheA3CheA4) 

assisted dephosphorylation complex 

5.6  (µMs)
 -1

  

k15 Association of phosphatase 

(CheA3CheA4ATP) assisted 

dephosphorylation complex  

5.6  (µMs)
 -1

  

k18 Association of phosphatase (CheA3-P) 

assisted dephosphorylation complex  

5.6  (µMs)
 -1
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k10 Dissociation of phosphatase (CheA3) 

assisted dephosphorylation complex  

0.04  s
-1

  

k13 Dissociation of phosphatase assisted 

(CheA3CheA4)  dephosphorylation complex  

0.04  s
-1

  

k16 Dissociation of phosphatase 

(CheA3CheA4ATP) assisted 

dephosphorylation complex  

0.04  s
-1

  

k19 Dissociation of phosphatase (CheA3-P) 

assisted dephosphorylation complex  

0.04  s
-1

  

k11 Kcat for phosphatase (CheA3) assisted 

dephosphorylation  

2.5  s
-1

  

k14 Kcat for phosphatase (CheA3CheA4) assisted 

dephosphorylation  

2.5  s
-1

  

k17 Kcat for phosphatase (CheA3CheA4ATP)  

assisted dephosphorylation  

2.5  s
-1

  

k20 Kcat for phosphatase (CheA3-P) assisted 

dephosphorylation  

2.5  s
-1

  

Table S2.1. Parameter values used for the models with additional phosphatases. 

 

Parameter  Description Value  Unit  

k1  On rate for binding of CheA3 and CheA4  100 (µMs-
1
 )  

k’1 On rate for binding of CheA3-P and CheA4 100 (µMs-
1
 ) 

k2  Off rate for binding of CheA3 and CheA4  10 s
-1

  

k’2  Off rate for binding of CheA3-P and CheA4  10 s
-1

  

k5  Kcat for phosphorylation of CheA3 by CheA4  varied  s
-1

  

k’6  CheA4/CheA3-P to CheY6 Phosphotransfer  0.775  (µMs) -1  

k’’6  CheA4/CheA3-P to CheY6 Phosphotransfer  0.775  (µMs) -1  
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k7  CheA3-P to CheY6 Reverse phosphotransfer  0.00283  (µMs) -1  

k’7  CheA4/CheA3-P to CheY6 Reverse 

phosphotransfer  

0.00283  (µMs) -1  

k’’7  CheA4/CheA3-P to CheY6 Reverse 

phosphotransfer  

0.00283  (µMs) -1  

Table S2.2. Parameter values used for the models with alternative reaction scheme. 

 

Parameter  Description Value  Unit  

 k3      Forward rate for phosphorylation complex  1  (µMs)
 -1

  

 k4  Reverse rate for phosphorylation complex  39  s
-1

  

 k*3      Forward rate for phosphorylation complex with 

CheA2 

1  (µMs)
 -1

  

 k*4  Reverse rate for phosphorylation complex with 

CheA2 

39  s
-1

  

k5  Kcat for phosphorylation of CheA3 by CheA4  varied  s
-1

  

k*5  Kcat for phosphorylation of CheA2 varied  s
-1

  

k*6  CheA2-P to CheY6 Phosphotransfer  0.775  (µMs)
 -1

  

k*7  CheA2-P to CheY6 Reverse phosphotransfer  0.00283  (µMs)
 -1

  

Table S2.3. Parameter values used for the models with additional kinase. 

 

Parameter  Description Value  Unit  

k1  On rate for binding of CheA3 and CheA4  100 (µMs-
1
 )  

k2  Off rate for binding of CheA3 and CheA4  10 s
-1

  

k’1 On rate for binding of CheA3P1 and CheA4 100 (µMs-
1
 ) 
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k’’1 On rate for binding of CheA3P1-P and CheA4 100 (µMs-
1
 ) 

k’2  Off rate for binding of CheA3-P1 and CheA4  10 s
-1

  

k’’2  Off rate for binding of CheA3P1-P and CheA4  10  s
-1

  

k6  CheA3-P to CheY6 Phosphotransfer  0.775  (µMs)
 -1

  

k7  CheA3-P to CheY6 Reverse phosphotransfer  0.00283  (µMs)
 -1

  

k’6  CheA4/CheA3P1-P to CheY6 Phosphotransfer  0.775  (µMs)
 -1

  

k’7  CheA4/CheA3P1-P to CheY6 Reverse 

phosphotransfer  

0.00283  (µMs)
 -1

  

k8 Autodephosphorylation of CheY6-P 0.169  s
-1

  

k9 Association of phosphatase assisted 

dephosphorylation complex  

5.6  (µMs)
 -1

  

k10 Dissociation of phosphatase assisted 

dephosphorylation complex  

0.04  s
-1

  

k11 kcat for phosphatase assisted dephosphorylation  2.5  s
-1

  

[A3]tot  Total concentration of CheA3  2.5 µM  

[A4]tot  Total concentration of CheA4 0,20,40,60 µM  

[Y6]tot  Total concentration of CheY6 100  µM  

[A3P1-P]  Total concentration of CheA3P1-P 30  µM  

Table S2.4. Parameter values used for the model of the in vitro experimental system.  
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Appendix B 

 

In this appendix, additional text, analyses, figures and table are described related to chapter 3 

. 

List of contents 
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2. Mathematical analysis of the model with intermediates  

3. A mathematical model for the two-component system regulating yeast 

osmoregulation 
 

4. Analytical comparison of different models  

5. Figures and table  

 

 

 



1 Mathematical analysis of the simple model

1.1 Reactions

The model has 6 species: one histidine kinase HK, two response regulators R1, R2 and their

corresponding phosphorylated forms: HKp, R1p, R2p. The first model we analyze consists of the

following reactions:

• Auto-phosphorylation of HK:

HK ka−→ HKp

• Reversible phosphotransfer between HK and R1:

HKp+R1
kS−→ HK+R1p HK+R1p

krS−→ HKp+R1

• Reversible phosphotransfer between HK and R2:

HKp+R2 kM−→ HK+R2p HK+R2p krM−−→ HKp+R2

• Auto-dephosphorylation of the response regulators:

R1p
khS−→ R1 R2p

khM−−→ R2

1.2 System of ODEs

To simplify the notation, we write the concentration of each of the species as:

x1 = [HK] x2 = [HKp] x3 = [R1] x4 = [R1p] x5 = [R2] x6 = [R2p].
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We let x = (x1, . . . ,x6) be the vector of concentrations. We use mass-action kinetics to model

the dynamics of the concentrations of the species in time with a system of ordinary differential

equations (ODEs). We write the ODE system as the product of the stoichiometric matrix A and the

vector of reaction rates. We order the reactions as shown above and the species analogously to the

concentrations order x1, . . . ,x6. The stoichiometric matrix A and the vector of reaction rates v(x)

are:

A =



−1 1 −1 1 −1 0 0

1 −1 1 −1 1 0 0

0 −1 1 0 0 1 0

0 1 −1 0 0 −1 0

0 0 0 −1 1 0 1

0 0 0 1 −1 0 −1



v(x) =



kax1

kSx2x3

krSx1x4

kMx2x5

krMx1x6

khSx4

khMx6


We let ẋ(t) denote dx(t)

dt and drop the dependency on time t in the notation, that is, we write ẋi and xi

for ẋi(t) and xi(t) respectively. The system of ODEs modeling the dynamics of the concentrations

in time is ẋ = Av(x), that is:

ẋ1 = kMx2x5 + kSx2x3− krMx1x6− krSx1x4− kax1 (S1)

ẋ2 =−kMx2x5− kSx2x3 + krMx1x6 + krSx1x4 + kax1 (S2)

ẋ3 =−kSx2x3 + krSx1x4 + khSx4 (S3)

ẋ4 = kSx2x3− krSx1x4− khSx4 (S4)

ẋ5 =−kMx2x5 + krMx1x6 + khMx6 (S5)

ẋ6 = kMx2x5− krMx1x6− khMx6 (S6)

At steady state, ẋi = 0 for all i = 1, . . . ,6.
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The system has three conservation laws:

ẋ1 + ẋ2 = 0, ẋ3 + ẋ4 = 0, ẋ5 + ẋ6 = 0,

which reflect that the sum of species concentration in unphosphorylated and phosphorylated form

is constant at each layer. These relations provide three equations at steady state:

H = x1 + x2, RS = x3 + x4, RM = x5 + x6, (S7)

for some positive total amounts H, RS, RM. Due to these relations, three of the ODEs, one for each

conservation law, are redundant for the computation of the steady states. We choose to disregard

(S1), (S3) and (S5).

Therefore, the steady states of the system are the solutions to the steady state equations corre-

sponding to (S2), (S4) and (S6) and the three conservation laws in (S7). That is, the steady states

are the solutions to the following six equations:

0 =−kMx2x5− kSx2x3 + krMx1x6 + krSx1x4 + kax1

0 = kSx2x3− krSx1x4− khSx4

0 = kMx2x5− krMx1x6− khMx6

0 = x1 + x2−H

0 = x3 + x4−RS

0 = x5 + x6−RM.

The equations are easier to analyze if we replace the first equation by the sum of the first three
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equations. This change does not alter the solutions to the system. The new system to be solved is:

0 = kax1− khSx4− khMx6 (S8)

0 = kSx2x3− krSx1x4− khSx4 (S9)

0 = kMx2x5− krMx1x6− khMx6 (S10)

0 = x1 + x2−H (S11)

0 = x3 + x4−RS (S12)

0 = x5 + x6−RM. (S13)

1.3 Expressions for the steady states

We recursively write all concentrations at steady state as a function of x6. We further impose that

all concentrations are positive at steady state.

We solve for x5 at steady state using (S13) and obtain

x5 = RM− x6. (S14)

The right-hand side of this equality decreases in x6. Further, x5,x6 are positive provided that

0 < x6 < RM. Let b1 be this first upper bound for x6 at a positive steady state, that is

b1 := RM. (S15)

We next solve for x1,x2 using (S11) and (S10) and obtain

x1 =
kMHx5− khMx6

kMx5 + krMx6
, x2 =

x6
(
krMH + khM

)
kMx5 + krMx6

. (S16)

At steady state x2 is positive provided x5, and x6 are positive. For x1 to be positive, we need

kMHx5− khMx6 > 0. Substituting x5 by the expression in (S14), this is equivalent to require that
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kMH(RM− x6)− khMx6 > 0. Isolating x6 we obtain that the numerator of x1 is positive if and only

if x6 < b2, where

b2 :=
kMH RM

kMH + khM
. (S17)

When x6 = b2 then kMH(RM− x6)− khMx6 = 0 and hence x1 = 0.

Since kMH
kMH+khM

< 1, we have that

b2 =
kMH RM

kMH + khM
< RM = b1

and hence the upper bound b1 of x6 in (S15) is larger than b2 in (S17). Therefore x6 < b1 is satisfied

if also x6 < b2 and the upper bound for x6, b1, can be ignored.

The expression for x1 in (S16) decreases in x6 and increases in x5. Since x5 decreases in x6, we

conclude that x1 decreases in x6. Since x2 = H− x1 (see (S11)), we have that x2 decreases in x1

and hence x2 increases in x6.

We solve for x3,x4 using (S9) and (S12) and obtain

x3 =
(krSx1 + khS)RS

kSx2 + krSx1 + khS
, x4 =

x2kSRS

kSx2 + krSx1 + khS
(S18)

At steady state both x3,x4 are positive provided x1,x2 are positive. The expression for x3

decreases in x2 and increases in x1. Since x1 decreases in x6 and x2 increases in x6 we conclude

that x3 decreases in x6. Since from (S12) we have that x3 = RS− x4, we conclude that x4 increases

in x6.

Summary: By iterative substitution, all concentrations at steady state are expressed as func-

tions of x6. Further, all steady state concentrations are positive if and only if

0 < x6 <
kMHRM

kMH + khM
. (S19)
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1.4 Signal-response curve and maximal response

The value of x6 at steady state is determined using the only equation not used so far, (S8), after

writing all other concentrations as functions of x6. This equation provides the analytical description

of the inverse of the signal-response curve, written as ka = f (x6).

Solving (S8) for ka we obtain

ka = f (x6) =
khMx6 + khSx4

x1
. (S20)

Since x1 decreases in x6 and x4 increases in x6, the function f is increasing in x6. For positive

steady states, this function needs to be evaluated at the values of x6 satisfying (S19). When x6 = 0

then ka = 0. As we observed above, when x6 approaches b2 we have that x1 approaches 0, x2

approaches H, and hence using (S18) we have that x4 approaches kSHRS
kSH+khS

. Therefore it follows

from the expression (S20) that ka tends to infinity when x6 tends to the upper bound b2.

We conclude that for x6 fulfilling (S19), f is an increasing function with range (0,+∞). It

follows that given a value of signal, ka > 0, then there exists a unique value of x6 fulfilling (S19)

and ka = f (x6). This is the steady state value of x6 for the given input ka. The concentrations of

the other species at steady state are uniquely determined using their expressions as functions of x6.

As a consequence, we showed that multistationarity cannot occur.

The explicit expression of the function f (x6) in (S20) is:

f (x6) =
x6 p1(x6)p2(x6)

q1(x6)q2(x6)
(S21)
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where

q1(x6) = kM(krSH + khS)(RM− x6)+ krMx6(kSH + khS)+ khMx6(kS− krS)

q2(x6) = kMH(RM− x6)− khMx6

p1(x6) = RSkSkhS(krMH + khM)+ khMq1(x6)

p2(x6) = kM(RM− x6)+ krMx6.

The signal-response curve is the inverse of the function f . Since the function f (x6) increases,

so does the signal-response curve. Further, we conclude that the upper bound b2 is the level of

phosphorylated R2 that the system attains when ka increases infinitely. In other words,

rmax =
kMH RM

kMH + khM
(S22)

is the maximal level of response of the system. The maximal response levels for HK and R1 are H

and kSH RS
kSH+khS

respectively.

Observe that the maximal response (S22) does not depend on any of the rate constants or total

amounts involving the sink-RR (R1). Therefore, the presence of a sink does not alter the maximal

response, but might alter the shape of the signal-response curve. More generally, the inverse of the

signal-response curve without the sink is:

f (x6) =
(kM(RM− x6)+ krMx6)khMx6

kMH(RM− x6)− khMx6
=

khMx6 p2(x6)

q2(x6)
. (S23)

This is obtained by showing as above that in this case

ka =
khMx6

x1
. (S24)

Alternatively, we can set RS = 0 and all rate constants of the sink system to zero in the expression

of f in (S21). Note that the expression of x1 in (S16) does not depend on the presence of sink.
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Therefore, for any fixed x6, (S24) and (S20) satisfy the inequality

khMx6

x1
<

khMx6 + khSx4

x1

after substituting x1,x4 for their expressions in x6 and for any choice of rate constants of the sink

system and RS. We deduce that given a response x6, ka in (S20) is larger to ka in (S24). In other

words, presence of the sink causes the system to require more signal to achieve the same level of

response. If we plot the signal-response curve for a system with a sink, then the graph is below the

signal-response curve of the corresponding system without sink, while keeping the common rates

the same.

1.5 First derivative at zero

The first derivative of the signal-response curve at zero is computed as 1/ f ′(0) and takes the value:

kM(krSH + khS)HRM

kSkhS(krMH + khM)RS + kMkhM(krSH + khS)RM
. (S25)

The signal-response curve of the corresponding system without sink has first derivative at zero:

H
khM

.

Observe that (S25) can be rewritten as

kM(krSH + khS)RM
kSkhS(krMH+khM)RS

khM
+ kM(krSH + khS)RM

· H
khM

,

and it becomes apparent that the first derivative at zero of the signal-response curve when the

system has a sink is always smaller than the corresponding first derivative at zero of the signal-

response curve of the system without a sign. Therefore, presence of the sink reduces the slope of

the curve around zero.
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1.6 Sigmoidal vs. hyperbolic

A hyperbolic curve has negative second derivative in all its domain, while a sigmoidal curve dis-

plays a change of sign of the second derivative. In particular, the second derivative at zero must be

positive for a sigmoidal curve and negative for a hyperbolic curve.

The second derivative at zero of the signal-response curve can be computed from its inverse,

f . In particular, the sign of the second derivative of the signal-response curve at zero is minus the

sign of f ′′(0) and is given by the sign of:

S =−kSkhSRS(ω1H(krS− kS)+ω2(kMH + khM))− kMkhMω
2
2 RM (S26)

where

ω1 = krMH + khM ω2 = krSH + khS.

For S to be positive, we necessarily need that

kSkhSRS 6= 0 and krS < kS

as stated in the main text. These conditions are necessary for sigmoidality. In particular, presence

of the sink is necessary. A simple system containing only one HK and one response regulator can

only display hyperbolic signal-response curves.

The above conditions are necessary for sigmoidality. Sufficient conditions can also be given.

For example, if
krS

kS
<

krM

kM + krM

then there exist total amounts H,RS large enough and RM small enough such that the signal-

response curve is sigmoidal. This follows from a general fact on polynomials. Consider a poly-

nomial p(x) = anxn + · · ·+ a1x+ a0. If an > 0, then for x0 large enough, p(x0) > 0. Similarly, if

an < 0, then for x0 large enough, p(x0)< 0. We consider the term S in (S26) as a polynomial in H.
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This polynomial has degree 2 and the coefficient of the term of degree 2 is

−kSkhS(krSkM− krMkS + krMkrS)RS− k2
rSkhMkMRM.

If krSkM− krMkS + krMkrS < 0 or, equivalently, krS
kS

< krM
kM+krM

, then for RS large and RM small the

coefficient of the polynomial is positive and we can use the general fact on polynomials to conclude

that for H large enough, S is positive and hence sigmoidality occurs.

2 Mathematical analysis of the model with intermediates

We consider here the case where the model includes complex formation in the phosphotransfer

reactions.

2.1 Reactions

The model has now 8 species: one histidine kinase HK, two response regulators R1, R2, their

corresponding phosphorylated forms, HKp, R1p, R2p, and two intermediates YS,YM. The model

consists of the following reactions:

• Auto-phosphorylation of HK:

HK ka−→ HKp

• Reversible phosphotransfer between HK and R1 through the formation of a complex:

HKp+R1
kaS−→ YS

kbS−→ HK+R1p HK+R1p
kbrS−−→ YS

karS−−→ HKp+R1

• Reversible phosphotransfer between HK and R2:

HKp+R2
kaM−−→ YM

kbM−−→ HK+R2p HK+R2p
kbrM−−→ YM

karM−−→ HKp+R2
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• Auto-dephosphorylation of the response regulators:

R1p
khS−→ R1 R2p

khM−−→ R2

2.2 System of ODEs

To simplify the notation, we write the concentrations of each of the species as:

x1 = [HK] x2 = [HKp] x3 = [R1] x4 = [R1p] x5 = [R2] x6 = [R2p] x7 = [YS] x8 = [YM].

We let x = (x1, . . . ,x8) be the vector of concentrations. We proceed as above to construct a system

of ODEs for this model:

ẋ1 =−kbrMx1x6− kbrSx1x4− kax1 + kbMx8 + kbSx7 (S27)

ẋ2 =−kaMx2x5− kaSx2x3 + kax1 + karMx8 + karSx7 (S28)

ẋ3 =−kaSx2x3 + karSx7 + khSx4 (S29)

ẋ4 =−kbrSx1x4 + kbSx7− khSx4 (S30)

ẋ5 =−kaMx2x5 + karMx8 + khMx6 (S31)

ẋ6 =−kbrMx1x6 + kbMx8− khMx6 (S32)

ẋ7 = kaSx2x3 + kbrSx1x4− karSx7− kbSx7 (S33)

ẋ8 = kaMx2x5 + kbrMx1x6− karMx8− kbMx8. (S34)

At steady state, ẋi = 0 for all i = 1, . . . ,8. The system has also three conservation laws:

ẋ1 + ẋ2 + ẋ7 + ẋ8 = 0, ẋ3 + ẋ4 + ẋ7 = 0, ẋ5 + ẋ6 + ẋ8 = 0,
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which provide three equations at steady state:

H = x1 + x2 + x7 + x8, RS = x3 + x4 + x7, RM = x5 + x6 + x8 (S35)

for positive total amounts H,RS and RM. Three of the steady state equations are redundant and are

substituted by the conservation law equations. We keep the steady state equations corresponding to

(S28), (S30), (S32), (S33) and (S34). Therefore, the steady states constrained to the conservation

laws are given as the solutions to the equations:

0 =−kaMx2x5− kaSx2x3 + kax1 + karMx8 + karSx7

0 =−kbrSx1x4 + kbSx7− khSx4

0 =−kbrMx1x6 + kbMx8− khMx6

0 = kaSx2x3 + kbrSx1x4− karSx7− kbSx7 (S36)

0 = kaMx2x5 + kbrMx1x6− karMx8− kbMx8

0 = x1 + x2 + x7 + x8−H

0 = x3 + x4 + x7−RS

0 = x5 + x6 + x8−RM.

2.3 Sigmoidal vs. hyperbolic

We compute directly the second derivative of the signal-response curve at zero. First of all, we

observe that when the signal is zero (ka = 0), the steady state is:

x1 = H, x3 = RS, x5 = RM, x2 = x4 = x6 = x7 = x8 = 0.
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We differentiate each equation in (S36) with respect to ka. To simplify the notation, we write

pi =
dxi(ka)

dka

and evaluate the concentrations xi at ka = 0. We obtain a new system of equations:

0 =−kaSRS p2−RMkaM p2 + karM p8 + karS p7 +H

0 =−kbrSH p4 + kbS p7− khS p4

0 =−kbrMH p6 + kbM p8− khM p6

0 = kbrSH p4 + kaSRS p2− karS p7− kbS p7 (S37)

0 = kbrMH p6 + kaMRM p2− karM p8− kbM p8

0 = p1 + p2 + p7 + p8

0 = p3 + p4 + p7

0 = p5 + p6 + p8.

The solutions in pi are the derivatives at zero of each of the concentrations at steady state as a

function of ka. For instance, the first derivative of x6, that is, of the signal-response curve, at zero

is

kaMkbM
(
karSkbrSH +(karS + kbS)khS

)
H RM

kaSkbSkhS(karMkbrMH +(kbS + kbM)khM)RS + kaMkhMkbM(karSkbrSH +(karS + kbS)khS)RM
.

We introduce new rate constants that allow us to compare the systems with and without inter-

mediates. That is, we define the inverse of the Michaelis-Menten constants of the intermediates:

kyS =
kaS

karS + kbS
, kyM =

kaM

karM + kbM
, kyrS =

kbrS

karS + kbS
, kyrM =

kbrM

karM + kbM
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and let the new effective reaction rate constants for the phosphotransfer reactions be:

kS = kbSkyS, kM = kbMkyM, krS = karSkyrS, krM = karMkyrM.

With the new constants, the first derivative at zero of the signal-response curve is

kM(krSH + khS)RMH
kSkhS(krMH + khM)RS + kMkhM(krSH + khS)RM

,

which is identical to the first derivative of the signal-response curve at zero without modeling of

intermediates (given in (S25)). That is, with the identification of constants, the two derivatives are

identical.

We compute now the second derivative of each variable at zero (ka = 0) following the same

procedure as above. We differentiate the equations (S37), evaluate the concentrations xi at ka = 0

and the first derivatives pi at the solutions obtained in the first step. We obtain a new system of

equations on the second derivatives of xi with respect to ka at zero and solve it. In particular, we

obtain the second derivative of x6 with respect to ka at zero and conclude that the sign of the second

derivative of the signal-response curve at zero agrees with the sign of the following term:

Sy = ω1ω2S− ((kyrMkMH + kyMω1)ω2− (kyrSkSH + kySω2)ω1)kSkhSHRSω1ω2

− ((kyrMkMH + kyMω1)ω2RM +(kyrSkSH + kySω2)ω1RS)(kMkhMω
2
2 RM (S38)

+(krSω1H + khMω2)kSkhSRS)

where

ω1 = krMH + khM ω2 = krSH + khS

and S corresponds to the system without intermediates, and was given in (S26) to be

S =−kSkhS(ω1H(krS− kS)+ω2(kMH + khM))RS− kMkhMω
2
2 RM.
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Observe that the terms not involving the Michaelis-Menten constants of the intermediates corre-

spond precisely to the sigmoidality term S without intermediates.

For Sy to be positive one needs either S in (S26) to be positive or the blue term to be negative.

The latter involves the Michaelis-Menten constants of the intermediates and, in particular, the

condition krS < kS is not necessary anymore. What is still necessary is that

kSkhSRS 6= 0.

Let us look closely at the extra term that can be negative. Sigmoidality cannot occur if krS > kS

and

(kMkyrMH + kyMω1)ω2− (kSkyrSH + kySω2)ω1 > 0.

The left-hand side of the inequality is written as a polynomial in H as

Sy =
(
kMkrSkyrM + krM(krS(kyM− kyS)− kSkyrS)

)
H2

+
(
kMkhSkyrM + khM(krS(kyM− kyS)− kSkyrS)+ khSkrM(kyM− kyS)

)
H + khMkhS(kyM− kyS).

All the coefficients of this polynomial are positive if krS(kyM− kyS)− kSkyrS > 0, that is, if

kS

krS
<

kyM− kyS

kyrS
. (S39)

Hence sigmoidality cannot occur if krS > kS and (S39) holds. We conclude that necessary condi-

tions for sigmoidality in the model with intermediates are that

(i) kSkhSRS 6= 0, and

(ii) kS
krS

> min
(

1, kyM−kyS
kyrS

)
.

In particular, if kyM < kyS, then we are left with the same necessary conditions as in the case
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without intermediates. In terms of the original reaction rate constants, we note that

kSkyrS + krSkyS

krS
=

kaS

karS
and

kS

krS
=

kaSkbS

karSkbrS
. (S40)

Then necessary conditions for sigmoidality are that

(i) kSkhSRS 6= 0, and

(ii) kaS
karS

> min
(

kbrS
kbS

, kaM
karM+kbM

)
.

Finally, we look for conditions that guarantee the existence of sigmoidality for some total

amounts. To this end we proceed as above and consider Sy as a polynomial in H. The polynomial

has degree five and the coefficient of highest degree is:

−RSkSkhSkrMkrS
(
kMkrSkyrM− kSkrMkyrS + krMkrS(kyM− kyS)

)
. (S41)

If the coefficient in is positive, then for H large enough, Sy is positive and as a consequence the

signal-response curve is sigmoidal. The coefficient is positive if and only if

(kMkyrM + krMkyM)krS < (kSkyrS + krSkyS)krM,

or equivalently (cf. (S40)), if and only if

kaM

karM
<

kaS

karS
.

3 A mathematical model for the two-component system regu-

lating yeast osmoregulation

To model the one HK-two RR system found in yeast osmoregulation, we considered its dynam-

ics in isolation of other cellular components. In this system, the HK (SLN1) is a hybrid protein
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composed of histidine kinase (HK) and receiver (RC) domains and there exists an additional histi-

dine phosphotransfer (HPT) protein (YPD1). Together, these constitute a phosphorelay, where the

YPD1 phosphotranfers to the two RRs, SSK1 and SKN7. We have modeled the hybrid HK as two

separate proteins. The reactions in this system are:

HK ka−→ HKp

RC+HKp
kC−−⇀↽−−
krC

RCp+HK

HPT+RCp
kT−−⇀↽−−
krT

HPTp+RC

RR1+HPTp
kS−−⇀↽−−
krS

RR1p+HPT

RR2+HPTp
kM−−⇀↽−−
krM

RR2p+HPT

RCp
khC−−→ RC+Pi

RR1p
khS−→ RR1+Pi

RR2p
khM−−→ RR2+Pi

where HK, RC, HPT, RR1 and RR2 stand for SLN1, its receiver domain, YPD1, SSK1, and SKN7

respectively and the -p suffix represents phosphorylated forms of these proteins/domains. The

above reaction scheme can be used to derive a system of ordinary differential equations, which

describe the changes in concentrations over time. For the phosphorylated forms, the system is:
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d[HKp]
dt

= ka[HK]+ krC[RCp][HK]− kC[RC][HKp]

d[RCp]
dt

= kC[RC][HKp]+ krT [HPTp][RC]− krC[RCp][HK]− kT [HPT][RCp]− khC[RCp]

d[HPTp]
dt

= kT [HPT][RCp]+ krS[RR1p][HPT]+ krM[RR2p][HPT]− krT [HPTp][RC]

− kS[RR1][HPTp]− kM[RR2][HPTp]

d[RR1p]
dt

= kS[RR1][HPTp]− krS[RR1p][HPT]− khS[RR1p]

d[RR2p]
dt

= kM[RR2][HPTp]− krM[RR2p][HPT]− khM[RR2p].

In addition, we have five conservation equations:

[HK]tot = [HK]+ [HKp]

[RC]tot = [RC]+ [RCp]

[HPT]tot = [HPT]+ [HPTp]

[RR1]tot = [RR1]+ [RR1p]

[RR2]tot = [RR2]+ [RR2p].

To analyze the behavior of the phosphate sink motif with increasing signal, we simulated the

incoming signals from receptors as an increase in the auto-phosphorylation constant rate of the

kinase (ka). The model was parameterized with data from literature (see Supplementary Table

1). We numerically integrated the model to derive steady state signal-response relationships. The

latter analysis gives the steady state level of phosphorylated RR2 at a given signal (ka), where

signal was taken as the constant rate of auto-phosphorylation of kinase and allows deriving a so-

called signal-response curve. This curve is found by numerically integrating the system to steady

state at a fixed signal level and then numerically “following” this steady state (i.e. steady state

level of phosphorylated RR2), while changing the signal. This analysis is equivalent to allowing
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the system to reach steady state under different signal values. Both signal-response analyses were

performed using the software Oscill8 (http://oscill8.sourceforge.net/).
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4. Analytical comparison of different models 

 

To perform a formal check for the potential of bistability in the different models (discussed in 

the main text), we have utilized the Chemical Reaction Network Toolbox. The toolbox 

provides several analytical tests that can provide a definite answer on the possibility of 

existence of multiple stationary states in a given reaction network. We have applied these 

tests to the basic model and model with alternative reaction schemes; we had devised using 

the Chemical Reaction Network Toolbox v2.2 (http://www.crnt.osu.edu/CRNTWin). The 

model files used with this tool and describing the chemical reaction systems, as well as the 

analytical results from the tool are provided below. 

 

Results of the analytical analysis of basic model 

These contain the reaction system considered and the report produced with the Chemical 

Reaction Network Toolbox. In these reaction systems A, Y1 and Y2 stand for CheA, CheY1 

and CheY2 respectively. P refers to phosphorylated form. 

 

 

                           BASIC REPORT: NoName1 

                             ===================== 

  

 Reaction network: 

 ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 

                                      A -> AP 

                                    Y1P -> Y1 

                                    Y2P -> Y2 

                                AP + Y1 <-> Y1P + A 

http://www.crnt.osu.edu/CRNTWin
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                                AP + Y2 <-> Y2P + A 

  

  

 Remark:  None. 

 ¯¯¯¯¯¯ 

  

  

                              Graphical Properties 

                              ==================== 

  

 Number of complexes = 10 

  

 Number of linkage classes = 5: 

  

  Linkage class no. 1: {A, AP} 

  Linkage class no. 2: {Y1P, Y1} 

  Linkage class no. 3: {Y2P, Y2} 

  Linkage class no. 4: {AP + Y1, Y1P + A} 

  Linkage class no. 5: {AP + Y2, Y2P + A} 

  

 Number of TERMINAL strong linkage classes = 5: 

  

  Strong linkage class no. 1: {AP + Y1, Y1P + A} 

  Strong linkage class no. 2: {AP + Y2, Y2P + A} 

  Strong linkage class no. 3: {AP} 

  Strong linkage class no. 4: {Y1} 

  Strong linkage class no. 5: {Y2} 

  

 Number of NON-TERMINAL strong linkage classes = 3: 
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  Strong linkage class no. 6: {A} 

  Strong linkage class no. 7: {Y1P} 

  Strong linkage class no. 8: {Y2P} 

  

 The network is neither reversible nor weakly reversible. 

  

  

  

                                Rank Information 

                                ================ 

  

 Rank of entire network = 3 

  

  

  

                             Deficiency Information 

                             ====================== 

  

 Deficiency of entire network = 2 

  

 Deficiency of linkage class no. 1 = 0 

 Deficiency of linkage class no. 2 = 0 

 Deficiency of linkage class no. 3 = 0 

 Deficiency of linkage class no. 4 = 0 

 Deficiency of linkage class no. 5 = 0 

  

  

                                    Analysis 
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                                    ======== 

  

     This is a deficiency two network. It is an excellent candidate for application 

 of HIGHER DEFICIENCY THEORY (tailored mostly to networks with deficien- 

 cies greater than one). 

  

     Whether results will be obtained, will depend on whether or not the reaction  

 network has certain additional structural attributes that help reduce the problem 

 to a study of systems of linear inequalities. 

  

     If a network is "good", higher deficiency theory will determine, either 

 affirmatively or negatively, whether there are positive rate constant values 

 such that the corresponding mass action differential equations admit multiple  

 (positive) steady states. If the answer is affirmative, higher deficiency 

 theory will generate a sample set of rate constants and a pair of distinct 

 steady states that are consistent with those rate constants. 

  

     If a network is "bad", some additional nonlinear analysis might be required, 

 and the program might not be able to ascertain the network's capacity for 

 multiple  positive steady states. If definite conclusions can be reached they 

 they will be reported. Otherwise the program will tell you that it cannot reach 

 a conclusion. 

  

     Higher deficiency theory will also determine, either affirmatively or 

 negatively, whether there can exist a set of rate constants such that the 

 corresponding mass action differential equations admit a positive steady 

 state having a zero eigenvalue (corresponding to an eigenvector in the 

 stoichiometric subspace).  When the answer is affirmative, the theory will 

 produce such a set of rate constants, a positive steady state, and an 
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 eigenvector (in the stoichiometric subspace) corresponding to an eigenvalue 

 of zero. Results of this kind are contained after running the Zero Eigenvalue 

 Report. 

 

   ================================= 

                       HIGHER DEFICIENCY REPORT: NoName1 

                       ================================= 

  

                                    Analysis 

                                    ======== 

  

     Taken with mass action kinetics, the network CANNOT admit multiple 

 positive steady states or a degenerate positive steady state NO MATTER 

 WHAT (POSITIVE) VALUES THE RATE CONSTANTS MIGHT HAVE. 

  

Results of the analytical analysis of model with alternative reaction schemes 

These contain the reaction system considered and the report produced with the Chemical 

Reaction Network Toolbox. In these reaction systems A, Y1 and Y2 stand for CheA, CheY1 

and CheY2 respectively. P refers to phosphorylated form. The resulting system contains four 

complexes between the phosphorylated/unphosphorylated CheA and the 

phosphorylated/unphosphorylated CheY1 and CheY2. 

 

                          

 

                             BASIC REPORT: NoName1 

                             ===================== 

  

 Reaction network: 

 ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 

                                      A -> AP 

                                 A + Y1 <-> AY1 

                                    AY1 <-> APY1 
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                                   APY1 <-> A + Y1P 

                                   APY1 <-> AP + Y1 

                                AP + Y2 <-> APY2 

                                   APY2 <-> A + Y2P 

                                   APY2 <-> AY2 

                                    AY2 <-> A + Y2 

                                    Y1P -> Y1 

                                    Y2P -> Y2 

  

  

 Remark:  None. 

 ¯¯¯¯¯¯ 

  

  

                              Graphical Properties 

                              ==================== 

  

 Number of complexes = 16 

  

 Number of linkage classes = 5: 

  

  Linkage class no. 1: {A, AP} 

  Linkage class no. 2: {A + Y1, AY1, APY1, A + Y1P, AP + Y1} 

  Linkage class no. 3: {AP + Y2, APY2, A + Y2P, AY2, A + Y2} 

  Linkage class no. 4: {Y1P, Y1} 

  Linkage class no. 5: {Y2P, Y2} 

  

 Number of TERMINAL strong linkage classes = 5: 
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  Strong linkage class no. 1: {A + Y1, AY1, APY1, A + Y1P, AP + Y1} 

  Strong linkage class no. 2: {AP + Y2, APY2, A + Y2P, AY2, A + Y2} 

  Strong linkage class no. 3: {AP} 

  Strong linkage class no. 4: {Y1} 

  Strong linkage class no. 5: {Y2} 

  

 Number of NON-TERMINAL strong linkage classes = 3: 

  

  Strong linkage class no. 6: {A} 

  Strong linkage class no. 7: {Y1P} 

  Strong linkage class no. 8: {Y2P} 

  

 The network is neither reversible nor weakly reversible. 

  

  

  

                                Rank Information 

                                ================ 

  

 Rank of entire network = 7 

  

  

  

                             Deficiency Information 

                             ====================== 

  

 Deficiency of entire network = 4 

  

 Deficiency of linkage class no. 1 = 0 
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 Deficiency of linkage class no. 2 = 0 

 Deficiency of linkage class no. 3 = 0 

 Deficiency of linkage class no. 4 = 0 

 Deficiency of linkage class no. 5 = 0 

  

  

                                    Analysis 

                                    ======== 

  

     This is a deficiency four network. It is a good candidate for application 

 of HIGHER DEFICIENCY THEORY (tailored mostly to networks with deficien- 

 cies greater than one). 

  

     Whether results will be obtained, will depend on whether or not the reaction  

 network has certain additional structural attributes that help reduce the problem 

 to a study of systems of linear inequalities. 

  

     If a network is "good", higher deficiency theory will determine, either 

 affirmatively or negatively, whether there are positive rate constant values 

 such that the corresponding mass action differential equations admit multiple  

 (positive) steady states. If the answer is affirmative, higher deficiency 

 theory will generate a sample set of rate constants and a pair of distinct 

 steady states that are consistent with those rate constants. 

  

     If a network is "bad", some additional nonlinear analysis might be required, 

 and the program might not be able to ascertain the network's capacity for 

 multiple  positive steady states. If definite conclusions can be reached they 

 they will be reported. Otherwise the program will tell you that it cannot reach 

 a conclusion. 
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     Higher deficiency theory will also determine, either affirmatively or 

 negatively, whether there can exist a set of rate constants such that the 

 corresponding mass action differential equations admit a positive steady 

 state having a zero eigenvalue (corresponding to an eigenvector in the 

 stoichiometric subspace).  When the answer is affirmative, the theory will 

 produce such a set of rate constants, a positive steady state, and an 

 eigenvector (in the stoichiometric subspace) corresponding to an eigenvalue 

 of zero. Results of this kind are contained after running the Zero Eigenvalue 

 Report. 

                ================================= 

                       HIGHER DEFICIENCY REPORT: NoName1 

                       ================================= 

  

                                    Analysis 

                                    ======== 

  

      Taken with mass action kinetics, the network DOES have the capacity for 

 multiple steady states. That is, there are rate constants that give rise to 

 two or more positive (stoichiometrically compatible) steady states --  

 you'll see an example below -- and also rate constants for which there is a 

 steady state having an eigenvector (in the stoichiometric subspace) 

 corresponding to an eigenvalue of zero. (To construct rate constants that 

 give a degenerate steady state, use the Zero Eigenvalue Report.) 

  

  

 A mass action system example is also given below: 
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                     Example No. 1: Multiple Steady States 

                     ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 

  

      The following mass action system gives rise to multiple steady states: 

  

  

                               A ---53.264249-> AP 

                          A + Y1 ---525.88864-> AY1 

                             AY1 ---76.689969-> A + Y1 

                             AY1 ---7356.1463-> APY1 

                            APY1 ---6224.388--> AY1 

                            APY1 ---7843.4039-> A + Y1P 

                            APY1 ---1043.064--> AP + Y1 

                         A + Y1P ---20534.231-> APY1 

                         AP + Y1 ---132.87987-> APY1 

                         AP + Y2 ---116491.28-> APY2 

                            APY2 ---4951.8227-> AP + Y2 

                            APY2 ---8571.821--> A + Y2P 

                            APY2 ---140.24927-> AY2 

                         A + Y2P ---5955.1979-> APY2 

                             AY2 -------1-----> APY2 

                             AY2 ---32.105055-> A + Y2 

                          A + Y2 ---11290.218-> AY2 

                             Y1P ---424.3858--> Y1 

                             Y2P ---123.07748-> Y2 
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      The steady states shown below are both consistent with the mass 

 action system indicated. 

  

  

     Steady State No. 1            Species            Steady State No. 2 

     ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯            ¯¯¯¯¯¯¯            ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 

         8.8663 E-2                    A                   0.17854626     

         1.2542 E-2                   AP                   0.10242547     

          2.8335553                   Y1                    2.5639068     

         5.2309 E-2                  APY1                  0.14219251     

         0.18275376                   Y1P                  0.27263657     

         0.15146312                   Y2                   6.1580 E-2     

         3.3672 E-2                  APY2                  0.12355565     

         0.44331725                   Y2P                  0.89273131     

         6.1580 E-2                   AY1                  0.15146312     

          4.7225921                   AY2                   4.2731781     

  

  

                       Eigenvalues for Steady State No. 1 

                       ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 

  

                                   -5878.2169 

                                   -4452.4167 

                                   -2510.4006 

                                   -1299.6516 

                                   -392.65837 

                                   -145.57513 

                                   1.7915605 
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                        Steady State No. 1 is unstable. 

  

  

  

                       Eigenvalues for Steady State No. 2 

                       ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 

  

                                   -6346.8262 

                                    -4927.26 

                                   -2866.2672 

                                   -1424.5087 

                                   -4.6933204 

                                   -355.14896 

                                   -189.03784 

  

                  Steady State No. 2 is asymptotically stable. 
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5. Figures and table 

 

 

 

Figure S3.1. SSK1 is a phosphate sink for SLN7 in the yeast osmoregulation pathway (A) A 

cartoon diagram of the SLN1-YPD1-SSK1-SKN7 system. The diagram is arranged to 

highlight the role of the SSK1 as a phosphate sink for SKN7. Rate constants are shown on the 

relevant reactions. In the case of reversible reactions, two rate constants are given as kforward 

and kreverse. (B) Role of the sink RR (SSK1) in dephosphorylation of SKN7-P (RR2-P). The x- 

and y-axis show the time and the corresponding phosphorylated RR2 (SKN7-P) level at 

steady-state respectively. A value of ka was selected that resulted in ~90% of the total RR2 

being phosphorylated at steady state. At t=0, ka was reduced to zero and the progress of the 

reaction to the new steady state was simulated. Solid line represents the presence of the sink 

(i.e. SSK1), while dashed line shows the absence of the sink. (C) Signal-response curve in the 
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presence (solid line) and absence (dashed line) of the sink RR (SSK1). The x- and y-axis 

show the signal (ka) level and the corresponding steady state level of phosphorylated SKN7 

(RR2-P) respectively. 

 

 

 

 

Figure S3.2. Effect of varying the key parameters in the yeast osmoregulation system on the 

shape of the signal-response curve. The x- and y-axis show the signal (ka) level and the 

corresponding level of phosphorylated output RR (SKN7-P) at steady state respectively. Each 

panel shows a signal-response curve for different parameter values. The results of the basic 

model are shown in black. The arrow on each panel indicates increasing values of the 

changed parameter. (A) The forward phosphotransfer rate (kS) for the sink RR was varied 

from basic model value [66.67(µMs)
-1

] to 660, and 0. (B) Concentration of the sink RR was 
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set to 0µM, 1.5µM (basic model) and 3µM. (C) The rate of auto-dephosphorylation of sink 

RR-P (khS) was set to 0s
-1

, 0.5s
-1

 (basic model) and 1s
-1

. (D) The forward phosphotransfer rate 

(kM) for the main RR, was set to 1(µMs)
-1

(basic model), 0.5, and 10. 

 

 

 

 

 

Figure S3.3. Signal-response relationship for the sink RR and the output RR in the S. meliloti 

system. The x- and y-axis show the signal (ka) level and the corresponding steady state level 

of either phosphorylated sink (blue line) or main RR (black line). 
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Figure S3.4. The effect of parameter changes on the signal-response curve of the S. meliloti 

system. The level of “sigmoidality” of the signal-response curve, Hill coefficient, is shown on 

each panel as a heat map. (A) Effect of varying the auto-dephosphorylation rate of the output 

RR (khM; y-axis) and sink RR (khS; x-axis). (B) Effect of varying the forward and reverse 

phosphotransfer rates to the output RR (CheY2; x-axis; kM and y-axis; krM). (C and D) Signal-

response curves for models corresponding to parameter values indicated as colored circles on 

the heat maps in which the  black circle represents the basic model. 
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Figure S3.5. Effect of CheA, CheY1, and CheY2 total concentrations on the shape of the 

signal-response curve for the S. meliloti system. The level of “sigmoidality” of the signal-

response curve, Hill coefficient, is shown on each panel as a heat map. The x-axis shows the 

total concentration of CheA, while the y-axis shows the total concentration of CheY1 and 

CheY2 (where [CheY1]tot = [CheY2]tot). 

 

 

 

 

Figure S3.6. Effect of CheS on the signal-response curve. The x- and y-axis show the ATP 

level and the corresponding steady state phosphorylated CheY2 levels, respectively. The 
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phosphorylated CheY2 levels predicted by the model are shown with a dashed line (absence 

of CheS) and with a solid line (presence of CheS; where autodephosphorylation rate of 

CheY1, khs was increased to 0.08 s-
1
), while the experimentally measured values are shown in 

circles and squares on respective graph. See also Figure 4 for an alternative approach to 

modeling the presence of CheS. Error bars show the standard error of the mean obtained from 

three independent experiments.   

Table S3.1: The parameters used for the model of the yeast phosphate sink  

Parameter  Description  Value  Unit  Reference  

ka  kcat  for phosphorylation of 

SLN1  

  Varied    s
-1

   

kC SLN1-P to Receiver domain 

of SLN-1 Phosphotransfer 

    160 (µMs)
 -1

 [38] 

krC SLN1-P to Receiver domain 

of SLN-1 Reverse 

Phosphotransfer 

      0 (µMs)
 -1

 [38] 

kT Phosphorylated Receiver 

domain of SLN-1 to YPD1 

Phosphotransfer 

    20.7 (µMs)
 -1

 [38] 

krT Phosphorylated Receiver 

domain of SLN-1 to YPD1 

Reverse Phosphotransfer 

     29.5 (µMs)
 -1

 [38] 

kS  YPD1-P to SSK1 (sink RR) 

Phosphotransfer  

    66.67  (µMs)
 -1

  [38] 

krS YPD1-P to SSK1 Reverse 

phosphotransfer  

         0 (µMs)
 -1

  [38] 

kM  YPD1-P to SKN7 (main 

RR) Phosphotransfer  

         1 (µMs)
 -1

  [38] 

krM  YPD1-P to SKN7 Reverse 

phosphotransfer 

       0.08 (µMs)
 -1

  [38] 

khC Autodephosphorylation of 

Receiver domain of SLN1 

       0.05  s
-1

 [38] 

khS  Autodephosphorylation of 

SSK1 (sink RR) 

       0.05   s
-1

  [38] 
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[SLN]tot  

 

Total conc. of SLN1 

 

       0.25  µM [38] 

 

[Rec domain  

SLN]tot  

 

Total conc. of Rec domain 

of SLN1 

 

       0.25  µM [38] 

 

[YPD]tot  

 

Total conc. of YPD 

 

       1.5  µM [38] 

 

[SSK1]tot  

 

Total conc. of SSK1 

 

       1.5  µM [38] 

 

[SKN7]tot  Total conc. of SKN7        1.5  µM [38] 
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configuration can enable ultrasensitivity and bistability in the signal-response relationship of the resulting system. These
dynamics are displayed under a wide parameter range but only when specific biochemical requirements are met. We
experimentally show that one of these requirements, namely segregation of the phosphatase activity predominantly onto
the free form of one of the proteins making up the split kinase, is met in Rhodobacter sphaeroides. These findings indicate
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Introduction

Bacterial responses to many external stimuli are underpinned by

two-component signaling networks (TCSNs). These are found in

most bacterial species and are also present in Archaea, eukaryotic

microbes, and plants [1,2]. TCSNs are built upon the core

reactions involving a histidine kinase (HK) that autophosphor-

ylates on a conserved histidine residue in response to a signal, and

a cognate response regulator (RR) that is activated when the HK

phosphorylates one of its conserved aspartate residues [3].

Evolutionary processes seem to have exploited the modular

structure of these proteins to produce a distinct set of biochemical

features and network structures that reoccur in diverse TCSNs;

bifunctional HKs [4], sink RRs [5], phosphorelays [6] and split

HKs [7]. In order to achieve a broad and predictive understanding

of bacterial signaling, it is important to assess whether these

features enable specific signaling dynamics and properties [8].

There has already been progress towards this goal. Firstly,

bifunctional HKs, which display both phosphatase and kinase

activity towards their cognate RR, enable robustness in system

output with respect to fluctuations in the amount of these signaling

proteins [4,9] and reduce cross-talk among different TCSNs

[10,11]. Further, theoretical work indicates that bi-functional HKs

can generate flexible signal-response relationships [12,13] and

allow higher signal amplification compared to monofunctional

HKs that lack phosphatase activity [10]. Secondly, sink RRs,

which compete with another RR for phosphoryl groups from a

single cognate HK, are suggested to allow faster response

termination [5,14]. Finally, phosphorelays, which contain several

proteins (or domains) acting as a relay between the HK and RR,

are suggested to integrate several signals received on their different

layers [15–17] and implement both ultrasensitive and linear

responses [18,19]. Taken together, these studies suggest that

specific biochemical and structural features in TCSNs could

enable specific functional roles.

Of the different features of TCSNs, split kinases are predicted in

several bacterial genomes [1,2] and are biochemically character-

ized in Rhodobacter sphaeroides [7,20]. In this organism, the split

kinase system is composed of CheA3 and CheA4, which form a

bipartite histidine kinase that phosphorylates the response

regulator CheY6 [21] (Figure 1). CheA4 lacks the phosphoryla-

table P1 domain, whereas CheA3 lacks the dimerization (P3) and

catalytic kinase (P4) domains. Neither CheA3 nor CheA4 can

autophosphorylate when incubated separately with ATP; however,

when a mixture of CheA3 and CheA4 is incubated with ATP, then

CheA3 becomes phosphorylated, indicating that these proteins

can act as a histidine kinase only by forming a complex [21].

Activated by incoming signals, the P4 domain of CheA4 binds

ATP and phosphorylates the P1 domain of CheA3. Subsequently,

CheA3-P acts as a phosphodonor for its cognate response

regulator, CheY6 [21], which controls flagellar rotation [22]. In

vivo, CheA3 and CheA4 co-localize to the cytoplasmic chemotaxis

cluster [23] and are both essential for chemotaxis [7,24]. CheA3

and CheA4 bind to the cytoplasmic cluster via their P5 domains

[25]. Whilst part of this cluster, CheA3 and CheA4 dynamically

interact with one another. To allow phosphorylation of CheA3,
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the P4 domain of CheA4 must transiently bind to the P1 domain

of CheA3 (in the subsequent analysis we refer to this complex as

CheA3:CheA4). Once phosphorylated, the P1 domain of CheA3 is

released by CheA4, and CheA3-P can then donate its phosphoryl

group to the corresponding response regulator CheY6 [21,26]. In

addition to its phosphotransfer function, CheA3 is also a

phosphatase towards CheY6-P [7]. cheA3 mutants retaining

phosphotransfer functions but lacking phosphatase activity do

not support chemotaxis, similarly, cheA3 mutants retaining

phosphatase activity but lacking phosphotransfer activity also fail

to support chemotaxis, indicating that chemotaxis requires both

activities of CheA3 [7,21]. In addition, to being phosphorylated

and dephosphorylated by the split kinase comprising CheA3 and

CheA4 [21], CheY6 is also phosphorylated by CheA2 at the polar

chemotaxis cluster [27].

Despite this wealth of information, the general role of split

kinases in bacterial signaling is not clear. In essence split kinases

are unusual bifunctional HKs, where the autophosphorylation and

subsequent phosphotransfer and phosphatase activities are encod-

ed on two separate proteins. Since the complex formed by these

proteins is functionally equivalent to a bifunctional HK, it is not

clear what the role of splitting biochemical activities in this way

might be. Using the biochemical reactions of CheA3, CheA4, and

CheY6 as a model system, we developed a mathematical model

and analyzed the response dynamics mediated by this split kinase.

Repeating this analysis with a bifunctional HK and a conventional

HK-RR pair featuring a separate phosphatase, we found that in

contrast to these configurations, split kinases enable ultrasensitivity

and bistability in the signal-response relationship. We show that

these dynamical features are maintained under a wide parameter

range, provided certain biochemical assumptions are met. These

requirements indicate that the source of ultrasensitivity and

bistability in split kinases is the inverse coupling between their

kinase and phosphatase activities; i.e. the kinase activity cannot be

increased without reducing the phosphatase activity and vice

versa. Through measurements of phosphatase activity, we show

that this condition is met in the R. sphaeroides system in vitro. These

findings suggest that bacteria might be utilizing split kinases as a

means of implementing ultrasensitivity and bistability in cellular

decision making.

Results

Construction of a mathematical model of a split kinase
Since our aim is to study the general response dynamics that split

kinases can mediate, we use the CheA3, CheA4, and CheY6 triplet as

a model system and study its dynamics in isolation through in vitro

experiments, numerical simulation and analytical approaches. We

developed a mathematical model of the system and parameterized it

with in vitro and in vivo measured kinetic rates and protein

concentrations respectively (see Methods and Table 1). We then

analyzed the response dynamics of the resulting model and its variants

both through numerical simulations and deriving analytical solutions

of steady state behavior using approximations and the chemical

network theory [28,29] (see Methods and Text S1). In the subsequent

sections, we use the terms free CheA3 and free CheA3-P to indicate

CheA3 species where the P1 domain is not interacting with the P4

domain of CheA4; in vivo, however, these species are expected to be

always joined to the chemotaxis cluster by their P5 domains.

The input-output relationship for the split kinase shows
ultrasensitivity and bistability

A primary property of interest for any signal transduction

system is the signal-response relationship it implements [30]. To

analyze the signal-response relationship in systems featuring a split

kinase, we defined the system response as the steady state level of

phosphorylated CheY6 (CheY6-P) at a given signal level, and

derived this relationship for different parameters and biochemical

assumptions (see Methods). This analysis revealed that when

assuming free CheA3 as the sole phosphatase for CheY6-P, the

system has a high potential for displaying ultrasensitivity and

bistability (Figure 2 and Figures S1, S2, S3). Both of these

dynamics result in a switch-like behavior; the response of the

system is low until signal levels increase above a certain threshold,

after which the response increases disproportionately to reach a

high level (e.g. Figure 2A). In the case of bistability, the low and

high response levels correspond to stable states of the system,

separated by an unstable region, resulting in abrupt switching

dynamics and hysteresis (i.e. the switching threshold is different

depending on the past state of the system).

The in vitro and in vivo measured kinetic rates and protein

concentrations from R. sphaeroides constitute ‘‘biologically mean-

ingful’’ values that could be representative for two-component

systems in general. To analyze the potential effects of these rates

on the observed nonlinearity of the signal-response relationship,

we have performed a sensitivity analysis by varying the base

parameter values over a large range and quantifying the shape of

the resulting signal-response curve (see Methods). This analysis

shows that the level of ultrasensitivity in the signal-response

relationship is most sensitive to the parameters controlling the

complex formation between CheA3:CheA4 (k1) and the dephos-

phorylation of phosphorylated CheY6 (k9 and k11) (Figure 2 and

Figures S1, S2, S3). The association rate constant (k1/k2) we used

in the basic model is approximately 500-fold higher than that

measured in vitro, using purified R. sphaeroides proteins [21]. We still

consider this high value ‘‘biologically relevant’’ as in vivo conditions

can result in confining of split kinase components to small regions

of the cell, resulting in much higher effective concentrations than

are attainable under the in vitro conditions as used in [21]. For

example, in R. sphaeroides, CheA3 and CheA4 localize to the

cytoplasmic chemoreceptor cluster [23], which - using immunogold

Author Summary

Two-component signaling systems mediate many of the
physiological responses of bacteria. In their core, these
systems consist of a histidine kinase (HK) and a response
regulator (RR) that it can phosphotransfer to. Around this
core interaction, evolution has led to several conserved
biochemical and structural features. In order to achieve a
broad and predictive understanding of bacterial signaling,
it is important to assess whether these features enable
specific signaling dynamics and properties. Our study
provides a potential functional role for one such feature,
the split histidine kinases, where autophosphorylation and
phosphotransfer activities of a conventional HK are
segregated onto distinct proteins capable of complex
formation. We show that that this unusual configuration
can enable ultrasensitivity and bistability in signal trans-
duction under specific biochemical conditions. We exper-
imentally show that one of these requirements, namely
segregation of the phosphatase activity predominantly
onto the free form of one of the proteins making up the
split kinase, is met in proteins isolated from Rhodobacter
sphaeroides. Genomic studies suggest 1.7% of all histidine
kinases could function as bifunctional split kinases. This
study provides a linkage between these proteins and
response dynamics, thereby enabling experimentally test-
able hypotheses in these systems.
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electron microscopy - is estimated to occupy less than 5% of the

cross-sectional area of the cell [31]. Assuming a spherical shape

for both the cell and this cluster, the volume of the latter could

be estimated to be approximately 1% of the total cell volume.

Thus, the effective concentrations of CheA3 and CheA4 in this

cluster could be increased by as much as 100-fold, resulting in a

significantly higher effective association rate constant than

measured in vitro (up to 10,000 fold).

Figure 1. A cartoon diagram of the CheA3-CheA4-CheY6 split kinase system. The diagram is arranged so to highlight the role of free CheA3
acting as a branching point for the two arms that form competing cycles leading to phosphorylation and dephosphorylation of CheY6. Rate
constants are shown on the relevant reactions. In the case of reversible reactions, two rate constants are given (kforward/kreverse).
doi:10.1371/journal.pcbi.1002949.g001

Table 1. Literature source and parameter values used in the analysis of the basic model.

Parameter Description Value Unit Ref

k1 On rate for binding of CheA3 and CheA4 100 (mM s21) [21] see also Results

k2 Off rate for binding of CheA3 and CheA4 10 s21 [21] see also Results

k3 Forward rate for phosphorylation complex 1 (mM s)21 [21]

k4 Reverse rate for phosphorylation complex 39 s21 [21]

k5 Kcat for phosphorylation of CheA3 by CheA4 varied s21

k6 CheA3-P to CheY6 Phosphotransfer 0.775 (mM s)21 [21]

k7 CheA3-P to CheY6 Reverse phosphotransfer 0.00283 (mM s)21 [21]

k8 Autodephosphorylation 0.169 s21 [7]

k9 Association of phosphatase assisted dephosphorylation complex 5.6 (mM s)21 [48]

k10 Dissociation of phosphatase assisted dephosphorylation complex 0.04 s21 [48]

k11 Kcat for phosphatase assisted dephosphorylation 2.5 s21 See Methods

[A3]tot Total concentration of CheA3 90 mM [7]

[A4]tot Total concentration of CheA4 40 mM [34]

[Y6]tot Total concentration of CheY6 225 mM [34]

[ATP] Total concentration of ATP 1000 mM

doi:10.1371/journal.pcbi.1002949.t001
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Besides parameter values, several modeling choices could also

alter the finding of bistability and ultrasensitivity arising in a split

kinase system. In particular, the basic model presented above

assumes that free CheA3 is the sole phosphatase in the system

(besides the intrinsic autodephosphorylation activity of CheY6-P).

Relaxing this assumption and considering increasing phosphatase

activity by the CheA3:CheA4 and CheA3:CheA4:ATP complexes

(see Text S1, section 1), significantly reduced ultrasensitivity in the

system (Figure 2D and S4). In contrast, the presence of

ultrasensitivity was much more robust to increasing phosphatase

activity by CheA3p (Figure 2D, S4 and S5). Another mechanistic

choice in the modeling of the split kinase system is the fate of the

CheA3:CheA4 complex after phosphorylation of CheA3. In the

basic model analyzed in Figure 2, this is modeled as phosphor-

ylation resulting in the dissociation of the complex and release of

CheA4 and CheA3-P. An alternative would be that the

CheA3:CheA4 complex remains intact post phosphorylation,

resulting in a CheA3-P:CheA4 complex (see Text S1, section 2).

When we assume the presence of CheA3-P:CheA4 complex that

can phosphotransfer to CheY6, bistability was lost, but not

ultrasensitivity (Figure S6). Finally, we found that including an

additional (monofunctional, non-split) kinase in the model, as seen

for example in R. sphaeroides CheA2 (see Text S1, section 3), does not

affect the ultrasensitivity but can result in the loss of bistability

(Figure S7).

It is important to note that the basic model and all of these

variants arising from specific modeling choices are ‘‘nested’’ in the

sense that the basic model can be recovered through appropriate

choice of parameters (e.g. setting dephosphorylation activity of

CheA3p very low). In line with this observation, we find that the

Figure 2. Effects of varying key parameters of the model and addition of different phosphatases. The x- and y-axis show the signal (k5)
level and the corresponding steady state CheY6-P level respectively. Each panel shows a signal-response analysis for varying model parameters (A–C)
or the inclusion of additional phosphatases (D). The results of the basic model are shown in red. Where present, the dark region indicates the region
of unstable steady states and hence the presence of bistability. Arrows on panels A, B and C indicate increasing value of the changed parameter. (A)
The on rate (k1) for CheA3:CheA4 complex formation was varied from basic model value [100(mMs)21] to 10, 1, and 0.208. (B) Concentration of CheA4
was varied from 30 mM, 40 mM (basic model) and 80 mM. (C) The rate of CheA3 mediated dephosphorylation of CheY6-P (k11) was varied from 1 s21,
2.5 s21 (basic model) and 5s21. (D) The basic model has free CheA3 as the sole phosphatase; the effect of having either CheA3-P or CheA3:CheA4 and
CheA3:CheA4:ATP as additional phosphatases is shown. See also Figures S1, S2, S3, S4 for additional sensitivity analyses.
doi:10.1371/journal.pcbi.1002949.g002
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basic model and all of the alternative structures discussed so far

can be analytically shown to possess the ‘‘ability’’ to attain

bistability (see Methods). More particularly, each of the chemical

reaction systems arising from these models have the capacity for

multiple steady states according to the higher deficiency theorem

[32,29]; i.e. these chemical systems permit bistability for some set

of non-zero parameter values and under the assumption of mass

action kinetics (see Text S2).

Segregation of kinase and phosphatase activities allows
ultrasensitivity and bistability

Taken together, these analyses suggest that the ability of a split

kinase to mediate ultrasensitivity and bistability relates to the

segregation of kinase and phosphatase activities. To better

understand how this relates to ultrasensitivity and bistability, we

simulated the time evolution of the system in the presence of step

signals. As expected from the ultrasensitive signal-response

relationship, system response (i.e. increase in free CheY6-P) was

low for step-signals below the threshold and displayed a sudden

large jump for step-signals crossing the threshold (Figure 3). Before

the threshold, increasing signal levels resulted in an increase in the

CheA3:CheY6-P complex, while the crossing of the threshold and

subsequent increases in signal caused it to decrease. The reason for

this behavior is that before the threshold there is enough free

CheA3 in the system to bind and dephosphorylate the CheY6-P

that is formed, while after crossing of the threshold there is no free

CheA3 left in the system (Figure 3). These observations can be

understood if we consider the cyclic nature of the reactions in this

system as shown in Figure 1. The free CheA3 can be seen as a

branching point in the system, with one branch leading to binding

to CheA4 and ultimately to more CheY6 phosphorylation

(phosphorylation branch), while the other leading to binding to

CheY6-P and subsequent dephosphorylation (dephosphorylation

branch). While the phosphorylation branch is regulated externally

of the system by signals sensed by the cytoplasmic cluster (i.e.

through altering k3 and/or k5), the dephosphorylation branch is

controlled internally by the covalent modification of CheY6. This

results in a dynamical motif that is similar to that seen in metabolic

branching points and that can embed ultrasensitivity [33]. The

split kinase system can embed a high level of nonlinearity as it

contains both an inverse coupling of the two branches themselves

(via CheY6) and their regulation (via CheA3). At low signals, these

two branches allow enough free CheA3 in the system so to result in

equally fast phosphorylation and dephosphorylation of CheY6. As

the signal increases, however, the rate of the phosphorylation

branch increases, while at the same time shutting down the

dephosphorylation branch. In other words, the phosphorylation

and dephosphorylation branches are coupled inversely, such that

the kinase activity cannot be increased without reducing the

phosphatase activity and vice versa. These dynamics can be

observed in Figure 3; the loss of free CheA3 in the system

coincides with an abrupt increase in CheA3-P and CheY6-P, while

the CheA3:CheA4 complex maintains a fast turnover. This

dynamical picture also explains the parameter effects observed

in Figure 2 (and Figures S1, S2, S3, S4). For example, the decrease

in ultrasensitivity from the reduction of CheA3-CheA4 association

rate constant (k1) can be explained by a slowing down of the

phosphorylation branch. Similarly, the decrease in ultrasensitivity

from the inclusion of additional phosphatase activity via species

other than free CheA3 can be explained by its perturbing effects

on the inverse coupling between the phosphorylation and

dephosphorylation branches (Figure S4 and S5). It must also be

noted that the total level of CheA4 in the cell allows additional

(internal) control on the dynamics of the system (Figure 2B and

Figure S3), through its effects on the phosphorylation branch.

To further test whether the inverse coupling of kinase and

phosphatase activities through free CheA3 is the underpinning

mechanism of ultrasensitivity, we considered dynamics in two

alternative models where such coupling is missing; (i) a bifunc-

tional HK that is not split, and (ii) a traditional HK that is neither

bifunctional nor split, with a dedicated auxiliary phosphatase for

the phosphorylated RR. An analytical treatment of the dynamics

arising in the former scenario suggests that non-split bifunctional

HKs (where the phosphorylated/non-phosphorylated HK acts as

kinase/phosphatase on its cognate response regulator) gives rise to

hyperbolic signal-response relationships and provides the system

with robustness towards variations in component concentrations

[9]. For the latter scenario (e.g. CheA-CheY-CheZ system found

in the E. coli chemotaxis system) we developed a simplified model

and solved it for the steady state levels of phosphorylated response

regulator. We compared this analytical solution to that derived

from a simplified model of a split kinase system (see Text S1, section

4). This analytical treatment shows that the latter displays a higher

level of nonlinearity for the steady state expression of phosphor-

ylated RR. More importantly, we find that of the three possible

alternative structures - bifunctional and split, monofunctional and

split, bifunctional and non-split - only the chemical reaction system

arising from the bifunctional and split kinase have the capacity for

multiple steady states according to the higher deficiency theorem

[32,29] (see Text S3–6 for detailed results). Taken together, these

analytical findings show that for bistable and ultrasensitive

dynamics to be realized in a split kinase system, both bifunctionality

of the HK and the splitting of these two functionalities (i.e. kinase

and phosphatase activity) are needed.

Experimental verification that free CheA3 is a better
phosphatase than CheA3:CheA4

As shown above, the ability of the split kinase to achieve both

segregation and inverse coupling of kinase and phosphatase

activities requires that free CheA3 is the predominant phosphatase

with other CheA3 containing species (in particular CheA3:CheA4

and CheA3:CheA4:ATP) showing much lower phosphatase

activity. Testing this requirement, or directly the level of

ultrasensitivity in vivo, is complicated both by the presence of

additional components in the system and our lack of knowledge of

the signal identity in split kinase systems studied to date. As an

alternative, and to achieve an approximate test of our theoretical

understanding of split kinase response dynamics, we performed in

vitro measurements of CheY6-P dephosphorylation in the presence

of CheA3 and CheA4. In these experiments we used a purified

phosphorylated P1 domain of CheA3 (CheA3P1-P) as the sole

phosphodonor in the environment. As CheA3P1-P is known to

lack phosphatase activity [7], this setup allows us to test directly the

phosphatase activity of free CheA3 and the CheA3:CheA4

complex. If kinase and phosphatase activities are segregated into

the complexed and free CheA3 respectively, these measurements

should reveal a decrease of phosphatase activity with increasing

CheA4 concentration, as this would sequester free CheA3 into the

CheA3:CheA4 complex. In contrast, such an effect would be

absent if the CheA3:CheA4 complex possessed the same level of

phosphatase activity as free CheA3. We found evidence for such a

decrease, with increasing CheA4 concentrations reducing the rate

of CheA3 mediated dephosphorylation of CheY6-P (Figure 4 and

Figure S8). To rule out the possibility of any interference from free

CheA4, we have also confirmed the lack of dephosphorylation

activity by CheA4 (Figure 4B). This observation qualitatively

matches predictions from a specific model of this in vitro

Bistability in Two-Component Signaling Networks
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experimental setup where we assumed phosphatase activity to be

restricted to only free CheA3 (see Text S1 and Figure 4). These

experimental findings strongly suggest that the CheA3:CheA4

complex has much lower phosphatase activity than free CheA3.

Discussion

Two component signaling systems mediate many of the

physiological responses of bacteria and display several conserved

biochemical and structural features. Here, we analyzed how one

such feature, the split kinase, affects response dynamics. Our

theoretical treatment proved that the chemical reaction system

arising from a bifunctional split kinase gives rise to the possibility of

bistability, whereas systems arising from bifunctional, non-split

and monofunctional, split kinases lack such capability (unless

featuring dead-end complex formation [12]). Sampling the

parameter space around kinetic rates and protein concentrations

measured in (or estimated from) R. sphaeroides, we found that a split

kinase system set in a ‘‘biologically relevant’’ parameter regime has

potential for an ultrasensitive and bistable signal-response

relationship. These nonlinear dynamics arise from the bifunctional

and split nature of the kinase, which introduce a branching point

into the system between phosphorylation and dephosphorylation

reactions. Thus, the level of ultrasensitivity (and emergence of

bistability) in the system is determined by the parameters and the

biochemical mechanisms found in the reaction cycles linked to this

branching point.

We found that the one crucial biochemical aspect enabling

ultrasensitivity and bistability in the split kinase system is the

predominant allocation of phosphatase activity to the free protein

(rather than any of the complexes in the system). Using in vitro

phosphotransfer assays in the CheA3-CheA4-CheY6 split kinase

system isolated from R. sphaeroides, we found support for free

CheA3 being the principal phosphatase in that system (Figure 4). It

Figure 3. Time-course analyses. The model is simulated with increasing and decreasing signal levels (k5) in course of time. k5 is increased from 2
to 6 and decreased in similar fashion at indicated time points (top most, left panel), and changes in each species were measured (as indicated on each
panel). The dotted line represents the highest signal level, with equal signal steps on each side of it. The noted asymmetry around this line shows the
presence of hysteresis in the system. The x- and y-axis represent time and species concentration respectively, where the latter is normalized by the
appropriate total protein levels.
doi:10.1371/journal.pcbi.1002949.g003
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remains to be shown whether this system enables ultrasensitivity or

bistability in vivo. The theoretical findings of this study suggest that

the switch-like dynamics resulting from ultrasensitivity and

bistability could be relevant in the physiological context of the

CheA3-CheA4-CheY6 system, which is involved in the integration

of cytoplasmic and extracellular signals for proper chemotaxis

Figure 4. Measurement of CheY6-P dephosphorylation rates under different conditions (as indicated). An excess of CheY6 was
phosphorylated using CheA3P1-P as phosphodonor. The phosphotransfer reaction was complete within 10 s of adding CheY6 to the reaction
mixture. Subsequently the decay in CheY6-P levels was followed over time. (A) Phosphorimages showing the decay in CheY6-P levels over time. (B)
Graph comparing the observed pseudo-first order rate constant (kobs) for CheY6-P dephosphorylation with and without CheA3 and CheA4. The values
predicted by the modeling are shown with a dashed line, while the experimentally measured values are shown in black. Results from a control
experiment (without CheA3 and solely CheA4) is shown in grey. Error bars show the standard error of the mean obtained from eight independent
experiments.
doi:10.1371/journal.pcbi.1002949.g004
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[7,34]. It would be plausible for example, if the switching

dynamics described here allowed cells to override external

chemotaxis signals in favor of internal signals such as those related

to metabolism, which could contribute to motility decisions [35–

37]. As shown in Figure 2, several internal parameters of the

system, including the total expression level of CheA4, allow control

of the dynamics mediated through CheA3:CheA4 and might

enable further tuning of such decision making mechanisms.

While our results highlight split kinases as a potential strategy

for implementing ultrasensitivity in bacterial two-component

systems, it is not the only one. Previous theoretical studies have

found that ultrasensitivity can be achieved in phosphorelays

[18,19], in classical HK-RR systems embedding specific spatial

dynamics [38] and in systems with bifunctional HKs, where

unphosphorylated HKs and RR form a dead-end complex that is

incapable of HK autophosphorylation [12,39]. These findings

suggest that there are several diverse structural, spatial and

dynamics that are possible in bacterial two-component systems

and that have the potential to enable nonlinear response

dynamics. Our theoretical findings extend this list with split

kinase systems. Further, we provide experimental support for a

condition that increases their potential for generating ultrasensi-

tivity and bistability. Such responses are known to be common in

eukaryotes and can enable decision making at the cellular level

[40–42]. Thus, it is perhaps not surprising that bacterial signaling

systems harbor mechanisms to enable similar levels of ultra-

sensitivity.

Although rare, split kinases are found in several other bacteria.

A recent study looking at CheAs identified 11 split CheAs (2.3%)

versus 470 complete CheAs (97.7%) in fully sequenced non-

redundant genomes [1]. In addition to these split CheAs, there is

the potential for other HKs to be split where the HisKA

(dimerization and histidine phosphotransfer) and the catalytic

HATPase (histidine kinase ATPase) domains are found on

separate proteins. In vitro studies of the osmosensing histidine

kinase, EnvZ, have shown that it possible to split the HATPase

and HisKA domains onto separate polypeptides whilst retaining

their activity [43]. Interrogation of the SMART database reveals

that out of the 42417 proteins containing HisKA domains

(dimerization and histidine phosphotransferase), 1556 (3.66%)

lack a HATPase (histidine kinase ATPase) domain (expect

value,0.01), and of these, 711 (1.7%) have the phosphatase

sequence motif (HE/DxxN/T) [44] and could therefore be split

bi-functional kinases. The results presented here suggest that cells

may use such split kinases to allow high sensitivity and bistability

enabling switch-like physiological responses to environmental

stimuli.

As the highly modular TCSNs are used by bacteria to control

many of their physiological responses, it will be valuable to explore

other mechanisms which can enable specific response dynamics in

these systems and to determine the evolutionary drivers that were

responsible for their emergence. This would increase our ability to

better understand microbial signaling and exploit it in synthetic

biology applications.

Methods

A mathematical model for a split kinase
To model the CheA3-CheA4-CheY6 split kinase system, we

considered its dynamics in isolation of other cellular compo-

nents. The reactions in this system that we have included in the

‘‘basic model’’ are (see also alternative reaction schemes shown

in Text S1);

A3zA4/?
k1

k2

A3A4

A3A4zATP/?
k3

k4

A3A4ATP ?
k5

A3pzA4zADP

A3pzY6/?
k6

k7

A3zY6p

Y6p ?
k8

Y6zPi

A3zY6p /?
k9

k10

A3Y6p ?
k11

A3zY6zPi

where A3, A4, Y6 stand for CheA3, CheA4 and CheY6 respectively

and the -p suffix represents phosphorylated forms of these proteins.

Variant models which include additional CheY6-P de-phosphory-

lation reactions involving alternative phosphatases such as CheA3-

P, and CheA3:CheA4 complex are shown in supplementary text S1,

and their effects are analyzed in Figure 2D and S4. The above

‘‘basic model’’ reaction scheme can be used to derive a system of

ordinary differential equations (ODEs), which describe the changes

in concentrations of proteins over time;

d½A3p�
dt

~k5
:½A3A4ATP�zk7

:½A3�:½Y6p�{k6
:½A3p�:½Y6p�

d½A3A4�
dt

~k1
:½A3�:½A4�zk4

:½A3A4ATP�

{½A3A4�:(k2zk5
:½ATP�)

d½A3A4ATP�
dt

~k3
:½A3A4�:½ATP�{½A3A4ATP�:(k4zk5)

d½A3Y6p�
dt

~k9
:½A3�:½Y6p�{½A3Y6p�:(k10zk11)

d½Y6p�
dt

~k10
:½A3Y6p�zk6

:½A3p�:½Y6�

{½Y6p�:(k7
:½A3�zk8zk9

:½A3�)

In addition, we have three conservation equations;

½Y6�tot~½Y6�z½Y6p�z½A3Y6p�

½A3�tot~½A3�z½A3p�z½A3A4�z½A3A4ATP�z½A3Y6p�

½A4�tot~½A4�z½A3A4�z½A3A4ATP�

To analyze the behavior of the split kinase motif with increasing

signal, we simulated the incoming signals from receptors as an

increase in the autophosphorylation rate of the kinase (k5). The

model was parameterized with data from literature (see Table 1). In

the case of the dephosphorylation of CheY6-P by CheA3, we

derived the relevant parameters (k9, k10, and k11) through fitting

simulation data to previously published in vitro dephosphorylation

measurements [7]. Fitting was done using a hybrid genetic

algorithm (functions ga and fmincon from the MATLAB Global

Optimization Toolbox).

We numerically integrated the model to derive time course and

steady state signal-response relationships. The latter analysis gives

the steady state CheY6-P level at a given signal (k5) where signal

Bistability in Two-Component Signaling Networks
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was taken as the rate of autophosphorylation of split kinase and

allows deriving a so-called signal-response curve. This curve is

found by numerically integrating the system to steady state at a

fixed signal level and then numerically ‘‘following’’ this steady state

(i.e. steady state CheY6-P level), while changing the signal. This

analysis is equal to allowing the system to reach steady state under

different signal values. Both time course and signal-response

analyses were performed using the software packages XPPAUT

(http://www.math.pitt.edu/,bard/xpp/xpp.html) and Oscill8

(http://oscill8.sourceforge.net/).

Sensitivity analysis. We have quantified the sensitivity of

the shape of the signal-response curves to variations in each of the

parameters from their described base values (Table 1) and in a

biologically relevant range. For these analyses, we measured the

‘‘sigmoidality’’ of the signal-response curve, RS, as its maximum

slope (smax) multiplied by the signal level at which this slope occurs

(k5s) (i.e. RS = k5sNsmax). This measure is similar to the ‘‘response

coefficent’’, which measures the slope between 90% and 10%

saturation [33], but is better able to distinguish between hyperbolic

and sigmoidal dose-response curves. For each parameter, we

varied it in a wide range around its basic value and measured

‘‘sigmoidality’’ of the resulting dose-response curves, as well as the

maximum response of the system (Figures S1, S2, S3). The same

analysis is also applied for alternative models featuring additional

phosphatase species (Figure S4).

Analytical comparison of different models. To perform a

formal check for the potential of bistability in the different models

(discussed in the main text and Supplementary Information), we have

utilized the chemical network theory [28,29]. This theory provides

several analytical tests that can provide a definite answer on the

possibility of existence of multiple stationary states in a given

reaction network. We have applied these tests to the basic and

alternative models we had devised using the Chemical Network

Tool v2.2 (http://www.chbmeng.ohio-state.edu/,feinberg/

crntwin/). The model files used with this tool and describing the

chemical reaction systems, as well as the analytical results from the

tool are provided as supplementary Text S2–4.

Plasmid and strains. See Table 2 for the plasmids and strains

used. E. coli strains were grown in LB medium at 37uC. Antibiotics

were used at concentrations of 100 mg ml21 for ampicillin and

25 mg ml21 for kanamycin, where needed. E. coli M15pRep4 cells

were made competent using the calcium chloride technique [45].

Transformations were performed according to [46].

Protein purification. His tagged R. sphaeroides CheA3,

CheA4, CheA3P1 and CheY6 proteins were purified as described

previously [47]. Protein purity and concentration was measured as

described in [24]. Purified proteins were stored at 220uc.

Preparation of CheA3P1-32P. CheA3P1 was phosphorylat-

ed using [c-32P] ATP and CheA4 and purified as described before

with the following modifications [7]. Proteins were phosphorylated

in reactions performed at 20uC in phosphotransfer buffer (50 mM

Tris HCl, 10% (v/v) glycerol, 5 mM MgCl2, 150 mM NaCl,

50 mM KCl, 1 mM DTT, pH 8.0). The final reaction volumes

were 2 ml. For production of CheA3P1-32P, reaction mixtures

contained 300 mM CheA3P1 and 20 mM CheA4. Reactions were

initiated by addition of 2 mM [c-32P] ATP (specific activity 14.8

GBq mmol21; PerkinElmer). After 1 hour incubation, samples

were purified by using Ni-NTA columns (Qiagen) as described

previously for unphosphorylated His-tagged CheA3 [47]. This

purification step removed the unincorporated ATP and also

removed the CheA4 protein from the CheA3P1-32P preparation.

Purified proteins were stored at 220uC.

Measurement of CheY6-P dephosphorylation rate
Assays were performed at 20uC in phosphotransfer buffer.

Purified CheA3P1-32P was used as the phosphodonor. An excess of

CheY6 (100 mM) was added to 30 mM of purified CheA3P1-32P in

the presence of 2.5 mM CheA3 and 0–60 mM CheA4. Following the

addition of CheY6, reaction aliquots of 10 ml were taken at the

indicated time points and quenched immediately in 10 ml of 2 X

SDS-PAGE loading dye(7.5% (w/v) SDS, 90 mM EDTA,

37.5 mM Tris HCl, 37.5% glycerol, 3% (v/v) b- mercaptoethanol,

pH 6.8). Quenched samples were analyzed using SDS-PAGE and

phosphorimaging as described previously [24].

Supporting Information

Figure S1 The sensitivity of the signal response curve ‘‘sigmoid-

ality’’ to parameter changes. The ‘‘sigmoidality’’ of the signal-

response curve, RS, is measured as its maximum slope (smax)

multiplied by the signal level at which this slope occurs (k5s) (i.e.

RS = k5sNsmax). On each panel, the y-axis shows the ratio of RS,

resulting from models with different values of a specific parameter,

to that resulting from the basic model. x-axis shows the ratio of this

parameter value to its corresponding value in the basic model.

Data points in red indicates presence of bistability in the signal-

response relationship. Note the log scale on both axes.

(TIF)

Figure S2 The sensitivity of the maximum phosphorylation level

of CheY6 to parameter changes. On each panel, the y-axis shows

the ratio of the maximal CheY6 phosphorylation, resulting from

models with different values of a specific parameter, to that

resulting from the basic model. x-axis shows the ratio of this

Table 2. Plasmids and strains used and the associated literature source.

Strains/plasmid Description Source/Reference

E.coli strain M15pREP4 Expression host containing pREP4; kanamycin resistant Qiagen

pQE30 IPTG inducible expression vector. Introduces RGS(H)6 at the N terminus of the expressed protein. Confers
ampicillin resistance

Qiagen

pQE60 IPTG inducible expression vector. Introduces RGS(H)6 at the C terminus of the expressed protein. Confers
ampicillin resistance

Qiagen

pQE60A3P1 CheA3P1 expression plasmid. pQE60 derivative [7]

pQEY6 CheY6 expression plasmid. pQE30 derivative [24]

pQEA3 CheA3 expression plasmid. pQE30 derivative [21]

pQEA4 CheA4 expression plasmid. pQE30 derivative [21]

doi:10.1371/journal.pcbi.1002949.t002
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parameter value to its corresponding value in the basic model.

Data points in red indicates presence of bistability in the signal-

response relationship. Note the log scale on both axes.

(TIF)

Figure S3 The sensitivity of the signal response curve ‘‘sigmoid-

ality’’ to changes in the concentration of CheA3 (A) and CheA4

(B). The ‘‘sigmoidality’’ of the signal-response curve, RS, is

measured as its maximum slope (smax) multiplied by the signal level

at which this slope occurs (k5s) (i.e. RS = k5s N smax). On panel A (B),

the y-axis shows the ratio of RS, resulting from models with

different values of CheA3 (CheA4) concentration, to that resulting

from the basic model. x-axis shows the ratio of this concentration

to its corresponding value in the basic model. Data points in red

indicates presence of bistability in the signal-response relationship.

The sensitivity of the maximum phosphorylation level of CheY6 to

changes in the concentration of CheA3 (C) and CheA4 (D). On

panel C (D), the y-axis shows the ratio of the maximal CheY6

phosphorylation, resulting from models with different values of

CheA3 (CheA4) concentration, to that resulting from the basic

model. x-axis shows the ratio of this concentration to its

corresponding value in the basic model. Data points in red

indicates presence of bistability in the signal-response relationship.

Note the log scale on both axes on all panels.

(TIF)

Figure S4 Analysis of signal-response relationship, in an

alternative model considering phosphatase activity from additional

species (see Supplementary Information, section 1). (A) Signal-

response curves resulting from a model where both CheA3:CheA4

and CheA3:CheA4:ATP are considered to have phosphatase

activity in addition to CheA3. For comparison, signal-response

curve from the basic model is shown in red. Where present, the

dark region indicates the region of unstable steady states and

hence the presence of bistability. The different curves correspond

to increasing levels of phosphatase activity (shown with the arrow)

from the additional species. Phosphatase activity is varied in the

same way for both CheA3:CheA4 and CheA3:CheA4:ATP by

assuming that kon and kcat for these species are the same (i.e.

k12 = k15 and k14 = k17) and by varying one set of rates

simultaneously. The ratio between these rates (k12 and k14) to

their corresponding values for CheA3 (k9 and k11) is shown on the

x-axis of panel C. (B) Signal-response curves resulting from a

model where CheA-P is considered to have phosphatase activity in

addition to CheA3. For comparison, signal-response curve from

the basic model is shown in red. Where present, the dark region

indicates the region of unstable steady states and hence the

presence of bistability. The different curves correspond to

increasing levels of phosphatase activity (shown with the arrow)

from CheA3-P. Phosphatase activity is varied by changing both kon

and kcat for CheA3-P (i.e. k18 and k20) simultaneously. The ratio

between these rates (k18 and k20) to their corresponding values for

CheA3 (k9 and k11) is shown on the x-axis of panel D. (C) The

sensitivity of the signal response curve ‘‘sigmoidality’’ to increasing

phosphatase activity from CheA3:CheA4 and CheA3:CheA4:ATP.

The ‘‘sigmoidality’’ of the signal-response curve, RS, is measured as

its maximum slope (smax) multiplied by the signal level at which this

slope occurs (k5s) (i.e. RS = k5s N smax). y-axis shows the ratio of RS,

resulting from models with increasing phosphatase activity by

additional species, to that of resulting from the basic model. X-axis

shows the ratio of kinetic rates governing phosphatase activity (k12

and k14) to those in the basic model (k9 and k11). Data points in red

indicates presence of bistability in the signal-response relationship.

(D) The sensitivity of the signal response curve ‘‘sigmoidality’’ to

increasing phosphatase activity from CheA3-P. The ‘‘sigmoidality’’

of the signal-response curve, RS, is measured as its maximum slope

(smax) multiplied by the signal level at which this slope occurs (k5s) (i.e.

RS = k5s N smax). Y-axis shows the ratio of RS, resulting from models

with increasing phosphatase activity by additional species, to that of

resulting from the basic model. x-axis shows the ratio of kinetic rates

governing phosphatase activity (k18 and k20) to those in the basic

model (k9 and k11). Data points in red indicates presence of

bistability in the signal-response relationship. Note the log scale on

both axes in panels C and D.

(TIF)

Figure S5 Time-course analysis using an alternative model

where both CheA3:CheA4 and CheA3:CheA4:ATP are consid-

ered to have phosphatase activity in addition to CheA3 (see

Supplementary Information, section 1). The model is simulated

with increasing and decreasing signal levels (k5) in course of time.

k5 is increased from 2 to 6 and decreased in similar fashion at

indicated time points (top most, left panel), and changes in each

species were measured (as indicated on each panel). The x- and y-

axis represent time and species concentration respectively, where

the latter is normalized by the appropriate total protein levels.

(TIF)

Figure S6 Signal-response curves resulting from an alternative

model that allows for the possibility that phosphorylated CheA3

remains in complex with CheA4 and that this CheA3p:CheA4

complex is also capable of acting as phosphatase towards CheY6p

(see Supplementary Information, section 2). The y-axis shows

steady state Y6-P level normalised by total Y6, while x-axis shows

signal (k5) level. Where present, a dark region indicates the region

of unstable steady states and hence the presence of bistability. (a)

The signal-response curve from the basic model (included for

comparison). (b) Signal-response curve from the alternative model

and simulating signal level through changing both k95 and k5

simultaneously. (c) Signal-response curve from the alternative

model and simulating signal level through changing k5, while

k95 = 0.1 s21.

(TIF)

Figure S7 Analysis of signal-response relationship, in an

alternative model considering additional kinase activity (see

Supplementary Information, section 3). (A) Signal-response curves

resulting from a model where additional kinase activity (from

CheA2) is considered. For comparison, the signal-response curve

from the basic model is shown in red. Where present, the dark

region indicates the region of unstable steady states and hence the

presence of bistability. The different curves correspond to

increasing levels of autophosphorylation rates for CheA2 (i.e.

increasing background signalling through CheA2). (B) The

sensitivity of the signal-response ‘‘sigmoidality’’ with increasing

background kinase activity (from CheA2). The ‘‘sigmoidality’’ of

the signal-response curve, RS, is measured as its maximum slope

(smax) multiplied by the signal level at which this slope occurs (k5s)

(i.e. RS = k5s N smax). y-axis shows the ratio of RS, resulting from

models with increasing background kinase activity (k*5) to that of

the case where such activity is minimal (i.e. k*5,0). Data points in

red indicates presence of bistability in the signal-response

relationship. Note the log scale on both axes.

(TIF)

Figure S8 CheY6-P dephosphorylation time course data (circles)

along with the fitted first-order exponential decay curves (red line)

and simulated data (black line). The exponential fits are used to

derive an estimate for overall CheY6p dephosphorylation rate

(kobs), which are shown in Figure 4.

(TIF)
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Table S1 Parameter values used for the models with additional

phosphatases.

(PDF)

Table S2 Parameter values used for the models with alternative

reaction scheme.

(PDF)

Table S3 Parameter values used for the models with additional

kinase.

(PDF)

Table S4 Parameter values used for the model of the in vitro

experimental system.

(PDF)

Text S1 Supplementary information on alternative models and

their analyses.

(PDF)

Text S2 Results of the analytical analysis of the basic model. The

file contains the reaction system considered and the report

produced with the Chemical Network Tool v2.2 (http://www.

chbmeng.ohio-state.edu/,feinberg/crntwin/).

(DOC)

Text S3 Results of the analytical analysis of a model with a

monofunctional kinase and a separate phosphatase. The file

contains the reaction system considered and the report produced

with the Chemical Network Tool v2.2 (http://www.chbmeng.

ohio-state.edu/,feinberg/crntwin/).

(DOC)

Text S4 Results of the analytical analysis of a model with a

monofunctional kinase. The file contains the reaction system

considered and the report produced with the Chemical Network

Tool v2.2 (http://www.chbmeng.ohio-state.edu/,feinberg/

crntwin/).

(DOC)

Text S5 Results of the analytical analysis of a model with a

bifunctional, non-split kinase. The file contains the reaction system

considered and the report produced with the Chemical Network

Tool v2.2 (http://www.chbmeng.ohio-state.edu/,feinberg/

crntwin/).

(DOC)

Text S6 Results of the analytical analysis of a model with a

monofunctional, split kinase. The file contains the reaction system

considered and the report produced with the Chemical Network

Tool v2.2 (http://www.chbmeng.ohio-state.edu/,feinberg/

crntwin/).

(DOC)
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