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a b s t r a c t

We study estimation of the date of change in persistence, from I(0) to I(1) or vice versa. Contrary
to statements in the original papers, our analytical results establish that the ratio-based break point
estimators of Kim [Kim, J.Y., 2000. Detection of change in persistence of a linear time series. Journal of
Econometrics 95, 97–116], Kim et al. [Kim, J.Y., Belaire-Franch, J., Badillo Amador, R., 2002. Corringendum
to ‘‘Detection of change in persistence of a linear time series’’. Journal of Econometrics 109, 389–392] and
Busetti and Taylor [Busetti, F., Taylor, A.M.R., 2004. Tests of stationarity against a change in persistence.
Journal of Econometrics 123, 33–66] are inconsistent when amean (or other deterministic component) is
estimated for the process. In such cases, the estimators converge to random variables with upper bound
given by the true break date when persistence changes from I(0) to I(1). A Monte Carlo study confirms
the large sample downward bias and also finds substantial biases in moderate sized samples, partly due
to properties at the end points of the search interval.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Studies of persistence change, i.e. series changing from I(0)
to I(1) or vice versa, often employ ratio-based test procedures,
originally proposed by Kim (2000), and further analysed by Kim
et al. (2002, KBA) and Busetti and Taylor (2004, BT). This theoretical
literature has focused primarily on testing the existence andnature
of persistence change, apparently overlooking a problem with the
associated break point estimators for the date of change. To be
specific, we show that the ratio-based break point estimators of
KBA (corrected from Kim, 2000) and BT are not consistent when a
deterministic term (such as a mean) is estimated. The consistency
established by Kim (2000) applies only in the special (and
typically unrealistic) case where the process is known to have zero
mean.

Therefore, consider the process1

yt = β + µt (1)
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1 Generalisation to include other deterministic terms is possible, but the case of a

mean is sufficient to illustrate the consequences of allowing for deterministic effects
in this context.
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where µt is a zero mean stochastic process and β is a constant
(which could be zero). A change in persistence from I(0) to I(1)
can be represented by defining µt in (1) as

µt =


εt t = 1, . . . , [τ0T ]

t
s=[τ0T ]+1

εs t = [τ0T ] + 1, . . . , T (2)

for t = 1, . . . , T , where τ0 is the true break fraction, τ0 ∈ (0, 1),
and εt is a stationary process (see Assumption 1 below).

BT propose estimating the break fraction for a persistence
change from I(0) to I(1) as

τ̃BT = arg max
τ∈[τl,τu]

JBT (τ ) (3)

JBT (τ ) =

[(1 − τ)T ]−2
T

t=[τT ]+1
ε̂2
1,t

[τT ]−2
[τT ]
t=1

ε̂2
0,t

,

where ε̂0,t = yt − y0 and y0 is the sample mean computed over
t = 1, . . . , [τT ], while ε̂1,t = yt − y1 are the corresponding values
for t = [τT ]+1, . . . , T , and τ ∈ [τl, τu] ⊂ (0, 1) defines the search
interval considered for the break fraction. Although they state that
this estimator is also proposed independently by KBA (see BT, p.38,
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Remark 2.5), in fact KBA propose

τ̃KBA = arg max
τ∈[τl,τu]

JKBA (τ ) (4)

JKBA (τ ) =

[(1 − τ)T ]−2
T

t=[τT ]+1
ε̂2
1,t

[τT ]−1
[τT ]
t=1

ε̂2
0,t

.

Hence

JKBA (τ ) = [τT ]−1 JBT (τ ) (5)

and since the relationship between these depends on the break
fraction τ , (3) and (4) do not, in general, lead to the same estimate
τ̃ .

The next section establishes our analytical results. Specifically,
we provide representations of the limiting distributions of the KBA
and BT break point estimators, (3) and (4), thereby showing that
these ratio-based estimators are not consistent for the true break
point when mean effects are taken into account. This problem
arises from the contamination of otherwise stationary sub-
sample observations by subtraction of a mean that covers some
nonstationary values. Analogous results apply for the estimation
of the break point for a change from I(1) to I(0), as shown in
the Appendix. Section 3 presents Monte Carlo results to further
examine the small and large sample properties of these estimators,
while Section 4 concludes.

2. Asymptotic results

Our key results are provided in Lemma 1 and its corollary.
The conditions of Assumption 1 below permit both temporal
dependence and some forms of heteroskedasticity; see Phillips
(1987) and Phillips and Perron (1988).

Assumption 1. (a) E [εt ] = 0 for all t; (b) E |εt |
γ+ϵ < ∞ for

some γ > 2 and ϵ > 0; (c) εt is α-mixing with mixing
coefficients αm that satisfy


∞

m=1 α
1−2/γ
m < ∞; (d) σ 2

= limT→∞

T−1E
T

t=1 εt

2
exists and σ 2 > 0; and (e) σ 2

ε = limT→∞

T−1T
t=1 E


ε2
t


is strictly positive and finite and does not depend

on the break fraction τ0.

Lemma 1. Suppose that the conditions of Assumption 1 hold and that
τ0 ∈ [τl, τu] ⊂ (0, 1) in the model for a change from I(0) to I(1),
given by (1) and (2). For JBT (τ ) defined in (3) and given τ ∈ [τl, τu]

T−1JBT (τ ) ⇒ τ


1 − τ0

1 − τ

2
σ 2

σ 2
ε

×

 1

0
[V (r)]2 dr −


1 − τ0

1 − τ

 1

0
V (r) dr

2
,

τ ≤ τ0 (6)

JBT (τ ) ⇒


τ

1 − τ

2

×


 1
τ0,1

[V (r)]2dr −


1−τ0
1−τ

  1
τ0,1

V (r)dr
2

 τ0,1
0 [V (r)]2dr −

(1−τ0)

τ

 τ0,1
0 V (r)dr

2
 ,

τ > τ0, (7)

where V (r) is a standard Brownian motion on [0, 1] and τ0,1 =

(τ − τ0)/(1 − τ0). Consequently, τ̃BT defined by (3) is not consistent
since it converges to a random variable, having asymptotic upper
bound of τ0.
Aproof of this lemma is provided in theAppendix. The following
Corollary, relating to the KBA estimator, follows immediately,
using (5).

Corollary 1. Suppose that the conditions of Assumption 1 hold and
that τ0 ∈ [τl, τu] ⊂ (0, 1) in the model given by (1) and (2). For
JKBA(τ ) defined in (4) and given τ ∈ [τl, τu] then

JKBA (τ ) ⇒


1 − τ0

1 − τ

2
σ 2

σ 2
ε

×

 1

0
[V (r)]2 dr −


1 − τ0

1 − τ

 1

0
V (r) dr

2


,

τ ≤ τ0 (8)

T JKBA (τ ) ⇒
τ

(1 − τ)2

×


 1
τ0,1

[V (r)]2dr −


1−τ0
1−τ

  1
τ0,1

V (r)dr
2

 τ0,1
0 [V (r)]2dr −

(1−τ0)
τ

 τ0,1
0 V (r)dr

2
 ,

τ > τ0, (9)

where τ0,1 is defined in Lemma 1. Consequently, τ̃KBA defined by (4) is
not consistent and converges to a random variable, having asymptotic
upper bound of τ0.

Remark 1. The representation of the asymptotic distribution for
neither JBT (τ ) nor JKBA(τ ) is symmetric around τ0. For example,
JBT (τ ) diverges to +∞ for τ ≤ τ0, while it is of Op(1) when
τ > τ0. The asymptotic representation for JKBA(τ ) is similarly of
higher order in T for τ ≤ τ0 than τ > τ0.

Remark 2. The inconsistency of τ̃BT and τ̃KBA for τ0 in (1) and (2)
arises because the term in square brackets on the right-hand side
of (6) and (8) is not necessarily maximised at τ = τ0, due to
(1 − τ0)/(1 − τ) being a monotonically increasing function of
τ . Therefore, the maxima of these expressions varies with the
specific Brownian motion process and the estimators converge
to random variables.2 However, due to the differing orders of
Ji(τ )(i = BT , KBA) for τ ≤ τ0 and τ > τ0, each estimator
has an asymptotic upper bound of τ0, implying that these ratio-
based estimators are asymptotically downward biased when a
mean is estimated for the process. It is anticipated that τ̃KBA ≤

τ̃BT , irrespective of whether a mean is or is not estimated for the
process.

Remark 3. Kim (2000, Theorem 3.5) claims to establish that τ̃KBA
is a consistent estimator of τ0 even with deterministic terms as
in (1). However, in using his Assumption 2, his proof overlooks
the asymptotically non-negligible implications ofmean-correction
when the order of integration changes. More specifically, when
τ < τ0 it is invalid to assume that (in our notation) ε̂1,t = yt − y1
is a stationary sequence over t = [τT ] + 1, . . . , [τ0T ] despite the

2 The term in square brackets in (6) and (8) can also be written as 1

0
[V (r)]2dr +


τ0 − τ

1 − τ

 1

0
V (r)dr

2

,

where V (r) = V (r) −
 1
0 V (s)ds. The second term here arises because when

τ < τ0, y1 is computed over [(1 − τ)T ] observations, rather than the [(1 − τ0)T ]
observations that are truly I(1). For a given Brownian motion process, this term is
a monotonically decreasing function of τ .
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stationarity of yt . An analogous comment applies for the case τ >
τ0; in particular, stationarity does not hold for ε̂0,t = yt − ȳ0, t =

[τ0T ] + 1, . . . , [τT ] because I(1) observations enter ȳ0.3

Remark 4. When (1) contains no deterministic component and no
mean effect is estimated, the second term in square brackets in
(6)–(9) does not appear. For this special case, (6) and (8) are both
maximised at τ = τ0 and both estimators are consistent for the
true change point.

Remark 5. Each expression (6)–(9) has a denominator factor
(1 − τ), which may give rise to bimodality as τ → τu, when τu
is relatively close to 1.

Remark 6. For τ > τ0, but τ approaching τ0 from above, then
both

 τ0,1
0 [V (r)]2 dr and

 τ0,1
0 V (r) dr → 0 where τ0,1 = (τ −

τ0)/(1 − τ0). Thus, Ji(τ ) (i = BT , KBA) diverge to +∞, so that
(7), and (9) might be maximised on τ > τ0 when τ → τ0. For
the integral and consequently for the statistics to be well defined,
τ − τ0 should not be close to zero. In practice, however, it is usual
to consider all available observations as potential break points
and hence the computed value of the denominator may be very
small, leading to maximisation of the statistics for observations
immediately subsequent to (rather than at) the true break
point.

When considering a change in persistence from I(1) to I(0),
the roles of the two subsamples are interchanged from those
considered in Lemma 1 and Corollary 1. These results are provided
in the Appendix.

3. Monte Carlo evidence

This section uses Monte Carlo simulations to investigate the
properties of the BT and KBA estimators for a change-point in
persistence from I(0) to I(1) for a range of sample sizes.4 The data
generation process (DGP) is given in (1) and (2) with an intercept
included in the regression, specificallyβ = 5, εt ∼ N(0, 1) and the
true break fractions are given by τ0 = {0.3, 0.5, 0.7}. For all cases
we generate series of T = {100, 1000, 5000, 10,000, 20,000}
observations and a total of 10,000 replications are carried out for
each design. The discussion below is divided into two subsections,
the first examining ‘‘small’’ sample properties and the second
‘‘large’’ sample ones, with the latter providing evidence on the
asymptotic properties of the ratio-based estimators considered in
the preceding section.

Although the DGP always exhibits a change in the order of
integration, we follow empirical practice and employ a pre-test for
the presence of a change in persistence using the sup-type test of
BT (2004) at the 5% significance level. Only replications for which
a break in persistence is detected are retained for estimating the
break fractions.5 The tests and estimation of the change points
apply the search interval τ ∈ [0.2, 0.8].

3.1. Small sample properties

The sample mean and mean absolute deviation of the break
fractions for a change from I(0) to I(1) are reported in Table 1
where (as usual in this literature) the search considers every

3 We thank a referee for pointing this out to us.
4 Results for the I(1) to I(0) case can be obtained from the authors on request.
5 Although the number of such replications is not reported, approximately 94%

to 98% of these reject the null hypothesis when T = 100. For larger sample sizes,
the null hypothesis of unchanged order is always rejected.
Table 1
Empirical properties of break fraction estimators for I(0) to I(1) for small/moderate
sample sizes.

τ0 = 0.3 τ0 = 0.5 τ0 = 0.7
τ̃BT τ̃KBA τ̃BT τ̃KBA τ̃BT τ̃KBA

T = 100
Mean 0.450 0.329 0.579 0.486 0.721 0.686
Abs. Dev. 0.171 0.104 0.119 0.141 0.062 0.080
T = 1000
Mean 0.311 0.272 0.505 0.468 0.704 0.691
Abs. Dev. 0.020 0.036 0.027 0.047 0.028 0.034

Notes: The results are based on 10,000 replications, with the break fraction
estimated for replications in which the null hypothesis of constant order of
integration is rejected at the 5% level. Tests and break fraction estimation employ
searches over all observations in the interval τ ∈ [0.2, 0.8].

observation within the range [τlT , τuT ] = [0.2T , 0.8T ] as the
potential break point. The resulting empirical distributions, for
sample sizes of 100 and 1000 observations, are also presented in
Figs. 1 and 2.

The finite sample results for the BT and KBA estimators shown
in Table 1 appear to be the consequence of two partially off-
setting effects noted in Section 2, namely the upward bias from
the bimodality of the distributions commented on in Remark 5 and
the mean-correction resulting in an asymptotic downward bias as
noted in Remark 2. For the BT estimator, the former effect is the
stronger, which is evident in the upper-boundary estimates seen in
Fig. 1 with T = 100. This clustering of τ̃BT at τu = 0.8 occurs even
when τ0 = 0.3. This also explains why the bias for this estimator
in Table 1 is less severe for larger values of τ0. Although the
properties improve as the sample size increases, the BT estimator
nevertheless leads to clustering at the upper limit even with T =

1000 which is especially noticeable in Fig. 2 when τ0 = 0.7.
On the other hand, for the KBA estimator, and particularly as the
sample size increases, the asymptotic downward bias becomes
the stronger effect, although the KBA estimator also suffers from
bimodality at the upper limit, which similarly does not disappear
even for T = 1000. Also note that the KBA estimator exhibits a
peak at the lower limit of τl = 0.2 when τ0 = 0.3, which remains
perceptible in Fig. 2 for T = 1000. Further, the means of the
estimates always exhibit the ordering τ̃KBA ≤ τ̃BT anticipated in
Remark 2.

3.2. Large sample properties

Table 1 sheds only limited evidence about the asymptotic
properties of the ratio-based estimators when mean corrections
are applied. For example, as T increases, the means of the BT
and KBA are decreasing, but the mean of τ̃BT is greater than τ0
with T = 1000, and hence does not exhibit the anticipated
asymptotic upper bound of τ0 in Lemma 1. To investigate the
empirical large sample behaviour of these estimators for the non-
zero mean case, Table 2 presents results for samples of T =

5000, 10,000, 20,000.6 The results in this table also show, for
each case, the percentage of replications for which the estimate
coincides with the true value and the percentage of replications
for which the estimate exceeds τ0 (denoted %True and %After,
respectively). The latter is included to investigate the implication
of the theoretical analysis that τ0 provides an asymptotic upper
bound for the estimated break fraction using the BT or KBA
estimators.

6 Following Remark 6, the results in Table 2 are computed with the search for the
break point taken in steps of 0.01 over the interval τ ∈ [0.2, 0.8], ensuring that
the approximations to the asymptotic distributions of Section 2 should improve as
T increases.
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Fig. 1. Distribution of break fraction estimators for a change from I(0) to I(1) for T = 100.
Fig. 2. Distribution of break fraction estimators for change from I(0) to I(1) for T = 1000.
Table 2 supports the analytical results. Each ratio-based
estimator is downward biased, with a mean that is effectively
independent of T for these large sample sizes. Further, since the
relationship τ̃KBA ≤ τ̃BT also applies (see Remark 2), the KBA
estimator suffers greater large sample biases than the BT estimator.
In particular, when mean effects are allowed, the KBA estimator
is downward biased by around 3% when τ0 = 0.3, with average
τ̃KBA of around 0.27, with the bias being a little larger when τ0 =

0.5. The biases for both estimators in Table 2 are very similar
to the biases shown for a sample size of T = 1000 in Table 1.
However, irrespective of the particular estimator and the true
break fraction τ0, themean absolute deviations barely changewith
T in Table 2, providing evidence of the asymptotic random nature
of the estimators. Finally, with these large sample sizes, only a
small (and declining) percentage of estimates exceed the true τ0
supporting the theoretical result that this true value provides an
asymptotic upper bound for the random BT and KBA break fraction
estimators (see Lemma 1 and Corollary 1). Indeed, these results
further emphasise the poor performance of the KBA estimator
when τ0 = 0.3, with 20% of the estimates here being at the lower
boundary of the search interval, irrespective of T = 5000, 10,000
or 20,000.

4. Conclusion

This paper shows analytically that the ratio-based break
fraction estimators of BT and KBA are not consistent for the true
break point when mean effects have to be taken into account
through a prior regression. To be specific, both estimators converge
to random variables which have upper bound equal to the
true break fraction and hence exhibit large sample downward
biases when persistence changes from I(0) to I(1). A Monte
Carlo analysis shows that the KBA change point estimator can
show substantial biases for all sample sizes when mean-corrected
residuals are employed. In relatively small samples, this results
from a combination of clustering of estimates at the upper bound
of the search interval together with the off-setting effects due to
the lack of consistency of the estimator which has an asymptotic
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Table 2
Empirical large sample properties of ratio-based break fraction estimators for I(0)
to I(1).

τ0 = 0.3 τ0 = 0.5 τ0 = 0.7
τ̃BT τ̃KBA τ̃BT τ̃KBA τ̃BT τ̃KBA

T = 5000
Mean 0.296 0.269 0.489 0.465 0.689 0.680
Abs. Dev. 0.004 0.031 0.011 0.036 0.012 0.020
%Extreme 0.02 19.2 0.01 0 0.03 0
%True 84.5 58.3 71.4 60.0 68.9 63.3
%After 2.60 0.37 4.51 1.84 3.62 2.10

T = 10,000
Mean 0.296 0.269 0.490 0.465 0.689 0.680
Abs. Dev. 0.004 0.031 0.010 0.035 0.012 0.020
%Extreme 0 19.7 0 0 0 0
%True 87.7 60.4 75.8 62.3 67.3 61.5
%After 0.14 0 0.65 0.11 2.85 1.67

T = 20,000
Mean 0.296 0.270 0.490 0.468 0.688 0.680
Abs. Dev. 0.004 0.030 0.009 0.032 0.011 0.020
%Extreme 0 20.8 0 0 0 0
% True 88.0 62.0 77.9 63.5 70.8 64.0
%After 0 0 0.01 0 0.27 0.11

Notes: as for Table 1, except that break fraction estimation is conducted by
searching in steps of 0.01 within the interval τ ∈ [0.2, 0.8], with %Extreme being
the percentage of break fraction estimates that lie at an end-point of the search
interval, and %True and %After being the percentages of estimates that are equal to
and exceed τ0 , respectively.

upper bound of τ0. Our simulations imply that, for at least some
values of τ0, the latter effect outweighs the former. Although it also
suffers from a lack of consistency, the BT estimator has less severe
large sample bias relative to the KBA estimator, but it appears to be
badly upward biased in small samples due to the bimodality at the
upper bound of the search interval, which is not compensated by
the (small sample) effects of a substantial asymptotic downward
bias.

Finally, it should be noted that the lack of consistency of the KBA
and BT break fraction estimators is not shared by the estimator of
Leybourne et al. (2006). That break point estimator for a change
in persistence is based on a scaled cumulated sum of squares and
does not give rise to the problem studied here.
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Appendix

The first part of the appendix provides a proof of Lemma 1,
while the secondpart discusses a change in persistence from I(1) to
I(0).

Proof of Lemma 1. For a change from I(0) to I(1), rewrite the BT
statistic of (3) as

JBT (τ ) =

[τT ] [(1 − τ)T ]−2
T

t=[τT ]+1
ε̂2
1,t

[τT ]−1
[τT ]
t=1

ε̂2
0,t

. (10)
Consider first τ = τ0. For the denominator, ([τ0T ])−1[τ0T ]
t=1 ε̂2

0,t
p
−→ σ 2

ε . For the numerator, define T1 = [(1 − τ0)T ] and a functional
central limit theorem (FCLT) yields

T −1/2
1 µ[rT ] ⇒ σ [V (r1)] ,

r1 = (r − τ0)/(1 − τ0), r ∈ (τ0, 1] (11)

where V (·) is a standard Brownian motion on [0, 1], since (2)
defines a zero-mean I(1) process for µ[rT ], r > τ0, with starting
value µ[τ0T ] = 0. From (11),

T −1/2
1 µ1 = T −3/2

1

T
t=[τ0T ]+1

µt

⇒ σ (1 − τ0)
−1
 1

τ0

V


s − τ0

1 − τ0


ds

= σ

 1

0
V (s1)ds1


where the result in the second line follows by the continuous
mapping theorem (CMT) and the last line follows by a change of
variable s1 =

s−τ0
1−τ0

∈ (0, 1). Hence

T −1/2
1 ε̂1,[rT ] = T −1/2

1 [µ[rT ] − µ1] r ∈ (τ0, 1]

⇒ σ


V (r1) −

 1

0
V (s1) ds1


r1 = (r − τ0)/(1 − τ0). (12)

Thus

T −2
1

T
t=[τ0T ]+1

ε̂2
1,t ⇒ σ 2

 1

0


V (r1) −

 1

0
V (s1) ds1

2

dr1 (13)

so that

1
T
JBT (τ0) ⇒ τ0

σ 2

σ 2
ε

 1

0
(V (r1))2 dr1 −

 1

0
V (s1) ds1

2


which yields that JBT (τ0) diverges to +∞ as T → ∞.

Now consider the case of a given τ < τ0. Retaining the
definition T1 = [(1 − τ0)T ], then

T −1/2
1 µ1 = T −1/2

1 [(1 − τ)T ]
−1


T

t=[τ0T ]+1

µt +

[τ0T ]
t=[τT ]+1

εt



⇒ σ


1 − τ0

1 − τ

  1

0
V (s1) ds1 (14)

and hence

T −1/2
1 ε̂1,[rT ] ⇒


σ


V (r1) −


1 − τ0

1 − τ

  1

0
V (s1) ds1


,

r1 = (r − τ0)/(1 − τ0), r ∈ (τ0, 1]

−σ


1 − τ0

1 − τ

  1

0
V (s1) ds1, r ∈ (τ , τ0].

Therefore,

T −2
1

T
t=[τT ]+1

ε̂2
1,t = T −2

1


[τ0T ]

t=[τT ]+1

ε̂2
1,t +

T
t=[τ0T ]+1

ε̂2
1,t



⇒ σ 2

 1

0
[V (r1)]2 dr1 −


1 − τ0

1 − τ

 1

0
V (r1) dr1

2


. (15)
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Moreover, for the denominator of JBT (τ )

[τT ]−1
[τT ]
t=1

ε̂2
0,t

p
−→ σ 2

ε . (16)

Substituting from (15) and (16) into (10) yields the required
expression (6) for τ ≤ τ0.

Finally, consider a given τ > τ0. Firstly, since yt ∼ I(1) for
t > [τ0T ], then (11) continues to hold for r ∈ (τ , 1], while

T −1/2
1 µ1 ⇒ σ


1 − τ0

1 − τ

 1

τ0,1

[V (s1)]ds1


,

τ0,1 = (τ − τ0)/(1 − τ0).

Therefore, (12) is replaced by

T −1/2
1 ε̂1,[rT ] ⇒ σ


V (r1) −


1 − τ0

1 − τ

 1

τ0,1

V (s1)ds1


,

r1 = (r − τ0)/(1 − τ0) (17)

for r ∈ (τ , 1] and, in relation to the numerator, using the CMT

T −2
1

T
t=[τT ]+1

ε̂2
1,t

⇒ σ 2

 1

τ0,1

[V (r1)]2dr1 −


1 − τ0

1 − τ

 1

τ0,1

V (s1)ds1

2
 (18)

since
 1
τ0,1

1 dr1 = 1 − τ0,1 = (1 − τ)/(1 − τ0). Secondly, the
denominator of the statistic is

[τT ]−2
[τT ]
t=1

ε̂2
0,t = [τT ]−2


[τ0T ]
t=1

ε̂2
0,t +

[τT ]
t=[τ0T ]+1

ε̂2
0,t



in which

T −1/2
1 µ0 = T −1/2

1 [τT ]
−1


[τ0T ]
t=1

εt +

[τT ]
t=[τ0T ]+1

µt



⇒ σ


1 − τ0

τ

 τ0,1

0
V (s1)ds1

where τ0,1 is defined as above. Further, T −1/2
1 µ[rT ] ⇒ σ [V (r1)] for

r1 = (r − τ0)/(1 − τ0) and r > τ0. Thus

T −1/2
1 ε̂0,[rT ] ⇒


σ


V (r1) −


1 − τ0

τ

 τ0,1

0
V (s1)ds1


,

r ∈ (τ0, τ ]

−σ


1 − τ0

τ

 τ0,1

0
V (s1)ds1, r ∈ [0, τ0].

By the CMT

T −2
1

[τT ]
t=1

ε̂2
0,t

⇒ σ 2

 τ0,1

0
[V (r1)]2dr1 −

1 − τ0

τ

 τ0,1

0
V (s1)ds1

2


. (19)
From (19) and (13), the representation of the limit distribution of
JBT (τ ) for τ > τ0 is then given as in (7).

Further, for τ > τ0, (7) implies that

sup
τ∈[τl,τu]


τ

1 − τ

2


 1
τ0,1

[V (r)]2dr −


1−τ0
1−τ

  1
τ0,1

V (r)dr
2

 τ0,1
0 [V (r)]2dr −

(1−τ0)
τ

 τ0,1
0 V (r)dr

2


= Op (1) .

Combining results for τ ≤ τ0 and τ > τ0, the joint conver-
gence result follows from arguments similar to those in Zivot and
Andrews (1992). Writing

sup
τ∈[τl,τu]

T−1JBT (τ )

= sup
τ∈[τl,τu]


T−1JBT (τ ) 1 (τ ≤ τ0) + T−1JBT (τ ) 1 (τ > τ0)


where 1(·) is an indicator function taking the value unity when the
expression in parentheses is satisfied, then

sup
τ∈[τl,τu]

T−1JBT (τ ) − sup
τ∈[τl,τ0]

T−1JBT (τ )

≤ sup
τ∈(τ0,τu]

T−1JBT (τ ) (20)

and firstly, we establish that supτ∈(τ0,τu]
T−1JBT (τ ) = op (1).

Specifically, denoting as op,τ (1) any random variable ς(τ) such
that supτ∈[τl,τu] |ς(τ)|

p
−→ 0, then

sup
τ∈(τ0,τu]

JBT (τ )

= sup
τ∈(τ0,τu]

[(1 − τ)T ]−2
T

t=[τT ]+1
ε̂2
1,t

[τT ]−2


[τ0T ]
t=1

ε̂2
0,t +

[τT ]
t=[τ0T ]+1

ε̂2
0,t



= sup
τ∈(τ0,τu]

τ 2

(1 − τ)2
T−1

T
t=[τT ]+1


σ−1T−1/2

1 µt

− [(1 − τ) T ]−1
T

t=[τT ]+1

σ−1T−1/2
1 µt

2

×

T−1
[τ0T ]
t=1


− [τT ]−1

[τT ]
t=[τ0T ]+1

σ−1T−1/2
1 µt

2

+ T−1
[τT ]

t=[τ0T ]+1


σ−1T−1/2

1 µt

− [τT ]−1
[τT ]

t=[τ0T ]+1

σ−1T−1/2
1 µt

2
−1

+ op,τ (1)

= g1 (XT , [τT ] /T ) + op,τ (1)

= h∗

h1

c1 [[τT ] /T ] ,H1


XT , [τT ] /T


,

H2 [XT , [τT ] /T ] ,H3 [XT , [τT ] /T ]]) + op,τ (1) ,

where XT (r) = σ−1T−1/2
1 µ[rT ], r ∈ (τ0, 1], is the standardised em-

pirical process.
In particular, h∗ (m) = supτ∈(τ0,τu]

m (τ ) maps a function on
τ ∈ (τ0, τu] into the positive real line, h1 maps four functions on
(τ0, τu] into a function on (τ0, τu]

h1

m1,m2,m3,m4


(·) = m1 (·)m2 (·) [m3 (·) + m4 (·)]−1 .
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sup
τ∈[τl,τu]

T−1JBT (τ ) = sup
τ∈[τl,τ0]

τ (1 − τ0) T−1


[τ0T ]

t=[τT ]+1


T−1/2
1 ε̂1,t

2
+

T
t=[τ0T ]+1


T−1/2
1 ε̂1,t

2
(1 − τ)2 σ̂ 2

ε

+ op,τ (1)

= sup
τ∈[τl,τ0]

τ (1 − τ0)

(1 − τ)2
σ 2

σ̂ 2
ε

T−1
[τ0T ]

t=[τT ]+1


− [(1 − τ) T ]−1

T
t=[τT ]+1

T−1/2
1 σ−1µt

2

+ T−1
T

t=[τ0T ]+1


T−1/2
1 σ−1µt − [(1 − τ) T ]−1

T
t=[τT ]+1

T−1/2
1 σ−1µt

2
+ op,τ (1)

= g2

XT , σ̂

2
ε , σ 2, [τT ] /T


+ op,τ (1)

= h∗

h2

σ 2, σ̂ 2

ε , c2 [[τT ] /T ] ,H4 [XT , [τT ] /T ] ,H5 [XT , [τT ] /T ]


+ op,τ (1) .

Box I.
Further, c1 (·) = (τ/ (1 − τ))2 maps a function on (τ0, τu] into a
function on (τ0, τu], and H1,H2 and H3 map functions on [0, 1] ×

(τ0, τu] into functions on (τ0, τu] and are functional analogues of
the standardised empirical process, specifically

T−1
T

t=[τT ]+1


σ−1T−1/2

1 µt − [(1 − τ) T ]−1

×

T
t=[τT ]+1

σ−1T−1/2
1 µt

2

=

 1

τ


XT (r1) − (1 − τ)−1

 1

τ

XT (s1) ds
2

dr + op,τ (1)

= H1 [XT , [τT ] /T ] + op,τ (1) ,

T−1
[τ0T ]
t=1


− [τT ]−1

[τT ]
t=[τ0T ]+1

σ−1T−1/2
1 µt

2

= −
1 − τ0

τ 2

 τ

τ0

XT (s1) ds
2

+ op,τ (1)

= H2 [XT , [τT ] /T ] + op,τ (1)

and

T−1
[τT ]

t=[τ0T ]+1


σ−1T−1/2

1 µt − [τT ]−1
[τT ]

t=[τ0T ]+1

σ−1T−1/2
1 µt

2

=

 τ

τ0


V (r1) − τ−1

 τ

τ0

XT (s1) ds

dr + op,τ (1)

= H3 [XT , [τT ] /T ] + op,τ (1) .

Thus, the continuity of g1 (·) follows from a composition of con-
tinuous functions. Given the joint convergence of (XT (·) , [τT ] /T )

⇒ (V (r1) , τ ) , r1 =
r−τ0
1−τ0

, r ∈ (τ0, 1], and applying the CMT,
the representation of the limit distribution of JBT (τ ) for τ >

τ0 as given in (7) holds uniformly over τ . This establishes that
supτ∈(τ0,τu]

T−1JBT (τ ) = T−1Op (1) = op (1).
Therefore, from (20)

sup
τ∈[τl,τu]

T−1JBT (τ ) − sup
τ∈[τl,τ0]

T−1JBT (τ ) = op (1) .

Let σ̂ 2
ε = [τT ]−1[τT ]

t=1 ε̂2
0,t and denoting as op,τ (1) any random

variable ς(τ) such that supτ∈[τl,τu] |ς(τ)|
p
−→ 0, then the BT test

statistic can be written as in Box I.
Similarly as above, continuity of g2 (·) is established from con-
tinuity of composition functions, where h2 maps two positive real
numbers and three functions on [τl, τ0] into a function on [τl, τ0]

h2 [m1,m2,m3,m4,m5] (·)
= m1 (·)m2 (·)−1 m3 (·) [m4 (·) + m5 (·)] .

The functionalsH4 andH5 are functional analogues of standardised
empirical processes, specifically

T−1
[τ0T ]

t=[τT ]+1


− [(1 − τ) T ]−1

T
t=[τT ]+1

T−1/2
1 σ−1µt

2

=

 τ0

τ


− (1 − τ)−1

 1

τ0

XT (s1) ds
2

dr + op,τ (1)

= H4

XT , [τT ] /T


+ op,τ (1)

and

T−1
T

t=[τ0T ]+1


T−1/2
1 σ−1µt − [(1 − τ) T ]−1

×

T
t=[τT ]+1

T−1/2
1 σ−1µt

2

=

 1

τ0


XT (r1) − (1 − τ)−1

 1

τ0

XT (s1) ds
2

dr + op,τ (1)

= H5 [XT , [τT ] /T ] + op,τ (1) .

Now, given the joint convergence of (XT , σ̂
2
ε , σ 2, [τT ] /T ) ⇒

V (r1) , σ 2
ε , σ 21 (·) , τ


, r1 =

r−τ0
1−τ0

, r ∈ (τ0, 1] and 1 (·) is the con-
stant function equal to 1 for all τ ∈ [τl, τu], then the weak conver-
gence result of supτ∈[τl,τu] T

−1JBT (τ ) follows by applying the CMT
given the continuity of g2 (·). �

A change in persistence from I(1) to I(0) can be represented
through (1) with the stochastic process

µt =


[τ0T ]
s=1

εs t = 1, . . . , [τ0T ]

[τ0T ]
s=1

εs + εt t = [τ0T ] + 1, . . . , T

(21)

where the specification of (21) avoids a discontinuity in level at
the change point, which would apply if

[τ0T ]

s=1 εs is omitted for
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t > [τ0T ]. For this case, BT andKBApropose replacing (3) and (4) by
the minima of the corresponding expressions, with the following
lemma and corollary providing analytical results for these change
point estimators. The proof is omitted since it follows the same
lines as for Lemma1,while the corollary again follows immediately
from (5).

Lemma 2. Suppose that Assumption 1 holds and τ0 ∈ [τl, τu] ⊂

(0, 1) in the model for a change from I(1) to I(0) given by (1) and
(21). Then for given τ ∈ [τl, τu]

JBT (τ ) ⇒


τ

1 − τ

2

×


 1
τ1,0

[V (r)]2 dr −
τ0

1−τ

 1
τ1,0

V (r) dr
2

 τ1,0
0 [V (r)]2 dr −

τ0
τ

 τ1,0
0 V (r) dr

2
 ,

τ1,0 = τ/τ0, τ < τ0

T JBT (τ ) ⇒
1

1 − τ


τ

τ0

2
σ 2

ε

σ 2

×

 1

0
[V (r)]2 dr −

τ0

τ

 1

0
V (r) dr

2
−1

, τ ≥ τ0.

Consequently,τBT defined by minimising JBT (τ ) in (3) is inconsistent
since it converges to a random variable, having asymptotic lower
bound of τ0.

Corollary 2. Suppose that τ0 ∈ [τl, τu] ⊂ (0, 1) in the model for a
change from I(1) to I(0) given by (1) and (21). For given τ ∈ [τl, τu]
then
T JKBA (τ ) ⇒
τ

(1 − τ)2

×


 1
τ1,0

[V (r)]2 dr −
τ0

1−τ

 1
τ1,0

V (r) dr
2

 τ1,0
0 [V (r)]2 dr −

τ0
τ

 τ1,0
0 V (r) dr

2
 ,

τ1,0 = τ/τ0, τ < τ0

T 2JKBA (τ ) ⇒


τ

1 − τ


1
τ 2
0


σ 2

ε

σ 2

×

 1

0
[V (r)]2 dr −

τ0

τ

 1

0
V (r) dr

2
−1

, τ ≥ τ0.

Consequently,τKBA defined by minimising JKBA(τ ) in (4) is inconsis-
tent, being a random variable with asymptotic lower bound of τ0.
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