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Compact photonic-crystal superabsorbers from strongly absorbing media
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We present a route to near-perfect absorption in compact photonic-crystal (PC) structures

constructed from strongly absorbing media that are typically highly reflective in bulk form. Our

analysis suggests that the key underlying mechanism in such PC superabsorbers is the existence of

a PC-band-edge reflectionless condition. Although the latter is by default uncharacteristic in

photonic crystals, we propose here a clear recipe on how such condition can be met by tuning the

structural characteristics of one-dimensional lossy PC structures. Based on this recipe, we

constructed a realizable three-layer SiC-BaF2-SiC PC operating within the Reststrahlen band of

SiC. We demonstrate near-perfect absorption in this prototype of total thickness smaller than k=3,

where more than 90% of the impinging light is absorbed by the top deep-subwavelength layer of

thickness �k=1100. We believe our study will inspire new photonic-crystal-based designs for

extreme absorption harnessing across the electromagnetic spectrum. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4811521]

I. INTRODUCTION

Absorbers are crucial components in photovoltaic and

bolometric light detectors,1–3 and thus invaluable for a wide

range of applications, such as energy conversion systems,4,5

IR imaging devices6,7 for early-stage cancer diagnosis11–13

as well as bio-sensing.8–10 This vast applications potential

has spurred intensive research efforts for new efficient

absorber designs across the electromagnetic (EM) spectrum.

Traditional architectures may involve a top anti-reflection

coating3 to enhance the in-coupling of light and a back-

reflector that facilitates a second light pass.2 Many current

works go beyond the latter approach with focused efforts

around absorption optimization by nano/micro-structuring

the absorber and/or its environment,14–17 including structures

aiming for plasmon-mediated near-field enhancement in the

vicinity of the absorber.4,5,8,9,11,18

Photonic-crystals (PCs) have been researched for

absorption control both as back-reflector components19–21

and directly as the absorptive medium.22–26 The latter cases

seem promising schemes for one-step absorption platforms

where the lossy photonic crystal could facilitate the in-

coupling of all impinging light and at the same time would

mold the coupled mode in a fashion that enables all light to

get absorbed. This one-step process is highly attractive, but

also particular challenging, even more so for thin sub-

wavelength structures. Compact PC-based superabsorbers

should demonstrate a strong power-loss rate; so they should

be constructed from strongly absorbing media. Yet strong

absorbers, i.e., media with a large extinction coefficient j,

are typically highly reflective as bulk materials. In Ref. 26,

Devarapu and Foteinopoulou derived theoretically a condi-

tion for zero reflection at the interface of a lossy one-

dimensional (1D) PC. Relying on this condition, they

demonstrated a SiC-air PC paradigm which is reflectionless

even within the Reststrahlen band of SiC. This feature had

been subsequently utilized to achieve a near-perfect absorp-

tion with a thick structure of about �20k.

In this paper, we investigate control of the spectral

occurrence of the aforementioned reflectionless condition

with the structural characteristics of 1D PCs. Relying on the

insight gained from the analysis of the latter design principle,

we propose compact realizable PC structures exhibiting dra-

matic absorption enhancement. In particular, in Sec. II, we

explore how the PC’s structural features should be tuned for

the spectral control of the reflectionless condition. In Sec.

III, we analyze the key importance of the spectral position of

the reflectionless condition with respect to the PC band-edge

on extra-ordinary absorption control. By applying the insight

gained by this analysis, we explore extreme absorption har-

nessing with a compact three-layer PC in Sec. IV. Finally,

we present practically realizable compact designs in Sec. V

and discuss our conclusions in Sec. VI.

II. PHOTONIC BAND-EDGE AND REFLECTIVITY

In Ref. 22, Lin et al. presented a metallic photonic crys-

tal absorber, where the observed optimal—close to 50%—

absorption was attributed to the low energy velocity, ve at

the PC band-edge, providing longer light-matter interaction

times. However, very recently the theoretical analysis26 of

Devarapu and Foteinopoulou uncovered a complex relation

between energy velocity and reflection. They showed that

actually optimal absorption occurs when the PC is reflection-

less, which is atypical for band-edge frequencies. In this sec-

tion, we explore whether it is possible by tuning the PC’s

characteristics to push such reflectionless condition very

close to the band-edge.

For this purpose, and for completeness, we briefly recap

the reflectionless condition that was derived in Ref. 26. For a

one-dimensional lossy PC to be reflectionless, the energy ve-

locity at its interface should be equal toa)Electronic mail: S.Foteinopoulou@exeter.ac.uk
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ve0 ¼
2c

e0 þ 2xe0 0
C þ 1

; (1)

with c being the speed of light. The quantity e0 þ 2xe00=C
appearing in the denominator of Eq. (1) is characteristic of a

Lorentzian absorber27 of dispersive permittivity eðxÞ, with x
and C being the impinging EM wave’s and material’s damp-

ing frequency, respectively. This factor is correlated with the

lossy medium’s stored electric energy density.28 Note that

throughout this paper, the prime and double-prime will des-

ignate the real and imaginary part of the permittivity, respec-

tively. Equation (1) suggests that the optimal energy velocity

value at the interface that is required for the PC structure to

be reflectionless is dictated only by the lossy material that is

placed at the interface. However, tailoring the energy veloc-

ity at the interface of the PC does depend highly on all its

constituents and its structural particulars.

For the PC to be reflectionless, Eq. (1) is a necessary but

not a sufficient condition. In addition, the impinging light

must be slowing down as it enters the PC with a negative

spatial energy velocity gradient that is given by

dve

dx

� �
0

¼ e00x
c

ve0 �1þ ve0

c

� �
; (2)

where ve0 is the required optimal interface-energy-velocity

value given by Eq. (1).

We proceed by studying a SiC-air 1D PC system as in

Ref. 26, depicted in the schematics of Fig. 1(a) with all rele-

vant geometric features designated in the figure with “1” and

“2” labeling the properties of the SiC and air layer, respec-

tively. The corresponding permittivities are e1 ¼ eðxÞ and

e2 ¼ 1, with the dispersive dielectric eðxÞ given by

eðxÞ ¼ e1 1þ x2
L � x2

T

x2
T � x2 � ixC

 !
; (3)

where e1¼ 6:7;xT ¼ 2p�23:79 THz;xL¼ 2p�29:07 THz

and C¼ 2p�0:1428 THz in accordance with Ref. 29.

Equation (3) with these parameters gives a permittivity

model close to the experimental optical Palik data30 for SiC

that is appropriate for EM waves varying as e�ixt with time,

t.31,32 The SiC permittivity is shown in Fig. 1(b), where we

have highlighted the Reststrahlen band where our subsequent

investigation focuses. In the Reststrahlen regime, light does

not couple efficiently inside the bulk material. It gets

reflected with very little light getting absorbed as one can

see in Fig. 1(c).

For the SiC-air 1D PC, there are two main structural

characteristics that can be tuned to control its behavior. One

is its inter-layer separation, a, known as lattice constant, and

the other the SiC filling ratio, f, given by d1=a. We focus in

the following only on a low filling ratio PC, with f¼ 0.05.

This is because we found that as the PC’s filling ratio

increases, it starts resembling the behavior of bulk SiC.26 So

the primary “tuning knob” to control the PC’s properties will

be the lattice constant, a. We alert the reader that the familiar

scalability law applicable to dielectric PCs33 does not extend

to our PC system under investigation, because it is made of

dispersive constituents. In other words, changes in the PC’s

lattice constant can in principle effect very different PC

behaviors in contrast with a mere frequency shift of the same

behavior which one expects for dielectric PCs.

Accordingly, we investigate in the following the inter-

face energy velocity ve;int with changing lattice constant for a

semi-infinite PC.34 It can be shown that it can be evaluated

by the following expression:28

ve;int ¼
1
2

Re½Eyð0ÞH�z ð0Þ�
1
4
½e0 e0 þ 2xe0 0

C

� �
jEyð0Þj2 þ l0jHzð0Þj2�

; (4)

where e0 and l0 are the vacuum permittivity and permeabil-

ity, respectively. Ey and Hz represent the relevant y- and

z-components of the electric and magnetic field [see

Fig. 1(a)]. The fields are evaluated at the interface, i.e., at

x¼ 0, with the transfer matrix method (TMM).36–38

Three characteristic cases for the spectral response of

the energy velocity at the PC interface, ve;int, are shown as

solid lines in Figs. 2(a)–2(c), that correspond to PCs with lat-

tice constants a¼ 5 lm, 8 lm, and 10 lm, respectively. Note,

ve;int is expressed as a fraction of the speed of light, c, and is

plotted versus the free space wavelength kfree of the incom-

ing EM wave. We can identify the PC band-edge in each

case of Fig. 2 with the region where the energy velocity

drops to nearly zero, but we note that this is not sharply

defined for lossy media. We also show the reflectionless con-

dition by plotting the required interface-energy-velocity opti-

mum, ve;0, with the dotted lines. The intersection between

the ve;int and the ve;0 curves signifies the free-space wave-

length where the PC can be reflectionless. We highlight

more clearly this region in the insets of each figure.

We observe three distinct behaviors with respect to the

relation between the ve;int and ve;0 curves. The eight-micron

structure case seems to be completely different from the case

of the five- and ten-micron structures. In particular, we see

FIG. 1. (a) Schematics of the SiC-air 1D-PC with the geometric parameters

indicated. (b) Spectral response of the real (solid) and imaginary (dashed)

parts of the SiC permittivity model of Eq. (3). (c) Absorption (dashed line)

and reflection (solid line) for a thick bulk SiC block.
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that the two energy velocity curves scrape close together

without intersecting, at an extended wavelength region

around 10.5 lm and far from the band-edge. Based on this

observation, we predict that the eight-micron design would

not be the most suitable for an enhanced absorption perform-

ance, which we will confirm in Sec. III. The behavior of the

five-micron and ten-micron designs looks similar where we

see that the ve;int and ve;0 curves intersect, which means both

can potentially operate as reflectionless PCs at the intersec-

tion wavelength. Yet, there is a small, but very important dif-

ference. For the five-micron PC design, the intersection

between ve;int and ve;0 curves occurs at the close vicinity of

the band-edge. On the other hand, this intersection occurs

somewhat further from the band-edge for the ten-micron PC

design, whose behavior is similar to the case studied in Ref.

26. We will see in Sec. III, that even this seemingly small

spectral difference in the intersection occurrence with

respect to the band-edge will have an enormous impact on

the respective PCs performances as absorbers.

We would like to remind the reader, that the existence

of an intersection between ve;int and ve;0 is only a necessary

condition. Light should also slow down as it enters the PC

structure with an appropriate spatial gradient given by Eq.

(2). Altering only the entry-layer thickness, without modify-

ing the remaining PC characteristics, tunes the interface

energy velocity gradient26 without changing much the value

of ve;int. We can see that by observing the dashed line curves

in Fig. 2, which correspond to the same semi-infinite PCs,

but with 50% of their entry SiC layer being cut-off.

This effect can be clearly seen in Fig. 3, where dve=dx is

calculated36–38 as a function of the location, x within the

entry SiC layer of the semi-infinite PC. This is done at the

free space wavelength where the ve;int and ve;0 curves inter-

sect. This is 12.20 lm for the PC with a¼ 5 lm and

11.48 lm for the PC with a¼ 10 lm. We show the results for

both the cases of complete and terminated—missing 50% of

the entry layer—structures, as thick and thin solid lines,

respectively. Fig. 3(a) features the PC case of 5 lm lattice

constant. Conversely, Fig. 3(b) shows the corresponding

result for the PC case of 10 lm lattice constant. The dotted

lines represent dve=dx for the terminated PC cases, but plot-

ted with a x-coordinate shift that places the terminated PC’s

front-layer in the center of the complete PCs front-layer.

Notice the remarkable agreement between the complete PC

result and the coordinate-shifted terminated-PC result. This

makes it evident why one can essentially get the desired

dve=dx value (seen as horizontal dashed lines) that is dictated

by the reflectionless condition of Eq. (2), just by “cutting-

off” sufficient material from the front SiC layer.

The above theoretical analysis suggests that both PCs

with lattice constants of 5 and 10 lm will be reflectionless

for an impinging wave with a wavelength of 12.20 lm and

11.48 lm, respectively, when their front-face is terminated

at 44% and 50% of its complete size, respectively. To ver-

ify the predictions of our energy-velocity-based design prin-

ciple, we calculate with the TMM36–38 the reflection for

these semi-infinite PC cases within the entire Reststrahlen

band and for different front-layer terminations, given by the

thickness ratio of the truncated versus complete PC entry

layer, dint=d1. We show the results in Figs. 4(a) and 4(b) for

the respective PCs of lattice constants 5 and 10 lm. Notice,

the complete agreement for near-zero reflectivity between

the predictions deduced from the principles represented by

Eqs. (1) and (2) and the actual TMM results. It should be

noted the reflectionless PC parameters (free space wave-

length and termination) are relatively robust and do not

change while transitioning to a finite 200 lm-thick PC

structure. For comparison, we also show the corresponding

TMM results for the 200 lm-thick structures in Figs. 4(c)

and 4(d).

FIG. 2. Spectral response of the energy velocity at the interface ve;int of a

semi-infinite SiC-air PCs structure is shown as solid lines. The dashed lines

depict the corresponding values for the same PCs but with 50% of their entry

face being cut-off. The results in (a), (b), and (c) represent the PC cases with

a lattice constant of a equal to 5 lm, 8 lm, and 10 lm, respectively. In all

cases, the interface-energy velocity value of the reflectionless condition, ve;0

of Eq. (1), is depicted with dotted lines. Note, all energy velocity values are

expressed in terms of the speed of light c. The vertical solid lines represent

the spectral position of the absorption peaks that we will observe in Fig. 5.

FIG. 3. The energy-velocity gradient is shown for two PC systems with a

lattice constant equal to 5 lm and 10 lm in panels (a) and (b), respectively.

The horizontal dashed line represents the reflectionless condition value dic-

tated by Eq. (2). Note the coordinate within the PC entry layer, x–, is

expressed in terms of the lattice constant a, while the energy velocity gradi-

ent is expressed in terms of c/a, with c being the speed of light.
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To recap, the main “tuning-knob” to obtain a potential

near-band-edge reflectionless semi-infinite PC is the lattice

constant, a. The lattice constant should be tuned, while main-

taining a low PC filling ratio, so that the energy velocity at

the interface equals the optimum value given by Eq. (1) at a

frequency that is very close to the band-edge. Near-band-

edge near-zero reflection can then be achieved, by fine-

tuning the size of the entry PC layer, so that the energy

velocity gradient at the interface becomes equal to the opti-

mum value determined by Eq. (2). We will explore in the

following how the aforementioned design recipe can enable

extreme absorption control towards our target of compact

realizable PC absorbing structures.

III. NEAR-BAND EDGE NEAR-ZERO REFLECTION
AND ABSORPTION HARNESSING

Naturally, one would expect near-perfect absorption for

the thick 200lm-PCs of Fig. 4 at free space wavelength and

termination where reflection is near-zero. To compare the

two designs of 5 and 10 lm lattice constant, respectively, we

adopt from here-on a common 50% termination, which is

near-optimum for both the cases. We calculate with TMM

the absorptance, A¼ 1-T-R, with T and R being transmission

and reflection, respectively, and show the results in Fig. 5 as

dotted-dashed line for the case of a¼ 5 lm and solid line for

the case of a¼ 10 lm.

Indeed, we observe a near-perfect absorption for both

these PC designs with spectral occurrence in excellent agree-

ment with the intersection-wavelength prediction of Fig. 2.

This excellent agreement can be easily seen by noticing the

vertical solid lines in Fig. 2 designating the spectral positions

of the absorption peaks observed in Fig. 5. For comparison,

we also show the PC case with a¼ 8 lm, which did not

achieve a near-perfect absorption. For the latter case, absorp-

tion peaks away from the spectral region where the ve;int and

the ve;0 curves of Fig. 2(b) are close to each other. This is

because the aforementioned spectral regime is too far from

the band-edge. We checked that this remains true for any ter-

mination and is consistent with our predictions in Sec. II that

this design would not be appropriate for dramatic absorption

control. We therefore focus only on the 5 and 10 lm lattice

constant PC designs from thereon.

We discussed in Sec. II, that although the above men-

tioned PC designs show quite a similar behavior, in the sense

that the ve;int and the ve;0 curves intersect spectrally in the

neighborhood of the band-edge, there is still a difference.

That is, such intersection being in one case much closer

spectrally to the band-edge than in the other—roughly 0.4%

and 1.4% for the respective cases of 5 and 10 lm lattice con-

stant. Although on a superficial look, this difference may not

seem so large, we will find out that it does make an enor-

mous difference towards our goal for compact absorbing

structures.

We can understand why by looking at the complex pho-

tonic band structures for the two PC cases in Fig. 6. These

bandstructure calculations are performed by using the TMM

and applying the Bloch boundary conditions, with a complex

FIG. 4. Reflection (in color-map) ver-

sus termination ratio, dint=d1 and free

space wavelength, kfree calculated from

TMM. Panels (a) and (b) represent the

result corresponding to the semi-

infinite PCs with lattice constant a, of

5 lm and 10 lm, respectively. Same is

shown in (c) and (d) but for 200 lm-

thick PCs.

FIG. 5. Absorptance versus free space wavelength, kfree, for three 200 lm

thick SiC-air PCs of 0.05 filling ratio and 50% front layer truncation. The

solid, dashed, and dotted-dashed curves correspond to PCs with a lattice

constant a equal to 10 lm, 8 lm, and 5 lm, respectively. The front SiC layer

is terminated to half its original size.
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Bloch wavevector q.36–38 The free space wavelength versus

the real and imaginary parts of q is shown, respectively, in

sub-figures (a) and (b) for the PC with a¼ 5 lm and in sub-

figures (c) and (c) for the PC with a¼ 10 lm. We also indi-

cate the ve;int-ve;0 intersection wavelength of Fig. 2, repre-

senting the reflectionless condition, with horizontal dashed

lines. Notice that indeed as we mentioned before the ban-

dedges are not as sharply defined as in lossless dielectric

PCs.

Fig. 6 clearly demonstrates the implications of having

the reflectionless condition in the close vicinity of the band-

edge. At the reflectionless condition wavelength (dashed

lines), we find an ImðqÞ ¼ 0:094p=a for the PC with lattice

constant a¼ 5 lm. Conversely, for the PC with lattice con-

stant a¼ 10 lm, we have ImðqÞ ¼ 0:024p=a. The complex

Bloch wave vector q, implies an eiqx envelope for the electric

fields spatial maps across the PC, determining a relative am-

plitude and phase between points with a separation that is an

integer multiple of the lattice constant a.35,39 Thus we antici-

pate, that the larger Im(q) is, the quicker the electric-field

amplitude decay within the PC; hence, the merit of having

the reflectionless condition as close to the band-edge as

possible.

In the following, we evaluate the above two PC candi-

dates potential as compact absorbers. We further investigate

where is the light getting absorbed while crossing the PC

structure. For this purpose, we calculate the ratio of dissi-

pated to incident power within the jth SiC layer, P(j), by

applying Poynting’s theorem:18,40

PðjÞ ¼ xe00

cjE0j2
ðx2

x1

jEyðxÞj2dx; (5)

where x1; x2 represent the coordinate limits of the jth SiC

layer, given by

½x1; x2� ¼
0;

d1

2

� �
j¼1

ðj� 1Þa� d1

2
; ðj� 1Þaþ d1

2

� �
j 6¼ 1:

8>>><
>>>:

EyðxÞ represents the electric field distributions in the PC that

are calculated using TMM36–38 with jE0j being the incident

electric field amplitude.

We briefly digress here to note that a thicker slab does

not necessarily imply a higher power loss. By making the

crude—yet reasonable for subwavelength blocks—assump-

tion that the electric field does not vary too much within a

certain slab, and noting that Pmax ¼ 1, we can obtain from

Eq. (5) an upper bound for the field enhancement jEenhaj.
This is given by

jEenha;maxj2 �
kfree

2pe00d1

: (6)

Basically, the above equation implies that thinner slabs may

be capable of a higher field enhancement. Thus, there is no

physical limitation in them yielding a higher power loss. In

fact, we will find out exactly that in the following, namely, a

higher power loss in the thinner-slab five-micron PC.

We proceed in calculating what fraction of the incident

power was dissipated while the EM wave has crossed

through the first Nc SiC layers of the PC, that we represent in

the following as PcðNcÞ. Thus,

PcðNcÞ ¼
XNc

j¼1

PðjÞ: (7)

We plot the results for PcðNcÞ for the two candidate PCs; the

5 lm lattice constant case in Fig. 7(a) and the 10 lm lattice

FIG. 6. Complex band structure (free space wavelength versus Bloch wave-

vector q) for the PC cases of lattice constant a, 5 lm [in (a) and (b)] and

10 lm [in (c) and (d)]. The respective reflectionless-condition wavelengths

are indicated with horizontal dashed lines. Note, both the real and imaginary

parts of the Bloch wave vector q are expressed in terms of p=a.

FIG. 7. Dissipated to incident power ratio versus free space wavelength,

kfree, for the 200 lm thick SiC-air PCs with 50% truncated front layer,

within the first Nc PC unit cells. The result in (a) [(b)] corresponds to the PC

case with 5 lm [10 lm] lattice constant. The respective absorptance is

shown for reference with the dark solid line. Note, the total number of PC

unit cells, N, is 40 for the case in (a) and 20 for the case in (b).
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constant case in Fig. 7(b). For reference, we plot also the ab-

sorptance A (dark solid line). The figure verifies that absorp-

tance is equal to the dissipated power through the entire PC

(dotted line). Notice, how quicker is power getting absorbed

within the five-micron PC design. It is actually very impres-

sive to observe that 60% of the impinging light at the peak

wavelength is dissipated within first two SiC layers.

So, the power loss in the 5 lm-lattice-constant PC of

200 lm thickness is much higher than in the 10 lm-lattice-

constant one. This may imply a stronger potential of the for-

mer PC structure as a compact absorber. In order to verify

this, we test the PC’s absorbing performance as it shrinks in

thickness, comprising from a smaller number of unit cells.

We take the absorption given by a thick bulk slab of SiC as a

measure of comparison and evaluate the absorption enhance-

ment with respect to that given by the two PC systems under

investigation. We let their respective thickness vary, while

maintaining the same 50% front-layer termination, and con-

sider from compact two-unit-cell structures, to multiple-

wavelength thick PCs. We plot our results in Fig. 8, versus

the cumulative SiC thickness the EM wave crosses in each

case. The dotted-dashed line with diamonds designates the

PC case of 5 lm lattice constant, while the solid line with

filled circles designates the PC case of 10 lm lattice con-

stant. Indeed, the 5 lm-lattice constant PC yields a remark-

able absorption enhancement factor over 15 even with just

two unit cells that quickly reach saturation at a value of �30.

We will further look then into the properties of such a com-

pact absorbing PC structure in Sec. IV.

IV. COMPACT SUB-k PC-BASED ABSORBER

Given the favorable results in Fig. 8, we take the

extreme case of truncating the 5 lm-lattice-constant PC

down to only two unit cells and analyze it further. This com-

pact design, depicted in Fig. 9(a), is essentially made of just

two SiC layers that are dsp apart, with dsp being equal to

d2—the air-layer thickness of the full periodic structure

depicted in Fig. 1(a). The back layer has thickness equal to

d1, the SiC-layer thickness of the full periodic PC, while the

front layer is truncated to thickness dint, that is, a percentage

of the back-layer thickness.

It is quite remarkable, how thickness-robust the PC

system is. We observe in Fig. 9(b) that it retains a low reflec-

tivity close to the original reflectionless condition of the

semi-infinite system, i.e., at close to 50% termination at

about 12.2 lm free space wavelength. In addition, we also

observe a near-zero reflection at much smaller termination

ratio (�0:05) at about 12.50 lm free space wavelength. If we

look back at Fig. 2(a), we identify a second regime where

the reflectionless condition applies. The existence of such

second regime is unique to the five-micron PC design only

and we did not observe it for the ten-micron PC case of

Fig. 4(b). It emanates from a second intersection between the

ve;int and ve;0 curves that occurs closer to the adjacent band

where ImðqÞ is much larger. This second reflectionless PC

regime requires much more SiC material to be “shaved-off”

from the front layer in order to obtain the optimum energy

velocity gradient of Eq. (2).

Indeed, we can observe clearly a small reflection at

about 12.2 lm free space wavelength for the compact design

of Fig. 9(a), with dint ¼ 0:5d1 seen as dotted line in Fig. 9(c).

Conversely, we observe a near-zero reflection at about

12.5 lm free space wavelength for the compact design of

Fig. 9(a), with dint ¼ 0:05d1, that we show with a dotted line

in Fig. 9(d). The corresponding absorptances are shown as

solid lines in the same sub-figures. The absorptance peak-

reflection dip offset observed in Fig. 9(c) comes from the

fact that reflection is small yet non-near-zero at minimum.

The peak-absorptance for the case of Fig. 9(d) correlated to

the second reflectionless-PC regime is near-perfect, and

much stronger in comparison to the case of Fig. 9(c). This is

FIG. 8. Absorptance enhancement of the two terminated SiC-air PCs with

lattice constant a, 5 lm (dotted-dashed line with diamonds), and 10 lm

(solid line with filled circles) with respect to the absorption of a SiC block

about a wavelength-thick is plotted against the total thickness of SiC

encountered by the EM wave as it travels through the PC.

FIG. 9. (a) Schematics of the compact PC-based design with all structural

information indicated. (b) Reflectance (color-map) versus free space wave-

length kfree and front-layer truncation ratio dint=d1. (c) Absorptance (solid

lines) and reflectance (dotted lines), for the design in (a) with (c) [(d)] show-

ing the case of dint=d1 ¼ 0:5 [dint=d1 ¼ 0:05]. For comparison absorptance

through a single layer is also shown for bulk SiC (dotted-dashed) and an

ultra-thin SiC film as thick as the front layer of the structure of Fig. 9(d).

The vertical line designates the SiC Reststrahlen band-edge.
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because the second reflectionless regime is associated with a

larger imaginary part of the Floquet-Bloch wave vector, q.

We show in Fig. 10 the electric field profiles in the com-

pact PC for the two aforementioned cases, versus the coordi-

nate x, along the propagation direction; in (a) the case with

dint ¼ 0:05d1 and in (b) the case with dint ¼ 0:5d1. We com-

pare this profile with the Bloch-phase envelope for the elec-

tric amplitude jEj, e�ImðqÞx, shown as dotted lines in both

sub-figures. The Bloch-envelope captures the relative phase

for PC points that are spaced integer multiples of the lattice

constant, a.35,39 In other words, it provides a prediction for

the electric field amplitude decay as the EM wave propagates

from unit cell to unit cell of a semi-infinite PC. It is impres-

sive to observe, how well this prediction captures the electric

field decay from the front to the back layer for the case of

Fig. 10(a). This is because the PC although compact, is

reflectionless, so it emulates the propagation characteristics

of its semi-infinite counterpart. This is not true however for

the case of Fig. 10(b), hence the disagreement between

Bloch-phase prediction and observed electric field amplitude

decay.

In order to evaluate the performance of the proposed

compact SiC PC-based absorber, we compare it with that of

a single SiC block in the same frequency regime. We show

with dotted-dashed line in Fig. 9 the absorption from bulk

SiC, being more than a wavelength thick. Conversely, we

show with dashed lines the absorption from an ultra-thin

12.5 nm-thick SiC film, which is as thick as the top layer of

the structure of Fig. 9(d). The two extremes capture the

bounds for the absorptance behavior of a SiC slab of inter-

mediate thicknesses. For the ultra-thin slab, we do observe a

peak of �40% at 12.6 lm free space wavelength, at the edge

of the SiC Reststrahlen band. We emphasize that the physics

of such an absorption peak for the single thin film slab is

entirely different from the ones observed in the design of

Fig. 9(a). In the latter cases, the peaks are a photonic crystal

effect, while in the former, it is a combination of thin-film

behavior and the extreme SiC optical parameters at the

Reststrahlen band-edge. This can in fact be easily checked

by applying the thin-film approximation into the expres-

sions32 for transmission, T, and reflection, R of an absorbing

block of thickness L, and complex refractive index nþ ij,

where n and j are much larger than 1.

We observe a very large absorption enhancement when

compared with the capabilities of a single SiC slab, in both

cases. It is interesting to check where the power is getting

absorbed in our compact system. The filled circles in Fig. 10

depict the ratio of incident power that is absorbed in each

SiC layer of our proposed compact design. In both the cases

of Figs. 10(a) and 10(b), we find that the thinner front slab

absorbs more light. However, the case of Fig. 10(a) attest a

truly astonishing absorbing phenomenon, where more than

90% of the incident light gets absorbed by the front 12.5 nm-

thick layer. This most extraordinary absorbing behavior

would be highly attractive for applications. Thus, we

explore, in Sec. V, practically realizable designs.

V. PRACTICALLY REALIZABLE SUPERABSORBER
DESIGNS

Here, we investigate some variations of the compact

superabsorber of Sec. IV that would suggest potential for

practical realization. We introduce a transparent material

spacer instead of air, as can be seen in the schematics of Fig.

11(a). As an example for the transparent material spacer we

consider BaF2, which has a refractive index of �1:36 in the

frequency regime of interest.41 In addition, we will investi-

gate the influence of a substrate that is made from the same

transparent material as the dielectric spacer [schematics of

Fig. 11(b)]. In Figs. 11(a) and 11(b), we have identified sym-

bolically all the pertinent geometric features, that we intend

to “tweak” in the following with the aim towards superab-

sorbing behavior.

In order to determine the parameters for which the

designs of Fig. 11 can act as a superabsorber, we go back

again to the corresponding semi-infinite PC, i.e., we consider

a SiC-BaF2 photonic crystal and look into the spectral behav-

ior of energy velocity at the interface, ve;int. We search for

parameters that yield an intersection between ve;int at the the-

oretically mandated optimum ve;0. Again, this intersection

wavelength should be in the proximity of the PC band-edge,

when targeting absorptance performance with the compact

structure.

As a paradigm, we present the case of filling ratio

f¼ 0.065 and lattice constant a¼ 3.5 lm, for which we plot

the interface energy-velocity versus free space wavelength

FIG. 10. Electric field amplitude, jEj, profiles (left vertical axis) versus the

coordinate x within the compact superabsorber design. The depicted profiles

are normalized with the incident electric field amplitude jE0j. The dotted

lines represent the jEj-decay, from the front to the back layer, as predicted

by the complex band structure of Fig. 6. The solid circles represent the ratio

of incident power that is absorbed in each layer (see right vertical axis for

values). Panels (a) and (b) represent the respective cases with front-to-back-

layer truncation ratio of 0.05 and 0.5.
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with dashed lines in Fig. 12. The required optimum of Eq.

(1), ve;0, is also indicated with a solid line. We can clearly

identify two intersections between the ve;int-v0 curves that

are close to each other spectrally (see blow-up of this fre-

quency region in the inset) and in the proximity of the PC

band-edge. This means that there are potentially two near-

band-edge reflectionless frequencies. We note that usually

one can always find a termination for which both the energy

velocity and the spatial gradient of energy velocity at the

interface meet the mandated optimum values of Eqs. (1) and

(2) at frequencies that nearly coincide, but this may not

always happen. One should also keep in mind that the ve;int

values may shift somewhat with termination as well. This

effect is of course stronger for the smaller termination ratios.

In this SiC-BaF2 PC, we find two regimes of near-

reflectionless behavior; one near a half-terminated front-

layer and another for a very large front-layer truncation.

These can be seen as the very dark regions in the reflectance

map of Fig. 13(a), where reflectance, R, is plotted versus free

FIG. 11. (a) Schematics of the realizable compact PC with all structural in-

formation indicated. (b) Same as the design in (a) but resting on a substrate

made from the spacer material.

FIG. 12. Energy velocity versus free space wavelength at the interface of a

semi-infinite SiC-BaF2 PC of lattice constant a¼ 3.5 lm and SiC filling ratio

equal to 0.065 (dashed lines). The required optimum of Eq. (1) is shown

with a solid line. The inset highlights the wavelength region where the inter-

face energy velocity intersects with the required optimum value.

FIG. 13. Reflectance (color-map), versus free space wavelength kfree, and

front-layer truncation ratio, dint=d1 for the SiC-BaF2 system. In (a), the result

of the semi-infinite PC is shown. In (b), the corresponding compact system

of Fig. 11(a) is shown.

FIG. 14. Absorptance [(a)] and reflectance [(b)] versus free space wave-

length kfree for the compact SiC-BaF2-SiC system corresponding to a PC

with a lattice constant a¼ 3.5 lm and a SiC filling ratio of f¼ 0.065. Two

cases of front-layer truncation are shown: the case of 0.05 truncation ratio

with solid lines and the case of 0.5 truncation ratio with dashed lines. The

corresponding circles and diamonds represent the respective result when the

compact three-layer system rests on a 40 lm thick substrate made of BaF2.
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space wavelength, kfree, and front-layer termination ratio dint/

d1. For comparison, the reflectance for the compact structure

of Fig. 11 is also shown in Fig. 13(b). Indeed, these near-

reflectionless kfree-dint/d1 regimes are quite robust with

shrinking PC size. In particular, we observe that both near-

reflectionless regimes survive until the extreme case of the

compact three-layer structure, where the near-zero-reflection

property emerges at front-layer truncation ratios of 0.05 and

0.50.

We show for these above mentioned cases the absorp-

tance, A and reflectance, R in Figs. 14(a) and 14(b), respec-

tively. The solid lines represent the case of a 0.05 truncation

ratio, while the dashed lines represent the case of a 0.50 trun-

cation ratio. The corresponding symbols—circles and dia-

monds—represent the respective result when the compact

three-layer structure is placed on a forty-micron-thick sub-

strate. We observe that the substrate has almost no influence

at all to the absorptance. This is a promising result towards

the realization of the compact absorber system depicted in

Fig. 11.

We find a remarkable absorption performance for the

compact design for both truncation ratios, which we describe

in more detail in Table I. We were able to observe also with

the realizable SiC-BaF2 the extra-ordinary near-perfect

absorption that we saw in Sec. IV in the SiC-air system. Our

proposed compact SiC-BaF2 system has a total thickness of

about �kfree=3. At the wavelength of near-perfect absorp-

tion, more than 92% of the incoming light is getting

absorbed by the top layer, which is less than �kfree=1000

thick. This is a truly astonishing performance for this simple

three-layer paradigm. It should be noted that we found that

by tweaking the geometric parameters of our proposed com-

pact design for a reflectionless condition slightly away from

the band-edge, it is possible to obtain an extra-ordinary

absorption enhancement that depending on front-layer trun-

cation can swap all the phonon-polariton band-gap region;

however, near-perfect absorption was not reached in such a

case for any front-layer truncation.

To recap, we demonstrated here a realizable compact

superabsorber where almost all the incoming light is

absorbed by the top layer which is less than a thousand times

the wavelength thick. The superabsorber comprises a highly

absorbing (large j) material and a transparent medium. We

note, in passing that very recently compact absorbers in a

planar geometry have been also reported by Kats et al.42 and

Streyer et al.43 with designs that rely on the mutual optical

properties of two lossy materials in the former work or a

high index dielectric and an engineered metal of e � �1 in

the latter work. In our proposed compact design, the underly-

ing mechanism is a PC effect, where absorption is facilitated

by a reflectionless funneling to a photonic-crystal mode,

with a highly lossy Floquet-Bloch phase. This mechanism

leads to compact structures made of a single-kind highly

lossy medium in a planar geometry, and any transparent me-

dium, that can function as highly efficient absorbers by suita-

ble adjustment of the out-of-plane constituent slab

thicknesses.

VI. CONCLUSION

We have presented here a new paradigm of a practically

realizable SiC-BaF2 layered system. We demonstrated with

a compact design, which is a third-of-the wavelength thick, a

near-perfect absorption, where more than 92% of the incom-

ing light is absorbed in the top SiC ultra-thin layer, having a

thickness a thousand times less than the impinging wave-

length. The reported super-absorber effect emanates from a

special photonic-crystal behavior of the corresponding pho-

tonic lattice. In particular, the underpinning mechanism is

the achievement of near-zero reflection in the proximity of

the photonic 1D lattice band-edge, by a special truncation of

the front layer. This enables funneling all incoming light into

an ultra-slow mode that allows the rapid decay of the EM

fields within the PC, manifested by the large imaginary part

of the complex Floquet-Bloch phase. We believe, our pro-

posed platform offers new avenues for absorption harnessing

across the EM spectrum and will inspire new designs where

absorption occurs in a one-step process without anti-

reflection coating and/or back-reflector15 and within a single

kind of highly absorbing material.
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