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Abstract A crucial aspect of threshold-based extreme value analyses is the level at
which the threshold is set. For a suitably high threshold asymptotic theory suggests
that threshold excesses may be modelled by a generalized Pareto distribution. A com-
mon threshold diagnostic is a plot of estimates of the generalized Pareto shape param-
eter over a range of thresholds. The aim is to select the lowest threshold above which
the estimates are judged to be approximately constant, taking into account sampling
variability summarized by pointwise confidence intervals. This approach doesn’t test
directly the hypothesis that the underlying shape parameter is constant above a given
threshold, but requires the user subjectively to combine information from many de-
pendent estimates and confidence intervals. We develop tests of this hypothesis based
on a multiple-threshold penultimate model that generalizes a two-threshold model
proposed recently. One variant uses only the model fits from the traditional param-
eter stability plot. This is particularly beneficial when many datasets are analysed
and enables assessment of the properties of the test on simulated data. We assess and
illustrate these tests on river flow rate data and 72 series of significant wave heights.
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1 Introduction

Extreme value theory provides asymptotic justification for particular families of mod-
els for extreme data. Let X1,X2, . . .Xn be a sequence of independent and identically
distributed random variables and un a threshold, increasing with n. Pickands (1975)
showed that if there is a non-degenerate limiting distribution for appropriately lin-
early rescaled excesses of un then this limit is a Generalized Pareto (GP) distribution.
In practice, a suitably high threshold u is chosen empirically. Given that there is an
exceedance of u, the excess Y = X −u is modelled by a GP(σu,ξ ) distribution, with
positive threshold-dependent scale parameter σu, shape parameter ξ and distribution
function

G(y) =

{
1− (1+ξ y/σu)

−1/ξ
+ , ξ ̸= 0,

1− exp(−y/σu), ξ = 0,
(1)

where y> 0, x+=max(x,0). The ξ = 0 case is defined in the limit as ξ → 0. The num-
ber of exceedances is modelled by a Poisson distribution with threshold-dependent
mean λu. An equivalent formulation (Pickands, 1971) is the non-homogeneous Pois-
son process (NHPP) representation, whose threshold-independent parameterization
has advantages if, for example, covariates effects in the parameters are modelled.

We consider fixed threshold selection: choosing a single value of u to be treated as
fixed and known when subsequent inferences are made. This involves a bias-variance
trade-off: the lower the threshold the greater the estimation bias due to model mis-
specification; the higher the threshold the greater the estimation uncertainty. Scarrott
and MacDonald (2012) provides a comprehensive review of threshold selection ap-
proaches.

We consider a widely-used informal graphical approach (described in section 1.1)
based on the property that ξ should be constant over thresholds for which the GP
(or NHPP) model is appropriate. Wadsworth and Tawn (2012) formalize this ap-
proach using a NHPP likelihood-based test of whether sufficient convergence has
been achieved. However, the test uses a very computationally-intensive simulation
scheme, which limits its practical usefulness. Working within the Wadsworth–Tawn
paradigm we develop a substantially faster test by avoiding the need for simulation.

1.1 Traditional parameter stability plots

These plots examine the sensitivity of GP parameter estimates to the threshold and
are described in Coles (2001, chapter 4) and Scarrott and MacDonald (2012). Over
a range of values of u, estimates ξ̂ of the shape and σ̂u − ξ̂ u of the modified scale
are plotted against u with pointwise 95% symmetric confidence intervals. The lowest
threshold above which these quantities are judged to be approximately constant in u
is selected, taking into account sampling variability summarized by the confidence
intervals.

For comparability with Wadsworth and Tawn (2012) we take as an example the
set of 154 flow rates exceeding 65 m3s−1 , over the period 1934–1969, from the River
Nidd in Yorkshire, UK. These data have been processed so that the data can be treated
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as independent (Davison and Smith, 1990). Figure 1 shows parameter stability plots
based on these data. As the threshold varies the estimates of the shape and modified
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Fig. 1 Nidd flow rate example. Parameter stability plots over a range of thresholds, with 95% pointwise
symmetric confidence intervals. Left: modified scale parameter. Right: shape parameter. The upper axis
scale gives the number of threshold exceedances.

scale parameters move almost in direct opposition to each other, as is typical in these
plots (Scarrott and MacDonald, 2012). Thus, the modified scale plot, for example, is
somewhat unnecessary. It is expected that the parameter estimates become unstable
at very high thresholds: for small sizes there is large sampling variability and the
movement of the threshold through the data points can result in a lack of smoothness.

Selecting a threshold based on the right hand plot in figure 1 is problematic: the
estimates at two different thresholds are strongly dependent; the viewer will compare
many pairs of thresholds, so there is a multiple testing issue; and looking for whether
or not confidence intervals overlap does not make the desired comparison appropri-
ately. One really wants to test the null hypothesis H0 : ξ (u) = ξ (u0), for all u> u0, for
some u0, where ξ (u) is the underlying value of the shape parameter at threshold u. In
the next section we consider an approximate model for the subasymptotic behaviour
of the shape parameter under which a discretized version of this hypothesis can be
tested more objectively.

1.2 A piecewise constant shape parameter approximation

Wadsworth and Tawn (2012) propose a penultimate NHPP model in which the shape
parameter is modelled as a piecewise constant function of threshold. This is moti-
vated by theory suggesting that the structural form of the NHPP model (and the GP
model for threshold excesses) holds well for relatively low thresholds with a shape
parameter that is a slowly changing function of threshold. For a pair of thresholds
(u,v), where v < u, the shape parameter has a change-point at u:

ξ (x) =

{
ξvu, v < x < u,
ξu, x > u.

(2)
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This representation is used for two purposes: fixed threshold selection using frequen-
tist tests of ξvu = ξu for all pairs of values for u and v from a set of thresholds and
a Bayesian assessment of threshold uncertainty, in which v is fixed and u is treated
as a parameter. For the former the multiple-testing issue is solved using simulation
to test the null hypothesis of equality of shape parameter at and above some lowest
threshold vmin. The computational intensity of the simulation scheme is an obstacle to
the use of this model for fixed threshold selection. To tackle the multiple-testing issue
directly, and (as suggested on page 552 of Wadsworth and Tawn (2012)) to attain a
better approximation to ξ (x), we extend the piecewise constant representation to an
arbitrary number m of thresholds (u1, . . . ,um):

ξ (x) =

{
ξi, ui < x < ui+1, for i = 1, . . . ,m−1,
ξm, x > um.

(3)

For a given set of thresholds a single test based on (3) is no more demanding of the
data than the combination of all pairwise tests based on (2): the latter involves making
inferences on each interval (ui,ui+1), i = 1, . . . ,m. Also, (2) assumes constancy of the
shape parameter over wider intervals than (3).

In section 2 we define a multiple-threshold Generalized Pareto model based on
(3) and two tests, a likelihood ratio test and a score test, for stability in the shape
parameter of the model with threshold. In section 3 we check that the most compu-
tationally efficient of these tests performs as expected on simulated data. In section
4 we present analyses of the River Nidd dataset and, to illustrate the potential of our
approach for use on multiple datasets, of a set of 72 series of significant wave heights
from the Gulf of Mexico. In the appendix we derive a Fisher expected information
matrix for use in the score test. Computer code to implement this methodology is
available at www.homepages.ucl.ac.uk/∼ucakpjn/.

2 A multiple-threshold GP model

Consider m thresholds u1 < u2 < · · · < um. Let v j = u j − u1, for j = 1, . . . ,m and
w j = u j+1 − u j = v j+1 − v j, for j = 1, . . . ,m− 1. Let Y denote an excess of u1. For
j = 1, . . . ,m we assume that (Y − v j) | v j < Y < v j+1 has a (truncated) GP(σ j,ξ j)
distribution, where vm+1 = vm −σm/ξm if ξm < 0 and otherwise vm+1 is infinite. The
conditional density of (Y − v j) | v j < Y < v j+1 is given by

f(Y−v j) | v j<Y<v j+1(y− v j) =
f j(y− v j)

Fj(w j)
, 0 < y− v j < w j,

where f j(y− v j) = σ−1
j [1+ξ j(y− v j)/σ j]

−(1+1/ξ j)
+ is a GP(σ j,ξ j) density function

for Y − v j and Fj(w j) = 1− [1+ ξ jw j/σ j]
−1/ξ j
+ normalises the conditional density.

Let p j = P(Y > v j). Then p1 = 1 and

p j =
j−1

∏
i=1

[1−Fi(wi)] =
j−1

∏
i=1

[
1+

ξiwi

σi

]−1/ξi

+

, j = 2, . . . ,m.
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Therefore, P(v j < Y < v j+1) = p j − p j+1 = p jFj(w j) and an equivalent formulation
is

f (y) =
m

∏
j=1

{
p j f j(y)

}I j , (4)

where I j = I(v j < y < v j+1) and I(A) is the indicator function of the set A. Thus,
the shape parameter is modelled as a piecewise constant function ξ (y) with change-
points at v j, j = 2, . . . ,m. In order that there is no discontinuity in f (y) we set σ j+1 =

σ j + ξ jw j, for j = 1, . . . ,m− 1, so that σ j = σ1 +∑ j−1
i=1 ξiwi. The parameters of the

model are ψ = (σ1,ξ1, . . . ,ξm), where σ1 > 0.
For a random sample y = (y1, . . . ,yn) of excesses of u1 from density (4) the log-

likelihood is

l(σ1,ξ1, . . . ,ξm) =
n

∑
i=1

m

∑
j=1

Ii j

{
log p j − logσ j −

(
1+

1
ξ j

)
log

[
1+

ξ j(yi − v j)

σ j

]}
,

(5)
where Ii j = I(v j < yi < v j+1).

2.1 Likelihood ratio and score tests

Consider threshold u1. We wish to assess whether a common GP model applies on all
intervals (vk,vk+1), k = 1, . . . ,m. That is, we wish to test H0 : ξ1 = · · ·= ξm. Rejection
of H0 suggests that a threshold higher than u1 is required.

Let σ̃1 and ξ̃1 denote the (restricted) MLEs of σ1 and ξ1 under the null hypothesis,
that is, from a GP fit to excesses of u1. Let σ̂1, ξ̂i, i= 1, . . . ,m denote the (unrestricted)
MLEs. In the appendix expressions for the score function and Fisher expected infor-
mation are derived, under the parameterization θ = (θ1, . . . ,θm+1) = (σ1,ϕ1, . . . ,ϕm),
where ϕ j = ξ j/σ j. Let θ̂0 and θ̂ denote the restricted and unrestricted MLEs of θ .

We consider the likelihood ratio (LR) and score test statistics

W = 2
{

l(θ̂)− l(θ̂0)
}
, (6)

S = U(θ̂0)
T i−1(θ̂0)U(θ̂0), (7)

where U(θ) is the score function and i(θ) is the expected information matrix. Pro-
vided that ξm >−1/2 (Smith, 1985) in each case the asymptotic null distribution of
the statistic is χ2

m−1. As the motivation for considering the score test is to avoid fit-
ting the full model we use the expected information evaluated at the restricted MLE,
i.e. under the null hypothesis. The expected information is used because positivity
of the test statistic and consistency of the test are ensured, properties not achieved
by the observed information (Freedman, 2007; Morgan et al, 2007). Moreover, in the
current context, the observed information is known to have poor finite-sample prop-
erties (Süveges and Davison, 2010). The statistic S has the advantage over W that it
requires only a fit of the null model at the threshold of interest. In contrast calculation
of W is more difficult and time-consuming as it requires m shape parameters to be
estimated. When m is large convergence problems can occur in the search for θ̂ , for
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which we use θ̂0 as an initial estimate. We have not experienced this problem for any
of the real datasets we have studied but it has occurred for some simulated datasets.
It is possible that convergence could be achieved with better initial estimates but we
expect that finding a general strategy for choosing such estimates is difficult.

Suppose now that the lowest threshold considered is ui, so that the set of thresh-
olds is (ui, . . . ,um). The null hypothesis is H0 : ξi = · · ·= ξm and the asymptotic null
distribution of each test statistic is χ2

m−i, providing, for i = 1, . . . ,m−1, p-values as-
sociated with the test of whether a threshold higher than ui is required. Provided that
the chi-squared distributions provide reasonable approximation to the null distribu-
tions no simulation is required. The score test is particularly efficient computationally
as it uses only the (first m−1) model fits from the traditional parameter stability plot.

3 Simulation studies

We check the basic properties of the score test on random samples simulated from
the unit exponential distribution and the standard normal distribution. For the former,
excesses of any non-negative threshold are unit exponential (GP with shape 0), so
H0 is true for any such threshold. For the latter, H0 is not true at any threshold but
could be considered as becoming closer to the truth as the threshold increases. We
also consider a distribution defined so that H0 is false below a certain threshold and
true otherwise. We use a hybrid distribution on the positive real line, with a constant
density up to its 75% quantile and a GP density with shape parameter 0.1 for excesses
of the 75% quantile. Thus, H0 is true from the 75% quantile upwards.

We use a set of m = 10 thresholds, from the respective median of the underlying
distributions to the 95% quantiles, in steps of 5%. For a threshold set at the q%
quantile the sample size is Nq = N(1 − q/100). We use N = 2000 and N = 500,
so that there are respectively 100 and 25 excesses of the highest threshold. We run
1000 simulations. For each threshold (excluding the 95% quantile) we calculate the
proportion of simulations for which the test (of size 0.05) of the null hypothesis of
stability of shape parameter above the threshold is rejected.

In the plot on the left of figure 2 this proportion is plotted against q. If the test
is well-calibrated the proportion should be close to 0.05 whenever H0 is true (all
thresholds for the exponential example and all threshold from the 75% quantile for
the hybrid example) and this is indeed the case. Otherwise, the proportion of null
rejections decreases with Nq and therefore decreases as q increases.

The plot on the right of figure 2 shows, for N = 2000, how the proportion of null
rejections varies with m. For m = 6 the thresholds are at the (50,60,70,80,90,95)%
quantiles; for m = 19 they range from the median to the 95% quantile in steps of
2.5%. When H0 is not true this proportion is larger for smaller values of m. This is
because the test seeks to detect differences in shape parameter at different thresholds.
With a small number of widely-separated thresholds these differences are larger and
are detected with greater probability. The same findings apply for N = 500. We would
not choose a small value of m in practice because our aim is to use a set of thresholds
that approximates the range of possible thresholds considered. We have only been
able to examine the properties of the LR test in a limited way, for the reasons given in
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Fig. 2 Left: proportion of simulations for which the null hypothesis is rejected, based on a score test of size
0.05, against threshold for N = 2000 (solid lines) and N = 500 (dashed lines). The unlabelled lines relate
to the exponential distribution. Lines for the normal and uniform-GP hybrid distributions are labelled with
N and H respectively. A set of m = 10 thresholds is used. Right: proportion of null rejections for different
values of m and N = 2000 for the normal and uniform-GP hybrid distributions. One line relates to the LR
test. The horizontal grey lines are at 0.05.

section 2.1. The plot on the right in figure 2 includes a curve for the LR test for m = 6
based on simulations from the normal distribution. The proportion of null rejections is
marginally smaller for the LR test than for the score test. For m = 10 the curve for LR
test (not shown in the plot) lies further below that of the score test: it is only slightly
above the score test curve for m = 19. A possible explanation is that sometimes local
optima are found in the unrestricted optimisation of the log-likelihood and that this
occurs more often for large m than for small m.

We extend the simulations from the exponential distribution to study the approx-
imation of the null distribution of the score statistic S by the asymptotic chi-squared
result. We replace the m = 6 case with m = 4 (thresholds at the (50,70,90,95)%
quantiles) in order to see more clearly the effect of m and run nsim = 10,000 simula-
tions in order to estimate with precision high quantiles of the null distribution of S.
Otherwise, the setup is the same as above. We produce probability plots, that is, we
plot {

(
j/(nsim +1),H(s( j))

)
, j = 1, . . . ,nsim}, where H is a chi-squared distribution

function with the appropriate degrees of freedom. Figure 3 shows probability plots
for N ∈ {300,1000} and q ∈ {50,90} for different values of m, truncated to a range
(0.9,1) of practical interest. In the plots for q = 90 the lines for m = 4 and m = 10 are
coincident because the same (two) thresholds are involved. Points below the line of
equality indicate that the score test is conservative. As one would expect the conser-
vatism increases with q and decreases with N. The empirical null distribution agrees
better with the asymptotic result for large m than for small m, that is, the test is less
conservative for large m. Under the null there are no differences in shape parameter
across thresholds, but with a small number of thresholds one has fewer opportunities
to achieve the nominal false positive rate than with a larger number of thresholds.
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Fig. 3 Probability plots comparing the empirical null distribution of the score statistic to the asymptotic
chi-squared result, where the null hypothesis is commonality of shape parameter above the q% quantile.
Top row: sample size N = 300; q = 50 (left), q = 90 (right). Bottom row: N = 1000; q = 50 (left), q = 90
(right). Nq is the number of exceedances of the q% threshold.

4 Examples

We illustrate the multiple threshold diagnostic using two case studies. We return to
the River Nidd data introduced in section 1.1. We also consider 72 time series of
storm peak significant wave height on a spatial grid (Northrop and Jonathan, 2011),
seeking to select a threshold for each of the 72 datasets. It is in such a situation,
threshold selection for multiple datasets, that speed of computation of the multiple-
threshold diagnostic is especially useful, particularly if the score test is used.



Extreme value threshold diagnostics 9

4.1 River Nidd flow rates

We use m = 10 thresholds from 65 to 120 in steps of 5. The plot on the left in fig-
ure 4 shows, for i = 1, . . . ,m− 1, how the p-value associated with testing the null
hypothesis ξi = · · · = ξm varies with the lowest threshold ui. We calculate p-values
using the score test and the likelihood ratio test based on the χ2

m−i null distributions.
We check the p-values using simulation. Consider threshold u1 as an example. We
simulate 1000 datasets from the GP(σ̃1, ξ̃ ) model fitted under the null. For each sim-
ulated dataset we calculate the LR and score test statistics. For each test the estimated
p-value is the proportion of the simulated test statistics that are greater than the corre-
sponding observed test statistic. There is close agreement between the p-values based
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Fig. 4 Nidd flow rate example. Left: multiple threshold diagnostic plot for the threshold set (u1, . . . ,um) =
{65,70, . . . ,120}. p-values testing ξi = · · · = ξm plotted against ui, for i = 1, . . . ,m− 1: score test, us-
ing χ2

m−i distribution (—–S—–); score test, using simulation (−−−); LR test, using χ2
m−i distribution

(—–L—–); LR test, using simulation (−·− ·−). The upper axis scale gives the number of threshold ex-
ceedances between the thresholds for m = 22. There are 24 exceedances of 120 m3s−1 . Right: p-values
against ui for different values of m.

on the χ2
m−i distributions and on the simulations. The plot on the right in figure 4 ex-

amines how the choice of m affects the p-values. The general picture is similar over
the different values of m but there are differences: the larger values of m pick up more
of the location variation in parameter estimates evident in figure 1.

The threshold selected depends on how one wishes to make use of the p-values,
and is subject to checking the fit of the GP model at this threshold. One could carry
out a test of a given size (here using 5% suggests a threshold of 70 m3s−1) or view the
p-values as a measure of the disagreement between the data and the null hypothesis.
We discuss possibilities for automatic implementation of the former in section 4.2.
For the latter, an idealised scenario is that the p-value increases with threshold until
approximate stabilisation at a point where one could choose to set the threshold.
Based on figure 4 one might choose a threshold of 75 m3s−1.

The results in Wadsworth and Tawn (2012), which includes tests based on the
goodness-of-fit of the GP distribution across the thresholds, suggest that a threshold
of 70 m3s−1 is too low. Figure 5 compares the GP fits at thresholds 70 m3s−1 and
75 m3s−1. For a threshold of 70 m3s−1, ξ̂ = 0.32, with a 95% confidence interval
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Fig. 5 Nidd flow rate example. Generalized Pareto Q-Q plot for the model fitted using thresholds of 70
m3s−1 (left) and 75 m3s−1 (right), with 95% simulation envelopes. A line of equality is superimposed.

of (0.13,0.58) and for a threshold of 75 m3s−1, ξ̂ = 0.47, with a 95% confidence
interval of (0.22,0.82).

Finally, we note that figure 4 shows similar features to the posterior distributions
of threshold displayed in figure 8 of Wadsworth and Tawn (2012). If one allows a
threshold as low as 65 m3s−1 then a threshold of approximately 75 m3s−1 is in-
dicated, but if such a low threshold is ruled out then the situation is far less clear.
For example, if the lowest threshold considered is 100 m3s−1 then a threshold close
to this lower bound has greatest support, but not substantially greater support than
higher thresholds.

4.2 Gulf of Mexico significant wave heights

We consider 72 time series of storm peak significant wave height (Hsp
s ) from the Gulf

of Mexico, analysed by Northrop and Jonathan (2011). The series contain a peak
hindcast value of significant wave height from each of the 315 hurricane-induced
storms that hit the area of interest over the period September 1900 to September 2005
(Oceanweather Inc., 2005). It is reasonable to treat the data from separate storms as
independent, although the series are strongly spatially dependent over the 6 by 12
spatial grid of sites. To account for spatial non-stationarity we use sets of thresholds
equal to the at-site empirical deciles (0,10, . . . ,90)%.

Figure 6 shows how the p-values vary with the empirical decile at which the
threshold is set. There is large variability in behaviour between the sites. For some
sites the p-value rises quickly and remains high. For others (e.g. site 32) the p-value
remains low until the sample median and then rises quickly. The p-value at site 17
rises above 0.05 but drops briefly back below 0.05 when the sample median is used
as a threshold. Site 64 is an example where the p-value fluctuates over the higher
thresholds.
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Fig. 6 Gulf of Mexico significant wave height example. At-site multiple threshold diagnostic plot for
the threshold set (u1, . . . ,um) = (0,10, . . . ,90)% empirical quantiles, using the score test. p-values testing
ξi = · · · = ξm plotted against proportion of non-exceedances, for i = 1, . . . ,m− 1: site 32 (——); site 17
(−−−); site 64 (−·−·−). The horizontal line is at 0.05.

Suppose that we wish to automate the selection of a threshold for each of the
datasets, based on tests of size 5%, say. One possibility (Wadsworth and Tawn, 2012)
is to select the lowest threshold for which the null hypothesis is not rejected. How-
ever, the p-values are not constrained to be non-decreasing in the lowest threshold.
Therefore we might select the lowest threshold with the property that the null hy-
pothesis is not rejected at it and at all the higher thresholds considered, bearing in
mind that large variability is expected at the highest thresholds. Figure 7 shows the
results of applying these two rules at each site in the significant wave heights dataset.
In both cases thresholds at higher quantiles are required near the centre of the region
than near the edges, with the highest threshold indicated being the 60% quantile. The
latter is in agreement with Northrop and Jonathan (2011) who use quantile regression
on latitude and longitude to set thresholds at estimated conditional quantiles of Hsp

s ,
judging that estimates of extreme value model parameters stabilize approximately
around the 60% conditional quantile.

5 Discussion

We have developed a new approach to fixed threshold selection for extreme value
models. Our approach extends the two-threshold penultimate extreme value model
of Wadsworth and Tawn (2012) to an arbitrary number of thresholds, providing a
better approximation to the subasymptotic behaviour of the generalized Pareto shape
parameter. We implement tests of stability in shape parameter using likelihood ratio
tests and score tests. For the latter we derive the Fisher information for the multiple-
threshold model.
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Fig. 7 Gulf of Mexico significant wave height example. Left: quantile after which p-value first rises above
0.05. Right: quantile after which p-value remains above 0.05.

Tests based on the multiple-threshold model are far more efficient computation-
ally than repeated use of the two-threshold model over a grid of thresholds (for which
a simulation scheme is required to adjust for multiple testing) and makes no greater
demands on the data than the union of all these two-threshold fits. The speed of the
score test is particularly useful for application to multiple datasets as it uses only the
model fits from the traditional parameter stability plot. For example, producing the
solid lines in figure 4 took 0.5 CPU seconds for the score test and 23.72 CPU seconds
for the likelihood ratio test. Producing all 72 lines in figure 6 (using the score test)
took 34.29 CPU seconds. A drawback of the fixed threshold approach is that it ig-
nores the, perhaps considerable, uncertainty associated with the choice of threshold.
Wadsworth and Tawn (2012) use tests of parameter stability to inform a Bayesian
assessment of threshold uncertainty: the tests developed in this paper can speed up
this process considerably.

We have assumed that threshold exceedances are independent. For the data we
have considered this is reasonable because the raw data have been ‘declustered’: clus-
ters of exceedances have been identified and only cluster maxima have been retained.
More generally the GP model is an appropriate marginal model for threshold ex-
cesses (Anderson, 1990) and it is common for consideration of the effects of serial
dependence to be ignored for threshold selection, entering only after the threshold
is set (e.g. Fawcett and Walshaw (2012)). We expect that ignoring serial dependence
results in tests that are liberal (i.e. adjustment for positive serial dependence would
inflate the p-value) and ultimately selection of a higher threshold than is necessary.
Further research will investigate the extent to which this is the case and how best to
adjust p-values.

Acknowledgements We thank Yvo Pokern for comments on the traditional parameter stability plots that
prompted this work. We are very grateful to two anonymous referees: their comments and suggestions
have improved the original manuscript.
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Appendix

We derive the score function u1 and the Fisher expected information matrix i1 for a
single observation Y from density (4). We assume that ξm > −1/2 so that the like-
lihood satisfies the regularity conditions of Smith (1985). For convenience we work
with the parameters (θ1, . . . ,θm+1) = (σ1,ϕ1, . . . ,ϕm), where ϕ j = ξ j/σ j. The log-
likelihood is given by

l =
m

∑
j=1

I j

{
log p j − logσ j −

(
1+

1
σ jϕ j

)
log [1+ϕ j(Y − v j)]

}
,

where p1 = 1, log p j =−∑ j−1
i=1 log(1+ϕiwi)/σiϕi and logσ j = logσ1+∑ j−1

i=1 log(1+
ϕiwi), for j = 2, . . . ,m. In the following all empty products are 1 and all empty sums
are 0.

Let S j =Y −v j,Tj = 1+ϕ jS j, γ j = 1+ϕ jw j, h j = ϕ j ∏ j−1
i=1 γi and R j =σ−1

j ϕ−1
j logTj =

σ−1
1 h−1

j logTj. The score vector is given by

∂ l
∂σ1

= −σ−1
1

m

∑
j=1

I j
{

log p j +1−R j
}
,

∂ l
∂ϕk

=
m

∑
j=1

I j

{
∂ log p j

∂ϕk
−

∂ logσ j

∂ϕk
−

∂ logTj

∂ϕk
−

∂R j

∂ϕk

}
,

where

∂ logσ j

∂ϕk
= wkγ−1

k I(k 6 j−1),

∂ logTj

∂ϕk
= S jT−1

j I(k = j),

∂R j

∂ϕk
= σ−1

1

{
h−1

j

[
S jT−1

j −ϕ−1
j logTj

]
I(k = j)−wkγ−1

k I(k 6 j−1)h−1
j logTj

}
,

∂ log p j

∂ϕk
= −σ−1

1

{
h−1

k

[
wkγ−1

k −ϕ−1
k logγk

]
I(k 6 j−1)−wkγ−1

k

j−1

∑
i=1

I(k 6 i−1)h−1
i logγi

}
.

The elements of the observed information matrix are given by

− ∂ 2l
∂σ 2

1
= −σ−2

1

m

∑
j=1

I j

{
2log p j +1−2σ−1

1 h−1
j logTj

}
,

− ∂ 2l
∂σ1∂ϕk

= σ−1
1

m

∑
j=1

I j

{
∂ log p j

∂ϕk
−

∂R j

∂ϕk

}
,

− ∂ 2l
∂ϕ 2

k
= −

m

∑
j=1

I j

{
∂ 2 log p j

∂ϕ 2
k

−
∂ 2 logσ j

∂ϕ 2
k

−
∂ 2 logTj

∂ϕ 2
k

−
∂ 2R j

∂ϕ 2
k

}
,
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where

∂ 2 logσ j

∂ϕ 2
k

= −w2
kγ−2

k I(k 6 j−1),

∂ 2 logTj

∂ϕ 2
k

= −S2
j T

−2
j I(k = j),

∂ 2R j

∂ϕ 2
k

= σ−1
1

{
h−1

j

[
2ϕ−2

j logTj −2ϕ−1
j S jT−1

j −S2
j T

−2
j

]
I(k = j)

+2w2
kγ−2

k I(k 6 j−1)h−1
j logTj

}
,

∂ 2 log p j

∂ϕ 2
k

= −σ−1
1

{
h−1

k

[
2ϕ−2

k logγk −2ϕ−1
k wkγ−1

k −w2
kγ−2

k

]
I(k 6 j−1)

+2wkγ−2
k

j−1

∑
i=1

I(k 6 i−1)h−1
i logγi

}

and

− ∂ 2l
∂ϕk∂ϕl

= −
m

∑
j=1

I j

{
∂ 2 log p j

∂ϕk∂ϕl
−

∂ 2R j

∂ϕk∂ϕl

}
,

where, for k > l,

∂ 2R j

∂ϕk∂ϕl
= σ−1

1

{
h−1

j wlγ−1
l

[
ϕ−1

j logTj −S jT−1
j

]
I(k = j)

+wkγ−1
k wlγ−1

l I(k 6 j−1)h−1
j logTj

}
,

∂ 2 log p j

∂ϕk∂ϕl
= −σ−1

1

{
h−1

k wlγ−1
l

[
ϕ−1

k logγk −wkγ−1
k

]
I(k 6 j−1)

+wkγ−1
k wlγ−1

l

j−1

∑
i=1

I(k 6 i−1)h−1
i logγi

}
.

Only terms containing S j and/or Tj involve Y , so element (k, l) of the expected
information matrix is of the form

−E
(

∂ 2l
∂θk∂θl

)
=

m

∑
j=1

∫ v j+1

v j

[
Akl

j +Bkl
j (y)

]
p j f j(y) dy,

=
m

∑
j=1

Akl
j q j +

m

∑
j=1

∫ v j+1

v j

Bkl
j (y) p j f j(y) dy,
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for Akl
j and Bkl

j implied by the equations above and where q j = P(v j < Y < v j+1) =

p j

(
1− γ−1/ξ j

j

)
. Depending on k and l the second term involves some or all of the

integrals∫ v j+1

v j

s jt−1
j f j(y) dy = σ j(1+ξ j)

−1 + I( j < m)ϕ−1
j

{
γ−(1+1/ξ j)(1+ξ j)

−1 − γ1/ξ j
j

}
,∫ v j+1

v j

s2
jt
−2
j f j(y) dy, = 2σ2

j (1+ξ j)
−1(1+2ξ j)

−1 − I( j < m)ϕ−2
j

×
{

γ−1/ξ j
j −2γ−(1+1/ξ j)

j (1+ξ j)
−1 + γ−(2+1/ξ j)(1+2ξ j)

−1
}
,∫ v j+1

v j

log t j f j(y) dy = ξ j − I( j < m)γ−1/ξ j
j

{
ξ j + logγ j

}
.

These expressions have been checked using numerical differentiation and integration.
For a random sample (y1, . . . ,yn) from density (4) the score function is ∑n

i=1 ui and
the expected information is ni1.
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