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Abstract. Recently, several algorithms have been proposed for inde-
pendent subspace analysis where hidden variables are i.i.d. processes. We
show that these methods can be extended to certain AR, MA, ARMA
and ARIMA tasks. Central to our paper is that we introduce a cascade
of algorithms, which aims to solve these tasks without previous knowl-
edge about the number and the dimensions of the hidden processes. Our
claim is supported by numerical simulations. As an illustrative appli-
cation where the dimensions of the hidden variables are unknown, we
search for subspaces of facial components.

1 Introduction

Independent Subspace Analysis (ISA) [1] is a generalization of Independent Com-
ponent Analysis (ICA). ISA assumes that certain sources depend on each other,
but the dependent groups of sources are still independent of each other, i.e.,
the independent groups are multidimensional. The ISA task has been subject
of extensive research [1,2,3,4,5,6,7,8]. In this case, one assumes that the hidden
sources are independent and identically distributed (i.i.d.) in time. Temporal
independence is, however, a gross oversimpli�cation of real sources including
acoustic or biomedical data. One may try to overcome this problem, by as-
suming that hidden processes are, e.g., autoregressive (AR) processes. Then we
arrive to the AR Independent Process Analysis (AR-IPA) task [9,10]. Another
method to weaken the i.i.d. assumption is to assume moving averaging (MA).
This direction is called Blind Source Deconvolution (BSD) [11], in this case the
observation is a temporal mixture of the i.i.d. components.

The AR and MA models can be generalized and one may assume ARMA
sources instead of i.i.d. ones. As an additional step, these models can be extended
to non-stationary integrated ARMA (ARIMA) processes, which are important,
e.g., for modelling economic processes [12].
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In this paper, we formulate the AR-, MA-, ARMA-, ARIMA-IPA generaliza-
tions of the ISA task, when (i) one allows for multidimensional hidden compo-
nents and (ii) the dimensions of the hidden processes are not known. We show
that in the undercomplete case, when the number of `sensors' is larger than the
number of `sources', these tasks can be reduced to the ISA task.

2 Independent Subspace Analysis

The ISA task can be formalized as follows:

x(t) = Ae(t), where e(t) =
[
e1(t); . . . ; eM (t)

]
∈ RDe (1)

and e(t) is a vector concatenated of components em(t) ∈ Rdm
e . The total dimen-

sion of the components is De =
∑M

m=1 dm
e . We assume that for a given m, em(t)

is i.i.d. in time t, and sources em are jointly independent, i.e., I(e1, . . . , eM ) = 0,
where I(.) denotes the mutual information (MI) of the arguments. The dimen-
sion of the observation x is Dx. Assume that Dx > De, and A ∈ RDx×De has
rank De. Then, one may assume without any loss of generality that both the
observed (x) and the hidden (e) signals are white. For example, one may apply
Principal Component Analysis (PCA) as a preprocessing stage. Then the am-
biguities of the ISA task are as follows [13]: Sources can be determined up to
permutation and up to orthogonal transformations within the subspaces.

2.1 The ISA Separation Theorem

We are to uncover the independent subspaces. Our task is to �nd orthogonal
matrix W ∈ RDe×Dx such that y(t) = Wx(t), y(t) =

[
y1(t); . . . ;yM (t)

]
,

ym = [ym
1 ; . . . ; ym

dm
e

] ∈ Rdm
e , (m = 1, . . . , M) with the condition that components

ym are independent. Here, ym
i denotes the ith coordinate of the mth estimated

subspace. This task can be solved by means of a cost function that aims to
minimize the mutual information between components:

J1(W) .= I(y1, . . . ,yM ). (2)

One can rewrite J1(W) as follows:

J2(W) .= I(y1
1 , . . . , yM

dM
e

) −
M∑

m=1

I(ym
1 , . . . , ym

dm
e

). (3)

The �rst term of the r.h.s. is an ICA cost function; it aims to minimize mutual
information for all coordinates. The other term is a kind of anti-ICA term; it aims
to maximize mutual information within the subspaces. One may try to apply a
heuristics and to optimize (3) in order: (1) Start by any 'infomax' ICA algorithm
and minimize the �rst term of the r.h.s. in (3). (2) Apply only permutations
to the coordinates such that they optimize the second term. Surprisingly, this



heuristics leads to the global minimum of (2) in many cases. In other words, in
many cases, ICA that minimizes the �rst term of the r.h.s. of (3) solves the ISA
task apart from the grouping of the coordinates into subspaces. This feature was
observed by Cardoso, �rst [1]. The extent of this feature is still an open issue.
Nonetheless, we call it `Separation Theorem', because for elliptically symmetric
sources and for some other distribution types one can prove that it is rigorously
true [14]. (See also, the result concerning local minimum points [15]). Although
there is no proof for general sources as of yet, a number of algorithms apply this
heuristics with success [1,3,15,16,17,18].

2.2 ISA with Unknown Components

Another issue concerns the computation of the second term of (3). If the dm
e di-

mensions of subspaces em are known then one might rely on multi-dimensional
entropy estimations [8], but these are computationally expensive. Other methods
deal with implicit or explicit pair-wise dependency estimations [16,15]. Interest-
ingly, if the observations are indeed from an ICA generative model, then the
minimization of the pair-wise dependencies is su�cient to get the solution of the
ICA task according to the Darmois-Skitovich theorem [19]. This is not the case
for the ISA task, however. There are ISA tasks, where the estimation of pair-wise
dependencies is insu�cient for recovering the hidden subspaces [8]. Nonetheless,
such algorithms seem to work nicely in many practical cases.

A further complication arises if the dm
e dimensions of subspaces em are not

known. Then the dimension of the entropy estimation becomes uncertain. Meth-
ods that try to apply pair-wise dependencies were proposed to this task. One
can �nd a block-diagonalization method in [15], whereas [16] makes use of kernel
estimations of the mutual information.

Here we shall assume that the separation theorem is satis�ed. We shall apply
ICA preprocessing. This step will be followed by the estimation of the pair-wise
mutual information of the ICA coordinates. These quantities will be considered
as the weights of a weighted graph, the vertices of the graph being the ICA
coordinates. We shall search for clusters of this graph. In our numerical studies,
we make use of Kernel Canonical Correlation Analysis [4] for the MI estimation.
A variant of the Ncut algorithm [20] is applied for clustering. As a result, the
mutual information within (between) cluster(s) becomes large (small).

The problem is that this ISA method requires i.i.d. hidden sources. Below, we
show how to generalize the ISA task to more realistic sources. Finally, we solve
this more general problem when the dimensions of the subspaces are not known.

3 ISA Generalizations

We need the following notations: Let z stand for the time-shift operation, that is
(zv)(t) := v(t − 1). The N order polynomials of D1×D2 matrices are denoted as

R[z]D1×D2
N := {F[z] =

∑N
n=0 Fnzn,Fn ∈ RD1×D2}. Let ∇r[z] := (I−Iz)r denote

the rth order di�erence operator, where I is the identity matrix, r ≥ 0, r ∈ Z.



Now, we are to estimate unknown components em from observed signals x.
We always assume that e takes the form like in (1) and that A ∈ RDx×Ds is of
full column rank.

1. AR-IPA: The AR generalization of the ISA task is de�ned by the following
equations: x = As, where s is a multivariate AR(p) process i.e, P[z]s = Qe,
Q ∈ RDs×De , and P[z] := IDs −

∑p
i=1 Piz

i ∈ R[z]Ds×Ds
p . We assume that

P[z] is stable, that is det(P[z] 6= 0), for all z ∈ C, |z| ≤ 1. For dm
e = 1 this

task was investigated in [9]. Case dm
e > 1 is treated in [10]. The special case

of p = 0 is the ISA task.
2. MA-IPA or Blind Subspace Deconvolution (BSSD) task: The ISA task is

generalized to blind deconvolution task (moving average task, MA(q)) as
follows: x = Q[z]e, where Q[z] =

∑q
j=0 Qjz

j ∈ R[z]Dx×De
q .

3. ARMA-IPA task: The two tasks above can be merged into a model, where
the hidden s is multivariate ARMA(p,q): x = As, P[z]s = Q[z]e. Here
P[z] ∈ R[z]Ds×Ds

p , Q[z] ∈ R[z]Ds×De
q . We assume that P[z] is stable. Thus

the ARMA process is stationary.
4. ARIMA-IPA task: In practice, hidden processes s may be non-stationary.

ARMA processes can be generalized to the non-stationary case. This gen-
eralization is called integrated ARMA, or ARIMA(p,r,q). The assumption
here is that the rth di�erence of the process is an ARMA process. The cor-
responding IPA task is then

x = As, where P[z]∇r[z]s = Q[z]e. (4)

4 Reduction of ARIMA-IPA to ISA

We show how to solve the above tasks by means of ISA algorithms. We treat
the ARIMA task. Others are special cases of this one. In what follows, we as-
sume that: (i) P[z] is stable, (ii) the mixing matrix A is of full column rank,
and (iii) Q[z] has left inverse. In other words, there exists a polynomial matrix
W[z] ∈ R[z]De×Ds such that W[z]Q[z] = IDe .

1

The route of the solution is elaborated here. Let us note that di�erentiating
the observation x of the ARIMA-IPA task in Eq. (4) in rth order, and making
use of the relation zx = A(zs), the following holds:

∇r[z]x = A (∇r[z]s) , and P[z] (∇r[z]s) = Q[z]e. (5)

That is taking ∇r[z]x as observations, one ends up with an ARMA-IPA task.
Assume that Dx > De (undercomplete case). We call this task uARMA-IPA.
Now we show how to transform the uARMA-IPA task to ISA. The method is
similar to that of [22] where it was applied for BSD.

1 One can show for Ds > De that under mild conditions Q[z]-has an inverse with
probability 1 [21]; e.g., when the matrix [Q0, . . . ,Qq] is drawn from a continuous
distribution.



Theorem. If the above assumptions are ful�lled then in the uARMA-IPA task,

observation process x(t) is autoregressive and its innovation x̃(t) := x(t) −
E[x(t)|x(t−1),x(t−2), . . .] = AQ0e(t), where E[·|·] denotes the conditional ex-

pectation value. Consequently, there is a polynomial matrix WAR[z] ∈ R[z]Dx×Dx

such that WAR[z]x = AQ0e.

Due to lack of space the proof is omitted here. Thus, AR �t of x(t) can be used
for the estimation of AQ0e(t). This innovation corresponds to the observation of
an undercomplete ISA model (Dx > De)

2, which can be reduced to a complete
ISA (Dx = De) using PCA. Finally, the solution can be �nished by any ISA
procedure. The reduction procedure implies that hidden components em can be
recovered only up to the ambiguities of the ISA task: components of (identical
dimensions) can be recovered only up to permutations. Within each subspaces,
unambiguity is warranted only up to orthogonal transformations.

The steps of our algorithm are summarized in Table 1.

Table 1: Pseudocode of the undercomplete ARIMA-IPA algorithm

Input of the algorithm

Observation: {x(t)}t=1,...,T

Optimization

Di�erentiating: for observation x calculate x∗ = ∇r[z]x

AR �t: for x∗ estimate ŴAR[z]

Estimate innovation: x̃ = ŴAR[z]x∗

Reduce uISA to ISA and whiten: x̃
′
= ŴPCAx̃

Apply ICA for x̃
′
: e∗ = ŴICAx̃

′

Estimate pairwise dependency e.g., as in [16] on e∗

Cluster e∗ by Ncut: the permutation matrix is P
Estimation

ŴARIMA-IPA[z] = PŴICAŴPCAŴAR[z]∇r[z]

ê = ŴARIMA-IPA[z]x

5 Results

In this section we demonstrate the theoretical results by numerical simulations.

5.1 ARIMA Processes

We created a database for the demonstration: Hidden sources em are 4 pieces
of 2D, 3 pieces of 3D, 2 pieces of 4D and 1 piece of 5D stochastic variables, i.e.,
M = 10. These stochastic variables are independent, but the coordinates of each
2 Assumptions made for Q[z] and A in the uARMA-IPA task implies that AQ0 is of
full column rank and thus the resulting ISA task is well de�ned.



stochastic variable em depend on each other. They form a 30 dimensional space
together (De = 30). For the sake of illustration, the 3D (2D) sources emit ran-
dom samples of uniform distributions de�ned on di�erent 3D geometrical forms
(letters of the alphabet). The distributions are depicted in Fig. 1a (Fig. 1b).
30,000 samples were drawn from the sources and they were used to drive an
ARIMA(2,1,6) process de�ned by (4). Matrix A ∈ R60×60 was randomly gen-
erated and orthogonal. We also generated the polynomial Q[z] ∈ R[z]60×30

5 and
the stable polynomial P[z] ∈ R[z]60×60

1 randomly. The visualization of the 60
dimensional process is hard: a typical 3D projection is shown in Fig. 1c. The
task is to estimate original sources em using these non-stationary observations.
rth-order di�erencing of the observed ARIMA process gives rise to an ARMA
process. Typical 3D projection of this ARMA process is shown Fig. 1d. Now, one
can execute the other steps of Table 1 and these steps provide the estimations of
the hidden components êm. Here, we estimated the AR process and its order by
the methods detailed in [23]. Estimations of the 3D (2D) components are pro-
vided in Fig. 1e (Fig. 1f). In the ideal case, the product of matrix AQ0 and the
matrices provided by PCA and ISA, i.e., G := (PŴICAŴPCA)AQ0 ∈ RDe×De

is a block permutation matrix made of dm
e ×dm

e blocks. This is shown in Fig. 1g.

(a) (b) (c) (d)

(e) (f) (g)

Fig. 1: (a-b) components of the database. (a): 3 pieces of 3D geometrical forms, (b):
4 pieces of 2D letters. Hidden sources are uniformly distributed variables on these
objects. (c): typical 3D projection of the observation. (d): typical 3D projection of the
rth-order di�erence of the observation, (e): estimated 3D components, (f): estimated
2D components, (g): Hinton diagram of G, which � in case of perfect estimation �
becomes a block permutation matrix.

5.2 Facial Components

We were interested in the components that our algorithm �nds when indepen-
dence is a crude approximation at best. We have generated another database
using the FaceGen3 animation software. In our database we had 800 di�erent
front view faces with the 6 basic facial expressions. We had thus 4,800 images

3 http://www.facegen.com/modeller.htm



in total. All images were sized to 40 × 40 pixel. Figure 2a shows samples of the
database. A large X ∈ R4800×1600 matrix was compiled; rows of this matrix were
1600 dimensional vectors formed by the pixel values of the individual images.
The columns of this matrix were considered as mixed signals. This treatment
replicates the experiments in [24]: Bartlett et al., have shown that in such cases,
undercomplete ICA �nds components resembling to what humans consider facial
components. We were interested in seeing the components grouped by undercom-
plete ISA algorithm. The observed 4800 dimensional signals were compressed by
PCA to 60 dimensions and we searched for 4 pieces of ISA subspaces using the
algorithm detailed in Table 1.

The 4 subspaces that our algorithm found are shown in Fig. 2b. As it can
be seen, the 4 subspaces embrace facial components which correspond mostly to
mouth, eye brushes, facial pro�les, and eyes, respectively. Thus, ICA �nds inter-
esting components and MI based ISA groups them sensibly. The generalization
up to ARIMA-IPA processes is straightforward.

(a)

(b)

Fig. 2: (a) Samples from the database. (b) Four subspaces of the components. Distinct
groups correspond mostly to mouth, eye brushes, facial pro�les, and eyes, respectively.

6 Conclusions

We have extended the ISA task in two ways. (1) We solved problems where the
hidden components are AR, MA, ARMA, or ARIMA processes. (2) We suggested
partitioning of the graph de�ned by pairwise mutual information to identify
the hidden ISA subspaces under certain conditions. The algorithm does not
require previous knowledge about the dimensions of the subspaces. An arti�cially



generated ARIMA process was used for demonstration. The algorithm provided
sensible grouping of the estimated components for facial expressions.
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