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Abstract. In this paper a generalization of Post Nonlinear Indepen-
dent Component Analysis (PNL-ICA) to Post Nonlinear Independent
Subspace Analysis (PNL-ISA) is presented. In this framework sources to
be identified can be multidimensional as well. For this generalization we
prove a separability theorem: the ambiguities of this problem are essen-
tially the same as for the linear Independent Subspace Analysis (ISA).
By applying this result we derive an algorithm using the mirror structure
of the mixing system. Numerical simulations are presented to illustrate
the efficiency of the algorithm.

1 Introduction

Independent Component Analysis (ICA) has become one of the most popular re-
search line in signal processing. It aims to solve the following (so called ‘cocktail
party’) problem: let us assume there are D 1-dimensional, independent hidden
sources and we can only observe their linear mixture through D microphones.
The goal is to recover the original sources from the mixed signals. In spite of
its simplicity this model has been successfully applied to, for example, feature
extraction problems, denoising or biomedical signal processing. For a recent re-
view on ICA see e.g. [1, 2]. The strong assumption on the linearity can be relaxed
by assuming component-wise distortion resulting in a post nonlinear extension
(PNL-ICA) of the ICA [3]. This direction has recently gained much attention,
for a review see [4]. Another generalization of the original ICA problem is called
Multidimensional Independent Component Analysis (MICA) [5], or Independent
Subspace Analysis (ISA) (in this paper we use the latter abbreviation). In the
ISA framework the assumption on independence is relaxed in the sense that it
only requires that groups of the sources be independent so the hidden compo-
nents can now be multidimensional. Several methods have already been proposed
to solve this problem [5–16], and it has also been used in EEG analysis [6].

In this paper we show that both generalizations can be treated at the same
time (Post Nonlinear Independent Subspace Analysis, PNL-ISA). PNL-ISA prob-
lem arises, for example, if the world is observed through a layer of artificial neural
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networks: neurons mix and sum input signals and then pass the sums through
non-linearities.

We prove that multidimensional sources can still be recovered even if the
observations are component-wise nonlinear distortions of the linear mixtures. To
do so, first we introduce the PNL-ISA problem in Section 2. The ambiguities of
the problem are analyzed in Section 3, where a theorem about the separability
of the components is proven. Applying this theorem we propose an efficient
algorithm in Section 4 that solves the PNL-ISA task. In Section 5 the efficiency
of the algorithm is illustrated on several problems. Our results are recapped in
Section 6.

2 The PNL-ISA Model

Let us define the PNL-ISA task. Let us assume the observations are post non-
linear mixtures of multidimensional independent sources:

x(t) = f [As(t)], (1)

where s(t) is the concatenation of the components sm(t) ∈ R
d that is s(t) =

[s1(t); . . . ; sM (t)] ∈ R
D, (D = dM). (For simplicity let the dimension of each

component be the same d.) Our assumptions are the following:

1. Source s is d-independent, that is I(s1, . . . , sM ) = 0, where I denotes the
mutual information, and s(t) is i.i.d in t.

2. matrix A ∈ Gl(D) (that is it is of size D × D and it is invertible) and it
is ‘mixing’. By ‘mixing’ we mean the following: decomposing matrix A into
blocks of size d × d (A = [Aij ]i,j=1,...,M ,Aij ∈ R

d×d), then for any index
i ∈ {1, . . . , M} there exist a pair of indices j 6= k ∈ {1, . . . , M} for which
matrices Aij and Aik are invertible.

3. function f : R
D → R

D is a component-wise transformation that is f(z) =
[f1(z1); . . . ; fD(zD)] and f is invertible.

The PNL-ISA problem is to estimate the hidden source components sm knowing
only the observations x(t) (t = 1, . . . , T ). For d = 1 we get back the PNL-ICA
problem, while for choosing f as identity the ISA problem is recovered.

3 Ambiguities of PNL-ISA

To solve the PNL-ISA problem it is important to see to what extent we can
expect to regain the true sources. The ambiguities of the ICA, PNL-ICA and
the ISA problems are well known: in ICA, hidden sources can be recovered up to
a scalar multiplier and permutation [17]. In addition to these ambiguities there is
an additive scalar term in the PNL-ICA problem [18], while in the ISA problem
the sm components can be recovered up to the permutation ambiguity between
the components and invertible transformations within each subspace [19].



Because of the PNL assumption the hidden sources can be estimated using
the mirror structure of the mixing system, that is ŝ = Wg(x) (W ∈ Gl(D),
g : R

D → R
D, where g is a component-wise transformation). It has to be shown,

however, that the d-independence of the resulting ŝ unequivocally means that
the true s has been found. The following separability theorem shows that indeed
this is the case. This statement can be considered as an extension of the results
in [20] for the case d ≥ 1. The proof of the theorem will be based on Lemmas 3.4
and 3.5 of [21]. Due to the limited space these lemmas will only be cited. Let
C2(V, R) and Cω(V, R) denote the V (open) ⊆ R

n → R 2-times continuously
differentiable and analytic functions, respectively.

Theorem 1 (PNL-ISA Ambiguities with Locally-Constant Nonzero C2

Densities). Let (i) A,W ∈ Gl(D), be mixing matrices; (ii) let s be as above,
with at most one sm gaussian component, with existing covariance matrix, with
somewhere locally constant density function pS ∈ C2(RD, R), (iii) h : R

D → R
D

is a component-wise bijection with coordinate functions in Cω(R, R). In this case,
if e := [e1; . . . ; eM ] = Wh(As) is d-independent (em ∈ R

d) with somewhere
locally constant density function, then (i) h(x) = Lx +p, where L ∈ Gl(D) is a
diagonal matrix and p ∈ R

D, and (ii) components em (m = 1, . . . , M) recover
the hidden sources up to permutation and invertible transformations within each
subspace (and maybe up to a constant translation).

Proof. To prove the first statement it suffices to show that if e := Wh(As)
is d-independent then derivatives h′

mi are constant for ∀(i, m) ∈ {1, . . . , d} ×
{1, . . . , M} where hm is part of h that belongs to subspace m and hmi is the
ith coordinate function of hm : R

d → R
d. It directly implies the second part

of the statement as if Bs + Wp (where B denotes the matrix product WLA)
is d-independent then Bs is also d-independent. In turn, because of the sepa-
rability properties of the linear ISA, B can recover the hidden components up
to permutation and invertible transformations within the subspaces (and maybe
up to a constant translation within the subspaces).

To prove the first part, let pE and pS denote the density functions of e and s,
respectively. Based on the transformation rule of the density functions, pE can
be given as

pE[Wh(As)] = | det(W)|−1

(

M
∏

m=1

| det(h′

m[(As)m])|−1

)

| det(A)|−1pS(s), (2)

where (As)m ∈ R
d is part of As belonging to subspace m. In addition, e is

d-independent implying that pE(·) is d-separated, that is it can be rewritten as

pE = ⊗M
m=1pm, (3)

where functions pm are of R
d → R. Let us choose point s0, for which pS(s0) > 0.

Then, there exists an open neighborhood U ⊆ R
D of this point, where pS |U > 0,

and pS |U ∈ C2(U, R). Let us define r(s) := ln
[

| det(W)|−1| det(A)|−1pS(s)
]

on



set U . It can be shown using Eqs. (2)-(3) that the following relation holds

r(s) = ln

[(

M
∏

m=1

| det(h′

m[(As)m])|

)(

M
∏

m=1

pm([Wh(As)]m)

)]

(4)

=

M
∑

m=1

ln[| det(h′

m[(As)m])|] + ξm([Wh(As)]m), (s ∈ U) (5)

where ξm := ln(pm), locally at s0
m. pS is d-separated, thus function r ∈ C2(U, R)

is linearly d-separated. In other words, it can be written as a direct sum, so
∂i∂jr ≡ 0, where

⌊

i
d

⌋

6=
⌊

j

d

⌋

(i,j correspond to indices in different subspaces).
However, since pm and therefore ξm = ln(pm) is locally constant, this rela-
tion holds (without loss of generality on set U) when ignoring terms ξm, since
their derivatives are 0. Now, following the reasoning of Lemma 3.5 [21] for the
d-separated function

[

⊗M
m=1 det(h′

m)
]

(As), where A is mixing (|·|s were dropped
since functions hm were assumed to be invertible), we can see that each function
gm(v) = det[h′

m(v)](6≡ 0) satisfies a differential equation

gmHgm
−∇gm(∇gm)∗ ≡ Cmg2

m (6)

on set Um := Am(U), where Am := [Am1, . . . ,AmM ], Cm ∈ R
d×d, ∇ stands

for the gradient, H is the Hessian and * denotes transposition. For this reason
- similarly to Lemma 3.4 [21] – functions gm can be given in the form gm(v) =
ev

∗

Dmv+b
∗

m
v+cm (v ∈ Um) with suitable Dm ∈ R

d×d,bm ∈ R
d, cm ∈ R. Fur-

thermore, as functions hm are assumed to act on each coordinate separately as
hmi, gm can be written as gm = ⊗d

i=1h
′

mi, we arrive at

h′

mi(t) = ±edmit
2+bmit+cmi (dmi, bmi, cmi ∈ R) (7)

locally, exploiting that h′

mi ≡ 0 is not allowed. Based on our assumption on hmi

it holds on all R(∋ t).
Let us introduce the following notation: y = [y1; . . . ;yM ] = As, where y ∈

A(U). Following the above reasoning for the inverse system s = A−1h−1(W−1y),
h−1

mi can be given similar to (7), with other constants. However, if both hmi
′ and

(h−1
mi)

′ are of exponential type then it follows that dmi = 0 and bmi = 0 [∀(m, i) ∈
{1, . . . , M}×{1, . . . , d}]. Therefore, hmis are affine, that is hmi(z) = lmi(z)+pmi

(lmi, pmi ∈ R), what we wanted to demonstrate. ⊓⊔

4 Algorithm (Sketch)

The theorem proven above implies that by using an appropriate transformation
g acting on each coordinate separately, the d-independence of the estimation
ŝ = Wg(x) solves the PNL-ISA task. The estimation can be done in two steps:

1. Estimate g: according to the d-dependent central limit theorem [22], term
As can be considered as an approximately gaussian variable, so g can be
approximated as a ‘gaussianization’ transformation (see [23, 24] for d = 1).

2. Estimate W: apply a linear ISA method on the result of the ‘gaussianization’
transformation.



5 Illustrations

Now we illustrate the efficiency of the algorithm presented in Section 4. Test
databases are described in Section 5.1. To evaluate the solutions we use a per-
formance measure given in Section 5.2. The numerical results are summarized
in Section 5.3.

5.1 Databases

To test our PNL-ISA method, we have created 4 datasets (s) shown in Fig. 1.
In dataset 3D-geom (see Fig. 1(a)) the components sm were random variables

uniformly distributed over 3-dimensional geometrical shapes (d = 3). There were
6 hidden components (M = 6), so the total dimension of the hidden source s
was D = 18. In dataset celebrities the components sm were generated using
cartoons of celebrities.1 The cartoons were interpreted as density functions and
the 2-dimensional coordinate pairs (d = 2) were sampled with frequency propor-
tional to the pixel intensity at the given coordinates. We used 10 hidden sources
(M = 10), resulting in D = 20 (see Fig. 1(c)). The dataset Aω is scalable, the
number of components (M) can be set within a quite broad interval. Here, com-
ponents sm are random variables of uniform distribution over the letters of the
English and the Greek alphabets (M ≤ 26+24 = 50, d = 2), see Fig. 1(b). While
in the datasets defined so far variable s was i.i.d in accord with the PNL-ISA
model, in the dataset IFS this constraint has been relaxed.2 Here, components
sm are realizations of IFS based 2-dimensional (d = 2) self-similar structures. For
all m we have chosen the following triple: ({hk}k=1,...,K ,p = (p1, . . . , pK),v1},
where (i) hk : R

2 → R
2 are affine transformations in the form hk(z) = Ckz+dk

(Ck ∈ R
2×2,dk ∈ R

2), (ii) p is a distribution over the indices {1, . . . , K}

(
∑K

k=1 pk = 1, pk ≥ 0), and (iii) for the initial value we chose v1 := (1
2 , 1

2 ).
We generated T samples in the following way: (i) v1 is given (t = 1), (ii) an
index k(t) ∈ {1, . . . , K} was drawn according to the distribution p and the next
sample is generated as vt+1 := hk(t)(vt). The resulting series {v1, . . . ,vT } was
taken as a hidden source component sm and this way we generated 9 components
(M = 9, D = 18) to make the IFS dataset (see Fig. 1(d)).

5.2 Performance Measure

Let E[·] denote the expectation. In the sense of Theorem 1, in ideal case s ∈
R

D 7→ ŝ = Wg[f(As)] ∈ R
D is an affine transformation residing within the sub-

spaces. For this reason, the linear transformation G that optimally approximates
the relation s−E[s] 7→ ŝ− E[ŝ], resides also within the subspaces and so it is a
block-permutation matrix. This block-permutation structure can be measured by
the normalized version of the Amari-error [25] adapted to the ISA task [21]. Let
us decompose matrix G ∈ R

D×D into blocks of size d × d: G = [Gij ]i,j=1,...,M
.

1 http://www.smileyworld.com
2 IFS stands for Iterated Function System.



(a) (b)

(c)

(d)

Fig. 1: Illustration of the test datasets. (a): 3D-geom set. The hidden components sm are
random variables of uniform distribution over 3-dimensional geometric shapes: d = 3,
M = 6, D = 18. (b): Aω set. Here, components sm are 2-dimensional variables of
uniform distribution over the shape of the letters of the English and Greek alphabets:
d = 2, M ≤ 50. (c): celebrities dataset. The components are 2-dimensional variables
with sampling frequency proportional to the pixel intensity of the corresponding co-
ordinates of ‘celebrities’ cartoons: d = 2, M = 10, D = 20. (d): IFS dataset. Here
components sm are not i.i.d. variables anymore, instead they are self-similar structures
generated from iterated function systems: d = 2, M = 9, D = 18.

Let gij denote the sum of the absolute values of matrix Gij ∈ R
d×d. Now, the

following term

r(G) :=
1

2M(M − 1)





M
∑

i=1

(

∑M

j=1 gij

maxj gij

− 1

)

+
M
∑

j=1

(

∑M

i=1 gij

maxi gij

− 1

)



 (8)

denotes the Amari-index that takes values in [0,1]: for an ideal block-permutation
matrix G it takes 0; for the worst case it takes 1.

5.3 Simulations

In this section the results of our numerical simulations on the above defined
datasets are presented. We focused on the following questions:

1. The error of the source estimation as a function of (i) the sample size, (ii)
the dimension (D) of the task.

2. Estimation of D when it is not known beforehand.

The gaussianization (see Section 4) was based on the ranks of samples [23],
in the solution of the ISA task we followed the method described in [14]. The
goodness of the estimation was measured by the Amari-index introduced in



Section 5.2. For a given sample size T the goodness of 50 random runs (A, s, f)
were averaged. A was a random orthogonal matrix. The nonlinear functions fi

have been generated as

fi(z) = ci[aiz + tanh(biz)] + di, (9)

that is they are mixtures of random, scaled and translated id and tanh func-
tions. Here ai ∈ [0, 0.5], bi ∈ [0, 5], di ∈ [0, 2] are random variables of uniform
distribution, ci take ±1 values with probability 1

2 , 1
2 .

First we studied the Amari-index as a function of the sample size. For
3D-geom , celebrities and IFS the dimension and the number of the compo-
nents d, M and the dimension of the task D were fixed while for Aω M has been
chosen as 2, 3, 4, 10, 20, 50. As for small M the gaussian assumption on As is less
likely, we expect to see deterioration of the goodness of the estimation in this
range. In all cases the sample size T was chosen between 1, 000 and 100, 000. The
Amari-index as a function of the sample size is shown in Fig. 2. For T = 100, 000,
the exact errors are shown in Table 1 and Table 2. As an example, the estimation
results for IFS and 3D-geom datasets are illustrated in Fig. 3.
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Fig. 2: Average Amari-index as a function of the sample size, on loglog scale. (a):
datasets 3D-geom, celebrities and IFS. (b): Aω with different number of components
(M). For T = 100, 000, the exact errors are shown in Table 1 and Table 2.

3D-geom celebrities IFS

0.29%(±0.05) 0.40%(±0.03) 0.46%(±0.06)

Table 1: Amari-index for 3D-geom, celebrities and IFS datasets: average ± std. Sample
size: T = 100, 000. The error as a function of sample size T is plotted in Fig. 2(a).

As Fig. 2(a) shows, the dependency of the Amari-index on the sample size
T follows a power-law for datasets 3D-geom, celebrities and IFS, r(T ) ∝ T−c

(c > 0). This can be seen as a linear decrease on the loglog scale. The slope of
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Fig. 3: Illustration of the PNL-ISA estimation on the dataset IFS and 3D-geom, in (a)-
(d) and (e), respectively. Sample size: T = 100, 000. (a): the observed mixed x signal.
(b): the nonlinear fi functions. (c) the Hinton-diagram of G, ideally it is a block-
permutation matrix with blocks of size 2 × 2. (d): the estimated hidden components
(ŝm). (e): the same as (d), but for the 3D-geom dataset.

M = 2 M = 3 M = 4 M = 10 M = 20 M = 50

33.20%(±39.42) 5.37%(±8.82) 1.71%(±0.52)0.56%(±0.50) 0.30%(±0.03) 0.30%(±0.01)

Table 2: Amari-index for dataset Aω, as a function of the number of components M :
values shown are average ± std. Sample size: T = 100, 000. The error as a function of
sample size T is plotted in Fig. 2(b).

the lines are about the same for the different datasets. Table 1 summarizes the
average estimation errors for sample size 100, 000.

In Fig. 2(b) similar power law relation can be found for dataset Aω as well,
with increasing D. For M ≥ 3, (that is when D ≥ 6) the PNL-ISA solution
is already efficient. It can also be seen that for the case of M = 50 number of
components (that is the dimension of the task is D = 100) we need at least 10,000
samples to get a more reliable estimation, while for 3 ≤ M < 50 2, 000 − 5, 000
samples are sufficient.

Next we studied to what extent we can guess the overall dimension D of the
hidden source s when it is not given beforehand. The dimension of the observa-
tion x was set to Dx = 2D (D of course is not available for the algorithm). The



mixing matrix A ∈ R
Dx×D was generated by first creating a random orthogo-

nal matrix of size Dx × Dx then choosing its first D columns. Gaussianization
has been done on the observations and then we studied the eigenvalues of the
covariance matrix of the resulting transformed signal g(x): ideally there are D

positive and Dx − D (almost) 0 values. We show the ordered eigenvalues on
dataset celebrities averaged over 50 runs in Fig. 4. It can be seen that exactly
half of the eigenvalues are near 0, then there is a big leap. (For datasets 3D-geom
IFS we have got similar results, data is not shown.) Figure 4(b) shows the results
corresponding to dataset Aω for different number of components M : only the
M ≤ 4 cases are illustrated, but in the whole range of 2 ≤ M ≤ 50 there is a
sharp transition similar to the results gained for the other 3 datasets.
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Fig. 4: Estimation of the dimension of the hidden source s. The ordered eigenvalues of
the covariance matrix of the transformed signal g(x) are plotted. Results are averaged
over 50 runs. (a): dataset celebrities; results for 3D-geom and IFS are similar. (b):
eigenvalues for the dataset Aω, at different number of components M .

6 Conclusions

In this paper we introduced the PNL-ISA problem as a common extension of the
Post Nonlinear Independent Component Analysis (PNL-ICA) and the Indepen-
dent Subspace Analysis (ISA). We have shown the ambiguities of the PNL-ISA
task are essentially the same as in the linear ISA task (up to a constant transla-
tion in each subspace). We derived an algorithm based on our separability results.
We also demonstrated the efficiency of the algorithm on different datasets. Our
simulations revealed that the error of the estimation of the hidden sources de-
creases in a power law fashion as the sample size increases. This tendency is
even more characteristic when the overall dimension of the task (D) increases.
Interestingly, our algorithm can recover the sources in cases when the assump-
tions of the PNL-ISA problem are violated: even non i.i.d self-similar hidden



components can be recovered. In addition, we demonstrated that the dimension
of the hidden source can also be estimated.
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11. Póczos, B., Lőrincz, A.: Independent subspace analysis using k-nearest neighbor-
hood distances. In: Proc. of ICANN 2005. (Volume 3697.) 163–168
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