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Abstract

Convolution Quadrature methods are efficient techniques for the solution of time-domain wave prob-
lems in unbounded domains via Boundary Element Methods. In this proceeding we use the Convolution
Quadrature approach to decouple the time-domain problems into a series of independent frequency-domain
problems that can be solved efficiently in parallel. In contrast to previous approaches we solve many more
frequency-domain problems than there are time steps. We demonstrate numerically that this approach ap-
proximates the underlying time-stepping scheme with exponential accuracy as the number of frequency
problems is increased. The implementation of the method is done using BEM++, a modern C++ based
boundary element library with an easy to use Python interface.

1 Introduction

Convolution Quadrature (CQ) is an efficient technique for the solution of time-domain wave problems via
Boundary Element Methods. A well known interesting point is that CQ methods can be formulated in such a
way as to obtain a number of independent frequency-domain problems, which can be easily solved in parallel.
Typically, the number of frequency problems is chosen to be the same as the number of time steps. However,
in this proceeding we demonstrate that by increasing the number of time steps one can achieve exponential
convergence to the underlying time-stepping scheme that forms the basis of the Convolution Quadrature for-
mulation.

For simplicity, in this proceeding we focus on multistep schemes. But similar approaches are also possible
for Runge-Kutta based Convolution Quadrature formulations. The proceeding is organised as follows. We first
introduce parallel CQ schemes based on multistep methods and propose an approach in which the number of
frequency domain solves is decoupled from the number of time steps. We then discuss the numerical imple-
mentation of the frequency problems with BEM++, an open source C++ based boundary element library. It
offers the Galerkin discretisation of Laplace, Helmholtz and Maxwell kernels, and can be accessed via an easy
to use Python interface. We conclude the proceeding with a numerical example that shows the exponential
convergence of the proposed method.

Let Ω ⊂ R3 be an obstacle and Γ = ∂Ω its boundary. We define the exterior domain where we solve the wave
equation by Ωe = R3\Ω̄ (see Figure 1). In this proceeding we consider the following acoustic problem:

∂2u

∂t2
(x, t)− c2∆xu(x, t) = 0, x ∈ Ωe,

u(x, 0) =
∂u

∂t
(x, 0) = 0,

u(x, t) = g(x, t) for x ∈ Γ.

(1)
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Figure 1: The exterior domain of interest Ωe and the boundary of the scatterer.

2 Convolution Quadrature Methods

In this section we present a simple approach for the solution of (1) based on Convolution Quadrature. The idea
is based on a Z-Transform of the time steps of an underlying time-stepping scheme. This leads to a range of
modified Helmholtz problems in the frequency domain, which can be solved in parallel. The time domain solu-
tion is then synthesised by an inverse Z-transform. The proposed approach is similar to previous CQ methods
(see e.g. [1, 2, 8]). However, in contrast to previous presentations we decouple the number of frequency solves
from the number of time steps.

2.1 The Convolution Quadrature method

First, we transform the wave equation (1) into a first order system. To do this transformation, we introduce

v(x, t) = [u(x, t),
1

c

∂u

∂t
(x, t)]T , M =

[
0 I

∆x 0

]
, T =

[
I 0
0 0

]
, and B(x, t) =

[
g(x, t), 0

]T . We obtain


1

c

∂v(x, t)

∂t
= Mv(x, t), x ∈ Ωe,

v(x, 0) = 0,∀x ∈ Ωe,

T v(x, t) = B(x, t), x ∈ Γ.

(2)

Secondly, we apply a general multistep scheme of the form

1

c∆t

n∑
j=0

γn−jvd(x, tj) = Mvd(x, tn), (3)

to obtain the discrete time step values vd(x, tj) that approximate the exact values v(x, t) at time steps tj , j =
0, . . .. We then apply the Z-transform:

∞∑
n=0

 1

c∆t

n∑
j=0

γn−jvd(x, tj)

 zn =
∞∑
n=0

Mvd(x, tn)zn. (4)

The convolution becomes a product after the Z-Transform. We hence obtain

1

c∆t
γ(z)Vd(x, z) = MVd(x, z), (5)



where γ(z) =
∑∞

n=0 γnz
n and Vd(x, z) =

∑∞
n=0 vd(x, tn)zn. For Backward Euler it holds that γ(z) = 1− z.

We now rewrite (5) as a modified Helmholtz equation in the frequency domain:
(
γ(z)

c∆t

)2

Ud(x, z)−∆Ud(x, z) = 0, x ∈ Ωe,

Ud(x, z) = G(x, z), x ∈ Γ,

(6)

whereUd(x, z) =
∑∞

n=0 ud(x, tn)zn andG(x, z) =
∑∞

n=0 g(x, tn)zn. Hence, for each given z we can evaluate
Ud(x, z) by solving the boundary value problem (6). The boundary conditions are obtained by a Z-transform of
the time-domain boundary data. The time-domain solution is then obtained by the inverse Z-transform, which
is given as a simple contour integral:

ud(x, tn) =
1

2πi

∫
C

Ud(x, z)

zn+1
dz, (7)

with C a contour around the origin in the region of convergence of the Z-transform. Hence, we use C = {z ∈
C : |z| = λ} for some appropriately chosen λ > 0. We approximate the integral using a trapezoidal rule with

Nf frequencies at the points zk = e
−2πi k

Nf with k = 1, . . . , Nf . This leads to

ud(x, tn) ≈ u(Nf )
d (x, tn) :=

λ−n

Nf

Nf∑
k=1

Ud(x, λzk)

znk
. (8)

Note that it is possible to reduce the number of frequency problems to solve by approximatively 2 since

U(x, z) = U(x, z),

as noticed in [5, Subsection 4.1].

The accuracy of computing u(Nf )
d via (8) depends on the number Nf of frequency problems solved. In Section

4 we demonstrate that the rate of convergence is exponential.

3 Solving the frequency problems with BEM++

In this section we demonstrate how to implement the frequency-domain modified Helmholtz problems, using
BEM++ [11]. BEM++ is an open-source boundary element library developed in C++ but with an extensive
Python interface. It is fully object-oriented and can be easily extended. It makes heavy use of external projects,
such as Trilinos [3] for the solution of linear systems, Dune [6, 7] for the grid management and implementation
of basis functions on canonical elements, and TBB [4] for shared-memory parallelisation. Moreover, the library
can make efficient use of AHMED 1.0 [10] for adaptive Cross Approximation (ACA) and Hierarchical Matrices
(H-matrices) algebra. Interfaces to external FMM libraries are in development.

The library currently supports Laplace, Helmholtz and Maxwell equations. Discretisation of kernels is done
using a Galerkin approach, where the singular integrals are approximated by fully numerical singularity adapted
quadrature rules (see e.g. [9]).

3.1 The frequency problem

In order to solve the wave equation, we have to be able to solve the modified Helmholtz equation:

∆u(x)− k2u(x) = 0, x ∈ Ωe, (9)

u(x) = g(x), x ∈ Γ

+ Radiation condition when |x| → ∞.



Various methods are possible but since we solve in a unbounded domain, boundary element methods are well
adapted. The kernel associated to this equation is

Gω(x, y) =
e−ω‖x−y‖

4π‖x− y‖
. (10)

A possibility is to use the following indirect second kind formulation:

Find φ ∈ L2(Γ) such as:(
I

2
+Kω

)
φ(x) = g(x), x ∈ Γ. (11)

where I is the identity operator and K is the double-layer boundary operator:

Kωφ(x) =

∫
Γ

∂Gω(x, y)

∂ny
φ(y)dsy. (12)

3.2 Python implementation

For the implementation, we first load the BEM++ library in Python.
i m p o r t numpy as np
i m p o r t s y s
s y s . p a t h . append ( ” ˜ / bempp / py thon / ” )
from bempp i m p o r t l i b a s bemppl ib

We added in the path the directory containing the BEM++ python library. Second, we read the mesh and we
define the numerical quadrature strategy.

g r i d = bemppl ib . c r e a t e G r i d F a c t o r y ( ) . importGmshGrid ( ” t r i a n g u l a r ” , ” . / sphe re−h−0 .1 . msh ” )
q u a d S t r a t e g y = bemppl ib . c r e a t e N u m e r i c a l Q u a d r a t u r e S t r a t e g y ( ” f l o a t 6 4 ” , ” complex128 ” )
o p t i o n s = bemppl ib . c r e a t e A s s e m b l y O p t i o n s ( )
c o n t e x t = bemppl ib . c r e a t e C o n t e x t ( q u a d S t r a t e g y , o p t i o n s )

There exist various options to modify the default accuracy of the numerical quadrature rule. Here, we will not
go into detail of this but rather refer to [11].

Since we approximate the solution in L2(Γ), we define piecewise constant basis functions and then the corre-
sponding boundary layer operators.

p c o n s t s = bemppl ib . c r e a t e P i e c e w i s e C o n s t a n t S c a l a r S p a c e ( c o n t e x t , g r i d )
m a s s m a t r i x = bemppl ib . c r e a t e I d e n t i t y O p e r a t o r ( c o n t e x t , p c o n s t s , p c o n s t s , p c o n s t s )
dlOp = bemppl ib . c r e a t e M o d i f i e d H e l m h o l t z 3 d D o u b l e L a y e r B o u n d a r y O p e r a t o r ( c o n t e x t , p c o n s t s ,

p c o n s t s , p c o n s t s , wavenumber )
lhsOp = . 5∗ m a s s m a t r i x + dlOp

Operators created in BEM++ take three spaces as arguments, the domain space, the range space, and the space
dual to the range space. The range space is not strictly necessary for Galerkin discretisations, but allows BEM++
to automatically implement routines for an operator algebra, including the product of boundary integral opera-
tors.

At this level no matrix have been created. The following code creates a right hand side via user defined function,
denoted by evalDirichletData.

r h s = bemppl ib . c r e a t e G r i d F u n c t i o n ( c o n t e x t , p c o n s t s , p c o n s t s , e v a l D i r i c h l e t D a t a ) .
c o e f f i c i e n t s ( )

In what follows the iterative solver is setup, and the problem solved. The RealOperator class from BEM++
turns a complex operator into an equivalent real operator. This is to circumvent a bug in the handling of complex
matrices via Gmres in some commercial Python distributions, and may not be necessary depending on how
Scipy was compiled. The actual discretisation of the operator takes place via the weakForm method, which
returns a discretised operator that is compatible to the Scipy Operator interface.



from s c i p y . s p a r s e . l i n a l g i m p o r t gmres
n= l e n ( r h s )
A = R e a l O p e r a t o r ( ( . 5 ∗ m a s s m a t r i x + dlOp ) . weakForm ( ) )
b = np . h s t a c k ( [ np . r e a l ( r h s ) , np . imag ( r h s ) ] )
s o l r e a l , i n f o =gmres (A, b , t o l =1e−15 , m a x i t e r =1500)
s o l =( s o l r e a l [ 0 : n ]+1 j ∗ s o l r e a l [ n : ] ) . r e s h a p e ( n , 1 )
np . s ave ( ’ s o l u t i o n ’ , s o l )

To evaluate the solution in the domain, we first define a grid function by using the coefficients of sol in the
space of piecewise constant basis functions. Then, a double layer potential is created to evaluate the solution at
the evaluation_points:

e v a l u a t i o n p o i n t s =np . a r r a y ( [ [ 0 . , 2 . , 0 . ] , [ 0 . , − 2 . , 0 . ] , [ 2 . , 0 . , 0 . ] ] )
g r i d F u n = bemppl ib . c r e a t e G r i d F u n c t i o n ( c o n t e x t , p c o n s t s , c o e f f i c i e n t s = s o l )
d o m a i n s o l u t i o n = bemppl ib . c r e a t e M o d i f i e d H e l m h o l t z 3 d D o u b l e L a y e r P o t e n t i a l O p e r a t o r ( c o n t e x t

, wavenumber ) . e v a l u a t e A t P o i n t s ( g r idFun , e v a l u a t i o n p o i n t s )
np . s ave ( ’ d o m a i n s o l u t i o n ’ , d o m a i n s o l u t i o n )

Here, we evaluate the domain solution at only 3 points but it’s possible to define a grid on a plan or in a volume
to evaluate the domain solution.

4 Numerical result

In this section, we present a result for the acoustic scattering by a unit sphere, where the incoming wave is a
plane wave localised in time by a Gaussian. The boundary condition in (1) writes as

g(x, t) = cos

(
2π(t− k · x

c
)f

)
e−

(t−tp− k·x
c )2

2σ2 ,

where f is the frequency, tp the time-of-arrival, σ the variance, and k is the wave vector defining the direction
of the incident wave. We use f = 400, k = (1, 0, 0)T , tp = 0.01, c = 343 and σ = 3

1000π for the computation.

Figure 2 presents the absolute difference
∣∣∣u(Nf )
d − u(ref)

d

∣∣∣ according to Nf . The reference solution u
(ref)
d is

obtained by choosing Nf very large. We can observe exponential convergence with a rate that depends on the
parameter λ of the contour for the inverse Z-Transform. In [12] a full analysis of the asymptotic exponential
rate of convergence for Nf → ∞ is given. A particularly interesting point in Figure 2 is the point Nf = Nt,
where the number of frequencies solvedNf is identical to the number of time stepsNt. This is the standard case
in previous Convolution Quadrature approaches. We note that by increasing Nf a significantly better accuracy
can be achieved.

Conclusion

We have presented an easy-to-use Convolution Quadrature method. By choosing the number of frequencies
Nf larger than the number of time steps we can obtain a significantly improved accuracy. The solution of
the frequency-domain problems with BEM++ has been presented. An open source time-domain toolbox for
BEM++ is in development, which will allow the parallel solution of time-domain problems using various CQ
approaches.
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Figure 2: Absolute difference of the solution for the scattering of the unit sphere using indirect second kind
formulation for three different λ. The accuracy obtained usually is indicated by Nt = Nf .
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