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Abstract Learning to categorise sensory inputs by
generalising from a few examples whose category is precisely
known is a crucial step for the brain to produce appropriate
behavioural responses. At the neuronal level, this may be
performed by adaptation of synaptic weights under the influ-
ence of a training signal, in order to group spiking patterns
impinging on the neuron. Here we describe a framework that
allows spiking neurons to perform such “supervised learning”,
using principles similar to the Support VectorMachine, a well-
established and robust classifier. Using a hinge-loss error
function, we show that requesting a margin similar to that of
the SVM improves performance on linearly non-separable
problems. Moreover, we show that using pools of neurons to
discriminate categories can also increase the performance by
sharing the load among neurons.
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1 Introduction

To make sense of the world, animals must distinguish the
sensory input patterns that characterize different objects or
situations. In some cases, specific sensory patterns have innate

behavioural associations, such as the species-typical meanings
of animal vocalizations, for example growls and whines
(Altenmüller et al., 2013). In other cases however, these
associations must be learned. In the laboratory, pairing an
initially-neutral conditioned stimulus such as a tone, light, or
odour with an aversive unconditioned stimulus such as a foot
shock leads an animal to respond similarly to the conditioned
as to the unconditioned stimulus; such learning is believed to
depend on synaptic plasticity in the amygdala (Pape & Pare,
2010). Repeated performance of an action in a given circum-
stance leads to the formation of stimulus–response associa-
tions or habits, which are believed to develop through synaptic
plasticity in the dorsal striatum (Yin & Knowlton, 2006).
Importantly, learning of stimulus categories does not require
any explicit behaviour, reward or punishment. For example,
new born female Belding’s ground squirrels learn the odours
of their siblings simply by their presence in the nest during
early life; this association allows later identification of kin
during adulthood (Holmes, 1986).

In statistics and machine learning, association of input
patterns with desired categories, as specified by a training
signal, is referred to as supervised learning. This form of
learning should be distinguished from reinforcement learning,
in which learning is governed by a reward rather than an
explicit training signal; and unsupervised learning, in which
representations are found based on structure in the input,
without any explicit training signal. A classical algorithm for
supervised learning is the Perceptron learning rule F.
Rosenblatt 1958), which trains a single artificial neuron to
linearly weight its inputs such that category is predicted by
whether the weighted sum exceeds a fixed threshold. The
Support Vector Machine (SVM) improves on perceptron per-
formance by using a margin (a gap between the training
boundaries for different classes), as well as through other
innovations such as the introduction of nonlinearities through
a kernel function (Cortes & Vapnik, 1995).
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A number of learning rules have been suggested by which
spiking neurons might perform tasks analogous to supervised
learning (Bohte et al., 2002; Florian, 2007; Pfister et al., 2006;
Ponulak & Kasiński, 2010; Xu et al., 2013; Legenstein et al.,
2005). Recently, concepts of the Perceptron were extended to
spiking neurons in a framework called the “Tempotron”, in
which an error signal is used to adjust synapses strongly active
when the neuron was close to its threshold (Florian, 2012;
Gutig & Sompolinsky 2006; Gütig & Sompolinsky, 2009),
producing 1 or 0 spikes according to the desired category. In
the present work, we describe an adaptation of the SVM to
spiking neurons, whose margin allows for the training of more
general firing rate modulations than 0/1 spike.We found that a
moderate training margin increases the learning speed of
single neurons in linearly separable tasks, and increases their
performance in linearly non-separable tasks. To further im-
prove learning of linearly non-separable problems, we consid-
ered an extension in which neurons work in pools trained
simultaneously (Urbanczik & Senn, 2009), whose combined
activity forms the network’s response to a pattern. We found
that this indeed improved performance as the training signal,
although global, nevertheless allowed different neurons to
learn different receptive fields.

2 Material and methods

Neuron model In all simulations, we used a conductance-
based integrate-and-fire neuron model with a membrane time
constant τm=20ms, a leak conductance gL=10nS, and a rest-
ing membrane potential Vrest=−70mV. Spikes were generated
when the membrane potential Vm reached the threshold
Vthresh=−50mV. To model the shape of the action potential,
the voltage was set to 20 mVafter threshold crossing, and then
decayed linearly during a refractory period of duration τwidth=
5ms to the reset value Vreset=−55mV, following which an
exponentially decaying depolarizing current of initial magni-
tude 50pA and time constant τdep=40ms was applied (simi-
larly to (Clopath et al., 2010; Yger & Harris, 2013)). We used
this scheme with a high reset voltage and ADP, rather than the
more common low reset value, as it provides a better match to
intracellular recordings in vitro and in vivo. Synaptic connec-
tions were modelled as transient conductance changes with
instantaneous rise followed by exponential decay. Synaptic
connections were excitatory only (synaptic weights were
clipped when they attempted to cross zero), with a time
constant τexc=5ms and a reversal potential Eexc=0mV.

Input patterns To reduce the time of the simulations, we used
only 10 input neurons. For each input pattern, the firing rate of
each input neuron is independently drawn from a uniform
distribution between 0 and 1Hz. The rate pattern is then
normalised such that the total input rate is 10 000Hz,

comparable to the physiological regime in which neurons
operate (assuming an average of 10,000 incoming synapses
at 1Hz). Every time a pattern is presented, the rate pattern is
transformed into a novel 100 ms spiking pattern via the
realization of ten independent and homogeneous Poisson
processes.

Network structure Input spike trains are fed, in an all-to-all
manner, to neurons embedded in two pools, termed A and B
(see Fig. 1). There are either one or several (three) neurons in
each pool, and connections are established with initial weights
drawn from a uniform distribution between 0 and 2nS, and
delays drawn from a uniform distribution between [0.1 ms,
5 ms]. There are no lateral connections between the neurons in
the pools.

Learning rule We derived the learning rule from approximate
gradient descent on the Support Vector Machine cost function
(see Fig. 1 panel C). This cost function E for a neuronal pool
on a given trial is a function of the summed number of spikes
Npool emitted by all the neurons within the pool during that
trial, and of the category of the input pattern presented during
that trial. This function depends on two parameters, the learn-
ing thresholds θ+ and θ−. If the input pattern belongs to the
same category as the pool, then the pool should respond to it
by emitting at least θ+ θ+ spikes. If this is the case then the cost
for the pool is 0, otherwise it is equal to the number of missing
spikes. The cost function is thus a rectified linear function of
the pool’s number of spikes, with parameter θ+. If the input
pattern is not of the same category as the pool, then the pool
should respond to it by emitting less than θ− spikes. If this is
the case then the cost for the pool is 0, otherwise it is equal to
the number of superfluous spikes. The cost function is thus a
rectified linear function of the pool’s number of spikes, with
parameter θ−.

To perform gradient descent on the synaptic weights, the
change in synaptic weight wij from the input neuron j to
the neuron i of the pool must be proportional to the
opposite of the derivative of this cost function with respect
to wij. Due to Poisson noise in the inputs, for a given set of
weights, the response to a given pattern may vary from trial
to trial. We therefore consider the derivative of the expect-
ed cost function. With the chain rule, this is equal to the
product of the derivative of the expected cost E with
respect to the expected summed number of spikes of the
pool <Npool> (because of the hinge-loss function, this
derivative takes the values −1, 0 or 1); of the derivative
of <Npool> with respect to the expected number of spikes
<ni> of neuron i (this derivative takes the value 1 expect at
<ni>=0, where it is set to 0 or 1 so as to incorporate the
constraint that neurons which do not spike are not allowed
to reduce their incoming synaptic weights but can increase
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them); and of the derivative of <ni> with respect to wij.
This leads to the following equation for the weight update:

Δwij∝−
dE

d < Npool >

d < Npool >

d < ni >

d < ni >

dwij
ð1Þ

We refer to the last term as the eligibility trace. To obtain it,
we first approximate ni by a function of the square of the
membrane voltage Vi of neuron i:

< ni > ∝
Z T

0
F2 Vi tð Þð Þdt ð2Þ

T being the length of a trial, and F a rectified linear function
of the voltage:

F Vð Þ ¼ 0 if V < −60mV ð3Þ

F Vð Þ ¼ 60mVþ V if V > −60mV ð4Þ

This approximation captures well the relationship between
firing rate and voltage in a typical trial generated with the input
statistics of the classification task (Supplementary Figure 1).

Assuming this, we then have:

d < ni >

dwij
∝
Z T

0
F Vi tð Þð ÞdVi tð Þ

dwij
dt ð5Þ

We estimate dVi tð Þ
dwij

similarly to the method of (Gutig &

Sompolinsky 2006; Gütig & Sompolinsky, 2009). For a
conductance-based integrate-and-fire neuron as used in this
study, ignoring the reset mechanism due to a spike, we have:

cm
dVi tð Þ
dt

¼ − Vi tð Þ−Vrestð Þ gL þ Gexc tð Þi
� �þ Isyn tð Þi ð6Þ

where Gexc(t)i is the total synaptic excitatory conductance and
Isyn(t)i the synaptic current of neuron i. Specifically, if

t j;…; t jN j
are the Nj times at which a particular synapse j of

weight wij is active, if g tð Þ ¼ e−t=τsyn (if t>0) is the kernel
function representing the conductance time course, and if N is
the number of input synapses (here 10), we have:

Gexc tð Þi ¼
X
j¼1

N

wij

X
s¼1

N j

g t−t js
� �

and Isyn tð Þi

¼ Eexc−Vrestð Þ
X
j¼1

N

wij

X
s¼1

N j

g t−t js
� � ð7Þ

Inspecting former equations, we see that for a conductance-
based neuron, Vi integrates Isyn(t)i with an effective time
constant τeff=cm/(gL+Gexc(t)i). Approximating τeff by a con-
stant equal to cm/(gL+<Gexc(t)i>) where <Gexc(t)i> denotes a
running average of the synaptic conductance during the pre-
sentation of one pattern (Gütig & Sompolinsky, 2009), we can
approximate Vi(t) by the following equation:

Vi tð Þ≈
X
j¼1

N wij

gL
Eexc−Vrestð Þ

X
s¼1

N j

K t−t js
� �þ Vrest ð8Þ

Where input spikes evoke PSPs of shape K tð Þ ¼
e
−t=τsyn −e

−t=τeff

� �
τm
τeff

− τm
τsyn

. Therefore, we approximate the derivative

of the post-synaptic potential dVi tð Þ
dwij

by a sum of PSPs (whose

height and time-course are fixed for a given trial) at times

t j1;…; t jN j
when the input neuron j spiked:

dVi tð Þ
dwij

∝ Eexc−Vrestð Þ
X
s¼1

N j

K t−t js
� � ð9Þ

Ignoring the reset mechanism and the non-linearity due to
the spike, this would be exact for a current based neuron, but
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Fig. 1 Illustration of the classification task. (a), Random normalized rate
patterns are drawn and assigned to two categories, (a) and (b). Every time
a pattern is presented, the rate pattern is transformed into a novel 100 ms
spiking pattern via a homogeneous Poisson process. (b), Schematic of the
network used for classification. There is an all-to-all connection between
the input neurons and the neurons in pools (a) and (b), and no lateral
connections or inhibition. The cost function for each pool is calculated
based on the input’s category and the number of spikes emitted by that

pool; the error signal is then distributed to all neurons in that pool.
Classification is based on comparison between the two pools’ numbers
of spikes NA and NB. (c) The cost function for each pool, adapted from
the SVM, as a function of the number of spikes Nspikes emitted by the
pool: if the input belonged to the pool’s category (red curve) it is the
number of spikes missing to reach θ+; otherwise (green curve), it is the
number of spikes exceeding θ−
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this is only an approximation for the conductance-based neuron
which we implement, estimating the average membrane time
constant with the average conductance received during the
presentation of a single pattern (Gütig & Sompolinsky, 2009).

We therefore obtain the following learning rule:

Δwij∝−
dE

d < Npool >

d < Npool >

d < ni >

Z
0

T

F Vi tð Þð Þ
X
s¼1

N j

K t−t js
� �

dt

ð10Þ

We impose the constraint that weights that attempt to become
negative are clipped to zero, since we are using only excitatory
synapses. In addition, we add a constraint that a neuron that
doesn’t fire cannot reduce its incoming synaptic weights.

Neural simulator Simulations of the spiking neurons were
performed using a customised version of the NEST simulator
(Diesmann & Gewaltig, 2007) and the PyNN interface
(Davison et al., 2009), with a fixed time step of 0.1 ms.

Support vector machine For Figs. 5, 10, the linear Support
Vector Machine of the Python scikit toolkit (Pedregosa &
Varoquaux, 2011) was trained on Poisson spike counts drawn
from the same patterns that were used to train the neuronal
pools. For each pattern number, the cost parameter (termed c)
was chosen so as to optimise the SVM performance. This
yielded the same optimal cost parameter c=10−6 for all pattern
numbers. In Fig. 5, performance for a lower and a higher value
of the cost parameter are also shown.

3 Results

We studied a learning algorithm for spiking neurons to per-
form supervised learning, based on the support vector ma-
chine (SVM) cost function. The network that was used for the
task is shown in Fig. 1a. Working in a rate-based framework,
we defined each input pattern by a set of mean rates of each of
the input neurons during that pattern, which is transformed
into a 100 ms spiking pattern via a homogeneous Poisson
process generated anew each time a pattern is presented (see
Fig. 1a left, and Material and Methods). The input patterns are

normalised random rate vectors (randomly assigned to the two
categories A and B, see Materials and Methods). Fig. 1a is a
schematic illustration of the learning task addressed by the
spiking neurons, and of the generation process of the input
spike trains from the input patterns of the two categories. All
neurons in the two readout pools received connections from
all input neurons. There are no lateral connections between the
readout neurons (Fig. 1b). Each pool is assigned one category
of inputs to which it must respond, its positive (+) patterns; the
other patterns become the pool’s negative (−) patterns. Pool
A’s + patterns are thus the A patterns, while its patterns are the
B patterns. Classification is assessed as correct if in response
to an A pattern, the summed number of spikes from pool A,
NA is greater than the summed number of spikes from pool B,
NB (and vice versa).

The learning rule was designed by adapting the SVM cost
function to spiking neurons, using the framework of the
Tempotron learning rule (see Materials and Methods). The
neurons in a pool are trained to emit collectively at least θ+
spikes to their + patterns and less than θ− to their patterns
using a cost function which counts the number of missing or
superfluous spikes (illustrated in Fig. 1c). The “hinge” shape
of this cost function is directly inspired from SVM techniques
(Cortes & Vapnik, 1995). On the trials in which a pool emits
an incorrect number of spikes (less than θ+ in response to a +
pattern, or more than θ− in response to a pattern), it receives an
error signal indicating whether it has fired too many or too
little spikes, allowing it to perform approximate gradient
descent on this cost function, ensuring that after each update
the cost is decreased (for the complete derivation see the
Material and Methods section). The rule obtained has the
form:

Δwij∝−
dE

d < Npool >

d < Npool >

d < ni >

Z
0

T

F Vi tð Þð Þ
X

t j
s∈ 1;::;;N jf g

K t−t js
� �

dt

ð11Þ

where K can be seen as a normalized EPSP at the soma, F is a
rectified linear function, Npool is the total number of spikes
emitted by one pool, and ni is the number of spikes emitted by
neuron i. The supervision or error signal is defined as:

dE

d < Npool >
¼

0 if þpattern and Npool≥θþ
� �

or if −pattern and Npool ≤θ−
� �

−1 if −pattern and Npool > θ−
� �

þ1 if þpattern and Npool < θþ
� �

8<
: ð12Þ

In our learning rule, each synapse thus accumulates an
eligibility trace over the course of a trial. At the end of each

trial, if the neuron receives an error signal, the eligibility trace
is transformed into a synaptic change, the sign of which is
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dictated by the error signal. This defines a 3-factor learning
rule: if there is no error signal, no plasticity occurs; if the error
signal is positive, the rule is Hebbian (inputs that make the
neuron fire are potentiated); but if the error signal is negative,
the rule is anti-Hebbian (inputs that make the neuron fire are
depressed). Therefore, unlike purely Hebbian or STDP rules
that require homeostasis to ensure stability (Abbott & Nelson,
2000; Clopath et al., 2010; Yger & Harris, 2013), this rule is
intrinsically stable. Note that such a notion of eligibility traces
has already been proposed in the case of reinforcement learn-
ing with a delayed error signal (Izhikevich, 2007; Legenstein
et al., 2008).

As a first example, we trained two single neurons to clas-
sify 12 random rate patterns with 10 input synapses and
learning thresholds θ+=4 and θ−=1. Synaptic weights
evolved throughout learning (see Fig. 2a; a 1 ns conductance
gives rise to 0.5 mV EPSP in the fluctuation conditions of a
typical trial), and after training, each neuron fired at least 3
spikes to each of the patterns of its category and at most 2
spikes to each of the other patterns (Fig. 2b) leading to an
almost perfect classification (Fig. 2c). Fig. 2d illustrates the
responses after learning to the six “A” patterns immediately
followed by the six “B” patterns. The neuron from pool Awas
strongly active during the first 6 patterns, while the one from
pool B was active during the latter 6. The readout neurons thus
reliably spiked to their categories. We verified that learning

behaviour was not affected by the number of input synapses
(Supplementary Figure 2). For the remainder of the text, we
therefore used 10 input synapses.

We then asked how learning depends on the margin M=θ+
−θ− between the learning thresholds. To answer this question,
we performed the same task, i.e. the classification of 12
random rate patterns, but with different values of the learning
thresholds (θ−,θ+) ranging from 0 to 12. The classification
performance after learning is plotted as a function of the
learning thresholds in Fig. 3a. As one can see, performance
on the nearly separable 12-pattern task was better with a
smaller margin, decreasing when M exceeds 4 spikes. How-
ever, when the task was made more complex using 24 input
patterns (which is a highly linearly non-separable task in 10
dimensions), a clear benefit of the margin was seen (see bad
performance on the diagonal where M=0 in Fig. 3b).

The fact that optimal performance could be obtained in the
12 pattern case with a margin of 0 was at first surprising. For
example, when trained with equal thresholds (θ−,θ+)=(4,4), if
each pool emitted exactly 4 spikes to every pattern, they
would receive no error signal during training, yet their classi-
fication performance would be 0 %. To investigate how good
performance could be obtained without a margin in a close-to-
linearly separable situation, we plotted a histogram of spike
count outputs (see Fig. 3c). Note that the spike count distri-
bution of each category is broad and bell-shaped, even after
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Fig. 2 Example of single neuron pools learning to classify 12 patterns
with learning thresholds (θ−,θ+)=(1,4). A, Evolution of the ten synaptic
weights incoming onto neuron (a) (top) and neuron (b) (bottom), as a
function of time during learning. B, Evolution of the number of spikes
produced by neuron (a) (top) and (b) (bottom) in response to patterns of
category (a) (red curves) and (b) (green curves), as a function of the
number of presentations of each pattern. C, Evolution of the classification
performance as a function of time, reaching 100 % after learning.

Generalization performance was evaluated by using different data sam-
ples than those used to train the classifier. D, Successive presentation of
the six patterns of category (a) followed by the six patterns of category
(b). (top) Schematic of the input spike trains: the spikes of each of the ten
input synapses are spread out over 100 synapses for illustrative purposes.
Voltage traces after learning for neuron (a) (middle) and (b) (bottom).
After learning, each neuron reliably spikes to the inputs from its category,
with nonzero baseline firing
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learning; this reflects the random distribution of the multiple
patterns in each class. High classification without a margin
occurred because the centres of the distributions are widely
separated. This can be characterised by the difference between
the mean spike count in response to target patterns and the
mean spike count in response to null patterns, which we will
refer to as spike count modulation. We suggest that modula-
tion occurs because the hinge cost function causes plasticity
anytime the response exceeds the learning threshold, and the
broadness of the spike count distributions for each class
causes the centres of the spike count histograms tomove apart,
resulting in spike count modulation even when no margin was
requested. For 24 patterns however, this separation did not
occur, suggesting that in a highly nonlinearly separable prob-
lem, spike count modulation only occurs when a margin is
explicitly requested.

We next asked how requesting a margin affected perfor-
mance in the two cases. Figs. 3c damd e show histograms, for
various margins, of the spike counts emitted by each neuron in
response to its + patterns (full lines) and in response to its
patterns (dashed lines). As the margin is increased, the spike
distributions move further apart, allowing better separation in

the case of 24 patterns (green). For 12 patterns however (red),
because separation already occurred without a margin, little
gain was derived from the margin, and indeed performance
actually decreased in the case of an 8-spikes margin, likely
due to the broadening of the response distribution for patterns.
We speculate this may occur because in order to respond very
strongly to + patterns, the neurons cannot avoid also produc-
ing strong responses to at least some patterns.

Based on these results, we speculated that the critical
parameter determining performance is the actual separation
between the spike count histograms for + and patterns, rather
than the margin requested. Figure 4a shows the actual spike
count modulation as a function of the margin M=(θ+−θ−) for
12 patterns (red) and 24 patterns (green) to classify. The spike
count modulation does not track the margin, as seen by the
shallow slope of this curve; in addition it is systematically
bigger when the task is easier (12 versus 24 patterns to
classify). This confirms the intuitive explanation for how a
margin of zero can give a variety of performances (Fig. 4b),
whereas the relationship between spike count modulation and
performance (Fig. 4c) is much tighter and much more
constrained.

C D E

spikes to + patterns
spikes to - patterns

error error error

A B

12 patterns

12 patterns

24 patterns

24 patterns

Fig. 3 Generalization performance of single neuron pools as a function
of the training margin M=θ+−θ−. Performance as a function of the
learning thresholds θ+ and θ− for the classification of (a), 12 input
patterns, for which performance is highest for low values of the margin
(near the diagonal); and (b), 24 input patterns, for which performance is
highest for larger values of the margin (off the diagonal). C, (d), (e)
Histograms of the number of spikes emitted by the neurons in response
to inputs from their category (+patterns, plain curves) and from the other

category (patterns, dotted lines), in the classification of 12 patterns (red
curves), and 24 patterns (green curves), and for different values of the
training margin M=θ+−θ−, respectively M=0, (θ−,θ+)=(4,4) (panel (c))
M=4, (θ−,θ+)=(4,8) (panel (d)), and M=8, (θ−,θ+)=(4,12) (panel E).
Classification errors are written in the bottom right of the panels. The
histograms to −/+patterns are wider for larger values of the margin, and
are drawn closer when the number of patterns increases; both of which
lead to a higher overlap and therefore a poorer performance

338 J Comput Neurosci (2014) 37:333–344



Although differences were found in the precise margin-
dependence of performance for different numbers of patterns,
we found that a margin of M=4 spikes allowed for optimal
training in both cases. We next asked systematically how the
performance of single-neuron classification depended on the
number of patterns to be classified, for three different choices
of the margin parameter. For comparison, we also evaluated
the performance of a linear Support Vector Machine on the
spike counts. SVMs are trained with a parameter c which
weights the cost of misclassifying a pattern relative to the
importance of providing a large margin. Figure 5 shows that
the performance of single neurons trained with an optimal
margin (M=4, full red curve) closely tracks the performance
of an SVM trained on the same inputs with an optimal c
parameter (c=10−6, full black curve). Demanding too large
of a margin for single neurons (M=0, dotted red curve), or
setting the SVM c parameter too low (c=10−13, dotted black
curve) leads to poor performance specifically on easy tasks
with low pattern numbers. Conversely, demanding too little of
a margin for single neurons (M=12, dashed red curve), or
setting c too high (c=1, dashed black curve) leads to a drop in
performance for difficult tasks with large patterns numbers.
We conclude that a margin of 4 provides good performance,
close to that of a linear SVM, for a wide range of pattern
numbers. Performance for the thresholds (0,1), which defines
an algorithm similar to the voltage convolution implementa-
tion of the Tempotron rule (Gutig & Sompolinsky, 2006), is
consistently worse for all numbers of patterns.

In addition to affecting the asymptotic performance, the
margin had a substantial effect on training speed. Figure 6a
shows the evolution of performance throughout training, for
various thresholds (θ-, θ+), when 12 patterns are learnt. For
margin values ranging from 0 to 12, the pair of thresholds θ
and θ + that is plotted is the pair giving highest asymptotic
performance. We additionally plotted performance for the
thresholds (0,1), which lead to both slower learning and lower

asymptotic performance. Convergence to asymptotic perfor-
mance is faster for larger margins. This may be understood
intuitively: learning only occurs when there are mistakes, for
example when the spike count to a + pattern does not exceed
its learning threshold value. At the beginning of learning, this
occurs more frequently if θ+ is high then if it is low. Likewise
more mistakes occur at first if θ− is low then if it is high.

B CA
12 patterns
24 patterns

S
pi

ke
 c

ou
nt

 m
od

ul
at

io
n

Spike count modulation

Fig. 4 Relationship between training margin and actual spike count
modulation for single-neuron pools (defined as the difference between
the mean spike count in response to target patterns and the mean spike
count in response to null patterns). A, Scatterplot of the spike count
modulation after learning as a function of the training margin. The actual
modulation does not track the trainingmargin, and is systematically larger

for easier tasks (12 patterns in red versus 24 patterns in green) (b), Scatter
plot of the performance as a function of the training margin; there is a
wide spread for low values of the margin. C, Same as in (b), but as a
function of the spike count modulation; the relationship is more tightly
constrained

Fig. 5 Comparison of the performance of single-neuron pools and a
linear SVM. Performance of a linear SVM (dashed lines) and a single
neuron (full lines) as a function of the number of patterns to be learned.
When the training parameter places a high emphasis on the margin
(yellow, margin=12 for the neuron, c=10−13 for the SVM) performance
is suboptimal for low numbers of patterns. When the training parameter
places a low emphasis on the margin (purple, margin=0 for the neuron,
c=1 for the SVM) performance is suboptimal for large numbers of
patterns. There is an intermediate value of the training parameter (red,
margin=4 for the neuron, c=10−6 for the SVM) which gives optimal
performance over a wide range of pattern numbers. Single neuron per-
formance for the thresholds (0,1) (blue) is worse for all pattern numbers.
Error bars show s.e.m for 25 different sets of random input patterns

J Comput Neurosci (2014) 37:333–344 339



Learning is therefore fastest when the margin is large. Of the
margin values that provide optimal performance in the classi-
fication of 12 patterns, a margin of 4 (which is also the optimal
margin in a wide range of pattern numbers) thus provides the
highest learning speed. For the classification of 24 patterns by
single neurons, the influence of the margin on the conver-
gence time is less evident, but the margin has a stronger effect
on asymptotic performance (Fig. 6b).

We next asked whether performance on nonlinearly sepa-
rable tasks could be improved using multineuron pools, with
the training signal depending on the summed number of
spikes emitted by the pool. Multineuron pools were thus
trained on the same highly linearly non-separable task which
single neurons and the SVM perform with less than 80 %
accuracy: the classification of 24 random rate patterns. All the

neurons in a pool are trained with the same error signal, which
depends on the number of spikes of the entire pool (see
Materials and Methods for details). Although there was no
lateral inhibition between the neurons, neurons in a given pool
evolved different receptive fields. An example is shown in
Fig. 7. The mean responses of each neuron to each of the
twelve A patterns (left) and each of the twelve B patterns
(right) is shown for single neurons (panel A) and for
multineuron pools (3 neurons per pool) (panel B). To investi-
gate how individual neurons shared the load of pool perfor-
mance, we plotted spike count histograms of the entire pool
(Fig. 8, top row) and of individual neurons from those pools
(Fig. 8, bottom row).While the distribution of total pool spikes
is again broad, individual neurons were silent in response to
between 30 and 42 % of the + patterns (Figs. 8d and f). This
indicates that the neurons have learned a sparse code, each
having distinct receptive fields, which is the only way to solve
this highly linearly non-separable task. This can be understood
intuitively: since multineuron pools are simultaneously trained,
if one of the neurons learns to respond to a pattern, then the
pool receives no error signal, such that no other neuron in the
pool needs to learn to respond to that pattern. The neurons then
compete, in a “first-one-first-served” manner to learn the re-
maining patterns until all the patterns are learned.

To investigate how margins affect performance when neu-
rons are grouped in pools, we again systematically evaluated
performance as a function of learning threshold values, for
groups of 24 and 36 patterns (Figs. 9a and c). As with single
neurons, increasing the margin increases training speed
(Figs. 9b and d), but choosing margins too high impairs
performance on easier tasks. A value of the training margin
between 2 and 4 spikes provides good performance for these
two tasks. Figure 10 shows performance over a range of
pattern numbers, for three different choices of margin param-
eter; it can be seen that thresholds of (θ−,θ+) = (4,8) corre-
sponding to a margin of 4 spikes again provide good perfor-
mance over a wide range of linearly non-separable pattern
numbers. In all cases, multineuron pools (full lines) provided
improved performance over a linear SVM (dotted line). As in
the single neuron case (dashed lines), we found that larger
margins perform worse for easier problems, whereas small
margins provide poorer performance for more challenging
tasks with high pattern number. Also similarly to the single
neuron cases, we found that performance depends more close-
ly on the actual spike count modulation generated, rather than
on the margin requested (see Fig. 11).

Finally, to investigate how capacity grows with the size
of the pools, we plotted the performance for the optimal
thresholds for pools of 1, 3 and 10 neurons (Fig. 12). By
defining the capacity as the number of patterns for which
mean performance is 90 %, one can read off from Fig. 12a
that capacity increases from 14 for single neurons to 26 for
3 neurons and to 34 for 10 neurons. Similarly, Fig. 12b

Number of presentations

12 patterns

24 patterns

A

B

Fig. 6 Learning speed increases as a function of the margin. For margin
values ranging from 0 to 12, the evolution of the performance during
learning is plotted for the thresholds giving highest asymptotic perfor-
mance; for 12 patterns (panel (a)) and 24 patterns (panel (b)). We
additionally plotted performance for the targets (0,1), which lead to both
slower learning and lower asymptotic performance Error bars show s.e.m
for 25 different sets of 12 or 24 random input patterns

340 J Comput Neurosci (2014) 37:333–344



shows that increasing the number of neurons improves
performance for each pattern number. The increases in
performance for growing pool size are comparable to those
found with reinforcement learning in populations of spiking
neurons (Urbanczik & Senn, 2009).

4 Discussion

In this study, we presented a learning rule which allows
multineuron pools to learn in a supervised way to increase
their firing rate in response to a certain set of inputs but not to
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Fig. 7 Multineuron pools outperform single neuron pools by evolving
diverse receptive fields. A, (b), The mean responses of each neuron to
each of the twelve (a) patterns (left) and each of the twelve (b) patterns
(right) for single neuron (panel (a)) and for multineuron pools (3 neurons
per pool) (panel (b)). C, Summed spike counts of pools (a) (red) and (b)

(green). For single neuron pools (dashed lines) neuron (b) responds to the
11th A pattern whereas neuron (a) does not. For multineuron pools (full
lines) this is reversed.D, Classification performance. Single neuron pools
(dashed lines) completely misclassify the 11th (a) pattern, whereas
multineuron pools (full lines) do not (arrow)

spikes to + patterns
spikes to - patterns

24 patterns

error error error

spikes to + patterns
spikes to - patterns
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D E F

Fig. 8 Multineuron pools
implement sparse coding.
Histograms of the summed
number of spikes emitted by a
pool (top row) versus by
individual neurons (bottom row)
to inputs from their category (full
lines) and from the other category
(dashed lines) for a training
margin of 0 (left column (a), (d)),
4 (middle column (b), (e)) and 8
(right column (c), (f)). Insets in
the top row indicate the pool’s
classification error. Insets in the
bottom row indicate the
percentage of presentations to
which an individual neuron is
silent (the y-axis is truncated); this
is much greater than the
percentage of presentations to
which the entire pool is silent
(value at 0 of the histogram in the
top row)
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another set. We combined an approach similar to the
Tempotron (Gutig & Sompolinsky 2006; Gütig &
Sompolinsky, 2009) for the synaptic update with concepts
from the Support Vector Machine literature (Cortes &
Vapnik, 1995). We found that a moderate training margin
increases the learning speed of single neurons in linearly
separable tasks, and increases their performance in linearly
non-separable tasks. Although we did not assess the

performance of the original Tempotron rule on our task, we
found that using a (0,1) threshold a similar rule to the “voltage
convolution” implementation of the Tempotron rule (Gutig &
Sompolinsky 2006 produced worse performance on our task.
We note however that the learning task originally used to test
the Tempotron consisted of detecting reliable spatiotemporal
patterns, whereas our task consists of discriminating Poisson
spike trains that can vary from one repeat to the next. This may
provide an explanation of the relatively poor performance of
the (0,1) rule to some of the original applications of the
Tempotron paper.

The performance of single neurons was bounded by the
linear SVM performance, but performance could be increased
by training neurons in pools with a single, global training
signal. Although the neurons in a given pool received the
same error signal derived from the pool’s number of spikes,
they were nevertheless able to spontaneously select different
features, thus classifying linearly non-separable inputs.

In models of unsupervised learning, lateral or recurrent
inhibition is often used to force neurons to develop different
receptive fields (Clopath et al., 2010; Masquelier et al., 2009;
Yger & Harris, 2013). In the present case, recurrent inhibition
was not necessary for neurons to evolve different receptive
fields. Since our model has no feed forward inhibition, we
normalised the rate patterns such that each pattern had the
same global rate (otherwise, a pool would not be able to
simultaneously respond with a high number of spikes to
patterns of low input rate and with a low number of spikes
to patterns of high input rate, and would therefore misclassify
many patterns.) Adding divisive feedforward inhibition to the
model might allow it to extend to the classification of non-
normalised rate patterns. In the present model, synaptic
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Fig. 9 Performance and learning
speed of multineuron pools as a
function of the margin
M=θ+−θ−. (a), (c) Performance
as a function of the learning
thresholds θ+ and θ− for the
classification of 24 (panel (a)) and
36 (panel (c)) input patterns:
performance is highest for low
values of the margin (near the
diagonal). B, (d) For each margin
value, the evolution of
performance during learning is
plotted for the thresholds giving
highest asymptotic performance;
for 24 patterns (panel (b)) and 36
patterns (panel (d)). Error bars
show s.e.m for 25 different sets of
24 or 36 random input patterns.
Learning is quickest for higher
values of the margin

Fig. 10 Comparison of single neuron and multineuron pools. Perfor-
mance of 3 neuron (full lines) and single neuron pools (dashed lines) as a
function of the number of patterns. For a low value of the margin (purple),
performance is optimal for low pattern numbers. For a high value of the
margin (yellow), performance is optimal for large pattern numbers. An
intermediate value of the margin (red) provides optimal performance over
a large range of pattern numbers. The optimal linear SVM performance is
plotted in a dotted black line; note that this is exceeded by a 3-neuron
pool. Error bars show s.e.m for 25 different sets of random input patterns
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weights were not allowed to become negative. Such a con-
straint typically reduces the capacity of perceptrons to learn
rate-based inputs (see for example Amit et al., 1989; Gardner,
1988; Legenstein &Maass, 2007). This loss in capacity could
be compensated for in part by adding subtractive feedforward
inhibition to our model.

Could an analogous rule be implemented in the brain? The
rule requires two steps: first, an eligibility trace is constructed
based on pre-synaptic input occurring shortly prior to or
during postsynaptic depolarization; and second, this is con-
solidated into a change in synaptic strength by a later-arriving
training signal. Molecular mechanisms that could underlie the
eligibility trace are well described, such as the multiple phos-
phorylation cascades that occur downstream of calcium influx
via the NMDA receptor (Sweatt, 2009). But how might a
training signal be conveyed? In the case of reinforcement
learning, dopamine has been suggested as a training signal,
and dopamine has indeed been implicated in the consolidation

of eligibility traces (Kentros et al., 2004). A role for eligibility
traces in reinforcement learning has been modelled previously
(Izhikevich, 2007; Legenstein et al., 2008; El Boustani et al.,
2012). A global reinforcement signal, however, cannot in-
struct different neuronal populations with different target sig-
nals. A more flexible, higher-dimensional training signal
might instead be conveyed by glutamatergic inputs. In the
cerebellum, for example, climbing fibre inputs provide strong
inputs that generate complex-spike bursts which are believed
to constitute a training signal (Eccles et al., 1967; Marr, 1969;
Raymond et al., 1996). A second example consists of auditory
fear conditioning, in which a conditioned reflex is established
by the coincidence of signals conveying a conditioned stimu-
lus (a tone) with a stronger unconditioned stimulus (a shock),
by potentially glutamatergic inputs onto the amygdala (Pape
& Pare, 2010). Understanding how spiking neurons may
perform supervised learning at a computational level may lead
to better understanding of such neuronal circuits.

24 patterns
36 patterns

Fig. 11 Relationship between training margin and actual spike count
modulation for multineuron pools (defined as the difference between the
mean spike count in response to target patterns and the mean spike count
in response to null patterns).A, Scatter plot of the spike count modulation
after learning as a function of the training margin. The actual modulation

does not track the training margin, and is systematically larger for easier
tasks (24 patterns in green versus 36 patterns in blue) (b), Scatterplot of
the performance as a function of the trainingmargin.C Same as in (b), but
as a function of the spike count modulation

Fig. 12 Capacity as a function of
pool size. A, Performance for the
optimal thresholds as a function
of the number of patterns, for
pools of 1 neuron (red), 3 neurons
(yellow) and 10 neurons (green).
B, Performance for the optimal
thresholds as a function of the
pool size, for various numbers of
patterns. Error bars show s.e.m for
25 different sets of random input
patterns
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