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Quantum criticality provides an important route to revealing universal non-equilibrium behaviour.
A canonical example of a quantum critical point is the Bose-Hubbard model, which we study un-
der the application of an electric field. A Boltzmann transport formalism and ǫ-expansion are
used to obtain the non-equilibrium conductivity and current noise. This approach allows us to
explicitly identify how a universal non-equilibrium steady state is maintained, by identifying the
rate-limiting step in balancing Joule heating and dissipation to a heat bath. It also reveals that the
non-equilibrium distribution function is very far from a thermal distribution.

INTRODUCTION

Even when driven far from equilibrium it is hoped that
quantum systems will be governed by a set of general
principles. While a few such principles have been iden-
tified, they are far less constraining than their equilib-
rium counterparts [1, 2]. Quantum criticality provides
a useful route to identify others. The universal tempo-
ral scaling of quantum critical systems is inherited by
their non-equilibrium steady-state, providing an impor-
tant class of universal results. This has been shown in
a few cases [3–8], however the approaches used often as-
sume a steady-state and circumvent the subtleties of the
underlying physics that permit a universal steady-state
to form. Here we explicitly show how a non-equilibrium
steady-state is reached.

We study the Bose-Hubbard model as a canonical ex-
ample of a quantum critical point. We show that the non-
equilibrium distribution function is far from thermal, and
that an expansion about a thermal distribution at some
effective temperature is not sufficient to capture the out-
of-equilibrium state. Instead we show that a distribution
that is highly elongated along the field direction is a good
variational solution of the Boltzmann equation. This is
consistent with previous approaches based on 1/N expan-
sions [4] or the AdS/CFT correspondance [6, 7], which
also find highly non-equilibrium steady states. Within
this picture the current noise can be calculated using a
Boltzmann-Langevin approach. This procedure gives a
Johnson noise form at some effective noise temperature,
consistent with previous results [5, 7].

A central task is to show how the steady state
is maintained by balancing heat flows in the system.
The Landau-Zener or Schwinger mechanism produces
particle-hole pairs from the vacuum [4]. Acceleration of
these charges by the electric field produces heat through
Joule heating. This heat is removed via a heat sink at
the edge of the sample in order to reach a steady-state.
In order to establish a universal out-of-equilibrium dis-
tribution, the rate limiting step for this process must be
universal. This implies that the scattering of energy into
the thermal transport modes must be slower than the

transport of energy to the edge of the sample - since the
latter will depend upon the size and shape of the sam-
ple. Achieving this requires that the Wiedemann-Franz
law be broken - this is possible in a system with several
species of charge carrier, because of the different compo-
nents of the scattering integral involved in thermal and
electrical scattering [22]. Previous analyses were able to
side-step these considerations [23]. A benefit of our cur-
rent approach is the we confront this issue head-on and
make the conditions for a universal steady-state explicit.

The structure of the paper is as follows: We begin
by considering the inhomogeneous Boltzmann equation
and demonstrate how spatial gradients driving heat flow
to the sample edge may be replaced by a universal sink
term. We will show that attempts to solve this equation
by expanding around a thermal distribution fail, so that
the non-equilibrium distribution is far from thermal. We
then show that a distribution in which particles and holes
are strongly Lorentz boosted in opposite directions is a
good variational ansatz for the Boltzmann equation. Us-
ing this ansatz we calculate the current noise through a
Boltzmann-Langevin approach, ending with a discussion
of our results and their connection to other work.

Boltzmann equation — We analyze the response of the
Bose-Hubbard model at its particle-hole symmetric point
to an applied electric field. This model describes bosons
hopping on a lattice with an on-site interaction. It is a
benchmark model of quantum criticality, with many tools
developed to analyze its equilibrium behaviour. At the
particle-hole symmetric point, its effective theory is es-
sentially a Klein-Gordon theory with a φ4 interaction [9]
- we give an explicit form for this in the supplemen-
tary materials. This supports bosonic normal modes of
positive and negative charge, which we will refer to as
particles and holes. We calculate the distribution func-
tion describing the occupation of these normal modes in
the non-equilibrium steady-state, therefore obtaining the
non-equilibrim conductivity and current noise.

We use a Boltzmann transport approach [10]. An ǫ-
expansion is used to control scattering, calculating the
scattering integral in 3-ǫ dimensions. Particle-hole pair
production appears as a source term [4]. We show that
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heat flow to the bath can be represented by a spatially
homogeneous sink term. This explicitly demonstrates the
balancing of the various processes and the establishment
of a universal steady state.
The quantum Boltzmann equation describes scatter-

ing processes between the normal modes and their re-
sponse to external fields. The occupation of the modes is
represented by a Wigner distribution function f±

k (x, t)
where +/- represent the positively/negatively charged
modes (‘particles’/‘holes’) [24]. The equation describing
the evolution of this distribution function is [10]:

(∂t + v · ∂r ∓E · ∂k) f±

k = Sk[f
±

q ] + gsourcek . (1)

The left of this equation describes the evolution of the
distribution function from the bare dynamics of the par-
ticles. The time derivative term is neglected since we are
considering steady-state solutions. We show that when
the thermal conductivity is large, as appropriate for the
Bose-Hubbard model, the gradient term v · ∂r can be re-
placed with a homogeneous sink term describing scatter-
ing into thermal transport modes. The third term on the
left describes the acceleration of particles by the electric
field. On the right, the first term represents scattering
between particles and holes [10]. The form of this term
is discussed in more detail in the supplementary infor-
mation. The second term is the source term representing
particle-hole pair production from the vacuum via the
Landau-Zener mechanism and may be derived by solving
the equation of motion for the anomalous distribution [4],

gsourcek =
π

4

√
Ee−πk2/E . (2)

The key step in solving this equation is to set up a
spatially homogeneous Boltzmann equation for the non-
equilibrium steady state. This can be done when the
thermal conductivity is extremely large, leading to small
thermal gradients.
Spatially homogeneous limit and universal response —

The universal response is set by the rate-limiting step
in dissipating heat. Joule heating and production of
particle-hole pairs needs to be balanced by transport to
a heat-bath at the sample edge. If transport to the edge
is the rate limiting step, then thermal gradients build
up across the sample and the response is non-universal,
depending on the size and geometry of the sample. If,
however, scattering into the heat-carrying modes is the
rate limiting step, the gradients are small and the re-
sponse is universal. In this case, the thermal gradients
can be replaced by a homogeneous sink term that de-
scribes scattering into the heat carrying modes.

In the case of the Bose-Hubbard model the thermal
conductivity is infinite as there are no processes that
relax energy and momentum. Scattering into thermal
transport modes is therefore the rate limiting step and
the response is universal. The electrical conductivity,

however, is still finite as the two species of charge carrier
allow for current relaxation [10].
In order to show this explicitly, we solve the Boltz-

mann equation including a temperature gradient across
the sample. Consider an explicit example with a heat
sink at the transverse boundary. We expand the dis-
tribution function in spatial gradients [11], f±

k (y) =

f±

k + h
(0)
k + yh

(1)
k + y2h

(2)
k , where y is the coordinate

in a direction transverse to the flow of electrical cur-
rent. The Boltzmann equation (1) can then be solved
in terms of the zero-modes of the linearised scatter-
ing integral (these are discussed further in the supple-
mentary materials, and Refs.[12–14]). Such zero modes
are due to conservation of energy, particle number and
momentum and are therefore present whatever distri-
bution we expand about. When the thermal conduc-

tivity is large the gradient terms h
(1)
k and h

(2)
k become

small - little variation in the distribution function is re-
quired to transport heat effectively. To leading order the
spatially homogeneous part of the solution is given by

h
(0)
k = −S−1

(

σz
phE · ∂kf±

k + gsourcek − αvyh±

k

)

, where

vy is the group velocity in the direction of heat transport,
h±

k is a zero-mode of the linearised scattering integral re-
lated to thermal transport and α is a constant which must
be determined. The solution is reproduced by solving
a homogeneous Boltzmann equation with an additional
sink term gsinkk = αvyh±

k . This sink describes scatter-
ing into the heat-carrying modes, removing energy from
the system. The presence of the (near) zero-mode [25]
reflects the fact that the thermal conductivity is large,
manifesting as the inverse of the scattering integral be-
ing dominated by the zero-mode.
In this way we obtain a universal steady-state spatially

homogeneous Boltzmann equation:

∓E · ∂kf±

k
= Sk[f

±

q ] + gsourcek − gsinkk . (3)

Spatial gradients are replaced by a universal sink term
representing scattering of particles into the heat-carrying
modes. The physics of this response is encoded in the
zero-modes of the scattering integral, the existence of
which depends only upon the conservation laws of the
system. The general form of the sink term is therefore
universal. We have explicitly chosen to calculate the sink
term for scattering into a mode that carries heat trans-
versely across the sample. However, since the form of
the steady-state distribution is determined by integrals
of the sink term, this choice does not affect the results.
Having set up this homogeneous Boltzmann equation we
now need to solve it for the distribution function.
Failure of expansion about a thermal distribution —

One might anticipate that the steady state distribution
is close to a thermal distribution at some self-consistent
effective temperature. However we show that an expan-
sion about a thermal distribution fails and introduce an
alternative ansatz based upon this insight.
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FIG. 1: (Color online) Sketch of the generic argument for the
distribution being far from thermal when the prefactor of the
effective temperature is small. The momentum shift in the
field direction is proportional to E/Teff while the energy of
the distribution is proportional to Teff . The parameter which
controls the relative size of these is the effective temperature
prefactor Teff = T̃eff

√
E, which is found to be small in the

ǫ-expansion.

We motivate this argument physically by consider-
ing the scaling properties of the Boltzmann equation,
sketched in Fig.(1). The energy of a distribution is set by
the effective temperature, which we know from the scal-
ing of the source term is proportional to the square root
of the electric field, Teff =

√
ET̃eff [4], where T̃eff is

a universal dimensionless number. The effect of electric
field is to introduce a momentum shift to the distribution.
The size of this shift is given by E/Teff =

√
E/T̃eff . If

the energy is greater than the momentum shift then the
distribution is close to thermal and an expansion is ap-
propriate. If the energy is less than the momentum shift
the distribution is far from thermal and an expansion
about a thermal distribution will fail. Which regime we
are in is set by the numerical prefactor T̃eff .

There are no tunable parameters in this argument. At
the quantum critical point the validity of the expansion
is set purely by T̃eff . This parameter is ultimately deter-
mined by the detailed form of the scattering integral and
must be found numerically. It turns out that the value
obtained within an ǫ-expansion is extremely small and
therefore the expansion fails. Physically, this is because
the effect of the electric field dominates and scattering
procesess are not strong enough to relax the distribution
back to nearly thermal.

We make this argument precise by performing the ex-
pansion about a thermal distribution and finding that it
does not converge. The full procedure is detailed in the
supplementary materials. The main steps are as follows:
We expand the distribution function in particle-hole sym-
metric and anti-symmetric deviations from a thermal dis-
tribution, at an effective temperature set by number and
energy conservation. Solving for these deviations order-
by-order in the control parameter ǫ, the first order term

is the linear-response solution obtained by Damle and
Sachdev [10], albeit at a self-consistently determined ef-
fective temperature. However, in the present case each
term in the series grows and the expansion does not con-
verge. The non-equilibrium distribution is, therefore, far
from thermal and cannot be accessed by an expansion
about this state. We will take the opposite limit in which
the distribution is highly distorted by the electric field.
The highly-boosted distribution — The lesson is that

an electric field leads to a distribution that is very elon-
gated along the field axis. Recognising this, we use a
thermal distribution Lorentz boosted antisymmetrically
for particles and holes as a variational ansatz:

f±

k = fT

(

k ± v · k
Teff

√
1− v2

)

, (4)

where fT (ǫk/T ) denotes a thermal distribution and v is
the boost velocity in the direction of electric field. The
magnitude of v will be determined as a variational pa-
rameter. Since we expect the distribution to be highly
elongated, v will be close to one. We use this limit to sim-
plify the scattering integral and show that the calculated
value of v is self-consistent.
The sink term for the boosted distribution is given by

the zero-modes of the scattering integral linearised about
an antisymmetric, boosted distribution. It is precisely
this mode that would carry a heat current to the bound-
ary of the sample. For a heat current in the transverse
y-direction hk = ky∂kf

±

k and gsinkk = αk2y∂kf
±

k .
In order to complete the solution we must find the un-

determined parameters, α - the sink term prefactor, T̃eff

- the effective temperature prefactor, and v - the boost
velocity. These are found by taking three moments of
the Boltzmann equation. Two of these moments repre-
sent number and energy conservation, and show the bal-
ance between source, sink and Joule heating. Summing
over particle species, then integrating over all k, gives an
equation representing number conservation:

0 =

∫

dk gsourcek −
∫

dk gsinkk , (5)

where we clearly see the role of the sink in removing par-
ticles from the system. We note that in the ǫ-expansion
all integrals are carried out in three spatial dimensions,
with the value of ǫ then setting the dimensionality of
the final result. Multiplying by the dispersion ǫk before
integrating gives the equation for energy conservation:

σE |E|2 = 2

∫

dk ǫkg
source
k − 2

∫

dk ǫkg
sink
k . (6)

where σE is the electrical conductivity and the left hand
side of the equation represents Joule heating. In both of
these equations the scattering integral integrates to zero
since it conserves number and energy. We need a final
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moment to fix all three parameters, which we obtain by
multiplying by ǫ2k before summing over k:

∑

σ=±1

∫

dk ǫ2kσE · ∂kf±

k

= 2

∫

dk ǫ2kSk[f
±

q ] + 2

∫

dk ǫ2kg
source
k − 2

∫

dk ǫ2kg
sink
k .

(7)

The dependence of the solution upon scattering enters
through this equation. In the limit of a distribution of
the form (4) with v ∼ 1 its evaluation simplifies dra-
matically. The phase space for in-scattering is very re-
stricted compared to that of out-scattering and we find
Sk[f

±

k
] = Γkf

±

k
with Γk = −2π3ǫ2/75 T 2

eff/k.
This approximation of dominant out-scattering is very

similar to that used in the 1/N expansion. In that case
it came from an ingenious use of the expansion, in which
the electric field coupled to only one of N modes. Out-
scattering into N−1 modes dominates over in-scattering
into one particular mode. Here the approximation is jus-
tified self-consistently by the emergent dynamics.
The three equations (5,6,7) allow us to solve for α,

T̃eff and v. They may be solved numerically, but as
our approximation to the scattering integral is valid in
the high-boost limit, an approximation with v close to
one is sufficient. In this limit, the coefficients may be
determined analytically with the result that α ≃ 8.14,
T̃eff ≃ 0.2 and v ≃ 0.96, which is self-consistent with
our approximations.
The conductivity in two dimensions is given by:

σE =
j · E
E2

=
∑

σ

σ

∫

dk
E · k
E2k

fσ
k =

π

6
√
2δv

T̃ 2
eff , (8)

where δv = 1 − v. This evaluates to σE = 0.074 q2/h̄,
where we have introduced the factor q2/h̄, previously set
to one, with q the charge of the particles. We com-
pare this to the equilibrium result obtained by Damle
and Sachdev of σE = 0.165 q2/h̄. Comparing with the
1/N results [4, 15] we see that there the conductivity is
also reduced in the non-equilibrium case, although by a
smaller amount.
Current noise — Having found the universal non-

equilibrium distribution function, we calculate the cur-
rent fluctuations. Our starting point is the Boltzmann-
Langevin equation describing fluctuations of the distri-
bution function ∆fk [16, 17].

(∂t + v · ∂r +E · ∂k)∆fk = Sk,q∆fk + ηk, (9)

where η is a noise term. This approach assumes that
scattering processes are independent and so Poisson dis-
tributed. The variance of the noise is equal to the mean
scattering rate. The correlations of ηk are given by [5]:

〈ηk(r, t)ηk′(r′, t′)〉 = (2π)2δr,r′δt,t′δ(q − q′)Γqfq

(10)

k
||

k
||

k
┴

k
┴

FIG. 2: (Color online) Top: An illustration of the highly
antisymmetrically boosted distribution Eq.(4). Bottom: An
illustration of the distribution found in the 1/N method.

In the limit of long times and large distances the gradi-
ent terms of the Boltzmann-Langevin equation can be ig-
nored. To first order we ignore the momentum derivative
also and obtain the fluctuation in occupation number as
∆fk = ηk/Γk. The current fluctuations are therefore [5]:

〈jα(r, t)jβ(r′, t′)〉 = 2e2δr,r′δt,t′δα,β

∫

dk
fk
Γq

≃ δr,r′δt,t′δα,β
50e2

√
ET̃

πǫ2
1

2δv
.

(11)

If we choose to identify this result with Johnson noise
at an effective temperature T ′

eff , we find that the ap-
propriate temperature is not the same as that associated
with the steady state distribution. Writing the current
noise in the form 4σT ′

eff

√
E gives an effective noise tem-

perature T ′

eff ≃ 2.3
√
E. This is of the same order as-

though larger than - the temperature of a thermal distri-
bution that has the same energy per mode as the out-of-
equilibrium distribution [26]. Interestingly, an effective
noise temperature higher than the energy scale charac-
terising the steady state was previously found for a thin
metallic system equilibrated by phonons [17].

Discussion — We have shown both that the non-
equilibrium steady state can be explicitly set-up by bal-
ancing heat flows, and that the resulting distribution is
very far from thermal, being extended along the direction
of the applied field.
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That a steady-state is established had been assumed in
previous work, and implemented by exploiting the 1/N
approach, and in holography where the probe brane limit
plays a similar role. In the ǫ-expansion we must explic-
itly include the processes by which heat is transported
out of the sample. We have shown that this is a univer-
sal process as follows: The thermal conductivity of the
model is extremely large, and vanishingly small thermal
gradients are sufficient to drive a compensating heat flow.
Scattering into thermal transport modes is rate-limiting,
and this scattering is universal. The effect of heat flow
to the boundary may therefore be encoded in a sink term
added to the Boltzmann equation.
The distribution function is highly elongated along the

field direction and far from a thermal distribution. It can-
not therefore be accessed by an expansion about a ther-
mal distribution at some effective temperature. Strongly
Lorentz boosting the charge carriers in opposite direc-
tions provides a good variational ansatz. We have shown
self-consistently that the boost velocity in such a distri-
bution is close to one. Such a distribution is consistent
with the highly asymmetric distribution found in the 1/N
case, as illustrated in Fig.(2). Further evidence of the
profound non-equilibrium nature of the steady state is
provided by the different temperature scales characteris-
ing the current noise and the steady-state distribution.
Curiously, other calculations have found that both the re-
sponse function and fluctuations depend upon the same
effective temperature and are related by an apparent fluc-
tuation dissipation relation [7, 8] at all frequencies even
though the steady state itself is characterised by a differ-
ent effective temperature.
We end with some words about the feasibility of real-

ising these results experimentally. This may be possible
either in cold atomic gasses - in which the Bose Hubbard
model has been realised [18] along with effective fields
through potential gradients or otherwise [19] - or else in
solid state systems with particle-hole symmetry such as
graphene. In both cases, the main limitation is the dif-
ficulty of appropriate coupling to a bath. This may be
accompanied by thermal boundary resistivity [17]. In ad-
dition, any deviation from particle-hole symmetry may
lead to significant constraints upon the size of system
over which universal results may be observed [20]. One
fascinating way around this is suggested in an elegant
recent work, Ref.[21] where the system in effect acts as
its own thermal bath with the universal non-equilibrium
steady state in a limited region of the sample.
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