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Abstract 

How do we represent our world and how do we use these representations to 

reason about it? The three studies reported in this thesis explored different aspects of 

the answer to this question.  Even though these investigations offered diverse angles, 

they all originated from the same psychological theory of representation and 

reasoning. This is the idea that people represent the world and reason about it by 

constructing dynamic qualitative causal networks. The first study investigated how 

mock jurors represent criminal evidence and reason with such representations. The 

second study examined how people represent the causes of a complex environmental 

problem and how their individual representations are directly linked to how they 

reason about the issue. The third and final study inspected how people represent 

causal loops and reason in accordance with these cyclical representations. These 

studies suggest that people do represent the world by arranging evidence, causes, or 

pieces of information into a causal network. In addition, the studies support the idea 

that these networks are of a qualitative nature. All three studies also indicated that 

people update their representations in accordance to a dynamic world. The studies 

specifically explored how reasoning, and therefore judgment is linked to these 

representations. The thesis discusses the theoretical implications of these and other 

findings for the causal model framework as well as for cognitive science more 

generally. Related practical implications include the importance of understanding 

naïve causal models for applied fields such as legal decision-making and 

environmental psychology.  
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Chapter 1: Introduction 

 

The introduction starts by presenting the question that has driven the research 

reported in this thesis. The what, the why and the how are discussed to provide a brief 

idea of the rationale behind the question as well as the chosen approach. This is 

followed by an overview of the general background that forms the basis of the studies 

discussed in the ensuing three chapters. Finally, a brief outline describes the research 

question of each study. 

 

1.1 The question 

What? 

The central premise of cognitive science is that thinking can best be 

understood in terms of representational structures in the mind and computational 

procedures that operate on those structures. This hypothesis can be framed into one 

question: “How do we represent our world and how do we use these representations 

to reason about it?” In a sense, this question encompasses two enquiries within one: 

the question of representation and the question of reasoning. These stand by 

themselves, but they are intrinsically interrelated in every way. Arguably, there 

cannot be one without the other. This thesis focuses exactly on investigating the 

nature of this interrelation and how it may shape judgment and decision-making in 

different aspects of everyday life. 

 

Why? 

The dominant tenet behind this question is that the quest of answering it yields 

important theoretical as well as practical implications. From a theoretical standpoint, 
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the question of representation and reasoning lies at the very core of most theories of 

how the mind works. This means that attempting to further comprehend how people 

understand the world and make decisions based on this understanding, will inform 

current theoretical accounts. From a practical perspective, there is much to be gained 

from adopting an applied approach.  Understanding the driving forces that underlie 

people’s decisions and actions can potentially help unlock solutions to many of 

today’s complex problems (White, 2000).  

 

How? 

The question of how people represent the world and reason with these 

representations is complicated by the fact that the world is always changing.  The very 

course of Nature is about change on every level. Everything with a physical 

realization is transient: the way in which seeds sprout, species evolve and oceans 

warm are just a few simple examples. Therefore reasoning and representation cannot 

possibly be based on these unstable states. Rather, it must be based on the idea that 

events do indeed change but the forces of change do not – they remain invariant 

across spatial and temporal contexts.  

These forces of change are simply mechanisms of cause and effect. The 

temperature of the ocean is always changing - it is unstable. However, the causal 

relations that govern the mechanisms by which it warms up are invariant: more 

carbon dioxide in the atmosphere will always cause the ocean to warm up. This 

concept is embodied in the principle of causal invariance (Sloman 2009; Woodward, 

2000). Accordingly, the causal relations that govern mechanisms of change form a 

reliable basis for general knowledge. After all, science is concerned precisely with 

discovering and representing causal structure - be it how force changes acceleration or 
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how overfishing changes ecosystems. The point is that the casual principles that 

govern mechanisms are useful because they apply across time and across a large 

number of objects – in other words, they allow generalization of empirical 

knowledge. Hence, it follows then that the logic of causality is people’s guide to 

prediction, explanation and action. This logic is the tenet of the causal model 

framework (Pearl, 2000; Spirites, Glymour and Scheines, 1993) and will be used to 

approach the question of reasoning and representation.  

 

1.2 Representation and reasoning 

There have been substantial advances in normative models of both 

representation and reasoning over the past decade, and a variety of network models 

have been developed. Network models are simply graphical representations of causal 

relations (links) between events or causes (nodes). These include Wigmore charts 

(Wigmore, 1913), cognitive maps (Axelrod, 1976), and Bayesian networks (Pearl, 

1998). Given that the central question concerns reasoning as well as representation, 

the only relevant network model is Bayesian networks. This is because a significant 

feature of Bayesian networks is that once the representation is constructed, it can be 

used for inference. This sets it apart from most other forms of networks (e.g. 

Wigmore charts and Cognitive maps), which serve mainly as descriptive tools. Indeed 

representation is intertwined with inference in a Bayesian network (Lagnado, 2011). 

Bayesian networks are directed acyclic graphs in which the nodes represent the 

variables relevant to the situation (e.g., the presence of an alibi, the number of fish in 

the sea, the occurrence of an event) and the links represent causal relations among 

these variables. The strength of a causal relation is defined by conditional 

probabilities that are related to each collection of parents–child nodes in the network. 
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Figure 1 shows an example of a Bayesian network based on a classic example adapted 

from Pearl (2000).  

The network in the figure describes the causal relationships among the 

following variables; season of the year (season), whether rain falls (rain) during the 

season, whether the sprinkler is on (sprinkler) during that season, whether the 

pavement would get wet (wet), and whether the pavement would be slippery 

(slippery). In this example, the lack of a direct link between ‘season’ and ‘slippery’ 

captures the idea that changes in season affect the slipperiness of the pavement by 

other intermediate factors (e.g., how wet the pavement is). 

 

Figure 1  

A Bayesian network representing causal influences among five variables. 

 

Perhaps the most important thing to note in this example is that a Bayesian 

network models the environment as opposed to modeling a reasoning process. This is 

not the case in many other knowledge representation schemes like logic, rule-based 

systems, and neural networks. The fact that a Bayesian network simulates the causal 

sprinkle
r	  

slippery	  
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rain	  
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mechanisms in the environment means that it allows people to represent the world as 

it is. This implies that they can then answer a range of questions based on this 

representation. Such questions might include abductive questions, such as “What is 

the most plausible explanation for the pavement being wet?” and control questions, 

such as “What will happen if we switch off the sprinkler?” It is clear that the answers 

to these questions are based on the causal knowledge that can effectively be 

represented and processed in Bayesian networks. 

Bayesian networks have well-established foundations in probability theory, 

and are currently applied in many practical contexts (e.g. medical diagnosis; 

Heckerman, 1991). Evidently, this formal approach is just prescriptive in the sense 

that it does not necessarily reflect the psychological reality of representation and 

reasoning. People do not always represent probability distributions accurately and do 

not always make sound probability judgments as set by causal model theory 

(Gilovich, Griffin and Kahneman, 2002; Kahneman, Slovic and Tversky, 1982).  The 

question of how people really represent and reason necessitates a descriptive approach 

instead – an approach based on the causal model framework as a psychological theory 

(Sloman, 2005). This is not to say that a descriptive approach completely discards the 

prescriptive causal model theory. On the contrary, it can very much be based on some 

of the same core ideas. What follows is a brief description of some (by no means all 

of them) of these core ideas. These concepts shape the psychological theory of 

representation and reasoning that will guide the investigation of the central question 

put forward by the current thesis. 

 

Causal networks 

The first of these ideas concerns the structure of people’s representations - that 
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is that people’s representations are in the form of a network. This is the intuitive 

notion that individual cause-effect relations are not isolated from each other but tend 

to be understood in an organized representation of chains and networks of causal 

relations (White, 2008).  This network arrangement lets people deal with complex 

multivariate causal reasoning: reasoning based on numerous interrelated pieces of 

information. This is because the whole is more than the sum of its parts. In other 

words, the structure of a causal belief system (a set of interrelated causal relations) is 

more informative than the isolated individual beliefs (Waldman & Hagmayer, 2005).  

For example, if a tree was to be reduced to its individual parts (leaves, 

branches, trunk, bark, roots, fruit, and so on) it would not be possible to represent the 

whole tree’s significance, such as the role the tree plays as habitat for birds, insects, 

parasitic vines, and other organisms. Similarly, chemically analyzing of the tree’s 

chloroplasts, diagramming its branch structure, and evaluating its fruit’s nutritional 

content, would not lead to understanding the tree as habitat, as part of the forest 

landscape, or as a reservoir for carbon storage.  

Hence, the idea is that a cause, or variable within the network, can only be 

evaluated meaningfully with respect to its relation to other items represented within 

the network. This is not to say that people do not isolate small fragments of the 

network they represent - indeed this is what makes the whole network representation 

tractable for the human mind (Lagnado, 2011).  

 

Qualitative relations  

The second idea that provides the key to making causal networks tractable for 

everyday representation and reasoning is that people represent the qualitative 

structure of causal systems without actively representing all the quantitative details 
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(Wellman & Henrion, 1993). For example, a link from A to B tells us that certain 

values of A will change the probability of certain values of B, without needing to 

specify exactly how much. 

Indeed, even the network structure underpinning a Bayesian Network is purely 

qualitative in the sense that it represents the presence or absence of a dependency 

between a set of variables. Even though the standard Bayesian Network framework 

requires a precise set of conditional probabilities, many of the important 

characteristics of the network are retained without a full and exact set of probabilities 

(Biedermann and Taroni, 2006; Wellman and Henrion, 1993). This means that even if 

people are unable to perform exact Bayesian computations over this network, they can 

still draw approximate inferences (perhaps using heuristic methods). There is growing 

empirical evidence that people reason in accordance with the qualitative prescripts of 

causal Bayesian Networks (Krynski and Tenenbaum, 2007; Sloman and Lagnado, 

2005).  

This idea is particularly significant in domains where no precise figures are 

available or where much of the information does not admit of quantification (there 

might be large numbers of interacting variables so that exact inference is intractable). 

For example, as Lagnado points out (2011) it might not be possible to quantify the 

exact probative force of a witness testimony that places the defendant at the crime 

scene; but most people would agree that it raises the probability of guilt, however 

slightly. Moreover, people will often be able to make comparative probability 

judgments; for instance, judging that a certain piece of forensic evidence raises the 

probability of guilt more that the testimony of a partial witness. 

The idea that people utilize qualitative networks is not new. There are several 

psychology studies that speak in favour of qualitative approaches. First, 
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psychophysical studies show that for a range of sensory phenomena people are poor at 

making absolute judgements, and instead make ordinal comparisons (e.g. Stewart, 

Brown and Chater, 2005). Second, analyses of a wide range of predictive tasks (e.g. 

clinical and medical diagnosis) suggest that statistical models that use unit weights 

often outperform more complex models (Dawes, 1979). The key requirement for 

these simpler models is that the sign of each variable in the model is correct, while the 

exact weights placed on these variables is not significant. The proposed qualitative 

networks however, go beyond simple linear models, but share the intuition that 

precision in the weights is not a necessary condition for successful inference. 

 

Dynamic models 

The third idea is based on the appreciation that people’ representations must 

adapt to a changing environment (Osman, 2010). These changes in the environment 

might involve new information, new hypotheses and new goals (Lagnado, 2011). 

Most events in everyday life are not detected based on a particular point in time, but 

they can be described through multiple states of observation that yield a judgment of 

one complete final event. This implies that many learning experiences involve 

repeatedly learning about one variable over time (Rottman & Keil, 2012). For 

example, one might develop beliefs about the causal relationships between fatigue, 

insomnia, and stress, by observing a person who experiences these conditions wax 

and wane over time. This temporal dependency of the states between variables is what 

constitutes a dynamic model.  

 
Indeed, Bayesian Networks can been adapted to model scenarios in which the 

states of variables are temporally dependent. In these Bayesian Dynamic Networks 

(DBNs), at each time period the state of a variable is determined both by the causal 
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relationships within that time period and also by prior states. An example of a DBN 

can be seen in Figure 2. Figure 2 shows the relationship between stress, insomnia and 

fatigue modeled as a causal chain whereby stress affects insomnia, which in turn 

affects fatigue.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. 

An example of a dynamic causal model. 

 
According to DBNs, the probabilities associated with each node are updated at 

each time period. This updating process involves intricate computations that can be 

executed by computational algorithms, sometimes using only approximate inference 

due to the computational complexity (e.g., Friedman, Murphy and Russell, 1998). As 

outlined above, people engage in a form of dynamic updating all the time. Naturally, 

the way in which they update, however, differs from the strictly Bayesian updating 

process in which a complete set of hypotheses are continually updated – that would be 

too demanding on a computational level.  Rather, it has been proposed that people 

introduce and eliminate hypotheses in a more all-or-nothing manner (Lagnado, 2011) 
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– which makes inference considerably easier.  

This concept fits well with the idea that people’s representations are in the 

form of a network. This structure allows people to update the representation by 

recruiting only the relevant fragments of the network – the ones affected by the new 

information. Similarly, the qualitative nature of the representation means people can 

easily and readily update their representation without having to carry out numerous 

probability estimations and computations.  

 

1.3 Outline 

The current thesis investigates the answer to the question of reasoning and 

representation through three related yet distinct studies. All of them seek to explore 

the connection between representation and reasoning but in different forms.  

Before outlining these three studies that form the basis of each of the 

following chapters, it is worth pointing out two key features they all have in common. 

The first of these is that they are all based on lay people. This is a crucial point 

because lay people have a way of representing and reasoning that differs from those 

of experts (Hoffman, 1996). This is true for most fields  - the way a patient represents 

the causes of heart disease will undoubtedly differ from that of the doctor (Cuthbert, 

Dubolay, Teather et al., 1999). Similarly, even if lay people and experts were to have 

the same representations, the inferences drawn from them are bound to differ. 

Nevertheless, there is much to be learnt from lay people’s representations and 

reasoning patterns – especially because they form the basis of general decision-

making and therefore signify the power of the masses.  

This leads to the second feature accompanying these studies: they are all 

carried out with practical applications in mind. This means that the investigations are 
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based on how people represent real world problems and how they might reason about 

them in an applied context. The applied approach starts off with Study 1, which is 

based on legal inference with a focus on juror decision-making. What makes the legal 

domain an appealing field of study is that many of its staple characteristics are also at 

the core of other significant applied domains.  Evidence presented at trials tends to be 

contradictory, incomplete, biased and available in multiple formats that make them 

hard to compare and integrate. In addition the verdict needs to be reached under time 

constraints and limited cognitive resources. It is easy to see how these features are not 

exclusive to juror decision-making. These attributes are also the ones governing 

environmental problems, particularly from a consumer’s point of view. The everyday 

consumer is constantly being fed contrasting evidence about climate change and 

anthropogenic effects of human behaviour. The information comes in many forms, 

from news reports, to word-of-mouth. Some of it is in the format of a statistic whilst 

other is simply a general opinion. Yet consumers have to make decisions that concern 

the environment everyday, every time they choose one product over another or chose 

to how to get to work. That is why the second study extends the exploration of 

representation and reasoning to the applied domain of environmental problems, 

dealing with one of the most complex contemporary issues of all: overfishing. The 

third study takes the investigation of the representation and reasoning to simpler 

domains including sleeping patterns and simple predator-prey relationships. This 

move to more familiar subjects was necessary to be able to study reasoning based on 

the more complex representations (causal loops) which drive the final study. 
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Study 1: Reasoning with causal evidence: understanding legal inferences.  

The first study investigated how mock jurors represent criminal evidence and 

reason with causal network representations. Specifically, it explored: i) how jurors 

represent evidence (with a focus on how they update their representations in the face 

of new evidence); ii) the extent to which they arrange evidence in a causal network 

structure; and iii) jurors’ ability to make causal inferences in line with their 

representations.  

 

Study 2: Reasoning	   with	   causal	   networks:	   understanding	   environmental	  

problems.	  

The second study examined how people represent the causes of a complex 

environmental problem (overfishing) and how their individual representations are 

directly linked to how they reason about the issue. In particular, it studied: i) whether 

people construct two-way causal relations (causal loops) within their representations; 

ii) the relation between the representations and counterfactual judgments; and iii) 

which features of their representations (e.g. causal strength of relations versus sheer 

number of causal relations) is most significant in predicting judgments.  

 

Study 3: Reasoning with causal loops: understanding everything. 

The third and final study inspected how people represent causal loops and 

reason in accordance to these cyclical representations. These are a form of simple 

qualitative dynamic networks. Specifically, the study employed different applied 

scenarios to survey the extent to which people can make proper causal inferences 

given the loops portrayed by these situations. 
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Chapter 2:  Reasoning with causal evidence: understanding 

legal inferences 

 

2.1 Introduction 

The jury is the only decision-making body in the criminal justice system 

composed of laypersons and jury verdicts directly affect the implementation of justice 

in the USA, UK and elsewhere.  This means that the lives of hundreds of thousands of 

individuals around the world every year depend on the fairness of jury decision-

making.  Researching the psychological processes underlying juror decision making, 

and the way these relate to formal methods of evidence evaluation, is therefore of 

fundamental importance to the criminal justice system. Unfortunately, in the quest to 

identify sources of bias in jurors' decisions, researchers have often overlooked the 

importance of approaching jurors’ decision making from a cognitive perspective. As a 

result, little is known about the causal models underlying jurors’ reasoning processes.  

A jurors’ task involves making decisions based on multiple pieces of 

probabilistic evidence. In addition these pieces of evidence tend to be contradictory, 

incomplete, biased and available in multiple formats which make them hard to 

compare and integrate. That being said, jurors nonetheless make meaningful 

decisions. Even though the exact mechanisms by which this happens still present an 

open question, their behaviour has been explained by descriptive models centred on 

the idea of sense making and constructing coherent stories from evidence (Pennington 

& Hastie, 1986). Most of the empirical studies conducted so far provide support for 

either the story model or the coherence model - two similar frameworks that have 

arisen from two very different traditions (Byrne, 1993). The story model comes from 
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the tradition of psychology of jury decisions which attempts to understand how it is 

that jurors arrive at a particular verdict. The coherence model on the other hand, 

derives from the tradition of philosophy of science, which attempts to understand how 

it is that scientists come to accept new paradigms. Interestingly, research beginning in 

these two seemingly disparate domains has converged in the sense that both 

approaches posit that evidentiary conclusions are not derived from mathematical 

computations of the independent values of raw evidence. Inferences, rather, are based 

on constructed representations of coherence, and it is these constructed 

representations that ultimately determine the verdicts (Bex, 2004). 

 

The Story Model 

The most widely cited and influential model of juror decision making is the 

story model. It has been proposed by Pennington and Hastie in 1981. It has received 

wide empirical support (e.g. Pennington & Hastie, 1981 1986, 1988, 1992, 1993) and 

it is still accepted as the standard in psychology and legal studies.  

The story model proposes that jurors construct a narrative storyline out of the 

evidence presented during the trial. Pennington and Hastie (1992) suggest this 

happens over three stages: i) evaluating the evidence through story construction; ii) 

representing of the decision alternatives by learning the various verdict options 

available; and iii) reaching a decision by fitting the story to the most appropriate 

verdict category. During the story construction stage, jurors use three kinds of 

information to create a plausible story: i) the evidence presented throughout the trial; 

ii) personal knowledge about similar cases and iii) generic expectations about what 

makes a complete story.  
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Naturally, this story construction process can yield different interpretations of 

the evidence and hence may result in the construction of different stories. Pennington 

and Hastie (1992) propose that the criteria that jurors use to evaluate which story 

should prevail (or, in their words, elicit more acceptability and confidence) are the 

‘certainty principles’. These are composed by two main elements: coverage and, more 

importantly, coherence. Coverage simply refers to the extent to which the constructed 

story is able to provide an explanatory account of all the pieces of evidence. 

Coherence, on the other hand, is assigned a more prominent role in deciding which 

story is more acceptable. According to the story model, coherence is the product of 

three components: i) plausibility, ii) consistency, and iii) completeness.  Therefore, 

Pennington and Hastie propose that a story with high coherence is a story that i) does 

not contain internal contradictions (high plausibility); ii) is consistent with events in 

the real world (high consistency) and iii) is complete (high completeness). 

Consequently, the story that will be evaluated to have greater coverage and coherence 

will be the story that will be deemed as more acceptable (and hence generating 

superior confidence).  

The second stage of the story model is verdict representation. Information for 

verdict representation is given to jurors at the end of the trial. Jurors learn about the 

verdict options from the judge’s instructions. However jurors may have pre-existing 

ideas about the meaning of verdict categories. Even though Pennington and Hastie 

argue that verdict representation is the second stage of the story model, they do not 

specify whether it happens in parallel with story construction (as jurors may refer to 

pre-existing schemas of verdicts when organising trial evidence) or once a story has 

been constructed and accepted.  
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In the final stage of the story model, jurors perform a matching task whereby 

they match the attributes of the story that they constructed in the first stage to the 

crime elements of one the verdict categories of the second stage. This task is 

moderated using the legal rules and prescriptions provided by the trial judge. In 

principle if the constructed story fits the requirements of the verdict category under 

consideration, the juror will choose that verdict category. If the threshold is not met, 

the juror will search for a more appropriate verdict category. Pennington and Hastie 

(1986) have tested their model by conducting many studies (Pennington & Hastie, 

1981 1986, 1988, 1992, 1993) in which mock jurors are requested to carry out their 

deliberations out loud. As a result, they have presented substantial empirical evidence 

in support of the model. Nonetheless, one of the main limitations of the story model is 

that it is vaguely specified with respect to the underlying cognitive processes and 

mechanisms.  

This problem is clear across different aspects of the model. First, as pointed 

out by Lagnado (2011), no precise account is given for how people update or 

construct their causal models, or how they draw inferences from them. Similarly, 

Harris and Hahn (2009) have argued that although Pennington and Hastie assign 

coherence a key role within this framework, they do not provide a formal way of 

formalising or measuring it. Furthermore the story model’s path between story 

selection and determinations of guilt/culpability is unclear. This means that the story 

model does not provide clear insight into the juror’s cognition and therefore is limited 

in its explanatory power. Following from this idea, coherence models have gained 

support as an alternative, but also complementary account of juror decision making 

(Simon & Holyoak, 2002; Simon, Snow & Read, 2004; Thagard, 2000).  
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Coherence models 

The main idea behind coherence models is that the mind strives for coherent 

representations. The concept of coherence is at the centre of multiple frameworks 

within the domain of philosophical logic (e.g. Olsson, 1998). However, the formal 

approach to coherence that has gained more support across the realm of legal 

epistemology and more importantly, cognitive psychology, is one coming from the 

field of computational philosophy: Thagard’s explanatory coherence model (1989). 

Two main features set Thagard’s theory apart from other coherence theories. Firstly, 

by constructing a computational model, Thagard has provided a more detailed 

account of coherence-based reasoning than philosophers have traditionally done. The 

details, however, also allow us to see the problems of the coherence-based 

methodology it is premised on. Secondly, it has provided a general characterization of 

coherence as ‘constraint satisfaction’.  

Thagard (2006) listed seven principles that concisely state the theory of 

explanatory coherence. These are best illustrated by applying them to a criminal 

scenario. For example if a house has been burnt down, the police may consider the 

house owner and an arsonist as the potential suspects. 

1. Symmetry. Symmetry refers to the idea that explanatory coherence is a 

symmetrical relation. That is, two propositions P and Q cohere with each other 

equally. This means that the hypothesis that the house owner burnt down the 

house coheres with the evidence that the house has been burnt down. This 

coherence relation is symmetrical as ‘they hang together equally’. 

2. Explanation. The principle of explanation is characterised by three propositions. 

The first one is that a hypothesis coheres with what it explains, which can either 

be evidence or another hypothesis. This refers to the fact that the hypothesis that 
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the house owner burnt down the house explains the evidence that the house is 

burnt down, so the hypothesis and the evidence cohere with each other. The 

second proposition of the principle of explanation is that hypotheses that together 

explain some other proposition cohere with each other. This idea allows for 

hypotheses to explain each other. For example, if there is the hypothesis that the 

house owner burnt down the house, this hypothesis can be explained by the 

hypothesis that he had a motive, for example that he was in financial trouble. 

There can even be multiple motives, for instance that the house owner was in 

financial trouble and depressed, and both of these hypotheses cohere with each 

other. Finally there is a third proposition based on the idea of simplicity. That is 

the more hypotheses it takes to explain something, the lower the degree of 

coherence. Simplicity is a matter of explaining a lot with few assumptions. 

3. Analogy. Analogy is the principle that similar hypotheses that explain similar 

pieces of evidence cohere with each other. For example, if the house owner had a 

history of financial trouble and depression resulting in destroying goods to claim 

insurance, then these cases provide analogies that the house owner did it more 

plausible in the current case. 

4. Data priority. The fourth principle refers to the idea that propositions that describe 

the results of observations have a degree of acceptability on their own. For 

example there can be an observation that the house owner had petrol traces on his 

clothes. This observational evidence would get a degree of coherence on its own, 

providing a degree of priority to such observations. It is important to keep in mind 

that this principle does not require the observations to be indubitable but leaves 

open the possibility that explanations could be found to be erroneous despite their 

initial degree of coherence. 



27	  

5.  Contradiction. Contradictory propositions are incoherent with each other. This 

refers to the straightforward case in which two hypotheses are logically 

contradictory: for example the hypothesis that the house owner did it contradicts 

the hypothesis that the arsonist did it, then these two hypotheses are incoherent. 

6. Competition. Competition refers to the idea that if P and Q both explain a 

proposition, and if P and Q are not explanatorily connected, then P and Q are 

incoherent with each other. The hypothesis that the house owner did it competes 

with the hypothesis that the arsonist did it. Since these two hypotheses 

independently explain evidence they are treated as competitors that are incoherent 

with each other. However there could be circumstances whereby it could be 

logically possible for the house owner and the arsonist to have burnt down the 

house together. At that point if there was reason to believe that the house owner 

and the arsonist acted together in a conspiracy, then the two hypotheses would be 

explanatorily connected and would be treated as coherent with each other. 

7. Acceptance. The last proposition proposes that the acceptability of a hypothesis in 

a system of hypotheses depends on its coherence with them. In other words, 

hypotheses should be accepted and rejected on the basis of their overall coherence 

with each other. Because these hypotheses can be coherent and incoherent in 

many ways, acceptability makes inference a highly complex and nonlinear 

process. For this reason explanation evaluation is executed through simple 

artificial neural networks.  

These seven principles do not fully specify how to determine coherence-based 

acceptance, but algorithms are available that can compute acceptance and rejection of 

propositions on the basis of coherence relations. The most psychologically natural 

algorithms use artificial neural networks that represent propositions by artificial 
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neurons or units and represent coherence and incoherence relations by excitatory and 

inhibitory links between the units that represent the propositions. Acceptance or 

rejection of a proposition is represented by the degree of activation of the unit. The 

program ECHO spreads activation among all units in a network until some units are 

activated and others are inactivated, in a way that maximizes the coherence of all the 

propositions represented by the units (see Thagard, 1992, 2000 for the technical 

details). Several different algorithms for computing coherence are analyzed in 

Thagard and Verbeurgt (1998).  

In the crime example, the hypothesis that the house owner burnt down the 

house can be represented by a unit called HOUSE OWNER DID IT and the evidence 

that the house is burnt down by a unit called HOUSE BURNT. Then, whenever 

principles of explanation and analogy establish relations of coherence between two 

propositions, the units that represent the propositions get excitatory links between 

them. Thus HOUSE OWNER DID IT and HOUSE BURNT have an excitatory link 

between them that is symmetrical (in accord with principle of symmetry). The 

principle of data priority is implemented by making an excitatory link between the 

special unit EVIDENCE and any unit such as HOUSE BURNT that represents a 

proposition based on observation. The principles of contradiction and competition, 

which establish incoherence between competing hypotheses, are implemented by 

means of inhibitory links between units: When two hypotheses are incoherent—e.g., 

the house owner did it versus the arsonist did it—then the units that represent the 

hypotheses—HOUSE OWNER DID IT and ARSONIST DID IT—will get an 

inhibitory link between them.  

Figure 1 depicts the simple network that evaluates competing explanations in 

the house fire example. It includes a unit called OWNER IN FINANCIAL 
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TROUBLE that represents the hypothesis that the house owner was in financial 

trouble, and a unit called OWNER HAS PETROL TRACES that represents the 

evidence that the house owner had petrol traces on his clothes. The excitatory links 

between units representing coherent propositions and the inhibitory links between 

units representing incoherent propositions. In simulations, the links have different 

weights that can represent the degree of coherence or incoherence between 

propositions. 

 

Figure 1. Neural network modelling competing explanations for the burning down of 

a house. The straight lines indicate coherence relations (positive constraints) 

established because a hypothesis explains a piece of evidence. The dotted lines 

indicate incoherence relations (negative constraints).  

 

OWNER DID IT ARSONIST DID IT 

HOUSE BURNT 

OWNER IN FINANCIAL 
TROUBLE 

OWNER HAS PETROL 
TRACES 
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Thagard’s theory (through ECHO) has been used to model some prominent 

jury verdicts (e.g. Thagard, 1989) and does much by way of solving some of the 

problems which beset coherence theories of justification, including coherence theories 

of legal justification (see Amaya, 2007). However, it still has a fundamental 

limitation. Lagnado (2011) has argued that coherence models are unable to represent 

basic forms of inference such as ‘explaining away’ (Pearl, 1988). 

 

Explaining Away 

Explaining Away is a common and intuitively compelling pattern of inference 

that refers to the idea that because one cause explains the observed effect it therefore 

reduces the need to invoke other causes. Wellman and Henrion (1993) illustrate this 

with the following example. A friend sneezes and this raises the probability of him 

having a cold, and the probability of him having an allergic reaction.  Once it is found 

out that the friend is allergic to cats, and a cat is observed to be present, this lends 

confirmation to the hypothesis he is having an allergic reaction.  This explains away 

the sneezing and, therefore, reduces the probability of the cold. In other words the two 

hypotheses were independent when the status of the evidence was unknown, but 

become conditionally dependent given its status. 

This pattern of inference is naturally captured using a Bayesian Network 

representation. Bayesian networks have well-established foundations in probability 

theory, and are currently applied in many practical contexts. Bayesian networks 

consist of two parts: a graph structure and a set of conditional probability tables. The 

graph structure is made up of a set of nodes corresponding to the variables of interest, 

and a set of directed links between these variables corresponding to causal relations. 

The variables tend to be causes and effects but they could even be hypotheses about 
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pieces of evidence (such as in legal contexts). This yields a directed graph that 

represents the probabilistic relations between variables, in particular the conditional 

and unconditional dependencies. In addition to the graph, a Bayesian network also 

requires a conditional probability distribution table for each variable. This dictates the 

probability of the variable in question conditional on the possible values of its parents 

(the nodes with direct links into that variable). This arrangement of nodes and links, 

plus the conditional probability tables for each node, dictate what inferences are 

licensed (via the laws of probability). 

In a simplified model, there are three binary variables, Cold (C) which 

represents whether or not someone has a cold, Allergy (A) which represents whether 

or not someone has an allergy, and Sneeze (S) which represents whether or not 

someone sneezes. Both C and A are potential causes of S. The graph structure is 

depicted in Figure 2. This encodes the assumption that C and A are marginally 

independent, i.e., P(C) = P(C|A).  The observation of sneezing raises the probability 

of both C and A: P(C|S) > P(C); P(A|S)>P(A). However, on observing that A is true, 

the probability of C returns to its prior level: P(C|A&S)=P(C). This is the basic 

phenomena of explaining away.  

 

Figure 2. Graph structure for simple example of explaining away. 

 

To understand how coherence models cannot cope with such a causal network 

it is sufficient to look at the way they would represent a simple criminal scenario. 
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Returning to the ‘house fire’ example, there could be two potential explanations for 

the petrol traces evidence: i) the petrol traces are from the petrol used to start the fire, 

or ii) the petrol traces are the result of the house owner spilling petrol while filling up 

his car. According to the first explanation the probability that the house owner is 

guilty is raised whilst according to the second explanation the probability of guilt is 

lowered. General coherence models assume that if two propositions both explain a 

piece of evidence, but they are not explanatorily connected, then the two propositions 

are incoherent with each other. This is expressed explicitly in Thagard’s ‘competition’ 

principle: if P and Q both explain a proposition, and if P and Q are not explanatorily 

connected, then P and Q are incoherent with each other.  

Returning to the house fire scenario example, the hypothesis that the owner 

spilled petrol while filling up his car, and the hypothesis that the owner has petrol 

traces on clothes because he started a fire, independently explain evidence and would 

therefore be treated as competitors that are incoherent with each other. However, this 

is an inappropriate representation of their true relation in the world. Whether or not 

the suspect spilled petrol while filling up his car is unrelated (independent) of whether 

or not he is guilty of starting the fire. The two explanations only become dependent 

given the evidence of petrol traces on the clothes that they both try to explain. This is 

clear by looking at Figure 3. It depicts the neural network that evaluates competing 

explanations for the petrol traces, as modelled by coherence accounts. Solid lines are 

excitatory links between units, and the dotted line is an inhibitory link representing 

incoherence between competing hypotheses about the origin of the petrol traces—

starting a fire or spilling it while filling up car. 
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Figure 3. Connectionist network modelling competing explanations for petrol traces. 

2.2 Experiment 1 

The aim of this study was to show that mock jurors reason through crime 

scenarios by constructing causal networks that allow them to perform explaining 

away inferences that cannot be accounted for by coherence models. This was done by 

presenting participants with two fictional criminal scenarios based on a simple causal 

network that involved an explaining away causal inference. 

  Both scenarios began with background details about the crime and the chief 

suspect. Participants were then asked to make two baseline judgments. The first one 

was an estimate of the likelihood that the suspect was guilty (guilt judgment). The 

second one was an estimate of the likelihood of another event that might have caused 

the suspect to commit the crime (causal judgment). Once participants made these 

judgments they were presented with a new piece of evidence that incriminated the 

suspect (affirmative evidence) and were asked to make the same two judgments again. 

Lastly, they were presented with a new piece of evidence that explained away the 

previous piece of affirmative evidence (rebuttal evidence).  Finally participants were 

asked to make the same judgments again. Participants thus gave six sequential 
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probability judgments in each problem (two baseline, two after affirmative evidence 

and two after rebuttal evidence). 

This causal network is best explained using one of the crime scenarios as an 

example. The first scenario provided participants with the following background 

information: ‘A house burnt down. The police investigation reveals that the fire was 

caused by ignited petrol and was therefore intentional. Statistics show that in about 

half of cases of intentional burning down of houses, it is the owner who is responsible 

for starting the fire to get compensation money from insurance.’ Participants were 

then asked to make two baseline judgments. The first one was an estimate of the 

likelihood that the house owner was guilty (guilt judgment). The second one was an 

estimate of the likelihood that the owner was in financial trouble (causal judgment). 

After participants made their judgments they were provided with new affirmative 

evidence: ‘Further police investigation revealed that the owner had petrol traces on 

his clothes.’ Participants were then asked to make the same judgments as before. 

Next, participants were presented with a piece of rebuttal evidence which ‘explained 

away’ the piece of affirmative evidence: ‘Further police investigation revealed CCTV 

footage of the owner filling up his car with petrol and spilling petrol on his clothes.’ 

Finally participants were asked to make the two judgments one last time.   

In contrast to the network representation suggested by the coherence approach 

(Figure 3), participants were hypothesised to have constructed a causal model that 

allowed for ‘explain away’ inferences. This is displayed in Figure 4. 
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Figure 4. Causal network for house fire scenario. 

The experimental hypotheses were: 

i) guilt judgments after the affirmative evidence will be greater than the baseline 

judgments, showing that the affirmative evidence did in fact have the intended 

incriminating impact; 

ii) causal judgments will also be greater after the affirmative evidence as 

participants create a causal link between the evidence and the causal judgment; 

iii) guilt judgments after the rebuttal evidence will be lower than the judgments 

given after the affirmative evidence judgments, showing that participants make 

explaining away inferences;  

iv) causal judgments will also be lower than the judgments given after the 

affirmative evidence because participants extend explaining away inferences to 

causal judgments. 

The causal network in question and the relative hypotheses can also be 

expressed probabilistically (note that letter ‘A’ stands for the background evidence): 

i) P(B|A) > P(B| A&D); 
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ii) P(C|A) > P(C| A&D); 

iii) P(B| A & D) > P(B|A & D & E); 

iv) P(C| A & D) > P(C|A & D & E). 

In order to assess whether participants had constructed the hypothesised causal model, 

they were presented with a series of questions that aimed to assess their causal 

schemas. In accordance it was hypothesised that participants would represent: 

i) the guilt variable to be positively linked to the causal variable; 

ii) the guilt variable to be positively  linked to the affirmative evidence; 

iii) the rebuttal evidence to be positively linked to the affirmative evidence 

iv) No link between the causal variable and the rebuttal evidence. 

Importantly, the fourth hypothesis (stating the absence of a causal link between the 

casual variable and the rebuttal variable), directly assessed whether participants 

constructed an inhibitory link between the two alternative explanations for the 

evidence. Results supporting the experimental hypothesis would speak strongly 

against a coherence model based representation of the evidential reasoning.  

 

2.3 Method 

Participants and Apparatus  

65 first year undergraduate students from UCL (University College London) 

participated in the study in return for course credit. 52 participants were female and 

the mean age was 18.9 (1.47). The experiment was conducted online on individual 

computers and programmed in Adobe Dreamweaver. 
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Design   

The experiment followed a within-subject design where each participant was 

presented with both scenarios. The order of the two scenarios was counterbalanced.  

 

Materials and Procedure 

The materials consisted of two scenarios. : the ‘House fire scenario’ and the 

‘Injured child scenario’. Each scenario was accompanied by a set of judgment 

questions and ended with four causal questions 

Scenarios and judgment questions 

 These are reported in Table 1 along with the questions, in the same order they 

were presented during the study. Both scenarios began with background details about 

the crime and the chief suspect. This simple description was followed by two 

questions: the baseline guilt judgment and the baseline causal judgment.  Participants 

indicated their judgments on a slider scale that was labeled as from ‘extremely 

unlikely’ to ‘extremely likely’. The label in the center read ‘as likely as not’. This is 

shown in Figure 5. The scale did not have any numbers, but the responses were coded 

from 0 to 100 (with 0 = extremely unlikely, 50 = as likely as not, and 100 = extremely 

likely).  

 

Figure 5. Response scale for the guilt and causal judgments. 
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Table 1.  

Table displaying the material shown to participants in the order in which it was 

presented. Experiment 1.  

Scenario House fire Child 

Background 
details 

A house burnt down. The police investigation 
reveals that the fire was caused by ignited 
petrol and was therefore intentional. 
Statistics show that in about half of cases of 
intentional burning down of houses, it is the 
owner who is responsible for starting the fire 
to get compensation money from insurance 
as they are in financial trouble. 
 

A child who has been brought into 
hospital has serious head trauma related 
injuries. Medical and police records 
show that about half of children with 
those specific injuries have been 
violently shaken by their parents. 
 

Baseline 
guilt 
judgement 

Please indicate how likely it is that the owner 
was the one who burnt down the house. 
 

Please indicate how likely it is that the 
child has been violently shaken. 
 

Baseline 
causal 
judgment 

Please indicate how likely it is that the owner 
was in financial trouble. 
 

Please indicate how likely it is that the 
parents have mental health problems. 
 

Affirmative 
evidence 

Further police investigation revealed that the 
owner had petrol traces on his clothes. 
 

Further police investigation revealed 
that the injuries presented by the child 
included retinal haemorrhages – a 
characteristic symptom of violent 
shaking. 
 

Affirmative 
guilt 
judgement 

In light of this new evidence please indicate 
how likely it is that the owner was the one 
who burnt down the house. 
 

In light of this new evidence please 
indicate how likely it is that the child 
has been violently shaken. 
 

Affirmative  
causal 
judgment 

In light of this new evidence please indicate 
how likely it is that the owner was in 
financial trouble. 
 
 

In light of this new evidence please 
indicate how likely it is that the parents 
have mental health problems. 
 

Rebuttal 
evidence 

Further police investigation revealed CCTV 
footage of the owner filling up his car with 
petrol and spilling petrol on his clothes. 

Further police investigation revealed 
that the child was born with a severe 
vitamin C deficiency which causes 
retinal haemorrhages. 
 

Rebuttal 
guilt 
judgement 

In light of this new evidence please indicate 
how likely it is that the owner was the one 
who burnt 
 

In light of this new evidence please 
indicate how likely it is that the child 
has been violently shaken. 
 

Rebuttal 
causal 
judgment 

In light of this new evidence please indicate 
how likely it is that the owner was in 
financial trouble. 
 

In light of this new evidence please 
indicate how likely it is that the parents 
have mental health problems. 
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Participants were then presented with a piece of affirmative evidence that 

incriminated the suspect. Following this new information they were asked to repeat 

the two judgments (affirmative guilt judgment and affirmative causal judgment). Next 

they were presented with a piece of rebuttal evidence that discredited the affirmative 

evidence – it explained it away. Finally participants were asked to make the last two 

judgments: rebuttal guilt judgment and rebuttal causal judgment.  

Causal questions 

Four questions were constructed for each scenario to assess the causal model 

participants had constructed. Each question consisted in a forced choice question 

(these are reported in Table 2) and a confidence judgment. The confidence judgment 

consisted in a likelihood rating. 

 

Table 2.  

Table showing the causal questions for each scenario. Experiment 1.  

Scenario House fire Child 

Causal 
question 1 

Do you think knowing a suspect might be in 
financial trouble is relevant to whether the 
suspect burnt down his house?  
 

Do you think knowing that suspects 
might have mental health problems is 
relevant to whether the suspects are 
responsible for violently shaking their 
child?  
 

Causal 
question 2 

Do you think knowing a suspect has petrol 
traces on his clothes is relevant to whether 
the suspect burnt down his house?  
 

Do you think knowing a child has retinal 
haemorrhage is relevant to whether the 
child has been violently shaken?  
 

Causal 
question 3 

Do you think knowing a suspect has spilt 
petrol on his clothes while filling up his car is 
relevant to knowing the suspect has petrol 
traces on his clothes?  
 

Do you think knowing a child has 
vitamin C deficiency is relevant to 
knowing the child has retinal 
haemorrhage?   
 

Causal 
question 4 

Do you think knowing a suspect might be in 
financial trouble is relevant to knowing the 
suspect has spilt petrol on his clothes while 
filling up his car?  
 

Do you think knowing suspects might 
have mental health problems is relevant 
to knowing their child has vitamin C 
deficiency?  
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The reason why the ‘Equally likely option’ was not given as a possible answer in the 

forced choice question, was to tackle the worry that participants might select it to 

remain neutral (avoid giving a wrong answer) rather than to indicate actual feeling 

that the connections are indeed equally likely. For this reason the forced choice 

question was followed by a confidence judgment. It was presumed that participants 

who constructed a causal link would give a higher likelihood rating whereas 

participants who did not construct a causal link (i.e. thought the two answers were 

equally likely) would select one of the answers and then give the lowest likelihood 

rating. For example, to assess the presence of a positive causal link between the guilt 

variable and the casual variable in the ‘Injured child scenario’, participants were 

asked:  

Which parents are more likely to violently shake their child? 

o Parents with mental health problems 

o Parents without mental health problems 

How much more? 

 

Figure 6. Response scale for the causal questions 

 

2.4 Results 

Scenario judgments 

The mean and standard deviation of the three sets of guilt and causal 

judgments are displayed in Table 3.  

 

Slightly more A lot more  
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Table 3. 

Mean and standard deviation of guilt judgments and causal judgments. Experiment 1. 

 House fire scenario Injured child scenario 
Judgment  Guilt Causal Guilt Causal 
Baseline 51.4 (9.8) 52.9 (11.6) 51 (10.3) 47.3 (16) 
Affirmative 69.8 (12.4) 63.5 (13.6) 73.2 (12.3) 59.7 (19.9) 
Rebuttal 46.9 (14.3) 48.1 (14.6) 41.7 (13.4) 42 (13.8) 

 

T-tests 

Paired samples t-tests were conducted to evaluate the significance of the results. The 

way the judgments change after the affirmative and rebuttal evidence is clear by 

observing Figure 6 (House fire scenario) and Figure 7 (Injured child scenario) 

House fire scenario. The first hypothesis was supported as there was a 

significant increase between guilt judgments given at baseline and those given after 

the affirmative evidence: t(64)= -8.89, p<0.001. The same was true for causal 

judgments (hypothesis 2): t(64)= -4.48 p<0.001. Also supported was the third 

hypothesis, which predicted that participants’ guilt judgments given after the rebuttal 

evidence would be significantly lower than the ones given after the affirmative 

evidence: t(64)=9.151, p<0.001. The same was true for causal judgments (hypothesis 

4) t(64)=6.144, p<0.001. 

Interestingly, inspection of the means and graph showed participants’ guilt and 

causal judgments given after the rebuttal evidence were both lower than the initial 

baseline judgments. A paired sample t-test was conducted to evaluate whether there 

was a significant difference between the rebuttal guilt judgment and the baseline guilt 

judgment. The result was indeed significant, t(64)=2.218, p=0.03. The same was true 

for the difference between the rebuttal causal judgment and the baseline causal 

judgment, t(64)=2.18, p=0.033.  
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Injured child scenario. The first hypothesis was supported as there was a 

significant increase between guilt judgments given at baseline and those given after 

the affirmative evidence: t(64)= -10.8, p<0.001. The same was true for causal 

judgments (hypothesis 2): t(64)= -3.9 p<0.001. Also supported was the third 

hypothesis, which predicted that participants’ guilt judgments given after the rebuttal 

evidence would be significantly lower than the ones given after the affirmative 

evidence: t(64)=14.9, p<0.001. The same was true for causal judgments (hypothesis 

4) t(64)=5.54, p<0.001. 

Interestingly, inspection of the means and graph showed participants’ guilt and 

causal judgments given after the rebuttal evidence were both lower than the initial 

baseline judgments. A paired sample t-test was conducted to evaluate whether there 

was a significant difference between the rebuttal guilt judgment and the baseline guilt 

judgment. The result was indeed significant, t(64)=-4.286 p<0.001. On the other 

hand, the difference between the rebuttal causal judgment and the baseline causal 

judgment was not signficiant, t(64)=-1.86, p=0.067. 
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Figure 6. Graph showing the mean guilt and causal judgments (with error bars). 

Experiment 1, ‘House Fire’ scenario.  

 

Figure 7. Graph showing the mean guilt and causal judgments (with error bars). 

Experiment 1, ‘Injured child’ scenario.  
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ANOVAs 

  House Fire scenario. A one-way repeated measures ANOVA was conducted 

to compare the guilt judgments given at the three different stages (after background 

evidence, after affirmative evidence and after rebuttal evidence). There was a 

significant effect for guilt judgment, Wilk’s Lambda = 0.388, F (2, 63) = 49.6, p < 

0.001, multivariate partial eta squared = 0.61. Post hoc tests using the Bonferroni 

correction revealed that, in line with the results obtained from the paired t-tests, 

affirmative judgments were significantly higher than baseline judgments (p<0.001) 

and that rebuttal judgments were significantly higher than affirmative judgments 

(p<0.001). On the other hand, the rebuttal judgments were not significantly lower 

than baseline judgments (p=0.09). 

A very similar pattern of results is revealed by running the one-way repeated 

measures ANOVA on the causal judgments. There was a significant effect for guilt 

judgment, Wilk’s Lambda = 0.624 F (2, 63) = 19.001 p < 0.001, multivariate	  partial	  

eta squared = 0.376.	  Post hoc tests using the Bonferroni correction revealed that, in 

line with the results obtained from the paired t-tests, affirmative judgments were 

significantly higher than baseline judgments (p<0.001) and that rebuttal judgments 

were significantly higher than affirmative judgments (p<0.001). On the other hand, 

the rebuttal judgments were not significantly lower than baseline judgments 

(p=0.099).	  

Injured child scenario. The same analyses were repeated for the ‘Injured 

child’ scenario. A one-way repeated measures ANOVA was conducted to compare 

the guilt judgments given at the three different stages (after background, after 

affirmative evidence and after rebuttal evidence). The was a significant effect for guilt 

judgment, Wilk’s Lambda = 0.209, F (2, 63) = 119.22, p < 0.0001, multivariate partial 
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eta squared = 0.791. Post-hoc tests using the Bonferroni correction revealed that, in 

line with the results obtained from the paired t-tests, affirmative judgments were 

significantly higher than baseline judgments (p<0.001) and that rebuttal judgments 

were significantly higher than affirmative judgments (p<0.001). Additionally, the 

rebuttal judgments were significantly lower than baseline judgments (p<0.001). 

A very similar pattern of results is revealed by running the one-way repeated 

measures ANOVA on the causal judgments. The was a significant effect for guilt 

judgment, Wilk’s	   Lambda	   =	   0.409	   F	   (2,	   16)	   =	   11.551	   p	   <	   0.001,	   multivariate	  

partial	  eta	  squared	  =	  0.591.	  Post hoc tests using the Bonferroni correction revealed 

that, in line with the results obtained from the paired t-tests, affirmative judgments 

were significantly higher than baseline judgments (p<0.001) and that rebuttal 

judgments were significantly higher than affirmative judgments (p=0.038). On the 

other hand, the rebuttal judgments were not significantly lower than baseline 

judgments (p=0.202). 

 

Individual analyses 

Individual differences in patterns of responses were analyzed for both sets of 

judgments. Table 4 shows the number (and percentage) of participants who: i) gave 

affirmative judgments greater than baseline judgments; ii) gave rebuttal judgments 

lower than affirmative judgments; gave all judgments consistent with the hypotheses; 

and iv) participants who did not over-adjust the rebuttal judgment to be lower than 

baseline. 
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Table 4. 

Table showing individual differences in judgment patterns. Experiment 1. 

 House fire scenario Injured child scenario  

Judgment Guilt Causal Guilt  Causal  

Baseline > Affirmative 57 (88%) 49 (75%) 60 (92%)  43 (66%)  

Affirmative < Rebuttal 57 (88%) 51 (78%) 60 (92%)  53 (82%)  

Baseline > Affirmative < Rebuttal 54 (83%) 42 (65%) 57 (88%)  36 (55%)  

Baseline < Rebuttal 23 (35%) 26 (40%) 20 (31%)  28 (43%)  

 

Causal Model assessment 

Figure 7 shows the hypothesized causal model for the two scenarios. Table 5 shows 

the percentage of participants who constructed each link (this was calculated based on 

the forced choice question. It is the number of participants who responded that a link 

between the two entities was more likely). The table also shows the mean confidence 

rating for each participant. 

 

Figure 7. The hypothesized causal model for the two scenarios (C=causal variable; 

B=guilt variable; E=rebuttal evidence; D=affirmative evidence). The crossed dashed 

line indicates the absence of the incoherence link. The numbers correspond to the data 

in the table 5 below. 



47	  

Table 5. 

Percentage of participants who constructed each link with the mean confidence 

rating. A rating of 100 corresponded to ‘extremely confident’; a rating of 0 

corresponded to ‘slightly confident’.	   

 

 

The first causal model hypothesis predicted that participants would construct a 

positive causal link between the guilt variable and the causal variable. This was true 

for both scenarios. In scenario 1 (House fire) 96.9% judged a person in financial 

trouble to be more likely to burn down their house than a person not in financial 

trouble (mean confidence = 46.7, SD = 30.61). In scenario 2 (Injured child) 95.4% 

judged parents with mental health problems to be more likely to violently shake their 

child than parents without mental health problems (mean confidence = 48.6, SD = 

30.79). The second hypothesis was that participants constructed the guilt variable to 

be positively linked to the affirmative evidence. This was supported for both 

scenarios. In the first scenario 80% judged a person who burnt down their house to be 

more likely to have petrol traces on his clothes than a person who did not (mean 

confidence = 41.5, SD = 36.71). Similarly, 96.9% judged a child who has been 

violently shaken to be more likely to have retinal hemorrhage than a child who was 

not (mean confidence = 47.71, SD = 30.79), in scenario 2. The third hypothesis 

predicted participants constructed a positive causal link between the rebuttal evidence 

and the affirmative evidence. Again, this was found to be the case for both scenarios. 

 House fire scenario Injured child scenario 
Causal 
link 

% constructing 
link 

Mean confidence 
in link 

% constructing 
link 

Mean confidence 
in link 

1 96.9% 46.7 (SD = 30.6) 95.4% 48.5 (SD = 30.8) 
2 80% 41.5 (SD = 36.7) 96.9% 47.7 (SD = 30.8) 
3 98.5% 75.6 (SD = 31.5) 98.5% 61.9 SD = 29.1) 
4 72.3% 11.3 (SD = 19.6) 61.5% 10.7 (SD = 22.9) 
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In scenario 1, 98.5% judged a person who spilt petrol on his clothes (while filling up 

his car) to be more likely to have petrol traces on his clothes that a person who didn’t 

spill petrol (mean confidence = 75.6, SD = 31.53). In scenario 2, 98.5% judged a 

child with vitamin C deficiency to be more likely to have retinal hemorrhage than a 

child without vitamin C deficiency (mean confidence = 61.9, SD = 29.11). Finally, 

the last hypothesis was that participants did not construct any casual link between the 

causal judgment and the rebuttal evidence. This was true for both scenarios. In the 

first scenario, even though 72.3% judged a person in financial trouble to be more 

likely to spill petrol on his clothes than a person not in financial trouble, the mean 

relative likelihood rating was only 11.3 (SD = 19.69). Similarly, for the second 

scenario, even if 61.5% judged parents with mental health problems to be more likely 

to have a child with vitamin C deficiency than parents without mental health 

problems, the mean relative likelihood rating was very low: 10.71 (SD = 22.90). 

 

2.5 Discussion 

The aim of the study was to show that mock jurors represent simple crime 

scenarios in causal networks that allow them to: i) make explaining away inferences, 

and ii) extend these inferences in line with the causal network. First of all, the 

experiment showed that when participants were presented with rebuttal evidence that 

explained away the affirmative evidence, they made explaining away inferences by 

significantly lowering their guilt judgments. Secondly, this explaining away inference 

was clearly extended in line with the causal network as participants significantly 

lowered their causal judgment as well. The combination of these two findings 

strongly suggests that mock jurors represent problems in causal networks. This was 

assessed explicitly in the current study and revealed that the links participants had 
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constructed between the pieces of evidence and their judgments could be represented 

by the hypothesised causal network.  

Importantly, however, it was found that for both scenarios, participants’ guilt 

and causal judgments given after the rebuttal evidence were both lower than the initial 

baseline judgments. A coherence-based approach could argue that the reason for this 

is because participants constructed an inhibitory link between the two explanations for 

the evidence. In theory, this inhibitory link would cause participants to over adjust 

their guilt and causal judgments below baseline.  

Even though this might seem like a compelling argument at first, there is an 

alternative explanation that might account for these results. It could be that the 

rebuttal evidence explained away more than just the affirmative evidence. Possibly it 

explained away some of the background information as well. Participant’s guilt 

judgment represents the probability that the suspect is guilty given the background 

evidence. If however, the rebuttal evidence explained away some of the background 

evidence as well as the rebuttal evidence, it is then logical to adjust the guilt 

judgments below the judgment given at baseline. The same concept follows when it 

comes to the causal judgment.  

 

2. 6 Experiment 2 

Experiment 2 investigated this hypothesis experimentally in a simple study. 

The experiment replicated the current material but with one important difference: the 

background information participants were provided with was reduced to a minimum. 

For instance, taking the first scenario as an example, participants were presented with 

only the following information: ‘A house burnt down. The police investigation 

reveals that the fire was caused by ignited petrol.’ This way, there was less risk that 
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the rebuttal evidence would explain the background evidence, as this is reduced to a 

bare minimum. Therefore, it was hypothesized that participants’ guilt and causal 

judgments given after the rebuttal evidence would be the same (or slightly higher) 

then their initial baseline judgments. 

 

2. 7 Method 

Participants and Apparatus  

18 first year undergraduate students from UCL (University College London) 

participated in the study in return for course credit. 12 participants were female and 

the mean age was 18.9 (SD=1.4). The experiment was conducted online on individual 

computers and programmed in Adobe Dreamweaver. 

Design 

 All participants were presented with only one scenario (House fire scenario). 

Materials and Procedure 

The materials consisted of simplified versions of the scenario used in 

Experiment 1: the ‘House fire scenario’. The scenario was accompanied by a set of 

judgment questions (these were identical to Experiment 1). There were no causal 

model questions. 

The only difference in the scenario was in the background details (the 

affirmative evidence and the rebuttal evidence were the same). The background of the 

house fire scenario read as follows: ‘A house burnt down. The police investigation 

reveals that the fire was caused by ignited petrol.’  
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2. 8 Results 

Scenario judgments 

The mean and standard deviation of the three sets of guilt and causal judgments are 

displayed in Table 6.  

 

Table 6. 

Mean and standard deviation of guilt judgments and causal judgments. Experiment 2. 

Judgment  Guilt Causal 

Baseline 51.3 (12.1) 50.2 (12.1) 

Affirmative 70.3 (11.4) 69 (11.8) 

Rebuttal 51.8 (12.9) 57.2 (12.6) 

 

The way the judgments change after the affirmative and rebuttal evidence is clear by 

observing Figure 8. 

 

Figure 8. Graph showing the mean guilt and causal judgments (with error bars). 

Experiment 2. 

0	  

10	  

20	  

30	  

40	  

50	  

60	  

70	  

80	  

90	  

100	  

Baseline	   Af@irmative	   Rebuttal	  

Li
ke
lih
oo
d	  
ra
ti
ng
	  

Judgment	  

Guilt	  

Causal	  



52	  

T-tests 

Paired samples t-tests were conducted to evaluate the significance of the 

results. The first hypothesis was supported as there was a significant increase between 

guilt judgments given at baseline and those given after the affirmative evidence: 

t(17)= -5.127, p<0.001. The same was true for causal judgments (hypothesis 2): 

t(17)= -4.878, p<0.001. Also supported was the third hypothesis, which predicted that 

participants’ guilt judgments given after the rebuttal evidence would be significantly 

lower than the ones given after the affirmative evidence: t(17)=5.019, p<0.001. The 

same was true for causal judgments (hypothesis 4) t(17)=2.783, p<0.013.  

A paired sample t-test was conducted to evaluate whether there was a 

significant difference between the rebuttal guilt judgment and the baseline guilt 

judgment. The result was not significant, t(17)=-0.127, p=0.901. The same was true 

for the difference between the rebuttal causal judgment and the baseline causal 

judgment, t(17)=-1.57, p=0.135.  

 

ANOVAs 

  A one-way repeated measures ANOVA was conducted to compare the guilt 

judgments given at the three different stages (after background evidence, after 

affirmative evidence and after rebuttal evidence). There was a significant effect for 

guilt judgment, Wilk’s	  Lambda	  =	  0.323,	  F	  (2,	  16)	  =	  16.8,	  p	  <	  0.0001,	  multivariate	  

partial	  eta	  squared	  =	  0.677.	  Post hoc tests using the Bonferroni correction revealed 

that, in line with the results obtained from the paired t-tests, affirmative judgments 

were significantly higher than baseline judgments (p<0.001) and that rebuttal 

judgments were significantly higher than affirmative judgments (p<0.001). On the 
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other hand, the rebuttal judgments were not significantly lower than baseline 

judgments (p=1). 

A very similar pattern of results is revealed by running the one-way repeated 

measures ANOVA on the causal judgments. There was a significant effect for guilt 

judgment, Wilk’s Lambda = 0.624 F (2, 63) = 19.001 p < 0.001, multivariate	  partial	  

eta squared = 0.376.	  Post hoc tests using the Bonferroni correction revealed that, in 

line with the results obtained from the paired t-tests, affirmative judgments were 

significantly higher than baseline judgments (p<0.001) and that rebuttal judgments 

were significantly higher than affirmative judgments (p<0.001). On the other hand, 

the rebuttal judgments were not significantly lower than baseline judgments 

(p=0.405). 

 

Individual analyses 

Individual differences in patterns of responses were analyzed for both sets of 

judgments. Table 4 shows the number (and percentage) of participants who: i) gave 

affirmative judgments greater than baseline judgments; ii) gave rebuttal judgments 

lower than affirmative judgments; gave all judgments consistent with the hypotheses; 

and iv) participants who did not over-adjust the rebuttal judgment to be lower than 

baseline. 
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Table 7. 

Table showing individual differences in judgment patterns. Experiment 2. 

 

Judgment Guilt Causal  

Baseline > Affirmative 16 (89%) 17 (94%)  

Affirmative < Rebuttal 16 (89%) 13 (72%)  

Baseline > Affirmative < Rebuttal 16 (89%) 13 (72%)  

Baseline < Rebuttal 10 (56%) 11 (61%)  

 

 

2. 9 Discussion 

Experiment 1 found that for both scenarios, participants’ guilt and causal 

judgments given after the rebuttal evidence were both lower than the initial baseline 

judgments. A coherence-based approach could argue that the reason for this is 

because participants constructed an inhibitory link between the two explanations for 

the evidence. In theory, this inhibitory link would cause participants to over adjust 

their guilt and causal judgments below baseline.  

Experiment 2 investigated the hypothesis that the rebuttal evidence explained 

away more than just the affirmative evidence.  Therefore the background information 

participants were provided with was reduced to a minimum (so there was less risk that 

the rebuttal evidence would explain the background evidence, as this is reduced to a 

bare minimum). As hypothesized, the simplification of the background information 

given in the scenario in Experiment 2, yielded a pattern of results that showed no 

presence of over-adjustment of guilt and causal judgments after the rebuttal evidence.  
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2.10 General Discussion 

The two experiments showed that when participants were presented with 

rebuttal evidence that explained away the affirmative evidence, they made explaining 

away inferences by significantly lowering their guilt judgments. Secondly, this 

explaining away inference was clearly extended in line with the causal network as 

participants significantly lowered their causal judgment as well. The combination of 

these two findings strongly suggests that mock jurors represent problems in causal 

networks. This was assessed explicitly in the current study and revealed that the links 

participants had constructed between the pieces of evidence and their judgments could 

be represented by the hypothesised causal network. Importantly, it was found 

participants did not construct a causal link between the causal variable and the 

rebuttal evidence.  

 

Implications for the coherence model 

This pattern of results cannot be accounted for by coherence-based models. In 

order for a coherence model to represent the explaining away inference made by 

participants, it would have to assume that the guilt variable and the rebuttal evidence 

are exclusive explanations for the affirmative evidence. Returning to the first scenario 

as an example, a coherence model would have to represent starting a fire and spilling 

petrol while filling up a car as exclusive explanations for the evidence of petrol traces. 

In other words, there would have to be an inhibitory link between them.  

This is problematic for two main reasons. Firstly, as argued earlier, it creates 

an unrealistic representation of their true relation in the world. As it is obvious from 

the example, it is possible that someone spilled petrol while filling up his car and also 

started a fire – the two explanations are independent but not mutually exclusive. The 
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fact that these became dependent contingent on the evidence cannot be represented by 

coherence models, or for that matter, by any current model that relies on bidirectional 

links to represent relations. 

The second reason why constructing an inhibitory link would be problematic 

is that there is no experimental evidence to support this proposition. The causal model 

assessment conducted in the current study explicitly investigated whether participants 

had constructed a link between the two explanations for the evidence. Participants’ 

judgments reflected that they did not construct any link at all between the causal 

variable and the rebuttal evidence. This provides further endorsement that speaks 

against coherence based model representation of evidential reasoning. 

 

Implications for the story model 

The inappropriateness of coherence-based models for explaining juror 

reasoning automatically poses a key problem for any evidential reasoning model 

which integrates the concepts of coherence as one of its key determinants. This 

becomes an issue of particular importance when it comes to the story model. This is 

because, as described above, the story model explicitly adopts the coherence concept 

as a critical tool to resolve which of the stories constructed by jurors should prevail.   

This becomes an undeniable problem especially because Pennington and 

Hastie define coherence as the product of plausibility and consistency. The current 

results are a direct challenge to the consistency component of the principle of 

coherence upon which the story model relies on. Pennington and Hastie argue a story 

is consistent to the extent that it does not contain internal contradictions either with 

evidence believed to be true or with other parts of the explanation. Secondly, they 

argue that a story is plausible to the extent that it corresponds to the decision maker’s 
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knowledge about what typically happens in the world and does not contradict that 

knowledge.  

The present study has shown that coherence-based reasoning cannot handle 

explaining away inferences. This is because it cannot construct a realistic 

representation of the world and avoid internal contradictions. Naturally this creates 

somewhat of a catch-22 situation. The story model uses coherence as a criterion based 

on realistic representations of the world, but the coherence approach does not always 

represent realistic causal relations in the world. This implies that coherence cannot be 

used consistently as a valid criterion for deciding which story should prevail. This 

limitation seriously undermines the explanatory power of the story model as a 

comprehensive account of juror decision making. This calls either for a reassessment 

of coherence by the endorsers of the story model or for a different story selection 

paradigm all together. 

 

Qualitative causal networks and future directions 

The shortcomings of coherence-based models, and in turn of the story model, 

highlight the need to conceptualise a more reliable cognitive model of juror decision 

making. Lagnado (2011) proposes instead that juror reasoning can be accounted for in 

terms of qualitative causal networks. He suggests that causal networks are critical in 

the construction of people’s models of the evidence presented in court. This concept 

has already been emphasised by Pearl (2000) who argued that the best way for people 

to organise their knowledge of the world is in terms of invariant (stable) qualitative 

causal relations. One of the key aspects of this proposition is that these relations, once 

known, will not change according to the particularities of the information at hand, 

whereas purely probabilistic relations can. For example,  returning to the ‘explain 
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away’ example cited above, the hypothesis that the owner spilled petrol while filling 

up his car, and the hypothesis that the owner has petrol traces on clothes because he 

started a fire, independently explain the evidence and can be represented as: start fire 

→ petrol traces ← spill petrol. On this model ‘start fire’ and ‘spill petrol’ are 

probabilistically independent but become dependent conditional on knowing ‘petrol 

traces’. What remain constant across this change of information in the probabilistic 

relations (in this instance knowing about ‘petrol traces’) are the underlying causal 

relations in the model. This way, by organising knowledge on the basis of invariant 

rather than unstable aspects of the world, even if causal relations do change, they will 

reflect a change in the real world rather than change in personal knowledge about it. 

This aspect of the model discriminates it from the coherence model because the latter 

treats the two hypotheses as competitors that are incoherent with each other. This, in 

turn creates an inappropriate representation of their true relation in the world.  

Another factor that sets this model apart from the coherence model and the 

story model, is that the latter two models explicitly reject the idea that people think 

about evidence in a probabilistic fashion. In contrast, the causal model approach 

emphasises that people can and indeed do reason probabilistically (as well as 

causally) but without the need for precise numerical estimates. For example the 

presence of petrol traces on a suspect’s clothes increases the likelihood of guilt, even 

if exact probabilities cannot be assigned.   Lagnado (2011) proposes that such 

important patterns of inference can be represented using a formal Bayesian 

framework. Following this argument, ongoing research is assessing to what extent 

people’s qualitative causal networks reflect an underlying Bayesian reasoning process 

(Lagnado, Fenton and Neil, 2013;  Fenton, Neil and Lagnado, 2013).  
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 Another shortcoming with current legal decision making research is that juror 

reasoning is often treated as an isolated process, overlooking how it is modulated by 

other cognitive resources. In order for the proposed qualitative causal network model 

to achieve robustness, it will be fundamental to consider how jurors’ representations 

and thinking is modulated by other concurrent reasoning processes and working 

memory. Future research exploring these factors will help pin down the key structural 

features of jurors’ representations, such as the size of network they can reason with. 

Furthermore, it will shed light on crucial reasoning processes such as how jurors gain 

access to and update the fragments of the networks they construct. To conclude, this 

research evolving around the causal network approach seems a promising starting 

point in achieving a valid understanding of the psychological processes underlying 

juror decision making: a step of fundamental importance to the criminal justice 

system. 
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Chapter 3: Reasoning	  with	  causal	  networks:	  

understanding	  environmental	  problems	  

	  

3.1 Introduction 

 

Background 

Despite its crucial importance for the survival of humanity, now more than 

ever before, marine biodiversity is at the brink of collapse.  After climate change, the 

main culprit is overfishing.  This occurs when fish and other marine species are 

caught faster than they can reproduce.  According to the Food and Agriculture 

organization (1995), over 70 percent of the world's fisheries are “fully exploited”, 

“over exploited” or “significantly depleted”.  In fact, some species have already been 

fished to commercial extinction, and more are on the verge of disappearance.  

Simply put, overfishing is the outcome consumers’ growing demand for seafood 

around the world, combined with poor management of fisheries and development of 

new, more effective fishing techniques.  Unfortunately, the devastating effects of 

overfishing are not limited to loss of biodiversity and ecosystems.  One billion 

people rely on fish as a key source of daily protein, and as the main source of food in 

many developing countries.  Millions of people, and entire coastal communities, 

depend on fisheries for their employment. In addition, and often forgotten, 

collapsing fish stocks aggravate climate change by creating large ecological dead 

zones with no oxygen in the oceans. 

Despite these tragic consequences, overfishing, like most environmental 

problems of this day and age, is another complex tragedy of the commons.  The 
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extensive number of causes that surround the problem generates the element of 

complexity.  Furthermore the interactions between these causes tend to unfold across 

different time frames and inevitably become too convoluted for their effects to be 

predictable.  Nonetheless, consumers, or lay people, still manage to form beliefs about 

the roles of these various causes and their probable effects.  In light of the complexity 

involved these beliefs are likely to be oversimplified and inaccurate (White, 2008).  

As oversimplified or partial as they may be, these beliefs may still form the basis of 

ordinary people’s understanding and therefore reasoning about the phenomenon.  

 

Causality in environmental decision-making 

White (2008) pointed out that since ordinary people can make a difference by 

the force of their opinions and values, there is an obvious practical importance in 

ascertaining the content and structure of lay beliefs about causal processes related to 

environmental problems.  When it comes to overfishing, even if most of the damage 

cannot be reversed, a lot can be saved and eventually restored if people started 

making sustainable decisions.  Therefore understanding how people’s causal 

representation of overfishing may mediate the way they reason about the problem has 

significant practical implications.  

The value of discovering naïve causal structures of a given environmental 

problem resides in the fact that they convey how people understand the problem as a 

system of interconnected parts (White, 2008).  In other words, individual causal 

relations are not isolated from each other but tend to be linked in dynamic systems.  

Given that environmental problems are the product of an entrenched system made up 

of numerous interdependent actors, they tend to be immensely intricate.  For this 

reason, it does not make sense, nor it is fruitful, to focus on isolated causal beliefs.  
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Instead, as White (2000) points out, the scope should be to integrate ‘collections of 

individual events into an organized representation of chains and networks of causal 

relations’.  

Past research in causal cognition has already explored complex causal 

structures (Lagnado, Waldmann, Hagmayer, & Sloman, 2007; Sloman 2005; 

Waldmann, Hagmayer & Blaisdell, 2006).  A central finding from this research is that 

people do indeed create and use causal models to structure their learning and 

inference.  However, only a few studies have looked at the role of feedback loops 

(e.g. Kim, Luhmann & Ryan, 2009) or dynamical systems (e.g. Rottman & Keil, 

2011).  

Consequently, especially when it comes to environmental problems, not much 

is known about how individual causal beliefs are related in an overall dynamic causal 

structure and the form of that structure. For example, knowing that people believe that 

destructive fishing gear causes overfishing carries little meaning unless this individual 

belief can be placed in a network of beliefs about entities related to fishing gear and 

overfishing.  People might also believe that their consumption of unsustainable fish is 

not related to the use of destructive fishing gear.  If this is their causal model of 

overfishing, then people may believe that consumption of unsustainable fish does not 

affect overfishing at all.  In other words, naïve causal models need to be ascertained 

as a network of causal beliefs. 

 

 

Causal network analysis 

Methods to examine the relationship between someone’s causal model and 

their actions remain underdeveloped.  However, the most promising and established 
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method to achieve this is causal network analysis (Green & McManus, 2003).  

Network analysis of causal beliefs is a method that has been pioneered by Lunt (1988) 

in a study of perceived causes of failure.  Essentially, causal network analysis is a 

method of representing a set of causes and links between them.  For example, in Lunt 

(1988) the entities were possible causes of failure, such as having little intelligence or 

poor concentration, and the links were judged causal relations.  Lunt’s study revealed 

a network of interrelations between these different causes.  For instance, low 

intelligence was causally related to poor concentration, and both were deemed to lead 

to poor time allotment.  

Inspired by this methodology, Green and McManus (1995) explored the idea 

that individuals construct causal models of reality and use them to think about 

possible actions in the world.  Green and McManus (1995) employed the causal 

network analysis method to examine individuals’ causal model of risk factors for 

coronary heart disease (CHD) and related these to their judgments of preventive 

actions.  They required individuals to draw a network diagram of the risk factors, or 

causes, for CHD (e.g. high blood pressure, fatty foods and exercise).  Specifically, 

individuals were asked to represent a causal relationship between two factors by 

drawing a line connecting them.  They were also asked to indicate the direction of the 

causal influence using an arrowhead.  In the diagrams created, a causal factor could 

be connected to another factor in a variety of ways.  It could have a direct path to the 

connected factor, or it could have an indirect path to it via some other factor, or it 

could have both a direct path and an indirect path to the target factor.  For example, 

they found that eating fatty foods was deemed to increase the risk of CHD directly, 

but also indirectly through increasing cholesterol.  Therefore the diagram represented 

what individuals spontaneously considered to be the critical pathways.  In addition to 
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representing a path, individuals were required to rate the strength of each causal path 

on a scale from zero to one hundred.  The same individuals also rated the 

effectiveness of different preventive actions related to the factors (e.g. reducing blood 

pressure). 

Green and McManus (1995) showed that the total path strength of a factor (the 

strength of both direct paths and all indirect paths) predicted participants’ ratings of 

the effectiveness of the different preventive actions.  Total path strength accounted for 

two thirds of the variance in these ratings.  In a subsequent study, Green, McManus 

and Derrick (1998) examined perceptions of a person’s prospects of employment.  

They confirmed the importance of path strengths in predicting the ratings of 

effectiveness of different actions designed to increase a person’s employment 

prospects.  Furthermore, it extended the previous findings by showing that the total 

path strengths added considerably more than just the direct paths; almost doubling the 

variance explained in the effectiveness ratings.  

 

Feedback loops 

Green and McManus’ analysis involved investigating the presence or absence 

of causal paths as well as the strengths of those paths.  However, another advantage of 

causal network analysis is that apart from allowing investigation of its content 

features, it allows inspection of its structural features.  White (2008) argued that 

causal models could have various kinds of embedded structures that convey broad 

ideas about how people understand the phenomenon (e.g. overfishing).  Based on this 

idea, he conducted a series of studies concerned with the structure of people’s beliefs 

about causal processes in complex natural environments.  His main aim was to 

discover whether people construct causal processes in nature in a systems-like 
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manner, involving one-way causal hierarchies.  White (2008) derived a set of factors 

in relation to forest ecosystems and climate change (e.g. human population, 

atmospheric carbon dioxide levels, fires and several biological features such as 

extinction rates).  In two experiments participants were presented with each pair of 

factors and asked whether change in one would produce change in the other.  From 

the participants’ judgments, he constructed a causal network that reflected consensual 

causal beliefs.  This method of network elicitation has been termed the “grid method” 

(Green et al. 2003) and differs from the one employed by Green et al. (1995, 1998). 

White found the resultant causal network to be unidirectional.  In other words, 

the network did not encompass any feedback loops, but was composed of linear 

causal chains mostly arranged in a unidirectional hierarchy.  Some factors, such as 

humans, functioned as causal origins and others, such as extinction rates, functioned 

as effects.  These results are consistent with White’s previous research (1992a, 1995a, 

1997, 1999 and 2008) showing unidirectional patterns of thinking about causality in 

natural systems.  White argues that such findings reveal a general failure to appreciate 

the interactive processes that govern the operations of natural systems.   

Conversely, the results do not mean that people are unable to create interactive 

models of ecological systems.  Green (2001) presented participants with a food web 

and asked participants to explain a complex pattern of fluctuation over time in the 

population of an herbivore.  He found that most people were able to construct 

interactive accounts involving two, and in some cases three, entities (plant, herbivore 

and carnivore).  However, as argued by White (2008), the system, or food web, 

comprised only three entities and individuals were constrained to explain a complex 

pattern presented to them, rather than envisaging themselves what sort of pattern 

might occur.  It is therefore not clear whether the interactive thinking exhibited in that 
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study is characteristic of reasoning about ecological systems outside the psychological 

laboratory.  Nonetheless, studies by Green (1997; 2001) do suggest that people have a 

capacity to think about interactions in natural systems, but that this capacity might be 

overwhelmed by task complexity. 

The complexities of interactive systems with multiple entities are admittedly 

hard to grasp, but failure to fully appreciate interactions and feedback loops in these 

systems could have detrimental consequences for the global ecosystem.  In other 

words, how humans treat the world must to some extent reflect what they believe 

about the effects of that treatment - if people believe that anything can be done to 

nature, without repercussions for the human world, they are less likely to exhibit 

sustainable behavior.  Kempton (1986) pointed out that lay models about physical 

systems influence real life decision-making.  He found that people’s mental models of 

thermostats accounted for how they treat the control of heat in their homes.  Those 

who possessed one theory tended to behave more economically than those who 

possessed the other theory.  Kempton (1986) proposed, on the basis of interviews, that 

people used two distinct models of home heating systems.  In the (incorrect) valve 

model, the thermostat is thought to regulate the rate at which the furnace produces 

heat.  Therefore setting higher makes the furnace work harder.  In the (correct) 

threshold model, the thermostat is viewed as setting the goal temperature, but not as 

controlling the rate of heating.  Hence the furnace runs at a constant rate.  Kempton 

then examined thermostat records from real households and found that the patterns of 

thermostat settings fitted nicely with the two models he had found.  

As another example, Atran, Medin, and Ross (2005) found that cultural 

groups’ mental models of plant/animal interactions in the rainforest were consistent 

with the environmental impact of those groups.  Therefore, common-sense 
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understanding of the structure of cause and effect in nature, with specific focus on 

understanding of cyclical interactions between humans and nature, is an important 

topic from both a scientific and conservationist point of view.  

 

3.2 .Experiment 1 

The main aim of the current research is to investigate how the lay 

representation of the causes of overfishing may underlie individuals’ reasoning about 

the problem.  The first aim of Experiment 1 is to elicit individual causal models of 

overfishing in order to examine the relationship between these models and the ratings 

of effectiveness of various related actions.  

Green et al. (1995, 1998) elicited individuals’ causal models through the 

causal network diagram task and showed that total path strength of a causal factor 

predicted participants’ ratings of the effectiveness of different actions related to the 

diagrammed factors.  These results were found in two naturalistic domains: 

representations of risk factors related to CHD and causes of unemployment.  The 

main aim of Experiment 1 is to investigate whether this connection between a casual 

model and the assessment of actions can be extended to the environmental problem of 

overfishing.  In other words, this study seeks to determine whether people’s 

individual causal representation of overfishing predicts the way they reason about the 

issue.  

Experiment 1 employs the method advocated by Green et al. (1995; 1998) to 

elicit participants’ causal network of overfishing.  One potential weakness of the 

causal network analysis is that the network obtained, and its structural features, 

depend on the factors selected for the study.  Clearly, there are many possible factors 

one could include as causes of overfishing (and each of these could be unpacked 
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almost ad infinitum).  As White (2008) points out, one solution is to rely on expert 

assessments of the relative importance of different factors.  To this end, a number of 

expert sources (e.g. Hilborn, 2012) were reviewed and five factors were selected as 

the main causes of overfishing: consumption of unsustainable fish, poor monitoring 

and enforcement of fishing laws, fishermen using gear that does not permit capturing 

only the targeted species, unsustainable fish being sold on the market and demand for 

unsustainable fish. 

Participants were also asked to evaluate the effectiveness of different actions 

based on these diagrammed factors.  These questions were phrased as counterfactual 

questions and the response was in the form of a quantitative judgment.  Subjects are 

told to imagine that a 30% change (increase or decrease) has occurred in the factor in 

question and are asked to judge the amount of change this would cause to overfishing.  

So, for example, subjects are told to imagine that there has been a 30% increase in 

consumption of unsustainable fish.  They are then asked to say whether there would 

be an increase, decrease or no change in overfishing.  For the former two, they are 

asked to give an estimate of the amount of change that would occur in percentage. 

The counterfactual questions encourage participants to reason about the 

counterfactual suppositions as if they were external interventions on overfishing.  

Sloman and Lagnado (2005) showed that when reasoning about the consequences of a 

counterfactual supposition of an event, most people do not change their beliefs about 

the state of the normal causes of the event.  Therefore, when participants answer these 

questions they should not change their causal beliefs about overfishing, but just reflect 

upon the effect of the mentally changed event (e.g. consumption).  In addition, the 

counterfactual supposition involved a quantified change (30%) to ensure all 

participants simulated the same amount of change.  This also means that judgments 
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across the different questions were more comparable to each other.  Hence, any 

relationship between the diagrams and the counterfactual judgments should be 

revealed by a positive correlation between total path strength for each factor (direct 

and indirect paths) and the judgments. 

In addition to computing total path strength, Green and McManus (1997) also 

computed the direct path strengths alone, and the total number of paths emanating 

from each factor (ignoring their strength).  The same analysis will be carried out in 

the present study.  If the perceived strength of a causal path is important, then total 

path strength should correlate significantly more highly with the counterfactual 

judgments than direct path strengths alone or number of paths. 

The second aim of Experiment 1 is to investigate whether people think about 

overfishing in an oversimplified linear and unidirectional way.  Previous studies by 

White (1992a, 1995a, 1997, 1999, 2008) investigated the structural features of causal 

networks, namely the presence of feedback loops, on the consensual network.  In 

other words, he constructed the causal model based on the aggregated data from all 

participants.  This method has two main drawbacks.  First, there are obvious 

theoretical problems in deciding on an appropriate threshold for the inclusion of 

paths.  There are different thresholds that can be used and these yield very different 

causal networks that vary in the degree of complexity and therefore structure.  

Second, even though the consensual representation of a phenomenon may be 

interesting in its own right, there is a lot of variety and individual differences in the 

individual causal representations.  These could involve significant structural features, 

such as feedback loops, that get obscured in the creation of the consensual model 

because they might differ in the type, or number of factors they comprise.  

For this reason, Experiment 1 will adopt a novel approach and will investigate 
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the presence of feedback loops at the individual level.  The causal network diagram 

method of elicitation encourages participants to focus on the overall structure of the 

network, which is visible to the participant as they proceed with the line-drawing task.  

Thus participants never lose sight of the overall structure of their beliefs.  

Consequently, any feedback loops drawn are likely to reflect genuine causal beliefs.  

In the study by Green et al. (2003), the diagram method yielded a network with no 

feedback loops, so there is no evidence that a graphical method improves the 

likelihood of obtaining feedback loops.  Therefore, employing this methodology 

might also provide a more rigid test of representation of feedback loops. 

 

3.3 Method 

Participants 

40 participants were recruited through the University College London 

Psychology Subject Pool.  The subject pool in question is open to everybody and 

therefore not limited to university students.  The study was advertised as investigating 

reasoning about causes and effects.  All participants were paid £4.  Twenty-four 

participants were males (60%) and 16 were females (40%).  The mean age was 30.9 

years (SD = 14.1; range 19 to72 years).  Thirty participants completed the task 

satisfactorily; the remaining 10 either failed to label all paths with an indication of 

direction or failed to give a numerical estimate of strength for each of the paths.  The 

participants’ environmental values were measured through the New Environmental 

Paradigm (NEP) scale (further details discusses in Materials section).  They were a 

representative sample of the general population in terms of environmental values 

(mean NEP score was 21.7, SD=3.63). 

Design 
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The order in which participants completed the diagram task and the 

counterfactual judgment task was counterbalanced.  The order in which the casual 

factors were presented in the diagram task and the order in which the counterfactual 

judgments questions were presented, were both randomized.  The framing of the 

counterfactual judgments (increase or decrease frame) was counterbalanced.  The 

questionnaire ended with a series of demographic questions.  

 

Materials 

The materials consisted of a written questionnaire.  The first page of the 

questionnaire provided a simple definition of overfishing followed by a few sentences 

detailing some of its effects (e.g. environmental problems).  In addition, participants 

were informed that the survey was part of a project to discover the best approaches to 

decrease overfishing.  The second page was an instruction sheet.  Then, depending on 

the counterbalancing condition, participants were either given the diagram task 

followed by the counterfactual judgments task, or vice-versa.  Following both tasks, 

participants were given a series of demographic questions including the New 

Environmental Paradigm.  Pro-environmental values were measured using a reduced 

(6-item) version of the New Environmental Paradigm (NEP) scale (alpha=0.7) 

(Dunlap, Van Liere, Mertig, & Jones, 2000). 

The causal diagram task.  Participants were asked to draw a diagram 

indicating how, in their view, a set of causes or factors are linked to overfishing and 

to each other.  They were instructed as follows: 

There are a number of causes or factors as explanations of overfishing.  We 

would like you to draw a diagram (on the next page) of how you think various 

factors (listed below) are linked to overfishing and each other, using arrows to 
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indicate the direction of the effect.  Label each arrow with either “increases” 

or “decreases” to clarify the type of effect.  The names of the factors to be 

diagramed are listed below.  Beside each factor you will find a short 

description.  The expression “unsustainable fish” will be used throughout the 

survey.  This simply means fish that are overfished or caught or farmed in 

ways that harm other marine life or the environment.  

The 5 factors that were presented to participants are reported in Table 1.  The order in 

which they were presented was randomized.  Overfishing was also included in the list. 

 

Table 1.  

Causal factors presented in the diagram task, Experiment 1.  

Factor names Interpretation 

Consumption People buy and consume unsustainable fish. 

Demand There is demand for unsustainable fish. 

Market Unsustainable fish is sold on the market. 

Overfishing Fishermen catch unsustainable fish (resulting in overfishing). 

Monitoring The government monitors and enforces fishing laws. 

Gear 
Fishermen use fishing gear that does not permit capturing only 

the targeted species. 

 

Participants were told to indicate the connection of these factors (which could be 

either direct or indirect) to overfishing by including overfishing in their diagram.  

Finally, participants were presented with an example of a schematic diagram, which 

bore no factor names, as an example.  

After drawing the diagram, participants were instructed to rate the strength of 
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each of the links they drew on the previous page.  They were told go back to the 

previous page and write a number between 0 and 100 where 0 meant no relation and 

100 meant an invariable relation.  An example was provided to clarify (inspired by 

Green et al., 1998): “So, for instance, when water boils at 100 degrees °C, steam 

comes off.  There is an invariable relation between the two.”  

The counterfactual judgment task.  The instructions for the counterfactual 

judgment task were as follows: 

There are a number of factors that may affect overfishing.  We would like you 

to evaluate how certain changes in certain factors may affect the amount of 

overfishing (the extent to which fishermen catch unsustainable fish).  The 

amount of change is always given as 30%: this is just a convenient figure with 

no special significance.  Your task is to decide whether the change will cause 

an ‘increase’, ‘decrease’ or ‘no change’ in the amount of overfishing.  When 

you have decided, put a circle round the answer you’ve chosen.  If you’ve 

chosen increase or decrease, please also write your estimate of how much 

change will occur in the space provided.  You should do this by giving a 

percentage estimate, from 1 to 100 per cent (0 per cent would be no change).  

If you choose ‘no change’ you do not need to give a percentage estimate.  It 

isn’t easy giving an exact percentage judgment, but please do the best you can, 

basing your judgments on your understanding of how things work.  This not a 

test and there are no right or wrong answers, we are simply interested in the 

way people think about these things. 

Participants were then presented with four questions.  Subjects are told to imagine 

that a 30% change (increase or decrease) has occurred on the factor in question and 

are asked to judge the amount of change this would cause on overfishing.  So, for 
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example, subjects are told to imagine that there has been a 30% increase in 

consumption of unsustainable fish.  They are then asked to say whether there would 

be an increase, decrease or no change in overfishing.  For the former two, they are 

asked to give an estimate of the amount of change that would occur in percentage.  

There was no question related to the factor demand.  The question about demand 

would have been very similar to the one about consumption and could have confused 

the participants.  An example of a question, related to consumption is shown below:

  

Imagine that people decrease their consumption (eating and buying) of 

unsustainable fish by 30%.  

What effect would this have on overfishing (the extent to which fishermen 

catch unsustainable fish)? 

¨ Would increase overfishing. 

¨ Would decrease overfishing. 

¨ Would cause no change in overfishing. 

How much change would occur?  Please write a number from 0 to 100%.  

___%. 

 

Procedure 

Participants took part individually or in groups of two or three in a large 

seminar room.  If in groups, participants were positioned so that nobody could see 

what the others were doing.  Participants were supervised by an experimenter who 

introduced the study, handed out informed consent forms and invited participants to 

ask questions if anything in the instructions was not clear.  There were no questions 

concerning the present study.  At the end, participants were thanked and given their 
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pay as well as a debriefing sheet that explained the aims of the research.  The whole 

study lasted on average 25 minutes. 

 

3.4 Results 

Causal network analysis 

The 30 participants included an average of 7.9 paths in their diagrams 

(SD=2.28; range 4 to 12).  For the causal network analysis the quantitative estimates 

were disregarded, and only the direction of change (increase, decrease or no change) 

was considered (White, 2008).  The data from each subject therefore consisted of a 6 

x 6 matrix.  Any given cell in the matrix could contain either + (judged increase), - 

(judged decrease) or 0 (judged no change).  Scoring judged increase as +1 and judged 

decrease as -1 enables a net score to be calculated across subjects for each cell of the 

matrix.  For example, for the cell representing market as the cause and overfishing as 

the effect, 6 subjects judged an increase, 1 judged a decrease, and the remainder (24) 

judged no change.  This yields a net score of 5 (6 -1).  This means that the causal 

relation demand-overfishing has a net score of five.  This matrix is presented in Table 

2.  These net scores formed the basis for the construction of the causal network.  

Lunt (1988) proposed two criteria for selecting links to be included in the 

causal network.  One is the “minimum systems criterion” (MSC).  This is the value at 

which all causes are included in the system, to determine the network nodes.  

Accordingly, causal links are added hierarchically to the network, in order of net 

scores, until the MSC is reached.  In this study the MSC was a net score of 11 (as 

used by White, 2008), with 9 links meeting this criterion.  Each link in this network 

was endorsed by at least 36.7% of participants, suggesting a low consensus amongst 

the participants.  The resultant network is shown in Figure 1 
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Table 2.  

Endorsement frequencies of causal links, Experiment 1. 

 Effect 

Cause 1 2 3 4 5 6 

1 Demand - 6 14 1 2 16 

2 Consumption 15 - 15 0 3 15 

3 Market 5 14 - -1 2 14 

4 Monitoring -2 -3 -6 - -6 -16 

5 Gear 1 0 1 0 - 11 

6 Overfishing 2 5 4 2 1 - 

 

The second criterion for selecting links to be included in the causal network is 

Inductive Eliminative Analysis (IEA), wherein every network produced when 

working towards the MSC is checked for endorsement.  Originally developed to deal 

with binary adjacency matrices, networks were deemed consensual if endorsed by at 

least 50% of participants (Brogan & Hevey, 2010).  The resultant network is shown in 

Figure 2. 
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Figure 1.  Consensual Causal Network created using MSC, Experiment 1.  Dashed 

line indicates a causal relation labeled as “decrease”. 

 

 

 

 

 

 

 

 

 

Figure 2.  Consensual Causal Network created using IEA, Experiment 1.  Dashed line 

indicates a causal relation labeled as “decrease”. 
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. 

In this instance adopting IEA resulted in a more conservative network with 

only 5 links and no feedback loops.  As the level of endorsement of the MSC is very 

low (36.7%), it is likely that in this case IEA yielded a more realistic representation of 

consensual beliefs.  The number of participants representing each path in the resulting 

consensual networks, as well as the judged mean strength, is reported in Table 3. 

 

Table 3.  

Paths and mean path strengths of consensual network created using MSC, 

Experiment 1. 

Cause factor Effect factor N (%) representing the 

path 

Mean path strength 

(SD) 

Demand Overfishing 16 (53.3%) 0.62 (0.27) 

Monitoring Overfishing 16 (53.3%) -0.62 (0.27) 

Consumption Overfishing 15 (50%) 0.8 (0.29) 

Consumption Market 15 (50%) 0.67 (0.31) 

Market Overfishing 14 (46.7%) 0.85(0.22) 

Demand Market 14 (46.7%) 0.87(0.16) 

Market Consumption 14 (46.7%) 0.76 (0.27) 

Gear Overfishing 11 (36.7%) 0.61 (0.25) 

 

Causal models and counterfactual judgments 

The first research question concerned the relationship between a person’s 

causal diagram of overfishing and their counterfactual judgments.  In order to 

examine the relationship between diagrams and judgments, Green et al. (1995; 1998) 
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used a method that is formally identical to path analysis.  Participants’ ratings of path 

strength are treated as being equivalent to standardized path coefficients.  The same 

method is used to address the current question.  

First, the total path strength of each factor to overfishing was calculated.  For 

example, there might be a direct path from factor A to overfishing and an indirect 

path via factor B.  In that case, the total path strength from factor A to overfishing 

would be an additive combination of the strength of the direct path, and the strength 

of the indirect path.  The strength of the indirect path is the strength of the path from 

A to B (e.g. 20 per cent or 0.2) times the strength of the path from B to the target (e.g. 

30 per cent or 0.3).  In this instance it would be 0.06 (0.2 times 0.3).  If the strength of 

the direct path from A to the overfishing were 0.4 (40 per cent or 0.4) then the total 

path strength would be 0.46 (0.4+0.06) and so on for any more complex set of paths 

between any two factors.  The mean path strengths are reported in Table 4.  Table 5 

shows the mean (SD) counterfactual judgment for each factor (the factor demand, as 

noted in the Method section, was excluded as it confounded with consumption).  

The second step involved calculating, separately for each individual, the 

correlation between each of the factors’ total path strength and those same factors’ 

corresponding counterfactual judgment, using a conventional Pearson correlation r.  

In the present experiment, the mean correlation across individuals (i.e. the mean of a 

set of r correlations), was 0.66 (SD = 0.36, N = 30), accounting for 44% of the 

variance in the counterfactual judgments.  This correlation was significantly different 

from zero, p<0.001.  This correlation was also higher than the correlation between 

these counterfactual judgments and the direct path strengths alone (0.63, SD = 0.4).  

However this difference was not significant: t (29)= .5, p=0.617. The correlation 

between judgments and indirect path strengths alone was 0.47 (SD=0.45).  The 
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correlation between judgments and number of paths emanating from each factor was -

0.55 (SD=0.31).  

Task order did not have an effect on any of the variables.  NEP scores did not 

vary as a function of individual causal models or counterfactual judgments. 

 

Table 4.  

Mean (SD) total path strengths from each factor to overfishing, Experiment 1. 

Factor Mean (SD) 

Demand 0.83 (0.71) 

Consumption 0.98 (0.9) 

Market 0.79 (0.69) 

Monitoring -0.71(0.77) 

Gear 0.22 (0.52) 

 
 
 
Table 5.  

Mean (SD) counterfactual judgments, Experiment 1.  Judgments based on the 

decrease frame have been reversed to compute the mean. 

Factor Mean (SD) 

Consumption 28.8% (26.9) 

Market 26.5% (24.8) 

Monitoring 26.4% (16.3) 

Gear 7.8% (35.7) 

 

 

 



81	  

Analysis of feedback loops 

The causal network analysis reported above suggests low consensus amongst 

the participants and makes an even stronger case for analyzing networks on an 

individual basis.  Each individual causal network was inspected for the presence of 

feedback loops.  59% of networks had at least one feedback loop.  An example of an 

individual network is show in Figure 3.  The mean number of loops across all 

networks was 1.7 (SD=2.2).  The mean number of loops across only the networks 

containing loops was 2.72 (SD=2.24), ranging from 1 to 8 loops per network.  Loops 

involved 2 to 5 factors.  The most common loop (N=9) was market-consumption.   

 
Figure 3.  Example of an individual network with feedback loops, Experiment 1. 
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than direct path strengths alone, or simply the number of paths emanating from a 

factor.  In addition, analysis of individual networks showed that over half of the 

participants built feedback loops into their network diagrams.  

Experiment 1 asked participants to diagram five factors, but answer 

counterfactual judgments based on only four of the 5 factors.  It was not possible to 

discard the fifth factor (demand) from analysis of the causal networks.  Therefore 

computation of the total path strengths had to encompass links to and from the fifth 

diagrammed factor (demand).  Consequently, the first aim of Experiment 2 is to 

replicate the method and findings of Experiment 1 but excluding demand as one of 

the factors participants are asked to diagram. 

The second aim of Experiment 2 is to investigate the nature of the individual 

differences in the cognitive mechanisms that might underlie construction of feedback 

loops.  Kim et al. (2009) noted that a true representation of a feedback loop (A causes 

B, B causes A) is unrealistic, in that loop features often do not cause each other 

constantly and simultaneously but, rather, unfold over time.  Instead, feedback loops 

might be morerealistically represented as causal chains that play out over time.  Such 

a chain would allow factor A to influence factor B at Time 1, factor B to influence 

factor A at Time 2, and so on.  

Therefore, it seems plausible that a construct such as the ability and propensity 

to think about the future might be associated with the representation of feedback 

loops.  Such a construct is termed “consideration of future consequences” or CFC 

(Stratham, Gleicher, Boninger, & Edwards, 1994).  CFC measures individual 

differences in thinking about the future implications and outcomes of one’s behaviour 

and the extent to which these outcomes influence behaviour (Stratham et al., 1994).  

The CFC scale comprises 12 questions and had shown good internal consistency, with 
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reported Cronbach alphas ranging from .80 to .85 (Stratham et al., 1994).  Previous 

studies have associated high CFC scores with a range of environmental behaviors.  

Examples include preference for public transport and beliefs about the negative 

environmental impact of cars (Joireman, Lange & Van Vugt, 2004), as well as 

support for public transportation plans which were perceived as reducing pollution 

(Joireman, Van Lange, Van Vugt, Wood, Vander Leest & Lambert, 2001).  

Individuals scoring high on the CFC scale have also expressed less support for 

offshore oil drilling (Stratham et al., 1994) and have been more likely to buy energy-

efficient light bulbs when the savings associated with the purchase were framed in the 

future and not on immediate gains (Tangari & Smith, 2012).  Finally, stronger pro-

environmental attitudes, intentions and behaviour (Milfont & Gouveia, 2006; 

Joireman, Lasane, Bennett, Richards & Solaimani, 2001), personal optimism 

(O’Brien & Brittain, 2009), greater conscientiousness (Stratham et al., 1994), and 

cooperation in resource dilemmas (Joireman, Posey, Truelove & Parks, 2009; 

Kortenkamp & Moore, 2006) have all been linked to future orientation, as measured 

by the CFC construct.  Experiment 2 will measure propensity to think about the future 

through the CFC scale and will investigate the relation between CFC scores and 

construction of feedback loops. 

 

3.6 Method 

Participants 

40 participants were recruited through the University College London 

Psychology Subject Pool.  The subject pool in question is open to everybody and 

therefore not limited to university students.  The study was advertised as investigating 

reasoning about causes and effects.  All participants were paid £4.  Eleven of them 
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were males (27.2%) and 29 were females (72.5%).  The mean age was 23 years (SD = 

4.18; range 17 to 37 years).  Thirty-three participants completed the task 

satisfactorily; the remaining 7 either failed to label all paths with an indication of 

direction or failed to give a numerical estimate of strength for each of the paths.  The 

participants were a representative sample of the general population in terms of 

environmental values (mean NEP score was 22.12, SD=3.75). 

Design 

The order in which participants completed the diagram task, the counterfactual 

judgment task and the CFC scale, was counterbalanced.  The order in which the 

casual factors were presented in the diagram task and the order in which the 

counterfactual judgments questions were presented, were both randomized.  The 

framing of the counterfactual judgments (increase or decrease frame) was 

counterbalanced.  The questionnaire ended with a series of demographic questions.  

Materials 

The materials consisted of a written questionnaire.  The first page of the 

questionnaire provided a simple definition of overfishing followed by a few sentences 

detailing some of its effects (e.g. environmental problems).  In addition, participants 

were informed that the survey was part of a project to discover the best approaches to 

decrease overfishing.  The second page was an instruction sheet.  Then, according to 

the counterbalancing condition, participants were either given the diagram task 

followed by the counterfactual judgments task, or vice-versa.  Following both tasks, 

participants were given two questions concerning their fish consumption and finally a 

series of demographic questions. 

The causal diagram task.  The instructions and materials related to the causal 

diagram task were suitably modified from Experiment 1.  The factor demand was 
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excluded.  Therefore participants had to diagram only the four remaining factors: 

consumption, monitoring, gear and market.  Finally, rather than giving participants an 

example of a schematic diagram with no factor names, a concrete example was 

presented.  This was to see if a clearer example could reduce the number of 

participants who do not complete the task.  The example was related to a causal 

diagram of factors related to failing a Math exam.  After drawing the diagram, 

participants were instructed to rate the strength of each of the links they drew on the 

previous page in the same way as in Experiment 1.  

The counterfactual judgment task.  The counterfactual judgment task was 

identical to Experiment 1. 

The CFC scale.  Consideration of future consequences was assessed by 

means of the 14-item CFC measure reported by Joireman et al. (2012).  CFC-14 

comprises 14 items, half of which assess concern with future consequences (e.g. “I 

think it is important to take warnings about negative outcomes seriously even if the 

negative outcome will not occur for years”) and half with immediate consequences 

(e.g. “I generally ignore warnings about possible future problems because I think the 

problems will be resolved before they reach crisis level”).  Respondents were required 

to indicate to what extent each item characterized them on a 7-point Likert-type scale 

(1 = very uncharacteristic of me; 7 = very characteristic of me).  Higher scores on 

CFC-future indicate more consideration of future consequences, whereas higher 

scores on CFC-immediate indicate more consideration of immediate consequences.  

Both the Future and Immediate factors have previously shown good internal 

reliability (Cronbach’s αs = .80 and .84 respectively).  Joireman, Shaffer, Balliet, and 

Strathman (2012) advocated the use of the 14-item scale version rather than the 

original 12-item version (Strathman et al., 1994) because it provides two balanced 
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CFC subscales (both 7-item subscales) and improves upon the internal reliability of 

the original 5-item CFC-Future subscale (Joireman et al., 2008).  

Consumption questions.  Participants were asked to indicate how many times 

a month they consumed fish.  In addition they were asked whether they took 

sustainability or overfishing into account when purchasing fish. 

 

Procedure 

The procedure was as in Experiment 1. 

 

3.7 Results 

Causal network analysis 

The 33 participants included an average of 8 paths in their diagrams (SD=3.3; 

range 3 to 20).  The full matrix of endorsement frequencies is presented in Table 6.  

These are net frequencies, obtained by subtracting the number of decrease judgments 

from the number of increase judgments.  Positive numbers indicate net judged 

increases and negative numbers indicate net judged decreases.  

 

Table 6.  Endorsement frequencies of causal links, Experiment 2. 

 Effect 

Cause 1 2 3 4 5 

1 Consumption - 21 1 7 20 

2 Market 20 - 4 8 9 

3 Monitoring -7 -22 - -15 -24 

4 Gear 1 3 1 - 21 

5 Overfishing 20 2 6 0 - 
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In this experiment the MSC was a net score of 21, with 4 links meeting this 

criterion.  The resulting network is shown in Figure 4.  Each link in this network was 

endorsed by at least 63.7% of participants, suggesting a considerably higher 

consensus than in Experiment 1.  

As the consensus for the MSC is above 50%, applying the IEA criterion resulted in a 

more stringent network with 2 less links.  This network is shown in Figure 5. 

 

Figure 4.  Consensual Causal Network created using MSC, Experiment 2.  Dashed 

line indicates a causal relation labeled as “decrease”. 
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Figure 5.  Consensual Causal Network created using IEA, Experiment 2.  Dashed line 

indicates a causal relation labeled as “decrease”. 

 

 

 

The number of participants representing each path in the resulting consensual 

networks, as well as the judged mean strength, are reported in Table 7 

 
Table 7.  

Paths and mean path strengths of consensual network created using MSC, 

Experiment 2. 

Cause factor Effect factor N (%) representing the path Mean path strength (SD) 

Monitoring Overfishing 24 (80%) -0.66 (0.24) 

Monitoring Market 22 (73.3%) 0.6 (0.21) 

Consumption Market 21 (70%) 0.86 (0.22) 

Gear Overfishing 21 (70%) 0.69 (0.27) 

Consumption Overfishing 20 (66.7%) 0.74 (0.28) 

Market Overfishing 19 (63.3) 0.82 (26.4) 

 

OVERFISHING 

Consumption Market 

Gear 

Monitoring 



89	  

Causal models and counterfactual judgments 

As in Experiment 1, the total path strength of each of the factors was 

calculated for each participant.  These are reported in Table 8.  These strengths were 

then correlated with the corresponding counterfactual judgments.  Table 9 displays 

the mean (SD) counterfactual judgments.  

In Experiment 2, the mean correlation across individuals (i.e. the mean of a set 

of r correlations), was 0.66 (SD = 0.55, N = 33), accounting for 44% of the variance 

in the counterfactual judgments.  This correlation was significantly different from 

zero, p<0.001.  A paired samples t test was then used to calculate the difference 

between the mean total path correlation (rm = .66, SD = .51) and the mean direct path 

correlation (rm= .55, SD = .57).  This difference was significant: t (32)= 2.89, p < 

.001, suggesting that the variance in individuals’ counterfactual judgments is better 

explained by looking at the factors’ total path strength (sum of direct and indirect 

paths), as opposed to looking at the direct path strengths alone.  On the other hand, the 

difference between the mean total path correlation and the mean indirect path 

correlation (rm=. 60, SD = .48) was not significant: t(32)= .68, p > .05.  The 

correlation between judgments and number of paths emanating from each factor was -

0.44 (SD=0.56). 

In contrast to Experiment 1, an independent samples t test revealed that total 

path correlations were affected by whether participants completed the diagram task 

before or after the counterfactual judgment task.  The group completing the diagram 

task first had significantly higher correlations (rm= .89, SD = .19, N = 16) than the 

group completing the counterfactual judgment task first (rm= .44, SD = .62, N = 17): 

t(31)=-2.82, p < .05.  To investigate this further, a mixed model analysis of variance 

was carried out with the type of correlation as the within subjects dependent variable 



90	  

and task order as the between subjects dependent variable.  Both the type of 

correlation and the task order were significant, but there was no interaction between 

the two. 

 

Table 8.  

Mean (SD) total path strengths from each factor to overfishing, Experiment 2. 

Factor Mean (SD) 

Consumption 0.9 (0.73) 

Market 0.87 (0.5) 

Monitoring -1.36 (1.29) 

Gear 0.58 (0.73) 

 

Table 9.  

Mean (SD) counterfactual judgments, Experiment 2.  Judgments based on the 

decrease frame have been reversed to compute the means. 

Factor Mean (SD) 

Consumption 31.21% (23.8) 

Market 27.42% (18.81) 

Monitoring -35.06% (26.74) 

Gear 12.93% (31.87) 

 

On the other hand, counterfactual judgments were generally unaffected by task 

order with the exception of gear: the mean change rating of participants who 

completed the diagram first (M = 28.43, SD = 25.86) was significantly higher than 

that of participants who completed the change judgment task prior to the diagram task 
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(M = -1.64, SD = 30.62): t(31)= -3.03, p < .01.  There was no effect of task frame on 

total path correlations: t(31)= -1.636, p >.05, nor on any of the counterfactual 

judgments (all ps > .05).  NEP scores did not vary as a function of individual causal 

models or counterfactual judgments. 

 

Analysis of feedback loops 

Each individual causal network was inspected for the presence of feedback 

loops.  52% of networks had at least one feedback loop.  An example of an individual 

network is shown in Figure 6.  

The mean number of loops across all networks was 1.58 (SD=2.3).  The mean 

number of loops across only the networks containing loops was 3 (SD=2.48), ranging 

from 1 to 10 loops per network.  Loops involved 2 to 5 factors.  As in Experiment 1, 

the most common loop was market-consumption (N=9).   

 
Figure 6.  Example of an individual network with a feedback loop, Experiment 2. 
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The sample was then divided into two groups based on the presence of the 

market-consumption loop.  An independent samples t test was used to compare 

reported fish consumption in the group that constructed the loop (N = 9, M = 2.44, SD 

= 2.23) and the group that did not represent the loop (N = 24, M = 6.13, SD = 5.78).  

A significant difference in fish consumption was found: t(31)= -2.635, p = .01 (equal 

variances not assumed), suggesting that participants who included the market-

consumption loop consumed fish less often than the participants who had not 

represented it in their diagrams.  Across the general sample, consumption varied from 

0 to 20 times per month (M = 5.12, SD = 5.29). 

CFC-14 

The Immediate factor of the CFC-14 scale appeared to have good internal 

consistency, Cronbach’s α = .85.  All items correlated well to the total factor (lowest r 

= .50).  The Future factor had an acceptable internal consistency, α = .76.  The 

reliability of the scale could be increased if item 7 was removed.  This item had a low 

correlation with the total factor (r = .28) but removing it would only increase 

Cronbach’s α by .01.  Thus, all items were kept.  A median split was used to divide 

participants in high Future and low Future groups. 

There was a positive correlation between total path strength correlations and 

CFC-Future scores: r(31) = .41, p < .05, suggesting that the higher an individual 

scored on the CFC-Future factor, the higher the correlation between their network and 

their change judgments.  There was no relationship between an individual’s CFC-

Future score and the number of loops s/he constructed: r(31)= .27, p > .05. 
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3. 8 General Discussion 

 

Summary of findings 

The leading goal of the present research was to investigate how lay causal 

models of an environmental problem are related to reasoning about the issue.  The 

first aim was to extend work by Green et al. (1995, 1998) by showing, in an 

environmental domain, that a person’s causal network diagram correlates with their 

ratings of the effectiveness of actions based on these factors.  In Experiment 1 and 2, 

participants completed two main tasks.  The causal diagram task involved drawing a 

network diagram of how a set of factors related to overfishing may affect overfishing 

and each other.  The counterfactual task consisted in judging the effectiveness of a 

series of counterfactual suppositions, based on the diagrammed factors, in reducing 

overfishing.  Both experiments explored the relation between these two tasks.  In line 

with our experimental hypotheses, total path strength of the diagrammed factors 

correlated more significantly with the counterfactual judgments than direct path 

strengths alone, or simply the number of paths emanating from a factor.  In both 

experiments, total path strength was found to explain 44% of the variance in the 

counterfactual judgments.  In addition, Experiment 2 found participants who had a 

high score on a scale measuring concern with future consequences, had significantly 

higher correlations between the diagram and the counterfactual judgments, than the 

group who had a low score.  

The second aim was to investigate the extent to which people think about 

overfishing in a unidirectional way.  Previous studies by White (e.g. 2008) analyzed 

participants’ consensual network of forest ecosystems and found no feedback loops.  

In contrast, Experiment 1 and 2 analyzed individual networks and found that over half 
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of the participants built loops into their network diagrams.  These loops varied in 

factors and sizes.  In addition, Experiment 2 showed that participants who drew a 

feedback loop involving unsustainable fish consumption and presence of 

unsustainable fish on the market, reported consuming significantly less fish than the 

group who did not represent that specific loop. 

 

Theoretical implications 

The present findings have major theoretical implications for two domains.  

The first of these disciplines is that of cognitive science, aiming to elucidate the 

processes underlying general causal reasoning.  The second field is that of 

environmental psychology, as well as the specific phenomenon of overfishing.  

Theoretical implications will be discussed in respect to each of these fields. 

Causal reasoning.  Experiment 1 and 2 showed that total path strength of the 

diagrammed factors correlated more significantly with the counterfactual judgments 

than direct path strengths alone, or simply the number of paths emanating from a 

factor.  The first thing this implies is that when people engage in causal reasoning 

about a phenomenon, they can and do recruit a whole causal model as opposed to just 

individual direct causal relations (Lagnado et al., 2007).  Naturally, the current 

experiments utilized only five and four factors, so it is difficult to generalize this 

implication to situations involving more variables.  When reasoning about more 

factors, participants would increase the load on working memory – this might result in 

people resorting to a more simplified strategy based on explicit representation of 

direct path strengths only.  Participants in the Green et al. (1995; 1998) studies 

represented up to twelve factors, therefore suggesting that at least with that many 
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factors, people can recruit a holistic causal representation of the phenomenon in 

question.  

The current findings clearly establish that it is the strength of the causal paths 

as opposed to the sheer presence of them that is important.  However, the present 

research cannot elucidate on the cognitive mechanisms that operate when people 

reason and combine the strengths of direct and indirect causal relations.  Total path 

strengths were calculated by summing the strengths of direct and indirect paths, whilst 

indirect path strength was calculated by multiplying the strengths of indirect paths.  

This formula is intuitive because it weighs direct paths more than indirect paths.  

Similarly, it accounts for the fact that the weight of an indirect path decreases as the 

number of indirect paths increases.  In other words, as the number of steps that it 

takes to get from a cause to an effect increases, the importance of each of these steps 

decreases.  This method of computing total paths strengths explains only 44% of 

variance in the counterfactual judgments.  A different algorithm for computing total 

path strengths might provide a better account.  However, even though the present 

research adopted a quantitative approach in extracting and analyzing causal 

representations, people’s spontaneous representation of causal relations might be 

qualitative (Lagnado, 2011; Pearl, 2000).  In other words, even though it is clear that 

people take causal strengths into consideration, they do not need to have access to 

their precise values. 

The second finding with implications for causal reasoning is that in both 

Experiment 1 and 2, participants constructed feedback loops in their causal diagrams.  

On the surface these findings appear to be in direct contrast with previous research by 

White (e.g. 2008).  However, the two cannot be directly compared as the present 

study adopted a novel experimental approach that involved analyzing individual 
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causal networks as opposed to the consensual network (the current study also used 

different causal factors and a different causal network elicitation method).  Inherently, 

this implies there are significant individual differences in causal reasoning that, more 

often than not, get neglected at an experimental level.  Future studies should aim to 

integrate individual differences as part of their approach.  

The presence of feedback loops suggests that people can appreciate two-way 

causal relations within a complex network.  This notion is reinforced by the finding 

that, in both experiments, the most popular loop was also the most intuitively sensible 

one: most participants who constructed loops had a bidirectional link from 

consumption of unsustainable fish to the extent to which unsustainable fish is sold on 

the market.  Furthermore, in Experiment 2, the group representing this loop reported 

consuming less fish than the group who did not represent that loop.  This finding can 

be taken as preliminary evidence that people not only represent loops, but may also 

integrate them into their reasoning.  Either way, further analyses would have to 

determine if a causal model involving loops provides a more accurate account of 

causal judgments than a model without loops.  Similarly, further work is needed to 

explore the connection between the structure of individual causal representations and 

actual consumer behaviour. 

The second aim of Experiment 2 was to investigate the nature of the individual 

differences in the cognitive mechanisms that might underlie construction of feedback 

loops.  It explored the idea that participants who construct feedback loops might 

unfold causal chains over time and therefore they might have greater inclination to 

think about the future (as measured by the CFC scale).  However, there were no 

systematic differences in the causal diagrams produced by participants with higher 

CFC scores.  No differences were found in terms of number or types of loops, or total 
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number of links.  Further investigation is needed to decipher what construct might lie 

at the core of individual differences in two-way causal reasoning.  On the other hand, 

participants with higher CFC scores had significantly greater total path strength 

correlations between the causal diagram and the counterfactual judgments.  This 

difference might be explained by the possibility that future-oriented individuals 

simply invested more cognitive effort across the two tasks (Nowack, Milfont and Van 

der Meer, 2012.) 

Environmental psychology and overfishing.  Inspection of the individual 

causal diagrams, as well as the consensual network, revealed some interesting patterns 

that have potentially important implications for overfishing.  In both experiments, the 

majority of participants had a direct link from consumption to overfishing (and from 

demand to overfishing in Experiment 1).  

Consumption is also understood to affect overfishing through market (majority 

had link from consumption to market and from market to overfishing).  However, 

what is perhaps more striking is that only a minority recognizes that consumption and 

market may influence monitoring and gear.  In other words, people seem to think that 

the extent to which the government monitors and enforces fishing laws, and the extent 

to which fishermen use destructive fishing gear, is not contingent on the consumption 

rate which sets market targets.  This implies people are likely to view monitoring and 

gear as factors beyond their control.  If people attribute responsibility to multiple 

factors they do not view as causally linked to them, this could result in the classic 

bystander effect (Darely & Latane, 1968) whereby intention to act decreases as shared 

responsibility for a problem increases.  This is in line with Belk, Painter and 

Semenik’s (1981) finding that participants who attributed an energy shortage to non-
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personal causal factors (e.g. government, oil companies) also tended to favor a non-

personal solution to the problem. 

More generally, the current study has important implications for the domain of 

environmental psychology.  First of all, it highlights the need to incorporate a causal 

approach in its endeavors, both as a theoretical contribution and as an experimental 

method.  Numerous theoretical frameworks have been developed to explain the gap 

between the possession of environmental knowledge or awareness and displaying pro-

environmental behavior.  Although many hundreds of studies have been done, a 

comprehensive model is yet to be found (Kollmuss & Agyeman, 2002).  Most 

existing theories adopted a social-psychological approach - examples are cognitive 

dissonance theory (Thogersen, 2004), norm-activation theory (Stern et al., 1999), and 

the theory of planned behavior (Ajzen, 1991).  None of these frameworks are based 

on or include causal reasoning.  Ajzen’s theory of planned behaviour (TPB) seems to 

be the most widely used model to predict or explain variance in pro-environmental 

behaviour.  Broadly speaking, TPB postulates that an intention to act environmentally 

is formed in a rational choice process weighting three different aspects: the person’s 

attitudes towards the behaviour, the person’s perception of social pressure to act in a 

certain way and the person’ perception of behavioral control in the situation.  Even 

though a person’s perception of behavioral control is bound to be related to their 

causal model of the problem, the theory does not make explicit reference to causal 

models.  As shown by the current findings, there are significant individual differences 

in causal models of environmental problems.  Therefore, TPB is likely to provide a 

better account of pro-environmental behaviour by factoring in an extension that 

considers causal understanding of the problem. 
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In terms of experimental methodologies, past research in environmental 

psychology has looked mainly at attitudes towards nature (e.g. Milfont & Duckitt, 

2010), pro-environmental intentions (e.g. Bamberg & Möser, 2007) and a relatively 

limited range of pro-environmental behaviors such as recycling and energy saving.  

With few exceptions, previous work has relied on self-report tools to measure 

attitudes, intentions and behaviors.  Environmental knowledge has also been assessed 

through using multiple-choice questionnaires, surveys and factual tests.  The present 

study points out how much can be learned by relying on a causal network method that 

retrieves environmental beliefs as a function of an interconnected network.  

 

Limitations 

There are some shortcomings with the current network elicitation method.  

The main problem concerns the method of selection of the factors to include.  The 

factors in the current study were selected based on expert assessment of the relative 

importance of different factors.  The problem this can pose for a causal network study 

is that it omits causally relevant factors that may either alleviate overfishing or act 

against the factors that are judged to cause overfishing.  The result, might be a 

network representing a kind of vicious circle in which negative factors all interact to 

aggravate each other (White, 1995).  The second problem for this method is that the 

factors selected do not constitute a closed system.  In a way, this problem is 

unavoidable because there is no such thing as causally closed system.  Therefore, the 

structural characteristics of the network may be affected by the omission of causally 

relevant items.  Finally, a potential problem of employing a diagram to extract causal 

network is that participants may avoid creating too many crisscrossing patterns or 

drawing too many arrows for representing links and loops.  Therefore, networks may 
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be left simplified and or incomplete in the pursuit of avoiding visual clutter, rather 

than due to lack of awareness of causal paths.  

 

Practical implications 

Understanding the nature of public beliefs of the risk factors and prevention of 

overfishing and other environmental problems is critical to the design of 

communication programs aimed at altering actions.  In particular, such programs need 

to ensure consumers understand how their purchasing choices are causally linked to 

overfishing.  However, as indicated by the current findings, it is not sufficient to make 

people aware of the presence of a causal link between them and the undesired effect.  

Evidently, it is imperative to emphasize the causal strength of that link.  Most 

campaigns simply tell consumers that, along with seafood retailers and restaurants, 

they play a crucial role in the conservation of ocean resources.  However, they do not 

quantify that role, they do not make it explicit that if consumers made the right 

choices, overfishing would not take place.  As argued previously, the quantification 

does not necessarily need to come in a numerical format, but should convey an idea of 

magnitude of relation of some sort.  The current findings also provide evidence that 

people can understand feedback loops, implying that environmental campaigns should 

also emphasize the cyclical nature of the natural ecosystem.  Attention should be 

drawn on repercussions of unsustainable actions. 

 

Future research 

Future research should aim to extend the current findings to causal models 

with more factors and ideally, idiosyncratic factors.  Comparison of causal models of 

different groups, such as experts versus non experts, consumers versus fishermen, 
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might also help shed light on the nature of lay understanding of environmental 

problems and related causal reasoning.  

From a more cognitive perspective, it would be important to explore how 

people understand the different ways in which causes combine to bring about an 

effect.  There are several different functions that can mediate the impact of each 

individual cause into the final effect (Steiner, 1972).  One of the difficulties in 

allocating causality arises from the fact that causes can combine in various different 

ways to bring about an outcome.  Three common functions are addition, conjunction 

or disjunction.  In the additive case, each cause contributes something to the final 

outcome.  For example, using destructive fishing gear and surpassing fishing quotas 

both contribute to overfishing.  In the conjunctive case, all causes need to surpass a 

certain threshold.  For example, fishing gear can only affect overfishing if the 

government does not monitor and enforce fishing laws properly.  In the disjunctive 

case, it only takes one cause to bring about the outcome.  People’s consumption of 

unsustainable fish is a prime example – if nobody consumed unsustainable fish, 

overfishing would not take place.  Future research should explore how sensitive 

people are to this reasoning and especially how it mediates attributions of 

responsibility (Gerstenberg & Lagnado, 2010). 

 

Conclusion 

To conclude, this research shows how naïve causal models of a complex 

environmental problem might hold the key to unlocking the reasoning processes 

underlying people’s decisions to support sustainable behaviour.  Environmental 

psychology and ecological campaigns can achieve greater success in their pursuits by 

making causal reasoning one of their main driving forces. 
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Chapter 4:  Reasoning with causal loops: 

understanding everything. 

 
4.1 Introduction 

 

Background 

The Earth’s environment is a network of complex dynamic systems composed 

of interdependent chains of cause and effect.  These dynamic systems include 

environmental systems such as the Earth’s climate and food webs, financial systems 

such as the world’s economies and businesses and social systems such as a country’s 

government and culture.  The interdependence characterizing all these systems can be 

grasped in terms of causal loops – feedback with and between systems. In other 

words, a system’s output serves as input to that same system, or another system, 

therefore creating a circular process. 

Some of these loops stabilize the system (‘negative’ causal loops), such as 

predator-prey relationships: an increase in the number of preys leads to an increase in 

the number of predators, which will lead to a decrease in the number of preys.  Other 

examples of negative loops include the water cycle, the carbon cycle and human body 

homeostasis. Other loops drive the system in one direction (‘positive’ causal loops), 

such as global warming: an increase in the atmosphere’s temperature leads to an 

increase in evaporation, which will lead to an increase in global warming.  Other 

examples of positive loops are human population growth, economic recession and 

depletion of fisheries. 

It is sufficient to consider some of the examples of loops listed above to 

appreciate the interdependency between the Earth’s systems and how most global 
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problems are interconnected and exacerbate each other. An increase in human 

population leads to an increase in global emissions as well as putting further pressure 

on the world’s resources such as fisheries. Global warming and resource depletion 

create and exacerbate a financial crisis. An increase in global warming leads to an 

increase in resource depletion, which in turn leads to further global warming.  The 

circular structure of these system means the connections are potentially endless. 

This interlinking of issues, or complex interdependency of problems, has 

implications both for the way people think about these issues – their forms of 

knowledge – and for the way they might go about beginning to solve them. The 

question then becomes if all these problems are ultimately just different facets of one 

single crisis, a crisis of causal reasoning. Causal reasoning is the ability to identify 

relationships between events or forces in the environment (causes) and the effects 

they produce. Therefore people use causal cues and their related effects to make 

decisions efficiently, to make predictions about the future circumstances of their 

environment and to fully understand mechanisms leading to change. Consequently, 

the key question is can (and do) people make appropriate causal inferences based on 

the cyclical convoluted structure of the world and its issues? The current study aims 

to explore the answer to this question. 

 

Representation of causal loops 

Before investigating people’s ability to reason with causal loops, it is 

important to establish whether people actually construct and represent such loops in 

their own causal models of the world. Past research in causal cognition has already 

explored complex causal structures (Lagnado, Waldmann, Hagmayer, & Sloman, 

2007; Waldmann, Hagmayer & Blaisdell, 2006; for a review see Rottman & Hastie, 
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2013).  A central finding from this research is that people do indeed create and use 

causal models to structure their learning and inference.  However, only a few studies 

have looked at the role of causal loops (e.g. Kim, Luhmann & Ryan, 2009) or 

dynamical systems (e.g. Rottman & Keil, 2011).  

Given the ubiquity of causal cycles in the world, from an intuitive perspective, 

it would seem plausible to assume people reason about causally related events that 

occur in cycles (Rehder & Martin, 2011). For example, in economics, people expect 

that an increase in corporate hiring may increase consumers’ income and thus their 

demand for products, leading to a further increase in hiring. Similarly, in 

meteorology, people expect that melting tundra due to global warming may release 

the greenhouse gas methane, leading to yet further warming. Following this idea, a 

series of studies investigating people’s own real-life causal theories (e.g. Hagmayer & 

de Kwaadsteniet, 2008; Kim & Ahn, 2002a, 2002b; Rein, Love, & Markman, 2007; 

Sloman et al., 1998) have found that, in addition to linear causal structures, people 

also commonly report causal cycles. Kim (2005) asked lay people to consider mental 

disorders and found that 65% of participants spontaneously reported causal cycles.  

Relatedly, in a study exploring people’s ability to think in terms of two-way 

causal relations, Green (2001) investigated people’s ability to create interactive 

models of ecological systems.  He presented participants with a food web and asked 

participants to explain a complex pattern of fluctuation over time in the population of 

an herbivore.  He found that most people were able to construct interactive accounts 

involving two, and in some cases three, entities (plant, herbivore and carnivore).  

However, as argued by White (2008), the system, or food web, comprised only three 

entities and individuals were constrained to explain a complex pattern presented to 

them, rather than envisaging themselves what sort of pattern might occur.   
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Following this idea, Nikolic and Lagnado (under review) investigated how lay 

representations of the causes of a complex environmental problem may underlie 

individuals’ reasoning about the issue.  They derived a set of factors in relation to 

overfishing (e.g. consumption of unsustainable fish, market selling unsustainable fish, 

destructive fishing practices).  In two experiments participants were asked to draw 

diagrams showing how these factors, or causes, were linked to overfishing and to each 

other. Analyses based on individual causal networks diagrams revealed the presence 

of numerous feedback loops.  Nikolic and Lagnado found that 52% of participants 

drew at least one causal loop in their diagram (with a an average of 3 loops per 

diagram).  Furthermore, these loops often comprised over two factors. For example, 

people often connected an increase in consumption of unsustainable fish leading to an 

increase in the market selling unsustainable fish, which in turn leads to an increase in 

consumption.  

As to how exactly people represent causal loops, Kim, Luhman and Ryan 

(2009) argued that people reason with a simplified representation of causal loops. 

They posit people represent causal loops as causal chains extending one step into the 

future. This simplified representation captures the loop as simply as possible while 

still maintaining the essential nature of the loop (Rehder & Martin, 2011). They 

provide two reasons for this assumption. First, because variables rarely cause each 

other constantly and simultaneously, it is likely that people assume that they influence 

each other in discrete time steps. They make their point using an example of a causal 

loop involving insomnia and poor school performance. It seems unlikely that people 

would think that a student’s school performance is actually deteriorating as he or she 

sits up at night. Instead, it seems more realistic that the student’s insomnia, say on 

Monday night leads to poor performance on Tuesday, which would then lead to a 



106	  

sleepless Tuesday night, and so on. This example demonstrates how causal loops 

might be more realistically represented as causal chains that play out over time. Such 

a chain would allow Factor A to influence Factor B at Time 1, Factor B to influence 

Factor A at Time 2, and so on. Second, because it is implausible that people represent 

time steps extending into infinity, only a limited number of steps are likely to be 

considered. Kim et al. found support for their hypothesis through a series of 

experiments investigating the importance (or ‘conceptual centrality’; Sloman, Love, 

& Ahn, 1998) people assign to factors involved in causal loops as opposed to linear 

causal structures (e.g. causal chains). They found that participants’ judgments 

indicated that they did not consider loop factors to be the most central to the 

underlying concept. In other words, people seemed to unpack causal loops into causal 

chains. 

 

Reasoning with causal loops 

Taken together, these findings clearly show that laypeople spontaneously 

construct causal loops into their causal models. However, what these findings cannot 

elucidate is to what extent people make appropriate causal inferences based on these 

loops. Representation of a causal structure does not necessarily imply ability to reason 

about it.    

Conversely, it is precisely this ability to reason with such causal structures that 

may be part of the key to understanding and solving many of the world’s problems. 

This is because, as exemplified earlier, the world’s problems are defined and fueled 

by vicious cycles. In democracies, the beliefs of the public, not only those of experts, 

affect government policy. Therefore effective risk communication is grounded in deep 

understanding of the mental models of policy-makers and citizens. Of particular 
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relevance in this day and age, is the fact that if people believe that anything can be 

done to nature, without repercussions for the human world, they are less likely to 

exhibit sustainable behavior.  This follows from the idea that how humans treat the 

world must to some extent reflect what they believe about the effects of that 

treatment. Kempton (1986) pointed out that lay models about physical systems 

influence real life decision-making.  He found that people’s mental models of 

thermostats accounted for how they treat the control of heat in their homes.  Those 

who possessed one theory tended to behave more economically than those who 

possessed the other theory.  Kempton (1986) proposed, on the basis of interviews, that 

people used two distinct models of home heating systems.  In the (incorrect) valve 

model, the thermostat is thought to regulate the rate at which the furnace produces 

heat.  Therefore setting higher makes the furnace work harder.  In the (correct) 

threshold model, the thermostat is viewed as setting the goal temperature, but not as 

controlling the rate of heating.  Hence the furnace runs at a constant rate.  Kempton 

then examined thermostat records from real households and found that the patterns of 

thermostat settings fitted nicely with the two models he had found. As another 

example, Atran, Medin, and Ross (2005) found that cultural groups’ mental models of 

plant/animal interactions in the rainforest were consistent with the environmental 

impact of those groups.  Therefore, common-sense understanding of the structure of 

cause and effect in nature, with specific focus on understanding of cyclical 

interactions between humans and nature, is an important topic from both a scientific 

and conservationist point of view.  

 Given the significance and urgency of the matter it is surprising that to date 

there have not been investigations focused specifically on exploring how people make 

causal inferences based on causal loops. However, the system dynamics domain has a 
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lot to say about how people’s decisions might be influenced by cyclical structures.  

Sterman (e.g. Sterman and Booth Sweeney, 2002), as well as numerous others (e.g. 

Moxnes, 2000), used typical system dynamic tasks to investigate people’s ability, or 

better inability, to make decisions based on complex dynamic systems - settings with 

multiple feedback loops, time delays, and nonlinearities. These studies seem to 

suggest that even well educated individuals generally lack the cognitive skills 

necessary for understanding the behavior of these systems Specifically, these studies 

propose that people display a general tendency to think in terms of linear causal 

structures and therefore fail to perceive key causal loops.  

In the classic study, Sterman (1989b) examined a simple inventory 

management task, the “beer distribution game,” in which participants were asked to 

minimize costs as they managed the production and distribution of a commodity. 

Though simplified compared to real firms, the task was dynamically complex as it 

included multiple feedbacks, time delays, nonlinearities, and accumulations. He found 

that participants generated costly oscillations with consistent amplitude and phase 

relations, even though the demand for the product was essentially constant. 

Importantly, econometric analysis of participants’ decisions showed that people were 

quite insensitive to the feedback loops and time delays in the system. Sterman (1989a) 

found subjects exhibited the same behaviour in a simulated macroeconomy with time 

delays and feedback loops.  

Given the alarming implications that these results have for the management of 

renewable resources, a series of studies have investigated participants’ ability to 

manage common resource pools such as fish stocks (Moxnes, 1998). Moxnes found 

that subjects consistently overinvested leading to overexploitation of the resource in 

question. People’s behaviour has been explained (Sterman, 1989a, 1989b) by 
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“misperception of feedback”, or, in other words, linear causal thinking. The basic idea 

is that people generally adopt an event-based “open loop” view of causality, therefore 

ignoring feedback processes and time delays. Inevitably, this generates systematic 

dysfunctional behavior in the presence of dynamic complexity. Similar conclusions 

have been drawn from studies in experimental economics, psychology and 

management (Smith, Suchanek & Williams, 1988; Funke, 1991; Brehmer, 1992).  

 

Current study 

Given the aforementioned studies and discussion we can draw three 

implications.  The first one is that it is clear that people do construct causal loops to 

make sense of the world (e.g. Nikolic & Lagnado, under review).  The second claim is 

that even if people do represent causal loops in their own models, when they are 

asked to make decisions based on the world’s cyclical systems, their reasoning starts 

to break down (e.g. Sterman). Allegedly, this happens precisely because of failure to 

appreciate causal loops. Thirdly and perhaps most undeniably, if people cannot reason 

properly with causal loops and make decisions based on the systems that nest these 

loops, then the world might be in trouble. In other words, solving current problems 

such climate change may be more challenging and new problems are bound to arise 

from the existing ones.  

Given these three implications, the aim of the current study is to investigate 

the inevitable question of when is it exactly that human reasoning begins to crumble 

in the face of a causal loop. In order to really start addressing this question it is 

important to take a step back to basics. Therefore, the current study will adopt a 

bottom-up approach to investigate if people can engage in basic forms of reasoning - 

proper causal inferences - based on simple representations of causal loops.  
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Before proceeding to describe the current study it is important to discuss what 

constitutes a ‘proper’ causal inference. What distinguishes a true causal inference 

from a mere estimate of covariation is that the former is sensitive to the difference 

between predictions based on merely observed events and predictions based on the 

very same states of events generated by means of intervention (Pearl, 2000, Spirites & 

Scheines, 2001). For example, observing the state of a barometer allows people to 

make predictions about the upcoming weather (observational inference), whereas 

manipulating the barometer does not license such a prediction (interventional 

inference). Whereas observational inferences allow people to capitalize on both causal 

and non-causal correlations, interventional predictions are based only on predictive 

causal relations. 

This means that in everyday contexts, causal inferences are aided by 

manipulation of potential causes, or better, by people intervening on the world rather 

than just observing it. Mere observation can only reveal a correlation, not a causal 

relation. Thus causal induction in experimental science requires manipulation, control 

over an independent variable such that changes in its value will determine the value of 

the dependent variable whilst holding other relevant conditions constant. Everyday 

causal induction has these same requirements. Naturally, in a lot of cases, people 

already have some causal knowledge, so they can answer certain causal questions 

without actual intervention. On the other hand, there are many instances when causal 

inference can be difficult because it depends not only on what happened, but also on 

what might have happened (Lewis, 1986; Pearl, 2000; Sloman, 2005). In such cases, 

some of those questions can be answered through mental intervention, by imagining a 

counterfactual situation in which a variable is manipulated and determining the effects 

of change.  
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Accordingly, counterfactuals based on interventions and counterfactuals based 

on observations will also yield different causal inferences. People’s sensitivity to this 

difference is a key concept framing the current study’s experimental design. For 

example, the diagram in Figure 1 represents the causal relation between three factors: 

having a chest infection, having a cough and having a bad sleep (see Figure 1A). On 

this simple model, having a chest infection causes a cough that causes a bad sleep. 

Observing that a cough is present warrants the backwards inference that a chest 

infection is likely (see Figure 1B). In addition, it also warrants the forward inference 

that a bad sleep is likely. In terms of counterfactual observations, had one observed no 

cough, then one could have still made both a backwards inference and a forward 

inference. In other words, had there been no cough observed, then a chest infection 

would be unlikely and bad sleep would be unlikely. However, when reasoning about 

the consequences of a counterfactual intervention on an event, one should not change 

one’s beliefs about the states of the normal causes of the event. Had one intervened on 

the cough by taking a cough medicine, the cough would not have been present (see 

Figure 1C). However, this would not warrant the backward inference that a chest 

infection would not have been present. This is a rational principle of inference 

because an effect is indeed not diagnostic of its causes whenever the effect is not 

being generated by those causes but instead by mental or physical intervention from 

outside the normal causal system. On the other hand, future inference is still possible: 

given the absence of cough, a bad sleep is unlikely.  

Sloman and Lagnado (2005) investigated precisely how people’s causal 

inferences might differ according to whether they are reasoning about a counterfactual 

observation or a counterfactual intervention. Their experiments confirm that causal 

inferences given counterfactual interventions are different from those based on 
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observations, because there is no backtracking with the former. 

 

 

Figure 1. Causal inferences warranted according to observations and interventions. 

1A.	  
Causal	  diagram	  showing	  the	  causal	  model	  of	  a	  chest	  infection,	  a	  cough	  and	  
bad	  sleep.	  
	  
	  
	  
	  

Causal	  model	  

Chest	  
infection	   Cough	   Bad	  sleep	  

1B	  	  
Casual	  diagram	  showing	  how	  observing	  the	  absence	  of	  cough	  warrants	  the	  
forward	  causal	  inference	  that	  bad	  sleep	  is	  unlikely.	  It	  also	  warrants	  the	  
backwards	  inference	  that	  a	  chest	  infection	  is	  unlikely.	  
	  
	  
	  
	  

Observation:	  no	  cough	  

Chest	  
infection	  

Cough	  =	  
No	  

Bad	  sleep	  

1C	  
Casual	  diagram	  showing	  how	  intervening	  on	  cough	  warrants	  the	  forward	  
causal	  inference	  that	  bad	  sleep	  is	  unlikely.	  However	  it	  does	  not	  warrant	  the	  
backwards	  inference	  that	  a	  chest	  infection	  is	  unlikely.	  
	  
	  
	  
	  

Intervention:	  no	  cough	  

Chest	  
infection	  

Cough	   Bad	  sleep	  

Intervention:	  cough	  medicine	  
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4.2 Experiment 1 

Participants were presented with a simple scenario based on a causal loop. The 

nature of the loop was counterbalanced so it was either a negative (stabilizing) or a 

positive (reinforcing) causal loop. Both types of loops were investigated because 

people might represent them differently, therefore yielding different causal 

judgments. For example, when it comes to positive loops, people might not represent 

them farther than a single time step into the future. This is because each factor 

becomes just a more extreme version of its previous past state. 

The scenario was chosen to be a simple real life situation about sleeping 

patterns. This is because it was considered that people might have an easier time 

relating to a common pattern they are likely to have experienced first hand. The 

scenario based on the negative loop was about a person whose amount of sleep 

affected his day time level of tiredness, which in turn affected his amount of sleep 

(the more sleep the less tired, the less tired the less sleep, the less sleep the more tired, 

the more tired the more sleep and so on, therefore maintain an equilibrium). The 

scenario based on the positive loop was about a man who’s amount of sleep affected 

his daytime levels of stress, which in turn affected his amount of sleep (the less sleep, 

the more stress, the more stress, the less sleep and so on, therefore creating a vicious 

cycle). Based on the idea that people represent causal loops by unpacking them into 

different time periods, participants were then provided with information about the 

state of the causal factors at five different time periods (in this case number of hours 

of sleep over five consecutive nights). The information matched the pattern described 

in the scenario. 

Following the presentation of these values, participants were presented with 

either a counterfactual observation or a counterfactual intervention affecting the mid 
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time period (Night 3). In both conditions they were asked to imagine the person had 

slept a different number of hours than the one reported in the table. In the observation 

condition, participants were not given any reason why, other than asked to imagine 

the counterfactual supposition. In the intervention condition, however, they were told 

to imagine the person took a sleeping pill that affected their amount of sleep. At this 

stage it is important to acknowledge that the observation condition is not, strictly 

speaking, purely observational. This is because, one might argue, there is the worry 

that participants might assume that the change portrayed by the observation is in fact 

the result of some intervention. In other words, it is indeed possible that participants 

might perceive the counterfactual observation as slightly ambiguous. This point will 

be developed further in the Discussion of Experiment 2, as well as in the General 

Discussion. 

In both conditions they were then asked to make causal inferences about the 

two past time periods (Night 1 and Night 2) and about the two future time periods 

(Night 4 and Night 5). The causal inference consisted in estimating how the number 

of hours of sleep may or may not have changed according to the counterfactual 

supposition. Therefore participants could choose one of the following answers: 

‘same’, ‘more’ or ‘less’. The answers required a qualitative causal inference (as 

opposed to an exact numerical estimate) in accordance with the idea that people’s 

spontaneous representation of causal relations might be qualitative (Lagnado, 2011; 

Pearl, 2000).  

The reason why participants were questioned about Time period 1 and Time 

period 5, (as well as Time period 2 and Time period 4), is to explore how people 

might or might not extend the backward and forward causal inferences to time periods 

further away from the time period affected by the counterfactual (Time period 3). 
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White, over a series of studies (1997, 1998, 1999, 2000), found that when 

participants are asked to judge the effects of a perturbation to one entity in a food 

web, people consistently judge that the greatest effects will be found for species 

immediately adjacent to the perturbed entity in the structure of the food web. 

Accordingly, he found that the magnitude of the effect rapidly drops off with 

increasing distance from the perturbation. In other words, what seems to be happening 

is that the causal effect is judged to be diminishing as a function of causal links 

between the point of ‘change’ and the target effect. 

Green (2001) argued that this happens because individuals minimize what 

they represent explicitly - a basic supposition of the theory of mental models 

(Johnson-Laird & Byrne, 1991). This would mean that not all possible causal 

relations amongst the factors would be represented explicitly in their initial causal 

model. In this sense the theory is consistent with Kim and Ahn’s (2009) hypothesis of 

how people represent loops – by unpacking them into basic causal chains. Therefore, 

it is possible that in the current experiment not all participants will extend their causal 

inferences further than one time point in the past and in the future. If so, this will 

provide support for Kim and Ahn’s theory of representation of loops but also the idea 

that people reason counterfactually by running a mental model – that is mentally 

simulating the change.  

The experimental hypothesis is that people are able to reason with simple 

causal loops and make sensible causal inferences accordingly. The extent to which 

people make sensible causal inferences when reasoning with causal loops can be 

formalized into three levels.  

Level 1. The first level, and the stepping stone for more complex forms of 

reasoning, is simply differentiation between a true causal inference from a mere 
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estimate of covariation. As discussed above, this consists in sensitivity to the 

difference between predictions based on merely observed events and predictions 

based on the very same states of events generated by means of intervention. 

Accordingly, the first two experimental hypotheses will explore the extent to which 

people display level 1 causal reasoning.  

Hypothesis 1: Participants will backtrack (change causal inferences according 

to the counterfactual supposition for both Night 2 and Night 1) only in the 

observation condition and not in the intervention condition.  

Hypothesis 2: Participants will make the same forward inferences in both 

conditions (change causal inferences according to the counterfactual 

supposition for both Night 4 and Night 5). 

 

Level 2. The second level consists in providing the correct normative 

inference. It is possible for participants to make different inferences given 

counterfactual interventions and observations, but they may not actually make the 

correct inferences. For example, they might backtrack only in the Observation 

condition, therefore grasping the presence of a truly causal relation, but perhaps not in 

the right direction. Similarly they could make similar forward inferences in both 

conditions, but these could be similarly wrong. This level can be conceptualized in the 

hypothesis below. 

Hypothesis 3: The answers selected by participants will reflect the correct 

qualitative causal inference according to the counterfactual supposition. 

Another component of making correct inferences is the degree to which these are 

extended to time periods further away from the perturbation (counterfactual 

supposition); i.e. Time period 1 and 5. Given the discussion above, the fourth 
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hypothesis follows. 

Hypothesis 4: Fewer participants will extend their causal inferences to Night 1 

and Night 5. 

Note hypothesis 4 is not a requirement for attaining level 2 causal reasoning, but a 

mere prediction of the kind of form reasoning might take given theories on 

representation of loops (e.g. Kim & Ahn, 2009). 

Level 3. The final level of causal reasoning can perhaps be formalized as 

consistency within the model. In other words, the question is to what extent are 

people’s own inferences coherent. Examining only the number of correct answers 

could be deceiving because the majority of people could indeed provide the correct 

answer for each time period, but this majority might not be the same group of people. 

In other words, participants can be deemed to have a full causal model of the loop 

only if their inferences are coherent with their own understanding of the causal loop. 

Hence, causal inferences about Night 1 should be contingent on causal inferences 

about Night 2; and causal inferences about Night 5 should be contingent on causal 

inferences about Night 4. Therefore, the fifth hypothesis follows below. 

Hypothesis 5: Participants’ causal inferences about Night 1 and Night 5 will 

be conditional and consistent with their inferences about Night 2 and Night 4 

respectively. 

 

4. 3 Method 

 

Participants 

143 participants were recruited through Amazon Turk. Participation in the 

survey was limited to people living in the United States to maximize likelihood of 
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recruiting participants who speak English as their first language. The study was 

advertised as investigating reasoning about causes and effects.  All participants were 

paid $0.50.  68 were males (48%) and 75 were females (52%).  The mean age was 

35.7 years (SD = 13.2; range 18 to73 years). The participants’ education background 

was approximately equally split between Sciences (N=50; 35%), Arts (N=47; 33%) 

and Mixed (N=46; 32.2%). 

 

Design 

The experiment comprised two between-subjects conditions: the observation 

condition and the intervention condition. All participants were presented with both the 

positive loop scenario and the negative loops scenario (within-subjects). The order in 

which they completed the two scenarios was counterbalanced.  The dependent 

variable was the answers to the four questions - a question about each time period. 

Participants were always questioned about the two past time periods first and the 

future ones after, but the order in which they were questioned about them was 

counterbalanced. The survey ended with a series of demographic questions.  

 

Materials 

The materials consisted of a web-based questionnaire.  The first page of the 

questionnaire provided simple instructions telling participants they will be presented 

with two scenarios and asked to answer questions about them. Then, depending on the 

counterbalancing condition, participants were either presented either with the positive 

loop scenario followed by the negative loop scenario, or vice-versa. Following each 

scenario, participants were presented with the counterfactual manipulation (either 

based on an observation or an intervention according to condition). After the 
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manipulation participants were presented with the four causal inference questions. 

Finally, participants were given a series of demographic questions. 

Scenarios. The two scenarios were both based on sleeping patterns and were 

designed to be similar to each other in terms of cover story. However, they were not 

designed to be directly comparable to each other.  

Negative loop scenario 

When John sleeps 4 hours, he feels very tired the following day. When John 

feels very tired during the day, he sleeps 8 hours the following night. When 

John sleeps 8 hours, he feels very rested the following day. When John feels 

very rested during the day, he sleeps 4 hours the following night.  The table 

below shows John’s sleeping pattern across five nights. 

 

Day / Night John 

Day 1  

Night 1 

Very rested 

4 hours sleep 

Day 2  

Night 2 

Very tired  

8 hours sleep 

Day 3  

Night 3 

Very rested  

4 hours sleep 

Day 4  

Night 4 

Very tired  

8 hours sleep 

Day 5  

Night 5 

Very rested  

4 hours sleep 

 

Positive loop scenario 
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When Pete sleeps 6 hours or less, he feels very stressed the following day. 

When Pete feels very stressed during the day, he has trouble sleeping the 

following night and sleeps one hour less than the previous night. When Pete 

sleeps 7 hours or more, he feels very relaxed the following day. When Pete 

feels very relaxed during the day, he sleeps 7 hours or more the following 

night. 

 

Day / Night Pete 

Day 1  

Night 1 

Very stressed 

6 hours sleep 

Day 2  

Night 2 

Very stressed  

5 hours sleep 

Day 3  

Night 3 

Very stressed  

4 hours sleep 

Day 4  

Night 4 

Very stressed  

3 hours sleep 

Day 5  

Night 5 

Very stressed  

2 hours sleep 

 

Counterfactual manipulations.  The counterfactual suppositions were 

identical for both scenarios (except the name of the character). The exact wording of 

the suppositions in the two conditions is reported below. 

Intervention condition: Suppose that during night 3, contrary to what is stated 

above, Pete/John took a sleeping pill that made him sleep 8 hours (during 
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night 3), instead of 4 hours. The sleeping pill has no side effects other than 

increasing the amount of sleep for one night (night 3). 

Observation condition: Suppose that during night 3, contrary to what is stated 

above, Pete/John actually slept 8 hours and not 4 hours. 

 

Questions. The four causal inference questions were presented on two 

separate pages. The first page contained the two questions about the two time periods 

closest to the time period affected by the counterfactual supposition (Time 2 and Time 

4). The second page contained the two questions about the two time periods further 

away from the time period affected by the counterfactual supposition (Time 1 and 

Time 5). The scenario and counterfactual supposition was displayed at the top of each 

page so participants could refer back to it. The questions all followed the same 

multiple-choice format. The exact wording for one of the questions is reported below. 

E.g. Night 1: Given this new piece of information about night 3, what can you 

infer about the number of hours John slept during night 1?    

o John would have slept less than 4 hours during night 1.   

o John would have slept more than 4 hours during night 1.  

o John would have slept the same number of hours during night 1.   

The order in which the answer choices were presented was randomized. 

 

Procedure 

Surveys were programmed and administered through the Qualtrics web-based 

survey platform, hosted through an account licensed to University College London. 

At the end of the study participants were given the option to write any comments they 

may have had. There were no comments that indicated misunderstanding of the study. 
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The whole study lasted on average 10 minutes.  

4.4 Results 

The results for each scenario will be discussed separately. There was no effect 

of order of scenario presentation.   

Negative loop scenario 

Table 1 shows the percentage of participants (and number) in each answer category 

for the four questions, as a function of condition. The ‘correct’ normative answer for 

each question is indicated in bold.  

 

Table 1 

Percentage of participants (and number) in each answer category for the four 

questions, as a function of condition. Values highlighted in bold indicate the correct 

normative answers for each condition. Experiment 1, negative loop scenario. 

Question Answer Intervention (N=74) Observation (N=69) 

Night 1 Less 4.1% (N=3) 5.8% (N=4) 

More 13.5% (N=10) 62.3% (N=43) 

Same 82.4% (N=61) 31.9% (N=22) 

Night 2  Less 12.2% (N=9) 73.9% (N=51) 

More 6.8% (N=5) 4.3% (N=3) 

Same 81.1% (N=60) 21.7% (N=15) 

Night 4 Less 74.3% (N=55) 85.5% (N=59) 

More 6.8% (N=5) 4.3% (N=3) 

Same 18.9% (N=14) 10.1% (N=7) 

Night 5 Less 0% (N=0) 5.8% (N=4) 

More 77% (N=57) 78.3% (N=54) 

Same 23% (N=17) 15.9% (N=11) 
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The analyses will be discussed in respect to each of the five experimental hypotheses. 

 

Hypothesis 1: Participants will backtrack (change causal inferences according to the 

counterfactual supposition for both Night 2 and Night 1) only in the Observation 

condition and not in the Intervention condition.  

As can be observed in Table 1, most participants in the Intervention condition 

do not backtrack when asked about Night 2 (81.1%) or Night 1 (82.4%) - they state 

the number of hours of sleep would not have changed according to the counterfactual 

supposition. On the other hand, in the Observation condition, only a few answer 

‘same’ when asked about Night 2 (21.7%) or Night 1 (31.9%). A chi-square for 

independence was run to compare the observed frequency of cases in each condition 

for both Night 2 and Night 1. As predicted by the hypothesis, there was a significant 

association between condition and answer choice for Night 2: χ2 (2, n=143) = 56.8, p 

< 0.001, phi = 0.63; and for Night 1: χ2 (2, n=143) = 38.9 p < 0.001, phi = 0.52. 

 

Hypothesis 2: Participants will make the same forward inferences in both conditions 

(change causal inferences according to the counterfactual supposition for both Night 

4 and Night 5). 

As can be observed in Table 1, in the Intervention condition only a few 

participants state the number of hours of sleep would be the same at Night 4 (18.9%) 

and Night 5 (23%). A similar pattern of results emerges in the Observation condition 

for Night 4 (10.1%) and Night 5 (15.9%).  A chi-square for independence was run to 

compare the observed frequency of cases in each condition for both Night 4 and Night 

5. As predicted by the hypothesis, there was no significant association between 

condition and answer choice for Night 4: χ2 (2, n=143) 2.80, p = 0.246, phi = 0.14; 
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nor for Night 5: χ2 (2, n=143) = 5.2, p = 0.074, phi = 0.191. 

 

Hypothesis 3: The answers selected by participants will reflect the correct qualitative 

causal inference according to the counterfactual supposition. 

As can be observed in Table 1, the correct predicted normative answer is 

indicated in bold and the majority of participants select that answer for each time 

period and for both conditions. Given that there were three answer choices, the 

probability that the participant would choose the correct answer was 1/3. A binomial 

test to test was used to evaluate if the proportion of participants who selected the 

correct answer was significantly different from chance (for each time period and 

condition). In the Intervention condition, the difference was significant for all time 

periods. In all cases, the deviation from 0.3 was highly significant (binomial test, 

p<0.001). The same can be said about the Observation condition.  

 

Hypothesis 4: Fewer participants will extend their causal inferences to Night 1 and 

Night 5. 

Even though in the Observation condition the majority of participants selects 

the correct normative answer for both Night 2 and Night 1, fewer participants do so 

for Night 1 (62.3% select ‘less) in comparison to Night 2 (73.9% select ‘more’). 

Participants’ answers were recoded into two categories: correct and incorrect. These 

were entered in a chi-square test for independence comparing Night 1 to Night 2. The 

chi-square revealed a significant difference between the two Nights: χ2= (1, n=69) 

4.81, p = 0.02. 

The same can be said about Night 5. Even though in the Observation condition 

the majority of participants selects the correct normative answer for both Night 4 and 
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Night 5, fewer participants do so for Night 5 (78.3% select ‘more’) in comparison to 

Night 4 (85.5% select ‘less’). However, this difference is not significant: χ2(1, n=69) 

= 2.92, p = 0.09. 

When it comes to the Intervention condition, approximately the same number 

of people selects the correct answer for Night 2 (81.1% select ‘same’) and Night 1 

(82.4% selects ‘same’). The same can be said about the inferences about the future: a 

similar number selects the correct answer for Night 4 (74.3% select ‘less’) and for 

Night 5 (77% select ‘more). 

 

Hypothesis 5: Participants’ causal inferences about Night 1 and Night 5 will be 

conditional and consistent with their inferences about Night 2 and Night 4 

respectively. 

Another analysis that will provide insight into participants’ causal inferences 

is analyzing their answers for a specific time period as a function of their answers to 

other time periods – conditional analyses. This will reveal if people make correct 

causal inferences that are coherent with their own representation of the causal loop. 

Hence, causal inferences about Night 1 should be contingent on causal inferences 

about Night 2. Participants’ answers for Night 1 given their answer for Night 2 are 

displayed in Table 2. The percentage indicates the proportion of participants who 

provided each conditional answer. 

As can be seen in Table 2, for the Observation condition, the majority of 

participants who correctly infer that John will have slept fewer hours at Night 2 also 

infer that John would have slept more hours at Night 1 (N=56.5%). For the 

Intervention condition, the majority of participants who correctly infer that John will 
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have slept the same number of hours at Night 2 also infer that John would have slept 

the same number of hours at Night 1 (77%).  

 

Table 2.  

Table showing percentage of participants’ answers to Night 1 as a function of their 

answer to Night 2. Values highlighted in bold indicate the correct normative answers 

for each condition. Experiment 1, negative loop scenario. 

 

Answer for Time 2 Answer for Time 1 Intervention Observation 

Less  

Less  1.4% (N=1) 4.3% (3=1) 

More 9.5% (N=7) 56.5% (N=39) 

Same 1.4%( N=1) 13.0%( N=9) 

More 

Less  2.7%( N=2) 0.0% (N=0) 

More 0.0% (N=0) 2.9%( N=2) 

Same 4.1% (N=3) 1.4% (N=1) 

Same 

Less  0.0% (N=0) 1.4% (N=1) 

More 4.1% (N=3) 2.9% (N=2) 

Same 77.0% (N=57) 17.4% (N=12) 

 

Similarly, causal inferences about Night 5 should be contingent on causal 

inferences about Night 4. Participants’ answers for Night 5 given their answer for 

Night 4 are displayed in Table 3. As can be seen in Table 3, for both conditions, the 

majority of participants who correctly infer that John will have slept fewer hours at 

Night 4 also infer that John would have slept more hours at Night 5 (Intervention 

condition: N = 66.2%; Observation condition: 71%).  
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Table 3. 

Table showing percentage of participants’ answers to Night 5 as a function of their 

answer to Night 4. Values highlighted in bold indicate the correct normative answers 

for each condition. Experiment 1, negative loop scenario. 

 

Answer for Night 4 Answer for Night 5 Intervention Observation 

Less 

Less  0.0% (N=0) 4.3% (N=3) 

More 66.2% (N=49) 71.0% (N=49) 

Same 8.1% (N=6) 10.1% (N=7) 

More 

Less  0.0% (N=0) 2.9% (N=2) 

More 4.1% (N=3) 1.4% (N=1) 

Same 2.7% (N=2) 0.0% (N=0) 

Same 

Less  0.0% (N=0) 0.0% (N=0) 

More 6.8% (N=5) 4.3% (N=3) 

Same 12.2% (N=9) 5.8% (N=0) 

 

 

Positive loop scenario 

Table 4 shows the percentage of participants (and number) in each answer 

category for the four questions, as a function of condition. The ‘correct’ normative 

answer for each question is indicated in bold.  
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Table 4.  

Percentage of participants (and number) in each answer category for the four 

questions, as a function of condition. Values highlighted in bold indicate the correct 

normative answers for each condition. Experiment 1, positive loop scenario. 

 

Question Answer Intervention (N=74) Observation (N=69) 

Night 1 Less 40.8% (N=8) 5.8% (N=4) 

More 9.5% (N=7) 49.3% (N=34) 

Same 79.7% (N=59) 41.3% (N=31) 

Night 2 Less 14.9% (N=11) 5.8% (N=4) 

More 6.8% (N=5) 59.4% (N=41) 

Same 78.4% (N=58) 34.8% (N=24) 

Night 4  Less 6.8% (N=5) 4.3% (N=3) 

More 83.8% (N=62) 78.3% (N=54) 

Same 9.5% (N=7) 17.4% (N=12) 

Night 5 Less 4.1% (N=3) 4.3% (N=3) 

More 82.4% (N=61) 85.5% (N=59) 

Same 13.5% (N=10) 10.1% (N=7) 

 

The analyses will be discussed in respect to each of the five experimental hypotheses. 

 

Hypothesis 1: Participants will backtrack (change causal inferences according to the 

counterfactual supposition for both Night 2 and Night 1) only in the observation 

condition and not in the intervention condition.  

As can be observed in Table 4, most participants in the Intervention condition 

do not backtrack when asked about Night 2 (78.4%) and Night 1 (79.7%) - they state 

the number of hours of sleep would not have changed according to the counterfactual 
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supposition. On the other hand, in the Observation condition, fewer participants 

answer ‘same’ when asked about Night 2 (34.8%) and Night 1 (41.3%). A chi-square 

for independence was run to compare the observed frequency of cases in each 

condition for both Night 2 and Night 1. As predicted by the hypothesis, there was a 

significant association between condition and answer choice for Night 2: χ2 (2, 

n=143) = 45.4, p < 0.001, phi = 0.56; and for Night 1: χ2 (2, n=143) = 27.7 p < 0.001, 

phi = 0.44. 

 

Hypothesis 2: Participants will make the same forward inferences in both conditions 

(change causal inferences according to the counterfactual supposition for both Night 

4 and Night 5). 

As can be observed in Table 4, in the Intervention condition only a few 

participants state the number of hours of sleep would be the same at Night 4 (9.5%) 

and Night 5 (13.5%). A similar pattern of results can be observed in the Observation 

condition for Night 4 (17.4%) and Night 5 (10.1%).  A chi-square for independence 

was run to compare the observed frequency of cases in each condition for both Night 

4 and Night 5. As predicted by the hypothesis, there was no significant association 

between condition and answer choice for Night 4: χ2 (2, n=143) 2.2, p = 0.334, phi = 

0.12; nor for Night 5: χ2 (2, n=143) = 0.388, p = 0.823, phi = 0.05. 

 

Hypothesis 3: The answers selected by participants will reflect the correct qualitative 

causal inference according to the counterfactual supposition. 

As can be observed in Table 4, the correct predicted normative answer is 

indicated in bold and the majority of participants select that answer for each time 

period and for both conditions. Given that there were three answer choices, the 
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probability that the participant would choose the correct answer was 1/3. A binomial 

test  was used to evaluate if the proportion of participants who selected the correct 

answer was significantly different from chance (for each time period and condition).  

In the Intervention condition, the difference was significant for all time 

periods (binomial test, p<0.001). However, when it comes to the Observation 

condition, there were a relatively large number of participants who did not backtrack 

(answered ‘same’) when asked about Night 1. This meant that even though the 

majority still picked the correct normative answer, this proportion was not significant 

for Night 1 (p=0.231). For all other time periods the difference is highly significant 

(binomial test, p<0.001).  

 

Hypothesis 4: Fewer participants will extend their causal inferences to Night 1 and 

Night 5. 

Even though in the Observation condition the majority of participants selects 

the correct normative answer for both Night 2 and Night 1, fewer participants do so 

for Night 1 (49.3% select ‘more’) in comparison to Night 2 (59.4% select ‘more’). 

Participants’ answers were recoded into two categories: correct and incorrect. These 

were entered in a chi-square test for independence comparing Night 1 to Night 2. 

However this difference is not significant: χ2= (1, n=69) 2.95, p = 0.09. 

When it comes to forward inferences in the Observation condition, the 

majority of participants select the correct normative answer for both Night 4 and 

Night 5. However, in contrast to Night 1, slightly more participants do so for Night 5 

(85.5% select ‘more’) in comparison to Night 4 (78.3% select ‘more’). However, this 

difference is not significant: χ2(1, n=69) = 2.13, p = 0.14. 
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When it comes to the Intervention condition, approximately the same number 

of people selects the right answer for Night 2 (78.4% select ‘same’) and Night 1 

(79.7% selects ‘same’). The same can be said about forward inferences: a similar 

number selects the correct answer for Night 4 (83.8% select ‘more’) and for Night 5 

(82.4% select ‘more’). 

 

Hypothesis 5: Participants’ causal inferences about Night 1 and Night 5 will be 

conditional and consistent with their inferences about Night 2 and Night 4 

respectively. 

Causal inferences about Night 1 should be contingent on causal inferences 

about Night 2. Participants’ answers for Night 1 given their answer for Night 2 are 

displayed in Table 5. As can be seen in Table 5, for the Observation condition, the 

majority participants who correctly infer that Pete will have slept more hours at Night 

2 also infer that Pete would have slept more hours at Night 1 (N=70.3%). For the 

Intervention condition, the majority of participants who correctly infer that John will 

have slept the same number of hours at Night 2 also infer that John would have slept 

the same number of hours at Night 1 (43.5%).  

 

Similarly, causal inferences about Night 5 should be contingent on causal 

inferences about Night 4. Participants’ answers for Night 5 given their answer for 

Night 4 are displayed in Table 6. As can be seen in Table 6, for both conditions, the 

majority of participants who correctly infer that Pete will have slept more hours at 

Night 4 also infer that Pete would have slept more hours at Night 5 (Intervention 

condition: N = 75.7%; Observation condition: 75.4%).  
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Table 5. 

Table showing percentage of participants’ answers to Night 1 as a function of their 

answer to Night 2. Values highlighted in bold indicate the correct normative answers. 

Experiment 1, positive loop scenario. 

Answer for Night 2 Answer for Night 1 Intervention Observation 

Less  

Less  5.4% (N=4) 2.9% (N=2) 

More 2.7% (N=2) 0.0% (N=0) 

Same 6.8% (N=5) 2.9% (N=2) 

More 

Less  0.0% (N=0) 0.0% (N=0) 

More 4.1% (N=3) 43.5% (N=30) 

Same 2.7% (N=2) 15.9% (N=11) 

Same 

Less  5.4% (N=4) 2.9% (N=2) 

More 2.7% (N=2) 5.8% (N=4) 

Same 70.3% (N=52) 26.1% (N=18) 
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Table 6. 

Table showing percentage of participants’ answers to Night 5 as a function of their 

answer to Night 4. Values highlighted in bold indicate the correct normative answers. 

Experiment 1, positive loop scenario. 

Answer for Night 4 Answer for Night 5 Intervention Observation 

Less 

Less  1.4% (N=1) 1.4% (N=1) 

More 4.1% (N=3) 2.9% (N=2) 

Same 1.4% (N=1) 0.0% (N=0) 

More 

Less  2.7% (N=12) 1.4% (N=1) 

More 75.7% (N=56) 75.4% (N=52) 

Same 5.4% (N=4) 1.4% (N=1) 

Same 

Less  0.0% (N=0) 1.4% (N=1) 

More 2.7% (N=2) 7.2% (N=5) 

Same 6.8% (N=5) 8.7% (N=6) 

 

4.5 Discussion 

Experiment 1 provided support for the hypothesis that people are able to 

reason with simple causal loops and make sensible causal inferences accordingly. 

Results are discussed briefly in relation to each loop scenario. 

 

Negative loop  

 First and foremost, the results clearly show that participants were sensitive to 

the difference between predictions based on merely observed events and predictions 

based on the very same states of events generated by means of intervention. This 

means they displayed at least level 1 causal reasoning. Participants backtracked only 

in the Observation condition and not in the Intervention condition (hypothesis 1). The 

difference in backtracking between conditions was significant. Participants also made 
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similar forward inferences in both conditions– there was no significant differences 

between conditions (hypothesis 2).  The second level of causal reasoning consisted in 

providing the correct normative inference. Indeed, the majority of participants made 

correct causal inferences for each time period and condition (hypothesis 3). The 

proportion of correct answers was significantly higher than chance for all time periods 

for both conditions.  

In the Observation condition, participants gave significantly more correct 

responses for time period 2 rather than for time period 1. Participants also gave more 

correct responses for time period 4 rather than for time period 5, but this difference 

was not significant. On the other hand, in the Intervention condition, the proportion of 

correct responses was similar across all time periods. Finally, in order to display level 

3 causal reasoning, participants had to make inferences that were coherent with their 

representation of the causal loop (hypothesis 5). This was indeed the case - 

conditional analyses showed that the majority of participants’ causal inferences about 

Night 1 and Night 5 were conditional and consistent with their inferences about Night 

2 and Night 4 respectively (this was true for both conditions). 

 

Positive loop 

A similar pattern of results emerged for the positive loop scenario: participants 

clearly displayed level 1 causal reasoning. In terms of level 2, the proportion of 

correct answers was significantly higher than chance for most time periods and for 

both conditions – however the difference was not significant for time period 1 in the 

Observation condition (there were a relatively large number of participants who did 

not backtrack). This apparent lack of backtracking in the positive loop scenario could 

be in line with the idea that people might not represent positive loops further than a 
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single time step into the past and into the future. However, participants did make 

correct forward inferences up to time period 5 so at this stage it is hard to draw 

conclusive implications. Another explanation for the apparent lack of backtracking for 

time period 1 is that, in line with the experimental hypothesis, fewer participants 

might extend their causal inferences to the time periods further away from the time 

period affected by the counterfactual supposition (hypothesis 4).  Finally, conditional 

analyses showed that the majority of participants displayed level 3 causal reasoning: 

their causal inferences about Night 1 and Night 5 were conditional and consistent with 

their inferences about Night 2 and Night 4 respectively (this was true for both 

conditions). 

 

4.6 Experiment 2 

Experiment 2 aims to explore how these findings may extend to causal loops 

involving different factors, or scenarios. Specifically, the scenario in Experiment 1 

involved a counterfactual supposition that affected the same factor (amount of sleep) 

that participants were also asked to make causal inferences on (sleep at past and 

future time periods). For instance, in the negative loop scenario, sleep affected 

fatigue, which affected sleep. However, both the counterfactual manipulation and the 

causal inferences were based on the amount of sleep rather than the amount of fatigue. 

This meant that even though participants had to take into account the state of both 

factors, they had to reason explicitly only about the state of one of the factors. 

Experiment 2 will follow a similar format to Experiment 1, but will be based 

on a scenario involving a predator-prey relationship (only the negative loop version 

will be explored). A simple case where an increase in the number of preys leads to an 
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increase in the number of predators, which will lead to a decrease in the number of 

preys. 

Another key reason why the predator-prey relationship was deemed a suitable 

choice of scenario, is because it is often used in system dynamics studies exploring 

dynamic thinking (e.g. Dorner & Preubler, 1990). In such studies participants are 

asked to control a population (e.g. the predators) in order to keep another population 

(e.g. the prey) at a predefined level. As discussed in the Introduction, these studies 

form the basis of the conclusion that people are unable to appreciate and reason with 

causal loops. Hence, it is worth considering if people can indeed reason with the 

cyclical causal relations of a simple predator-prey causal loop. 

Finally, another motive why predator-prey loops are important to consider is 

because they are a prime example of a situation where people’s linear thinking is 

argued to lead to overexploitation or extinction of natural resources (Moxnes, 2003). 

Given these potentially dramatic implications, it is critical to elucidate further the 

reasoning patterns that might be involved.  

The experimental hypotheses for Experiment 2 are similar to the ones for 

Experiment 1: 

Hypothesis 1: Participants will backtrack only in the observation condition and 

not in the intervention condition.  

Hypothesis 2: Participants will make the same forward inferences in both 

conditions. 

Hypothesis 3: The answers selected by participants will reflect the correct 

qualitative causal inference according to the counterfactual supposition. 

Hypothesis 4: Fewer participants will extend their causal inferences to the time 

periods further away from the time period affected by the counterfactual 
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supposition. 

Hypothesis 5: Participants’ causal inferences about Time 1 and Time 5 will be 

conditional and consistent with their inferences about Time 2 and Time 4 

respectively. 

 

4.7 Method 

 

Participants 

99 participants were recruited through Amazon Turk. Participation in the 

survey was limited to people living in the United States to maximize likelihood of 

recruiting participants who speak English as their first language. The study was 

advertised as investigating reasoning about causes and effects.  All participants were 

paid $0.50.  61 were males (61.6%) and 38 were females (38.4%).  The mean age was 

32.8 years (SD = 11.1; range 19 to 80 years). The participants’ education background 

was approximately equally split between Sciences (N=37; 37.4%), Arts (N=25; 

25.3%) and Mixed (N=37; 37.4%). 

 

Design 

The experiment comprised two between-subjects conditions: the Observation 

condition and the Intervention condition. All participants were presented with the 

same scenario. The dependent variable was the answers to the four questions - a 

question about each time period. Participants were always questioned about the two 

past time periods first and the future ones after, but the order in which they were 

questioned about them was counterbalanced. The survey ended with a series of 

demographic questions.  
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Materials 

The materials consisted of a web-based questionnaire.  The first page of the 

questionnaire provided simple instructions telling participants they will be presented 

with one scenario and asked to answer questions about it. Then all participants were 

presented with the scenario followed by the counterfactual manipulation (either based 

on an observation or an intervention according to condition). After the manipulation 

participants were presented with the four causal inference questions. Finally, 

participants were given a series of demographic questions. 

Scenario. The scenario was based on a predator-prey relationship involving 

tuna (the predator) and squid (the prey). The exact wording of the scenario is reported 

below. 

Tuna prey on squid. This relationship between tuna and squid has an effect on 

the population size of both tuna and squid. Tuna eat squid, whose population 

is therefore decreased. With fewer squid available the tuna are in greater 

competition with each other for the remaining squid. The tuna population is 

therefore reduced because some tuna are unable to obtain enough squid for 

their survival. With fewer tuna left, fewer squid are eaten. The squid 

population therefore increases. With more squid available, the tuna population 

in turn increases. This results in cyclical fluctuations in the population sizes of 

tuna and squid. Imagine that there are a number of tuna and squid in one 

specific area of the ocean. Assume that the number of squid grows rapidly 

when tuna are absent. Also assume that the tuna population will starve in the 

absence of the squid population (as opposed to switching to another type of 
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prey). The table below shows the number of tuna and squid that are present 

during five time periods. 

Time period   Animal population  

 Time 1  1000 squid 

 Time 2  200 tuna 

 Time 3  500 squid 

 Time 4  100 tuna 

 Time 5  1000 squid 

 

Counterfactual manipulations. The exact wording of the suppositions in the two 

conditions is reported below. 

Intervention condition: Suppose at time period 3, contrary to what is stated 

above, scientists had come to the area of the ocean (described above) for the 

first time. Imagine they removed 250 of the 500 squid. 

Observation condition: Suppose that at time period 3, contrary to what is 

stated above, there had actually been 250 squid and not 500 squid. 

Questions. The four causal inference questions were presented on two separate pages. 

The first page contained the two questions about the two time periods closest to the 

time period affected by the counterfactual supposition (Time 2 and Time 4). The 

second page contained the two questions about the two time periods further away 

from the time tie  period affected by the counterfactual supposition (Time 1 and Time 

5). The scenario and counterfactual supposition was displayed at the top of each page 

so participants could refer back to it. The questions all followed the same multiple-

choice format. The exact wording for one of the questions is reported below. 
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E.g. Time 1: Given this new piece of information about time period 3, what can 

you infer about the population of squid at time period 1? 

o There would have been less than 1000 squid at time period 1. 

o There would have been more than 1000 squid at time period 1. 

o There would still have been 1000 squid at time period 1. 

The order in which the answer choices were presented was randomized. 

 

Procedure 

The procedure was as in Experiment 1. 

 

4. 8 Results 

Table 7 shows the percentage of participants (and number) in each answer 

category for the four questions, as a function of condition. The ‘correct’ normative 

answer for each question is indicated in bold.  The analyses will be discussed in 

respect to each of the five experimental hypotheses. 

 

Hypothesis 1: Participants will backtrack (change causal inferences according to the 

counterfactual supposition for both Time 2 and Time 1) only in the observation 

condition and not in the intervention condition.  

As can be observed in Table 7, most participants in the Intervention condition 

do not backtrack when asked about Time 2 (65.3%) and Time 1 (77.6%) - they state 

the number of tuna would not have changed as a result of the counterfactual 

supposition. On the other hand, in the Observation condition, only a few participants 

answer ‘same’ when asked about Time 2 (12%). Fewer participants backtrack at Time 

1, as 40% answer ‘same’. A chi-square for independence was run to compare the 
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observed frequency of cases in each condition for both Time 2 and Time 1. As 

predicted by the hypothesis, there was a significant association between condition and 

answer choice for Time 2: χ2 (2, n=99) = 34.1 p < 0.001, phi = 0.59; and for Time 1: 

χ2 (2, n=99) = 15.1 p = 0.001, phi = 0.39. 

 

Table 7.  

Percentage of participants (and number) in each answer category for the four 

questions, as a function of condition. Values highlighted in bold indicate the correct 

normative answers for each condition. Experiment 2. 

Question Answer Intervention (N=49) Observation (N=50) 

Time 1 Less 16.3% (N=8) 34% (N=17) 

More 6.1% (N=3) 26% (N=13) 

Same 77.6% (N=38) 40% (N=20) 

Time 2  Less 22.4% (N=11) 28% (N=14) 

More 12.2% (N=6) 60% (N=30) 

Same 65.3% (N=32) 12% (N=6) 

Time 4 Less 77.6% (N=38) 70% (N=35) 

More 12.2% (N=6) 18% (N=9) 

Same 10.2% (N=5) 12% (N=6) 

Time 5 Less 40.8% (N=20) 44% (N=22) 

More 38.8% (N=19) 36% (N=18) 

Same 20.4% (N=10) 20% (N=10) 

 

 

Hypothesis 2: Participants will make the same forward inferences in both conditions 

(change causal inferences according to the counterfactual supposition for both Time 

4 and Time 5). 
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As can be observed in Table 7, in the Intervention condition only a few 

participants state the number of tuna would be the same at Time 4 (10.2%) and Time 

5 (20.4%). A similar pattern of results is found in the Observation condition for Time 

4 (12%) and Time 5 (20%).  A chi-square for independence was run to compare the 

observed frequency of cases in each condition for both Time 4 and Time 5. As 

predicted by the hypothesis, there was no significant association between condition 

and answer choice for Time 4: χ2 (2, n=99) = 0.8, p = 0.669, phi = 0.09; nor for Time 

5: χ2 (2, n=99) = 0.11, p = 0.945, phi = 0.034. 

 

Hypothesis 3: The answers selected by participants will reflect the correct qualitative 

causal inference according to the counterfactual supposition. 

As can be observed in Table 7, the correct predicted normative answer is 

indicated in bold and the majority of participants select that answer for Time 2 and 

Time 4 in both conditions, as well as for Time 1 in the Intervention condition. All 

these differences are significantly greater than chance (binomial test, p<0.001). On 

the other hand, this is not true for Time 1 in the Observation condition (answers split 

between ‘less’ and ‘same’) and Time 5 in both conditions (answers split between 

‘less’ and ‘more’).  

 

Hypothesis 4: Fewer participants will extend their causal inferences to Time 1 and 

Time 5. 

In the Observation condition the majority of participants selects the correct 

normative answer for Time 2 (60% select ‘more’), but not for Time 1 (only 34% 

select ‘less’). Participants’ answers were recoded into two categories: correct and 

incorrect. These were entered in a chi-square test for independence comparing Time 1 
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to Time 2. The chi-square revealed a significant difference between the two time 

periods: χ2= (1, n=50) 14.08, p < 0.001. The same can be said about Time 5. Even 

though in the Observation condition the majority of participants selects the correct 

normative answer for Time 4 (70% answer ‘less’), remarkably fewer participants do 

so for Time 5 (36% select ‘more’).  This difference is significant: χ2(1, n=50) = 1333, 

p < 0.001. 

When it comes to the Intervention condition, contrary to what was predicted, a 

smaller number of people select the right answer for Time 2 (65.3% select ‘same’) 

than for Time 1 (77.6% selects ‘same’). However, this difference is not significant: 

χ2(1, n=549) = 3.24, p =0.07.On the other hand, when it comes to inferences about the 

future, a greater number selects the correct answer for Night 4 (77.6% select ‘less’) 

than for Night 5 (38.8% select ‘more). This difference is significant: χ2(1, n=49) = 

42.32, p = 0. 

 

Hypothesis 5: Participants’ causal inferences about Time 1 and Time 5 will be 

conditional and consistent with their inferences about Time 2 and Time 4 respectively. 

Causal inferences about Time 1 should be contingent on causal inferences 

about Time 2. Participants’ answers for Time 1 given their answer for Time 2 are 

displayed in Table 8. As can be seen in Table 8, contrary to the hypothesis, for the 

Observation condition only a minority of participants who correctly infer that there 

would be more tuna at Time 2 also correctly infer that there would less tuna at Time 1 

(N=20%) – the responses are more or less equally split between the three answers. 

For the Intervention condition, the majority of participants who correctly infer 

that there would be the same number of tuna at Time 2 also correctly infer that there 

would be the same number of tuna at Time 1 (55.1%).  
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Table 8. 

Table showing percentage of participants’ answers to Time 1 as a function of their 

answer to Time 2. Values highlighted in bold indicate the correct normative answers 

for each condition. Experiment 2. 

Answer for Time 2 Answer for Time 1 Intervention Observation 

Less  

Less  2.0% (N=1) 12.0% (N=6) 

More 0.0% (N=0) 8.0% (N=4) 

Same 20.4% (N=10) 8.0% (N=4) 

More 

Less  6.1% (N=3) 20.0% (N=10) 

More 4.1% (N=2) 18.0% (N=9) 

Same 2.0% (N=1) 22.0% (N=11) 

Same 

Less  8.2% (N=4) 2.0% (N=1) 

More 2.0% (N=1) 0.0% (N=0) 

Same 55.1% (N=27) 10.0% (N=5) 

 

Similarly, causal inferences about Time 5 should be contingent on causal 

inferences about Time 4. Participants’ answers for Time 5 given their answer for 

Time 4 are displayed in Table 9. As can be seen in Table 9 and in accordance to to the 

hypothesis, for both conditions the majority participants who correctly infer that there 

would be less tuna at Time 4 also correctly infer there would be more Tuna at 5 

(Intervention condition: N = 34.7%; Observation condition: 30%).  
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Table 9. 

Table showing percentage of participants’ answers to Time 5 as a function of their 

answer to Time 4. Values highlighted in bold indicate the correct normative answers 

for each condition. Experiment 2. 

Answer for Time 4 Answer for Time 5 Intervention Observation 

Less 

Less  26.5% (N=13) 28.0% (N=14) 

More 34.7% (N=17) 30.0% (N=15) 

Same 16.3% (N=8) 12.0% (N=6) 

More 

Less  4.1% (N=2) 10.0% (N=5) 

More 4.1% (N=2) 6.0% (N=3) 

Same 4.1% (N=2) 2.0% (N=1) 

Same 

Less  10.2% (N=5) 6.0% (N=3) 

More 0.0% (N=0) 0.0% (N=0) 

Same 0.0% (N=0) 6.0% (N=3) 

 

 

4. 9 Discussion 

Experiment 1 provided support for the hypothesis that people are able to 

reason with simple causal loops and make sensible causal inferences accordingly. 

Experiment 2 aimed to extend these findings to a more complex loop. The added 

complexity was derived namely by the fact that the counterfactual supposition 

affected a different causal factor (number of preys) than the one participants were 

asked to make causal inferences on (number of predators). This meant that, in contrast 

to Experiment 1, participants had to reason explicitly about the state of both causal 

factors (rather than reasoning explicitly only about the state of only one of the 
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factors). The findings from Experiment 2 provided further support for the hypothesis 

that people are able to reason with simple causal loops and make sensible causal 

inferences accordingly.  

 

Negative loop 

As in Experiment 1, participants clearly engaged in level 1 causal reasoning. 

They backtracked only in the Observation condition and not in the Intervention 

condition (hypothesis 1). The difference in backtracking between conditions was 

significant. Secondly, participants made similar forward inferences in both conditions 

- there was no significant differences between conditions (hypothesis 2). On the other 

hand, Experiment 2 provided mixed evidence for level 2 causal reasoning. It was 

predicted that the answers selected by participants would reflect the correct qualitative 

causal inference according to the counterfactual supposition (hypothesis 3). 

Participants’ answers for Time 2 and 4 were certainly consistent with this prediction 

(both conditions). However, when it came to Time 1 and 5, participants gave mixed 

answers. As in Experiment 1, for Time 1 in the Observation condition, 40% of 

participants answered ‘same’ indicating a lack of backtracking. Furthermore, for time 

period 5, in both conditions, the answers were split between ‘less’ and ‘more’. This 

finding is in line with the hypothesis that fewer participants will extend their causal 

inferences to the time periods further away from the time period affected by the 

counterfactual supposition (hypothesis 4).  Given that many participants did not attain 

level 2 causal reasoning, it follows that their inferences cannot be classified as having 

the coherency required by level 3. Therefore, in contradiction to what was predicted, 

conditional analyses showed that participants’ inferences about Time 1 and Time 5 
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were not conditional and consistent with their inferences about Time 2 and Time 4 

respectively (hypothesis 5).  

 

4.10 Experiment 3 

At first glance, given the results obtained for the negative loop scenario, it 

may be tempting to conclude that participants simply cannot deal with the added 

complexity of the causal loop scenario employed in Experiment 2. . However, an 

alternative explanation may reside in the arguably confusing nature of the framing of 

the experimental manipulations. Specifically, in the Observation condition, 

participants are told: “Suppose that at time period 3, contrary to what is stated 

above, there had actually been 250 squid and not 500 squid.”  

The manipulation does not provide an explanation for this observation. 

Therefore there is the possibility that participants may interpret such observation as an 

error in the data (which is, arguably, a form of intervention). Such interpretation, 

could lead them to assume that there is a systematic problem with the data reported at 

the different time periods. This assumption could create a source of confusion when 

making inferences about past and future. This idea is consistent with the results that 

seem to indicate that there is more confusion in the Observation condition rather than 

in the Intervention condition. 

The aim of Experiment 3, as well as extending the current findings to another 

scenario, is to attempt to tease apart this potential source of confusion. This can be 

achieved by creating counterfactual suppositions which do not affect the causal loop 

actually described in the scenario but, affect another loop with the same properties - 

which is essentially identical to the one described in the scenario. This loop with 

identical causal properties will be termed the ‘parallel loop’. The effect of this 
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variation can be explored by comparing the results from the conditions with the 

current counterfactual suppositions with results from additional conditions where the 

suppositions affect the parallel loop. 

Experiment 3 will comprise four conditions: two standard conditions 

(Intervention condition and Observation condition) and two additional conditions 

(Parallel intervention condition and Parallel observation condition). The scenario will 

be based on a causal loop involving overfishing. In the negative loop version, an 

increase in a country’s overfishing of tunas leads to an increase in the country’s 

conservation efforts (fishing ban), which will lead to a decrease in overfishing. In the 

positive loop version, an increase in a country’s overfishing of tunas leads to an 

increase in the country’s price of fish, which will lead to an increase in overfishing 

(higher demand).  

The two conditions involving the parallel loop will use the same scenario as 

the standard conditions, but the supposition will not affect the country described in 

the scenario (Country A); instead it will affect another country (Country B) identical 

to Country A (see Method for further details). Hence, participants’ causal inferences 

will be based on Country B.  This should prevent them for inferring that the 

supposition described in the Observation condition is a mistake in the data count or 

any similar systematic error. Rather, it is just different data on a different country. 

Another potential source of confusion in Experiment 2, might reside in the fact 

that participants were told to imagine that the state of the variable affected by the 

counterfactual supposition (number of squid), would change ‘at Time period 3’. 

Basically the supposition does not specify at which time point (start, middle, end) 

during the time period the variable would change. This means that, in theory, even if 

the state of squid changes during time period 3, some participants might assume this 
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change only affects the state of the other variable (tuna) during time period 4). This 

could also explain the mixed results. Therefore, to clarify things even further, the state 

of the other variable (fishing in this case) will be reported in the table as well. In 

addition the supposition will specify ‘at the start of time period 3…’.  

Finally, like the predator-prey loop described in Experiment 2, the overfishing 

cover story was chosen because it is yet another example of a situation where 

people’s linear thinking is argued to lead to overexploitation or extinction of natural 

resources. The experimental hypotheses are identical to those in Experiment 2, with 

the added prediction that the new format will improve participants’ causal reasoning. 

The exact hypothesis is reported below. 

Hypothesis 6: Participants in the Parallel conditions will make more correct 

causal inferences than participants in the Standard conditions.  

 

4.11 Method 

Participants 

532 participants were recruited through Amazon Turk. Participation in the 

survey was limited to people living in the United States to maximize likelihood of 

recruiting participants who speak English as their first language. The study was 

advertised as investigating reasoning about causes and effects.  All participants were 

paid $0.50.  333 were males (62.6%) and 199 were females (37.4%).  The mean age 

was 29.5 years (SD = 9.6; range 18 to 69 years). The participants’ education 

background was approximately equally split between Sciences (N=201; 37.8%), Arts 

(N=129; 24.2%) and Mixed (N=202; 39%). 
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Design 

The experiment comprised four between-subjects conditions: the Standard 

observation condition, the Standard intervention condition, the Parallel observation 

condition and the Parallel intervention condition. All participants were presented with 

the same scenarios. The dependent variable was the answers to the four questions - a 

question about each time period. Participants were always questioned about the two 

past time periods first and the future ones after, but the order in which they were 

questioned about them was counterbalanced. The survey ended with a series of 

demographic questions.  

 

Materials 

The materials consisted of a web-based questionnaire.  The first page of the 

questionnaire provided simple instructions telling participants they will be presented 

with two scenarios and asked to answer questions about them. Then, depending on the 

counterbalancing condition, participants were either presented either with the positive 

loop scenario followed by the negative loop scenario, or vice-versa. Following each 

scenario, participants were presented with the counterfactual manipulation (either 

based on an observation or an intervention according to condition). After the 

manipulation participants were presented with the four causal inference questions. 

Finally, participants were given a series of demographic questions. 

Scenarios. The two scenarios were both based on overfishing and were 

designed to be similar to each other in terms of cover story. However they were not 

designed to be directly comparable to each other. The exact wording of each scenario 

is reported below. 
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Negative loop 

In the ocean surrounding one country (Country A) there are a number of tunas. 

At the start of each month, scientists estimate the current number of tunas in 

the ocean surrounding Country A. The government of Country A uses the 

scientists’ monthly estimates to regulate the country’s fishing policy. When 

scientists estimate that there are 1000 tunas or more at the start of the month, 

the government allows fishing of tunas throughout that month. When scientists 

estimate that there are 800 tunas or less at the start of the month, the 

government increases conservation efforts and bans fishing of tunas 

throughout that month. One month of fishing of tunas causes the number of 

tunas to drop to 800 or less. One month of no fishing of tunas causes the 

number of tunas to increase again to 1000 or more. The table below shows the 

estimated number of tunas at the start of five months and the country’s fishing 

policy throughout those months.                                      

Time  Country A 

Start of month 1 

Month 1 

 800 tunas 

No fishing 

Start of month 2 

Month 2 

1000 tunas 

Fishing 

Start of month 3 

Month 3 

800 tunas 

No fishing 

Start of month 4 

Month 4 

1000 tunas 

Fishing 

Start of month 5 

Month 5 

800 tunas 

No fishing 
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Positive loop 

In the ocean surrounding one country (Country A) there are a number of tunas. 

At the start of each month scientists estimate the current number of tunas in the ocean 

surrounding Country A. The government of Country A does not regulate fishing of 

tunas. Fishing of tunas causes the number of tunas to drop by 200 every month. The 

table below shows the estimated number of tunas at the start of five months and the 

country’s fishing policy throughout those months.  

  

Time  Country A 

Start of month 1 

Month 1 

1200 tunas 

Fishing 

Start of month 2 

Month 2 

1000 tunas 

Fishing 

Start of month 3 

Month 3 

800 tunas 

Fishing 

Start of month 4 

Month 4 

600 tunas 

Fishing 

Start of month 5 

Month 5 

400 tunas 

Fishing 

 

Counterfactual manipulations 

The exact wording of the suppositions in the four conditions is reported below. 

Standard intervention condition: Suppose that at the start of month 3, before 

estimating the current number of tunas, scientists introduced 200 additional 
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tunas into the ocean (same tunas as the ones already there).  Imagine this 

resulted in the estimated number of tunas at the start of month 3 being 1000 

and not 800. 

Standard observation condition: Suppose that at the start of month 3, contrary 

to what is stated above, the estimated number of tunas was 1000 and not 800. 

Parallel intervention condition: Suppose there is another country (Country B) 

identical to the country described above (Country A). Country B operates in 

the same way as Country A. This means Country B’s government regulates 

the fishing policy according to the scientists' monthly estimates of the current 

number of tunas. Suppose that in Country B, at the start of month 3, before 

estimating the current number of tunas, scientists introduced 200 tunas into the 

ocean (same tunas as the ones already there).  Imagine this resulted in the 

estimated number of tunas at the start of month 3 being 1000 and not 800. 

Parallel observation condition: Suppose there is another country (Country B) 

identical to the country described above (Country A). Country B operates in 

the same way as Country A. This means Country B’s government regulates 

the fishing policy according to the scientists' monthly estimates of the current 

number of tunas. Suppose that in Country B, at the start of month 3, the 

estimated number of tunas was 1000. 

Questions. The four causal inference questions were presented on two 

separate pages. The first page contained the two questions about the two time periods 

closest to the time period affected by the counterfactual supposition (Time 2 and Time 

4). The second page contained the two questions about the two time periods further 

away from the time  period affected by the counterfactual supposition (Time 1 and 

Time 5). The scenario and counterfactual supposition was displayed at the top of each 



154	  

page so participants could refer back to it. The questions all followed the same 

multiple-choice format. The exact wording for one of the questions is reported below. 

E.g. Time 1 (Parallel conditions): Given this information about Country B, what can 

you infer about the number of tunas in Country B at month 1?     

o There would be less than 800 tunas at month 1.  

o There would be more than 800 tunas at month 1.  

o There would be 800 tunas at month 1. 

The order in which the answer choices were presented was randomized. 

 

Procedure 

The procedure was as in Experiments 1 and 2. 

 

4. 12 Results 

The results for each scenario will be discussed separately. Results from the 

parallel conditions will be discussed alongside the results from the standard 

conditions. 

 

Negative loop 

Table 10 and Table 11 show the percentage of participants (and number) in 

each answer category for the four questions, as a function of condition. Table 10 

displays results from the two standard conditions whilst Table 11 displays the ones 

from the two parallel conditions. In each table, the ‘correct’ normative answer for 

each question is indicated in bold.  
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Table 10. 

Percentage of participants (and number) in each answer category for the four 

questions, as a function of each standard condition. Values highlighted in bold 

indicate the correct normative answers for each condition. Experiment 3, negative 

loop scenario. 

 

Question Answer Intervention (N=132) Observation (N=136) 

Time 1 Less 3.8% (N=5) 5.9% (N=8) 

More 12.9% (N=17) 50% (N=68) 

Same 83.3% (N=110) 44.1% (N=60) 

Time 2  Less 6.1% (N=8) 24.3% (N=33) 

More 5.3% (N=7) 44.9% (N=52) 

Same 88.6% (N=117) 30.9% (N=22) 

Time 4 Less 51.5% (N=68) 45.6% (N=62) 

More 38.6% (N=51) 38.2% (N=52) 

Same 9.8% (N=13) 16.2% (N=22) 

Time 5 Less 3% (N=4) 8.8% (N=12) 

More 88.6% (N=117) 66.9% (N=91) 

Same 8.3% (N=11) 24.3% (N=33) 

 

The analyses will be discussed in respect to each of the six experimental hypotheses. 

Hypothesis 1: Participants will backtrack (change causal inferences according to the 

counterfactual supposition for both Time 2 and Time 1) only in the observation 

conditions (standard and parallel) and not in the intervention conditions (standard 

and parallel).  

As can be observed in Table 10, most participants in the Standard intervention 

condition do not backtrack when asked about Time 2 (88.6%) or Time 1 (83.3%) - 
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they state the number of tuna would not have changed according to the counterfactual 

supposition. On the other hand, in the Standard observation condition, only a few 

answer ‘same’ when asked about Time 2 (30.9%) and Time 1 (44.1%). A chi-square 

for independence was run to compare the observed frequency of cases in each of these 

two conditions for both Time 2 and Time 1. As predicted by the hypothesis, there was 

a significant association between condition and answer choice for Time 2: χ2 (2, 

n=268) = 93.4, p < 0.001, phi = 0.59; and for Time 1: χ2 (2, n=268) = 45.9 p < 0.001, 

phi = 0.41. 

 

Table 11.  

Percentage of participants (and number) in each answer category for the four 

questions, as a function of each parallel condition. Values highlighted in bold 

indicate the correct normative answers for each condition. Experiment 3, negative 

loop scenario. 

Question Answer Intervention (N=133) Observation (N=131) 

Time 1 Less 7.5% (N=10) 6.1% (N=8) 

More 17.3% (N=23) 86.3% (N=113) 

Same 75.2% (N=100) 7.6% (N=10) 

Time 2  Less 18.8% (N=25) 59.5% (N=78) 

More 9.8% (N=13) 28.2% (N=37) 

Same 71.4% (N=95) 12.2% (N=16) 

Time 4 Less 57.9% (N=77) 67.2% (N=62) 

More 27.1% (N=36) 18.3% (N=9) 

Same 15% (N=20) 14.5% (N=6) 

Time 5 Less 5.3% (N=7) 7.6% (N=10) 

More 81.2% (N=108) 81.7% (N=107) 

Same 13.5% (N=18) 10.7% (N=14) 
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Similarly, as can be observed in Table 11, most participants in the Parallel 

intervention condition do not backtrack when asked about Time 2 (71.4%) and Time 

1 (75.2%). On the other hand, in the Parallel observation condition, only a few answer 

‘same’ when asked about Time 2 (12.2%) and Time 1 (7.6%). As predicted by the 

hypothesis, there was a significant association between condition and answer choice 

for Time 2: χ2 (2, n=264) = 95, p < 0.001, phi = 0.6; and for Time 1: χ2 (2, n=264) = 

133.4 p < 0.001, phi = 0.71. 

 

Hypothesis 2: Participants will make the same forward inferences in all conditions 

(change causal inferences according to the counterfactual supposition for both Time 

4 and Time 5). 

As can be observed in Table 10, in the Standard intervention condition only a 

few participants state the number of tuna would be the same at Time 4 (9.8%) and 

Time 5 (8.3%). A similar pattern of results can be observed in the Standard 

observation condition for Time 4 (16.2%) and Time 5 (24.3%).  A chi-square for 

independence was run to compare the observed frequency of cases in these two 

conditions for both Time 4 and Time 5. As predicted by the hypothesis, there was not 

a significant association between condition and answer choice for Night 4: χ2 (2, 

n=268) 2.54, p = 0.281, phi = 0.1. However, the number of people who state there 

would be the same number of tuna at Time 5 is significantly greater in the 

Observation condition than in the Intervention condition: χ2 (2, n=268) = 18.2, p < 

0.001, phi = 0.26. 

Similarly, as can be observed in Table 11, in the Parallel intervention 

condition only a few participants state the number of tuna would be the same at Time 

4 (15%) and Time 5 (13.5%). A similar pattern of results can be observed in the 
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Parallel observation condition for Time 4 (10.1%) and Time 5 (15.9%). As predicted 

by the hypothesis, there was not a significant association between condition and 

answer choice for Night 4: χ2 (2, n=264) 3.14, p = 0.208, phi = 0.11; nor for Night 5: 

χ2 (2, n=264) = 1.02, p = 0.6, phi = 0.06. 

 

Hypothesis 3: The answers selected by participants will reflect the correct qualitative 

causal inference according to the counterfactual supposition. 

As can be observed in Table 10, the correct predicted normative answer is 

indicated in bold. For the Standard intervention condition, the majority of participants 

select that answer for each time period. In all cases, the deviation from 0.3 was highly 

significant (binomial test, p<0.001). When it comes to the Standard observation 

condition, the majority of participants select the correct answer from Time 1, 4 and 5. 

However, this is significantly higher than chance only for Time 1 (binomial test, 

p=0.002) and Time 5 (binomial test, p<0.001); not for Time 4 (p=0.086). 

Unexpectedly, for Time 2, less than a third of participants make the correct choice 

(N=24.3%; binomial test, p=0.558) 

On the other hand, for the Parallel conditions, as can be observed in Table 11, 

the correct predicted normative answer is indicated in bold and the majority of 

participants select that answer for each time period and for both conditions. The 

difference was significant for all time periods (Time periods 1, 2 and 5: binomial test, 

p<0.001; Time 4: p=0.029).  

 

Hypothesis 4: Fewer participants will extend their causal inferences to Time 1 and 

Time 5. 

When it comes to the Standard intervention condition, in line with the 
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experimental hypothesis, slightly more participants select the correct answer for Time 

2 (88.6% select ‘same’) than for Time 1 (83.3% selects ‘same’). Participants’ answers 

were recoded into two categories: correct and incorrect. These were entered in a chi-

square test for independence comparing Time 1 to Time 2. The chi-square revealed a 

significant difference between the two time periods: χ2= (1, n=132) 3.685, p = 0.005. 

This does not stand for Time 5 in the Standard intervention condition: contrary to 

what was predicted, a considerably smaller number of people select the correct 

answer for Time 4 (51.5% select ‘less) than for Time 5 (88.6% select ‘more’). The 

chi-square revealed a significant difference between the two time periods: χ2= (1, 

n=132) 72.8, p < 0.001.  

Again, when it comes to the Standard observation condition, contrary to what 

was predicted, more participants give correct answers for Time 1 (50% select ‘more’) 

than for Time 2 (44.9% ‘less’). This difference is significant: χ2(1, n=136) = 49, p 

<0.001. Similarly, more participants give correct answers for Time 5 (66.9% select 

‘more’) than for Time 4 (45.6% ‘less’). This difference is significant: χ2(1, n=136) = 

24.9, p =0.001. 

In the Parallel intervention condition, contrary to what was predicted, a 

smaller number of people select the correct answer for Time 2 (71.4% select ‘same’) 

than for Time 1 (75.2% select ‘same’). However this difference is not significant: χ2= 

(1, n=133) 0.921, p =0.33. Similarly, a smaller number of people select the correct 

answer for Time 4 (57.9% select ‘less’) than for Time 5 (81.2% select ‘more). This 

difference is significant: χ2= (1, n=133) 29.6, p <0.001.  

When it comes to the Parallel observation condition, contrary to what was 

predicted, a considerably smaller number of people select the correct answer for Time 

2 (59.5% select ‘less’) than for Time 1 (86.3% select ‘more’). This difference is 
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significant: χ2(1, n=131) = 38.8, p <0.001. The same can be said about Time 5: 

contrary to what was predicted, a considerably smaller number of people select the 

correct answer for Time 4 (67.2% select ‘less’) than for Time 5 (81.7% select ‘more’). 

This difference is significant: χ2(1, n=131) = 62, p <0.001. 

 

Hypothesis 5: Participants’ causal inferences about Time 1 and Time 5 will be 

conditional and consistent with their inferences about Time 2 and Time 4 respectively. 

Table 12 shows participants’ answers for Time 1 given their answer for Time 

2, for the two Standard conditions. As can be seen in Table 12, for the Standard 

Observation condition, the majority of participants infer (wrongly) that there would 

be more tuna at Time 2 and more tuna at Time 1 (27.2%).  This means that fewer 

participants give consistent correct normative answers; i.e. indicate there would less 

tuna at Time 2 and then more tuna at Time 1 (16.2%). For the Standard intervention 

condition, the majority of participants who correctly infer that there will be the same 

number of tuna at Time 2, also infer that there would be the same number of tuna at 

Time 1 (N=80.3%). 

Participants’ answers for Time 5 given their answer for Time 4 are displayed 

in Table 13. As can be seen in Table 13, for both conditions, the majority of 

participants who correctly infer that there would be less tuna at Time 4 infer that there 

would be more tuna at Time 5 (Intervention condition: N = 48.5%; Observation 

condition: 34.6%).  
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Table 12. 

Table showing percentage of participants’ answers to Time 1 as a function of their 

answer to Time 2. Values highlighted in bold indicate the correct normative answers 

for each condition. Experiment 3, negative loop scenario. 

 

Answer for Time 2 Answer for Time 1 Intervention Observation 

Less  

Less  0.0% (N=0) 2.2% (N=3) 

More 5.3% (N=7) 16.2% (N=22) 

Same 0.8% (N=1) 5.9% (N=8) 

More 

Less  1.5% (N=2) 1.5% (N=2) 

More 1.5% (N=2) 27.2% (N=37) 

Same 2.3% (N=3) 16.2% (N=22) 

Same 

Less  2.3% (N=3) 2.2% (N=3) 

More 6.1% (N=8) 6.6% (N=9) 

Same 80.3% (N=106) 22.1% (N=30) 

 

Table 14 shows participants’ answers for Time 1 given their answer for Time 

2, for the two Parallel conditions. As can be seen in Table 14, for the Parallel 

observation condition, the majority of participants who correctly infer that there 

would be less tuna at Time 2 also infer that there would be more tuna at Time 1 

(N=55.1%). 

For the Parallel intervention condition, the majority participants who correctly 

infer that there will be the same number of tuna at Time 2, also infer that there would 

be the same number of tuna at Time 1 (N=62.1%). 
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Table 13. 

Table showing percentage of participants’ answers to Time 5 as a function of their 

answer to Time 4. Values highlighted in bold indicate the correct normative answers. 

Experiment 3, negative loop scenario. 

 

Answer for Time 4 Answer for Time 5 Intervention Observation 

Less 

Less  2.3% (N=3) 4.4% (N=6) 

More 48.5% (N=64) 34.6% (N=47) 

Same 0.8% (N=1) 6.6% (N=9) 

More 

Less  0.0% (N=0) 4.4% (N=6) 

More 35.6% (N=47) 27.2% (N=37) 

Same 3.0% (N=4) 6.6% (N=9) 

Same 

Less  0.8% (N=1) 0.0% (N=0) 

More 4.5% (N=6) 5.1% (N=7) 

Same 4.5% (N=6) 11.0% (N=15) 
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Table 14. 

Table showing percentage of participants’ answers to Time 1 as a function of their 

answer to Time 2. Values highlighted in bold indicate the correct normative answers. 

Experiment 3, negative loop scenario. 

 

Answer for Time 2 Answer for Time 1 Intervention Observation 

Less  

Less  2.3% (N=3) 0.7% (N=1) 

More 6.1% (N=8) 55.1% (N=75) 

Same 10.6% (N=14) 1.5% (N=2) 

More 

Less  3.8% (N=5) 2.9% (N=4) 

More 3.0% (N=4) 22.1% (N=30) 

Same 3.0% (N=4) 2.2% (N=3) 

Same 

Less  1.5% (N=2) 2.2% (N=3) 

More 8.3% (N=11) 5.9% (N=8) 

Same 62.1% (N=82) 3.7% (N=5) 

 

Participants’ answers for Time 5 given their answer for Time 4 are displayed 

in Table 15. As can be seen in Table 15, for both conditions, the majority of 

participants who correctly infer that there would be less tuna at Time 4 also infer that 

there would be more tuna at Time 5 (Intervention condition: N = 47.7%; Observation 

condition: 55.1%).  
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Table 15. 

Table showing percentage of participants’ answers to Time 5 as a function of their 

answer to Time 4. Values highlighted in bold indicate the correct normative answers 

for each condition. Experiment 3, negative loop scenario. 

 

Answer for Time 4 Answer for Time 5 Intervention Observation 

Less 

Less  3.0% (N=4) 5.1% (N=7) 

More 47.7% (N=63) 55.1% (N=75) 

Same 7.6% (N=10) 4.4% (N=6) 

More 

Less  1.5% (N=2) 1.5% (N=2) 

More 22.7% (N=30) 14.0% (N=19) 

Same 3.0% (N=4) 9.6% (N=13) 

Same 

Less  0.8% (N=1) 0.7% (N=1) 

More 11.4% (N=15) 9.6% (N=13) 

Same 3.0% (N=4) 3.7% (N=5) 

 

 

Hypothesis 6: Participants in the Parallel conditions will make more correct causal 

inferences than participants in the Standard conditions.  

Table 16 shows the proportion of correct answers for each time period as a 

function of conditions. Values highlighted in bold indicate the highest proportion of 

correct answers between the conditions for each time period. Participants’ answers 

were recoded into two categories: correct and incorrect. These were entered in a chi-

square test for independence comparing the Standard condition with the Parallel 

condition (results reported in Table 16). In line with the experimental hypothesis, the 

Parallel observation condition significantly outperformed the Standard Observation 

condition for each time period. On the other hand, for the Intervention conditions, it 
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appears as though the Standard version outperformed the Parallel version for time 

periods 1, 2 and 5. However, other than for Time 2, the differences are not significant.  

 

Table 16.  

Percentage of participants who gave a correct answer for the four questions, as a 

function of condition. Experiment 3, negative loop scenario. 

 

Question Condition 
Standard 

condition 

Parallel 

condition 

Chi-square 

value 
p-value 

Time 1 
Intervention 83.30% 75.20% 3.518 0.060 

Observation  50% 86.30% 111.5 0.000 

Time 2  
Intervention 88.60% 71.40% 14.49 0.000 

Observation  24.30% 59.50% 51.42 0.000 

Time 4 
Intervention 51.50% 57.90% 1.4 0.236 

Observation  45.60% 67.20% 21.17 0.000 

Time 5 
Intervention 88.60% 81.20% 3.59 0.060 

Observation  66.90% 81.70% 14.65 0.000 

 

 

Positive loop scenario 

Table 17 and Table 18 show the percentage of participants (and number) in 

each answer category for the four questions, as a function of condition. Table 17 

displays results from the two standard conditions whilst Table 18 displays the ones 

from the two parallel conditions. In each table, the ‘correct’ normative answer for 

each question is indicated in bold.  
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Table 17.  

Percentage of participants (and number) in each answer category for the four 

questions, as a function of each standard condition. Values highlighted in bold 

indicate the correct normative answers for each condition. Experiment 3, positive 

loop scenario. 

 

Question Answer Intervention (N=132) Observation (N=136) 

Time 1 Less 2.3%(N=3) 10.3% (N=14) 

More 4.5% (N=6) 70.6% (N=96) 

Same 93.2% (N=123) 19.1% (N=26) 

Time 2  Less 6.1% (N=8) 5.1% (N=7) 

More 7.6% (N=10) 71.3% (N=97) 

Same 86.4% (N=114) 23.5% (N=32) 

Time 4 Less 1.5% (N=2) 4.4% (N=6) 

More 91.7% (N=121) 85.3% (N=116) 

Same 6.8% (N=9) 10.3% (N=14) 

Time 5 Less 3% (N=4) 4.4% (N=6) 

More 90.9% (N=120) 86.8% (N=118) 

Same 6.1% (N=8) 8.8% (N=12) 

 

 

 

 

 

 

\ 
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Table 18.  

Percentage of participants (and number) in each answer category for the four 

questions, as a function of each parallel condition. Values highlighted in bold 

indicate the correct normative answers for each condition. Experiment 3, positive 

loop scenario. 

 

Question Answer Intervention (N=133) Observation (N=131) 

Time 1 Less 9.8%(N=13) 4.6% (N=6) 

More 15% (N=20) 80.2% (N=105) 

Same 75.2% (N=100) 15.3% (N=20) 

Time 2  Less 12.8% (N=17) 7.6% (N=10) 

More 12.8% (N=17) 80.9% (N=106) 

Same 74.4% (N=99) 11.5% (N=15) 

Time 4 Less 4.5% (N=6) 6.9% (N=9) 

More 86.5% (N=115) 82.4% (N=108) 

Same 9% (N=12) 10.7% (N=14) 

Time 5 Less 4.5% (N=6) 3.8% (N=5) 

More 85% (N=113) 87.8% (N=115) 

Same 10.5% (N=14) 8.4% (N=11) 

 

The analyses will be discussed in respect to each of the six experimental 

hypotheses. 

 

Hypothesis 1: Participants will backtrack (change causal inferences according to the 

counterfactual supposition for both Time 2 and Time 1) only in the observation 

conditions (standard and parallel) and not in the intervention conditions (standard 

and parallel). 
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As can be observed in Table 17, most participants in the Standard intervention 

condition do not backtrack when asked about Time 2 (86.4%) and Time 1 (93.2%) - 

they state the number of tuna would not have changed according to the counterfactual 

supposition. On the other hand, in the Standard observation condition, only a few 

answer ‘same’ when asked about Time 2 (23.5%) and Time 1 (19.1%). A chi-square 

for independence was run to compare the observed frequency of cases in each of these 

two conditions for both Time 2 and Time 1. As predicted by the hypothesis, there was 

a significant association between condition and answer choice for Time 2: χ2 (2, 

n=268) = 116.8 p < 0.001, phi = 0.66; and for Time 1: χ2 (2, n=268) = 149.7 p < 

0.001, phi = 0.75. 

Similarly, as can be observed in Table 18, most participants in the Parallel 

intervention condition do not backtrack when asked about Time 2 (74.4%) and Time 

1 (75.2%). On the other hand, in the Parallel observation condition, only a few answer 

‘same’ when asked about Time 2 (11.5%) and Time 1 (15.3%). As predicted by the 

hypothesis, there was a significant association between condition and answer choice 

for Time 2: χ2 (2, n=264) = 128.1, p < 0.001, phi = 0.67; and for Time 1: χ2 (2, n=264) 

= 113.7 p < 0.001, phi = 0.66. 

 

Hypothesis 2: Participants will make the same forward inferences in all conditions 

(change causal inferences according to the counterfactual supposition for both Time 

4 and Time 5).  

As can be observed in Table 17, in the Standard intervention condition only a 

few participants state the number of tuna would be the same at Time 4 (6.8%) and 

Time 5 (6.1%). A similar pattern of results can be observed in the Standard 

observation condition for Time 4 (10.3%) and Time 5 (8.8%).  A chi-square for 
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independence was run to compare the observed frequency of cases in these two 

conditions for both Time 4 and Time 5. As predicted by the hypothesis, there was not 

a significant association between condition and answer choice for Time 4: χ2 (2, 

n=268) 3.12, p = 0.209, phi = 0.1; nor for Time 5: χ2 (2, n=268) = 1.157, p =561, phi 

= 0.066. 

Similarly, as can be observed in Table 18, in the Parallel intervention 

condition only a few participants state the number of tuna would be the same at Time 

4 (4.5%) and Time 5 (10.5%). A similar pattern of results can be observed in the 

Parallel observation condition for Time 4 (10.7%) and Time 5 (8.4%). As predicted 

by the hypothesis, there was not a significant association between condition and 

answer choice for Time 4: χ2 (2, n=264) 0.958, p = 0.619, phi = 0.06; nor for Time 5: 

χ2 (2, n=264) = 0.453, p = 0.797, phi = 0.04. 

 

Hypothesis 3: The answers selected by participants will reflect the correct qualitative 

causal inference according to the counterfactual supposition. 

As can be observed in Table 17 and 18, the correct predicted normative 

answer is indicated in bold and the majority of participants select that answer for each 

time period and for all conditions. In every case, the deviation from 0.3 was highly 

significant (binomial test, p<0.001).  

 

Hypothesis 4: Fewer participants will extend their causal inferences to Time 1 and 

Time 5. 

When it comes to the Standard intervention condition, contrary to the 

experimental hypothesis, slightly more participants select the correct answer for Time 

1 (93.2% select ‘same’) than for Time 2 (86.4% selects ‘same’). This difference is 
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significant: χ2= (1, n=132) 5.211, p = 0.022. On the other hand, for Time 5 in the 

Standard intervention condition, a very similar number of participants select the 

correct answer for Time 4 (91.7% select ‘more’) and Time 5 (90.9 % select ‘more’): 

χ2= (1, n=132) 0.099 p =0.75.   

Similarly, when it comes to the Standard observation condition, a very similar 

number of participants select the correct answer for Time 1 (70.6% select ‘more’) and 

Time 2 (71.3% ‘more’): χ2(1, n=132) = 0.039, p =0.844. Likewise, a very similar 

number of participants select the correct answer for Time 5 (86.8% select ‘more’) and 

Time 4 (85.3% ‘more’): χ2(1, n=132) = 0.284, p =0.59. 

In the Parallel intervention condition, a very similar number of participants 

select the correct answer for Time 1 (75.2% select ‘same’) and Time 2 (74.4% select 

‘same’): χ2= (1, n=133) 0.003, p =0.8. Likewise, a very similar number of participants 

select the correct answer for Time 4 (86.5% select ‘more’) and Time 5 (85% ‘more’): 

χ2(1, n=133) = 0.03, p =0.85. 

The same can be said for Parallel observation condition, a very similar number 

of participants select the correct answer for Time 1 (80.2% select ‘more’) and for 

Time 2 (80.9% select ‘more’): χ2(1, n=131) = 0.027, p = 0.87. Likewise, a very 

similar number of participants select the correct answer for Time 5 (87.8% select 

‘more’) and Time 4 (82.4% ‘more’): χ2(1, n=131) = 0.118, p =0.73. 

 

Hypothesis 5: Participants’ causal inferences about Time 1 and Time 5 will be 

conditional and consistent with their inferences about Time 2 and Time 4 respectively. 

Table 19 shows participants’ answers for Time 1 given their answer for Time 

2, for the two Standard conditions. As can be seen in Table 19, for the Standard 

Observation condition, the majority of participants who correctly infer that there 
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would be more tuna at Time 2 also infer that there would be more tuna at Time 1 

(83.3%).  For the Standard observation condition, the majority of participants who 

correctly infer that there will be the same number of tuna at Time 2, also infer that 

there would be the same number of tuna at Time 1 (N=61%). 

 

Table 19. 

Table showing percentage of participants’ answers to Time 1 as a function of their 

answer to Time 2. Values highlighted in bold indicate the correct normative answers 

for each condition. Experiment 3, positive loop scenario. 

Answer for Time 2 Answer for Time 1 Intervention Observation 

Less  

Less  0% (N=0) 2.9% (N=4) 

More 0.8% (N=1) 2.2% (N=3) 

Same 5.3% (N=7) 0% (N=0) 

More 

Less  0.8% (N=1) 3.7% (N=5) 

More 2.3% (N=3) 61% (N=83) 

Same 4.5% (N=6) 6.6% (N=9) 

Same 

Less  1.5% (N=2) 3.7% (N=5) 

More 3.5% (N=2) 7.4% (N=10) 

Same 83.3% (N=110) 5.1% (N=7) 

 

Participants’ answers for Time 5 given their answer for Time 4 are displayed 

in Table 19. As can be seen in Table 20, for both conditions, the majority of 

participants who correctly infer that there would be more tuna at Time 4 infer that 

there would be more tuna at Time 5 (Intervention condition: N = 88.6%; Observation 

condition: 80.1%).  
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Table 20. 

Table showing percentage of participants’ answers to Time 5 as a function of their 

answer to Time 4. Values highlighted in bold indicate the correct normative answers 

for each condition. Experiment 3, positive loop scenario. 

Answer for Time 4 Answer for Time 5 Intervention Observation 

Less 

Less  0.7% (N=1)  0.7%(N=1) 

More  0% (N=0)  2.2% (N=3) 

Same  0.8% (N=1)  1.5% (N=2) 

More 

Less   0.8% (N=1)   2.9% (N=4) 

More 88.6% (N=117) 80.1%  (N=109) 

Same  2.3% (N=3)  2.2% (N=3) 

Same 

Less   1.5%(N=2)  0.7% (N=1) 

More 2.3%  (N=3)  4.4% (N=6) 

Same 3% (N=4)  5.1% (N=7) 

 

Table 21 shows participants’ answers for Time 1 given their answer for Time 

2, for the two Parallel conditions. As can be seen in Table 21, for the Parallel 

Observation condition, the majority of participants who correctly infer that there 

would be more tuna at Time 2 also infer that there would be more tuna at Time 1 

(71%).  For the Standard observation condition, the majority of participants who 

correctly infer that there will be the same number of tuna at Time 2, also infer that 

there would be the same number of tuna at Time 1 (N=67.7%). 
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Table 21. 

Table showing percentage of participants’ answers to Time 1 as a function of their 

answer to Time 2. Values highlighted in bold indicate the correct normative answers 

for each condition. Experiment 3, positive loop scenario. 

Answer for Time 2 Answer for Time 1 Intervention Observation 

Less  

Less        6% (N=8) 1.5% (N=2) 

More 3% (N=4) 4.6% (N=6) 

Same 3.8% (N=5) 1.5% (N=2) 

More 

Less  2.3% (N=3) 3.1% (N=4) 

More 6.8% (N=9) 71% (N=93) 

Same 3.8% (N=5) 6.9% (N=9) 

Same 

Less  1.5% (N=2) 0% (N=0) 

More 5.3% (N=7) 4.6% (N=6) 

Same 67.7% (N=90) 6.9% (N=9) 

 

Similarly, causal inferences about Time 5 should be contingent on causal 

inferences about Time 4. Participants’ answers for Time 5 given their answer for 

Time 4 are displayed in Table 22. As can be seen in Table 22, for both conditions, the 

majority of participants who correctly infer that there would be more tuna at Time 4 

infer that there would be more tuna at Time 5 (Intervention condition: N = 78.9%; 

Observation condition: 78.6%).  
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Table 22. 

Table showing percentage of participants’ answers to Time 5 as a function of their 

answer to Time 4. Values highlighted in bold indicate the correct normative answers 

for each condition. Experiment 3, positive loop scenario. 

Answer for Time 4 Answer for Time 5 Intervention Observation 

Less 

Less  0.8% (N=1) 1.5% (N=2) 

More 1.5% (N=2) 3.1% (N=4) 

Same 2.3% (N=3) 2.3% (N=3) 

More 

Less  0.8% (N=1) 1.5% (N=2) 

More 78.9% (N=105) 78.6% (N=103) 

Same 6.9% (N=9) 2.3% (N=3) 

Same 

Less  3% (N=4) 0.8% (N=1) 

More 4.5% (N=6) 6.1% (N=8) 

Same 1.5% (N=2) 3.8% (N=5) 

 

 

Hypothesis 6: Participants in the Parallel conditions will make more correct causal 

inferences than participants in the Standard conditions.  

Table 23 shows the proportion of correct answers for each time period as a 

function of conditions. Values highlighted in bold indicate the highest proportion of 

correct answers between the conditions for each time period. Participants’ answers 

were recoded into two categories: correct and incorrect. These were entered in a chi-

square test for independence comparing the Standard condition with the Parallel 

condition (results reported in Table 23). The Parallel observation condition 

significantly outperformed the Standard Observation condition for time periods 1 and 

2 (time periods 4 and 5 are more or less equal). On the other hand, for the Intervention 
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conditions, the Standard version outperformed the Parallel version for all time periods 

(significantly for time periods 1 and 2).  

 

Table 23.  

Percentage of participants who gave a correct answer for the four questions, as a 

function of condition. Experiment 3, positive loop scenario. 

Question Condition 
Standard 

condition 

Parallel 

condition 

Chi-square 

value 
p-value 

Time 1 
Intervention 93.2% 75.2% 17.37 0.001 

Observation  70.6% 80.2% 5.8 0.02 

Time 2  
Intervention 86.4% 74.4% 7.56 0.006 

Observation  71.3% 80.9% 5.96 0.015 

Time 4 
Intervention 91.7% 86.5% 2.316 0.128 

Observation  85.3% 82.4% 0.58 0.446 

Time 5 
Intervention 90.9% 85.0% 2.73 0.098 

Observation  86.8% 87.8% 0.093 0.75 

 

 

4.13 Discussion 

Experiment 1 provided support for the hypothesis that people are able to 

reason with simple causal loops and make sensible causal inferences accordingly. 

Experiment 2 extended these findings to a more complex loop where participants had 

to reason explicitly about the state of both causal factors involved in the loop 

underlying the scenario. In Experiment 1 participants’ inferences were clearly 

consistent with level 3 causal reasoning for both negative and positive loop scenarios. 
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In Experiment 2 however, participants’ answers for the negative loop scenario were 

noisier - hence it provided mixed support for level 2 causal reasoning. This was true 

particularly for the Observation condition in the negative loops scenario. Therefore, 

the aim of Experiment 3 (besides extending findings to another scenario) was to 

investigate if the noisier responses resulted from the potentially unclear nature of the 

counterfactual supposition in the Observation conditions (see Discussion of 

Experiment 2 for further details).  

 

Negative loop scenario 

As in the previous experiments, participants attained level 1 causal reasoning. 

They backtracked only in the Observation conditions and not in the Intervention 

conditions (hypothesis 1). The difference in backtracking between conditions was 

significant for both sets of conditions (Standard conditions and Parallel conditions). 

Secondly, it was predicted that participants would make similar forward inferences in 

both conditions (hypothesis 2). This was true for all time periods except for Time 

period 5 in the Standard conditions – results differed slightly between the Intervention 

and the Observation conditions.  

Experiment 3 attempted to increase level 2 causal reasoning by introducing the 

Parallel conditions. As in the previous experiments, it was predicted that the majority 

of participants would provide a correct normative answer in both Standard and 

Parallel conditions (hypothesis 3). For the Standard intervention condition, the 

majority of participants selected that answer for each time period (significantly higher 

than chance for all time periods). For the Standard observation condition, the majority 

of participants selected the correct answer only for Time 1, 4 and 5 (significantly 

higher than chance only for Time 1 and 5). Unexpectedly, for Time 2, less than third 
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of participants made the correct choice. On the other hand, for the Parallel conditions, 

the majority of participants selected the correct answer for each time period and for 

both conditions (significantly higher than chance for all time periods).  

These results provide clear support for the hypothesis that the number of 

correct answers would be greater in the Parallel conditions (hypothesis 6). In terms of 

direct comparison of number of correct answers between the two Intervention 

conditions, for the negative loop scenario there was no important difference between 

the two at any time period. The number of correct answers was indeed higher for 

Time period 2 in the Standard intervention condition than in the Parallel intervention 

condition (in contradiction with the hypothesis) but they were still very high in both 

sets of conditions. Interestingly, the number of correct answers for time period 4 is 

low for both sets of intervention conditions (Standard: 51.5%; Parallel 57.9%). That 

being said, the number of correct responses is still significantly higher than chance in 

both cases. Therefore these findings support that the idea that the Parallel version of 

the conditions clarifies the scenario and the supposition.  

The second question concerning level 2 causal reasoning is the extent to which 

inferences are extended to Time 1 and 5 (hypothesis 4). Contrary to the experimental 

hypothesis, for both sets of conditions, overall participants give more correct answers 

for times 1 and 5 rather than for times 2 and 4. The only exception is the Standard 

Intervention condition where participants give significantly more correct answers for 

Time 2 rather than Time 1. Similarly, in the Parallel intervention condition, even 

though slightly more participants give correct answers for Time 1, the difference is 

not significant. On the other hand, when it comes to forward inferences, participants 

give significantly more correct answers for Time 5 rather than for Time 4 (for both 

sets of conditions).  
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Given that participants did not consistently attain level 2 causal reasoning for 

the two Standard conditions, it follows that their inferences did not have the 

coherency required by level 3. The problem arises when backtracking in the 

Observation condition – as mentioned above, the majority selects the wrong 

normative answer for Time 2. This majority then gives the correct normative answer 

for Time 1 but this results in an incoherent causal model of the loop. In other words, 

the conditional analyses show that the majority indicated that the number of tuna 

increases both at Time 2 and at Time 1. On the other hand, forward inferences are 

consistent for both conditions. As expected, participants in the parallel conditions 

displayed level 3 causal reasoning: inferences about Night 1 and Night 5 were 

conditional and consistent with their inferences about Night 2 and Night 4 

respectively (this was true for both conditions in both scenarios).  

 

Positive loop scenario 

In contrast to the negative loop scenario, the results were in line with all the 

experimental hypotheses. This is likely to be due to the fact that the positive loop 

scenario might be easier to understand and reason with because the changes only 

happen in one direction. Surprisingly, however, when it comes to comparing the 

number of correct answers between the two sets of conditions (Standard conditions 

versus Parallel conditions) the number of correct answers is significantly higher for 

the Standard version of the Intervention condition for time periods 1 and 2. The 

reverse is true for the Observation condition – number of correct answers is 

significantly higher for the Parallel version for both time periods 1 and 2.  
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4. 14 Experiment 4 

Experiment 4 aims to further clarify the counterfactual supposition from the 

preceding experiments. The supposition used in the Experiments 1 and 2 does not 

specify at which time point (start, middle, end) during time period 3 the affected 

variable would change. Therefore Experiment 3 specified ‘at the start of time period 

3…’ However, what Experiment 3 does not specify is at which time point the other 

variable is then affected by the change in the state of the variable affected by the 

supposition. In other words, participants are told that the number of tuna has changed 

at the start of time period 3, but they are not told explicitly at which point in time this 

affects fishing. This means that participants could assume either that fishing changes 

(resumes) during time period 3 or during time period 4.  In order to resolve this 

potential source of confusion, Experiment 4 added a specification to the 

counterfactual supposition: “Therefore suppose that there has been fishing throughout 

month 3”.  

 

4.15 Method 

Participants 

628 participants were recruited through Amazon Turk. Participation in the 

survey was limited to people living in the United States to maximize likelihood of 

recruiting participants who speak English as their first language. The study was 

advertised as investigating reasoning about causes and effects.  All participants were 

paid $0.50.  391 were males (62.3%) and 237 were females (37.7%).  The mean age 

was 29.2 years (SD = 10.01; range 18 to 72 years). The participants’ education 

background was approximately equally split between Sciences (N=246; 39.2%), Arts 

(N=167; 26.6%) and Mixed (N=215; 34.2%). 
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Design 

The experiment comprised two between-subjects conditions: the parallel 

observation condition and the parallel intervention condition. All participants were 

presented with the same scenario. The dependent variable was the answers to the four 

questions - a question about each time period. Participants were always questioned 

about the two past time periods first and the future ones after, but the order in which 

they were questioned about them was counterbalanced. The survey ended with a 

series of demographic questions.  

 

Materials 

The materials were identical to the ones in Experiment 3 (but only the Parallel 

conditions and the negative loop scenario were investigated). 

Scenario. The scenarios were identical to the two scenarios presented in 

Experiment 3. 

Counterfactual manipulations. The exact wording of the suppositions in the 

two conditions was identical to the ones in Experiment 3, with the exception that the 

following sentence was added at the end: “Therefore suppose that there has been 

fishing throughout month 3”. 

Questions. The questions were identical to the ones in Experiment 3. 

 

Procedure 

The procedure was as in previous experiments. 
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4.16 Results 

Negative loop scenario 

Table 24 shows the percentage of participants (and number) in each answer 

category for the four questions, as a function of condition. The ‘correct’ normative 

answer for each question is indicated in bold.  

 

Table 24.  

Percentage of participants (and number) in each answer category for the four 

questions, as a function of condition. Values highlighted in bold indicate the correct 

normative answers for each condition. Experiment 4, negative loop scenario. 

Question Answer Intervention (N=321) Observation (N=307) 

Time 1 Less 10.6% (N=34) 5.9% (N=18) 

More 17.4% (N=56) 82.7% (N=254) 

Same 72% (N=231) 11.4% (N=35) 

Time 2  Less 19.3% (N=62) 72.6% (N=223) 

More 10.9% (N=35) 18.2% (N=56) 

Same 69.8% (N=224) 9.1% (N=28) 

Time 4 Less 50.8% (N=163) 82.7% (N=254) 

More 37.1% (N=119) 7.2% (N=22) 

Same 12.1% (N=39) 10.1% (N=31) 

Time 5 Less 9.3% (N=30) 11.4% (N=35) 

More 77.3% (N=248) 76.9% (N=235) 

Same 13.4% (N=43) 12.7% (N=37) 

 

The analyses will be discussed in respect to each of the five experimental hypotheses. 
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Hypothesis 1: Participants will backtrack (change causal inferences according to the 

counterfactual supposition for both Time 2 and Time 1) only in the observation 

condition and not in the intervention condition.  

 As can be observed in Table 24, most participants in the Intervention 

condition do not backtrack when asked about Time 2 (69.8%) and Time 1 (72%) - 

they state the number of tuna would not have changed according to the counterfactual 

supposition. On the other hand, in the Observation condition, only a few answer 

‘same’ when asked about Time 2 (9.1%) and Time 1 (11.4%). A chi-square for 

independence was run to compare the observed frequency of cases in each condition 

for both Time 2 and Time 1. As predicted by the hypothesis, there was a significant 

association between condition and answer choice for Time 2: χ2 (2, n=628) = 248.1 p 

< 0.001, phi = 0.63; and for Time 1: χ2 (2, n=628) = 275.6, p = 0.001, phi = 0.66. 

 

Hypothesis 2: Participants will make the same forward inferences in both conditions 

(change causal inferences according to the counterfactual supposition for both Time 

4 and Time 5). 

As can be observed in Table 24, in the Intervention condition only a few 

participants state the number of tuna would be the same at Time 4 (12.1%) and Time 

5 (13.4%). A similar pattern of results is found in the Observation condition for Time 

4 (10.1%) and Time 5 (12.7%).  A chi-square for independence was run to compare 

the observed frequency of cases in each condition for both Time 4 and Time 5. 

Contrary to the hypothesis, there was a significant association between condition and 

answer choice for Time 4: χ2 (2, n=628) = 87, p <0.001 phi = 0.37. On the other hand, 

and in accordance to predictions, there was no difference between conditions for Time 

5: χ2 (2, n=628) = 0.873, p = 0.646, phi = 0.037. 
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Hypothesis 3: The answers selected by participants will reflect the correct qualitative 

causal inference according to the counterfactual supposition. 

As can be observed in Table 24, the correct predicted normative answer is 

indicated in bold and the majority of participants select that answer for all time 

periods and conditions. These differences are significantly greater than chance 

(binomial test, p<0.001) for all time periods except for Time 4 in the Intervention 

condition: only 50.8% of participants select the correct answer (‘less’), which results 

in a non-significant binomial test (p=0.412) 

 

Hypothesis 4: Fewer participants will extend their causal inferences to Time 1 and 

Time 5. 

In the Observation condition, contrary to the hypothesis, slightly more 

participants select the correct normative answer for Time 1 (82.7% select ‘more’) than 

for Time 2 (only 72.6% select ‘less’). Participants’ answers were recoded into two 

categories: correct and incorrect. These were entered in a chi-square test for 

independence comparing Time 1 to Time 2. The chi-square revealed a significant 

difference between the two time periods: χ2= (1, n=307) 15.75 p < 0.001. On the other 

hand, when it comes to Time 5 in the Observation condition, slightly more 

participants select the correct normative answer for Time 4 (82.7% answer ‘less’) than 

for Time 5 (76.9 % select ‘more’).  This difference is in accordance with the 

hypothesis and it is significant: χ2(1, n=307) = 6.55, p = 0.01. 

When it comes to the Intervention condition, a very similar number of 

participants select the correct answer for Time 2 (69.8% select ‘same’) and for Time 1 

(72% selects ‘same’. This difference is not significant: χ2(1, n=321) = 0.724, p 
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=0.395. On the other hand, contrary to the hypothesis, a greater number selects the 

correct answer for Night 5 (77.3% select ‘less’) than for Night 4 (50.8% select ‘less’). 

This difference is significant: χ2(1, n=321) = 128.1 p < 0.001. 

 

Hypothesis 5: Participants’ causal inferences about Time 1 and Time 5 will be 

conditional and consistent with their inferences about Time 2 and Time 4 respectively. 

Causal inferences about Time 1 should be contingent on causal inferences 

about Time 2. Participants’ answers for Time 1 given their answer for Time 2 are 

displayed in Table 25. As can be seen in Table 25, in accordance to the hypothesis, 

for the Observation condition, the majority of participants who correctly infer that 

there would be less tuna at Time 2, also correctly infer that there would more tuna at 

Time 1 (N=65.15%). For the Intervention condition, the majority of participants who 

correctly infer that there would be the same number of tuna at Time 2 also correctly 

infer that there would be the same number of tuna at Time 1 (57.94%).  

Similarly, causal inferences about Time 5 should be contingent on causal 

inferences about Time 4. Participants’ answers for Time 5 given their answer for 

Time 4 are displayed in Table 26. As can be seen in Table 26, in line with the 

hypothesis, for both conditions, the majority of participants who correctly infer that 

there would be less tuna at Time 4 also correctly infer there would be more Tuna at 5 

(Intervention condition: N = 37.4%; Observation condition: 65.5%).  
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Table 25. 

Table showing percentage of participants’ answers to Time 1 as a function of their 

answer to Time 2. Values highlighted in bold indicate the correct normative answers. 

Experiment 4, negative loop scenario. 

Answer for Time 2 Answer for Time 1 Intervention Observation 

Less  

Less  3.43% (N=11) 2.61% (N=8) 

More 6.85% (N=22) 65.15% (N=200) 

Same 9.03% (N=29) 4.89% (N=15) 

More 

Less  1.56% (N=5) 2.61% (N=8) 

More 4.36% (N=14) 13.03% (N=40) 

Same 4.98% (N=16) 2.61% (N=8) 

Same 

Less  5.61% (N=18) 0.65% (N=2) 

More 6.23% (N=20) 4.56% (N=14) 

Same 57.94% (N=186) 3.91% (N=12) 
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Table 26. 

Table showing percentage of participants’ answers to Time 5 as a function of their 

answer to Time 4. Values highlighted in bold indicate the correct normative answers. 

Experiment 4, negative loop scenario. 

Answer for Time 4 Answer for Time 5 Intervention Observation 

Less 

Less  6.54% (N=21) 9.45% (N=29) 

More 37.38% (N=120) 65.47% (N=201) 

Same 6.85% (N=22) 7.82% (N=24) 

More 

Less  1.56% (N=5) 0.65% (N=2) 

More 33.02% (N=106) 4.89% (N=15) 

Same 1.87% (N=6) 1.63% (N=5) 

Same 

Less  1.25% (N=4) 1.30% (N=4) 

More 6.23% (N=20) 6.19% (N=19) 

Same 4.67% (N=15) 2.61% (N=8) 

 

Hypothesis 6: Participants in Experiment 4 will make more correct causal inferences 

than participants in the Experiment 3. 

Table 27 shows the proportion of correct answers for each time period as a 

function of experiment. Values highlighted in bold indicate the highest proportion of 

correct answers between the experiments for each time period. Participants’ answers 

were recoded into two categories: correct and incorrect. These were entered in a chi-

square test for independence comparing Experiment 3 with Experiment 4 (results 

reported in Table 27).  

A significantly larger proportion of participants give the correct answer for 

time periods 2 and 4 in the observation condition in Experiment 4, than in Experiment 

3.  However, the format of Experiment 4 does not seem to outperform the one of 
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Experiment 3 for the Intervention condition – in fact, even though not significantly, 

Experiment 3 yields a higher proportion of correct answers in all other cases. 

 

Table 27. 

Percentage of participants who gave a correct answer for the four questions, as a 

function of experiment. Experiment 3 and 4, negative loop scenario. 

 

Question Condition 
Experiment 

3 

Experiment 

4 

Chi-square 

value 
p-value 

Time 1 
Intervention 75.20% 72.00% 0.508 0.48 

Observation  86% 82.70% 0.906 0.341 

Time 2  
Intervention 71.40% 69.80% 0.121 0.727 

Observation  59.50% 72.60% 8.626 0.003 

Time 4 
Intervention 57.90% 50.80% 2.017 0.155 

Observation  67.20% 82.70% 16.79 0.001 

Time 5 
Intervention 81.20% 77.30% 0.867 0.352 

Observation  81.70% 76.90% 1.297 0.254 

 

Positive loop scenario 

Table 28 shows the percentage of participants (and number) in each answer 

category for the four questions, as a function of condition. In each table, the ‘correct’ 

normative answer for each question is indicated in bold.  
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Table 28.  

Percentage of participants (and number) in each answer category for the four 

questions, as a function of each condition. Values highlighted in bold indicate the 

correct normative answers for each condition. Experiment 4, positive loop scenario. 

Question Answer Intervention (N=321) Observation (N=307) 

Time 1 Less 8.4% (N=27) 9.1% (N=28) 

More 11.5% (N=37) 79.8% (N=245) 

Same 80.1% (N=257) 11.1% (N=34) 

Time 2  Less 13.1% (N=42) 14% (N=43) 

More 10.9% (N=35) 70.7% (N=217) 

Same 76% (N=244) 15.3% (N=47) 

Time 4 Less 19.9% (N=64) 9.4% (N=29) 

More 69.5% (N=223) 73.6% (N=226) 

Same 10.6% (N=34) 16.9% (N=52) 

Time 5 Less 6.5% (N=21) 8.8% (N=27) 

More 86.9% (N=279) 81.4% (N=250) 

Same 6.5% (N=21) 9.8% (N=30) 

 

The analyses will be discussed in respect to each of the six experimental hypotheses. 

 

Hypothesis 1: Participants will backtrack (change causal inferences according to the 

counterfactual supposition for both Time 2 and Time 1) only in the Observation 

condition (and not in the Intervention condition).  

As can be observed in Table 28, most participants in the intervention condition 

do not backtrack when asked about Time 2 (76%) and Time 1 (80.1%) - they state the 

number of tuna would not have changed according to the counterfactual supposition. 

On the other hand, in the Standard observation condition, only a few answer ‘same’ 
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when asked about Time 2 (15.3%) and Time 1 (11.1%). A chi-square for 

independence was run to compare the observed frequency of cases in each of these 

two conditions for both Time 2 and Time 1. As predicted by the hypothesis, there was 

a significant association between condition and answer choice for Time 2: χ2 (2, 

n=628) = 264.6 p < 0.001, phi = 0.65; and for Time 1: χ2 (2, n=628) = 324.18 p < 

0.001, phi = 0.72. 

 

Hypothesis 2: Participants will make the same forward inferences in both conditions 

(change causal inferences according to the counterfactual supposition for both Time 

4 and Time 5). 

As can be observed in Table 28, in the Intervention condition only a few 

participants state the number of tuna would be the same at Time 4 (10.6%) and Time 

5 (6.5%). A similar pattern of results can be observed in the Observation condition for 

Time 4 (16.9%) and Time 5 (9.8%).  A chi-square for independence was run to 

compare the observed frequency of cases in these two conditions for both Time 4 and 

Time 5. Contrary to the hypothesis, there was a significant association between 

condition and answer choice for Time 4: χ2 (2, n=628) 16.66, p < 0.001, phi = 0.163. 

On the other hand, in line with the hypothesis, there was no significant association 

between condition and answer choice for Time 5: χ2 (2, n=628) 3.62, p = 0.164, phi = 

0.076. 

 

Hypothesis 3: The answers selected by participants will reflect the correct qualitative 

causal inference according to the counterfactual supposition. 

As can be observed in Table 28, the correct predicted normative answer is 

indicated in bold and the majority of participants select that answer for each time 
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period and for all conditions. In every case, the deviation from 0.3 was highly 

significant (binomial test, p<0.001).  

 

Hypothesis 4: Fewer participants will extend their causal inferences to Time 1 and 

Time 5. 

When it comes to the Intervention condition, contrary to the experimental 

hypothesis, significantly more participants select the correct answer for Time 1 

(80.1% select ‘same’) than for Time 2 (76% selects ‘same’): χ2= (1, n=321) 2.887, p = 

0.089. Likewise, for Time 5 in the Intervention condition, a remarkably greater 

number of participants select the correct answer for Time 5 (86.9 % select ‘more’) 

than for Time 4 (69.5% select ‘more’): χ2= (1, n=321) 46.063 p<0.0001.   

Very similarly, when it comes to the Observation condition, contrary to the 

experimental hypothesis, significantly more participants select the correct answer for 

Time 1 (79.8% select ‘same’) than for Time 2 (70.7% selects ‘same’): χ2= (1, n=321) 

12.324, p < 0.001. Likewise, for Time 5 in the Intervention condition, a significantly 

greater number of participants select the correct answer for Time 5 (81.4 % select 

‘more’) than for Time 4 (73.6% select ‘more’): χ2= (1, n=321) 010.38 p =0.00123. 

 

Hypothesis 5: Participants’ causal inferences about Time 1 and Time 5 will be 

conditional and consistent with their inferences about Time 2 and Time 4 respectively. 

Table 29 shows participants’ answers for Time 1 given their answer for Time 

2. As can be seen in Table 29, for the Observation condition, the majority of 

participants who correctly infer that there would be more tuna at Time 2 also infer 

that there would be more tuna at Time 1 (83.3%).  For the Intervention condition, the 
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majority of participants who correctly infer there would be the same number of tuna 

at Time 2 also infer that there would be the same number of tuna at Time 1 (69.2%).  

 

Table 29. 

Table showing percentage of participants’ answers to Time 1 as a function of their 

answer to Time 2. Values highlighted in bold indicate the correct normative answers 

for each condition. Experiment 4, positive loop scenario. 

Answer for Time 2 Answer for Time 1 Intervention Observation 

Less  

Less  2.8% (N= 9) 5.2% (N= 16) 

More 2.2% (N= 7) 6.2% (N= 19) 

Same 8.1% (N= 26) 2.6% (N= 8) 

More 

Less  2.2% (N= 7) 1.0% (N= 3) 

More 5.9% (N= 19) 65.5% (N= 201) 

Same 2.8% (N= 9) 4.2% (N= 13) 

Same 

Less  3.4% (N= 11) 2.9% (N= 9) 

More 3.4% (N= 11) 8.1% (N= 25) 

Same 69.2% (N= 222) 4.2% (N= 13) 

 

Participants’ answers for Time 5 given their answer for Time 4 are displayed 

in Table 30. As can be seen in Table 30, for both conditions, the majority of 

participants who correctly infer that there would be more tuna at Time 4 infer that 

there would be more tuna at Time 5 (Intervention condition: N = 65.4%; Observation 

condition: 64.5%).  
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Table 30. 

Table showing percentage of participants’ answers to Time 5 as a function of their 

answer to Time 4. Values highlighted in bold indicate the correct normative answers 

for each condition. 

Answer for Time 4 Answer for Time 5 Intervention Observation 

Less 

Less  3.7% (N=12) 2.6% (N=8) 

More 14.6% (N=47) 5.9% (N=18) 

Same 1.6% (N=5) 4.2% (N=13) 

More 

Less  1.6% (N=5) 3.9% (N=12) 

More 65.4% (N=210) 64.5% (N=198) 

Same 2.5% (N=8) 5.2% (N=16) 

Same 

Less  1.2% (N=4) 2.3% (N=7) 

More 6.9% (N=22) 11.1% (N=34) 

Same 2.5% (N=8) 3.6% (N=11) 

 

 

Hypothesis 6: Participants in Experiment 4 will make more correct causal inferences 

than participants in the Experiment 3. 

Table 31 shows the proportion of correct answers for each time period as a 

function of experiment. Values highlighted in bold indicate the highest proportion of 

correct answers between the experiments for each time period. Participants’ answers 

were recoded into two categories: correct and incorrect. These were entered in a chi-

square test for independence comparing Experiment 3 with Experiment 4 (results 

reported in Table 31).  

Contrary to the experimental hypothesis, a significantly larger proportion of 

participants give the correct answer for time periods 2 and 4 in the Observation 
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condition in Experiment 3, than in Experiment 4. The same is true for time period 4 in 

the Intervention condition.  

 

Table 31. 

Percentage of participants who gave a correct answer for the four questions, as a 

function of experiment. Experiment 3 and 4, positive loop scenario. 

 

Question Condition 
Experiment 

3 

Experiment 

4 

Chi-square 

value 
p-value 

Time 1 
Intervention 75.20% 80.10% 1.506 0.219 

Observation  80.2% 79.80% 0.01 0.92 

Time 2  
Intervention 74.40% 76.00% 0.14 0.707 

Observation  80.90% 70.70% 5.092 0.024 

Time 4 
Intervention 86.50% 69.50% 13.63 0.001 

Observation  82.40% 73.60% 3.986 0.046 

Time 5 
Intervention 85.00% 86.90% 0.317 0.573 

Observation  87.80% 81.40% 2.705 0.1 

 

 

4.17 Discussion 

Like the three preceding experiments, Experiment 4 also provided support for 

the hypothesis that people are able to reason with simple causal loops and make 

sensible causal inferences accordingly. Experiment 4 aimed to further clarify the 

counterfactual supposition from Experiment 3 by adding a specification to the 
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counterfactual supposition: “Therefore suppose that there has been fishing throughout 

month 3”.  

 

Negative loop scenario 

As in the previous experiments, participants had no trouble with level 1 causal 

inference. They backtracked only in the Observation conditions and not in the 

Intervention conditions (hypothesis 1). The difference in backtracking between 

conditions was significant. Secondly, they made similar forward inferences in both 

conditions for both scenarios. This was true for most time periods – at time 4 there 

was a significant association between condition and answer choice - the number of 

participants who state there would be less tuna is significantly greater in the 

Observation condition  (82.7%) than in the Intervention condition (50.8%); many 

state there would be more tuna (37.1%). 

Furthermore, the majority of participants displayed level 2 causal inferences. 

They made correct causal inferences for each time period and condition (hypothesis 

3). These differences are significantly greater than chance for all time periods except 

for Time 4 in the Intervention condition: only 50.8% of participants select the correct 

answer (‘less’), which results in a non-significant binomial test.  

Part of the explanation as to why fewer participants make a correct causal 

inference in the Intervention condition can be found in the very nature of the 

Intervention manipulation. There could be the feeling that an Intervention is open to 

noise, or errors. In particular, in Experiment 4 the intervention consisted in 

introducing new tunas into the ocean – potentially, some participants might think that 

these new tunas might fail to survive in the new environment, or reproduce at a 

normal rate. Such assumptions would mean part of the tuna would die and therefore 
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the quota might not be high enough for fishing to resume, resulting in more tuna at 

Time 4.  

Like in Experiment 3, contrary to the experimental hypothesis, overall 

participants gave more correct answers for time periods 1 and 5 than for time periods 

2 and 4. The only exception where the number of correct answers was greater for the 

closer time period was in the Intervention condition: slightly more participants 

selected the correct normative answer for Time 4 rather for than for Time 5.  

Finally, in order to display level 3 causal reasoning, participants had to make 

inferences that were coherent with their representation of the causal loop (hypothesis 

5). This was indeed the case - conditional analyses showed that the majority of 

participants’ causal inferences about Time 1 and Time 5 were conditional and 

consistent with their inferences about Time 2 and Time 4 respectively (this was true 

for both conditions). 

To analyze whether the added clarification to the supposition significantly 

improved reasoning, the results from Experiment 4 were compared directly with those 

from the Parallel conditions in Experiment 3.  Participants gave significantly more 

correct answers for Time 2 and Time 4 in the Observation condition. This finding 

supports the idea that at least some of the noise encountered in Experiment 3 was due 

to confusion about the state of the ‘fishing’ variable. 

 

Positive loop scenario 

As in Experiment 3, all results were in line with all the experimental 

hypotheses. The results from Experiment 4 were compared directly with those from 

the Parallel conditions in Experiment 3.  Surprisingly, participants gave significantly 
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more correct answers in Experiment 3 for both Time 2 in the observation condition 

and for Time 4 in both the Observation condition and the Intervention condition. 

 

 

4.18 General Discussion 

 

Summary of findings 

The aim of the study was to investigate the boundary conditions for human 

reasoning about causal loops. Given the complex nature of this question, the present 

research aimed to provide a stepping-stone for further progressive explorations. 

Therefore the current study started by adopting a bottom-up approach to investigate if 

people can engage in basic forms of reasoning - proper causal inferences - based on 

simple representations of causal loops.  

In four experiments participants were presented with a simple scenario based 

on a causal loop. The nature of the loop was either a negative (stabilizing) or a 

positive (reinforcing) causal loop. Participants were provided with information about 

the state of the causal factors in the scenario at five different time periods. Following 

the presentation of these values, participants were presented with either a 

counterfactual observation or a counterfactual intervention affecting the mid-time 

period. In both conditions they were then asked to make causal inferences about the 

two past time periods and about the two future time periods. The causal inferences 

consisted in estimating how the values of the causal factors might or might not have 

changed according to the counterfactual supposition. Importantly, the answers 

required a causal inference in a qualitative format. 

The experimental hypothesis was that people are able to reason with simple 
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causal loops and make sensible causal inferences accordingly. The extent to which 

people make sensible causal inferences when reasoning with causal loops was 

formalized into three levels. The first level is simply differentiation between a true 

causal inference and a mere estimate of covariation. The second level builds on level 

1 in that it consists in providing the correct normative inference (aside from the type 

of inference). Finally, the third level of causal reasoning requires consistency within 

the model – causal inferences that are coherent with each other. 

The results of each experiment, in relation to these three levels are 

summarized in Table 31. The results are discussed in more detail following each 

experiment (see Discussions). The fulfillment of each level was contingent on results 

supporting the experimental hypothesis encompassed within each level. Level 1 

encompassed the following two hypotheses: i) participants will backtrack only in the 

observation condition and not in the intervention condition; and ii) participants will 

make the same forward inferences in both conditions. Level 2 hypothesized the 

answers selected by participants will reflect the correct qualitative causal inference 

according to the counterfactual supposition. Level 3 predicted participants’ causal  

inferences about Time 1 and Time 5 will be conditional and consistent with 

their inferences about Time 2 and Time 4 respectively. 

  Overall people seem to be able to make proper causal inferences based on 

simple representations of causal loops. The extent to which they manage to do this 

seems to vary according to the complexity of the loop at hand. Experiment 1 

investigated a very basic loop where the factor being manipulated was also the one 

participants had to base their causal inferences on. Moreover the loop was founded on 

a scenario most people were probably familiar with (sleep patterns). Accordingly, 
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participants displayed up to level 3 causal reasoning: correct and consistent causal 

inferences throughout all time periods.  

Experiment 2 was more complicated in that it involved an additional factor – 

the factor being manipulated was different from the one on which the participants had 

to base their causal inferences. Additionally, the loop was constructed on a scenario 

most people were unfamiliar with (predator-prey relations). Accordingly, participants 

did not display such an advanced form of causal reasoning as in Experiment 1. In 

particular the Observation condition presented the most difficulties. These were 

addressed in Experiment 3. Indeed the clarifications that were introduced improved 

the causal inferences. In fact, in the clarified conditions (the Parallel conditions), 

participants displayed up to level 3 causal inferences for both negative and positive 

scenarios. Experiment 4 aimed to clarify the scenario even further. Even though 

participants displayed level 1 causal inferences, they encountered some difficulty with 

level 2 (see discussion following the experiment for more details). 
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Table 31.  

Summary of results Experiments 1-4 in relation to the each level of causal reasoning. ‘Yes’ is used to state that all hypotheses related to 

the attainment of that level have been satisfied. The notes in each box describe results not in line with the hypotheses. 
 

Exp. Scenario Loop Level 1 Level 2 Level 3 

1 Sleeping 
patterns 

Negative Yes	   Yes	   Yes 
Positive Yes  

	  
Yes? 
• Observation condition, 

Time 1: majority selects 
the correct answer but not 
significantly more than 
chance. Too many 
participants do not 
backtrack - select ‘same’ 
(41.3%) instead of ‘more’ 
(49.3%). 

	  

Yes 

2 Predator-
prey 
relation 

Negative Yes	   No 
• Observation condition, 

time 1: majority does not 
backtrack - selects ‘same’ 
(40%) rather than ‘less’ 
(34%). 

• Observation condition, 
time 5: majority selects 
‘less’ (44%) rather than 
‘more’ (36%). 

• Intervention condition, 
time 5: majority selects 
‘less’ (40%) rather than 
‘more’ (38.8%). 

No 
• Observation condition, time 1 

conditional on time 2: only a 
minority of participants who 
correctly infer that there would 
be more tuna at time 2 also 
correctly infer that there would 
less tuna at time 1 (N=20%) – a 
similar numbers answers ‘same’ 
(22%) and ‘more’ (18%). 
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3 Overfishing Standard Negative No 
Time 5: there was a significant 
association between condition and 
answer choice - the number of 
participants who state there would be 
more tuna is significantly greater in 
the Intervention condition  (88.6%) 
than in the Observation condition 
(66.9%).	  

No 
• Observation condition, 

time 2: less than third of 
participants makes the 
correct choice. 

• Observation condition, 
time 4 - majority selects 
the right answer, but this 
is not significantly better 
than chance. Too many 
participants select ‘more’ 
(38.2%) instead of ‘less’ 
(45.6%). 

	  

No 
• Observation condition: the 

majority of participants infer 
(wrongly) that there would be 
more tuna at Time 2 and more 
tuna at Time 1 (27.2%).  This 
means that fewer participants 
give consistent correct normative 
answers; i.e. indicate there would 
less tuna at Time 2 and then 
more tuna at Time 1 (16.2%). 

 

Standard Positive Yes	   Yes	   Yes 
Parallel Negative Yes	   Yes	   Yes 
Parallel positive Yes	   Yes	   Yes 

4 Overfishing Negative Time 4: there was a significant 
association between condition and 
answer choice - the number of 
participants who state there would be 
less tuna is significantly greater in the 
Observation condition  (82.7%) than 
in the Intervention condition (50.8%); 
many state there would be more tuna 
(37.1%). 	  

Yes? 
Intervention condition, Time 4 – 
majority selects the correct 
answer but not significantly 
more than chance. Too many 
participants select ‘more’ 
(37.1%) instead of ‘less’ 
(50.8%).	  

Yes 

Positive Time 4 - there was a significant 
association between condition and 
answer choice. The number of 
participants who state there would be 
more tuna is significantly greater in 
the Observation condition  (73.6%) 
than in the Intervention condition 
(69.5%).	  

Yes	   Yes 
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Discussion of results 

There are at least two potential non – exclusive explanations as to why 

increased loop complexity may result in greater difficulty with causal inferences. The 

first one resides in the limits of working memory. The second one is related to the 

representation of the time lag between cause and effect.  

Working memory. Naturally, the more factors a person has to represent, the 

higher the cognitive load. This is likely to result in noisier reasoning patterns. This 

explanation has theoretical implications for the mental model paradigm. This sustains 

that people will seek to minimize what is being represented explicitly in order to 

minimize working memory load. This does not seem to be happening in the current 

experiments. It was argued that if this were the case then there would be some 

evidence for dissipation – the finding that the causal effect is judged to be diminishing 

as a function of causal links between the point of ‘change’ and the target effect. The 

reason why participants were questioned about Time period 1 and Time period 5, was 

exactly to explore how people might or might not extend the backward and forward 

causal inferences to time periods further away from the time period affected by the 

counterfactual. The idea was that if fewer participants extend their causal inferences 

further than one time point in the past and in the future it might be because they are 

not representing those further causal relations explicitly. However, the current 

experiments do not provide any supportive evidence for this assertion. In other words, 

participants gave similar number of correct inferences for the further time periods as 

they did for the closer ones. This suggests all links are being represented, hence 

incurring a cost for working memory. It may very well be that with more factors 

people may then try and satisfice by reducing what is being represented explicitly. 

That is certainly an important question for further research, but as things stand at 
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present the current findings pose another challenge for the theory of mental models.  

One feature that might have facilitated explicit representation of causal 

relations is that the current study required participants to express answers in terms of 

qualitative judgments. The answers required a qualitative causal inference (as 

opposed to an exact numerical estimate) in accordance with the idea that people’s 

spontaneous representation of causal relations might be qualitative (Lagnado, 2011; 

Pearl, 2000). This feature of the study sets it apart from most causal reasoning studies 

that require quantitative estimates. The qualitative component could assist judgments 

by simplifying representations and hence their ease of access as well as reasoning.  

Time lag. Another explanation as to why increased loop complexity may 

result in greater difficulty with causal inferences may be that with more complex 

loops people have trouble representing the timing between the change and the effect. 

The system dynamic literature has already established that people misrepresent the 

time lag between cause and effect in a system (e.g. Sterman, 2006). Specifically, the 

problem seems to be that there is a time delay in feedback processes that results in an 

‘effect impatience’ problem. Typically, in system dynamic studies people are asked to 

take a control action on a variable to regulate a system (e.g. beer distribution game). 

Generally they tend to continue to intervene to correct apparent discrepancies between 

the desired and actual state of the variable even after sufficient corrective actions have 

been taken to restore equilibrium. The result is overshooting and oscillation. 

The problem of time representation that has emerged in the current study is of 

a slightly different nature than the ‘effect impatience’ issue. Experiment 3 and 4 

indicated that some participants were confused about when the factor affected by the 

counterfactual supposition (number of tuna) would in turn affect the second factor 

(fishing). However, this was not due to a delay in effect but simply confusion about 
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when the change would take place. This brings out an interesting perspective – 

perhaps the challenge in causal loop representation lies precisely in the representation 

of the time lag.  This assertion could also explain why people perform considerably 

better with positive causal loops. With positive loops the direction of change is the 

same (either increasing or decreasing) and it unfolds in a linear fashion (rather than in 

a sinusoidal fashion as with negative loops). Hence, time frame does not matter in the 

same way. 

It is also likely that part of the difficulty is induced by artificial experimental 

scenarios such as the one used in the current study (but also in most system dynamic 

studies). Asking participants to simulate cause and effect involves asking them to 

represent time. Even though they might represent the pattern of change correctly (i.e. 

have the correct causal model), the time scale across which such model unfolds might 

be incorrect. Asking them to report the state of the factors at specific time points 

means tapping into individual pieces of data within their model and then deducing 

their model based on those data points. This could result in underestimating the 

participants’ understanding of loops. 

Complexity of representation. Lastly, interpretation and discussion of the 

current results is somewhat limited by the fact that the participants’ representations of 

the mechanisms generating and governing loops were not investigated directly. The 

scenarios utilized in the current experiments described the causal relations between 

factors in terms of one causal link. In other words, participants were told that one 

factor increased or decreased another. What was not described was the mechanism of 

change underlying the causal link. For example, in the first scenario, they were told 

that being rested during the day led to less sleep the following night. They were not 

told, however, how this actually happens. They were not told how rest affects 
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circadian rhythms and melatonin levels. This means that, even though participants’ 

inferences were correct, they might have been based on different representations of 

the mechanisms of change.  This implies that simplistic representations of these 

mechanisms (such as in the current experiments) might suffice in some settings but 

not in others. For instance, being rested leads to less sleep, but only if the person in 

question has normal bodily functions, is not affected by excessive mental fatigue, 

does not consume alcohol and so on.   

Naturally, the experiments assumed ‘normal’ conditions and participants 

responded accordingly. However, in the real world, where normality is relative, 

people may need to represent the causal relations generating and governing causal 

loops in greater depth. This would allow more robust and accurate inferences. 

 

Theoretical implications 

At present, theoretical accounts of reasoning with causal loops are fragmented. 

The field of causal reasoning proposes formal accounts of counterfactual thinking 

with linear structures but not cyclical structures. The domain of system dynamics puts 

forwards accounts of reasoning with feedback loops but does not provide a theoretical 

model of causality within this framework. The theoretical implications of the current 

findings will be discussed in respects to these two domains. 

Causal reasoning. These data show that most people obey a rational rule of 

counterfactual inference, the undoing principle. Sloman and Lagnado (2005) have 

already shown that when reasoning about the consequences of a counterfactual 

supposition, most people do not change their beliefs about the state of the normal 

causes of the event. Instead, they reason as if the mentally changed event is 

disconnected and therefore not diagnostic of its causes. The experiments by Sloman 
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and Lagnado (2005) are the only psychological studies that contrast counterfactual 

observations and counterfactual interventions. The current study extends their 

findings based on linear causal structures to cyclical causal structures.  This has 

important theoretical implications for models of causal and counterfactual reasoning. 

The current study extends their findings based on linear causal structures to cyclical 

causal structures.  This has important theoretical implications for models of causal 

and counterfactual reasoning. However, once again, it must be pointed out that the set 

of observation conditions employed in the current experiments are not a direct a 

reflection of the kind of observation conditions formalized in the experiments by 

Sloman and Lagnado (2005). The observation conditions in the current experiments 

(especially Experiment 1 and Experiment 2) are characterized by an absence of 

information about the reason for the change. However, Experiment 3 has addressed 

this concern by introducing an additional condition (‘Parallel’ condition), where 

counterfactual suppositions did not affect the causal loop actually described in the 

scenario but, affected another loop with the same properties - essentially identical to 

the one described in the scenario. The idea was that this would avoid confusion about 

the source of the change implied by the counterfactual observation. Given this Parallel 

condition yielded results indicating greater clarity on the participants’ part (compared 

to the ‘Standard’ condition), the same approach was adopted in Experiment 4.	  	  

Lucas and Kemp (2012) provide a model of counterfactual reasoning that 

extends Pearl’s formal account (Pearl, 2000). His model of counterfactual reasoning, 

allows for the presence of a formal operator that enforces the undoing principle.  This 

operator makes it possible to construct representations that afford valid causal 

induction of causal relations that support manipulation and control. In turn it affords 

inference about the effect of such manipulation, be it from actual physical 
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intervention or merely counterfactual thought about intervention. This formal account 

of causal reasoning has been highly influential but suffers from two limitations as an 

account of counterfactual reasoning: it does not distinguish between counterfactual 

observations and counterfactual interventions, and it does not accommodate 

backtracking counterfactuals (Lucas & Kemp, 2012).  

Hence, Lucas and Kemp (2012) presented an extension of Pearl’s account that 

overcomes both limitations. Lucas and Kemp’s approach works with causal systems 

that are represented using functional causal models and allows these systems to be 

modified via counterfactual interventions. In addition, however, their approach 

permits a second kind of modification where exogenous variables are altered not 

because of a counterfactual intervention, but simply because the counterfactual world 

might have turned out differently from the real world. An important consequence of 

this difference is that Lucas and Kemps’ model alone accounts for backtracking 

counterfactuals.  

The results of the current study warrant the need to extend Lucas and Kemp’s 

model of counterfactual reasoning to account for backtracking counterfactuals with 

causal loops. Such extension should also address if the conditions under which a 

generic counterfactual premise is interpreted as an observation or an intervention are 

different according to whether the underlying causal structure is chain or a loop. 

System dynamics. The current data has important theoretical implications for 

the domain of system dynamics. As discussed in the Introduction, the general stand 

emerging from the literature is that the observed dysfunction people seem to display 

in dynamically complex settings arises from systematic ‘misperceptions of feedback’.  

These are argued to result from mental constructs and processes that are dynamically 

deficient.  
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That being said the data from the current study clearly shows people can 

reason with simple dynamic causal structures. Apart from a reduced complexity, the 

main difference between the current study and previous work in the system dynamic 

field is that the causal loop used in the current study was made explicit through the 

scenario. In other words, participants did not have to detect the loop, instead, they 

were told about it clearly and explicitly with data points portraying its pattern through 

time. 

This is not necessarily the case with some previous studies (e.g. Sterman, 

1989a, 1989b; Osman, 2008) where participants had to work out, or learn, the 

presence of a loop in the system (for example by manipulating the system). Therefore, 

one alternative possibility to the view that people are linear thinkers is that people 

may have trouble inferring feedback structures within complex systems, but not 

necessarily reasoning with them once these structures are detected and represented. 

 

Practical implications 

As argued in the Introduction, dynamic systems with causal loops are 

ubiquitous. Consequently, establishing that people can understand and reason with 

simple causal loops has several important practical implications for countless 

domains. These include how to best communicate risks based on vicious cycles (e.g. 

positive loops related to climate change or personal health), how to ameliorate 

reasoning in domains that require controlling dynamic systems (e.g. in management) 

and how to best teach cyclical structure in educational endeavors (e.g. ecology in 

school).  

Communicating. Perhaps the most urgent application of the current findings 

is based on the idea that effective risk communication is grounded in deep 
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understanding of the mental models of policy-makers and citizens. The current study 

implies that risk communication should indeed integrate causal loops. For example, 

campaigns attempting to mitigate anthropogenic activities that cause climate change 

should indeed stress the vicious cyclical nature of the problem. Experiments 3 and 4 

used a positive loop scenario where overfishing lead to less conservation which in 

turn led to more overfishing. The overfishing problem is one of the many vicious 

cycles where people’s actions can make a difference. The present results suggest 

people can understand the destructive cyclical nature of the problem. More 

importantly, they clearly appreciated the casual component of the problem. This is an 

encouraging result because it suggests that any sort of communication encompassing 

a vicious cycle (including health risks or financial risks) should not be wary of really 

stressing its’ dynamic components.  Importantly, the present results suggest this 

should be done mindfully - special attention needs to be paid to ensure time lags 

between cause and effect are clear. However, in the present study these time lags were 

not problematic for positive loops, i.e. vicious cycles.  

Controlling. In management there is an increasing interest in enhancing 

decision makers’ understanding of the complex and dynamic systems they are 

required to control. The idea is to develop systems thinking skills. Such skills include 

understanding how system behavior is generated by causal loops and time delays 

within the system. Therefore awareness of the limitations of people’s causal models 

of the system is also added to the list of systems thinking skills (Booth-Sweeney & 

Sterman, 2000). By learning a set of relations that are frequently found in real systems 

but regularly misinterpreted, people should be better armed to confront these kinds of 

phenomena in the future. Hence, the current study’s findings related to the time-lag 

problem have some very applied implications. Special attention needs to be paid to 
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ensure managers and others alike are able to represent the time lag between causes 

and effects within the system in a correct manner. 

Educating. Arguably, the first step towards achieving a more balanced world 

is through education. School education already attempts to educate people about 

phenomena based on complex causal loops: ecology, economics, politics are but a 

few examples. The current study implies that for this purpose one challenge is to find  

the best format to facilitate the understanding of loops. This means that loops should 

not be avoided, but framed in a parsimonious and accessible way. The real key might 

lie in integrating sufficiently detailed information about the mechanisms of change in 

a simple framework.  

 

Experimental considerations 

The extent to which people make sensible causal inferences when reasoning 

with causal loops was formalized into three levels. This three-level classification 

system has practical implications in itself. Primarily, it can serve as benchmark for 

future studies by providing a clear taxonomy for causal inferences. This can be useful 

experimentally both for comparing results and for facilitating communication.   

On the other hand, a limitation of the current study lies in its somewhat 

artificial laboratory nature. In the context of causal reasoning this is not an exception, 

as most studies are based on abstract scenarios. However, as the ultimate goal is to 

apply the insight gained from such research to real-world thinking, the rather 

unnatural framing is nonetheless a shortcoming of the study.  

 

Future research 

There are three main avenues that future research ought to explore. The first 
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one is certainly building on the current studies to investigate causal loops of higher 

complexity. This entails namely loops comprising more than two factors. Following 

from this idea, causal reasoning with loops nested within linear causal structures is 

also of great interest. Equally, the study of loops within loops might reveal interesting 

patterns of inference.  

The second path for future efforts should consider that the current study 

demonstrated inferences based only a deterministic causal system. It is of paramount 

importance to explore how such findings might apply to probabilistic causal relations 

as well. 

Lastly, eventually it will be critical to conduct studies of a more behavioral 

nature to explore how reasoning with causal loops is related to judgments and 

decisions. This venture could adopt an approach based on individual differences, 

linking participants’ causal loops and causal inferences to an applied dependent 

variable.  This sort of methodology could fit well in study of system dynamics. 

 

Conclusion 

Are some of the world’s environmental problems ultimately just different 

facets of one single crisis, a crisis of causal reasoning?  The findings presented in this 

study suggest that there is hope: people can reason properly with causal loops. 

Whether people can make sensible decisions based on the systems that nest these 

loops is another question. However, overall the outlook is optimistic – it seems that 

the real challenge will become one of how rather than if. That is how to communicate 

causal systems and loops in a way that people are able to represent and reason 

effectively. Such an endeavor is bound to be a driving force for the applied sciences 

seeking to advance solution–oriented approaches in many domains. 
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Chapter 5: General discussion 

 

5. 1 Theoretical implications 

How do we represent our world and how do we use these representations to 

reason about it? The three studies reported in the current thesis explored different 

aspects of the answer to this question.  Even though these investigations offered 

diverse angles, they originated from the same psychological theory of representation 

and reasoning. The central idea is that people represent the world and reason about it 

by constructing dynamic qualitative causal networks. The introduction to the thesis 

began by laying out the main guiding principles of this tenet: i) the network structure 

of representations, ii) their qualitative nature; and iii) their dynamic quality. The three 

studies have been shaped by these principles and in turn offer substantial theoretical 

implications for each of them. These implications have already been discussed in 

detail following the report of each study. At this stage it is useful to review them in 

relation to these three principles, from a more generic perspective. 

 

Causal networks 

The first two studies investigated explicitly the idea that people’s 

representations take the form of a network. The first study suggested that mock jurors 

represent the evidence of a criminal case by arranging it into a casual network. The 

network structure of the representation was inferred from participants’ inferences and 

how these were extended in line with the hypothesized network structure. The second 

study suggested people spontaneously represent the causes of an environmental 

problem in a network structure. Both studies proceeded to show that people can make 

causal inferences based on their network representations.  
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An important theoretical implication derived from the first study, is that the 

network structure can be very much ubiquitous in the sense that it does not have to be 

limited to strictly causal representations. Even though people represent invariance by 

focusing on causal relations, the components of the network themselves, do not 

necessarily need to be causes. In other words, as can be seen in the first study, they 

can be pieces of evidence or hypotheses about guilt. Similarly there could be other 

hypotheses about evidence or even ideas, goals and motivations. Therefore, they can 

potentially take any form required for the reasoning task at hand.  This idea implies 

that that the qualitative causal network framework can really be the backbone of 

cognition in general, rather than being limited just to causal reasoning. In other words, 

it is possible that causal models serve as a language of thought from which a lot of 

mental phenomena arise (e.g., Sloman, 2009). (Naturally, the mind also engages in 

mental processes such as arithmetic, or grammatical language, which are non-causal). 

The second study showed people were able to generate sound network 

diagrams, suggesting the network structure is spontaneous. The finding that 

counterfactual judgments were most related to the strength of the represented causal 

relations, as a function of both direct and indirect links, implies people are able, to 

some degree, to recruit the whole causal network related to the judgment in question. 

The main theoretical implication from this finding is that when people engage in 

causal reasoning about a phenomenon, they can and do recruit a whole causal model 

as opposed to just individual direct causal relations. Therefore, this idea, besides 

reinforcing the dynamic qualitative causal network account, denotes the importance of 

studying causal beliefs, or any pattern of inference for that matter, as a function of its 

broader overall dynamic causal structure. 



	   213	  

Qualitative causal relations. 

All three studies have suggested that people’s representation and reasoning 

patterns may take a qualitative nature. The second study showed people’s efficacy in 

recruiting entire causal models to form judgments. This task would not be possible if 

people had used quantitative ideas to estimate causal strength. Even though 

participants were indeed asked to provide numerical estimates of strength, they would 

not have been able to take into account all their estimates in a quantitative fashion (of 

direct and indirect causal relations) when making the counterfactual judgments. In a 

similar fashion, the third study required participants to make qualitative 

counterfactual judgments based on causal loops. Taken together, these findings 

support the idea that the human mind is smart: it knows how to deal with complex 

data and simplify it to a degree it can process effectively. 

 

Dynamic models 

Finally, the qualitative causal networks investigated throughout the three 

studies all had dynamic components, providing support for the idea that people can 

represent and reason about a world that is constantly changing. In the first study, 

mock jurors easily updated their representations in the face of new evidence; they also 

made causal inferences in line with the updated representation. In the second study 

people spontaneously included causal loops into their network diagrams, suggesting 

they appreciate dynamic causal relations involved in complex problems. The third 

study directly investigated people’s ability to reason with such causal loops. Indeed it 

showed people are able to make proper causal inferences based on simple 

representations of causal loops. The extent to which they manage to do this seems to 

vary according to the complexity of the loop at hand. 
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To some extent, it seems fair to say that current frameworks of reasoning and 

representation have overlooked the dynamicity of people’s models and reasoning 

patterns. Even the causal model framework is mostly tacit in respect to the presence 

of feedback loops. However, given people obviously represent dynamically, the main 

theoretical implication is simply to take this idea into existing frameworks and 

develop them to account for this component. 

 

5. 2 Practical implications 

The current findings are very important for theoretical frameworks but 

perhaps even more significant is what they mean in terms of practical implications. 

Each study’s applications to real world situations, both domain-specific as well as 

generic, have been discussed in detail following each report. However, there are at 

least three practical implications that are common to all three studies and worth 

discussing further. 

 

Understanding causal models 

The three studies have shown over several applied fields, ranging from juror 

decision-making to environmental problems, that causal models may be the key to 

unlocking reasoning in any given domain. In other words, in order to understand how 

people reason and therefore make decisions about a certain phenomenon, it is 

important to understand their underlying causal model of that phenomenon. This 

implies that disciplines seeking to understand human judgment in order to learn the 

forces that shape it, should make causal models an integral part of their approach. 

Environmental psychology, for example, aims to understand judgment to nudge it 
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towards sustainable behaviour. The second study for instance, showed which factors 

people consider relevant to overfishing. This provides stepping-stones for developing 

research into understanding why they hold these beliefs and how they might be 

changed. Similarly, health psychology aims to understand how to increase people’s 

choices geared towards wellbeing. These disciplines, and many others, would benefit 

from making understanding people’s causal models one of their primary goals.  

 

Communication 

Given that causal models may be the key to fostering behaviour, their 

understanding also leads to improved communication with the public. The second 

study showed how uncovering people’s beliefs about an environmental problem 

facilitates communication about it. In particular, it reveals which aspects of the 

problem need to be stressed or emphasized to convene better understanding. The 

second study showed that communication about overfishing needs to emphasize the 

strength of causal relations. The third study revealed that campaigns attempting to 

mitigate anthropogenic activities that cause climate change, for example, should 

indeed stress the vicious cyclical nature of the problem. 

 

Education and learning 

A third practical implication derived directly from the three studies is their 

relevance for education and development of related learning tools. The idea that 

people make sense of the world by representing it via a causal model, suggests that 

learning must, to some extent at least, occur in this fashion as well. Learning about 

the world and its systems can be thought of as a process of updating current casual 

models with new information. Given this process of dynamic updating, it makes sense 
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to tailor at least some types of education to tap directly into this concept. To some 

extent, this is already happening in large corporations where managers get taught how 

to control systems they need to operate via exposure to system dynamics (Graham, 

Morecroft, Senge and Sterman (1992). This type of learning, where people are shown 

and explained models of the systems they need to be operating, does not need to be 

limited to managerial applications. Educating people about complex environmental 

problems for instance, could involve explaining causal diagrams of the systems 

underlying the issue. Similarly, patients could be provided with causal models of 

diseases, linking life choices to wellbeing. This approach would involve developing 

the suitable tools for this type of education. Naturally, the studies suggest that these 

should be based around a qualitative causal network. Surely education and learning 

would be facilitated if it used the same format people spontaneously use to represent 

information. The second study suggests diagrams may be the way forward, as people 

are able to generate these easily and reason through them. The third study points out 

that formatting loops in simple terms may also be effective. 

5.3 Experimental considerations 

The three studies presented in the current thesis explored the question of 

representation and reasoning using simple laboratory based methodologies. Even 

though these were thorough and accomplished the task of providing stepping-stones 

for further research, they were still based on very basic representations of the world.  

The first study utilized mock jurors instead of actual jurors. Naturally a juror is a 

naïve person so one would hope any conclusions drawn on mock jurors would apply 

to actual jurors, however it is also possible that representation and reasoning might 

take a different form in real jury settings. Certainly, criminal cases would be more 

complex and hence there would be more evidence to represent and reason about. In 
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the same way, environmental problems such as the one utilized in the second study 

are much more complex in that they involve many more factors. In addition, 

participants in the second study were given the factors to represent – in everyday life 

people often come up with these factors themselves. Again this might interfere with 

how representations are formed and reasoned about. The third study was also based 

on very simple causal loops and the question of what would happen with more 

complex loops, at present, remains unanswered. One priority of future research 

stemming from these studies is to extend them to settings of higher complexity.  

 

5. 4 Future directions 

This thesis started with one pervasive question: How do we represent our 

world and how do we use these representations to reason about it? The investigations 

that have been carried out to explore the answer to this query have inevitably led to 

more questions. The most prominent one of these digs deeper into the origin of 

representations. The three studies addressed the question of how people represent but 

they did not tackle the question of how these representations are formed in the first 

place. In other words, how do people decide which information is relevant for their 

representation? Such a question was beyond the scope of the thesis but, nonetheless, it 

is bound to have crucial implications for how people represent and reason. The 

criteria, whether explicit or implicit, that people apply to define the threshold of what 

piece of information gets represented into their model, are likely to affect how the 

piece of information gets represented. Specifically, it may alter the degree of causal 

strength, or the number of causal connections departing from or going to the factor.  
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There are many questions still to be answered within the causal model 

framework. The current thesis suggests that qualitative dynamic causal networks 

stand at their epicenter and provide a solid platform for launching into future 

endeavors. These endeavors have enormous potential to elucidate the workings of the 

human mind and merit priority in cognitive science and psychological research in 

general. Importantly, they are also, at least partly, the key to unlocking understanding 

of how to foster sustainable and pro-social behaviour that will contribute to achieving 

a greater balance in many aspects of today’s world. 
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Appendix I 

 

Generalized Liner Mixed Model Analysis 

Experiment 1 

A generalized linear mixed effect model was fitted with binomial errors and a 

logit link (using SPSS). This was done separately for the negative loops scenario and 

the positive loop scenario (comparison between the two was not deemed appropriate 

as the two scenarios differ on too many dimensions). For each scenario, the dependent 

variable was the probability of a correct response (each participant’s response was 

recoded as being correct or incorrect). The predictors were condition (observation or 

intervention) and time period question (Time 1, Time 2, Time 4 and Time 5).  

Negative loop scenario. The model was significant: F (7,840) = 44.85, 

p<0.001. There was a main effect of Time period question: F (3,840) = 45.82, 

p<0.001. There was no main effect of Condition: F (1, 840)= 0.009 p=0.925. There 

was a significant 2-way interaction between Condition and Time period question: 

F(3,840)=39.93, p<0.001. Pairwise contrasts were conducted to tease apart the 

significant 2-way interaction.  There was a significant difference between conditions 

for Time period 1 (z=16.763, p<0.001) and Time period 2 (z=17.3, p<0.001). There 

was no significant difference at Time period 4 (z=0.25, p=0.8) and Time period 5 

(z=0.001,p=0.12). 

Positive loop scenario. The model was significant: F (7,840) = 24.41, 

p<0.001. There was a main effect of Time period question: F (3,840) = 21.32, 

p<0.001. There was a main effect of Condition: F (1, 840)= 48.33 p<0.001. There was 

a significant 2-way interaction between Condition and Time period question: 
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F(3,840)=15.52, p<0.001. Pairwise contrasts were conducted to tease apart the 

significant 2-way interaction. There was a significant difference between conditions 

for Time period 2 (z=13.13, p<0.001) and Time period 4 (z=2.58, p=0.001). There 

was no significant difference at Time period 1 (z=1.47, p=0.143) ad Time period 5 

(z=1.03, p=0.3). 

Experiment 2 

A generalized linear mixed effect model was fitted with binomial errors and a 

logit link (using SPSS). The dependent variable was the probability of a correct 

response (each participant’s response was recoded as being correct or incorrect). The 

predictors were condition (observation or intervention) and time period question 

(Time 1, Time 2, Time 4 and Time 5). The model was significant: F (7,388) = 5.95, 

p<0.001. There was a main effect of Time period question: F (3,388) = 8.26, p<0.001. 

There was no main effect of Condition: F (1, 120)= 0.005 p=0.947. There was a 

significant 2-way interaction between Condition and Time period question: 

F(3,840)=5.95, p=0.001. Pairwise contrasts were conducted to tease apart the 

significant 2-way interaction. There was a significant difference between conditions 

for Time period 1 (z=3.99, p<0.001) and Time period 4 (z=2.01 p=0.04). There was 

no significant difference for Time period 2 (z=1.12, p=0.27) and Time period 5 

(z=0.28, p=0.77). 

Experiment 3 

A generalized linear mixed effect model was fitted with binomial errors and a 

logit link (using SPSS). This was done separately for each of the 4 scenarios: the 

standard negative loop scenario, the standard positive loop scenario, the parallel 

negative loop scenario and the parallel positive loop scenario. For each scenario, the 
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dependent variable was the probability of a correct response (each participant’s 

response was recoded as being correct or incorrect). The predictors were condition 

(observation or intervention) and time period question (Time 1, Time 2, Time 4 and 

Time 5). In addition, the standard conditions were compared with the parallel 

conditions. Therefore ‘Standard/Parallel’ was used as an additional predictor variable 

in the analysis. 

Standard Negative loop scenario. The model was significant: F (7,1064) = 

22.82, p<0.001. There was a main effect of Time period question: F (3,1064) = 34.25, 

p<0.001. There was no main effect of Condition: F (1, 307)= 55.3 p<0.001. There was 

a significant 2-way interaction between Condition and Time period question: 

F(3,1064)=11.87, p<0.001. Pairwise contrasts were conducted to tease apart the 

significant 2-way interaction. There was a significant difference between conditions 

for Time period 1 (z=5.92, p<0.001), Time period 2 (z=8.24, p<0.001) and Time 

period 5 (z=4.2, p<0.001).  Time period 4 was not significant (z=0.075, p=0.94). 

Standard Positive loop scenario. The model was significant: F (7,1064) = 

5.95, p<0.001. There was a main effect of Time period question: F (3,1064) = 4.39, 

p=0.004. There was a main effect of Condition: F (1, 351)= 13.79, p<0.001. There 

was a significant 2-way interaction between Condition and Time period question: 

F(3,1064)=2.58, p=0.05. Pairwise contrasts were conducted to tease apart the 

significant 2-way interaction. There was a significant difference between conditions 

for Time period 1 (z=4.33, p<0.001) and Time period 2 (z=1.06, p=0.007).  There was 

no significant difference for Time period 4 (z=1.43, p=0.156) and Time period 5 

(z=0.89, p=0.38). 
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Parallel Negative loop scenario. The model was significant: F (7,1048) = 

39.22, p<0.001. There was a main effect of Time period question: F (3,1048) = 71.48, 

p<0.001. There was no main effect of Condition: F (1, 279)= 28.68 p<0.001. There 

was a significant 2-way interaction between Condition and Time period question: 

F(3,1048)=14.01, p<0.001. Pairwise contrasts were conducted to tease apart the 

significant 2-way interaction. There was a significant difference between conditions 

for Time period 2 (z=9.59, p<0.001), and Time period 4 (z=4.43, p<0.001). There was 

no significant difference for Time period 4 (z=0.05, p=0.16) and Time period 5 

(z=0.031, p=0.37). 

 

Parallel Positive loop scenario. The model was significant: F (7,1048) = 2.25, 

p<0.001. There was a main effect of Time period question: F (3,1048) = 4.6, p=0.003. 

There was no main effect of Condition: F (1, 294)= 1.16, p=0.28. There was no 

significant 2-way interaction between Condition and Time period question: 

F(3,1048)=0.39, p=0.76.  

Standard versus Parallel Negative loops scenarios. The model was 

significant: F (15,2112) = 29.06, p<0.001. There was a main effect of 

Standard/Parallel condition F(1, 596) = p=0.029. There was a main effect of Time 

period question: F (3,2112) = 97.57, p<0.001. There was a main effect of Condition: 

F (1, 596)= 82.28 p<0.001. There was a significant 2-way interaction between 

Condition and Time period question: F(3,2112)=13.1, p<0.001. Importantly, there 

was a significant 3-way interaction between Standard/Parallel condition, Time and 

Condition: F (3, 2112)= 10.661, p<0.001. 

Pairwise contrasts were conducted to tease apart the significant interactions. 

For the 2-way interaction between Condition and Time, there was a significant 
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difference at all time periods: Time 1 (z= 0.15, p<0.001), Time 2 (z= 2.69, p=0.007), 

Time 4 (z= 0.14, p<0.001) and Time 5 (z= 0.109, p=0.002). For the 3-way interaction, 

the Intervention conditions of the Standard version and Parallel versions were 

significantly different at Time period 2: z= 2.69, p=0.007. There was no significant 

difference at Time period 1 (z=0.62, p=0.5), Time period 4 (z=0.33, p=0.5) and Time 

period 5 (z=1.5, p=0.13). The Observation conditions of the Standard version and 

Parallel versions were significantly different at all time periods: Time period 1 (z= 

5.44, p<0.001), Time period 2 (z= 3.48, p<0.001), Time period 4 (z= 5.11, p<0.001) 

and Time period 5 (z= 2.54, p=0.01).  

Standard versus Negative Positive loop scenarios. The model was significant: 

F (15,2112) = 3.83, p<0.001. There was no main effect of Standard/Parallel condition 

F(1, 645) = p=0.109. There was a main effect of Time period question: F (3,2112) = 

8.27, p<0.001. There was a main effect of Condition: F (1, 645)= 11.591, p<0.001. 

There was no significant 2-way interaction between Condition and Time period 

question: F(3,2112)=1.36, p=0.254. There was no significant 3-way interaction 

between Standard/Parallel condition, Time and Condition: F (3, 2060)= 2.06, 

p=0.104. 

Experiment 4 

A generalized linear mixed effect model was fitted with binomial errors and a 

logit link (using SPSS). The dependent variable was the probability of a correct 

response (each participant’s response was recoded as being correct or incorrect). The 

predictors were condition (observation or intervention) and time period question 

(Time 1, Time 2, Time 4 and Time 5). In addition, the results from Experiment 3 were 

compared with those from Experiment 4. Therefore ‘Experiment’ was used as a 
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additional predictor variable in the analysis.  

Negative loop scenario. The model was significant: F (15,2504) = 114.11, 

p<0.001. There was a main effect of Time period question: F (3,2504) = 145.63, 

p<0.001. There was no main effect of Condition: F (1, 2504)= 0.299 p=0.59. There 

was a significant 2-way interaction between Condition and Time period question: 

F(3,2504)=123.83 p<0.001. Pairwise contrasts were conducted to tease apart the 

significant 2-way interaction. There was a significant difference between conditions 

for Time period 1 (z=15.2, p<0.001) and Time period 4 (z=421.59, p<0.001). There 

was no significant difference for Time period 2 (z=1.89, p=0.06) and Time period 5 

(z=0.213, p=0.83).  

Positive loop scenario. The model was significant: F (7,2504) = 84.97, 

p<0.001. There was a main effect of Time period question: F (3,2504) = 96.56, 

p<0.001. There was a main effect of Condition: F (1, 2504)= 147.43, p<0.001. There 

was a significant 2-way interaction between Condition and Time period question: 

F(3,2504)=97.07, p<0.001. Pairwise contrasts were conducted to tease apart the 

significant 2-way interaction. There was a significant difference between conditions 

for Time period 2 (z=0.65, p<0.001) and Time period 4 (z=0.7, p<0.001). There was 

no significant difference for Time period 1 (z=1.2, p=0.23) and Time period (z=1.45, 

p=0.14) 

Experiment 3 versus Experiment 4 Negative loop scenarios. The model was 

significant: F (15, 3552) = 72.87, p<0.001. There was a main effect of Experiment 

F(1, 3552) = 58.42, p<0.001. There was a main effect of Time period question: F 

(1,3552) = 138.92, p<0.001. There was a main effect of Condition: F (1, 3552)= 

72.87, p<0.001. As hypothesized, there was a significant 2-way interaction between 
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Condition and Time period question: F(3,3552)=29.02, p<0.001. Importantly, there 

was a significant 3-way interaction between Experiment, Time and Condition: F (7, 

3552)= 50.38, p<0.001. 

Pairwise contrasts were conducted to tease apart the significant interactions. 

For the 2-way interaction between Condition and Time, there was a significant 

difference at Time period 1 (z= 8.27, p<0.001), Time period 2 (z= 4.29, p<0.001), and 

Time period 4 (z= 4.34, p<0.001). There was no significant difference for Time 

period 5 (z=0.25, p=0.81). For the 3-way interaction, there was a significant 

difference between the Intervention conditions of Experiment 3 and Experiment 4 for 

Time period 1 (z= 2.45, p=0.014), Time period 2 (z= 15.27, p<0.001) and Time 

period 4 (z= 3.6, p<0.001).  There was no significant difference for Time period 5 

(z=1.13, p=0.26). There was also a significant difference between the Observation 

conditions of Experiment 3 and Experiment 4 for Time period 1 (z= 15.46, p<0.001), 

Time period 2 (z= 4.112, p<0.001) and Time period 4 (z= 20.28, p<0.001).  There 

was no significant difference for Time period 5 (z=1.1, p=0.27).  

 

Experiment 3 versus Experiment 4 Positive loop scenarios. The model was 

significant: F (15,3552) = 43.86 p<0.001. There was a main effect of Experiment F(1, 

3552) = p<0.001. There was a main effect of Time period question: F (3, 3552) = 

37.18, p<0.001. There was a main effect of Condition: F (1, 3552)= 26.9, p<0.001. 

There was a significant 2-way interaction between Condition and Time period 

question: F(3,3552)=23.49, p<0.001. Importantly, there was a significant 3-way 

interaction between Experiment, Time and Condition: F (7, 3552)= 29.24, p<0.001. 

Pairwise contrasts were conducted to tease apart the significant interactions. 
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For the 2-way interaction between Condition and Time, there was a significant 

difference at Time period 2 (z= 7.56, p<0.001) and Time period 4 (z= 6.57, p<0.001). 

There was no significant difference for Time period 1 (z=0.8. p=0.41) and Time 

period 5 (z=0.8, p=0.41). For the 3-way interaction, there was a significant difference 

between the Intervention conditions of Experiment 3 and Experiment 4 for Time 

period 2 (z= 3.55, p<0.001) and for Time period 4 (z= 24.16, p<0.001). There was no 

significant difference for Time period 1 (z=0.89, p=0.37) and Time period 5 (z=0.45, 

p=0.66). There were no significant differences between the Observation conditions of 

Experiment 3 and Experiment 4: Time period 1 (z=1.13, p=0.2), Time period 2 

(z=0.23, p=0.8), Time period 4 (z=0.32, p=0.75) and Time period 5 (z=1.13, p=0.23). 

 

 

 

 

 


