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Abstract 
 

Research in the field of forecasting suggests that judgmental forecasts are 

typically subject to a number of biases. These biases may be related to the 

statistical characteristics of the data series, or to the characteristics of the 

forecasting task. Here, a number of understudied forecasting paradigms have 

been investigated and these revealed interesting ways of improving forecasting 

performance. In a series of experiments, by controlling parameters such as the 

horizon and direction of the forecasts or the length, scale and presentation format 

of the series, I demonstrate that forecasting can be enhanced in several ways. 

In Chapter 3, I examine forecasting direction as well as the use of an end-anchor 

to the forecasting task (Experimental Studies 1-2). In Chapter 4, I examine the 

way the length of the series affects forecasting performance of various types of 

time series (Experimental Studies 3-4). Dimensional issues related to the 

forecasting task are further investigated in Chapter 5, where graphs’ scale is now 

manipulated in series with different types of noise (Experimental Studies 5-6). 

Task characteristics are further explored in dynamic settings in Chapter 6, in a 

number of experiments (Experimental Studies 7-12), where a new experimental 

paradigm for judgmental forecasting is introduced. Here, I test already identified 

robust forecasting biases in this dynamic setting and compare their magnitude 

and direction with those found in static environments. 
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I conclude that forecasting performance is affected by data series’ and task 

characteristics in the following ways i) end-anchoring and backwards direction in 

forecasting tasks enhance accuracy ii) longer lengths are preferable for a number 

of series’ types iii) dynamic settings may offer specific enhancements to the 

forecasting task. 

The implications of these findings are discussed with respect to judgmental 

forecasting and corresponding cognitive mechanisms, while, directions for future 

research, towards the development of a unified framework for judgmental 

forecasting, are suggested. 
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Chapter 1  Introduction 

Background 

Forecasting with the use of human judgment or human experience is pervasive 

across both the operational and cognitive science domains. Typically, an 

estimation of future values is produced by an observer based on a sequence of 

past data values, known as time series. Time series can be presented to the 

observer either in the form of graphs and tables (static presentation) or in the 

form of a stream of values appearing over time (dynamic presentation).  

These types of forecasting tasks have been the subject of independent research 

streams, within different paradigms and disciplines.  Forecasting tasks with 

statically presented data have been traditionally studied within the decision 

sciences under operational and business paradigms, by assessing the forecasting 

accuracy in simple or group forecasting tasks (Harvey and Reimers 2013; 

Goodwin, Önkal and Thomson, 2010; Önkal, Sayım, and Lawrence, 2012; 

Pollock, Macaulay, Önkal-Atay and Wilkie-Thompson, 1999; Reimers and 

Harvey, 2011; for relevant reviews see Lawrence, Goodwin, O’Connor and 

Önkal, 2006; Goodwin and Wright, 1993; Webby and O’Connor, 1996; 

Armstrong and Collopy, 1998; Syntetos, Boylan and Disney, 2009; Leitner and 

Leopold-Wildburger, 2011 and for relevant competitions see Makridakis et al., 

1993; Makridakis and Hibon, 2000). On the other hand, experiential tasks, 

where a stream of stimuli is presented dynamically to the observer, have been 

mainly studied within the cognitive sciences and, more specifically, within low-
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level cognitive science studies (e.g. Tsetsos, Usher and McClelland, 2011; 

Wong, Huk, Shadlen, and Wang, 2007; Ratcliff, 2006; Usher and McClelland, 

2001; Busemeyer and Townsend, 1993). In contrast to studies using static 

presentation, few of those using dynamic presentation have included sequential 

dependencies between successive outcomes (see, for example, Gureckis and 

Love, 2010; Boyer, Destrebecqz, and Cleeremans, 2005). This makes 

comparing the findings difficult.  

Research in these different areas has produced certain suggestions regarding the 

performance and competence of the forecaster. With static presentation, the 

forecaster’s responses are compared against the actual or the optimal future 

values of the time series. In these types of tasks, performance is also often 

assessed against the naïve forecasting benchmark (Lawrence, O’Connor and 

Edmundson, 2000; Makridakis et al., 1993; Lim and O’Connor, 1995; Sanders, 

1992): this represents the accuracy achieved when the forecaster uses the last 

data point of the time series as a forecast. The usefulness of the naïve 

benchmark is not only relevant to the accuracy of the forecaster, but also to the 

underlying process of forecasting. This is because decisions in sequential 

settings can often be seen as being governed by an anchoring and adjustment 

heuristic (Harvey 2007; Lawrence and O’Connor, 1995; Andreassen and Kraus, 

1990; Lawrence and O'Connor, 1992; Bolger and Harvey, 1993; Hogarth and 

Makridakis, 1981; Harvey, in press). The anchor is in most cases the last data 

point and adjustment is based on the patterns perceived in the data. Similarly, in 

the aforementioned dynamic paradigms, there is evidence that forecasts are 
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primarily based on the last set of observations, thereby producing recency 

effects; in such tasks, long-term patterns are difficult to detect and assimilate 

into the observer’s judgment (Tsetsos, Chater and Usher, 2012).  

The fact that optimal forecasts can be produced by using the series’ patterns and 

signals to make adjustments away from the naïve benchmark, provides a useful 

way of understanding the underlying cognitive forecasting processes (Harvey, 

2007; Goodwin and Wright, 1994; Hogarth, 1981; Speekenbrink, Twyman and 

Harvey, 2012; Bromiley, 1987). These forecasting processes appear to show 

biases, similar to those found in many judgment tasks (e.g., Lichtenstein and 

Slovic, 1971; Tversky and Kahneman, 1974; Gilovich, Griffin, and Kahneman, 

2002). In forecasting settings, several biases have been found to be robust, with 

the trend damping, the autocorrelation illusion and noise introduction being the 

most dominant ones (Harvey and Reimers, 2013; Reimers and Harvey, 2011; 

Harvey, 1995). Other biases are dependant on the forecasting task 

characteristics (e.g feedback and advice assimilation, sensitivity to asymmetric 

loss, causal information incorporation). 

In addition to effects arising from use of anchoring and adjustment heuristics, a 

number of other behavioural regularities have been found to operate when 

forecasts are generated by individuals. This has given rise to the suggestion that, 

as in other judgment tasks, forecasters use a set of diverse heuristics, each 

describing a special characteristic of the forecasting behaviour (Todd and 

Gigerenzer, 2000; Gigerenzer, 2006; Harvey, 2007). Some procedures have 

been suggested to reduce forecasting biases (for a review see Lawrence et al. 
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2006). The most dominant ones are related to structured approaches to 

judgment such as decomposition, role-playing, group-forecasting, feedback 

exploitation and the implementation of the Delphi technique (MacGregor, 2001; 

Armstrong, 2001; Sniezek, 1989; Mackinnon and Wearing, 1991; Rowe and 

Wright, 2001). In this thesis, some additional methods by which judgmental 

forecasting can be improved are explored. 

In forecasting tasks, difficulties in generalising findings are encountered 

because the heuristics at play are found to be sensitive to the characteristics of 

the time series presented (Bolger and Harvey, 1993; Goodwin and Wright 

1993). For example, in the case of the anchoring and adjustment heuristic, the 

forecaster employs different versions depending on the series at hand 

(Lawrence and O’Connor, 1992). These findings are mainly associated with 

research using static presentation. On the other hand, experiential forecasting 

processes are understudied and scarce (Wagenaar and Timmers, 1979; Hogarth, 

1981; Remus and Kottemann, 1987, 1995).  

Contrary to judgmental forecasting from graphs whose fundamental 

components have been analysed for at least 30 years (Lawrence et al, 2006), 

little is known about the mechanisms underlying information assimilation and 

use in forecasting tasks where the participant is experiencing a time-series in 

real-time instead of observing static graphs. In this thesis, real-time, high-

frequency experiential tasks will be explored. However, these tasks should not 

be confused with forecasting tasks where domain experts use their professional 

experience to extrapolate from time series. Although forecasting tasks from 
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graphs and from real-time high frequency experience (i.e. experiential tasks) 

share a common conceptual framework, it should not be assumed a priori that 

these tasks share common cognitive processes. Revealing the processes that 

control judgmental forecasting from graphs and from experience and 

understanding whether and how they differ is central to our broader 

understanding of judgmental forecasting and, thus, its improvement.  

The aim of this thesis is to refine the available knowledge on forecasting biases 

in various data series with different statistical characteristics and presentation 

formats. Providing grounds of understanding judgmental forecasting will not 

only enhance our understanding of how people perform this task but may also 

help us to arrive at a more thorough understanding of how anticipation of the 

future works in humans, and thereby affect a number of other related areas of 

research, such as affective forecasting, intertemporal choice and optimism 

(Wilson and Gilbert, 2003; Loewenstein, Read, and Baumeister, 2003; 

Weinstein, 1980). Findings from the research reported here contribute in both 

applied research areas (e.g. improving judgmental forecasting in the financial 

and business world) as well as more theoretical academic disciplines (e.g. 

cognitive science). 

Characteristics of the forecasting process  

First, I will define some of the basic characteristics and the general framework 

of the judgmental forecasting process. Later, I will refine this analysis by 
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describing potential cognitive processes involved in judgmental forecasting. 

Judgmental forecasting is characterized by a person’s immediate (partly 

intuitive) response to a given time series of events or data points. This is akin to 

an unstructured judgmental impression. In particular, judgmental extrapolation, 

which is the main process of interest here, is defined as the subjective extension 

of time-series data, according to Armstrong’s forecasting dictionary 

(Armstrong, 2001). Judgmental forecasts can be produced either by domain 

experts, who use both their domain knowledge as well as the historical data to 

come up with a final estimation (see for example Glaser, Langer and Weber, 

2007), or by lay people who make predictions solely on the basis of the given 

series of historical data. Like the majority of studies in judgmental forecasting, 

the experiments reported in this thesis were conducted with participants who 

had no domain knowledge. Surprisingly, judgmental forecasts with or without 

domain knowledge have been found to be as accurate as statistical models in 

some studies (e.g. Lawrence, Edmundson and O’Connor 1985, 1986). This is 

attributed to the fact that participants might be able to pick-up patterns that are 

missed by the formal statistical techniques. This is not always the case though 

(e.g. Bunn and Wright, 1991).  

Judgment can also be used to make adjustments to formal forecasts (Sanders 

and Ritzman, 2001; Önkal and Gönül, 2005). In these cases, which are 

widespread in professional environments, the forecaster makes a subjective 

change to a statistical forecast. For example, supply chain managers use this 

process frequently to try to improve predictions of future demands (Fildes, 
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Goodwin, Lawrence and Nikolopoulos, 2009) by incorporating their knowledge 

of the environment, of the product and their past experience. Revealing the 

structure of errors produced by judgmental adjustments of statistical forecasts 

has been a topic of interest in recent years (e.g. Syntetos et al. 2009). This 

research has involved both laboratory (Goodwin and Fildes, 1999; Lim and 

O’Connor, 1995) and field studies (Fildes et al., 2009; Mathews and 

Diamantopoulos, 1986, 1989, 1990, 1992). The evidence suggests that in some 

cases statistical forecasts can be improved via judgmental adjustments, 

especially when important domain knowledge, which is not available to the 

model, is incorporated in the forecasts (Goodwin, Fildes, Lawrence and 

Nikolopoulos, 2007; Sanders and Ritzman, 2001; Turner, 1990). In other cases, 

particularly when this kind of important piece of information is not available, 

adjustments are found to damage accuracy (Fildes et al., 2009). The 

investigation of errors produced by judgmental adjustments involves mainly the 

magnitude and the direction of those errors. Fildes et al. (2009) suggest that 

large and negative adjustments are likely to lead to greater accuracy, whereas 

smaller and positive adjustments are likely to impair accuracy. Positive 

adjustments are often attributed to an optimism bias (Weinstein, 1980) and are 

responsible for severe and consistent damaging of forecasts (Flides et al, 2009; 

Mathews and Diamantopoulos, 1989). Some interventions, aimed at the 

removal of consistent biases like this one, have been proposed for practitioners. 

Goodwin (2000), for example, suggested that prompting the forecaster to 

indicate a reason for making an adjustment reduced the frequency of 

unnecessary adjustments. Also, Fildes et al. (2009) discussed several 
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approaches to improve adjustments but highlighted the fact that methods like 

automatic correction of forecasts would face obstacles in practice. In this thesis, 

there are no experiments where judgmental adjustments are requested by the 

forecaster. Nevertheless, findings from Chapters 3, 4 and 5 may prove quite 

useful when forecasters are requested to produce an adjustment to a formal 

statistical forecast. 

Judgmental forecasting in practice  

Judgmental forecasting plays an essential role in business planning and in many 

other areas of life. Judgment is now considered important in a variety of 

forecasting tasks ranging from company sales forecasting to macro-economic 

forecasting (Batchelor and Dua, 1990; Clements, 1995; Fildes and Stekler, 

2002; McNees, 1990; Turner, 1990; Goodwin, Önkal and Lawrence, 2011), so 

much so that corresponding research communities have effectively used it to 

develop practice guidelines as well as scientific consensus statements (e.g. 

Armstrong, Green and Graefe, 2013; Sanders and Manrodt, 1994; Armstrong 

and Collopy, 1998; Armstrong, 2001). Clearly, judgmental input is thought to 

have an important bearing on several important real-world forecasting issues. In 

this section of Chapter 1, I will review some of the most important areas where 

applications of forecasting with the use of judgment are being practiced.  

The most important area, which first called for researchers’ input has been 

business forecasting. Although development of formal methods of forecasting 
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continues apace up until now, many surveys have shown that most forecasting 

within businesses is associated with judgmental input (e.g., Mentzer and Cox, 

1984; Mentzer and Kahn, 1997; Sanders and Manrodt, 1994, 2003; Sparkes and 

McHugh, 1984). Moreover, adoption of formal techniques has been shown to 

have reached an asymptote (Lawrence, 2000) and this has been the catalyst for 

early judgmental forecasting studies. Particularly, it was Lawrence, O’Connor 

and Edmundson’s (1985, 1986) large-scale comparative studies, which first 

provided evidence that judgmental forecasting could be proven more accurate 

than quantitative models forecasting. Their studies were published after the first 

forecasting competition, the M1-competition (Makridakis et al., 1982); M1 

compared the accuracy of most of the widely available forecasting models from 

a variety of domains including stock market, sales, demographic and finance. 

While large-scale surveys and experimental studies continued being conducted 

in the field of judgmental forecasting, additional large-scale competitions were 

launched; M2 and M3 competitions followed M1 (Makridakis et al, 1993; 

Makridakis and Hibon, 2000) and judgmental forecasting was now 

acknowledged as an official method of producing or improving forecasts. 

The essential role of judgmental forecasting can be understood when one thinks 

of its implications in supply chain management. A persistent theme in the 

literature is the extent to which judgment can make a difference to sales 

forecasts where collaborative planning is of paramount importance; there, 

forecasts are produced by Forecasting Support Systems, which nowadays can 

integrate statistical output with judgmental input from experts in the 
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organization. In the specific case of sales forecasting, judgmental input is 

represented by the information added by experts. This is information, which 

cannot be provided by statistical models; moreover, it can change the final 

forecasting outcome drastically; experts are capable of adding information 

related to future promotions, aggressive marketing circumstances, increasingly 

competitive markets, shortening of product life cycles and other important 

variables to adjust the statistical forecast. These important factors are not 

available to the statistical model and have been proved capable of improving 

substantially formal forecasts (e.g. Goodwin and Fildes, 1999; Mathews and 

Diamantopoulos, 1992).  

In addition to sales forecasting, there have been considerable developments to 

develop judgmental approaches in finance; portfolio managers, investors and 

traders task is to forecast future values of stock prices, bonds and predict market 

movements to take their investment decisions. Judgmental forecasting is 

extremely relevant to these settings and has also been studied extensively (e.g. 

Muradoglu and Önkal, 1994; Önkal, 1998; Goodwin, Önkal-Atay, Thompson, 

Pollock and Macauley, 2004; Önkal and Muradoglu, 1994, 1996).  

It has now been acknowledged that judgmental forecasting can play an 

important role with business settings and that research into judgmental 

forecasting has real potential for increasing business effectiveness (Syntetos, 

Nikolopoulos, Boylan, Fildes and Goodwin, 2009). Approximately thirty years 

after the first official attempts to reconcile the mechanisms underlying 

judgmental input to forecasts, there is now a large corpus of such research 
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(Lawrence et al, 2006) and findings have been used to develop principles of 

good practice (Armstrong, 2001). Since the early steps in the field, many 

approaches to forecasting with judgment have been, and are being, developed. 

This is achieved mostly by using experiments that involve presenting 

participants with series of stimuli to be judged and interpreting the underlying 

processes accordingly. Apart from accuracy measures, emphasis is given to the 

way people think when anticipating the future. In other words, a large set of 

studies operates in the interface of business and cognitive science research (see 

for example Harvey and Reimers, 2013; Reimers and Harvey, 2011; Harvey, 

2007). In other words, judgmental forecasting has been proven useful for 

identifying the underlying cognitive mechanisms that govern human 

anticipation of the future. 

Interestingly, there are several approaches where researchers conducted 

forecasting research in the interface of cognitive science and environmental 

science. Those were mainly related to the field of climate forecasting. The main 

goal of the research was to reveal how people react when presented with 

graphical information related to future and past values of climate variables. So, 

for example, Lewandowsky (2011) demonstrated that lay people, who use their 

judgment, put emphasis on long-term climate trends and ignore local 

information when extrapolating data. This finding has significant implications 

because it suggests that presentation of climate data would counteract evidence 

that global warming has stopped. However, the notion that cognitive biases are 

playing an important role, when climate data is presented to people, is not new. 
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A review paper of the Bulletin of the American Meteorological Society (see 

Nicholls, 1999), discusses the role of cognitive mechanisms in climate 

predictions. It shows that users have difficulties in understanding and 

translating probabilistic information in operational settings. Also Lemos, Finan, 

Fox, Nelson and Tucker (2002) presented research from Brazil, where 

forecasters tested various information formats of geoclimatic maps in order to 

discover the best approach for users.  

Short-term weather forecasts are also of interest in a variety of domains. For 

example, daily temperatures were studied in conjunction with weekly and daily 

sales in a Brewing company (Nikolopoulos and Fildes, 2013), in order to 

estimate the impact of temperature fluctuations in the company sales. The 

forecasters were found to take advantage of weather information by adjusting 

their sales forecasts according to short-term weather predictions.  

The optimal use of weather and climate data and predictions is also of interest 

for several practitioners as well as policy makers. A relevant example involves 

a forest management application in British Columbia lands, where flexible 

policies had to be produced on the basis of climate information (McDaniels, 

Mills, Gregory and Ohlson, 2012). There, forecast scenarios from a panel of 14 

experts were combined to produce stochastically flexible policies. It is not only 

environmental policies that can take advantage of judgmental input. Policy 

makers have to forecast the impact of future legislation by using several sources 

of information before applying them. In this context, an interesting forecasting 

system with judgmental input was recently proposed by Savio and 
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Nikolopoulos (2009) to facilitate policy-making at country level; the aim was to 

provide forecasts of policies’ success before implementation. 

A large variety of contemporary domains of judgmental forecasting practice 

have evolved over the past decades; one can find applications in virtually all 

domains of economic activity, where insights and knowledge of human experts 

provide essential aids to the forecasting process. Thus, practical judgmental 

tools are used in econometric forecasting (Allen and Fildes, 2001), in 

macroeconomic forecasting (McNees, 1990), in real estate market forecasting 

(Ong and Chew, 1996), web-tourism demand (Song, Witt and Zhang, 2008), 

livestock production (Vere and Griffiths, 1995), as well as sports forecasting 

(Andersson, Edman and Ekman, 2005). The number of these different areas and 

the rate at which they are developing provide considerable scope for forecasting 

researchers and cognitive scientists. 

There are, however, limitations to the use of judgmental forecasting that still 

require a broad-based exploratory research in order to be overcome. If 

judgmental forecasting tools are to improve forecasting performance, research 

needs to be systematic and provide practical guidance (e.g. Armstrong et al., 

2013). A critical point is to clearly define judgmental biases in all areas of 

application and to develop corresponding tools that provide improvements (e.g. 

Goodwin, 2000; Fildes et al., 2009; Syntetos et al., 2009; Bunn and Wright, 

1991). In this thesis, understudied areas of judgmental forecasting will be 

examined so that practitioners can be provided with specific strategies to aid 

their performance.  
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1.1 Judgmental forecasting basic mechanisms 

Research in the field of judgmental forecasting has shown that, when people use 

their judgment to forecast future values of various financial or environmental 

variables, they exhibit several biases that impair their forecasts (Harvey, 2007; 

Eroglu and Croxton, 2010). Research suggests that many of these biases arise 

from the simple heuristic mechanisms that people use in their attempts to take 

into account the pattern, autocorrelation and noise information in the series.  

Among these simple heuristic mechanisms, the anchor and adjustment heuristic 

(Tversky and Kahneman, 1974) has been proposed as a way of explaining some 

of the biases in judgmental forecasting tasks (Harvey, 2007). The anchor point 

is usually defined as the last data point provided to the judge or the long-term 

average of the series, and adjustment is based on other elements of the time 

series. For example, Andreassen and Kraus (1990), as well as Lawrence and 

O’Connor (1992), used this heuristic to model people’s judgment performance 

by specifying those anchors and arguing that adjustment comprises a proportion 

of the difference between the two most recent data points multiplied by a 

parameter which was dependent on the series’ characteristics. In another 

experiment, Bolger and Harvey (1993) found that people employed different 

versions of this heuristic for trended and untrended series. For trended series the 

anchor was the last point but the adjustment was towards the trend of the series. 

For untrended series, the anchor was the last data point and adjustment was 

towards the mean of the series. For cyclical series, people anchor again on the 
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last data point and adjust by taking into account a proportion of the last 

difference in the data (Harvey, Bolger and McClelland, 1994). 

Adjustment away from the anchor is typically insufficient when this heuristic is 

used, thereby producing biases in forecasts (Epley and Gilovich, 2001). A well-

documented bias related to insufficient adjustment is trend damping: people’s 

forecasts lie below upward trends and above downward ones. (Wagenaar and 

Sagaria, 1975; Eggleton, 1982; Bolger and Harvey, 1993; Harvey et al., 1994; 

Lawrence and Makridakis, 1989; Sanders, 1992). Another bias is the positive 

autocorrelation illusion:  people’s forecasts imply serial dependence even when 

the series are independent (Reimers and Harvey, 2011; Bolger and Harvey, 

1993; Eggleton, 1982). This also means that forecasts often lie closer to the last 

data point than they should.  

In most cases the anchoring and adjustment heuristic is modelled using 

exponential smoothing algorithms with the amount of the adjustment depending 

on the latest error value and the value of the smoothing constant (Andreassen 

and Kraus, 1990; Lawrence and O’Connor 1992, 1995). A time series is a 

sequence of events related one to each other in various ways. Thus, the effects 

of the use of the anchoring and adjustment heuristic by participants will be 

examined in all the experiments. 

Another set of cognitive biases associated with the anchor and adjustment 

heuristic, are recency and primacy biases. Recency effects (Anderson, 1981) 

occur when people evaluating a sequence of items are unduly influenced by 

those received later in the sequence. In other words, later data dominate a 
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decision makers’ judgment. Recency has important implications in judgmental 

forecasting from graphs. Especially in the case of graphical rather than tabular 

representations, it is easier for the participant to focus on and overweight the 

most recent data points and their patterns. Thus, when Lawrence and O’Connor 

(1992) investigated the influence of the slope of the last segment of an ARMA 

time series, they found that “the judgemental forecaster, on average, utilises the 

segment slope information correctly in judging the direction of adjustment but 

incorrectly estimates the amount of adjustment”. Primacy effects refer to the 

influence of items early in a sequence: they are most likely to be at play in 

judgmental forecasting from experience (e.g. Tsetsos et al., 2011). In the 

experiments outlined in this thesis, I use a variety of time series. In cases of 

highly autocorrelated or persistent data, the forecaster is justified in applying 

high weight to recent events and, thus, in exhibiting a conservative anchor and 

adjustment heuristic strategy. In other cases, where larger shifts are required to 

provide enhanced accuracy, the forecaster would have to alter this strategy. 

Apart from the family of anchoring heuristics, there are other heuristic 

mechanisms involved when people make forecasts by using their judgment. 

One such is the representativeness heuristic (Tversky and Kahneman, 1974), 

which assumes a high degree of correspondence between a sample and a 

population. As Bagnoli, Guazzini, and Lio (2008, p.2) mention, “this heuristic 

can be thought of as the reflexive tendency to assess the similarity of 

characteristics on relatively salient and even superficial features, and then to use 

these assessments of similarity as a basis of judgment”. An example of the 
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involvement of this heuristic in forecasting was documented by Harvey, Ewart 

and West (1997) in an investigation on the influence of noise levels in people’s 

predictive accuracy. According to their account, people add noise to their 

forecasts to make each forecast typical of the data points in the presented series. 

If past data show more scatter, more noise is included in forecasts to represent 

that scatter. In the experiments outlined in this thesis, I examine whether there 

is evidence for such effects in a variety of series types. 

Another heuristic involved in judgmental forecasting is the availability 

heuristic. The use of this heuristic is related to probability or frequency 

judgments which rely upon the available knowledge. In the case of judgmental 

forecasting from time series, this heuristic is likely to be involved when people 

predict data points that belong to large classes of events (for example, values 

that are close to the average of the time series).  

Other sources of error generation that affect forecasting stem from behaviours 

that reflect optimism. The optimism bias (Weinstein, 1980) potentially explains 

elevations in people’s forecasts. Optimism bias (Weinstein, 1980), desirability 

bias (Crandall, Solomon, and Kelleway, 1955), overforecasting bias (Eggleton, 

1982) and outcome bias (Cohen and Wallsten, 1992) all relate to a judgmental 

phenomenon in which people overestimate the probability of desirable future 

events, while also underestimating the probability of undesirable ones 

(Weinstein, 1980).   Reimers and Harvey (2011) argued that this may occur in 

the forecasting domain because the forecasting scenarios often involve profit or 

sales scenarios. While optimism seems to affect forecasts by elevating the final 



	
   33	
  

estimation, overconfidence causes the forecaster to think that the probability 

that a forecast is correct is greater than the actual probability. This is likely to 

explain another robust finding in judgmental forecasting: prediction intervals 

are estimated to be too narrow (O’Connor and Lawrence, 1989).  

1.2 Types of judgmental forecasting phenomena 

The aforementioned mechanisms are considered central to judgmental 

forecasting. Nevertheless, the diversity of time-series, as well as the richness in 

presentation formats and task characteristics, renders generalisations difficult 

(Goodwin and Wright, 1993). Broadly speaking the mechanisms outlined in the 

previous section produce biases, which can be grouped into a) those related to 

the statistical characteristics of the data series, b) those related to the way in 

which series are presented to forecasters, and c) those related to characteristics 

of the forecasting task. In the next sections, I discuss what is known about 

problems with judgment input to the forecasting process and outline how they 

relate to the main issues to be investigated in the research reported in this thesis. 

1.2.1 Statistical characteristics of the series 

Various forecasting anomalies or ‘biases’ are related to the way that forecasters 

perceive the statistical characteristics (patterns and noise) in the series. 

Research has revealed that the forecasters typically produce forecasts that are 

too close to the last data point. As a result, they appear to underestimate the 

steepness of trends in series (Harvey and Reimers, 2013) and to overestimate 
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first-order sequential dependence (Reimers and Harvey, 2011). Second, they 

may add noise to a sequence of forecasts that reflects the level of noise in the 

data series (Harvey, 1995). This may be because they use the representativeness 

heuristic or because they see patterns in the noise where none exist (O’Connor, 

Remus and Griggs, 1993). Third, forecasts may be influenced by what 

forecasters consider to be desirable and by whether they think that the series can 

be controlled to counteract any undesirable features that may be revealed as the 

future unfolds (Lawrence and O’Connor, 1992). 

The time series mean, noise, autocorrelation, persistency levels and trends form 

the basic series characteristics I will be concerned with in this section. Webby 

and O’Connor (1996) list a subset of those factors as important ones in their 

extensive review of judgmental and statistical time series forecasting. 

Specifically, they scrutinize the role of trend, seasonality, noise and 

discontinuities and they conclude that trend and discontinuities impair 

judgmental forecasts. Here, I will discuss time-series characteristics in light of 

their work and new evidence from more recent research. 

The time series mean or average long-term value is a quantity perceived and 

taken into account in judgmental forecasts (Andreassen, 1990; Lawrence and 

O’Connor, 1992; Armstrong and Collopy, 1993; Harvey et al. 1994). Lawrence 

and O’Connor (1992), who modelled people’s statistical judgment when 

presented with ARMA models, suggested that their behaviour could be 

simulated as if the long-term mean of the time series was taken as a mental 

anchor from which people adjusted away to take into account other elements of 
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the time series. Nevertheless, when there is seasonality in the time series, which 

is perceived as part of the pattern, errors tend to depart from the mean; Harvey 

et al., (1994), for example, in their cognitive algebra analysis present different 

prediction equations for trended, cyclical or untrended time series. Hence, 

participants take into account the long-term mean in various ways depending on 

the time series under examination. However, the long term mean seems to be a 

quantity that is important when judgmental forecasts are produced.  

Equally important are the last observations of the time series, which are treated 

in a special manner by participants when they produce their forecasts. This is 

realised by use of anchoring and adjustment heuristics. The last observations’ 

strong influence on the decision-maker’s judgment is also highlighted in several 

cognitive studies under the term ‘recency’ effects (Tsetsos et al., 2012). The last 

data points provide an anchor from which people adjust to allow for other 

important elements of the time series to be taken into account (Bolger and 

Harvey, 1993; Lawrence and O’Connor, 1995). Thus, the influence of the last 

observations, though present in all judgmental forecasting, depends on the 

series type. The position of the last data point, of course, depends on the noise 

in the series. This makes the anchoring and adjustment strategy prone to errors 

when an unrepresentative noise pattern occurs on these last points (Harvey et 

al., 1997). In graphical presentations of a time series, the most recent data 

points and the slope of their line segments are likely to be excessively weighted 

in the judgemental forecast leading to a bias in the forecast value. To avoid such 
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effects impacting on the conclusions drawn from this thesis, I use different 

exemplars for each participant and condition under examination.  

Apart from the long-term mean of the series and the last observations, there are 

a number of elements that influence judgmental forecasts, which are associated 

with the complexity in the series. Goodwin and Wright (1993) suggest that the 

complexity of a series includes three components:  

• the underlying signal, comprising its seasonality, cycles and trends and 

response to shocks;  

• the level of noise around the signal and  

• the stability of the underlying signal 

Here, I use this complexity categorisation to structure the next sections but I add 

more recent evidence to enrich it. 

When people are presented with different series’ types, signal detection or 

pattern extraction is considered to play an important role. Research has 

investigated the question of how well people can identify patterns of various 

time series types and how they use this information (Andreassen and Kraus 

1990; Lawrence and O'Connor, 1992; Bolger and Harvey, 1993; Lawrence and 

O'Connor, 1995; Lawrence and Makridakis, 1989; Mosteller, Siegel, Trapido, 

and Youtz, 1981; Edmundson 1990). Sanders (1992) showed that forecasters 

can incorporate recognition of a signal in their adjustments to extrapolation 

forecasts. Participants in these experiments made adjustments that led to the 

improvement of judgmental accuracy when the series had recognizable patterns. 
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People, therefore, do extract and use some information about the patterns in 

series. However, as Goodwin and Wright (1993) argue, the variety of different 

types of time series used in judgmental forecasting tasks leads to difficulties in 

generalizing findings implicating particular cognitive mechanisms in the 

prediction process.  

However, fairly robust findings regarding pattern recognition are associated 

with trended and seasonal patterned series.  Trend ‘eyeballing’ skills were first 

studied by Lawrence and Makridakis (1989) and Mosteller et al. (1981). These 

studies showed that people are relatively good at perceiving a trend. However, 

Andreassen and Kraus (1990) found that noise had an impact to the 

participants’ ability to detect the trend. Subsequent research showed that trend 

detection skill is insufficient to allow people produce unbiased forecasts 

regardless of the noise levels: people underestimated or damped both upward 

and downward trends, with the latter being damped more than the former 

(Harvey and Reimers, 2013; Bolger and Harvey, 1993; Harvey and Bolger, 

1996; Harvey et al., 1994; Lawrence and Makridakis, 1989; Sanders, 1992; 

Eggleton, 1982; Wagenaar and Sagaria, 1975). Interestingly, Harvey et al. 

(1997) showed that although positive linear trends were recognized more easily 

than untrended series, forecasting was worse from them. Significant damping 

has also been identified in forecasts from non-linear trends (Timmers and 

Wagenaar, 1977).  

While unlimited trends are rarely found in the environment, unlimited 

periodicity is often a property of the real-world time series. According to 
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Edmundson (1990), people are efficient at perceiving and utilising seasonal 

patterns. Nevertheless, there is a limit in this cognitive ability. This limit was 

stressed by Harvey, Bolger and McClelland (1991), as well as by Lawrence and 

O’Connor (1992), who argued that the presence of high and complex 

seasonality or a strongly cyclical component impairs people’s judgement. 

Moreover, this ability to perceive the cyclical nature of time series has been 

found to depend on the series’ noise levels. Harvey et al. (1997), for example, 

report a set of experiments where a sinusoidal signal was overlaid with different 

trends and noise levels. The lower the noise levels, the easier the participants 

recognized the signal. Harvey (1988) suggested, that people do acquire some 

information about the pattern in the series but do not use it as a basis for their 

forecasts. Instead they appear to use heuristics based on a few salient elements 

of the data (Bolger and Harvey, 1993; Lawrence and O’Connor, 1992).  

Lack of pattern in a time series is rightly seen as more consistent with random 

generation of the data (Wagenaar 1972). Lopes and Oden (1987), though, 

pointed out that even random processes occasionally produce highly patterned 

sequences. Also, Armstrong et al. (2013), for example, argue that participants 

tend to see patterns where none exist and that they tend to suffer from illusions 

of control even when the underlying process is purely random. Here a variety of 

time series with and without patterns are used in the experiments and unique 

exemplars are shown to each participant to avoid effects related to the false 

perception of patterns in the noise in the series. 
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Following Goodwin and Wright’s (1993) categorisation, the next important 

component is noise level. This heavily influences judgment accuracy. Harvey 

(1995) showed that series noise causes people to add noise to their judgments in 

their attempt to represent the time series better and that high noise renders the 

mental anchors discussed above less effective. Payne (1993) also suggested that 

an increase in data noise may affect the strategy people use to produce their 

judgments. He anticipated that an increase in noise levels may cause people to 

switch from a pattern-extraction based statistical cognitive strategy to one based 

on heuristics, thereby adapting their decision making strategy to the task that 

they have been given. However, no matter which strategy is selected, noise 

makes patterns in data series harder to discern and people add noise to their 

forecast sequences that tend to mask the patterns that would otherwise appear in 

those sequences in an effort to make their forecast representative of the time 

series under examination (Harvey, 1995). Noise introduction effects are 

examined in the experiments presented here, especially in Chapter 3, 

Experiment 2 and in Chapter 6, where pure noise introduction is studied in an 

experiential setting. Also, in Chapter 5, noise type effects are studied. Uniform 

and Gaussian noise terms are tested to determine whether this manipulation has 

an effect on forecasting performance. 

Series autocorrelation should also be included in Goodwin and Wright’s (1993) 

first category.  This is a property that expresses the relation of the last data point 

to the previous one. In a random process, there is no relation between 

successive data points. On the other hand, there are many other processes, 
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where a data point is related to earlier value(s) in some way. Reimers and 

Harvey (2011) showed that people’s forecasts are sensitive to autocorrelation in 

series. In other words, they take into account the relation between successive 

data points and forecasts are closer to the last data point when series 

autocorrelation is higher. A positive autocorrelation illusion was also revealed: 

people’s forecasts imply that they overestimate serial dependence for low 

(including zero) levels of autocorrelation but underestimate it for very high 

ones. 

Apart from noise and first-order autocorrelation elements in the series, long 

memory components in the series or higher order autocorrelations should also 

be considered within this category. People appear to be sensitive to these 

features of time series though their level of sensitivity remains in dispute 

(Gilden, Schmuckler and Clayton, 1993, Westheimer, 1991). Degree of 

sensitivity to them is important because they are present in real series. For 

example, financial and environmental time series contain important long 

memory components (Koutsoyiannis, 2002; Cont, 2001; Cajueiro, 2008).  

Hurst (1951) was the first to have discovered this special behaviour in 

hydrological and other geophysical time series; this behaviour is known as the 

"Hurst phenomenon". The generalised Hurst exponent, which governs the 

generation of such series, is directly associated with the fractal dimension of a 

time series. Long memory series are characterized by a tendency to contain 

clusters of neighbouring values. Mandelbrot (1977, p.248) used the term 

"Joseph effect" for the same behaviour. Since then, the Hurst phenomenon or 
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Joseph effect has been verified in several environmental variables, such as 

global mean temperatures (Bloomfield, 1992), indices of the North Atlantic 

Oscillation (Stephenson, Pavan and Bojariu, 2000), climate change (e.g. Evans, 

1996), River Nile flows (Eltahir, 1996), annual streamflow records across the 

continental United States (Vogel, Tsai and Limbrunner, 1998), and many 

others. There is also an extensive literature suggesting evidence of long memory 

in economics fundamentals (Diebold and Rudebusch, 1989) and, therefore, 

stock returns and volatility (Cajueiro and Tabak, 2008) and a variety of 

financial assets (Barkoulas and Baum, 1998). Moreover, a number of 

psychological variables have recently been revealed to possess such fractal 

properties. They include self-esteem (Delignières, Fortes and Ninot, 2004), 

mood (Gottschalk, Bauer and Whybrow, 1995), serial reaction time (Gilden, 

2009; Van Orden, Holden and Turvey, 2003) and many others (see for example, 

Madison, 2004).  

From a mathematical point of view, several types of models have been 

proposed to reproduce the Hurst phenomenon when generating synthetic time 

series. These include Fractional Gaussian noise (FGN) models (Mandelbrot and 

Wallis, 1969), Fast Fractional Gaussian noise models (Mandelbrot, 1971), 

Fractional autoregressive integrated moving-average models (Hosking, 1981), 

and symmetric moving average models based on a generalized autocovariance 

structure (Koutsoyiannis, 2000). For the scope of this thesis, and specifically in 

Chapter 4, I use an approximation to fractional Gaussian noise, the multiple 

time-scale fluctuation approach (Koutsoyiannis, 2002). This approach was 
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selected because it provides a very good approximation, which can be tuned to 

be as accurate as demanded. Additionally, it is not a black box method; this 

means that the experimenter is able to control the characteristics of the elements 

of the fractal series and its internal structure. There have been no studies of 

judgmental forecasting studies from long memory series, which hold their 

autocorrelation structure for many time steps: this is one reason why I included 

them in Chapter 4 of this thesis.  

Research has shown that forecasters tend to take into account the series 

statistical characteristics in various ways, depending on the time series under 

examination, by using context sensitive strategies (Bolger and Harvey 1993). 

This means, that in order to obtain generalizable results concerning factors that 

serve to enhance judgmental forecasting performance (Goodwin and Wright 

1993), more than one type of series should be used in experiments. This was 

done here: experiments were conducted with a variety of series’ types in order 

to produce generalizable results regarding accuracy and underlying cognitive 

processes. 

1.2.2 Presentation format  

Presentation format (static versus dynamic) and graph format (e.g. points, lines, 

bars) influence the forecasts that people provide as well. For example, people 

are generally better at extrapolating from trends when data are presented in 

graphs (Harvey and Bolger, 1996) and forecasts from graphs are better when 
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data are represented as points (whether or not they are joined by lines) than 

when they are represented as bars (Harvey and Reimers, 2012).  

Scale of graphs used to represent the data series may also influence quality of 

forecasts (Lawrence and O’Connor, 1992). Number of forecasts that are made 

from a given data series and the order in which they are made also appears to 

have an effect (Harvey, et al., 1997). Length of data series has also been found 

to affect the quality of judgmental forecasts (Andersson, Gärling, Hedesström 

and Biel, 2012; Lawrence and O’Connor, 1992).  

Presentation format decisions are taken in many business settings such as the 

stock market and supply chain management as well as other managerial 

activities. However, this group of important factors is critically understudied. 

Findings that do exist suggest that it would be useful to carry out more work on 

how presentation format affects judgmental forecasts. In this thesis, 

presentation format elements are studied in depth: series’ scale, series’ length 

and horizon length variables are scrutinized in Chapters 3, 4 and 5, while, 

dynamic presentation of stimuli is analysed in Chapter 6. 

1.2.3 Task characteristics  

Characteristics of the forecasting task beyond the statistical features of the data 

series and the way it is presented can also influence the quality of forecasts 

made from it. First, feedback to forecasters about the outcomes they have 

previously forecast and about the quality of their performance provides a means 

of training forecasters (Goodwin et al., 2004; Mackinnon and Wearing, 1991; 
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Remus, O’Connor and Griggs, 1996; Sanders, 1997) but its effectiveness is 

likely to depend on the delay in providing it, frequency of provision, and 

various other factors (Harvey, 2011). Second, forecasters’ sensitivity to 

asymmetric loss functions has also been shown to be influencing the forecasting 

process (Goodwin, 2005; Lawrence and O’Connor, 2005). Third, forecasters 

have difficulty in incorporating into their forecasts information about causal 

factors that are likely to perturb the pattern in a time series (Goodwin and 

Fildes, 1999; Lim and O’Connor, 1996). Fourth, it is well known that errors in 

aggregated forecasts from a number of independent individuals are lower than 

average errors of the individuals because of cancellation of random error. 

However, errors in forecasts produced by interacting groups of forecasters can, 

under certain circumstances, be even lower than those in the aggregated 

forecasts (Rowe and Wright, 1999; Sniezek, 1990). Fifth, use of advisors also 

reduces forecasters’ error but forecasters tend to place insufficient weight on 

advice they receive (Harvey and Fischer, 1997; Yaniv and Kleinberger, 2000). 

For some applications, forecasters can receive advice in the form of formal 

forecasts produced by models of the underlying processes. Again, forecasters 

often place insufficient weight on the advice. Thus, research has shown that 

they are inclined to make unwise adjustments to model-based forecasts, thereby 

causing their final forecasts to be worse than those originally produced by the 

model (Fildes et al., 2009). As this brief review demonstrates, these elements 

affecting judgmental forecasting have been subject to a considerable amount of 

research. Further research into them is, therefore, perhaps not as urgent as it is 
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for the effects of presentation format:  they are not the focus of experiments 

reported here. 

1.3  Understudied areas in judgmental forecasting 

The above analysis provided an overview and a categorisation of the main 

research findings in judgmental forecasting. This detailed analysis allows for 

identification of research areas that are currently understudied and that need 

further investigation; these are effects of horizon, length and scale of series as 

well as effects of dynamic rather than static data presentation. These are the 

areas I chose to study within the present thesis. In subsequent sections, I will 

provide a brief overview of the literature in these four areas of interest. Further 

and more detailed analysis will be offered in each Chapter devoted in the 

corresponding research theme. 

1.3.1 Order effects in judgmental forecasting 

Forecasting horizon appears to influence judgmental forecasting accuracy. 

Shorter horizon lengths are associated with smaller judgmental errors and 

longer horizons are associated with larger ones in line with expectations. 

Evidence for this finding can be traced in several judgmental forecasting 

experiments using different types of time series. Bolger and Harvey (1993), for 

example, used trended and untrended series with various degrees of 

aurocorrelation and found that forecasters’ errors increased with forecasting 

horizon. Many researchers who have studied the trend damping phenomenon 
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and found that judgmental forecasts deviated from the trend line as a function of 

the forecast horizon, thereby increasing their error (e.g., Andreassen and 

Krauss, 1990; Bolger and Harvey, 1993, 1995; Eggleton, 1982; Harvey and 

Bolger, 1996; Harvey et al., 1994; Harvey and Reimers, 2013; Keren, 1983; 

Lawrence and Makridakis, 1989; Mackinnon and Wearing, 1991; O’Connor, 

Remus and Griggs, 1997; Sanders, 1992; Timmers and Wagenaar, 1977; 

Wagenaar and Sagaria, 1975; Wagenaar and Timmers, 1978, 1979).  Finally, 

Harvey (1995) who studied the effects of noise levels in forecasting accuracy, 

by presenting seasonal series to the participants, confirmed this result. He 

reported increasing errors with an increase in forecast horizon. He also revealed 

that the magnitude of this effect depended on the series’ noise levels as well as 

the series’ frequency. Steeper gradients of the seasonal series and greater noise 

levels were associated with larger errors.  

Although several studies have tentatively identified the cognitive mechanisms 

involved in one-step-ahead forecasts, little has been done to explain the 

deterioration of forecasting performance for longer horizon forecasts. For short 

horizons, research suggests that people use simple heuristic mechanisms to take 

into account pattern, autocorrelation and noise information in the series. As 

described in previous sections, the anchor and adjustment heuristic has been 

proposed as one way of explaining performance in judgmental forecasting tasks 

(Harvey, 2007). But what happens with longer horizons? Is this deterioration in 

performance only an effect of errors’ superposition for various time steps? Or is 

it also an effect of the cognitive strategy chosen by the participants?  
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Bolger and Harvey (1993) used stepwise regression to reveal whether longer 

horizon forecasts were based on a set of preceding forecasts. Their results 

suggested that while one-step ahead forecasts exploit pattern information, this is 

not the case for longer horizon ones; it is the immediately preceding forecast 

that mainly influences longer horizon forecasts. This means that beyond the 

one-step-ahead horizon, people use a simple heuristic strategy, which resembles 

the naïve forecasting approach. This finding was confirmed by Lawrence and 

O’Connor’s (1992) research; they found that people adopt different smoothing 

constant values for different forecast horizons when employing the averaging 

heuristic for untrended series. Was this an effect of suboptimal 

parameterization? For shorter horizons, the use of heuristic mechanisms often 

produces acceptably low levels of error and participants take into account the 

patterns and the autocorrelation of the series. For longer horizons, however, 

pattern elements, though essential for optimal forecasting, seem to be ignored. 

Instead, longer horizon forecasts seem to be mere repetitions of the previous 

data point. But why is this so and are there any task characteristics that would 

help forecasters improve their performance?  

Two papers have dealt with this presentation format issue and its impact on the 

cognitive strategies adopted by the forecaster. The first one by Welch, 

Bretschneider and Rohrbaugh (1998) concluded that, by making the long-term 

elements of the series more salient to the forecaster, MAPE decreases. 

Participants assigned to an experimental condition, in which the only the basic 

series information was presented to them, were less accurate than those 



	
   48	
  

assigned in a condition in which the long term trends and long-term levels of 

the series were highlighted.  

Harvey et al. (1997) deal with the same research question; in their second 

experiment, they tested the idea that a single forecast for a distant horizon 

would be better than a forecast for the same horizon embedded within a set of 

forecasts for multiple horizons. Their hypothesis was based on the argument 

that if people introduce noise in successive forecasts in an attempt to represent 

the series, thereby impairing overall accuracy, they should not do so for single 

forecasts. Hence, forecasting performance should be enhanced for single 

forecasts. To test this hypothesis they assigned half of the participants in a six-

horizon successive forecasting task and the rest of the participants in a single 

forecasting task either for the first or for the six forecast horizon. They used 

seasonal series and forecasts started at a 0.375 phase of the sinusoid. Their 

results, though, did not show any significant differences between successive or 

single forecasting conditions. These findings undermined the pattern masking 

account, which posited that participants are aware of the pattern they should 

produce, but they mask it by adding noise. Instead, the representativeness 

account was supported: participants added noise even when they produce single 

forecasts.  

Judgment processes in forecasting can include intuitive or analytical modes of 

thinking (Kahneman, 2011). Intuitive modes of thinking, such as heuristic 

processing, are quick and automatic, producing approximate judgments to a 

problem. On the other hand, analytic thinking requires more time and can 
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produce more accurate judgments. Welch at al.’s (1998) paper emphasized the 

need for the forecaster to use more analytic modes of thinking when forecasting 

for longer horizons in order to take into account the long term characteristics of 

the series, something that is essential for distant forecasts. Is there a way to 

prime the forecaster to think more analytically? And would that be beneficial 

for the forecaster performance? It might be the case that forecasters who are 

faced with a more difficult forecasting task (for example, requiring high 

deliberative effort) might need to think more analytically and, thus, produce 

more accurate forecasts. 

The limited research related to longer horizon judgmental forecasts and the fact 

that pattern components might not be exploited by heuristic mechanisms as in 

the case of one-step ahead forecasts create an interesting area for research. In 

Chapter 3, I report an investigation into horizon length errors and order effects 

in judgmental forecasting from various types of time series, and I identify 

which horizons and presentation formats are optimal for forecaster accuracy. 

The aim of this research is to enhance the accuracy of judgmental forecasting 

and, at the same time, to describe the cognitive mechanisms involved in each 

case.  

1.3.2 Length Effects in Judgmental forecasting  

Judgmental forecasts are widely used in practice either alone or in combination 

with statistical forecasting tools. People using their judgment, though, tend to 

make forecasts that are not in agreement with statistical techniques (Lawrence 
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et al., 2006). To date, most research on how people use their judgment to make 

forecasts from time series suggests that the process involves extraction and use 

of pattern information such as trends, seasonality and noise. Pattern extraction, 

though, seems to be dependent on graphical characteristics of the series 

considered. Andreassen and Krauss (1990), for example, suggest that people 

need to have a series sufficiently long for them to have confirmation of any 

patterns thought to exist. Andersson et al. (2012) find similar evidence in a 

stock investment paradigm; in their second experiment price predictions 

improve with price-series length. Nevertheless, contrary to expectations, 

Lawrence and O’Connor (1992) found that the length of time series affects 

forecast accuracy in the opposite way: forecast accuracy decreases when 

participants are presented with longer time series. The same conclusion was 

reached by Waagenar and Timmers (1978) who used an exponential task: 

extrapolation from exponential functions was improved when fewer data points 

were shown to the participants.  

Time series length is expected to influence judgmental forecasting accuracy 

especially in experiments with static (e.g., graphical) presentation. By varying 

the length of the series presented to a subject, the amount of information 

available for processing changes. Shorter time series provide evidence for 

elements such as the last data point and the local trend. Longer time series, on 

the other hand, contain more information. These series carry evidence related to 

the series’ signal, overall trends, introduced randomness, autocorrelations and 

so on: these elements can be combined to produce a forecast. Thus, the 
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mechanisms of data processing might change when the amount of information 

presented to people varies (Einhorn, 1971).  

Limited research related to people’s sensitivity to time series length in 

judgmental forecasting and the fact that pattern components are needed by 

heuristics create an interesting area for research. In Chapter 4, I report an 

investigation into length effects in judgmental forecasting from various types of 

time series, and identify which lengths are optimal for the forecaster accuracy 

with each series’ type. An additional aim of the research was to investigate 

whether different cognitive mechanisms are involved for series of different 

lengths. For example, different versions of the anchor and adjust heuristic may 

be used to make forecasts from short and long data series. 

1.3.3 Scale effects in judgmental forecasting  

The scale used for graphically presented time series may influence judgmental 

forecasting accuracy. Legge, Gu and Luebker (1989) support this notion by 

arguing that the scale at which data is presented will influence the graphical 

perception of the behaviour of a time series. Nevertheless, contrary to 

expectations, Lawrence and O’Connor (1992) failed to find any effect of the 

scale of data presentation on forecast accuracy. This result might stem from a 

general law of stimulus perception, the scale invariance law (Chater and Brown 

1998, 2008). This law posits that the perception of stimuli is independent of 

their size. Lawrence and O’Connor (1992) findings might also relate to the fact 
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that humans seem not to be able to attribute absolute coding magnitudes to 

stimuli but only relative ones (Stewart, Brown and Chater 2005). 

However, a restricted number of experiments concerning scale effects in 

judgmental forecasting accuracy have been reported. Results might be different 

for various types of time series. Also, within the same type of time series, 

differences might occur if the distribution of the underlying noise function is 

manipulated. This issue of noise type effects has not been studied before. Thus, 

this area of research is appropriate for further investigation. In Chapter 5, I 

report an investigation into series’ scale and noise type effects in judgmental 

forecasting from various types of time series.  

1.3.4 Forecasting from experience 

The type of display used for presenting the time series may also influence 

judgmental forecasting accuracy. Will people react with the same way when 

presented with static or dynamic data? This is a seriously understudied area in 

forecasting with the use of judgment. Dynamic series’ presentation, where the 

forecaster experiences individually each point of the time series sequentially is 

a seriously understudied area in judgmental forecasting. However, this is a 

widespread task in the domain of finance where professionals receive real-time 

information from which they have to extrapolate in order to make their 

investment decisions. Traders for example make instant decisions on the basis 

of data they receive in real-time on their computer screens. Managers also 

receive real-time information for developments in the market and base their 
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subsequent decisions on their judgmental forecasts (see, for example, Nuthall, 

2001). Policy makers also receive real-time information for real GDP growth 

and other indicators such as inflation to base their decisions. Monetary policy 

decisions, for example, are taken in real-time with the use of judgment and 

models on the basis of assessments of current and future economic conditions 

(for relevant nowcasting models, see for example Giannone, Reichlin and Sala, 

2004). Weather forecasters also use their judgment in real-time settings (see, for 

example, the experiment by Lusk and Hammond, 1991). 

 Also, in life, people receive streams of data of interrelated events and base their 

anticipations on real-time, sequential information, or updated information of a 

single cue they have experienced (for example, the weather, prices in the 

supermarket and so on). Adaptation accounts would suggest that such a 

successful interaction with cues that are interrelated is essential for human 

beings. These types of experiential tasks should not be confused with 

forecasting tasks where domain experts use their professional experience to 

produce their forecasts. Here, the target area of research is high-frequency 

information assimilation through experience. These tasks do not refer to 

experience gained over the years. Forecasting from real-time experience 

involves the exposure to streams of data, the assessment of whether patterns are 

present in these data, and finally the assimilation of all the information for the 

final forecast to be produced. Given the potential usefulness and practical 

application of judgmental forecasting from experience, there is good reason to 

study it.  I do this in Chapter 6, where I present a set of exploratory 



	
   54	
  

experiments, which deal with the basic characteristics of the forecasting 

process. 

1.4 Summary and Overview of the Thesis 

The scope of this thesis is to examine understudied areas in judgmental 

forecasting from graphs and from experience and to suggest improvement 

strategies. I will specifically examine presentation format phenomena that 

concern horizon, order, length, scale and dynamic display effects. In order to 

obtain generalisable results, the aforementioned phenomena will be investigated 

using various types of time series in the experiments. 

In the second chapter, I will present the basic methodological approaches to 

studying judgmental forecasting phenomena. In the literature, experimental 

research involves mainly the tasks with static graphs of series. In the present 

thesis, judgmental forecasts from static graphs will be explored in Chapters 3, 4 

and 5, while judgmental forecasts from real-time experience of series will be 

explored in Chapter 6. Thus, in Chapter 2, I will first present the main 

methodological issues for judgmental forecasts from static graphs along with 

the statistical methods used to address these phenomena. In subsequent sections 

of Chapter 2, I will present a novel experimental paradigm designed to study 

forecasting from experience. In this paradigm, participants are presented with a 

time series in an experiential way with the use of bar charts. Error measures and 
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other statistical techniques used in the present thesis will also be described in 

Chapter 2.  

In Chapter 3, horizon effects will be investigated in judgmental forecasting 

from graphs (Experimental Studies 1-2). A novel way of requiring participants 

to make their forecasts will be presented; the forecaster will first produce his 

forecast for distant horizons and then for the remaining horizons (e.g. to the 

most distant horizon will be used as an end-anchor). Forecasting performance 

with the aid of end-anchors will be compared with traditional forecasting where 

the forecaster begins forecasting from the closest horizon. Order effects will 

also be examined in this Chapter and, more specifically the effect of direction 

on forecasting performance will be thoroughly investigated.  

In Chapter 4, I will examine the way the length of the series affects forecasting 

performance from various types of time series (Experimental Studies 3-4). A set 

of lengths will be selected on the basis of previous findings in the literature. 

Forecast performance for various lengths will then be assessed; also, the 

anchoring and adjustment mechanisms will be examined in conjunction with a 

naïve benchmark. In this chapter, length effects for later horizons will also be 

examined in an effort to reconcile findings from previous research on the issue.  

Dimensional factors related to the forecasting task will be further investigated 

in Chapter 5, where graphs’ scale will be manipulated (Experimental Studies 5-

6). The types of time series entered in these experiments are selected in order to 

uncover the effects related to the series’ noise distribution; two different noise 

types (uniform and Gaussian noise) will be introduced to the series of interest. 
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Apart from forecasting performance, anchoring and adjustment mechanisms 

will be also scrutinised in this section to determine whether participants are 

sensitive to different scales and noise functions. 

Presentation format issues will be further explored in dynamic settings in 

Chapter 6, in a number of experiments (Experimental Studies 7-12), where the 

new experimental paradigm for judgmental forecasting will be tested. Here, I 

will test already identified robust phenomena in judgmental forecasting within 

this novel dynamic setting and compare their magnitude and direction with 

those found in static environments.  

Finally, findings will be summarised in Chapter 7 and their implications will be 

discussed. 

 



	
  

Chapter 2  Methodology 

Overview 

In this chapter, I present a general description of the experimental and statistical 

methods and techniques used throughout this thesis. I start by describing the 

time series stimuli and methods employed to construct them in both judgmental 

forecasting tasks from graphs and from experience. Next, I outline the measures 

used to assess forecasting performance and evaluate their appropriateness for 

each of the tasks I used. Finally, I outline the basic techniques for measuring the 

robust biases found in judgmental forecasting: trend damping, autocorrelation 

illusion and noise introduction. 

2.1 Experimental Methods 

Judgmental forecasting from graphs 

For the study of judgmental forecasting from graphs, I employed tasks 

commonly used in the field of judgmental forecasting (e.g. Sanders, 1992; 

Önkal, Gönül and Lawrence, 2008; Goodwin and Fildes, 1999; Reimers and 

Harvey, 2011; Harvey and Reimers, 2013).  In these tasks, series are presented 

to participants as line graphs. In each trial of the experiments found in this 

thesis, participants observe a graph and are requested to extrapolate from that. 

After the end of each series, a number of vertical lines are presented in the next 
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time periods to indicate where forecasts have to be made. The number of these 

lines depends on the number of forecasts requested by the participant in each 

experiment. When a forecast is made, by clicking on one of the vertical lines, a 

coloured dot appears and this point is connected with a line with the previous 

point.  

As discussed in Chapter 1, there might be cases where presentation format can 

play an important role in the way forecasts are produced from graphs (Harvey 

and Reimers, 2012). The choice between point, line or bar formats seems to be 

important, with preliminary evidence showing higher errors to be associated 

with bar graphs. Throughout the present thesis, such presentation format biases 

are not investigated in depth and, thus, a homogenous experimental paradigm is 

used across all the experiments that involve graphs; series are always presented 

in line graphs, where successive points are interconnected with a line. Forecasts 

provided by participants are also connected with a line with the previous data 

point. Figure 2.1 shows a basic display for this experimental paradigm. 

In each of the experiments requiring forecasts from graphs, time series are 

generated uniquely for each participant and the types of series used in each 

experiment are randomly ordered separately for each of the participants. This 

methodology ensures that results are not artifacts of the specific series used or 

of the order in which those were presented (e.g. context effects). 
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In the majority of tasks where forecasting from graphs is requested, tasks are 

not performed within particular scenario, such as one associated with sales 

forecasting, to avoid introduction of frame-specific biases (e.g., elevation biases 

arising from optimism or perceived control effects). Hence, the vertical axes of 

the graphs used to present the series are unlabelled. 

 

	
  

Figure 2.1 Standard experimental paradigm showing 39 data points 

(seen by participants) followed by a vertical line, where participants are 

requested to mark their forecast. 

In these tasks, each participant performs the task individually. They read a short 

introduction to the study and then enter their demographic details (age, sex).  

They then are instructed to view each series and click on each of the vertical 

lines to show where they expected future points in the series to appear. In the 

majority of the experiments contained in this thesis, forecasts are made from the 

nearest horizon to the most distant one with the exception of two experiments in 

Chapter 3, where the order of forecasts is reversed. In this case, all vertical lines 
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are again presented at the same time as the series.  However, an explicit screen 

message prompts participants to make their forecasts in a reverse order. In order 

to ensure that forecasts are actually made in this order, this task is constrained; 

thus, the programme accepts a forecast (and show a blue dot to indicate its 

position) only if it is made in the required order. 

There are also two conditions in Chapter 3 (Experimental Studies 1 and 2) and 

Chapter 4 (Experimental Study 4) where participants first make their forecast 

for the most distant horizon for each of the series presented to them. In this 

case, a single vertical line is presented at furthest horizon with each series to 

signal that only the forecast for that horizon is required. In Chapter 3, once this 

forecast is made for all series, participants return to each series (presented in the 

same order as before) to make the remaining required forecasts. To enable them 

to do this, the remaining vertical lines appear on the screen at this point to 

indicate the positions of these required forecasts. As forecasts are made, a blue 

line links each new forecast with the last data point, or with both the 

immediately preceding forecast and the forecast for the most distant horizon. In 

Chapter 4, participants are not required to forecast the remaining points.     

	
    



Chapter 2 - Methodology 

	
   61	
  

Judgmental forecasting from experience 

People often need to deal with streams of information that they receive over 

time. In this thesis, I propose a new way to directly investigate forecasting 

performance, by introducing a simple forecasting task, where the forecaster 

experiences the time series in real-time instead of observing it via graphs. In 

this task, values that the forecasters experience were presented as a sequence of 

bar graphs and participants were asked to forecast the next values (Figure 2.2). 

Importantly, the structure of the time series within this paradigm could be 

modified to match that used in judgmental forecasting tasks from graphs. The 

only difference was the presentation format. Based on the ability of the brain to 

make predictions when processing sequential stimuli (see for example Fiedler 

and Juslin, 2006) in a variety of domains (for a review, see Bubic, Cramon and 

Schubotz, 2010), I expected that the forecaster would be able to process values 

across time and forecast accordingly. This dynamic paradigm, which I label 

“the experiential forecasting paradigm”, lies at the intersection of low and 

higher level cognition. Prediction judgments deriving from this paradigm can be 

used as a proxy to understand more about judgmental forecasting from graphs 

but may also cast light on more complex forecasting decisions such as those 

that take place when real-time data, such as news, influence processes such as 

group forecasting (Önkal et al., 2012). 
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Figure 2.2 Screenshot of the experiment. The bar chart represents a 

specific data point in a time series.  

In these experiments, participants were presented with a sequence of bars that 

formed a specific time series. In the beginning of each experiential experiment, 

they were asked to enter their age and gender. Participants are randomly 

assigned to one of the experimental conditions. They then read instructions, 

where a particular scenario was described in order to render the task more 

representative of a typical experiential forecasting situation:   

 “Imagine you are a trader… You are now at Wall Street premises and you are observing a 

specific stock price in this screen. The stock price values are not presented in numbers. Instead, 

they are presented with the use of bar charts. The greater the height of the bar is, the larger the 

price of the stock. A first bar appears in your screen with the initial price. When the stock price 

changes (it does within seconds in the stock market), the next bar appears in your screen. The 

previous one disappears. At the end of the task and after observing approximately 40 

consecutive stock price changes, you will have to predict the height of the next two bars (i.e. 

stock prices) by mouse-clicking the height of the bar. Will the price of the stock increase or 

decrease? Will it remain the same? Your prediction will show whether you are appropriate to 

become a trader!” 
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Once they had indicated that they had understood the instructions, they 

experienced the successive data points. They then had to forecast the next data 

points by using the mouse and clicking at the heights at which they thought that 

the next points would appear. Their understanding of the task was checked 

twice: first, during the experiment where they had to answer to the experimenter 

whether the task was clear to them and then at the end of the experiment, where 

they had to describe what type of time series they have just experienced by 

selecting among different graphs. The number of forecasts requested from 

participants was determined by the need to test the experimental hypothesis. For 

example, in tasks where the goal was to understand whether the forecasters 

introduce noise to their forecasts, they were asked to provide five forecasts. In 

other cases, where trend damping was investigated, two forecasts were enough 

to determine whether forecasts were below the trend line. In the next section, I 

provide more detailed information about the stimuli used in these tasks.  

Participants and subject pools 

To conduct the experiments both in graphical and experiential settings, I used 

participants from two sources: either UCL’s subject pool or Amazon 

Mechanical Turk, a crowdsourcing web service commonly used for data 

collection by psychologists. UCL’s subject pool comprises mainly 

undergraduate and postgraduate students but also a small minority of 

individuals outside UCL who are interested in acting as human subjects. These 

individuals were excluded from the experiments reported here in order to 

maintain the homogenous characteristics of the University sample. On the other 
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hand, Amazon Mechanical Turk pool of subjects comprises individuals around 

the world, who register in this service in order to accumulate a monthly 

allowance by participating in various experiments published via Amazon. 

Manipulations within the experimental conditions of this thesis were designed 

in such a way so that all comparisons referred to the same pool. Moreover, 

cross-experimental comparisons were only conducted in cases where subjects 

came from the same pool of subjects. Although research has demonstrated 

equivalence between results obtained from online and laboratory studies 

(Mason & Suri, 2012), there were several differences between these two pools 

of participants, which might have produced experimental artefacts if one 

directly compared results from these two sources. For example, the average age 

of subjects drawn from the UCL pool was 26 years old while, Amazon 

participants’ average age was 31 in the experiments of the current thesis. 

Additionally, the majority of UCL participants have attended at least one course 

of inferential statistics, which was not the case for subjects drawn from Amazon 

pool. Also, in the laboratory, the experimenter could assess the subjects’ 

understanding of the task before trials begun; the same was not possible for 

online tasks. Nevertheless, to avoid possible discrepancies between results from 

these two different pools of subjects I significantly increased the number of 

participants in each of the web experiments conducted in the current thesis. 
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2.2 Stimuli and Tasks 

In judgmental forecasting tasks, the stimuli used are time series of different 

types. Some of the research findings and corresponding phenomena are often 

verified for specific series’ types and not for others (see for example the studies 

of Andersson et al., 2012; Wagenaar and Timmers, 1978; Lawrence and 

O’Connor, 1992), a fact that causes difficulties in generalizing results (Goodwin 

and Wright, 1993). This observation suggests that carrying out experiments 

with a variety of series’ types would help to clarify whether specific phenomena 

are replicated for a variety of series’ types and, consequently, generalizable. 

For the purposes of this thesis, I used mainly five types of series: untrended 

series of independent data points with various levels of noise depending on the 

hypothesis of the experiment; untrended series of autocorrelated data points 

with various autocorrelation coefficients, again depending on the experimental 

design; series of independent data points with a linear trend imposed upon 

them; series of independent data points with a seasonal trend and, finally, 

untrended non-linear long memory (fractal) series. 

More specifically, in Chapter 3, where I study horizon and order effects I 

presented participants with untrended series of independent data points, 

untrended series of highly autocorrelated data points, series of independent data 

points with a linear trend imposed upon them and series of independent data 

points with a seasonal trend imposed upon them. In Chapter 4 where I studied 

length effects, I used untrended non-linear long memory series, untrended series 
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of highly autocorrelated data points, a series of independent data points with a 

linear trend imposed upon them and a series of independent data points with a 

seasonal trend imposed upon them. In Chapter 5, where scale effects were 

investigated, I used only untrended series of independent data points and 

untrended series of highly autocorrelated data points. Nevertheless, two types of 

noise distributions were used in this paradigm. Finally, in the experiential 

forecasting experiments, I used series of independent data points with a linear 

trend imposed upon them (both upward and downward ones) to study whether 

trend damping occurs. I also employed untrended series with various 

autocorrelation coefficients to study the autocorrelation illusion and, finally, I 

presented untrended series of independent data points with different noise levels 

to study whether noise introduction occurs.  

These types of time series were chosen for the following reasons. Non-linear 

long memory series of high persistency appear to be interesting because their 

optimal forecast lies close to the last data point. Non-linear long memory series 

have not been studied in the past in judgmental forecasting settings. 

Theoretically, the degree of persistence in this type of series and, thus, the 

optimal forecast, could be extracted by the forecaster by observing the 

smoothness of the series; higher persistency series are represented by smoother 

graphs. Seasonal and trended series on the other hand contain a signal, which 

should be detected by the forecaster. Random series represent deviations around 

a mean value and are always useful as a control. Finally, autoregressive time 
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series of various autocorrelation levels were used to detect whether participants’ 

implied autocorrelation matches the autocorrelation of the series. 

Examples of the types of series used can be seen in individual figures in each of 

the experimental chapters of this thesis.  

To construct untrended series, I followed Box and Jenkins (1976) methodology 

by inserting appropriate parameters into the following generating equation:  Xt 

= α Xt-1 + (1 – α) µ + ε, where Xt-1 was the previous observation, µ was the mean 

of the series, α was the degree of autocorrelation, and ε was noise produced by 

randomly drawing values from a Gaussian distribution with a mean of zero and 

a variance of σ2. The mean value, µ, was selected to ensure that the final data 

point was close to the vertical mid-point of the screen. The autocorrelation 

coefficient was selected according to the goals of the experiment and varied 

between α = 0 for random series and α = 0.9 for highly-autocorrelated series. 

The variance σ2 depended again on the experimental hypothesis (high, medium 

or low noise components).  

Patterned series, such as trended and seasonal series, were produced by 

imposing the appropriate pattern on an independent series. More specifically, 

linear trended series were produced by using the equation: Xt = α t + εt, where α 

represented the gradient of the series (shallow, medium or steep gradient) and ε 

was noise produced by randomly drawing values from a Gaussian distribution 

with a mean of zero and a variance of σ2. The gradient and variance of the series 

were chosen according to the experimental design. Seasonal series were 

constructed by using the equation: Xt = α cos (βt) + εt. The starting point of 
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these series was chosen so that the last data point was close to the vertical mid-

point of the screen.  

Finally, to construct the non-linear long memory series, I used the multiple 

time-scale fluctuation approach (Koutsoyiannis, 2002). The autocorrelation and 

variance restrictions were calculated from the equations after the Hurst 

exponent value was selected to be equal to 0.9. Time series, such as those 

chosen for the purposes of this thesis, with high Hurst values (H = 0.9) exhibit a 

long memory autocorrelation function of many time steps. This means that 

optimal forecasts lie very close to the last data point, rendering anchoring and 

“conservative” adjustment a very efficient way of producing forecasts. 

Macroscopically, this property can be traced by the smoothness of the series. 

Koutsoyiannis (2002) has shown that by superimposing three or more 

Markovian functions, one can obtain a good approximation of fractal Gaussian 

noise by applying specific restrictions on the relations of their variances, 

autocorrelations and fluctuation time scales. The algorithms used are based on 

the same principles as the fast fractional Gaussian noise (FFGN) algorithm 

(Mandelbrot, 1971) with the difference that this approach uses only three AR(1) 

components (many fewer than the FFGN) and that the parameters of the 

algorithm are determined by much simpler equations. The multiple time-scale 

fluctuation approach thus makes use of three Markovian processes to construct 

the fractal Gaussian noise approximation. These Markovian processes AR1, 

AR2 and AR3 have the following properties: 

• Means µ 
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• Variances σ1
2, σ2

2, σ3
2  

σ1
2 = (1 - c1 - c2) γ0 

σ2
2 = c1 γ0 

σ3
2 = c2 γ0 

where c1 and c2 are positive constants (with c1+c2 < 1) 

• Autocorrelation functions ρ, φ, ξ:  

ρ = 1.52 (Η-0.5) 1.32 

φ = 0.953 – 7.69 (1-Η) 3.85 

ξ = 0.932 + 0.087 Η, for Η < 0.76 

ξ = 0,993 + 0,007 Η, for Η > 0.76 

and 

φ = e (-δ/λ) 

ξ = e (-δ/ν) 

where δ, λ, ν are the time scales of interest and H represents the Hurst exponent 

value. 

2.3 Error measures 

Forecast error in this thesis is defined as the difference between the forecasted 

value (F) and the actual value (A).  

In the experiments outlined in the present thesis, forecast errors serve two 

important functions: 1) to measure overall accuracy of the participant who is 
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requested to make judgmental forecasts and 2) to measure specific cognitive 

biases or deviations from the true value that tend to be in one direction. There 

are several types of biases identified in judgmental forecasting, as discussed in 

Chapter 1. Among those, trend damping and elevation effects are those revealed 

via error measures; other cognitive biases such as noise introduction and 

autocorrelation illusion are assessed with alternative methodologies, presented 

in the next section. 

In the experiments reported in this thesis, I use a variety of time-series types. 

Nevertheless, I only compare errors produced from the same types of series. In 

other words, within-series comparisons are assessed. Error comparisons 

between different types of series (cross-comparisons) were not considered here; 

the focus was mainly to understand whether specific manipulations related to 

the task characteristics improved performance individually for each type of 

series and whether these manipulations affected the underlying cognitive 

mechanisms. This renders measures such as the mean absolute error (MAE  = 

|Absolute value – Forecast| appropriate for within-series comparisons (see also, 

Armstrong and Collopy, 1992). Relative and percentage measures would have 

been useful for cross-comparisons between different series’ types.  

In order to evaluate forecasting performance, I used the mean absolute error 

measure (MAE) and the root mean square error (RMSE) – for multiple forecasts 

- whereas to evaluate specific underlying phenomena such as trend damping 

and positive elevation biases, I used the simple and symmetric mean signed 

error as well as cumulative error, which put equal weights on both positive and 
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negative errors. RMSE is a common measure, but it is well known to suffer 

from a number of problems; these mainly concern cases where forecasting 

performance is compared across series with different scale (Armstrong and 

Fildes, 1995; Armstrong and Collopy, 1992). For the purposes of the present 

research, RMSE can be still be useful for comparing accuracy from the same 

type of series under different conditions. 

MAE is the absolute forecast error made by participants and corresponds to the 

difference between the judgmental forecast and the actual outcome of the series 

whereas mean signed error is calculated by subtracting the optimal forecast 

instead of the actual value. Optimal forecasts were calculated by dropping the 

noise component from the generating algorithm of the series. As mentioned 

before, while MAE was used as a measure of forecasting performance, MSE 

was especially useful in order to nicely reveal phenomena such as trend 

damping and elevation biases. Although randomization of series and trials was 

employed to avoid experimental artifacts, actual and optimal values were 

employed both in MAE and MSE error equations respectively to ensure that the 

whole process of collection and analysis of the data was conducted in an 

unbiased manner. 

Cognitive biases were also studied by extracting the mean absolute distance of 

the forecast from the last data point. This measures the degree of adjustment 

from the previous data point. 
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Extreme values were mainly treated statistically; participants whose forecasts 

were at least three inter-quartile ranges from the median of each group were 

removed and replaced (6% of all participants). 

2.4 Robust biases in judgmental forecasting 

Although difficulties emerge when trying to generalise research findings from 

judgmental forecasting studies due to the great variety of series that can be used 

in forecasting tasks (Goodwin and Wright, 1993), the most robust phenomena 

associated with forecasting biases in a variety of studies and a diversity of 

series’ types are trend damping (Harvey and Reimers, 2013), noise introduction 

(Harvey, 1995) and the autocorrelation illusion (Reimers and Harvey, 2011).  In 

the present thesis, these biases are investigated by using methodologies 

suggested in the literature. 

It is useful to explain here the distinction between elevation effects and trend 

damping; elevation effects occur when forecasts are consistently above or 

below the trend line but with no difference in the slope between the data series 

and the sequence of forecasts. To measure whether trend damping occurs, two 

methodologies are used in the literature. One is associated with the exploitation 

of the signed error measure, which is calculated for each time-step as the 

difference between the forecast and the corresponding trend value. A repeated-

measures ANOVA is then run with the dependent variable of the signed error 

and the independent variable of time horizon. The number of levels of this 
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GLM model depends on the forecasting task characteristics. Trend damping 

occurs when significantly higher errors are associated with the most distant 

horizons. Another methodology proposed by Harvey and Reimers (2013) 

suggests the use of regression lines to fit each participant’s data individually, 

with time horizon being the x axis variable. Regression fitting results in 

obtaining a slope value for each individual. These values are then compared 

with the actual gradient of the series; significantly shallower slopes indicate that 

trend damping occurred.  

Noise introduction effects (Harvey, 1995) are treated with a similar technique 

except that now, after fitting linear regression lines to the forecasts, residuals in 

each noise condition are compared via a one-way ANOVA. If those are 

significantly different from each other (i.e. significantly greater for higher 

noise), then the researcher can conclude that subjects introduced more noise in 

the higher noise condition. If differences are not significantly different, then 

there is no evidence that noise is introduced into the forecast sequence in 

proportion to the noise level in the data series. 

Finally, the autocorrelation illusion is assessed via the calculation of implied 

autocorrelations, a methodology introduced recently by Reimers and Harvey 

(2011). Implied autocorrelation can be calculated by dividing the following 

quantities: the distance between the forecast and the series mean and the 

distance between the forecast and the previous data point. This estimation is 

directly derived by the equation for the autocorrelation. In Chapter 6, 
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Experimental Study 12, I also describe  an alternative methodology for 

estimating participants’ sensitivity to autocorrelation. 

With these methodologies, one can tackle issues associated with robust biases in 

judgmental forecasting. Throughout this thesis, these methodologies are used 

numerous times. New directions towards enriching these methods are presented 

in the last chapter of this thesis. 

 



	
  

Chapter 3  Order Effects in Judgmental 
Forecasting 

Overview 

As discussed in Chapter 1, the order in which judgmental forecasts of proximal 

or distal periods are made is an understudied area in judgmental forecasting. 

Uncertainty increases as we move into the future. Unsurprisingly, therefore, 

both statistically based forecasts and judgmental forecasts are worse for more 

distant forecast horizons (Lawrence et al., 1985). Rate of deterioration, 

measured by increase in mean absolute percentage error (MAPE), is broadly 

similar for the two types of forecasts (Lawrence et al., 1986) but reasons for it 

differ. As discussed in Chapter 1, judgmental forecasts, unlike most statistical 

forecasts, show trend damping. This causes their signed error to increase over 

the forecast horizon (Harvey and Reimers, 2013; Lawrence and Makridakis, 

1989). What cognitive processes produce this phenomenon? To make forecasts 

for the first horizon, people appear to use the last data point as a mental anchor 

and then make some adjustment away from that point to take account of the 

pattern in the series. Typically, these adjustments are insufficient. As a result, 

trend damping is observed with trended series and forecasts from non-trended 

series appear to exaggerate the sequential dependence in the data. Furthermore, 

people add random noise to the result of the anchoring and adjustment process 

to produce their forecasts (Harvey, 1995; Harvey et al, 1997). They may do this 

to make their sequence of forecasts look similar to the data series. Forecasts for 
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later horizons are made in a similar way except that the previous forecast rather 

than the last data point is used as a mental anchor (Bolger and Harvey, 1993). 

As a result, the random noise added to previous forecasts accumulates as people 

make forecasts for increasingly distant horizons. If this accumulation of random 

noise could be eliminated, forecasts for these more distant horizons would 

improve in accuracy and variability across forecasters in the trajectory of the 

forecast sequence would be reduced.  

End-Anchoring 

This analysis suggests that forecasting performance would be improved by 

preventing forecasts for horizons beyond the first one being made in sequence 

and, thereby, accumulating the random errors associated with each one. One 

obvious way of doing this is to ask forecasters to make their forecast for the 

most distant horizon first. One might assume that forecasters do this by using 

the anchoring and adjustment heuristic that is normally used to make an initial 

forecast. For example, for trended series, instead of making a forecast for the 

first horizon by anchoring on the last data point and adjusting away from that 

value by a proportion (P) of the difference between the last two data points 

(Bolger and Harvey, 1993), they could make a forecast for, say, the fifth 

horizon by anchoring on the last data point and adjusting away from that value 

by 5P (i.e. five times the size of the adjustment used when forecasting for the 

first rather than the fifth horizon).  Forecasters may find making an initial 

forecast for the most distant horizon more difficult than making an initial 
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forecast for the first horizon and it may take them a little longer.  However, 

once that forecast has been made, their task is transformed from one of 

extrapolation to one of interpolation. This manipulation is expected to produce 

its greatest improvement on the forecast for the most distant horizon. This is the 

horizon that would be most affected by accumulation of noise components in 

previous forecasts. However, because interpolation is a more constrained task 

than extrapolation, the end-anchoring produced by making an initial forecast for 

the most distant horizon may also improve forecasts for less distant horizons.  

To make the intervening forecasts, people may simply use linear interpolation 

between the last data point and their forecast for the most distant horizon. They 

are still expected to add a noise component to the results of each forecast in this 

interpolation (Harvey, 1995) but this would not determine the trajectory of the 

forecast sequence. 

Based on the above rationale, I will test the following hypotheses. 

H1: Requiring forecasters to make their initial forecast for the most distant 

horizon will produce more accurate forecasts for that horizon than when they 

make their forecast for it last. 

H2: Requiring forecasters to make their forecast for the most distant horizon 

first rather than last will also increase the accuracy of forecasts for less distant 

horizons. 
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Reversing the direction of the forecasting 

Once forecasters have made their initial forecast for the most distant horizon, 

they could proceed in one of two ways. They could forecast forwards in time 

from the end of the data series towards their existing forecast for the most 

distant horizon. So, for example, forecasts for five horizons would be made in 

the order: 5, 1, 2, 3, 4, where lower numbers represent horizons closer to the 

end of the data series. I shall refer to this as forward forecasting. Alternatively, 

they could make forecasts in in the reverse direction, working from their initial 

forecast for the most distant horizon back towards the end of the data series. 

Thus, when forecasts for five horizons were required, they would make them in 

the order: 5, 4, 3, 2, 1, where lower numbers again represent horizons closer to 

the end of the data series.  I shall refer to this as backward forecasting. There 

are reasons to suppose that direction of forecasting will influence accuracy but 

that the effect of this variable will depend on the characteristics of the time 

series.  

First, consider forecasting from series containing linear trends. Trend damping 

effects tend to be greater with downward than with upward trends (Harvey and 

Bolger, 1996; Lawrence and Makridakis, 1989; O’Connor et al., 1997). An 

upward trend when forecasting forwards, is transformed into a downward trend 

when forecasting backwards. Therefore, errors in forecasting upward trends are 

likely to be larger when people forecast backwards than when they forecast 

forwards. Second, suppose that the final point of an autocorrelated data series 
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has been perturbed well away from the mean or trend line of the series by noise. 

When forecasting forwards, forecasters could take the effects of autocorrelation 

into account (Reimers and Harvey, 2011): for example, if the last point of an 

untrended series with a first order autocorrelation of .5 was 8 points above the 

series mean, optimal forecasts for the next three horizons would be four, two, 

and one point above the mean.  However, when forecasting backwards, they 

would be unable to make any allowance for autocorrelation. Third, with 

untrended independent data series, there is no obvious reason to expect any 

major asymmetries between forward and backward forecasting if interpolation 

is reasonably good. However, if it is poor (perhaps because people have some 

difficulty taking into account the position of the anchor they are moving 

towards), forecast errors for horizon 1 may be larger for backwards than for 

forwards forecasting whereas errors for horizon 4 may be larger for forwards 

than for backwards forecasting. These suggestions are merely examples of how 

forecasting direction may influence accuracy. There are many other factors that 

could differentially affect forward and backward forecasting. Therefore, the 

hypotheses that I test are fairly general in nature: 

H3: Accuracy of people’s judgments when they forecast forwards from the end 

of the data series towards a forecast that they have already made for the most 

distant horizon will be different from their accuracy when they make forecasts 

in the opposite direction. 

H4: The effects of reversing the direction of the forecasting sequence will 

depend on the characteristics of the data series.     
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3.1 Order effects in judgmental forecasting 

(Experimental Study 1) 

In this experiment, participants were presented with time series comprising 35 

points and asked to make forecasts for the next five points. To test the above 

hypotheses, I manipulated the horizon for which the initial forecast was made 

(first versus last), the direction of forecasting when the forecast for the final 

horizon was made first (forwards versus backwards), and series’ type. 

3.1.1 Method 

Participants 

One hundred and twenty students (48 men, 72 women) from University College 

London acted as participants. They were recruited from UCL’s subject pool. 

They had basic knowledge in statistics and had never attended advanced time 

series analysis classes. Their mean age was 26 years. They were paid £1.00 for 

their participation.  

Design  

Participants were divided into two groups. The first group (no end-anchoring) 

made their forecasts for the five horizons in the order in which the data points 

appeared (i.e. 1, 2, 3, 4, 5). The second group (end-anchoring) did not. Instead 

they made their forecast for the most distant horizon (i.e. 5) first. In this second 

group, there were two sub-groups. The forward forecasting sub-group made 
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their forecasts from the end of the data series towards the forecast that they had 

already made for the most distant horizon. Thus, their five forecasts were made 

in the order 5, 1, 2, 3, 4. In contrast, the backward forecasting sub-group made 

their forecasts in the reverse direction moving from their initial forecast for the 

most distant horizon back towards the final point of the data series. Thus, their 

forecasts were made in the order 5, 4, 3, 2, 1. All participants made predictions 

for four different types of time series. Hence, they each produced a total of 20 

forecasts (five horizons for each of four types of series). Characteristics of the 

four types of series are described in the next section. 

Stimulus materials  

The four types of series were: an untrended series of independent data points; 

an untrended series of highly autocorrelated data points; a series of independent 

data points with a linear tend imposed upon them: a series of independent data 

points with a seasonal trend imposed upon them. Series were presented 

graphically. Examples of the four types of series can be seen in Figure 3.1. Each 

panel in the figure shows 35 data points (seen by participants) followed by five 

optimal forecasts (not seen by participants).  
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Figure 3.1 Examples of the four types of series, showing 35 data points 

(seen by participants) followed by five optimal forecasts (not seen by 

participants) for seasonally trended, linearly trended, autocorrelated, 

and random series (clockwise from top left). 

Untrended series were constructed by inserting appropriate parameters into the 

following generating equation:  Xt = α Xt-1 + (1 – α) µ + ε, where Xt-1  was the 

previous observation, µ was the mean of the series, α was the degree of 

autocorrelation  (α = 0.9 for autocorrelated series and α = 0 for random series), 

and ε was noise produced by randomly drawing values from a Gaussian 

distribution with a mean of zero and a variance of σ2 (σ2 = 30.0 for both 

autocorrelated and independent series). The mean value, µ, was selected to 

ensure that the final data point was close to the vertical mid-point of the screen. 

Linear trended series were produced by using the equation: Xt = 5t + εt. Its noise 

term, ε, had a mean of zero and a variance of 19.0. The final data point of these 
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trended series was approximately 10% of the screen height above its vertical 

mid-point. Seasonal series were constructed by using the equation: Xt = 

70cos(100t) +170 + εt, where the noise term had a mean of zero and a variance 

of 225. The starting point of these series was chosen so that the last data point 

was a) close to the vertical mid-point of the screen and b) one third of the way 

from the mid-point of the seasonal cycle towards its peak (Figure 3.1). Each 

wavelength phase lasted for 12 time periods. There were 3.25 wavelengths in 

the screen. Each wavelength’s width corresponded to a 30% of the screen 

width. Time series were generated uniquely for each participant and the four 

types of series were randomly ordered separately for each of them. The task was 

not performed within a particular scenario, such as one associated with sales 

forecasting, to avoid introduction of frame-specific biases (e.g., elevation biases 

arising from optimism or perceived control effects). Hence, the vertical axes of 

the graphs used to present the series were unlabelled. Series were presented as 

line graphs. After the end of each series, five vertical lines were presented in the 

next five time periods to indicate where forecasts had to be made. When a 

forecast was made by clicking on one of the vertical lines a blue dot, appeared 

in the position of the cursor when the mouse was clicked.  

Procedure  

Each participant performed the task individually on a computer in a separate 

cubicle. They read a short introduction to the study and then entered their 

demographic details (age, sex).  They were instructed to view each series and 

then click on each of the vertical lines to show where they expected future 
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points in the series to appear. Before starting, they were told the order in which 

they had to make their forecasts.  However, the task was constrained to ensure 

that their forecasts were actually made in this order. Thus the programme would 

accept a forecast (and show a blue dot to indicate its position) only if it was 

made in the required order. For participants in the no end-anchoring group, all 

five vertical lines were presented at the same time as the series.  Forecasts were 

made from the nearest horizon to the most distant one in the order 1, 2, 3, 4, 5. 

As forecasts were made, a blue line linked each new forecast with the last data 

point (forecast for horizon 1) or with the immediately preceding forecast (all 

other forecasts). For participants in the backwards sub-group of the end-

anchoring group, all five vertical lines were again presented at the same time as 

the series.  However, an explicit screen message prompted participants to make 

their forecasts backwards (in the order 5, 4, 3, 2, 1). As forecasts were made, a 

blue line linked each new forecast with its predecessor. Participants in the 

forwards sub-group of the end-anchoring group first made their forecast for the 

most distant horizon for each of the four series. Thus, initially, only a single 

vertical line at furthest horizon was presented with each series to signal that 

only the forecast for that horizon was required. Once that forecast had been 

made for all series, participants returned to each one (presented in the same 

order as before) to make the remaining four required forecasts working forward 

from the end of the data series. To enable them to do this, the remaining four 

vertical lines appeared on the screen at this point to indicate the positions of 

these required forecasts. Thus forecasts were made in the order 5, 1, 2, 3, 4. As 

forecasts were made, a blue line linked each new forecast with the last data 
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point (forecast for horizon 1), with the previous forecast (forecasts for horizons 

2 and 3), or with both the immediately preceding forecast and the forecast for 

the most distant horizon (forecast for horizon 4).      

3.1.2 Results 

Participants whose forecasts were at least 3 inter-quartile ranges from the 

median of each group were excluded. This resulted in a total of 116 

participants, 58 in each of the two conditions. To test H1 and H2, I compared 

mean absolute error (MAE) between Group 1 (no end-anchoring) and Group 2 

(end-anchoring). To cast more light on the effects of end-anchoring, I also 

report some supplementary analyses. Then, to test H3 and H4, I compare MAE 

between Group 2a (forward forecasting after end anchoring) and Group 2b 

(backward forecasting after end-anchoring). Again, I also report supplementary 

analyses. 

Effects of end-anchoring Graphs of MAE in the two conditions are shown in 

Figure 3.2 for each of the four series types. They show accuracy decreasing 

with increasing horizon and the decrease appears to be higher in the no end-

anchoring group for seasonal, linear trended, and autoregressive series.  To 

examine the significance of these effects, I carried out separate two-way 

analyses of variance (ANOVA) on the MAE data for each series type.  Here and 

later, Huynh-Feldt corrections were applied to address violations of sphericity. 
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Figure 3.2 Graphs of mean values of absolute error (together with 

standard error bars) in the no end-anchoring group (continuous lines) 

and in the end-anchoring group (dashed lines) for seasonally trended, 

linearly trended, autocorrelated, and random series (clockwise from top 

left). 

For seasonal series, there was an effect of horizon (F (2.40, 273.45) = 74.31; p 

< .001), and analysis using polynomial contrasts showed that it contained linear, 

quadratic and cubic components. There was also an effect of end-anchoring (F 

(1, 114) = 4.72; p < .05) and an interaction between that variable and horizon (F 

(2.4, 273.45) = 35.67; p < .001). Tests of simple effects showed that the effect 

of end-anchoring to be significant for horizon 2 (F (1, 114) = 19.16; p < .001) 

and horizon 5 (F (1, 114) = 52.52; p < .001). For the linear trended series, there 

was an effect of horizon (F (2.69, 307.20) = 24.66; p < .001), with only the 

linear component significant in an analysis using polynomial contrasts.   There 
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was also an effect of end-anchoring (F (1, 114) = 10.16; p < .01) and an 

interaction between that variable and horizon (F (2.695, 307.20) = 3.49; p < 

.05). Tests of simple effects showed that the effect of end-anchoring to be 

significant for horizon 2 (F (1, 114) = 7.21; p < .01), horizon 4 (F (1, 114) = 

5.08; p < .05), and horizon 5 (F (1, 114) = 12.23; p < .001). For the 

autocorrelated series, there was again an effect of horizon (F (2.13, 243.09) = 

62.13; p < .001), with only the linear component significant in an analysis using 

polynomial contrasts. There was also an effect of end-anchoring (F (1, 114) = 

7.25; p < .01) and an interaction between that variable and horizon (F (2.13, 

243.09) = 18.17; p < .001). Tests of simple effects showed that the effect of 

end-anchoring to be significant for horizon 4 (F (1, 114) = 7.99; p < .01) and 

horizon 5 (F (1, 114) = 21.00; p < .001). For the random series, only the effect 

of horizon was significant (F (3.92, 447.04) = 7.53; p < .001). As the interaction 

was not significant, the effects of this variable were not analysed in each of the 

groups separately. For all series that contain a pattern as well as noise, these 

analyses are consistent with the first hypothesis (H1) that end-anchoring 

improves the accuracy of the forecast for the most distant horizon: in each case, 

the simple effect of group was significant for horizon 5. Other aspects of the 

results are consistent with the second hypothesis (H2) that end-anchoring also 

improves accuracy of forecasts for less distant horizons: significant interactions 

showed that the linear increase in MAE with horizon was faster in the no end-

anchoring group and significant simple effects of group occurred for horizons 2 

and 4 in the linear trended series and for horizon 4 in the autocorrelated series.     
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I now report two supplementary analyses designed to throw light on the reasons 

for these effects. The first analysis is of Mean Signed Errors (MSE) for each 

series type (Figure 3.3). Signed errors are calculated as actual forecast minus 

optimal forecast. Hence, the increasing signed error for forecasting the 

downward section of the seasonal series and the decreasing signed error for 

forecasting the upward sloping linear trended series are both evidence of trend 

damping. It is immediately apparent from Figure 3.3 that one effect of end-

anchoring is to reduce trend damping.  

	
  

Figure 3.3 Graphs of mean values of signed error (together with 

standard error bars) in the no end-anchoring group (continuous lines) 

and in the end-anchoring group (dashed lines) for seasonally trended, 

linearly trended, autocorrelated, and random series (clockwise from top 

left). 

Two-way ANOVAs on MSE confirmed that this was so. For seasonal series, 

there were significant effects of horizon (F (2.31, 263.58) = 160.62; p < .001), 
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end-anchoring (F (1, 114) = 48.21); p < .001), and an interaction between these 

variables (F (2.31, 263.58) = 27.41; p < .001). For linearly trended series, there 

were significant effects of horizon (F (2.23, 254.60) = 8.43) and of the 

interaction between that variable and end-anchoring (F (2.23, 254.60) = 9.20; p 

< .001). In these analyses, the effects of horizon indicate trend damping and the 

interaction demonstrates that end-anchoring reduces that effect. (ANOVAs on 

MSE in autocorrelated and random series showed no significant effects.) 

The second analysis was designed to investigate the effect of end-anchoring on 

the slope of the sequence of five forecasts in more detail.  I used an approach 

employed by Harvey and Reimers (2013). Linear regression models were fitted 

to each one of the four sequences of five forecasts produced by each participant. 

Thus, for each sequence, I fitted the model: forecast = a + b (horizon) + error. 

Then, for each series type, t-tests were used to examine whether the constants 

(a) and trend coefficients (b) in the two conditions differed from one another 

and whether each of them differed from the optimal values derived from the 

generating equation. I also tested whether the variance of the coefficients and 

the error variance in the model were greater in the no end-anchoring group than 

in the end-anchoring group. Values of coefficients in each condition and in the 

generating equation and levels of error variance in each condition are shown in 

Table 3.1 for each series type. This table also indicates the comparisons that 

reached significance. However, I will highlight the main results here. 
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Table 3-1 Linear regressions of forecast sequences for each series type: 

mean values (variances in parentheses) of constants, trend coefficients 

and residual error variances. Actual values in the generating equations 

are shown for comparison. 

*Mean value different from that in the generating equation, p < .05 

**Mean value different from that in the generating equation, p < .01 

† Values differ between the no end-anchoring and end-anchoring groups, p < .05 

 

  Constant (a) Trend  
(b) 

Error (e) 
 

Seasonal Actual 270.86 
 

-20.50  

 No end-
anchoring 

228.69**† 
(23.48) 

 

-2.14**† 
(9.71) 

 

149.86 
 

 End-anchoring 240.03**† 
(19.30) 

 

-13.57**† 
(9.05) 

 

235.12 

Linear Actual 207 
 

5  

 No end-
anchoring 

211.45*† 
(8.60) 

2.97*† 
(3.51) † 

14.31 

     
 End-anchoring 206.45† 

(7.22) 
 

4.94† 
(2.63) † 

 

16.25 

Auto 
correlated 

Actual 150 
 

0  

 No end-
anchoring 

148.51 
(9.78) 

 

0.86 
(7.51) † 

 

31.55 

 End-anchoring 150.32 
(15.02) 

 

0.65 
(5.03) † 

 

44.88 

Random Actual 150 
 

0  

 No end-
anchoring 

144.96 
(25.52) 

 

1.24 
(7.74) 

 

311.03 

 End-anchoring 151.75 
(17.25) 

0.42 
(6.36) 

 

275.73 
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The mean slope of the forecast sequence was significantly lower in the end-

anchoring group than in the no end-anchoring group for seasonally trended (t 

(114) = 6.557; p < 0.05) and linearly trended (t (114) = -3.519; p < 0.001) 

series. This confirms that, where trends are present in the data series, end-

anchoring acts to decrease trend damping.  Variance of the trend coefficients 

was significantly lower in the end-anchoring group than in the no end-

anchoring group for linearly trended (F (57, 57) = 1.78; p < .05) and 

autocorrelated series (F (57, 57) = 2.22; p < .05). (Data for the other two series 

types are in the same direction but the comparisons did not attain significance). 

This shows that there was a tendency for end-anchoring to reduce the degree to 

which the slope of the forecast sequence drifted away from its correct value. 

Effects of direction of forecasting One sub-group made forecasts in a forwards 

sequence after end-anchoring: horizons were forecast in the order 5, 1, 2, 3, 4. 

The second sub-group made forecasts in a backwards sequence after end 

anchoring: horizon were forecast in the order 5, 4, 3, 2, 1. Here I test hypotheses 

H3 and H4 by comparing overall forecast error (MAE) in the forwards and 

backwards sub-groups. Graphs of MAE in the two conditions are shown in 

Figure 3.4 for each of the four series types. I carried out separate two-way 

ANOVAs on each of them using horizon as a within-participants variable and 

condition as a between-participants variable.  
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Figure 3.4 Graphs of mean values of absolute error (together with 

standard error bars) in the forwards forecasting sub-group (continuous 

lines) and the backwards forecasting sub-group (dashed lines) for 

seasonally trended, linearly trended, autocorrelated, and random series 

(clockwise from top left). 

For seasonal series, there was an effect of horizon (F (2.89, 162.02) = 7.12; p < 

.001), and analysis using polynomial contrasts showed that it contained linear 

and cubic components. There was also a significant interaction between forecast 

direction and horizon (F (2.89, 162.02) = 3.66; p < .05). Tests of simple effects 

showed that the effect of forecast direction to be significant for horizon 2 (F (1, 

56) = 4.95; p < .05), horizon 3 (F (1, 56) = 4.45; p < .05), and horizon 4 (F (1, 

56) = 4.95; p < .05). The other three series types showed effects only of 

horizon: linear trended (F (3.16, 177.13) = 7.83; p < .001); autocorrelated (F 

(2.98, 166.97) = 9.62; p < .001); random (F (3.37, 188.47) = 6.40; p < .001). In 
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all three cases, analysis using polynomial contrasts showed that only the linear 

components of these effects were significant. Thus, results for seasonal series 

are consistent with the third hypothesis: effects of direction of forecasting 

affected accuracy for that series type. Furthermore, the results as a whole are 

consistent with the fourth hypothesis: effects of direction of forecasting 

depended on series type. 

 

	
  

Figure 3.5 Graphs showing optimal forecasts (continuous lines) and 

participants’ mean forecasts in the forwards forecasting sub-group 

(dashed lines) and the backwards forecasting sub-group (dotted lines) 

for seasonally trended, linearly trended, autocorrelated, and random 

series (clockwise from top left). 
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Why were only seasonal series influenced by direction of forecasting? For the 

other three types of series, reasonably good forecasts could be made by making 

linear interpolations between the last data point and the forecast already made 

for the most distant horizon. This was because the sequence of outcomes that 

required forecasting was linear. In contrast, the sequence of outcomes that had 

to be forecast in the seasonal series was non-linear: its values first increased 

markedly and then decreased. However, forecast sequences did not show this 

pattern: the value of the first two forecasts stayed close to that of the last data 

point and values of later forecasts then decreased more slowly than the values 

of the outcomes to be forecast. In other words, the forecast sequence did not 

show such a clear point of inflection as the sequence of outcomes that had to be 

forecast: it was more linear than it should have been. These patterns are shown 

in Figure 3.5. These impressions were confirmed in regression analyses. Using 

a step-up procedure, I found that 40 of the 58 participants’ forecasts showed 

significant linear components. In those cases, the linear models explained an 

average of 86% of the variance. Adding a quadratic component significantly 

increased the variance explained by the model in only three of these 40 

participants and, on average, it explained only an additional 10% of the 

variance. Also, comparing the 40 models (with quadratic components included) 

to a model of the outcomes to be forecast (produced by continuing the 

generating function) showed that the coefficient for the quadratic component 

was significantly lower in the participants’ forecast sequences (t (39) = 6.10; p 

< .001) than in the sequence of outcomes. These analyses imply that the 

interpolations that participants made between the last data point and the forecast 
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that they had already produced for the most distant horizon were more linear 

than they should have been. 

As Figure 3.5 shows, the near-linearity of participants’ sequence of forecasts 

reflected their failure to increase the value of their first few forecasts above the 

value of the last data point. As a result, their forecasts were too low – and the 

extent to which they were too low was greater in backwards forecasting group 

than in the forwards forecasting group.  A two-way ANOVA on MSE 

confirmed this. It showed a significant effect of forecast horizon (F (2.45, 

136.96) = 27.21; p < .001) and an analysis using polynomial contrasts indicated 

that it had linear and quadratic components. There was also a significant effect 

of forecasting direction (F (1, 56) = 16.94); p < .001) and a marginally 

significant interaction between the two variables (F (2.45, 136.96) = 2.78; p = 

.055). Tests for simple effects showed that the effect of forecasting direction 

was significant at horizon 2 (F (1, 56) = 5.84; p < .05), horizon 3 (F (1, 56) = 

7.90; p < .01), horizon 4 (F (1, 56) = 9.68; p < .01) and horizon 5 (F (1, 56) = 

10.68; p < .01).  

Why did this pattern of results occur? It appears that participants forecasting in 

a backwards direction anchored their judgments on the low value of the forecast 

that they had already made for the most distant horizon. As a result, although 

they then increased the value of their forecasts for horizons 4, 3, and 2, they did 

so insufficiently. Their forecast for horizon 1 was then made by linearly 

interpolating between their forecast for horizon 2 and the last data point. In 

contrast, those forecasting in a forward direction anchored on the relatively high 
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value of the last data point. As a result, their forecasts for horizons 1, 2, and 3 

were made at the same level as that point. Then, their forecast for horizon 4 was 

made by linearly interpolating between their forecast for horizon 3 and the 

forecast that they had made earlier for horizon 5. Thus when participants had to 

forecast a nonlinear sequence of four outcomes between the end of the data 

series and a forecast that they had earlier made for the most distant horizon, 

they used an initial strategy based on anchoring to make the first three of those 

forecasts and then made the final forecast by linear interpolation. This produced 

different levels of accuracy for backwards and forwards forecasting. 

Discussion 

The experiment showed that, when the data series contain a pattern, judgmental 

forecasts for a sequence of outcomes can be improved by making the forecast 

for the most distant horizon first. It also showed that, when that is done, the 

order in which the remaining forecasts are made does not matter if the sequence 

of outcomes that require forecasting lie in a straight line. However, if they 

contain some other (i.e. nonlinear) pattern, accuracy of forecasts made in a 

forwards direction (from the last data point towards the previously produced 

forecast for the furthest horizon) can differ from forecasts made in a backwards 

direction (from the previously produced forecast for the furthest horizon 

towards the last data point). I shall discuss these findings in turn. 
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End-anchoring Making the forecast for the furthest horizon first clearly 

improved accuracy not only of that forecast but of other forecasts too. This 

result was expected. I found that it occurred for two reasons. First, as the 

regression analyses showed, the trajectory of the forecast sequence became less 

variable. This was expected this because, without end-anchoring, each forecast 

after that for the first horizon is based on its noisy predecessor but is not 

constrained by a forecast for a more distant horizon: the task is one of 

extrapolation. In contrast, end-anchoring constrains the forecast trajectory: the 

task is one of interpolation. Second, as the analyses of MSE and regressions 

show, end-anchoring reduced trend damping.  This finding was not expected. It 

might have occurred because participants found forecasting in the end-

anchoring condition more difficult. As a result, they devoted more cognitive 

resources to the task and performed it better. To check this account, I compared 

the mean time taken to make the first forecast in the two groups.  This analysis 

showed that it was less in the no end-anchoring group (4.37 seconds) than in the 

end-anchoring group (6.96 seconds) (t (221.79) = 12.35; p < .001). I also 

compared the time to make all five forecasts in the no end-anchoring group 

(9.60 seconds) with backwards forecasting sub-group of the end-anchoring 

group (13.69 seconds) and found it to be greater in the latter case (t (65.46) = 

7.29; p < .001). These two analyses confirm that forecasters devoted more 

cognitive resources to their task in the end-anchoring condition. This finding 

can be interpreted in terms of models that posit different modes of cognitive 

processing: an intuitive system that acts rapidly, heuristically, non-consciously, 

and with little effort and a deliberative system that acts slowly, analytically, 
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consciously, and with effort (Kahneman, 2011). Thus forecasting in the normal 

way from the data series for increasingly distant horizons may be an intuitive 

process that relies on anchoring heuristics and produces ‘biases’ such as trend 

damping. In contrast, making forecasts for the most distant horizon first is likely 

to be a slower, more cognitively demanding, deliberative process that is less 

susceptible to the sort of biases produced by heuristic processing. 

Direction of forecasting After end-anchoring, the forecasting task was 

transformed from one of extrapolation to one of interpolation. When linear 

interpolation was appropriate (random, autocorrelated or linearly trended 

series), there was no difference in accuracy between interpolating forward from 

the end of the data series towards the anchor provided by the forecast for the 

most distant horizon and interpolating backwards from that anchor towards the 

end of the data series. However, when linear interpolation was not appropriate 

(seasonal series), interpolating backwards produced higher levels of error than 

forecasting forwards. The reason for this appears to be that people adopted 

different strategies for forecasting in the two cases. The section of the seasonal 

series that had to be forecast comprised the peak of a cycle followed by a 

descending segment (Figure 3.5). When forecasting backwards, the descending 

segment became an ascending one and was forecast in the same way as a linear 

trend. For the first three forecasts they made (horizons 4, 3, and 2), participants 

anchored on the forecast that they had made immediately before and then 

adjusted upwards to take the trend into account. As there adjustments were 

insufficient, some trend damping was observed (Figure 3.5).  Then they made 
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their final forecast for horizon 1 by linearly interpolating between their previous 

forecast for horizon 2 and the last data point. When forecasting forwards, 

participants approximated the peak of the seasonal series as an untrended linear 

series and forecast it as if it were one. Thus, their forecasts for horizons 1, 2, 

and 3 were forecast at the same level as the last point of the data series. Then 

they made their final forecast for horizon 4 by linearly interpolating between the 

forecast that they had just made for horizon 3 and the forecast that they had 

made earlier for horizon 5. This strategy for forecasting was, unlike the one for 

backwards forecasting, not subject to trend damping: it therefore produced 

forecasts that were higher and closer to the target outcome series (Figure 3.5). 

3.2 Order effects and noise levels in judgmental 

forecasting (Experimental Study 2) 

In this experiment, I examine the effects of a) increasing the level of noise in 

the data series and b) changing the phase of the seasonal series so that the 

sequence of outcomes that had to be forecast was approximately linear rather 

than nonlinear.  Increasing noise in the data series is likely to impair forecasting 

performance. However, there are two reasons that higher noise levels should 

increase (or, at least, preserve) the effects of end-anchoring. First, higher levels 

of noise in series produce greater trend damping effects (Eggleton, 1982; 

Harvey and Bolger, 1996). Hence, a manipulation that removes (or greatly 

reduces) trend damping should improve accuracy more when series noise is 

higher. Second, when data series are noisier, a sequence of forecasts made via 
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forward extrapolation is likely to deviate more from the correct trajectory. This 

is because forecasts are made by using immediately preceding forecasts as 

anchors and those forecasts contain more noise when series are noisier (Harvey, 

1995). Hence, a manipulation that changes the task from one of extrapolation to 

one of interpolation should reduce the variance in participants’ forecast 

trajectories even more (and improve their accuracy even more) when noise in 

the data series is higher. Hence, I test the following hypothesis. 

H5: Higher levels of noise will depress forecasting performance but preserve or 

even enhance effects of end-anchoring 

Requiring people to forecast an approximately linear section of the seasonal 

series should eliminate the difference between backwards and forwards 

forecasting sub-groups of the end-anchoring condition. This is because linear 

interpolation, forecasters’ default strategy after end-anchoring, would be as 

appropriate as it is for linearly trended or untrended autocorrelated series. I 

would expect it to be used irrespective of forecasting direction. Hence the 

higher levels of MSE that are observed for backwards forecasting from seasonal 

series in Experiment 1 should no longer be obtained. Consequently, a cross-

experiment comparison on seasonal series should reveal a significant interaction 

between forecasting direction (forwards versus backwards) and experiment 

(Experiment 1 versus Experiment 2).   

H6: Requiring participants to forecast a linear rather than a nonlinear sequence 

of outcomes will eliminate the effect of forecasting direction on MSE and this 
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will produce a significant interaction between forecasting direction (forwards 

versus backwards) and experiment (Experiment 1 versus Experiment 2). 

3.2.1 Method 

Participants  

Participants comprised 120 students (57 men, 63 women) drawn from the same 

pool as before. Their mean age was 28 years. They were paid £1.00 for their 

participation. 

Design  

As the end-anchoring effect did not occur when there was no pattern in the data, 

I excluded random series from this experiment. In all other respects, the design 

was identical to that outlined for Experiment 1. 

Stimulus materials  

For the seasonally trended series, the amplitude of the seasonal variation was 

doubled: the equation used to generate these series was therefore Xt = 

140cos(100t) +170+ ε. Also the variance of the noise component was increased 

by a factor of four to 900. The starting point of these series was chosen so that 

the last data point was a) close to the vertical mid-point of the screen and b) at 

the peak of the seasonal cycle (Figure 3.6). The linearly trended series and the 

autocorrelated series were generated in the same way as in Experiment 1, 

except that the variance of the noise was increased by four times to a value of 

120 in the former case and to a value of 76 in the latter one. 
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Figure 3.6 Examples of the three types of series, showing 35 data points 

(seen by participants) followed by five optimal forecasts (not seen by 

participants) for seasonally trended (top panel), linearly trended 

(middle panel) and autocorrelated series (lower panel). 
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Procedure  

The procedure was identical to that used in Experiment 1. 

3.2.2 Results 

To test H5, I compare MAE in the no end-anchoring and end-anchoring groups 

and then compare the effect of this variable in this experiment with the effect it 

had in Experiment 1. To test H6, I compare MAE in the forward forecasting and 

backward forecasting sub-groups of the end-anchoring group and then examine 

whether the effects of direction of forecasting are different in this experiment 

from those in the previous one. 

Effects of end-anchoring Graphs of MAE in the two conditions are shown in 

Figure 3.7 for each of the three series types. They show accuracy decreasing 

with increasing horizon and the decrease again appears to be higher in the no 

end-anchoring group for seasonal, linear trended, and autoregressive series.  To 

examine the significance of these effects, I carried out separate two-way 

analyses of variance (ANOVA) on the MAE data for each series type.   
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Figure 3.7 Graphs of mean values of absolute error (together with 

standard error bars) in the no end-anchoring group (continuous lines) 

and in the end-anchoring group (dashed lines) for seasonally trended 

(top panel), linearly trended (middle panel) and autocorrelated series 

(lower panel). 
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For seasonal series, there was an effect of horizon (F (2.69, 306.71) = 213.55; p 

< .001), and analysis using polynomial contrasts showed that it contained linear 

components. There was also an effect of end-anchoring (F (1, 114) = 7.54; p = 

.007) and an interaction between that variable and horizon (F (2.69, 306.71) = 

4.65; p = .005). Tests of simple effects showed that the effect of end-anchoring 

to be significant for horizon 3 (F (1, 114) = 4.94; p < .05), for horizon 4 (F (1, 

114) = 4.83; p < .05) and horizon 5 (F (1, 114) = 9.48; p < .05). For the linear 

trended series, there was an effect of horizon (F (3.25, 370.32) = 27.98; p < 

.001), with only the linear component significant in an analysis using 

polynomial contrasts. There was also a marginally significant effect of end-

anchoring (F (1, 114) = 3.45; p = .066) and no interaction between that variable 

and horizon. Tests of simple effects showed that the effect of end-anchoring to 

be significant for horizon 5 (F (1, 114) = 4.64; p < .05). For the autocorrelated 

series, there was again an effect of horizon (F (1.99, 227.25) = 75.39; p < .001), 

with only the linear component significant in an analysis using polynomial 

contrasts. There was no effect of end-anchoring but there was an interaction 

between that variable and horizon (F (1.99, 227.25) = 5.14; p < .05). Tests of 

simple effects showed that the effect of end-anchoring to be significant for 

horizon 5 (F (1, 114) = 4.39; p < .05). These analyses are consistent with 

hypothesis H1 that end-anchoring improves the accuracy of the forecast for the 

most distant horizon: in each case, the simple effect of group was significant for 

horizon 5. For seasonal series, end-anchoring also improved accuracy of 

forecasts for less distant horizons (H2). 



Chapter 3 – Order Effects in Judgmental Forecasting 

	
   106	
  

To throw light on the reasons for these effects, I now report the same two 

supplementary analyses that I carried out for Experiment 1. The first analysis 

was carried out on MSE (again calculated as actual forecast minus optimal 

forecast) for each series type (Figure 3.8). The increasing signed error for 

forecasting the downward section of the seasonal series and the decreasing 

signed error for forecasting the upward sloping linear trended series are both 

evidence of trend damping. It is clear that end-anchoring again acted to reduce 

trend-damping in these series (Figure 3.8). 
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Figure 3.8 Graphs of mean values of signed error (together with 

standard error bars) in the no end-anchoring group (continuous lines) 

and in the end-anchoring group (dashed lines) for seasonally trended 

(top panel), linearly trended (middle panel) and autocorrelated series 

(lower panel). 
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Table 3-2 Linear regressions of forecast sequences for each series type: 

mean values (variances in parentheses) of constants, trend coefficients 

and residual error variances. Actual values in the generating equations 

are shown for comparison. 

 

*Mean value different from that in the generating equation, p < .05 

**Mean value different from that in the generating equation, p < .01 

† Values differ between the no end-anchoring and end-anchoring groups, p < .05 

Two-way ANOVAs on MSE confirmed that this was so for two of the three 

series types. For seasonal series, there was an effect of horizon (F (2.97, 

338.32) = 221.07; p < .001), and analysis using polynomial contrasts showed 

that it contained linear components. There was also an effect of end-anchoring 

(F (1, 114) = 5.83; p = .017) and an interaction between that variable and 

horizon indicated that trend damping was reduced by end-anchoring (F (2.97, 
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338.32) = 3.57; p = .015). Tests of simple effects showed that the effect of end-

anchoring to be significant for horizon 4 (F (1, 114) = 4.29; p < .05) and 

horizon 5 (F (1, 114) = 9.475; p = .003). For the linear trended series, there was 

an effect of horizon (F (3.63, 414.28) = 15.86; p < .001), with only the linear 

component significant in an analysis using polynomial contrasts. There was also 

an effect of end-anchoring (F (1, 114) = 4.57; p < .05) but no interaction 

between that variable and horizon. Tests of simple effects showed that the effect 

of end-anchoring to be marginally significant for horizon 4 (F (1, 114) = 3.38; p 

= .068), and horizon 5 (F (1, 114) = 3.09; p = .08). For the autocorrelated series, 

neither the main effects of horizon and end-anchoring nor the interaction 

between them were significant.  

To carry out the second analysis, regression models were again fitted to each 

one of the four sequences of five forecasts produced by each participant. As 

before, for each sequence, I fitted the model: forecast = a + b (horizon) + error. 

Mean values of constants, trend coefficients and residual variance in each 

condition, together with optimal values derived from the generating equations 

are shown in Table 3.2. Also shown is the significance of statistical 

comparisons between the two groups and between each of them and the values 

in the generating equations. For seasonal series, there was evidence that trend 

damping was reduced in the end-anchoring condition. In other words, the mean 

absolute value of the linear trend coefficient (b) was significantly lower in 

participants’ forecast sequences in both conditions than in the generating 

equation and also lower in forecast sequences in the no end-anchoring condition 
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than in the end-anchoring condition (Table 3.2). The effect did not reach 

significance for the linearly trended series. Also, in this experiment, there was 

no statistical evidence that the variability of b coefficients was greater in the no 

end-anchoring condition though, for all three series types, the difference across 

conditions was numerically in that direction. 

Effects of direction of forecasting Figure 3.9 shows MAE scores for each of the 

three series types. Separate two-way ANOVAs on each series type, using 

horizon as a within-participants variable and forecasting direction as a between-

participants variable, showed an effect of horizon for seasonally trended series 

(F (2.57, 143.72) = 1.96; p < .001), linearly trended series (F (3.53, 197.54) = 

11.96; p < .001), and autocorrelated series (F (2.13, 119.43) = 23.93; p < .001). 

Analyses using polynomial contrasts revealed that, in all cases, these effects 

contained only linear components. Effects of forecasting direction and the 

interactions between this variable and horizon did not reach significance for any 

series type. Trend damping contributed to the effects of horizon on MAE for 

seasonally trended and linearly trended series (Figure 3.10). Thus two-way 

ANOVAs showed effects of this variable on MSE in the seasonally trended 

series (F (2.78, 155.79) = 93.25; p < .001) and in the linearly trended series (F 

(3.98, 223.29) = 5.56; p < .001) but not in the autocorrelated series. Analyses 

using polynomial contrasts showed that the significant effects in the trended 

series contained only linear components. Effects of forecasting direction and the 

interactions between this variable and horizon did not reach significance for any 

series type.   
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Figure 3.9 Graphs of mean values of absolute error (together with 

standard error bars) in the forwards forecasting sub-group (continuous 

lines) and the backwards forecasting sub-group (dashed lines) for 

seasonally trended (top panel), linearly trended (middle panel) and 

autocorrelated series (lower panel). 
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Figure 3.10 Graphs showing optimal forecasts (continuous lines) and 

participants’ mean forecasts in the forwards forecasting sub-group 

(dashed lines) and the backwards forecasting sub-group (dotted lines) 

for seasonally trended (top panel), linearly trended (middle panel) and 

autocorrelated series (lower panel). 
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In Experiment 1, backward forecasting of seasonal series produced higher MAE 

scores than forward forecasting. I showed that this occurred because 

participants’ strategy for backwards forecasting of the highly nonlinear 

sequence of outcomes was different from their strategy for forwards forecasting 

of that sequence. In particular, backwards forecasting produced lower forecasts 

and, hence, higher MSE scores. In contrast, this experiment showed no effect of 

forecasting direction on MAE for seasonal series. This was because 

participants’ linear interpolation strategy for forecasting the near linear 

sequence of outcomes was appropriate and the same for both backwards and 

forwards conditions. As a result, MSE scores were no higher when participants 

were forecasting backwards than when they were forecasting forwards.   

Cross-experiment comparisons  

According to H5, higher levels of noise depress forecasting performance but 

preserve or even enhance effects of end-anchoring.  Separate three-way 

ANOVAs were performed on MAE for seasonal, trended and autocorrelated 

series using experiment (Experiment 1 versus Experiment 2) and end anchoring 

as between-participants variables and horizon as a within-participants variable. 

These confirmed that, in this second experiment, forecasting was not only 

worse (Seasonal series: F (1, 228) = 497.21; p < .001; Trended series: F (1, 

228) = 64.22; p < .001; Autocorrelated series: F (1, 228) = 125.70; p < .001) but 

also deteriorated more with increasing horizon (Seasonal series: F (2.72, 

619.76) = 128.03; p < 0.001; Trended series: F (3.17, 724.31) = 5.15; p < 0.001; 

Autocorrelated series: F (2.01, 458.31) = 25.02; p < 0.001). However, the size 



Chapter 3 – Order Effects in Judgmental Forecasting 

	
   114	
  

of the end anchoring effect was preserved for trended and autocorrelated series 

(i.e. there was no interaction between this variable and experiment) and, for 

seasonal series, it was larger in the present experiment than in the previous one 

(F (1, 228) = 4.61; p = .033). All these results are consistent with H5. I carried 

out a three-way ANOVA comparing MSE in forecasts from seasonal series in 

the two sub-conditions of the end-anchoring condition across experiments. Thus 

this analysis used experiment (Experiment 1 versus Experiment 2) and 

forecasting direction (backwards versus forwards) as between-participants 

variables and horizon as a within-participants variable. It revealed that the 

interaction between experiment and forecasting direction was significant (F 

(2.547, 285.309) = 3.816; p < 0.025). This finding is consistent with H6. 

Discussion 

As expected, increasing the noise in the data series impaired forecasting and 

this impairment was greater for more distant horizons. This additional noise 

also resulted in effects of end-anchoring being only marginally significant for 

linear series. However, the more powerful cross-experiment comparison 

showed that the effect of end-anchoring was either maintained (linearly trended 

and untrended autocorrelated series) or magnified (seasonal series). End-

anchoring had its effect by reducing trend damping effects (just as it did in 

Experiment 1). These effects tend to be greater with noisier series (Harvey and 

Reimers, 2013) and, as a comparison of Tables 3.1 and 3.2 shows, the b 

coefficient in forecast sequences underestimated the coefficient in the 

continuation of the data series by a larger amount here than in Experiment 1. 
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Hence, the greater effect of end-anchoring on seasonal series in this experiment 

may be attributed to the fact that there was more trend damping to be reduced in 

this experiment. In this experiment, direction of forecasting after end-anchoring 

did not affect forecast accuracy. This is in accord with H6. It indicates that the 

original effect found in Experiment 1 arose because the section of the seasonal 

series that required forecasting was strongly non-linear. In this experiment 

where the section of the seasonal series that required forecasting was close to 

linear, no effect of direction of forecasting was obtained. In other words, the 

original effect was not caused by the type of series represented by the data 

(seasonally rather than linearly trended) but by the characteristics (linear or 

nonlinear) of the ideal forecast sequence. In seasonal series, these 

characteristics depend both on the phase of the seasonal cycle at which 

forecasting must start and on the length of the forecast sequence. 

3.3 Summary and General Discussion 

In the current chapter, I examined the influence of order on forecasting 

accuracy and corresponding anchoring and adjustment processes.  A primary 

aim was to investigate the effects of end-anchoring. It was anticipated that it 

would lead to improvements in the accuracy of judgmental forecasts. It is well-

known that people add noise to their forecasts (Harvey, 1995) and, when 

making a sequence of forecasts in order from nearest to most distant horizon, 

they use their previous forecast as a mental anchor (Bolger and Harvey, 1993). 

As a result of these two phenomena, a sequence of forecasts may be akin to a 
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random walk and drift away its original trajectory. By requiring the most distant 

horizon to be forecast first, my aim was to eliminate this drift. The first 

experiment did indeed show that end-anchoring reduced the variability across 

participants of the trajectories of forecast sequences made from the same 

underlying pattern.  

However, the end-anchoring manipulation also had another effect. It made the 

mean trajectory of the forecast sequence more appropriate.  This is because it 

reduced trend damping. I suggested that this was a response to forecasters 

finding their task more difficult. Making an initial forecast for five periods 

ahead is more challenging than making an initial forecast for one period ahead. 

Kahneman (1973) has argued that people cope with increased difficulty by 

allocating more cognitive resources to their task; for example, they may switch 

from using a rapid, heuristic, non-conscious, intuitive mode of processing to a 

slower, more analytic, conscious, deliberative mode of processing (Kahneman, 

2011). The latter approach, though slower, tends to be more accurate. I 

suggested that end-anchoring improves accuracy because it results in more 

cognitive resources being devoted to the forecasting task (perhaps via a change 

from intuitive to deliberative processing). In support of this account, I 

demonstrated that initial forecasts took over fifty percent longer to produce in 

the end-anchoring group than in the no end-anchoring group. In the second 

experiment used noisier data series. Forecasts were worse, showed greater trend 

damping, and deteriorated more rapidly as the forecast horizon increased. 

However, end-anchoring still decreased trend damping and, therefore, increased 
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forecast accuracy for more distant horizons. In this experiment, variability of 

the forecast trajectories across participants was not significantly reduced by 

end-anchoring. Noisier data series produce noisier forecasts, which, in turn, 

reduce the likelihood of real effects attaining significance.  

The experiments had a secondary aim. This was to investigate the effects of the 

direction in which forecasts were made after end-anchoring. There were 

plausible reasons to expect such a manipulation to have an effect on forecast 

accuracy (these are analysed in the introduction of the current Chapter), though 

it was recognised that the nature of any effect was likely to depend on series 

type. Thus, for different types of series, I compared the accuracy of forecasts 

made in the order 54321 with that of those made in the order 51234. In fact, 

results showed that the effect of forecast direction depended not on the type of 

series from which forecasts were made but on whether the ideal sequence of 

forecasts was linear or nonlinear. Forecast direction had an effect on accuracy 

only when that sequence was strongly nonlinear. In this case, forecasting 

backwards from the end-anchor (54321) produced higher levels of error than 

forecasting forwards towards the end-anchor (51234). This result could be 

explained by assuming that participants produced their first three forecasts after 

the end anchor by using (imperfect) extrapolation and then produced their final 

forecast by linear interpolation. 

Limitations 

The recommendations outlined above are only relevant when forecasters 

produce at least four or five forecasts from each data series. Advantages in 
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terms of accuracy generally increase as forecast horizon extends into the future; 

accuracy for close horizons is unaffected by changes in forecast order. There 

has to be some pattern in the data series for order of forecasting to influence 

accuracy.  If forecasting merely requires mental extraction of the mean of an 

untrended random series, there is no advantage to be gained by end-anchoring 

(Experiment 1). Although costs of end-anchoring are low relative to other 

techniques for improving judgmental forecasting, the technique imposes a 

greater cognitive load on forecasters and increases the time that they require to 

make their forecasts by about fifty percent. 



	
  

Chapter 4  Length Effects in Judgmental 
Forecasting 

Overview 

As discussed in Chapter 1, the length of time series graphs is another 

understudied area in judgmental forecasting, which might be proved extremely 

useful if appropriate amounts of data are found to produce more adequate 

judgmental forecasts. When forecasts are produced by formal statistical means, 

it is natural to expect those forecasts to be better with longer time series. This is 

because longer series enable the patterns in those series to be extracted from the 

noise more effectively. Of course, this expectation would not be borne out if the 

formal approach was merely to extract the naïve forecast (i.e. to use the last data 

point as the forecast for the next one). Furthermore, as Makridakis, 

Wheelwright and McGee (1983, p.555) point out, it is more likely that the 

patterns in longer series will change; when they do, any approach not taking this 

into account may produce worse forecasts from longer series.  Generally, 

however, formal methods produce more accurate forecasts with more data 

(though the rate of improvement declines as series lengthen).  

Will the same phenomenon to occur in judgmental forecasting? Andreassen and 

Kraus (1990) showed that the quality of forecasts implied by performance in a 

simulated trading task was better when trends did not change over a series of 

120 data points than when they did.  This finding implies that judgmental 

forecasts do not take sufficient account of regime change (cf. O’Connor et al., 
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1997) but it does not directly address the issue of whether sample size affects 

the quality of judgmental forecasts when patterns in the series do not change. 

To the best of my knowledge, there are just three studies that do address this 

issue directly. In the first one, Wagenaar and Timmers (1978) required people 

to make forecasts from three, five or seven points of an exponential growth 

series presented as a sequence of numbers (i.e. in tabular form). The points in 

each condition were approximately equally spaced over a total time period. As a 

result, the interval between successive points was greater when there were 

fewer of them. Wagenaar and Timmers (1978) found that, while the length of 

the total time period had no effect on forecasting performance, accuracy of 

predictions was higher when there were fewer data points. This is just the 

opposite of what it is expected from formal approaches to forecasting. In the 

second study, Lawrence and O’Connor (1992) presented people with graphs of 

either 20 or 40 successive data points in Autoregressive Moving Average 

(ARMA) series. In both conditions, data points represented quarterly data and 

the last of them was one quarter before the first of the four quarterly points that 

had to be forecast. Lawrence and O’Connor (1992) found that absolute error in 

the forecasts averaged over the four horizons was approximately twice as large 

when series comprised 40 data points than when they comprised 20 data points. 

Not unreasonably, they found this finding ‘both surprising and counter-

intuitive’. Again, it is just the opposite of what would be expected if people 

were using some cognitive analogue of a formal technique to make their 

forecasts. These two studies produced similar findings despite differences in 

series type (exponential versus ARMA), range of data points examined (3, 5, 
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and 7 versus 20 and 40), data spacing (different inter-point intervals over the 

same total time period versus the same inter-point intervals over different total 

time periods), and data format (tabular versus graphical).  

What could have produced such a generalizable finding? Lawrence and 

O’Connor (1992) and reviewers of these results (Goodwin and Wright, 1994; 

Webby and O’Connor, 1996) have suggested two possibilities. First, people 

may suffer from cognitive overload when they are presented with more data. 

For this to account for performance becoming worse (rather than merely not 

becoming any better), it has to be assumed that adding data causes people to 

become so overwhelmed by their task that they put less effort into it (Lawrence 

and O’Connor, 1992). A second alternative is that the longer the total time 

period over which the series extends, the more likely people are to think that the 

patterns in it will change. Hence, for series extending over a longer period of 

time, they are more likely to forecast away from points produced by simple 

extrapolation of the existing patterns in the series. Lawrence and O’Connor 

(1992) liken this to the ‘gamblers’ fallacy’, where runs or trends are expected to 

reverse.  However, without elaboration, it is not clear how this explanation 

accounts for Wagenaar and Timmers (1978) findings. This is because they 

found the effect for series with different numbers of data points that extended 

over the same total period of time and because they found that varying the total 

period of time had no effect on accuracy. 
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The third study was carried out by Andersson et al. (2012). They required 

people to make forecasts from either five, 10 or 15 daily ‘share prices’ in series 

with positive linear, negative linear, or no trend. With graphical but not tabular 

presentation, they found a highly significant effect of series length: mean 

absolute error (MAE) in forecasts from series with five points (MAE = 70.5) 

was much higher than it was from series with 10 points (MAE = 55.5) or 15 

points (MAE = 49.7). Clearly, results of this study contradict those of the other 

two. Unlike them, they are consistent with what it would be expected if people 

use some cognitive analogue of a formal process to make their forecasts. Why 

do the results of this third study differ from those of the other two? Andersson 

et al.’s (2012) study used series of independent data points with or without a 

linear trend. In Wagenaar and Timmers (1978) study, series had non-linear 

trends and, in Lawrence and O’Connor’s (1992) study, points were not 

independent: in other words, series were more complex than in Andersson et 

al.’ s (2012) study. There is also another difference that may help to explain the 

difference in results. The range of data points examined was low in Wagenaar 

and Timmers (1978) study (3, 5 and 7), high in Lawrence and O’Connor’s 

(1992) study (20 and 40) but between these two extremes in Andersson et al.’s 

(2012) experiments (5, 10, and 15). These observations suggest that it would be 

worthwhile carrying out experiments with a variety of series types and with a 

much broader range of series lengths. It appears that the counter-intuitive 

findings occur when series contain more complex patterns and/or that there may 

be a non-linear relationship between series length and forecast accuracy. Hence, 
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I test the hypothesis (H1) that the relation between forecast accuracy and series 

length is non-linear.  

For series with high levels of autocorrelation, naïve forecasts produce fairly 

accurate predictions. For such series, suppose that people use the naïve forecast 

as a default when series are too short for them to perceive the autoregression in 

the series.  Suppose also that they appropriately use a forecast close to this 

naïve one when series are long enough for them to perceive the autoregression 

in the series. It then follows that the distance of forecast from the last data point 

should vary little with the length of highly autoregressive series. For series with 

long-term linear or seasonal trends, naïve forecasts fail to produce accurate 

predictions. However, suppose that, as before, people use the naïve forecast as a 

default when series are too short for them to perceive the trends in the series. 

However, when series are long enough for them to perceive the trends in the 

series, they should make forecasts that are appropriately distant from the naïve 

forecast. Thus, distance of forecasts from the last data point should increase 

with the length of series that contain trends. Hence, I also test the hypothesis 

(H2) that the absolute distance between forecasts and the last data point 

increases with the length of trended series but does not do so with series that 

have high levels of autoregression. 
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4.1 Length effects in judgmental forecasting 

(Experimental Study 3) 

In this experiment, participants were presented with graphical representations of 

time series and asked to make forecasts for the next point (one-step ahead 

forecast). To test the above hypotheses, I manipulated the length of the time 

series and the complexity of the pattern in the data series.  

4.1.1 Method 

Participants  

One hundred and fifty students (52 men, 98 women) from UCL’s subject pool 

acted as participants. Their mean age was 26 years. They were told (truthfully) 

that the five participants with the lowest Mean Absolute Error scores would 

each be rewarded with a payment of £5.00. Although Remus, O’Connor and 

Griggs (1998) found no significant incentive effect on the accuracy of time 

series forecasting, the £5.00 award for top performance rendered the experiment 

popular among students and, thus, data collection was conducted at a quicker 

rate. 

Design  

Participants were divided into five groups, each one corresponding to one 

length condition. The experiment used a mixed design in which participants 

made forecasts from four time series of different types, each of which contained 
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40 or 20, five, two, or one data points depending on the condition to which they 

assigned. Thus each participant was tested in a specific length condition but 

experienced all four types of series. Time series were generated uniquely for 

each participant and the order in which the four different series occurred was 

randomly ordered for each of them. 

	
  

Figure 4.1 Examples of the four types of series, showing 40 data points 

(seen by participants) followed by the optimal forecast (not seen by 

participants), shown clockwise from the top left in the order a) linearly 

trended, b) seasonally trended, c) linear autoregressive, and d) fractal. 

Stimulus materials  

Four types of series were selected to ensure that they varied in complexity. The 

simplest were series of independent data points with a linear trend imposed 

upon them. More complex were series of independent data points with a 

seasonal trend imposed upon them and untrended series of highly autocorrelated 

!
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data points. More complex still were untrended non-linear series with a fractal 

structure. These also had high levels of autocorrelation but the autocorrelation 

function decayed more slowly: they showed a longer memory than the linear 

autoregressive series. All series were presented graphically. Examples are 

shown in Figure 4.1 with optimal forecasts.   

Linear trended series were generated from the equation: Xt = 5t + ε. The noise 

term, ε, had a mean of zero and a variance of 19.0. The final data point of these 

trended series was approximately 10% of the screen height above its vertical 

mid-point. Thus, the trend imposed on the series was a mild one. Seasonal 

series were constructed by using the equation: Xt = 70cos(100t + 20) +170 + ε, 

where the noise term had a mean of zero and a variance of 225. The starting 

point of these series was chosen so that the last data point was a) close to the 

vertical mid-point of the screen and b) one third of the way from the mid-point 

of the seasonal cycle towards its peak. Each wavelength phase lasted for 12 

time periods. There were 3.33 wavelengths in the screen. Each wavelength’s 

width corresponded to a 30% of the screen width. The autocorrelated series 

were produced by inserting appropriate parameters into the following 

generating equation: Xt = α Xt-1 + (1 – α) µ + ε, where Xt-1 was the previous 

observation, µ was the mean of the series, α was the degree of autocorrelation  

(α = 0.9), and ε was noise produced by randomly drawing values from a 

Gaussian distribution with a mean of zero and a variance of σ2 (σ2 = 36.0). The 

mean value, μ, was selected to ensure that the final data point was close to the 

vertical mid-point of the screen. To construct the untrended non-linear long 
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memory (fractal) series I used the multiple time-scale fluctuation approach 

(Koutsoyiannis, 2002). The autocorrelation and variance restrictions were 

calculated from the corresponding equations after the Hurst exponent value was 

selected to be equal to 0.9. Fractal time series with high Hurst values (H = 0.9) 

exhibit a long-range memory autocorrelation function: it decays as a power 

function rather than as an exponential function typical of non-fractal 

autocorrelated series (Gilden, 2009).  

The task was not performed within a particular scenario, such as one associated 

with sales forecasting. This was to avoid introduction of frame-specific biases, 

such as elevation effects arising from optimism or perceived control (Eggleton, 

1982; Lawrence and Makridakis, 1989). Hence, the vertical axes of the graphs 

used to present the series were unlabelled.    

Procedure  

Each participant performed the task individually on a computer. They read a 

short introduction to the study and then entered their demographic details (age, 

sex). Then the trials began. Series were presented as line graphs. After the end 

of each series, a vertical line was presented in the next time period to indicate 

where forecast had to be made. When a forecast was made, a blue dot appeared 

in the position of the cursor when the mouse was clicked. This dot was linked 

with a blue line with the last data point of the graph. Once a forecast had been 

made in this way, the next data series appeared. Participants were not given 

immediate feedback regarding the quality of their forecasts. When projected 

data points were fewer than 40 (i.e. L = 20, L = 5, L = 2 and L = 1), a label was 
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presented on the screen informing participants that earlier data were not 

available. An example of the task screen with a seasonal series of 20 data points 

is shown in Figure 4.2. In this figure, I have also depicted the vertical bar on 

which participants made their forecasts.  

 

	
  

Figure 4.2 Example of the task with 20 data points of a seasonally 

trended series and showing the vertical bar on which participants made 

their forecast for the immediate (one step ahead) forecast horizon     

4.1.2 Results 

Six participants whose forecasts were at least 3 inter-quartile ranges from the 

median of each group were removed and replaced. This resulted in a total of 

150 participants, thirty in each length condition. To assess H1, absolute errors 

were calculated and compared across the five length conditions. Then, to test 

H2, I use independent t-tests.  

!
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Figure 4.3 Graphs of mean values of absolute error (together with 

standard error bars) against series length for the four different types of 

series, shown clockwise from the top left in the order a) linearly trended, 

b) seasonally trended, c) linear autoregressive, and d) fractal. 

Effects of series length on accuracy Graphs of MAE against series length 

(Figure 4.3) show an inverse U-shape function for all series’ types. To examine 

the significance of these effects, I carried out separate one-way analyses of 

variance (ANOVA) with polynomial contrasts on the MAE data for each series 

type. Here and later, Welch tests were performed to examine whether the 

homogeneity of variance assumption had been violated: if it had been, the F-test 

was adjusted accordingly. Independent t-tests were used to follow up results of 

these analyses of variance. When variance across groups in these tests was 

heterogeneous, Games–Howell post hoc tests were used. For the rest of the 

cases, Bonferroni corrections were applied.  
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For the linearly trended series, there was a main effect of length across groups 

(F (4, 70.75) = 4.78; p < 0.05). Absolute error described an inverted U-shape 

function. Polynomial contrasts showed the quadratic component to be 

significant (p < 0.05). The error was lower for long lengths (L = 40) and 

increased as length decreased (L = 20) until it reached its maximum value for L 

= 5. Then, it decreased again for shorter lengths (L = 2 and L = 1). Independent 

two-sample t-tests, with Games-Howell corrections, were again used to 

compare participants’ predictions among the ten different pairs of lengths. Two-

tailed tests (p < .05) showed that a very short length (L = 1) produced higher 

accuracy than the medium length (L = 5) but no other differences between 

specific length conditions were significant.  

For the seasonal series, there was a main effect of length across groups (F (4, 

66.57) = 15.88; p < 0.001). Absolute error described an inverted U-shape 

function. Polynomial contrasts analysis showed the linear and quadratic 

component to be significant (p < 0.001). The error was lower for long lengths 

(L = 40) and increased as length decreased (L = 20) until it reached its 

maximum value for L = 2. Then, it decreased again for length L = 1. 

Independent two-sample t-tests, with Games-Howell corrections, were used to 

compare participants’ predictions among the ten different pairs of lengths. Two-

tailed tests showed significant differences in MAE between the predictions for 

40-5, 40-2, 40-1, 20-5, 20-2, 20-1 (p < 0.05); in all other cases, differences were 

not significant.  
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For the autoregressive series, there was a main effect of length across groups (F 

(4, 71.67) = 5.05; p < 0.001). Absolute error again described an inverted U-

shape function. Polynomial contrasts showed the quadratic component to be 

significant (p < 0.001). The error was lower for long lengths (L = 40) and 

increased as length decreased (L = 20) until it reached its maximum value for L 

= 5. Then, it decreased again for shorter lengths (L = 2 and L = 1). Independent 

two-sample t-tests, with Games-Howell corrections, were used to compare 

participants’ predictions among the ten different pairs of lengths. Two-tailed t-

tests (p < .05) showed significant differences in MAE between the predictions 

for 40-5 and 5-1 but no other differences between specific length conditions 

attained significance.  

For the fractal series, the ANOVA revealed a main effect of length across 

groups (F (4, 71.39) = 4.14; p = 0.015). Absolute error described an inverted U-

shape function. Polynomial contrasts analysis showed the linear and quadratic 

components to be significant (p < 0.05). The error was lower for long lengths (L 

= 40) and increased as length decreased (L = 20) until it reached its maximum 

value for L = 5. Then, it decreased again for shorter lengths (L = 2 and L = 1). 

Independent two-sample t-tests, showed significant two-tailed differences for 

errors between the predictions for L = 5 and L = 1 (p = 0.011); in all other 

cases, no significant differences occurred. For all series that contain a pattern as 

well as noise, these analyses are consistent with the first hypothesis (H1) that 

length increase does not impair accuracy: in each time series type, the contrasts 

analysis showed the quadratic component to be significant. The analyses also 
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show that the very short length (L = 1) produced higher forecast accuracy than 

the medium length (L = 5).     

	
  

Figure 4.4 Graphs of mean values of absolute differences between 

forecasts and the last data point (together with standard error bars) 

against series length for the four different types of series, shown 

clockwise from the top left in the order a) linearly trended, b) seasonally 

trended, c) linear autoregressive, and d) fractal. 

Distance of forecasts from the last data point. Figure 4.4 shows, for each series 

type, the Mean Absolute Differences (MAD) between participants’ forecasts 

and the last data point. These differences are calculated as absolute value of the 

forecast minus last data point of the series. These analyses should demonstrate 

whether the amount that forecasters adjust away from the naïve forecast is 

appropriate for the data series. For the linearly trended series, there was a main 

effect of length across groups (F (4, 70.39) = 3.83; p = 0.05). Polynomial 

!
!!! !

!

Series length Series length 



Chapter 4 – Length Effects in Judgmental Forecasting 

	
   133	
  

contrasts showed the linear component to be significant (p < 0.05). The absolute 

distance of forecasts from the last data point increased with series’ length.  As 

series length increased, participants produced forecasts that were further away 

from the last data point. This is what I would expect if they were increasingly 

able to identify the trend signal as series length increased. Differences between 

MAD values for longer series (L = 40, L = 20, L = 5) and those for shorter ones 

(L = 2, L = 1) were significant (p < .05).  

For the seasonally trended series, there was a main effect of series length across 

groups (F (4, 65.35) = 25.30; p < 0.001). Polynomial contrasts again showed 

the linear component to be significant (p < 0.001). Absolute distance of the 

forecasts from the last data point increased with an increase in the series’ 

length. Again, this is what I would expect if participants were increasingly able 

to perceive the trend in the series as they increased in length. Differences 

between MAD values for longer series (L = 40, L = 20, L = 5, L=2) and those 

for the shortest one (L = 1) were significant.  

For the linear autoregressive series, there was a main effect of series length 

across groups (F (4, 71.67) = 5.05; p < 0.05). Polynomial contrasts showed the 

quadratic component to be significant (p < 0.001). The distance of forecasts 

from the last data point was higher for medium lengths (L = 5) than for short or 

long lengths and significant pairwise differences are only found between pairs 

which contained the L = 5 condition. In the next section, I discuss possible 

reasons for this unexpected pattern in the data.  
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For the fractal series, there was no main effect of series length across groups. 

Values of the MAD scores were very close to zero for all length conditions. 

With short series, participants anchored their judgments strongly on the last data 

point, thereby producing predictions very close to the naïve forecast. With 

longer series, they continued to do so.   

Analyses of signed errors The effect of series’ length on mean signed error 

(MSE) was also examined. I calculated as the value of the forecast minus the 

value of the noise-free signal for the point at which the forecast was made. For 

the fractal and linear autoregressive series, no differences were found. For the 

linearly trended series, there was a main effect of length across groups (F (4, 

69.76) = 3.71; p < 0.05). Polynomial contrasts analysis showed the linear 

component to be significant (p < 0.001). Signed error described a linear 

function, signifying greater trend damping for shorter series. For the seasonally 

trended series, there was a main effect of length across groups (F (4, 66.57) = 

14.87; p < 0.001). Polynomial contrasts analysis showed the linear and 

quadratic component to be significant (p < 0.001), which again signifies greater 

trend damping for shorter series. The results are shown in Figure 4.5. 
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Figure 4.5 Graphs of mean values of signed error (together with 

standard error bars) against series length for the four different types of 

series, shown clockwise from the top left in the order a) linearly trended, 

b) seasonally trended, c) linear autoregressive, and d) fractal. 

Discussion 

For all series types, forecast error described an inverted U-shaped function: 

MAE was low for long series (L = 40), increased as series length decreased (L = 

20), took a maximum value for L = 5 (L = 2 for seasonally trended series), and 

then decreased again for L = 1 and L = 2 (L = 1 for seasonally trended series). 

These results are consistent with those of Andersson et al. (2012). They found 

that MAE was higher when series had five points than when they had 10 or 15 

points. They are also consistent with results reported by Wagenaar and Timmers 

(1978): they found that, with very short series (three, five, or seven points), 

forecasts were more accurate with shorter series. Thus, apparently conflicting 
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findings showing that accuracy decreases with longer series (Wagenaar and 

Timmers, 1978) and that it increases with longer series (Andersson et al., 2012) 

can be reconciled taking the values over which series length was varied into 

account and recognizing that there is an inverted U-shaped function relating 

forecast accuracy to series length. Results are not consistent only with those of 

Lawrence and O’Connor (1992). However, their experiment differed from that 

of Wagenaar and Timmers (1978) and from the present findings in a number of 

ways. For example, they calculated the accuracy of forecasts by averaging over 

four horizons whereas I examined MAE only for the forecast for the most 

immediate horizon. It is possible that MAE of the forecast for the immediate 

horizon and MAE of forecasts for more distant horizons are differentially 

affected by the length of the data series.  

The data shown in Figures 4.4 and 4.5 permit some tentative inferences about 

the cognitive processes underlying forecasting performance. Judgmental 

forecasts may be produced by heuristics that are independent of the long-term 

pattern in the data series. The naïve forecast is one such a heuristic: it can be 

used when data series comprise a single data point or when they contain many 

data points. Alternatively, forecasts may be produced by heuristics that are 

dependent on the forecaster’s ability to extract the long-term pattern from the 

series. Thus, for example, forecasters may produce damped extrapolations of 

the long-term trend in the series (Harvey and Reimers, 2012) or may use their 

assessment of the level of autocorrelation in the series to decide how much to 

regress from the last data point towards the series mean (Reimers and Harvey, 
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2011). The analysis of the effect of series’ length on the absolute distance 

between the last data point and the forecast (Figure 4.4) indicates that forecasts 

tend to be close to the naïve forecast when series are short. Because the last data 

point is the only or is the most salient piece of information available to 

forecasters, they have to rely on a heuristic that does not require extraction of a 

pattern from the series.  

With linearly or seasonally trended series, use of the naïve forecast for shorter 

series lengths produced high levels of trend damping (Figure 4.5). However, the 

distance between forecasts and the last data point increased as the data series 

lengthened and, as a result, the degree of trend damping declined. I assume that 

this occurred because forecasts for longer series relied on a heuristic that 

required extraction of the pattern in the series. When series were longer, 

forecasters were better able to extract this pattern and were more confident on 

relying on it: as a result, the mean forecast moved further from the last data 

point.  

With linear series containing high levels of autocorrelation, forecasters are 

likely to have used the naïve forecast for short data series (L = 1, L = 2) and to 

have switched to using a heuristic based on pattern extraction for longer ones. 

People are sensitive to levels of autocorrelation in linear series having many 

data points (Reimers and Harvey, 2011). Thus, for the longest series (L = 20, L 

= 40), I can assume that they were able to determine that autocorrelation was 

high and, therefore, they produced forecasts appropriately close to the last data 

point (i.e. similar to the naïve forecast). But why were MAD scores higher for 
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series with five data points than they were for longer or shorter series? It is 

known that simple statistical estimators radically underestimate high levels of 

autocorrelation when series are short (e.g., Huitema and McKean, 1991). If 

people used some approach to assessing autocorrelation that approximated to 

these formal methods, they would also have underestimated the autocorrelation 

in the series. As a result, they would have regressed away from the last data 

point towards the mean too much when making their forecasts.  

With fractal series, MAD scores when L = 5 appear somewhat elevated but this 

effect was not significant. I assume that autocorrelation was not extracted from 

fractal series in the way that it was from linear ones. In fact, there is currently 

no evidence that people are sensitive to levels of autocorrelation in fractal 

series. Most forecasters may simply have treated the fractal series as if they 

comprised pure noise around a mean. As a result, they would have maintained 

their default strategy of using the naïve forecast for all series lengths.  

4.2 Length and horizon effects in judgmental 

forecasting (Experimental Study 4) 

Experiment 3 was able to reconcile the apparently conflicting results of 

Andersson et al. (2012) and Wagenaar and Timmers (1978): the former 

compared longer series drawn from that part of the inverted U-shaped curve 

where error increased with decreasing length whereas the latter compared 

shorter series drawn from that part of the curve where error decreased with 
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decreasing length. However, Lawrence and O’Connor’s (1992) results remain 

anomalous: they used longer series but found that error decreased with 

decreasing length. There are a number of underlying factors in the 

characteristics of their study, which might be able to provide explanations for 

this discrepancy; for example, if one investigates more carefully the stimuli 

used in this study, it will be immediately obvious that Lawrence and O’Connor 

did not use conventional ARMA series. Stimuli generated according to Model 1 

had a parameter outside the bounds of invertibility, rendering it not directly 

equivalent with traditional AR models, such as the one used in the current 

thesis; this model produced declining weights on the observations with time, 

implying that some older observations may have been more correlated with the 

current observation than more recent ones. Moreover, the equations used to 

generated stimuli for Model 2 were actually equivalent to white noise. In the 

current thesis, such types of series were not investigated at all so it is difficult to 

speculate what would have happened under the current circumstances if these 

series were to be used. Here, I used two types of highly correlated series: AR 

and High Hurst long memory series. Results seem to have coincided for those 

two types of series with high degrees of autocorrelation. If random or anti-

persistent (low or negative autocorrelation (see Koutsoyiannis, 2000)) series 

were to be used, for example, the optimal strategy to achieve accuracy would no 

longer be achieved by taking into account the patterns in the series but rather by 

forecasting the average of the series; optimal forecasts would have derived from 

an averaging heuristic strategy in this case because it is impossible to predict 

randomness in these types of series.  Therefore, it might have been more 
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beneficial to provide subjects with less data points to avoid the use of heuristics, 

which are closely tied with the use of patterns. Another factor that might have 

rendered Lawrence and O’Connor’s (1992) study not directly in line with the 

current one, is that in their accuracy assessments, they averaged error scores 

across four horizons. It is possible that, had they reported data only for the most 

immediate (first) horizon, and although their stimuli were different, their results 

would have been similar to those of Andersson et al. (2012). However, for this 

to happen, results from later horizons would have had to have shown the reverse 

pattern in order to produce the reported findings for error scores integrated 

across all four horizons. This leads to the question of whether the inverted U-

shaped curve relating MAE to series length that I found for the immediate 

forecast horizon is maintained or changed (e.g., reversed) for later forecast 

horizons. For example, one possibility is that the peak error in the U-shaped 

curve is shifted to the left for more distant horizons: a peak error at series 

lengths of 30-40 rather than 5-10 would allow interpretation of Lawrence and 

O’Connor (1992) results in conjunction with all the other findings. Thus, the 

second experiment in this Chapter is similar to the first one, except that 

participants made forecasts for the third rather than for the first forecast 

horizon.  
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4.2.1 Method 

Participants  

One hundred and fifty participants (81 men, 69 women) were recruited from 

Amazon’s Mechanical Turk online pool, a crowdsourcing web service 

commonly used for data collection by psychologists (Paolacci, Chandler and 

Ipeirotis, 2010). Their mean age was 33 years. They were paid 0.5 $ for their 

participation. 

Design and Stimulus materials  

Design and stimulus materials were the same as before. However, in this 

experiment, the vertical line indicating where the forecast had to be made was 

placed in the third time period after the last data point. As before, a blue dot 

appeared in the position of the cursor when the mouse was clicked to indicate 

the position of the chosen forecast. 

Procedure  

This experiment was web-based. The only procedural difference from the 

previous one was that participants were asked to provide a forecast for a more 

distant horizon (three steps-ahead rather than one step-ahead). Figure 4.6 shows 

an example of the task screen in this experiment. 
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Figure 4.6 Example of the task with 20 data points of a seasonally 

trended series and showing the vertical bar on which participants made 

their forecast for the more distant (three steps ahead) forecast horizon  

4.2.2 Results 

Participants whose forecasts were at least 3 inter-quartile ranges from the 

median of each group were removed and replaced. This resulted in a total of 

150 participants, thirty in each length condition.  

Effects of series length on accuracy Graphs of MAE against series length are 

shown in Figure 4.7 for each of the four series types. An inverse U-shape 

function was found for all series, except for the seasonal one.  
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Figure 4.7 Graphs of mean values of absolute error (together with 

standard error bars) against series length for the four different types of 

series, shown clockwise from the top left in the order a) linearly trended, 

b) seasonally trended, c) linear autoregressive, and d) fractal. 

For the linearly trended series, there was a main effect of length across groups 

(F (4, 71.46) = 14.55; p < 0.001). Polynomial contrasts showed that both the 

linear and quadratic components were significant (p < 0.001). MAE described 

an inverted U-shaped curve with a peak value at L = 5. Independent two-sample 

t-tests (two-tailed), with Games-Howell corrections, showed significant 

differences in MAE between the pairs of lengths 40-5, 40-2, 40-1, 20-5, and 20-

2. For the seasonal series, there was a main effect of length across groups (F (4, 

68.48) = 4.80; p = .002). Polynomial contrasts showed the linear component to 

be significant (p < 0.001). Shorter series led to worse forecasts. Independent 

two-sample t-tests (two-tailed), with Games-Howell corrections, showed 
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significant differences in MAE only between the pairs of lengths 1-4 and 1-5 (p 

< 0.05). For the autoregressive series, there was a main effect of length across 

groups (F (4, 70.44) = 5.21; p = .001). Absolute error described an inverted U-

shape function with polynomial contrasts showing both linear and quadratic 

components to be significant (p < 0.05). As before, peak MAE was obtained 

when L = 5. Independent two-sample t-tests (two-tailed), with Games-Howell 

corrections, showed significant differences in MAE between for 20-1 and 5-1 (p 

< 0.05). For the fractal series, the ANOVA revealed no main effects of length 

across groups. Polynomial contrasts analysis showed none of the components to 

be significant.  
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Figure 4.8 Graphs of mean values of absolute differences between 

forecasts and the last data point (together with standard error bars) 

against series length for the four different types of series, shown 

clockwise from the top left in the order a) linearly trended, b) seasonally 

trended, c) linear autoregressive, and d) fractal. 

Distance of forecasts from the last data point. Graphs of MAD against series 

length are shown in Figure 4.8 for each of the four series types. For the linearly 

trended series, there was a main effect of length across groups (F (4, 69.48) = 

20.29; p < 0.001). Polynomial contrasts showed the linear component to be 

significant (p < 0.001). The absolute distance of forecasts from the last data 

point increased with series’ length. For the seasonally trended series, there was 

a main effect of length across groups (F (4, 67.39) = 12.93; p < 0.001). 

Polynomial contrasts analysis showed the linear component to be significant (p 

< 0.001). Absolute distance of the forecasts from the last data point increased 

with an increase in the series’ length. For the autoregressive series, there was a 
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main effect of series length across groups (F (4, 69.87) = 5.90; p < 0.001). 

Polynomial contrasts showed that both linear and quadratic components were 

significant (p < 0.05). The distance of forecasts from the last data point was 

higher for medium lengths (L = 20) and significant pairwise differences were 

found between pairs 20-2, 20-1, 5-1. For the fractal series, there was a main 

effect of length across groups (F (4, 69.19) = 9.96; p < 0.001). Polynomial 

contrasts analysis showed that the linear component was significant (p < 0.001). 

The distance of forecasts from the last data point was higher for long and 

medium lengths and significant pairwise differences were found between pairs 

40-2, 40-1, 20-2, 20-1, 5-1. 

Analyses of signed error For the fractal and linear autoregressive series, no 

differences in MSE were found. For the linearly trended series, there was a 

main effect of length across groups (F (4, 70.44) = 17.27; p < 0.001). 

Polynomial contrasts analysis showed the linear component to be significant (p 

< 0.001). The negative sign of the MSE scores shows that forecasts were too 

low with this upwardly trended series. Thus trend damping occurred. However, 

decreasing negativity of MSE as series length increased shows that trend 

damping decreased as series became longer. For the seasonally trended series, 

there was a main effect of length across groups (F (4, 68.26) = 4.82; p = 0.002). 

Polynomial contrasts analysis showed the linear component to be significant (p 

< 0.001). The positive sign of the MSE scores show that forecasts were too high 

for this downward segment of the seasonal series: trend-damping occurred.  

However, MSE scores dropped closer to zero as series length increased, an 
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effect again showing that trend-damping decreased (but was not eliminated) as 

series became longer. The results are shown in Figure 4.9. 

	
  

Figure 4.9 Graphs of mean values of signed error (together with 

standard error bars) against series length for the four different types of 

series, shown clockwise from the top left in the order a) linearly trended, 

b) seasonally trended, c) linear autoregressive, and d) fractal. 

Discussion 

To partly reconcile Lawrence and O’Connor’s (1992) results with Experiment 3 

findings and with those reported by Andersson et al. (2012) and Wagenaar and 

Timmers (1978), the relation between forecast accuracy and series length would 

have had to have been radically different from how it appeared in Experiment 3. 

Accuracy would have had to have been higher for L = 20 than for L = 40. This 

is not what the present results suggest. As Figure 4.7 shows, results were very 
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similar to those in Experiment 3 (Figure 4.3). MAE scores were numerically 

highest for L = 5 for the same three series types as before (linearly trended, 

autocorrelated, fractal) but, in this experiment, the quadratic component was 

significant for only the linearly trended and autocorrelated series. For the 

seasonally trended series, MAE scores failed to drop as series length was 

reduced from L = 2 to L = 1 in the way that they did in Experiment 3: instead 

they maintained the same high value. Otherwise, results were as before. Turning 

to the distance between forecasts and the last data point (Figure 4.8), it is again 

evident that results are very similar to those reported for Experiment 3 (Figure 

4.4).  

As before, MAD scores decreased linearly as lengths of linearly and seasonally 

trended series increased, indicating reduced reliance on the naïve forecast as 

data series became longer. With the autocorrelated series, there was again a 

significant quadratic component; distance of forecasts from the last data point 

showed a peak at L = 20. Though this peak value differed from that found in 

Experiment 3 (where it occurred at L = 5), it can be attributed to a similar 

underlying mechanisms: for short series lengths, participants tended to use the 

naïve forecast; for long ones, they were sensitive to the high levels of 

autocorrelation in the series that indicated forecasts close to the last data point 

were appropriate; for series of medium length, they extracted information about 

autocorrelation from the series but the processes that they used, in common 

with formal ones (Huitema and McKean, 1991), produced underestimates that 

resulted in forecasts being too far from the last data point. With fractal series, 
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forecasts were very close to the last data point when L = 1 and L = 2, indicating 

a strong tendency to use the naïve forecast. For longer series, forecasts were 

further from the last data point (Figure 4.8) but MSE remained very close to 

zero (Figure 4.9). This is the pattern that would be expected if participants 

tended to use the mean of the data as the basis for their forecasts from longer 

fractal series. Again, this is what one would expect if participants were 

insensitive to the autocorrelative structure of fractal series.  

In summary, though error levels tended to be considerably higher here than they 

were in Experiment 3 (particularly for linearly and seasonally trended series), 

the way that all three dependent variables depended on series length was very 

similar in the two experiments: this can be seen if one compares Figures 4.3 and 

4.7, Figures 4.4 and 4.8, and Figures 4.5 and 4.9. There are some minor 

variations but it is clear that the peak MAE did not shift to the left with the 

longer forecast horizon examined here. Such a shift would have allowed 

reconciliation of results from Experiment 3, Andersson et al. (2012), and 

Wagenaar and Timmers (1978) with the findings reported by Lawrence and 

O’Connor (1992). 

4.3 Summary and General Discussion 

Prior to the publication of Andersson et al.’s (2012) paper, it appeared from the 

work of Wagenaar and Timmers (1978) and Lawrence and O’Connor (1992) 

that, in contrast with forecasts produced by formal methods, judgmental 
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forecasts were more accurate when made from shorter series.  Two accounts 

were proposed to account for these findings (Goodwin and Wright, 1994; 

Lawrence and O’Connor, 1992; Webby and O’Connor, 1996). First, human 

judgment may become overloaded when presented with too much data. 

However, for forecasting to deteriorate with longer series rather than merely fail 

to improve, one must assume either a) that people are unable to ignore 

additional data and processing more data impairs performance or b) that they 

are able to ignore additional data but supressing its processing incurs some 

cognitive penalty. Thus, people may be unable to inhibit the automatic input of 

older items in presented series and later controlled processing underlying 

forecasting may be less effective when there are more items to deal with. 

Alternatively, people may be able to use controlled processes to restrict input to 

more recent items but this may reduce the cognitive resources available to make 

forecasts from those items. The second proposal was that the longer a series has 

continued without a change in the way it has been produced, the more likely 

people think that such a change will occur. As a result, they would be more 

likely to produce forecasts that deviate from the one that they would produce on 

the basis of the pattern in the series.  

Neither of these proposals explains Andersson et al.’s (2012) finding that 

judgmental forecasts improved as length of data series increased from five to 10 

or 15 items. They are also inconsistent with findings from the present 

Experiment suggesting that forecast accuracy is related to series length via an 

inverted U-shaped function peaking close to five items for most series types. 
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The explanation that I propose for the present findings, and those of Andersson 

et al. (2012) and Wagenaar and Timmers (1978), is that forecasters use fairly 

effective pattern-independent heuristics when series are short and fairly 

effective pattern-based heuristics when series are long. When series are of 

intermediate length, they use same pattern-based heuristics that they use when 

series are long but do so without being aware that the effectiveness of these 

heuristics is increasingly compromised as series become shorter. Had they been 

aware of this problem, they would have used the pattern-independent heuristics 

that produce better performance with even shorter series.    

Pattern-based heuristics can be compromised when series are short for a variety 

of reasons. Methods used to extract information about levels of autocorrelation 

may be biased. It is known that corrections need to be applied to formal 

methods to avoid underestimation (Huitema and McKean, 1991). Also Reimers 

and Harvey (2011) showed that, while judgmental forecasts indicate that people 

are sensitive to autocorrelation, they are insufficiently sensitive to it.   Thus 

high levels of autocorrelation are underestimated whereas low levels are over-

estimated. This is consistent with the MAD findings from the highly 

autocorrelated series used here (Figures 4.4 and 4.8). Why would such ‘biases’ 

increase as series become shorter? Reimers and Harvey (2011) argued that they 

may have a rational ‘Bayesian’ underpinning. Real-world series tend to show 

moderate levels of autocorrelation. Hence, as an a priori hypothesis, a forecaster 

should assume that there is a moderate level of autocorrelation in a series (say, 

0.4). When they examine a series algorithmically generated to contain a high 
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level of autocorrelation (say, 0.8), they receive evidence that allows them to 

make an adjustment away from this a priori hypothesis. However, this evidence 

must be treated with caution because the series is noisy and not infinitely long. 

Hence, in producing their a posteriori hypothesis about the level of 

autocorrelation in the series, they move only some of the way from their a priori 

hypothesis (0.4) towards the level of autocorrelation indicated (with 

considerable uncertainty) by the series (0.8). The more certain they are of the 

evidence provided by the series, the more they move away from their a priori 

hypothesis. Thus, underestimation of high levels of autocorrelation (and over-

estimation of low levels) should be greater when series are noisier. Reimers and 

Harvey (2011) confirmed that this was so. However, this underestimation 

should also be greater when series are shorter (because of such series provide 

lower quality evidence of levels of autocorrelation that they contain). The 

results that I have reported here for autocorrelated series are consistent with this 

(Figures 4.4 and 4.8).  

Similar arguments can be made for series containing other types of patterns. For 

example, linear trends do not continue indefinitely. They are just parts of long-

term cycles. Hence, as an a priori hypothesis, people should assume that the 

steepness of trends will decrease. Data from a presented series allows this a 

priori hypothesis to be modified. However, as presented series are noisy and not 

infinitely long, forecasting from steep trends still shows trend damping and this 

damping is greater when series are noisier (Harvey and Reimers, 2012). I 

should, for the same reasons, also expect trend damping also to be greater when 
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series are shorter; this is indeed what was found for the linearly and seasonally 

trended in experiments 3 and 4 (Figures 4.5 and 4.9).   

Although the naïve forecast produces good estimates for most types of series, 

there are exceptions. Within the types of series that I examined, it produced 

relatively poor forecasts for seasonal series. Figures 4.4 and 4.8 show that 

participants made forecasts very close to the naïve forecast for seasonal series 

with one or two items and yet MAE scores (Figures 4.3 and 4.7) and MSE 

scores were very high (Figures 4.5 and 4.9). As a result, the peak of the inverted 

U-shaped relation between forecast error and series length shifted to the right: it 

was at L = 2 in Experiment 3 and at L = 1 in Experiment 4. I conclude that the 

peak of the inverted U-shaped relation between forecast error and series length 

is at five items for the other types of series because the naïve forecast is 

effective for those series types.   

Limitations 

First, Lawrence and O’Connor’s (1992) findings were not reconciled with the 

present experiments and with those reported by Andersson et al. (2012). 

Lawrence and O’Connor (1992) presented their participants with graphical data 

and they compared performance for series with 20 and 40 points. Yet they 

found that the latter was worse than the former whereas I obtained the opposite 

result. There are some procedural differences that may help to explain these 

divergent findings. I used a variety of series types, including those with high 

levels of autocorrelation, whereas they employed series with unexpected 

characteristics, as discussed in the previous sections. These series might have 
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rendered averaging heuristics more successful. Also, I measured forecast error 

for a single horizon (either one step ahead or three steps ahead) whereas they 

integrated their error measures over four horizons.  

Second, it would be useful to examine a wider range of series lengths. From the 

present results, it is evident that, for most series, I obtained a peak error with a 

series length of five because the pattern-based heuristics that people used with 

that series length were relatively ineffective. I would expect forecast error to be 

lower with series containing 10 items. If it were found to be higher, I would 

need to ask why forecasting is poorer from five items than from one item. One 

possibility would be that forecasters use less effective pattern-independent 

heuristics when forecasting from five items than when forecasting from a single 

item.    



	
  

Chapter 5  Scale Effects in Judgmental 
Forecasting 

Overview 

As discussed in Chapter 1, the scale in which time series graphs are presented is 

another understudied and essential area in judgmental forecasting. If biases 

associated with the scale in which the graph is represented exist, then, the 

implications would be significant for all domains where judgmental forecasting 

is exercised in practice. For example, a variety of scale dimensions are 

employed to present the time series of interest in trading, managerial and other 

settings of the financial sector. Computer screens, monitors as well as palm-tops 

and mobile devices with different dimensions are used to present time series 

information.  

Presentation scale manipulations have been investigated by Lawrence and 

Makridakis (1989), Lawrence and O’Connor (1992) and Lawrence and 

O’Connor (1993). The first study showed that the greater the space on the graph 

above the plot of a linearly trended time series, the higher the forecast tended to 

be. Contrary to expectations stemming from optimal graphical display research 

(Cleveland, McGill and McGill, 1988), the second study (e.g. Lawrence and 

O’Connor, 1992) showed that varying the scale of a graph had no effect on the 

accuracy of forecasts for untrended ARMA series. However, Lawrence and 

O'Connor (1993) showed that when the vertical scale is smaller, participants 

expect greater future changes in the series. Hence, they tend to forecast wider 
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probability distributions for smaller scales. In their paper they manipulated the 

vertical axis by giving their participants three different scale presentations: a 

small, a medium and a large one. The large scale filled three quarters of an A4 

page, the medium scale halved the large presentation and the small scale halved 

it again.  

The same scale manipulation was also employed at Lawrence and O’Connor 

(1992) study. They requested four horizon forecasts and calculated the average 

errors over these four horizons. Although larger scales exhibited smaller errors, 

significant differences between scales were not found. Thus, scale had no effect 

on accuracy of forecasts. 

The significant finding on prediction intervals obtained by Lawrence and 

O’Connor (1993) suggests that smaller scales are more consistent with a larger 

range of outcomes. In fact, Lawrence and O’ Connor (1993) argue that smaller 

scales prime forecasters to expect greater future changes. In contrast, larger 

scales may restrict forecasters’ expectations due to boundary effects. 

Increases in autocorrelation increase series variance without changing the level 

of the noise component in the series. Thus, on the basis of Lawrence and 

O’Connor’s (1993) arguments, I would expect smaller scales to confer higher 

benefit on series with higher autocorrelation (because such scales prime 

forecasters to expect outcomes that are more variable). Thus, time series with 

widely different degrees of autocorrelation will be used here, specifically, series 

with zero or high autocorrelation (a = 0.9).  
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5.1 Scale effects in judgmental forecasting 

(Experimental Study 5) 

In this experiment, I examine scale effects by stretching or shrinking the 

vertical axis. Hence, I compare two scales: a large and a smaller one. Based on 

Lawrence and O’Connor (1993), I tested the hypothesis that smaller scales will 

confer a relative advantage on forecasts made from series with higher 

autocorrelation.  

Thus, 

H1A: If performance is worse with the small scale than with the large one, the 

advantage of the large scale over the small one will not be as great when 

autocorrelation is high than when it is low  

Conversely, 

H1B: If performance is better with the small scale than with the large one, then 

the advantage of the small scale over the large one will be greater when 

autocorrelation is high than when it is low. 

5.1.1 Method 

In this experiment I used a within participants design in which participants 

made forecasts from two types of series, each of which had 30 points. They 

were requested to forecast the next five data points. I used two types of series 
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(independent and autoregressive series) and two scales (a large and a small 

scale). The experiment was run online. 

Participants  

90 participants were collected from Amazon’s Mechanical Turk online pool and 

a total of 95 submissions were made. Participants were paid 0.2$ for their time. 

Design  

The experiment used a within participants design with two factors: series type 

(independent, autoregressive) and presentation scale (a large and a small one). 

There was one trial for each pair of combinations, which resulted in four trials 

for each participant. Series were generated uniquely for each participant and 

trials were randomized. Characteristics of the four types of series are described 

in the next section. 

Stimulus materials  

The two types of series were: an untrended series of independent data points 

and an untrended series of highly autocorrelated data points; Series were 

presented graphically. Untrended series were constructed by inserting 

appropriate parameters into the following generating equation:  Xt = α Xt-1 + (1 

– α) µ + ε, where Xt-1 was the previous observation, µ was the mean of the 

series, which was set to 10 and α was the degree of autocorrelation  (α = 0.9 for 

autoregressive series and α = 0 for independent series), and ε was noise 

produced by randomly drawing values from a uniform distribution [-3, 3] with a 

mean of zero and a variance of σ2 (σ2 = 3 for both autoregressive and 
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independent series). The mean value, µ, was selected to ensure that the final 

data point was close to the vertical mid-point of the screen. Patterned series 

(trended and seasonal ones) were not studied in this experiment because by 

manipulating the vertical axis scale would cause an alteration to the patterns in 

the series (i.e. a shallow trend in the small scale would become a steeper one in 

the large scale).  

Time series were generated uniquely for each participant and the two types of 

series were randomly ordered separately for each of them. The task was 

performed within a stock price scenario, where participants were told they 

would observe the values of a stock price for 30 days and will be asked to 

forecast the next five days. Hence, the horizontal axis of the graph was labelled 

as days. Series were presented as line graphs. After the end of each series, five 

vertical lines were presented in the next five time periods to indicate where 

forecasts had to be made. When a forecast was made by clicking on one of the 

vertical lines a red dot appeared in the position of the cursor when the mouse 

was clicked. Two out of four trials were presented in the large scale, which was 

equivalent to Lawrence and O’Connor large display (three quarters of an A4 

page), while in the small scale the vertical axis was halved (equivalent to the 

medium scale in Lawrence and O’Connor 1992, 1993 papers). The horizontal 

axis was kept constant. Examples of these time-series are provided in Chapters 

3 and 4.  
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Procedure  

The experiment was coded in Javascript and run online via Amazon’s 

Mechanical Turk pool of participants. It was uploaded on to a site and subjects 

from the pool could participate via the web-experiment link, which was 

provided to them via Mechanical Turk. At the end of the task a 9 digit random 

number was shown to each participant and he or she had to type it back to the 

M-Turk site to get paid. At the start of the experiment participants read the 

following introductory text: 

Imagine you are a trader at Wall Street premises and you are observing stock prices in 

this screen! Stock prices are presented in line graphs, which show the prices of the 

stock for 30 consecutive days! So, stock price for day 1, 2, 3,…., 30! What is the most 

likely stock price for the next five days, day 31, 32, 33, 34 and 35? You will mark your 

forecast for these days by clicking in the punctuated vertical axis! You will be 

presented with 4 time series in all! Instructions will be provided at the top of the screen 

at each stage to prompt you for any actions required. In this experiment, your time and 

forecasting performance is monitored. If you complete the task to quickly or produce 

irrelevant forecasts, your participation will be rejected automatically.  

After this introductory text the trials began. To the right of the 30th observation 

there were five vertical lines were participants had to mark their forecasts. A 

label informed them about the task again. After making all five forecasts, the 

submit button became active for them and by clicking that they moved to the 

next trial. Two out of four trials were presented in the large scale, and the other 
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two in the small scale (these correspond to the large and medium scales in 

Lawrence and O’Connor’s (1992, 1993) papers). 

5.1.2 Results 

In this section I will analyse the following variables: mean absolute error 

(MAE), mean absolute difference from the last data point (MAD) and the mean 

signed error (MSE). Mean absolute error corresponds to the difference of the 

forecast minus the actual value of the series and is useful to measure the 

forecaster accuracy. Mean absolute difference from the last data point is 

calculated by subtracting the forecast from the last data point. This variable is 

informative of the anchoring strategies participants used in each series’ type and 

scale condition. Finally, signed errors are useful to spot elevation biases. Since 

this experiment is run in a stock market scenario, optimism biases might occur 

(e.g. Reimers and Harvey, 2011). Signed errors are calculated by subtracting the 

forecasting from the optimal series value. This optimal value is calculated based 

on the series’ generating algorithm by dropping the noise component. Each of 

these three variables will be subjected to a three-way within-participants 

ANOVA, using series’ type, scale’ type and horizon as independent variables. 

Follow-up analyses will be used to clarify the nature of any obtained effects and 

interactions.  Additional analyses will examine the degree of noise introduced 

into forecasts by fitting regression lines to the forecasts for the five horizons 

and analysing levels of residual error. Correlations between successive forecasts 

will also be examined. In this analysis, participants whose forecasts were at 
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least 3 inter-quartile ranges from the median of each group were excluded and 

replaced. This resulted in a total of 90 participants.  

Effects on accuracy To test H1, a three-way within participants ANOVA was 

employed on the mean absolute errors (MAE) for all five forecast horizons, 

with series type and scale type as independent variables. The three-way 

ANOVA yielded a main effect of horizon (F (3.23, 1152.44) = 55.81; p < .001), 

and analysis using polynomial contrasts showed that it contained a significant 

linear component (F (1, 356) = 123.66; p < .001), signifying that error 

increased with an increase in the forecast horizon. There was also a significant 

interaction between series’ type and horizon (F (3.23, 1152.44) = 53.19; p < 

.001), showing the more rapid increase of error with horizon for the 

autoregressive series. Also, there was a main effect of series’ type (F (1, 356) = 

6.94; p = .009). Scale type yielded no significant effects. There were no other 

significant effects or interactions in this three-way analysis.  To confirm that, a 

two-way analysis of variance was employed with scale type as independent 

variable; results confirm the three-way analysis outcomes. No significant effects 

or interactions were obtained. Tests of simple effects showed that MAE 

increase with time horizon for the independent series was not significant in 

either of the two scales. However, a significant increase was found for the AR 

series for both scales (Small scale: F (2.87, 255.65) = 55.02, p < .001; Large 

scale: F (2.48, 221.01) = 46.04, p < .001) and significant linear contrasts for 

both cases (Small scale: F (1, 89) = 114.45, p < .001, Large scale: F (1, 89) = 
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78.78, p < .001). Hence, error increased significantly only for the 

autoregressive series for both scales. 

In their analysis, Lawrence and O’Connor averaged errors across the four 

forecasting horizons to draw their conclusions. In this section, the same will be 

performed for the five horizon forecasts obtained from this experiment, to 

produce an accuracy measure at an aggregate level. It might be the case that 

effects of scale operate there. A two-way ANOVA was run with average 

absolute error as dependent variable and scale’ and series’ type as independent 

variables. Results showed significant main effects of series’ type with errors 

being larger for the independent series (1.58 vs 1.38, F (1, 356) = 6.94; p < .05). 

Scale type effects have not reached significance although errors were 

numerically larger for the small scale (1.51 vs 1.47). The interaction between 

series’ and scale type have not reached significance either. 

However, comparisons for each scale condition show that participants in the 

small-scale condition exhibit significantly larger absolute errors when 

forecasting for the independent series than for the autoregressive one (1.62 vs 

1.39, F (1, 178) = 4.04, p < .05). The same is not true for the large scale (1.55 

vs 1.38, F (1, 178) = 2.90, p = .09); in the large-scale condition, participants’ 

performance for the two types of series is not any more distinguishable. This 

finding seems to occur here because in the large scale, participants’ errors for 

the independent series are decreased. This analysis provides some (weak) 

evidence to support H1. 
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Signed errors analysis A three-way ANOVA yielded a main effect of horizon 

(F (3.13, 1115.22) = 9.18; p < .001), and analysis using polynomial contrasts 

showed that it contained a linear component (F (1, 356) = 18.42; p < .001), 

signifying that error increased with an increase in the forecast horizon. Errors 

were always positive, with an increase with time horizon, suggesting a positive 

elevation bias. There were no other significant effects or interactions in this 

three-way analysis. Tests of simple effects in the signed error showed 

significant increase of MSE with time horizon for the independent series for the 

small scale (F (3.78, 336.6) = 3.78, p < .05). Errors were always positive. The 

same manipulation in the signed error showed significant increase of MSE with 

time horizon for the independent series for the large scale (F (3.91, 348.55) = 

4.32; p < .05). Errors had a positive value for horizons 2, 3, 4 and 5. There were 

also main effects of time horizon to the MSE for both scales (Small Scale: F 

(2.30, 204.94) = 2.88; p = .05, Large Scale: F (2.20, 195.79) = 2.45; p = .083). 

Linear contrasts analysis showed again significant linear components for the 

small scale (F (1, 89) = 4.79; p < .05) but not for the large scale. This positive 

elevation bias may be associated with the fact that in this particular task 

subjects were forecasting stock prices where higher values are better (see also 

Figure 5.1). 
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Figure 5.1 Graphs of mean values of signed error (together with 

standard error bars) for the independent series (continuous line) and for 

the autoregressive series (dashed line), for each scale condition (Small 

scale: upper panel, Large scale: lower panel). A positive elevation bias 

is present in both series’ types and scales. 

To complement the main analysis of the results, I fitted regression models to 

each one of the four sequences of five forecasts produced by each participant. 

For each sequence, I fitted the model: forecast = a + b (horizon) + error. Mean 

values of constants and trend coefficients in each condition, together with 

optimal values derived from the generating equations are shown in Table 5.1.  
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Table 5-1 Linear regressions of forecast sequences for each series type: 

mean values (variances in parentheses) of constants and trend 

coefficients. Actual values in the generating equations are shown for 

comparison. 

 

A two-way ANOVA with dependent variable the slope of the regression 

equation and independent variables the scale and series type revealed a 

significant interaction between scale and series’ type (F (1, 356) = 7.38; p = 

.007). For the independent series, the regression line slope coefficient was 

greater for the large scale, while the opposite was true for the autoregressive 

series. No other effects were found. The same analysis for the regression line 

intercept indicated that there was a significant interaction between scale and 

series’ type (F (1, 356) = 11.39; p = .001); a positive elevation bias occurred in 

  Constant (a) 
 

Trend (b) 

Random 
Series 

Actual 10 
 

0 

 Small scale  10.58 
(3.38) 

-0.05 
(0.2) 

 
 Large scale 9.79 

(3.96) 
 

-0.19 
(0.32) 

 
Autoregressive 
Series 
 

Actual 10 
 

0 

 Small scale  9.35 
(17.22) 

0.17 
(0.50) 

    
 Large scale 10.91 

(19.18) 
 

-0.03 
(0.44) 
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the small scale for the independent series, while, for the autoregressive series, a 

small elevation bias was associated with the large scale display. ` 

Mean absolute distances I compare differences between mean absolute 

differences (MAD) from the last data point. A three-way ANOVA was run and 

yielded only an effect of series’ type (F (1, 356) = 28.08; p < .001), signifying 

that anchoring mechanisms were significantly different in the two types of 

series. Specifically, forecasts were closer to the last data point in the 

autocorelated series (Figure 5.2): this is to be expected if participants are 

sensitive to series’ autocorrelation. Hence, to follow this up, I carried out a 

supplementary analysis. Correlations between successive forecasts for each of 

the series’ type and scale conditions were examined. For autoregressive series, 

in both scales, high correlations between successive points are observed. Their 

magnitude was similar to the series’ autocorrelation. For the independent series, 

the average correlation between successive points was, on average, around 0.5 

(Figure 5.4). Hence, participants were sensitive to series autocorrelation but 

insufficiently so. This replicates Reimers and Harvey’s  (2011) findings. 



Chapter 5 – Scale Effects in Judgmental Forecasting 

	
   168	
  

	
  

Figure 5.2 Graph of mean values of absolute differences (together with 

standard error bars) for the independent series (continuous line) and for 

the autoregressive series (dashed line), irrespectively of scale condition. 

Significantly different anchoring strategies are observed for the two 

types of series. 

	
  

Tests of simple effects in the mean absolute differences confirmed these results. 

There were no significant scale effects or interactions between the two scale 

types (Figure 5.3). 
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Figure 5.3 Graph of mean values of absolute distances between 

successive points (together with standard error bars) for the small scale 

(continuous line) and for the large scale (dashed line), irrespectively of 

series’ type. 

	
  

Figure 5.4 Graph of correlation values between successive points for 

the two series’ types, for large scales (continuous line) and for small 

scales (dashed line).  
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Discussion 

The experiment provided some evidence to support the hypothesis. Specifically, 

when the scale was small, participants produced lower errors when the series 

were highly autocorrelated than when they were random but, when the scale 

was large, this difference did not appear. Thus, the small scale selectively 

advantaged forecasting from the autocorrelated series. Series’ variance was 

higher in such series: the range of values in the presented series and the range of 

values to be forecast were higher in the autocorrelated series. On the basis of 

Lawrence and O’Connor’s (1993) suggestion that smaller scales lead 

forecasters to expect a greater range of outcomes, I argued that reducing the 

scale would selectively benefit forecasting from the autocorrelated series. This 

is what occurred. 

Note that, the variance of the noise component was the same in both the 

independent and the autocorrelated series. Hence the scale effect cannot be 

attributed to this factor.  
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5.2 Scale effects in judgmental forecasting 

(Experimental Study 6) 

In this experiment, scale effects were examined by manipulating again the 

vertical axis as before. Thus, comparisons are again performed between two 

scales: the large and the small one. The experiment was run as before.  

The same hypothesis (H1) as before is tested. However, in addition, a cross-

experiment comparison might allow further examination of Lawrence and 

O’Connor’s (1993) suggestion. Gaussian noise allows for greater perturbations 

and shifts in the series. The possibility (though small) of more extreme values 

would be more consistent with small scale presentation if Lawrence and 

O’Connor’s (1993) suggestion holds (i.e. small scales lead people to expect 

more extreme values). Hence I also run tests to examine the following 

hypothesis: 

H2: Small scale displays will selectively benefit series with Gaussian noise over 

series that contain uniform noise of the same magnitude. 

5.2.1 Method 

The method was the same as in Experiment 5 except for the difference in the 

series noise distribution, which was Gaussian this time. 
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Participants  

110 participants were collected from Amazon’s Mechanical Turk online pool. 

They were paid 0.2$ for their participation. 

Design  

The design was exactly the same as in Experiment 5. 

Stimulus materials  

Same as in Experiment 5 but noise distribution was now Gaussian with a mean 

of zero and variance σ2 = 9. In other words, in this experiment, I changed the 

noise distribution of the series. The range of perturbations produced by the 

Gaussian noise will be now greater than those produced with uniform noise.  

To get a sense of the difference in perturbations that Gaussian noise will 

introduce in this experiment, I will present here simulated outcomes from the 

series under investigation with uniform and Gaussian noise. To measure the 

perturbations in the series, I calculate incrementally the absolute differences 

between the series’ points Xn and X(n + h), where h is the horizon of h steps 

ahead. These differences will provide a measure of perturbations in the series 

and, hence, in the most recent segments. Here, absolute difference (AD1) 

corresponds to the absolute difference between successive points in time steps n 

and (n + 1), AD2 corresponds to the absolute difference between points in time 

steps n and (n + 2) and so on, until AD10, which corresponds to the absolute 

difference between point n of the series and point (n + 10). The absolute 

differences were calculated by simulating autoregressive series of 4000 points. 
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After simulating 4000 time steps of the series of interest with both uniform and 

Gaussian noise, I calculate the averages of AD1, AD2, AD3, AD4, AD5, AD6, 

AD7, AD8, AD9, AD10 from 100 simulated outcomes. Figure 5.5 shows the 

average ADs for the autoregressive series (a = 0.9) with uniform and Gaussian 

noise. 

 	
  

Figure 5.5 Graph of simulated mean values of absolute differences for 

the autoregressive series with uniform (black bars) and Gaussian (grey 

bars) noise. 

Figure 5.5 shows differences in perturbations encountered by the subjects in 

autoregressive series (a = 0.9) with uniform and Gaussian noise. It is evident 

that the series with Gaussian noise used here produces greater perturbations for 

all time steps. These perturbations increase with an increase of horizon. The 

same applies for random series (a = 0). There, average perturbations are again 

greater for series with Gaussian noise (3.50 vs 1.90) but there is no increase 
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with horizon. Thus, I expect greater forecast errors in this experiment as well as 

less anchoring to the last data point. 

Procedure  

The procedure was exactly the same as before. 

5.2.2 Results 

I excluded participants whose forecasts were at least three inter-quartile ranges 

from the median of each group. This resulted in a total of 110 participants.  

Effects of scale In this section, the same analysis will be performed, as before. 

To test H1, a three-way within participants ANOVA was employed on the mean 

absolute errors (MAE) for all five forecast horizons, with independent variables 

those of series and scale type. Graphs of MAE are shown in Figure 5.6 for each 

series’ type and scale. They show accuracy decreasing with increasing horizon 

for the autoregressive series. Scale doesn’t seem to influence accuracy much for 

either type of series, as before. Further analysis will provide evidence about the 

significance of these effects.  
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Figure 5.6 Graphs of mean values of absolute error (together with 

standard error bars) for the independent series (top panel) and for the 

autoregressive series (lower panel), for the small scale (continuous 

lines) and for the large scale (dashed lines). 

The three-way ANOVA yielded a main effect of horizon (F (3.79, 1653.05) = 

45.58; p < .001), and analysis using polynomial contrasts showed that it 

contained a significant linear component (F (1, 436) = 129.25, p < .001) 

signifying that, overall, error increased with an increase in the forecast horizon. 

There was also a significant interaction between series’ type and horizon (F 
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(3.79, 1653.05) = 7.91; p < .001), showing the more rapid increase of error with 

horizon for the autoregressive series (Figure 5.6). Also, there was a main effect 

of series’ type (F (1, 436) = 184.13; p < .001).  

Scale type yielded no significant effects and no other significant effects or 

interactions occurred in this three-way analysis.  To confirm that, a two-way 

analysis of variance was employed with scale type as independent variable; 

results confirm the three-way analysis outcomes. No significant effects or 

interactions were obtained. Tests of simple effects showed significant increase 

of MAE with time horizon for both series in both scales; for the independent 

series, both the small scale, F (4, 436) = 4.13, p = .003, and the large scale, F 

(4, 436) = 4.29, p = .002) exhibited significant increase with horizon. Linear 

contrasts were significant for both the small (F (1, 109) = 13.3, p < .001) and 

the large scale (F (1, 109) = 9.08, p = .003). A significant increase of MAE with 

horizon was found also for the AR series for both scales (Small scale: F (3.03, 

330.40) = 37.18, p < .001, Large scale: F (2.37, 259.22) = 43.47, p < .001) and 

significant linear contrasts in both cases (Small scale: F (1, 109) = 76.38, p < 

.001, Large scale: F (1, 109) = 70.04, p < .001). Hence, error increased 

significantly in all cases (See also Figure 5.7). 
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Figure 5.7 Graph of mean values of absolute error (together with 

standard error bars) for the independent series (continuous lines) and 

for the autoregressive series (dashed lines), irrespectively of scale 

condition. 

Analysis of average errors across the five horizons was performed, as before. A 

two-way ANOVA was run with average absolute error as dependent variable 

and scale’ and series’ type as independent variables. Results showed significant 

main effects of series’ type with errors being larger for the random series (3.03 

vs 1.61, F (1, 436) = 222.63; p < .001). Scale type effects have not reached 

significance although errors were numerically larger for the small scale (2.39 vs 

2.25). The interaction between series’ and scale type have not reached 

significance either.  

Signed errors analysis A three-way ANOVA yielded no effects but errors were 

again positive on average (Figure 5.8). 
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Figure 5.8 Graphs of mean values of signed error (together with 

standard error bars) for the random series (continuous line) and for the 

autoregressive series (dashed line), for each scale condition (Small 

scale: upper panel, Large scale: lower panel).  

To complement this analysis of the results, I fitted regression models, as before. 

Mean values of constants and trend coefficients in each condition, together with 

optimal values derived from the generating equations are shown in Table 5.2.  
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Table 5-2 Linear regressions of forecast sequences for each series type: 

mean values (variances in parentheses) of constants and trend 

coefficients. Actual values in the generating equations are shown for 

comparison. 

 

A two-way ANOVA with dependent variable the slope of the regression 

equation and independent variables the scale and series type revealed a 

significant interaction between scale and series type (F (1, 436) = 7.65; p = 

.006). For the random series, the regression line slope coefficient was again 

greater for the large scale, while the opposite was true for the autoregressive 

series. No other effects were found. The same analysis for the regression line 

intercept indicated that there was a significant interaction between scale and 

series type (F (1, 436) = 45.98; p < .001); a positive elevation bias occurred in 

the small scale for the random series, while, for the autoregressive series, a 

  Constant (a) Trend (b) 

Random 
Series 

Actual 10 
 

0 

 Small scale  10.66 
(7.13) 

-0.05 
(0.71) 

 
 Large scale 9.98 

(7.57) 
 

-0.19 
(0.50) 

 
Autoregressive 
Series 
 

Actual 10 
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 Small scale  9.67 
(18.33) 
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 Large scale 10.91 

(17.24) 
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small elevation bias was associated with the large scale display. Differences in 

residuals haven’t reached significance. 

 

Figure 5.9 Graphs of mean values of absolute differences (together with 

standard error bars) for the random series (continuous line) and for the 

autoregressive series (dashed line), for each scale condition (Small 

scale: upper panel, Large scale: lower panel).  

Effects of mean absolute difference I compare differences between mean 

absolute differences (MAD) from the last data point. Same procedure was 

followed as before; a three-way ANOVA was run and yielded main effects of 
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horizon (F (3.56, 1554.40) = 18.29; p < .001), a between subjects effect of 

series’ type (F (1, 436) = 243.43; p < .001) and a significant interaction between 

horizon and series’ type (F (3.56, 1554.40) = 3.76; p = .007). This is also shown 

in Figure 5.9. There were no other significant effects or interactions in this 

three-way analysis. Tests of simple effects showed no significant increase of 

MAD with time horizon for the random and autoregressive series for both 

scales. Again, these results show participants were sensitive the differences in 

autocorrelation in the two series types. 

Tests of simple effects in the mean absolute differences confirmed these results. 

There were no significant scale effects or interactions between the two scale 

types. 

To follow this finding up, I examined correlations between successive forecasts 

for each of the series’ type and scale conditions. For autoregressive series, in 

both scales, high correlations between successive points are observed. For the 

independent series, the average correlation between successive points is on 

average around 0.26 (Figure 5.10). This again replicates Reimers and Harvey’s 

(2011) finding that people are sensitive to autocorrelation in series but 

insufficiently so. 
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Figure 5.10 Graph of correlation values between successive points for 

the two series’ types, for large scales (continuous line) and for small 

scales (dashed line). 

Fisher’s z transformation showed a significant difference in all pairs formed 

between the random and the autoregressive series. This means that for the 

different types of series, participants perceived a different degree of 

autocorrelation.  
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Cross-experimental comparisons  

A four-way within participants ANOVA was employed on the mean absolute 

errors (MAE) for all five forecast horizons, with independent variables those of 

series’ and scale type as well as experiment type (Experiment 5, Experiment 6). 

A graph of the overall MAE for the two experiments is shown in Figure 5.11 for 

each series’ type and scale. This shows accuracy decreasing with increasing 

horizon in both experiments, while errors are constantly higher for Experiment 

6, where Gaussian noise was used as a noise term.  

	
  

Figure 5.11 Graph of mean values of absolute error (together with 

standard error bars), for Experiment 5 (continuous lines) and for 

Experiment 6 (dashed lines). 

The four-way ANOVA yielded a main effect of horizon (F (3.69, 2926.98) = 

88.94; p < .001), and analysis using polynomial contrasts showed that it 

contained a significant linear component (F (1, 792) = 236.38; p < .001), 

signifying that error increased with an increase in the forecast horizon. There 
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was also a significant interaction between horizon and Experiment type (F 

(3.69, 2926.98) = 36.28; p < .001), showing the more rapid increase of error 

with horizon for the second experiment. A three-way significant interaction 

between horizon, series type and experiment type (F (3.69, 2926.98) = 7.38; p < 

.001) was found, denoting the differences in forecasting performance, which 

stemmed from the noise type introduced in the different experiments; error 

increase with horizon was more rapid for both series in the second experiment. 

Finally, there were main effects of experiment type (F (1, 792) = 151.41; p < 

.001), series’ type (F (1, 792) = 144.22; p < .001). Scale type yielded no 

significant effects or interactions. Thus there was no support for H2. 

A four-way within participants ANOVA was employed on the mean absolute 

distances (MAD) for all five forecast horizons, with independent variables those 

of series’ and scale type as well as experiment type (Experiment 5, Experiment 

6). A graph of the overall MAD for the two experiments is shown in Figure 

5.12 for each series type and scale. This shows absolute distances being 

constantly higher for Experiment 6, where Gaussian noise was used as a noise 

term.  
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Figure 5.12 Graph of mean values of absolute distances (together with 

standard error bars), for Experiment 5 (continuous lines) and for 

Experiment 6 (dashed lines). 

The four-way ANOVA yielded a main effect of horizon (F (3.74, 2963.18) = 

5.60; p < .001), and analysis using polynomial contrasts showed that it 

contained a significant linear component (F (1, 792) = 4.36; p < .05). There was 

also a significant interaction between horizon and Experiment type (F (3.74, 

2963.18) = 5.11; p < .001). A two-way significant interaction between horizon 

and series type (F (3.74, 2963.18) = 5.29; p < .001) was found, denoting the 

differences in forecasting behaviour between random and autocorrelated series. 

Finally, there were main effects of experiment type (F (1, 792) = 70.59; p < 

.001) and series’ type (F (1, 792) = 232.72; p < .001). Scale type again yielded 

no significant effects or interactions.  
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Discussion 

In this experiment; there was no support for H1: in contrast to Experiment 5, 

there was no evidence that a smaller scale selectively benefitted forecasting 

from autoregressive series over forecasting from independent series. Neither 

was there any evidence to support H2: there was no evidence that the smaller 

scale selectively benefitted forecasting from series with Gaussian noise over 

forecasting from series with uniform noise.  

Nevertheless, the experiment did produce a number of significant findings; for 

example, the findings confirmed that people are sensitive to series 

autocorrelation but are insufficiently sensitive to it.  

5.3 Summary and General Discussion 

In the current chapter, I examined the influence of presentation scale on 

forecasting accuracy and corresponding anchoring behaviours. This was 

achieved by employing the scale dimensions used in a previous study by 

Lawrence and O’Connor (1992). This allowed for comparisons between the two 

studies. In the current chapter, different time series (autoregressive and 

independent ones) were used to examine the generalizability of previous 

findings.  

Based on Lawrence and O’Connor’s (1993) suggestion that smaller scales lead 

forecasters to expect a wider range of outcomes, I tested two hypotheses. First, 

smaller scales should selectively benefit forecasting from autoregressive over 
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forecasting from independent series containing the same underlying error 

variance. This was expected because the former series have a wider range of 

outcomes. Although there was some evidence to support this hypothesis from 

Experiment 5, there was no support for it from Experiment 6. Second, smaller 

scales should selectively benefit forecasting from series with Gaussian noise 

over forecasting from series with uniform noise. Again this was expected 

because the former series have a wider range of outcomes. A cross-experiment 

comparison produced partial support for this hypothesis. Nevertheless, the 

effect of distribution shape was not successfully isolated via the current 

manipulations because the underlying distributions of noise did not have the 

same variance, confounding, thus, the variables of distribution variance and 

shape. Thus, in order for robust conclusions to be achieved, variance should 

have been equal between experiments. The current manipulation only allows for 

conclusions between scale and series’ types. 

Both experiments produced evidence that there are effects of scale type that 

depend on the type of series being forecast. In both studies, regressions were 

fitted to individual forecast sequences that participants produced. These showed 

that constants were higher with independent series when the scale was smaller 

but were higher with autoregressive series when scale was higher. In addition, 

forecasting from independent series showed a negative trend when the scale 

was large (but minimal trend when it was small) whereas forecasting from 

autoregressive series showed a positive trend when scale was small (but 

minimal trend when it was large). These findings are intriguing but the reasons 
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for them are unclear. They do not appear to be amenable to being explained via 

the sort of effects that Lawrence and O’Connor (1993) propose. 

Both experiments confirmed that forecasters are sensitive to the level of 

autocorrelation in the data series but that they are insufficiently sensitive to it 

(cf Reimers and Harvey, 2011). 

It is noteworthy, though, that in all conditions and experiments, higher errors 

were associated with the small presentation scale, but these yielded only non-

significant numerical differences. If the data contain more abrupt shifts than 

those used in this experiment, that these numerical differences might attain 

significance. Thus, further research with data that contain shifts and extreme 

values, such as, for example, anti-persistent fractal series (see Koutsoyiannis, 

2000), could be useful in this respect. 

 



	
  

Chapter 6  Judgmental Forecasting from 
Experience 

Overview 

Forecasting from real-time experienced streams of interrelated data is a task 

encountered both in professional and in everyday life forecasting situations. In 

practice, this is a typical task for traders and other financial experts, who 

observe time series in real-time dynamic displays; they use a combination of 

graphs with dynamic input of new prices of stock market variables that appear 

in real-time in the screen. Then, they go on to take their investment decisions 

relying on their anticipations about market developments. Of particular interest 

are the so-called “rally periods”, where prices are constantly rising or falling in 

real-time.   

Managers operate in an experiential manner as well. Their core competence is 

the ability to forecast crucial developments at a very early stage (see for 

example, Nuthall, 2001). This is why research related to strategic planning 

acknowledges the importance of the need for prompt and efficient assimilation 

of incoming information (Armstrong, 1982; Straatemeier, Bertolini and 

Brommelstroet, 2010).  

Policy makers receive real-time information for indicators such as GDP growth 

and inflation indexes and then come up with their decisions for future policies. 

Monetary policy decisions, for example, are taken in real-time with the use of 
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judgment and models that assess current and future economic conditions (for 

relevant nowcasting econometric models, see for example Giannone, et al., 

2004). Weather forecasters also make use of their judgment in real-time settings 

(see for example a relevant experiment by Lusk and Hammond, 1991). 

It is not only in professional environments where people experience real-time 

sequential changes in a variable but also in everyday life. People often need to 

deal with streams of information that they receive over time (for example, the 

weather, prices in the supermarket, and so on). This kind of dynamic input may 

produce judgments arising from specific forecasting strategies. Research in the 

domain of risky choice from sequential sampling suggests that big discrepancies 

exist between decisions from experience and decisions from description 

(Hertwig, Barron, Weber and Erev, 2004). The experimental paradigm of 

experience-based decisions presents values to the observer, which are received 

in a sequential manner and a decision is made on the basis of this information. 

Nevertheless, these values are not necessarily interrelated as in the time series 

paradigms found in the forecasting literature: they are typically independent. 

However, two of the most important findings in this area could be of interest in 

forecasting tasks from experience. First, the likelihood of rare events is often 

underestimated and, second, recency effects operate in most cases (e.g. Fiedler 

and Juslin, 2006, p.6). 

Here I ask whether similar effects arise with experiential forecasting from a 

stream of sequentially presented and interrelated stimuli. There has been no 

published research on this issue in the forecasting literature. In judgmental 
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forecasting studies static approaches involving graphs or tables have been 

examined (for tabular versus graphical format effects see Bolger and Harvey, 

1996) but experiential forecasting paradigms have been scarce. Only Wagenaar 

and Timmers (1979) introduced a novel experiential setting, where subjects had 

to forecast the growth of a series via the pond and the duckweed paradigm (i.e. 

the representation of duckweed multiplying itself in a pond). This unique 

paradigm in the forecasting literature tested judgmental forecasting performance 

in an experiential, non-numerical way with the use of blocks instead of graphs 

or tables. Results showed that participants damped the exponential trends as in 

static paradigms. This finding suggests that in experiential forecasting 

paradigms, trend damping and anti-damping biases still operate as they do in 

graphical and tabular displays (e.g. Harvey and Bolger, 1996). 

There is loosely related research in areas such sequential learning and 

perceptual choice. In sequential learning tasks (Gureckis and Love, 2010), 

humans have been found to use simple associative mechanisms (i.e. based on 

direct associations) to learn, for example, a sequence of numbers. This finding 

suggests that in experiential forecasting tasks, the autocorrelation illusion (e.g. 

Reimers and Harvey, 2011) may still operate as in judgmental forecasting tasks 

from description (i.e. graphs and tables). This account is further strengthened by 

research in perceptual choice (Tsetsos et al., 2012), which provides evidence for 

recency effects. Tsetsos et al’s (2012) data showed that observers base their 

estimations on the last set of observations, thereby producing recency effects. 

Finally, other researchers within the risky choice domain have proposed that the 
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representativeness heuristic can account for their experimental findings (see 

Juslin and Fiedler, p. 137, 2004; Juslin et al., 2004). Thus, trend-damping, 

sensitivity to autocorrelation and representativeness phenomena seem to operate 

in experientially based settings. These are the same phenomena that are 

generally acknowledged to operate in judgmental forecasting from static 

displays. 

Thus, these findings suggest that a forecaster, when encountering an 

experiential forecasting task might be still prone to the biases identified in the 

classical literature of judgmental forecasting with static tasks. These forecasting 

tasks have revealed several robust phenomena in forecasters’ performance, 

namely, trend damping, sensitivity to autocorrelation and noise introduction.  

Here, I propose a new way to directly investigate whether judgmental 

forecasting biases from graphs are present when the forecaster is experiencing a 

time series. I introduce a simple task, where the forecaster experiences time 

series instead of observing them in static displays. In this task, successive 

values of the series are presented individually as a sequence of bar charts. At 

the end of this presentation, the observer has to make forecasts for the next 

values. The structure of underlying time series can be modified to investigate 

the three robust phenomena outlined above. Therefore, for the investigation of 

trend damping, participants will be presented with trends of different directions, 

gradients and noise levels; then, noise introduction effects will be assessed 

using series of various noise levels; and, lastly, the exploration of sensitivity to 

autocorrelation will employ series with different autocorrelations.  
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As in every novel experimental set-up, there is a number of variables which will 

require parameterisation by the experimenter. Unfortunately, there are no 

suggestions as to what the optimal values for these parameters are since there is 

no previous similar research. For example, there might be screen margin effects 

that affect forecasting performance, such as those found in Lawrence and 

Makridakis’ (1989) research in a static setting.  Alternatively, there might be an 

optimal speed at which successive data should be displayed for the forecaster to 

perform well. In these experiential settings, the effect of display time will be of 

particular interest. Will reduced time between successive stimuli enhance or 

impair forecasting accuracy?  Hypotheses about this must be built on research 

from other fields where successive presentation of stimuli has been examined 

tested. Alvarez and Cavanagh (2004), for example, used a visual search task to 

determine optimal speed presentation. They showed that participants reached 

maximum accuracy at 450 milliseconds. More recently, Kiani, Hanks and 

Shadlen (2008), who studied direction discrimination tasks in monkey 

populations, suggested that accuracy levelled off from 500 milliseconds 

onwards. Their subjects’ performance was not significantly different when 

stimuli were presented for 500 milliseconds and 1000 milliseconds. This 

finding reinforces that of Alvarez and Cavanagh (2004). In addition, Woodman, 

Vogel & Luck (2001) showed that visual search for 500 millisecond displays 

remained efficient even when visual working memory is fully occupied. These 

findings from perceptual studies suggest the 500 milliseconds benchmark as a 

threshold between slow and fast displays.  
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Another strand of research in decision-making has investigated whether fast or 

slow displays change accuracy. There, fast displays were found to decrease 

judgement accuracy (for a review, see Edland & Svenson, 1993). On the other 

hand, other studies have shown that stress, and, thus, fast displays, can improve 

performance (e.g. Harvey et al. 1992) because subjects use their cognitive 

resources more efficiently. In the specific experiential task reported here, fast 

displays could impair perception of changes in series: for example, the time 

steps in a trended series. On the other hand slow displays could cause problems 

for participants in remembering a set of previous data points (e.g. to judge the 

mean of a series). The effects of speed of display are likely to depend on the 

characteristics of the task and the underlying series. However, in the simple 

displays used here, high-speed displays are likely to impair forecasting 

performance. 

In summary, experiments reported in the current chapter were designed to 

investigate whether well-documented phenomena in the forecasting literature 

still appear when forecasters experience data points individually via dynamic 

bar chart displays.  

Here I test the hypothesis (H1) that the phenomena found with static displays 

will be also obtained with dynamic ones and the hypothesis (H2) that faster 

speeds will impair performance. 
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6.1 Experiential forecasting from upward trends 

(Experimental Study 7) 

This study was explicitly designed to test the forecaster sensitivity to trend 

damping and speed display in an experiential setting.  The setting was designed 

according to the specifications described in Chapter 2; sequential bar charts 

were used to present sequentially the data points of a time series to the 

forecaster. Both the gradient of the trend as well as the speed of stimuli 

presentation were manipulated. On the basis of previous reports (e.g., Harvey 

and Reimers, 2013), participants were expected to dampen steep trends and 

anti-dampen shallow ones. In terms of the time interval between successive 

stimuli, the 500 ms benchmark was used to distinguish fast and slow displays.  

Thus, in the next section, the following hypothesis will be tested: 

H1: Subjects will exhibit trend damping for steep trends and trend anti-damping 

for shallow trends. 

H2: Presentation speed will affect forecasting performance: fast displays will 

impair accuracy. 

6.1.1 Method 

In this experiment, I used the experiential forecasting task described in Chapter 

2. Participants produced two forecasts at the end of a sequence that had 30 

points.  
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Participants  

A total of 120 undergraduate students, (45 male, 75 female, age M = 21.46, SD 

= 3.22), took part in the experiment. Participants were recruited from University 

College London. Participants were not paid for their time. Instead, they were 

told the five most accurate participants would receive £5. 

Design  

The study employed a 2 trend gradients (shallow, steep) x 2 speed displays 

(slow, fast) x 2 time-periods (forecast 31, forecast 32) (see Table 6.1). A total of 

120 undergraduate students participated in the experiment, thirty in each of the 

four conditions. Each participant was tested on one trial and gave two 

successive forecasts.  

Table 6-1 Experimental design for Experimental study 7  

Speed/Trend 
gradient 

Interval = 900 ms 
(Slow) 

Interval = 300 ms 
(Quick) 

Steep Condition 1 Condition 2 
Shallow Condition 3 Condition 4 

 

Stimulus materials  

To construct the shallow trended series the equation Xt = 2t was used. The steep 

gradient trended series was constructed by using the equation: Xt = 4t. So, each 

step of the shallow gradient series was equal to 2 and of the steep gradient 

series was equal to 4. Thus, in a 0 to 150 vertical axis chart, the last data point 

for the shallow trend was found at a value of 60 and for the steep trend at a 
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value of 120 (see Figure 6.1 for a screenshot of the experiment). The series 

presented to participants were noise free and series’ data points were presented 

graphically in a sequential manner, with time intervals between successive data 

points equal to 300ms or 900ms, depending on the speed condition to which the 

participant belonged to (fast or slow).  

 

	
  

Figure 6.1 Illustration of the experiment: screenshot of the 5th data 

point, were the bar-height is at a value of 20 for the steep gradient 

condition. 

Procedure  

After participants had agreed to take part in the experiment, they were asked to 

enter their age and gender in MATLAB. Participants were randomly assigned to 

one of the four conditions: shallow/slow, shallow/quick, steep/slow, and 

steep/quick. They then read the following instructions: 

“Imagine you are a trader… You are now at Wall Street premises and you are observing a 

specific stock price in this screen! The stock price values are not presented in numbers. Instead, 
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they are presented with the use of bar charts. The greater the height of the bar is, the larger the 

price of the stock. A first bar appears in your screen with the initial price. When the stock price 

changes (it does within seconds in the stock market), the next bar appears in your screen. The 

previous one disappears! At the end of the task and after observing approximately 30 

consecutive stock price changes, you will have to predict the height of the next two bars (i.e. 

stock prices) by mouse-clicking the height of the bar. Will the price of the stock increase or 

decrease? Will it remain the same? Your prediction will show whether you are appropriate to 

become a trader! If you are among the top 5 traders, then, you will receive a 5 pound award!” 

Once they had finished reading the instructions, they pressed the space bar for 

the experiment to begin. Each participant saw 30 data points in a sequential 

manner. The goal of the experiment was for them to forecast points 31 and 32 

by using the mouse to click at the height they thought the next points would be. 

After participants had indicated their predictions, they were debriefed and 

thanked for their time. 

6.1.2 Results 

To measure forecasting performance, mean absolute error was calculated 

(MAE). Participants whose MAE values were more than three standard 

deviations from the mean of the group were excluded and replaced. To 

determine whether trend damping occurred, I used the methodology associated 

with the exploitation of the mean signed error measure (MSE), which is 

calculated for each forecast as the difference between the forecast and the 

corresponding trend value. Trend damping occurred when significantly higher 

errors were associated with the more distant horizons. Signed error was again 
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calculated by subtracting the forecast from the optimal value of the series (in 

this case the optimal and the real values coincide).  

Forecasting performance Participants’ MAE scores were used as an input to a 2 

trend gradients (shallow, steep) x 2 speed conditions (slow display, fast display) 

x 2 horizons (forecast 31, forecast 32) repeated-measures ANOVA. Overall, 

participants displayed effects of horizon (F (1, 116) = 8.77, p < .001), 

suggesting, thus that overall MAE for horizon 2 were larger than MAE for 

horizon 1 (MHorizon1 = 7.71 vs MHorizon2 = 8.48). A main effect of trend gradient 

was also found (F (1, 116) = 5.96, p = .016), with post-hoc tests showing that 

those in the shallow gradient produced a larger MAE overall compared to those 

in steep gradient trends (MShallow Trend = 9.52 vs MSteep Trend  = 6.67). There was a 

horizon x trend gradient interaction (F (1, 116) = 6.42, p = .013). For shallow 

trend gradients, participants’ MAE increased faster overall from period 1 to 

period 2 (MShallow,Horizon1 = 8.80 and MShallow,Horizon2 = 10.24 vs MSteep,Horizon1 = 

6.61 and MSteep,Horizon2 = 6.73), suggesting the possibility that, with shallow 

trends, participants had more space to mark their forecasts and, in line with 

Lawrence and Makridakis (1989), this affected forecasting performance (Figure 

6.2). 
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Figure 6.2 Graphs of mean values of absolute error (together with 

standard error bars) against forecast horizon for the two different types 

of trended series, shown from upper to lower panels in the order a) 

shallow trend b) steep trend. In shallow conditions, participants 

produced larger MAEs than in steep conditions.  

	
  

Figure 6.3 Marginal means of mean absolute error (together with 

standard error bars) for slow (dark grey) and quick (light grey) displays 

against forecast horizon. Overall, in fast speed conditions participants 

produced larger MAEs.  
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Effects of speed A main effect of speed was found (F (1, 116) = 4.71, p = .032), 

with post-hoc tests showing that those in the high-speed conditions produce 

larger MAE overall as compared to those in low-speed conditions (MSlow = 6.83 

vs MFast = 9.36) (Figure 6.3). 

Signed errors analysis Participants’ MSE were also used as an input to a 

repeated-measures ANOVA, same as before. Overall, participants displayed 

effects of horizon (F (1, 116) = 18.51, p < .001), suggesting, thus that overall 

MSE for horizon 2 was higher than MSE for horizon 1 (MHorizon1 = 1.51 vs 

MHorizon2 = 2.74). A main effect of trend gradient was also found (F (1, 116) = 

39.45, p < .001), with post-hoc tests showing that those in the shallow gradient 

produced a positive MSE whereas those in steep gradient trends produced 

negative signed errors (MShallow Trend = 7.20 vs MSteep Trend  = -2.95). There was a 

marginally significant horizon x trend gradient interaction (F (1, 116) = 2.86, p 

= .09). For shallow trend gradients, participants’ MSE was positive and 

increased faster from period 1 to period 2, whereas in steep trends, MSE was 

negative, decreasing with horizon (MShallow,Horizon1 = 6.34 and MShallow,Horizon2 = 

8.06 vs MSteep,Horizon1 = -3.32 and MSteep,Horizon2 = -2.57), suggesting that, with 

shallow trends, the effect could be characterized as anti-damping. The same was 

not true for steep trends, where trend damping was expected to occur (see also 

Figure 6.4).  
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Figure 6.4 Graphs of mean values of signed error (together with 

standard error bars) against forecast horizon for the two different types 

of trended series, shown from upper to lower panels in the order a) 

shallow trend b) steep trend. In shallow conditions participants 

produced positive errors while for steep conditions errors were 

negative. While for the shallow trend errors increased from horizon 1 to 

horizon 2, which is evidence for anti-damping, the same was not true for 

steep trends, where error decreased with time horizon. 
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Discussion  

Summarizing the results of this experiment, one could say that horizon, gradient 

and speed variables all had effects on forecasting performance.   

Forecasting performance MAE analysis showed overall greater errors for the 

most distant horizon and the shallow trend gradient, with errors increasing 

faster with horizon in the case of shallow trends. Larger errors for the most 

distant horizon were expected; this finding is in accordance with forecasting 

research with the use of graphs (see for example Bolger and Harvey, 1993). 

Nevertheless, larger and faster growing errors for the shallow rather than the 

steep trends condition was an unexpected result; in tasks where graphs are used, 

larger errors are associated with steeper trends.  

Why did participants in shallow trend conditions produce larger errors?  

Possibly, it was because, in these conditions, participants had more space to 

mark their forecasts, allowing, thus, more error to be introduced in their 

performance. If absolute error is correlated with available space, then, it should 

be the case that as gradient decreases, average absolute error increases. 

Research by Lawrence and Makridakis (1989) revealed boundary biases in a 

judgmental forecasting task with the use of graphs. They showed that the 

greater the space on the graph above the plot of a linearly trended time series, 

the higher the forecast tended to be. So, boundary biases are likely to have been 

responsible for the effect found here. 
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Effects of presentation speed The MAE analysis also showed that those in the 

fast conditions produced larger errors compared to those in slow conditions. 

Faster speed impaired performance.  This finding is in accordance with 

hypothesis 2. One can suppose that participants attempted to capture the nature 

of the data generation process, then formed a representation of the 

characteristics of that process, and, finally, attempted to generate an accurate 

forecast from this representation. Participants experiencing the data slowly had 

more time to detect the nature of the data generation process and, thus, their 

judgement extrapolations were more representative of the data series (e.g. 

Alvarez and Cavanagh, 2004; Kiani et al., 2008). As a result, they benefited 

from increased accuracy.  

Elevation and damping biases MSE analysis showed overall positive errors for 

shallow trend gradients and negative errors for steep trend gradients; forecasts 

were higher than the real values in shallow trends and lower than the real values 

in steep trends. This means that in both cases elevation effects were present. 

Were the usual damping effects present as well? It is clear that positive signed 

errors increased with horizon for shallow trends, which is evidence for anti-

damping (error increase with horizon). However, with steep trends, the negative 

signed error decreased marginally with horizon. This result can be explained in 

two ways. Either there were confounding elevation as well as damping effects 

between horizons 1 and 2, which eventually masked damping for steep 

gradients or trend damping never occurred. It is difficult to disentangle 
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elevation from damping effects in this case in order to decide which of these 

two accounts is true.  

A method that distinguishes elevation and damping effects more clearly is 

needed. Here, I introduce a new measure to tackle this issue: the measure of 

implied time-steps. To obtain implied time steps for each horizon, I calculate 

the first horizon implied time step as first horizon forecast minus last given data 

point and the second horizon implied time step as second horizon forecast 

minus first horizon forecast. According to this calculation, participants in the 

shallow condition produced a first forecast far from the trend (δFShallow (Horizon1-

Last Datapoint) = 8.34, much greater than the given series step, which was equal to 

2) and then implied (with their second forecast) that the trend step was smaller 

and comparable to that of the given series (δFShallow (Horizon2-Horizon1) = 3.72 > 2, 

but 3.72 is much lower than the first implied time step, which was equal to 

8.34).  

Did the two horizon forecasts differ cognitively in the way those where 

produced? Was the first horizon forecast just an approximate estimate of the 

height (influenced by the margins), and the second horizon forecast the implied 

step of the trend (also influenced by the margins but significantly less than F1)? 

By looking at the steep trend results as well, one should be able to confirm 

whether an account like that could be used to interpret these findings. For steep 

trends, thus, the first horizon forecast is placed according to the same rational: 

now, it is shifted below the trend due to the upper margin effects (δFSteep (Horizon1-

Last Datapoint) = 0.57, much lower than the given series step, which was equal to 4).  
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Figure 6.5 Graphs of average forecasts against forecast horizon for the 

two different types of speeds, shown from upper to lower panels in the 

order a) steep trends b) shallow trends.  

Table 6-2 Implied time steps for each horizon 

Real time step of 
the given series 

Implied time 
step of the trend 

F1 

Implied time step 
of the trend 

F2 
Steep trend 
(Real step = 4) 0.57 4.72 

Shallow trend 
(Real step = 2) 8.34 3.72 
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Participants’ first horizon forecast is produced as if participants damped the 

trend for the first forecast enough so to allow space for a larger second forecast: 

the second horizon forecast now implied a comparable time step to that of the 

given series (δFSteep (Horizon2-Horizon1) = 4.71 > 4, but 4.71 much greater than 0.57). 

Table 6.2 presents the average implied time steps for each series type and 

forecast horizon and Figure 6.5 the average forecasts in conjunction with the 

given series. 

To sum up, implied time step differences in direction between series of different 

gradients might be related to the screen margins and space availability. 

Moreover, implied time step differences between forecast horizons 1 and 2 

might be related to qualitative differences between horizon 1 and 2 forecasts. 

Results from this first experiential experiment are inconclusive as to whether 

trend-damping biases occurred. Nevertheless, according to the official 

definition of trend damping and anti-damping, only trend anti-damping 

occurred. 
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6.2 Experiential forecasting from downward trends 

(Experimental Study 8) 

In this experiment, the direction of the trend is opposite to the one used before. 

Thus, downward trends were investigated. According to the literature (see for 

example Harvey and Reimers, 2013), one should expect even more pronounced 

damping effects for these types of trends. Also, according to findings from 

Experiment 7, fast displays should impair performance. Thus, hypotheses for 

this study (H2A and H2B) were the same as in Experimental Study 7. 

6.2.1 Method 

The method was the same as in Experiment 7 except for the difference in the 

series direction, which was downwarding this time. 

Participants  

A total of 120 undergraduate students, Age (M = 22.03, SD = 3.57) 57 male, 63 

female took part in the experiment. Participants were recruited again from 

University College London. They were not paid for their time. Instead, they 

were told the five most accurate participants would receive £5. 

Design  

The study employed a 2 downwarding trend gradients (shallow, steep) x 2 

Speed conditions (slow, fast) x 2 time-periods (forecast 31, forecast 32) mixed 

design. A total of 120 undergraduate students participated in the experiment, 
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thirty in each of the four conditions. Each participant was tested in a single 

experiment comprising one trial, as before.  

Stimulus materials  

There were two types of series: a downward trended linear series with a steep 

gradient and a one with a shallow gradient. To construct the shallow trended 

series, I used the equation: Xt = -2t. The steep gradient trended series was 

constructed by using the equation: Xt = -4t. So, the step of the shallow gradient 

series was equal to 2 and the steep gradient series step was equal to 4. The 

series presented to participants were noise free and data points were presented 

graphically in a sequential manner, as before. Thus, in a 0 to -150 vertical axis 

chart, the last data point for the shallow trend was found at a value of -60 and 

for the steep trend at a value of -120 (see also Figure 6.6 for a screenshot of the 

experiment). The series presented to participants were noise free and series’ 

data points were presented graphically in a sequential manner, with time 

intervals between successive data points equal to 300ms or 900ms, depending 

on the speed condition to which the participant belonged to (fast or slow).  

Procedure  

The procedure was exactly the same as before. 
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Figure 6.6 Illustration of the experiment: screenshot of the 5th data 

point, where the bar-height is at a value of -20 for the steep gradient 

condition. 

6.2.2 Results 

In this section, effects of MAE and MSE will be studied. Cross-experimental 

comparisons between Experimental Studies 7 and 8 will be performed as well. 

Effects of trend gradient Participants’ MAE scores were used as an input to a 2 

trend gradients (shallow, steep) x 2 speed conditions (slow, fast) x 2 horizons 

(forecast 31, forecast 32) repeated-measures ANOVA. Overall, participants do 

display effects of horizon (F (1, 116) = 116, p = .026), suggesting, that overall 

MAE for horizon 2 was larger than MAE for horizon 1 (MHorizon1 = 7.80 vs 

MHorizon2 = 8.39). A main effect of trend gradient (F (1, 116) = 4.62, p = .034) 

was revealed, with post-hoc tests showing that the shallow trends produced 

larger MAE overall compared to the steep gradient trends (MShallow Trend = 9.39 

vs MSteep Trend  = 6.80). There was a horizon x trend gradient interaction (F (1, 

116) = 116, p = .011). For shallow trend gradients, participants’ MAE scores 
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increased overall from period 1 to period 2 whereas in steep trend gradients, 

MAE decreased marginally (MShallow,Horizon1 = 8.75 and MShallow,Horizon2 = 10.02 

vs MSteep,Horizon1 = 6.84 and MSteep,Horizon2 = 6.75), again suggesting that, with 

shallow trends, participants had more space to mark their forecasts and this 

affected forecasting errors (Figure 6.7).  

 

Figure 6.7 Graphs of mean values of absolute error (together with 

standard error bars) against forecast horizon for the two different types 

of trended series, shown from upper to lower panels in the order a) 

shallow trend b) steep trend. In shallow conditions, participants 

produced larger MAE than in steep conditions.  

Effects of speed A main effect of speed was also found (F (1, 116) = 4.24, p = 

.042), with post-hoc tests showing that participants in the fast conditions 
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produce larger MAEs overall compared to those in low-speed conditions (MSlow 

= 6.85 vs MFast = 9.33) (Figure 6.8). 

	
  

Figure 6.8 Marginal means of mean absolute error (together with 

standard error bars) for slow (dark grey) and quick (light grey) displays 

against forecast horizon. Overall, in fast speed conditions participants 

produced larger MAEs.  

Signed errors analysis In the previous experiment mean signed error was 

calculated by subtracting the optimal value from the forecast, providing 

negative values for damping in upward trends but positive for damping in 

downward ones. Here, for the purposes of the cross-experimental comparisons, 

I reverse the coding of this error. This will allow making direct comparisons of 

the size of the damping or antidamping effects for upward and downward trends 

in the two experiments. Thus, here (and for this experiment only) mean signed 

error is calculated by subtracting the forecast from the optimal value. This way, 

MSE will show damping for downward trends as a negative value (like it is for 

upward ones in Experimental Study 7) and antidamping for both upward and 
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downward trends will be signalled by a positive MSE. Participants’ MSE scores 

were used as an input to a repeated-measures ANOVA, as before. Overall, 

participants did display effects of horizon (F (1, 116) = 32.79, p < .001), 

suggesting, thus that overall MSE scores for horizon 2 were higher than MSE 

scores for horizon 1 (MHorizon1 = 1.77 vs MHorizon2 = 3.31). A main effect of trend 

gradient was also revealed (F (1, 116) = 49.58, p < .001), with post-hoc tests 

showing that trials with the shallow gradient produced positive MSE whereas 

trials with the steep gradient produced negative signed errors (MShallow,Trend = 

8.05 vs MSteep,Trend  = -2.96) (see Figure 6.9).  

 

Table 6-3 Implied time steps for each horizon 

Real time step of 
the given series 

Implied time 
step of the trend 

F1 

Implied time step of 
the trend 

F2 
Steep trend 
(Real step = -4) -0.47 -5.12 

Shallow trend 
(Real step = -2) -9.07 -3.95 
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Figure 6.9 Graphs of mean values of signed error (together with 

standard error bars) against forecast horizon for the two different types 

of trended series, shown from upper to lower panels in the order a) 

shallow trend b) steep trend. In shallow conditions participants 

produced positive errors while for steep conditions errors were 

negative, as before. 
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Figure 6.10 Graphs of average forecasts against forecast horizon for 

the two different types of speeds, shown from upper to lower panels in 

the order a) shallow trends b) steep trends  

Table 6.3 presents the average implied time steps for each series type and 

forecast horizon and Figure 6.10 the average forecasts in conjunction with the 

given series. 
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Cross-experimental comparisons  

Participants’ MAEs were also used as an input to a 2 directions (upward, 

downward) x 2 trend gradients (shallow, steep) x 2 speed conditions (slow, fast) 

x 2 horizons (forecast 31, forecast 32) repeated-measures four-way ANOVA. 

For MAE, no interactions were found between upward and downward 

directions suggesting that the average absolute effect of boundaries is the same 

for both directions. Participants’ MSE were also used as an input to a 2 

directions (upward, downward) x 2 trend gradients (shallow, steep) x 2 speed 

conditions (slow, fast) x 2 horizons (forecast 31, forecast 32) repeated-measures 

four-way ANOVA. Overall, main effects of experiment were found (or 

alternatively, direction), as expected (F (1, 232) = 17.22, p < .001), suggesting, 

thus that overall MSE for experiment 8 was higher than MSE for experiment 7 

(MExp1_Up = 2.12 vs MExp2_Down = 2.54). Also, on the between participants factor, 

a main effect of Experiment x trend gradient was found (F (1, 232) = 88.56, p < 

.001, MExp1Shallow = 7.20 vs MExp2Shallow = 8.05; MExp1Steep = -2.95 vs MExp2Steep = -

2.97), as expected. For MSE, horizon x direction interactions were found to be 

significant, (F (1, 232) = 49.77, p < .001, MExp1Horizon1 = 1.50, MExp1Horizon2 = 

2.74; MExp2Horizon1 = 1.77, MExp2Horizon2 = 3.31). Thus, greater anti-damping 

occurred in the second experiment (Figure 6.11). A significant three-way 

interaction for horizon x experiment x trend gradient was also significant (F (1, 

232) = 5.29, p < .022).  
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Figure 6.11 Graphs of mean values of signed error (together with 

standard error bars) against forecast horizon for the two types of 

trended series shown from top to bottom panels in the order a) shallow 

trend b) steep trend. Solid bars are from Experiment 7 MSEs, while 

patterned bars refer to MSEs from Experiment 8. Lighter bars 

correspond to MSEs for slow displays, while darker bars are for quick 

display MSEs. In shallow trend conditions, participants produced higher 

anti-damping for downward trends (Experiment 8) for both speed 

displays. The same was not true for steep trends where MSEs were of 

comparable magnitude. 
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Discussion 

Summarizing the results of this experiment, there was confirmation that 

horizon, gradient and speed variables all have effects on forecasting 

performance. The MAE analysis showed again overall greater errors for the 

most distant horizon and the shallow gradients. It also showed that fast display 

conditions produced larger errors than slow display conditions.  

The MSE analysis showed evidence for anti-damping for shallow gradients, 

while, with steep gradients, trend damping has not occurred. Effects were of 

comparable magnitude to those in the previous experiment but with trend-

antidamping being more pronounced for downward trends in Experiment 8. 

This is in accordance with evidence from judgmental forecasting from graphs 

(Harvey and Reimers, 2013; Harvey and Bolger, 1996; Lawrence and 

Makridakis, 1989; O’Connor et al., 1997). There, effects related to downward 

trends were found to be more pronounced than for upward ones. This is 

attributed to the optimism bias (Weinstein, 1980). 

Again, it appears that participants were influenced by the screen margins, 

especially when the first horizon forecast was produced. The effects observed 

can be interpreted as a combination of elevation and damping biases and they 

significantly impaired accuracy. It is clear now that upper and lower margins 

affect forecasting performance in a significant way. It is likely that trend biases 

were more pronounced for shallow trends because of the greater space, which 

was available to the forecaster. If this is the case, optimal performance should 
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be obtained for intermediate trends. To confirm this result, in the next 

experiment, I will compare shallow, intermediate and steep trends to determine 

whether biases related to trend are eliminated for intermediate trends. 

6.3 Experiential forecasting from intermediate 

trends (Experimental Study 9) 

Speed of the display was set to 1 second in this experiment, because 

experimental studies 7 and 8 provided evidence that slow displays enhance 

performance. Three forecasts were requested this time to investigate further the 

perceived trends that participants’ forecasts implied.  

H3: Participants will exhibit optimal performance for intermediate trends. 

6.3.1 Method 

Participants  

A total of 99 participants, 43 male, 56 female (Age M = 30.01, SD = 9.40), took 

part in the experiment. Participants were recruited from Amazon Mechanical 

Turk and were paid 0.5$ each. 

Design  

The study employed a 3 upward trend gradients x 3 time-periods (forecast 21, 

22 and 23) between-participants design. A total of 99 participants were 
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recruited for the experiment (33 in each of the three conditions) from online 

sources as before. Speed was set to 1 sec between successive stimuli. 

Stimulus materials  

There were three types of trended linear series, which were constructed by 

using the equations: Xt = 3t, Xt = 4.5t, Xt = 6t. On a 0 to 150 vertical axis, the 

last data point, for each of the corresponding trends, was found at 60, 90 and at 

120 (for an illustration of those trends, see Figure 6.12). The series presented to 

participants were noise free and series’ data points were presented graphically 

in a sequential manner, as before. 

Procedure  

Procedure was the same as before, only this time participants saw 20 data points 

and were requested to produce three forecasts. This time I used 20 data points 

for the given series to accommodate for all types of trends in the same screen 

display.  
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Figure 6.12 Graphical representation of the three gradient conditions in 

Experimental Study 9. 

6.3.2 Results 

Forecast performance was measured by MAE and MSE, as before. Here, I also 

calculated implied time-steps for all horizons, as before; first horizon time step 

= first horizon forecast – last given data point, second horizon time step = 

forecast second horizon – forecast first horizon, third horizon time step = 

forecast third horizon – forecast second horizon. I will first present the analysis 

for the implied time steps for the first horizon, where I obtained elevation 

effects in experiments 7 and 8. Figure 6.13 shows the first horizon implied time 

steps in conjunction with the real time steps of the series for all three gradient 

conditions. Implied step for intermediate trends approximates more the real 

time step of the series. This is what was expected according to hypothesis H3. 

  

0	
  

20	
  

40	
  

60	
  

80	
  

100	
  

120	
  

140	
  

1	
   2	
   3	
   4	
   5	
   6	
   7	
   8	
   9	
   10	
  11	
  12	
  13	
  14	
  15	
  16	
  17	
  18	
  19	
  20	
  
Time	
  

Shallow	
  Trend	
  

Intermediate	
  Trend	
  

Steep	
  Trend	
  



Chapter 6 – Judgmental Forecasting from Experience 

	
   222	
  

	
  

Figure 6.13 Real and implied time steps for the first horizon forecast for 

all conditions. Participants average implied time step for horizon 1 

decreases as trend gradient increases. Best approximation between 

implied and real time steps is obtained for intermediate trend series 

X=4.5t. 

To confirm whether these differences in implied time steps were significant, I 

ran a trend gradient x implied time step between-subjects ANOVA with implied 

time step as a dependent variable. Main effects of trend gradient were 

marginally significant (F (2, 96) = 2.88, p = 0.06). I will now turn to analyse all 

forecast horizons implied time steps. Table 6.4 and Figure 6.14 present the 

averages of implied steps for all horizons. 
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Figure 6.14 Implied time steps for all three horizons. For time steps 1, 2 

and 3, implied time step decreased for the shallow and intermediate 

trends and increased for the steeper ones.   

Table 6-4 Implied time steps for each horizon and each gradient 

Real time step of 
the given series 

Implied time 
step of the trend 

F1 

Implied time 
step of the trend 

F2 

Implied time 
step of the trend 

F3 
Real step = 3 7.08 4.93 4.59 
Real step = 4.5 3.82 4.88 6.09 
Real step = 6 2.89 5.97 5.87 

 

These findings suggest that for shallow trends (real time step = 3), participants 

misplaced their forecasts for horizon 1, implying a step equal to 7.08. They then 

decreased their time step estimations for horizons 2 and 3 to 4.93 and 4.59 

respectively. Participants’ performance for shallow trends has been 

characterized by elevation and anti-damping effects (horizon 1), while anti-

damping characterized the rest of the forecasts for horizons 2 and 3. For 
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intermediate trends (real time step = 4.5), while participants approximated the 

real time step for horizon 1, they then increased their implied time step 

estimations for horizons 2 and 3, to 4.88 and 6.09 respectively. Thus, they 

showed no elevation or anti-damping effects for horizon 1, while anti-damping 

characterized the rest of the forecasts for horizons 2 and 3. This is in accordance 

with hypothesis 3. Finally, for steeper horizons (real time step = 6), participants 

again misplaced their forecasts for horizon 1, implying a time step of 2.89 but 

increasing this for their estimations for horizons 2 and 3 to 5.97 and 5.87 

respectively. There was no evidence of damping. This is in accordance with 

findings for experiments 7 and 8.  

One-sample t-tests were used to compare each participant’s implied time steps 

within the criterion values (i.e. 3, 4.5, 6). For shallow trends, participants’ 

implied time steps were significantly higher than the actual time-step (t (32) = 

2.80, p = .009, for implied time step 1; t (32) = 2.88, p = .007, for implied time 

step 2; t (32) = 3.15, p = .003, for implied time step 3). For intermediate trends 

one-sample t-tests with 4.5 as a criterion value showed no significant 

differences for implied time steps 1 and 2 but, for implied time step 3, the time 

step was found to be significantly higher than the criterion value (t (32) = 2.85, 

p = .007, for implied time step 3). This means that for intermediate trends, 

participants were accurate in their implied time step predictions for the first 

horizons; in the last horizon they showed significant anti-damping. Finally, for 

steep trends, implied time steps for horizon 2 and 3 did not differ significantly 

from the actual time step. It was only in horizon 1 where forecasts lied 
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significantly lower than the actual time step (t (32) = -2.48, p = .018, for 

implied time step 1). Thus, damping did not occur for horizons 2 and 3 but 

misplacement took place for horizon 1. 

Signed errors analysis To further examine these effects, and their significance, 

participants’ MSEs were entered to a 3 trend x 3 horizons repeated-measures 

ANOVA. MSEs correspond to the difference between the forecast and the real 

value of the series in this case (see Figure 6.15). Positive signed errors show 

anti-damping behavior and negative ones show damping behavior; signed 

errors, which are close to zero, show no effects. Overall, main effects of horizon 

were found (F (2, 192) = 10.18, p < .001), suggesting, thus that overall signed 

error was higher as horizon increased (MF1 = -0.11 vs MF2 = 0.55 vs MF3 = 

1.91). A main effect of trend gradient was found (F (1, 96) = 9.11, p < .001), 

(M3t = 7.26 vs M4.5t = -0.53 vs M6t = -4.37), with post hoc tests showing 

significant differences in signed errors between shallow and intermediate, 

shallow and steep but not between intermediate and steep trends. For MSE, 

there was also a significant horizon x trend gradient interaction (F (4, 192) = 

3.97, p = .004), suggesting faster increase of error for the shallow trends. 
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Figure 6.15 Graph of mean values of signed error for each trend 

gradient. Intermediate trends produce the best estimates in terms of 

MSE for all horizons.  

Absolute errors analysis Participants’ MAEs were also used as an input to 3 

trend gradients x 3 horizons repeated-measures ANOVA. Overall, main effects 

of horizon were found (F (2, 192) = 17.66, p < .001), suggesting, thus that 

overall MAE was higher as horizon increased (MF1 = 6.72 vs MF2 = 7.02 vs MF3 

= 7.18). There was no main effect of trend. But, there was a significant horizon 

x trend gradient interaction (F (4, 192) = 3.00, p = .002), with absolute errors 

increasing faster for the shallow trends (Figure 6.16). 
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Figure 6.16 Graphs of mean values of absolute errors for all trend 

conditions. MAE is larger and increases faster for the shallow trends. 

Intermediate and steep trends outperform shallow trends in terms of 

accuracy. 

Discussion 

In this experiment I confirmed that best performance is found for intermediate 

trend gradients. Across the three trend gradient conditions, participants were 

found to exhibit a significantly different behavior in terms of signed error for 

shallow trends: their errors for all horizons were larger and increased with 

horizon rapidly while the same was not true for the other conditions. This 

strongly suggests that greater space availability impairs forecasting 

performance. Perhaps lack of available space excludes the response options that 

otherwise characterize forecasting biases.  
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Overall signed error for all conditions was higher as horizon increased. This 

finding shows participants’ propensity to anti-damp trends as forecast horizon 

increases, especially for shallow and intermediate trends. For steep trends no 

effects were found. Perhaps the limited space available to make forecasts 

prevented the usual processes that produce damping from occurring.  

The previous experiments employed noise free series. Environmental time-

series, however, are noisy series. As discussed in Chapter 1, noisy series impair 

participants’ judgmental performance when series are presented in graphical 

format (Harvey, 1995). Will the same happen in experiential tasks? I will now 

turn to examining participants’ performance with noisy trends. 



Chapter 6 – Judgmental Forecasting from Experience 

	
   229	
  

6.4 Experiential forecasting from noisy trends 

(Experimental Study 10) 

Harvey (1995), in a forecasting task with graphs, found damping to be greater 

for steeper gradients, in an experiment where forecasts were made from near-

linear segments of high frequency cyclical series. Will the same happen in 

experiential tasks?  

H4: Noise introduction will impair performance in trended series; the higher the 

noise the less the accuracy in participants’ forecasts. Damping effects are 

expected to be more pronounced than those found in noise free series and to be 

greater with higher noise levels. 

6.4.1 Method 

Participants  

A total of 114 participants, 53 male, 61 female (age M = 28.94, SD = 6.04), 

were recruited for the experiment (38 in each of the three conditions) from 

online sources and were paid 0.5$ each. 

Design  

The study employed a 3 noise levels x 3 time-periods (forecast 21, 22 and 23) 

between-subjects design. Speed was set to 1 sec between successive stimuli, as 

before. 
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Stimulus materials  

There were three types of trended linear series, which were constructed by 

using the equation: Xt = 4.5t + εt, where εt was noise produced by randomly 

drawing values from a Gaussian distribution with a mean of zero and a variance 

of σ2. The series time-step was the same for all three series and was selected 

according to the findings of the previous experiment because it eliminated 

misplacement effects for the first forecast. Thus, the last data point of each 

series was near the vertical mid-point of the screen. The noise term, ε, changed 

according to the noise condition the participants belonged to. For low noise 

conditions, ε had a mean of zero and a variance of 9, for medium noise 

conditions ε had a mean of zero and a variance of 20.25 and for high noise 

conditions ε had a mean of zero and a variance of 36 (for a graphical illustration 

of differences between low and high noise conditions, see Figure 6.17). High 

noise series display larger differences between successive data points. Medium 

noise series successive changes are on average lower than the high noise series 

but higher than the low noise series. Figure 6.17 comprises only high and low 

noise series for clearer illustration. 
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Figure 6.17 Graphical representation of high and low noise series in 

Experimental Study 10. 

Series were presented to participants, as in the previous experiments.  

Procedure  

Procedure was the same as before: participants saw 20 data points and were 

requested to produce 3 forecasts.  

6.4.2 Results 

Here, I calculated the implied slope by entering the three horizon forecasts 

provided by participants to a regression model. I then compared those values 

with the actual slope of the series (i.e. 4.5). According to the methodological 

analysis provided in Chapter 2, this is considered a good measure to deal with 

trend-damping biases in noisy series. This measure assimilates elevation effects 
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as well (e.g. see Harvey and Reimers, 2013). Table 6.5 and Figure 6.18 

summarize those findings. 

	
  

Figure 6.18 Implied slope for the three noise conditions together with 

standard errors. The higher the noise, the lower the average implied 

slope. 

Table 6-5 Implied slope and associated standard errors for each noise 

condition 

 Implied slope 

Low noise 4.75 
(0.52) 

Medium noise 3.10 
(0.58) 

High noise 2.57 
(0.73) 

 

To see whether differences between implied slopes were significantly different 

from each other I run a one-way ANOVA for the 3 noise levels. The dependent 

variable was implied slope. Overall, main effects of noise level were found (F 
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(2, 111) = 3.43, p < .05), indicating that overall implied slope decreased as 

noise increased. Significant differences were found between low and medium 

and low and high noise conditions.  

Discussion 

This experiment indicated that noise impairs forecasting performance by 

increasing damping effects. This is in accordance with hypothesis 4. With these 

findings, results from the previous experiments that failed to show damping 

seem to make sense. It is clear that damping appears only when there is 

significant noise in the signal. However, the fact that noise introduction impairs 

subjects’ performance, is not new; it is in line with forecasting experiments with 

graphical representation of the series; the higher the noise, the more participants 

damp trended series. Harvey and Reimers (2013) have shown exactly that; in 

their experiments, damping and antidamping increased with noise in graphically 

presented series. Interestingly, they posed a question for future directions in this 

line of research: “would the effects have been the same if the temporal patterns 

providing the context had been presented as tables of numbers or as sequences 

of events experienced in real time?” Judgmental forecasting research using 

tabular formats confirms the notion that damping and antidaping increases with 

noise (see for example, Keren 1983). Also, Experimental Study 10 of the 

current thesis presents evidence that this might be the case for real-time 

experiential settings as well.  
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A dominant explanation, for this phenomena which appears to be true for those 

different settings is that of adaptation and ecological knowledge, which posits 

that humans have adapted to the environment, in which natural trends tend to be 

damped.  Harvey & Reimers (2013), in a  large scale online forecasting 

experiment from graphs tested 1020 participants on a single shot experiment. 

Trend-damping and anti-damping effects were obtained, even though 

participants were completing only a single trial. This provided evidence that 

these phenomena could not be attributed to experimental artefacts. They 

therefore proposed that damping and anti-damping arise from long-term 

adaptation to the natural environment. It is true that in our environment, growth 

tends to accelerate positively because resources are sufficiently available to 

allow it to continue. However, this growth becomes unsustainable when the 

resources for it are no longer available. At this point, the original pattern of 

growth becomes damped, and the series that initially showed positive 

acceleration becomes sigmoidal. This sigmoidal growth has been shown to be 

characteristic of many time series in the environment (see Tsoularis and 

Wallace, 2002). In these cases, growth curves appear to be typically sigmoidal.  

As mentioned above, Keren (1983) also provided indirect evidence that 

adaptation to the environment seemed to be the cause of trend-damping, even 

when the data was presented in a tabular format. He asked Canadian and Israeli 

participants to forecast food prices based on data from the previous four years. 

Both of the groups were prone to trend damping, however, Israeli participants 

damped less. This effect was initially attributed to the fact that Israeli 
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participants were using higher numerical values, but when Israeli participants 

made forecasts from prices in post-1980 Israeli Shekels rather than pre-1980 

Israeli Pounds (worth one tenth of an Israeli Shekel), the results were the same. 

Keren (1983) proposed the effect was due to the experience of higher food 

prices by Israelis. There were also other studies which have examined 

forecasting in a tabular presentation mode (Harvey & Bolger, 1996). When 

participants viewed tables of numbers from which they have to produce 

forecasts, they were still prone to damping. This indirect evidence that 

ecological knowledge is not format dependent along with the present results, 

suggests damping and anti-damping of noisy series appears regardless of the 

presentation mode.  

 

  



Chapter 6 – Judgmental Forecasting from Experience 

	
   236	
  

6.5 Experiential forecasting from untrended noisy 

series (Experimental Study 11) 

In the previous experiment, I showed that damping biases are more pronounced 

with higher levels of noise in the series. This was expected based on findings 

from classical judgmental forecasting literature (e.g Harvey, 1995). It should be 

interesting to examine whether noise effects are also present when untrended 

series are presented to the forecaster. Findings from forecasting tasks from 

graphs suggest that the forecaster introduces noise in an attempt to represent the 

given data series (e.g. Harvey, 1995). If this is the case in experiential settings 

as well, then noise introduction effects can also be generalised as biases that 

appear regardless of the presentation mode. Therefore, I test the following 

hypothesis: 

H5: Noisier untrended series will produce noisier forecasts  

6.5.1 Method 

Participants  

A total of 73 participants with a mean age of 29 years, (SD = 8.1), took part in 

the experiment (there were 37 in a low noise level condition and 36 in a high 

noise level condition). Forty-three were male and thirty were female. 

Participants were recruited from online sources and were paid 0.5$ each. 
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Design  

The study employed a 2 noise level (low, high) x 3 time-periods (forecast 21, 22 

and 23) between-subjects design. Speed was set to 1 sec between successive 

stimuli, as before. 

materials  

Untrended linear series, were constructed by inserting appropriate parameters 

into the following generating equation:  Xt = α Xt-1 + (1 – α) µ + ε, where Xt-1 

was the previous observation, µ was the mean of the series, α was the degree of 

autocorrelation  (α = 0.5 for both conditions), and ε was noise produced by 

randomly drawing values from a Gaussian distribution with a mean of zero and 

a variance of σ2 (σ2 = 14 for condition 1 and σ2 = 225 for condition 2). The 

mean value, µ, was selected to ensure that the final data point was close to the 

vertical mid-point of the screen (µ = 75).  

Series were presented to participants, as before.  

Procedure  

Procedure was the same as before  

6.5.2 Results 

To test whether participants introduced more noise in the high noise condition, I 

followed Harvey’s (1995) methodology, which is explained in depth in Chapter 

2; I fitted linear regression lines to the forecasts and compared residuals in each 
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condition. Those were significantly different (F (1, 217) = 19.18, p < .001), 

with residuals for the low noise condition (Mlownoise = 6.55) being significantly 

lower than residuals in the high noise condition (Mhighnoise = 12.68). Thus, 

subjects introduced more noise when presented with the noisier series.  These 

results confirm the noise introduction bias in experiential tasks. 

I also calculated the mean absolute distance of each point from its proceeding 

one to measure the degree of association between those points. This can be 

perceived as a combined measure signalling noise introduction and implied 

autocorrelation from the participant. It also corresponds to the degree of 

anchoring to the preceding points. The mean absolute distance between the first 

point and the last given data point of the series (i.e. MAD1) is calculated by 

subtracting the first point forecast from the last data point and taking its 

absolute value. This is done similarly for the second horizon point forecast by 

subtracting the first from the second forecast and taking its absolute value (i.e. 

MAD2). The same is done for the third forecast (i.e. MAD3). As mentioned 

before, this can be perceived as a measure indicative of the noise introduced but 

also of the autocorrelation implied by the forecaster. The implied 

autocorrelation measure introduced by Reimers and Harvey (2011) is not used 

here because the amount of data collected does not allow that. Graphs of MAD 

for the two noise conditions can be seen in Figure 6.19.  

 

  



Chapter 6 – Judgmental Forecasting from Experience 

	
   239	
  

	
  

Figure 6.19 Graphs of Mean Absolute Distance (MAD) between 

successive forecasts for low noise (bar charts in black) and high noise 

(bar charts in grey) conditions. Mean absolute distances for the high 

noise condition are significantly higher than those for low noise 

condition.  

To see whether differences between mean absolute differences were 

significantly different from each other, MAD for high and low noise conditions 

were entered into a one-way repeated-measures ANOVA. Overall, differences 

reached significance. The between-subjects factor of noise was found to have a 

significant main effect on mean absolute distance (F (1, 71) = 28.72, p < .001). 

High noise condition absolute differences were significantly higher than low 

noise ones. Also, a significant interaction between condition and horizon was 

found to be significant (F (1.86, 132.13) = 1.80, p < .05), showing a faster 

increase of MAD with horizon in the high noise condition.  
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To obtain a measure of the magnitude of these differences in comparison with 

the actual series, I simulated 20000 actual values of both the low and the high 

noise series and calculated the average absolute differences between successive 

points and their standard deviations. This way, a benchmark was generated for 

comparative purposes. Thus, for the low noise series, MAD between successive 

points had a mean of 3.50 and a variance of 7, while, for the high noise series, 

the mean absolute differences had a mean of 14 and a variance of 110. By 

comparing the MAD of each of the forecasts with the MAD from the series 

using one-sample t-tests, I found that all differences were significant except for 

MAD3 in the high noise series. This means that MAD between the second and 

the third forecast in high noise conditions, was not significantly different from 

the MAD in the series. In all other cases, differences were significant (Low 

noise MAD1, t (36) = 2.79, p < .05; Low noise MAD2, t (36) = 2.31, p < .05; 

Low noise MAD3, t (36) = 2.59, p < .05; High noise MAD1, t (35) = -4.91, p < 

.05; High noise MAD2, t (35) = -2.24, p < .05). Hence, low noise series’ 

forecasts were always significantly higher than the series’ average MAD; the 

opposite was true for high noise series: forecast MADs were always 

significantly lower than the series’ average MAD, except for the case of MAD3. 

Discussion 

These results confirm the noise introduction bias in experiential tasks. This bias 

was first highlighted as a robust one in graphical settings as well (e.g. Harvey, 

1995). It is attributed to the effort of the forecaster to represent the environment 

(i.e. the given series here) in the best way possible. Thus, the forecaster 
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introduces more noise in noisier series. The same behaviour seems to be true in 

experiential settings as well. The forecaster introduces noise when a series is 

noisy. The noisier the data presented to the forecaster, the noisier the forecasts 

produced in an attempt to represent the given series. The analysis also shows 

that mean absolute differences between successive points, which are indicative 

of the implied noise and autocorrelation in the series, is higher than the series’ 

MAD for low noise series and lower for high noise series. Taking into account 

that series in both conditions had the same levels of autocorrelation, means that 

this effect must be strongly associated with noise introduction. Nevertheless, 

autocorrelation in the series was found to influence robustly the forecaster 

behaviour. Thus, it would worth investigating the same phenomena with series 

having different autocorrelation values but same noise levels. This is the scope 

of the next experiment. 
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6.6 Experiential forecasting from series with 

different autocorrelations (Experimental Study 

12) 

The robust biases of damping and noise introduction, which are exhibited in 

judgmental forecasting studies from graphs, are now confirmed for judgmental 

forecasting tasks from experience (Experimental Studies 10 and 11). The last 

robust finding, which will be examined here in experiential settings, is 

sensitivity to autocorrelation (e.g. Reimers and Harvey, 2011). This will be 

achieved by presenting participants with series having various autocorrelation 

levels. Taking into account the findings from the previous experiments 

regarding the magnitude of noise introduction effects, and keeping the noise 

levels constant, I should be able to determine the effect of autocorrelation levels 

on forecasting behaviour. The hypothesis (H6) is that forecasting behaviour will 

vary with autocorrelation levels; the higher the autocorrelation in the series, the 

closer the distances between successive forecasts. This is in line with the work 

by Reimers and Harvey (2013). 

6.6.1 Method 

Participants  

A total of 75 participants, Age (M = 30, SD = 8.5), 28 male, 47 female took part 

in the experiment. Participants were recruited from online sources and were 

paid 0.5$ each.  
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Design  

The study employed a 3 autocorrelation levels (0, 0.4, 0.8) x 3 time-periods 

(forecast 51, 52 and 53) within-subjects design. Autocorrelation levels were 

selected to match exactly those used in Reimers & Harvey (2011) in order to 

obtain comparable results. The series’ length was now set to 50 points in order 

to make sure that participants experienced the different series for a long 

duration, enough to perceive the autocorrelation level of the series. The time 

interval between successive stimuli was set to 0.7 sec to ensure that participants 

maintained their interest to the task (it might have been boring to the forecaster 

to observe 50 data points in low speed). The design was chosen to be within 

participants, in order to increase the statistical power. 

Stimulus materials  

Untrended linear series, were constructed by inserting appropriate parameters 

into the following generating equation:  Xt = α Xt-1 + (1 – α) µ + εt, where Xt-1 

was the previous observation, µ was the mean of the series, α was the degree of 

autocorrelation  (α = 0 for condition 1, α = 0.4 for condition 2 and α = 0.8 for 

condition 3), and ε was noise produced by randomly drawing values from a 

Gaussian distribution with a mean of zero and a variance of σ2 (σ2 = 324 for all 

conditions). The mean value, µ, was selected to ensure that the final data point 

was close to the vertical mid-point of the screen (µ = 75).  

Series were presented to participants, as before.  
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Procedure  

Procedure was the same as before  

6.6.2 Results 

To test the autocorrelation illusion bias, I implemented the methodology used in 

the previous experiment. Thus, mean absolute differences between successive 

points were calculated again. Graphs of MAD for each condition are shown in 

Figure 6.20. 

 

	
  

Figure 6.20 Graph of mean absolute distances for all correlations and 

horizons 

To see whether differences between mean absolute differences were 

significantly different from each other, MADs for high, medium and low 
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(1, 222) = 69.97, p < .001). The high autocorrelation condition contained 

absolute differences that were significantly lower than medium and low 

autocorrelation conditions. Linear contrasts were significant (F (1, 222) = 3.95, 

p = .048). Post-hoc tests showed that for all pairs of MAD scores between the 

different conditions, differences were significant. 

To obtain a measure of the magnitude of these differences in comparison with 

the actual series, I simulated again 20000 values of low medium and high 

autocorrelation series and calculated the average absolute differences between 

successive points and their standard deviations. This way, a benchmark was 

generated as before. Thus, for the low autocorrelation series, MAD between 

successive points had a mean of 20 and a variance of 247, for the medium 

autocorrelation series MAD between successive points had a mean of 17 and a 

variance of 173, while, for the high autocorrelation series, the mean absolute 

differences had a mean of 15 and a variance of 132. By comparing MADs of 

each of the forecasts with MADs from the series using one-sample t-tests, I 

found that all differences for the high autocorrelation series were significant 

(MAD1, t (74) = -14.11, p < .001; MAD2, t (74) = -15.41, p < .001; MAD3, t 

(74) = -7.34, p < .001). This means that participants anchored more in the high 

autocorrelation condition, implying higher autocorrelation in the series (i.e. 

autocorrelation overestimation). This finding is somewhat different than that 

found in Reimers and Harvey (2011). There, participants slightly 

underestimated the autocorrelation of 0.8. For the medium autocorrelation 

series, MADs of the forecasts were significantly lower than the MADs in the 
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series for MAD1 and MAD2 (MAD1, t (74) = -3.98, p < .001; MAD2, t (74) = -

3.39, p < .001). MAD3 was not significantly different than the series MAD. This 

means that participants anchored more than required in the medium 

autocorrelation condition. This finding is in line with Reimers and Harvey 

(2011) findings, where subjects overestimated the autocorrelation of 0.4. 

Finally, for the low autocorrelation series, MADs in the forecasts were not 

significantly different from the MADs in the series, except for the case of 

MAD2 (MAD2, t (74) = 2.96, p < .05). This means that participants anchored 

equally or less than the series’ MAD. This finding is not in line with Reimers 

and Harvey (2011) findings, where subjects overestimated the autocorrelation 

of 0. Here, they underestimated the autocorrelation in the second time step, 

implying negative autocorrelation. This might be due to the fact that in this 

experiment, the noise introduced was higher than that employed in Reimers and 

Harvey’s (2011) experiments. 

Discussion 

In this experiment, the autocorrelation illusion was partially validated for 

forecasting tasks from experience. Three series of different autocorrelation 

levels (same autocorrelation conditions as the ones used in Reimers and Harvey, 

2011) but same noise levels were used to avoid effects such as those shown in 

the previous experiment. Significant differences were found in the way the 

forecaster anchored in those three different autocorrelation conditions. For high 

autocorrelation series, participants anchored significantly more in their three 

successive forecasts than in the other conditions, suggesting that they took into 
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account the autocorrelation in the series; for low autocorrelation series, they 

anchored significantly less than the other three conditions, suggesting that they 

adjusted away from the preceding points to accommodate for the low 

autocorrelation in the series. Finally, for medium autocorrelations, MADs 

where found to be between those two extreme cases. The MAD benchmark 

suggests that they overestimated autocorrelation for high and medium 

autocorrelations. For low autocorrelation conditions, they appeared to imply 

equal autocorrelation with that of the series for time steps 1 and 3 and a slight 

underestimation for time step 2.  

This finding in conjunction with that found in static judgmental forecasting 

settings (e.g. Reimers and Harvey, 2011; Eggleton, 1982, Bolger and Harvey 

1993), confirms the sensitivity of naïve forecasters to the degree of 

autocorrelation in the series.  

Using the MAD as a benchmark I found that subjects anchored more than they 

had to in the medium and high autocorrelation series but not in the low 

autocorrelation series. This finding suggests that in experiential settings there 

might be an “either or” strategy where participants either decide to anchor 

conservatively to the series or not to anchor at all. Also, the high noise level 

chosen for this experiment might have influenced the anchoring process. 

Although this experiment confirmed participant’s sensitivity to the 

autocorrelation in the series, more research with various noise levels is required 

to confirm exactly the forecasting behavior and specifically to identify when 

overestimation or underestimation of the autocorrelation in the series appears. 
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Larger samples would provide a better opportunity to employ the 

autocorrelation measure introduced by Reimers and Harvey (2013) 

6.7 Summary and General Discussion 

In the current chapter, I examined the theme of forecasting from time-series that 

were experienced by the participants in real-time. A sequential bar-charts 

experiential paradigm was created and used for the purposes of this research, 

inspired by research in the area of mental representations. Overall, bar chart 

formats serve as way to investigate forecasting from real-time experience. 

Significant biases were found to operate in this setting, similar to those found in 

judgmental forecasting from graphs, but sometimes more extreme than those 

found when the experimenter uses graphs. For example, effects related to the 

screen margins appeared to be higher than those found in other settings (e.g. 

Lawrence and Makridakis, 1989). These effects were scrutinised in 

Experimental Studies 7 and 8 of this Chapter, where subjects were found to 

significantly anti-damp shallow trends from both upward and downward series, 

with the effect being more pronounced for downward trends in accordance to 

relevant research with graphical representations of the series (e.g. Harvey and 

Reimers, 2013). The greater the space on the graph above the plot of a linearly 

trended time series was, the higher the forecast tended to be. So, boundary 

biases were responsible for this effect. This is an important finding for 

forecasting and it should be further investigated in graphical settings as well.  
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In Experimental studies 7 and 8, I also tested the effect of the speed of the 

display between successive data points; this showed that those in the fast 

display conditions produced larger errors compared to those in slow conditions. 

Faster speeds impaired performance in forecasting tasks from experience more 

than slow speeds. This finding can be attributed to the fact that participants 

experiencing the data slowly had more time to identify the nature of the data 

generation process, and specifically the size of the time step of the noise free 

trended series. Hence, their judgement extrapolations were more representative 

of their experiences (e.g. Kiani et al., 2008).  

This result should be further investigated more with more complex series. Here, 

I used series where patterns were easily perceived by the forecaster. It might be 

the case that significant memory effects are at play in more complex settings. 

These memory-related effects might change the direction of the speed display 

effect I obtained here. For example, if a noisy seasonal series is presented to 

participants in a slow display, they might not be able to capture the underlying 

seasonal signal, whereas a fast display might enhance the mental representation 

of the signal in the series.  

Boundary effects, such as those found in Studies 7 and 8, were further 

scrutinised in Study 9, where I used as stimuli materials trends of different 

gradients. It was confirmed that optimal performance for the first horizon, 

where forecasts are most often misplaced, was achieved with intermediate 

trends. Final data points for series with intermediate trends were close to the 

mean of the vertical axis. Accuracy was greater in these conditions.  
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Experimental studies 7, 8 and 9 employed noise free series. These were useful 

in order to investigate systematic errors uncontaminated by additional effects 

produced by noise. Nevertheless, investigations with noisy series are of special 

interest to forecasting research. Hence, noisy trends of intermediate gradient 

were used in Experimental Study 10. The design utilized knowledge from the 

previous experimental findings. Thus, different noise terms were imposed on 

intermediate trends. Results showed that participants introduce noise into their 

forecasts; the noisier the series, the noisier the forecast sequence. This 

confirmed the noise introduction bias found in judgmental forecasting settings 

with graphs (e.g. Harvey 1995).  

Trend damping was found using the implied slope measure introduced in 

Experimental Study 10. The higher the noise, the more pronounced the trend-

damping in the series. This finding is in accordance to research in trend 

damping (e.g. Harvey and Reimers, 2013). The next experiment (Experimental 

Study 11) confirmed noise introduction effects using untrended series One 

interpretation is that participants are prone to noise introduction because of their 

attempts to represent the data series in their forecast sequence.  

Finally, participants were found in Experimental study 12 to be sensitive to the 

levels of autocorrelation in the series. A within-participants experiment was 

designed with series of different autocorrelation levels but the same noise. In 

high autocorrelation series, participants anchored significantly more than in 

medium autocorrelation series and low autocorrelation series. Thus, these 

findings suggest that the forecaster is prone to similar (though not identical) 
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biases to those found in static settings where graphs are used as stimulus 

material.  

Participants showed trend damping for noisy series, noise introduction for series 

with noise and sensitivity to the level of autocorrelation in the series. Only 

boundary effects were found to be more pronounced than those found in static 

settings. Thus, these findings partially confirm the accounts of adaptation to the 

environment (e.g. trend damping and sensitivity to autocorrelation) and the 

account of representativeness in forecasting processes (e.g. noise introduction). 

The experiential experiments of the current Chapter were aimed at investigating 

robust biases of the classical judgmental forecasting literature (e.g. Harvey, 

1995; Reimers and Harvey, 2011; Harvey and Reimers 2013) using a new type 

of display. Instead of viewing all points simultaneously, participants 

experienced data points individually. Results have shown similar patterns to 

those from the judgmental forecasting literature.  

 



	
  

Chapter 7  Summary and Conclusions 
 

The aim of this thesis was to examine understudied areas of judgmental 

forecasting research. The themes that I pursued, were mainly associated with 

the way presentation format can improve forecasting processes with the input of 

judgment. In a series of experimental studies, by controlling the presentation of 

forecasting information, I obtained order, end-anchoring, length and dynamic 

presentation effects, while scale manipulation confirmed previous findings of 

scale invariance in graph perception. The underlying mechanisms were 

explored by closely examining the context sensitive, anchoring and adjustment 

heuristic. Forecasting accuracy was improved in a number of ways by 

introducing longer lengths to the forecaster, by reversing the order of the 

forecasting task and introducing end-anchors to it, and by presenting time series 

dynamically to the forecaster. That way, I demonstrated that forecasting can be 

improved in simple ways, which can be easily introduced in practice. In this 

Chapter, I will summarize the main findings of each of the previous chapters, 

discuss the implications of these findings in practice, and consider future 

directions. 

. 
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7.1 Summary of findings 

In Chapter 3, I examined order effects in judgmental forecasts for multiple time 

periods. Here, I introduced the notion of end-anchoring, where the forecaster 

makes his prediction first for the most distant horizon and then for the proximal 

ones. I constructed a forecasting task where participants provided their forecasts 

for various series types with or without the use of an end-anchor, in normal or 

reverse direction (Experimental Study 1). Results showed that end-anchoring 

can be a useful tool. It primes the forecaster to take into account global patterns 

of the series in a more deliberate way than traditional heuristic-driven 

forecasting strategies, which are strongly influenced by noise in the series. The 

use of an end-anchor increases forecasting accuracy for the most distant horizon 

but also enhances forecasting for the rest of the forecast sequence. Further 

evidence for the usefulness of the end-anchoring strategy in higher noise 

environments was provided in Experimental Study 2. Forecast direction was 

also investigated in this set of experiments. Results show that forecast direction 

has an effect on accuracy only when the ideal sequence of forecasts is strongly 

nonlinear. 

In Chapter 4, I examined the effect of series’ length on forecasting accuracy and 

on underlying cognitive mechanisms. By manipulating the series’ length, I 

distinguished the series lengths that enhance accuracy from lengths that 

severely impair it for various types of time series (Experimental Study 3). 

Results showed that forecast error describing an inverted U-shaped function: 
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mean average errors are lower for longer series and increase as series length 

decreases, taking a maximum value for a few data points series (two to five, 

depending on the series’ type). Then absolute error decreases again for very 

short lengths. In terms of the underlying cognitive mechanisms, it appeared that 

pattern-based heuristics that are effective for long lengths continue to be used 

for forecasting shorter series (e.g., five items) where they are less appropriate 

without modification.  As a result, accuracy is lower than it would have if the 

forecasts had been produced by the naïve forecast. This is because the pattern 

parameters used in those heuristics tend to be inappropriate when series are 

short. In these circumstances, performance can be improved by reducing series 

length still further and thereby forcing forecasters to use the naïve forecast.  

Length effects were further explored for more distant forecasting horizons 

(Experimental Study 4) and similar results were obtained. 

In Chapter 5, another understudied area of judgmental forecasting was 

scrutinized: scale effects. In a study by Lawrence and O’Connor (1992), no 

scale effects were obtained when using ARMA series. The same was generally 

true in two experimental studies (Experimental Study 5 and 6) where 

autoregressive series with uniform and Gaussian noise were employed. 

Different time series (autoregressive and independent ones) were used to 

examine the generalizability of previous findings. In Experimental Study 5, I 

investigated scale effects by using uniform noise in the series’ generation 

algorithms. The findings yielded only weak evidence that scale effects 

depended on degree of autocorrelation. These results were further examined in 



Chapter 7 – Summary and Conclusions 

	
   255	
  

Experimental Study 6 using a Gaussian noise term this time. In this study, 

presentation scale did not affect accuracy. Noise type affected accuracy 

significantly but did not interact with scale effects. 

Finally, in Chapter 6, a novel, forecasting paradigm, the experiential forecasting 

task, was designed with the aim to present stimuli in a dynamic fashion to the 

forecaster with the use of sequential bar charts. Questions in this set of 

experimental studies concerned robust phenomena of judgmental forecasting. 

Thus, trend damping, noise introduction and the autocorrelation illusion were 

studied in a set of six experimental studies (Experimental Studies 7-12). 

Experiential judgments showed common features with those found in 

descriptive formats. Trend damping, noise introduction and sensitivity to 

autocorrelation were confirmed for dynamic settings as well, rendering the 

adaptation accounts that explain these behaviours more plausible. 

7.2 Implications and Limitations 

Forecasting plays an essential role in business planning and in many other areas 

of life, as discussed in Chapter 1. Although development of formal methods of 

forecasting continues apace, many surveys have shown that most forecasting 

within businesses is based on judgment (e.g., Sanders and Manrodt, 2003). 

Adoption of formal techniques appears to have reached an asymptote 

(Lawrence, 2000). Given the importance of forecasting within business and 

other areas and the fact that much of it continues to be largely based on 
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judgment, research into judgmental forecasting has real potential for increasing 

business effectiveness. There is now a large corpus of such research (Lawrence 

et al., 2006) and findings have been used to develop principles of good practice 

(Armstrong, 2001; Armstrong et al., 2013).  

The outcomes of this thesis provide promising suggestions for how the 

forecaster can improve forecasting performance, especially in cases where the 

presentation format of the forecasting task plays an important role. 

Additionally, this research can be used in conjunction with findings from the 

cognitive science field to provide the foundations of future anticipation 

processes. 

Implications for practice when forecasting for multiple time periods ahead 

A wide variety of techniques have been developed for improving judgmental 

forecasts. They include feedback-based training (Goodwin and Fildes, 1999; 

Benson and Önkal, 1992), decomposition (Edmundson, 1990), combining 

forecasts from a number of forecasters (Clemen, 1989), and use of advisors 

(Lim and O’Connor, 1995). However, all of these approaches require quite 

heavy investments of time, money, or effort. In the present thesis, I have shown 

that significant gains in forecast accuracy can be achieved simply by changing 

the order in which forecasts are made. In particular, requiring the forecast for 

the most distant horizon to be made first is an effective way of increasing the 

accuracy of forecasts, especially those for more distant horizons. This research 

can be applied in a variety of applied and academic settings where distant 

horizon forecasting is of special interest. For example, for managerial but also 
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entrepreneurial purposes of strategic planning (Fildes et al., 2009; Goodwin et 

al., 2010; Syntetos et al. 2009; Armstrong et al., 2013), where distant horizon 

forecasts are of paramount importance, this approach offers a new way of 

thinking, prioritizing and organising an efficient strategic plan. A requirement 

for an initial distal forecast can be also directly introduced in techniques such as 

Delphi and group-forecasting (Rowe and Wright, 1999; Önkal, Lawrence and 

Sayım, 2011). Optimism research is another area where this finding can have 

important implications (Harris & Hahn, 2011); the experimental paradigms used 

in optimism research are currently conducted without the use of forecasting 

knowledge although temporal effects in corresponding likelihood judgments 

can be attributed to the format of the experimental design.  

Implications for practice on dimensional aspects of presentation format  

Retaining and retrieving data for forecasting purposes is often expensive. 

Hence, it is reasonable to ask whether it is worth the effort. Also, when 

businesses change hands, historical data may be lost. Then, important questions 

arise concerning the way optimal forecasting can be achieved by the new 

owners. The present thesis produced results relevant to both these practical 

questions in the studies in which I varied series’ length. Retaining and 

retrieving data for judgmental forecasting purposes can be useful: the longer the 

series presented to the forecaster, the more accurate judgmental forecasts or 

judgmental adjustments are likely to be. Findings of the present thesis show that 

forecasting from series of intermediate length can impair judgmental 

forecasting accuracy. Thus, it is worth making an effort to increase series’ 
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length to improve accuracy. (Of course, the cost of the effort must be weighed 

against the benefits accruing from the gain in accuracy). If no more than five 

items are available and logistics, costs or data unavailability prevent series 

length from being increased, then shortening the series to, say, one item will 

improve accuracy of judgmental forecasts for most series types and not impair it 

for others. 

A variety of length and scale formats are employed to present time series of 

interest in trading, managerial and other settings in the financial sector. 

Computer screens and monitors, as well as palm-tops and mobile devices, serve 

as a way to obtain this information. Then a judgmental forecast and a decision 

can be made regarding subsequent investments. This thesis provides evidence 

that while time series lengths should be long enough for the forecaster to 

achieve optimal performance, the scale in which time series graphs are 

presented is relatively independent of the forecasting accuracy. Thus, there is 

little difference if one consults big or small screens to reach a final decision. 

Nevertheless, when prediction intervals are also crucial determinants of a final 

decision, as in the case of weather forecasting, then larger scales should be 

favoured (Lawrence and O’Connor, 1993). 

Implications for practice when forecasting from real-time experience 

Judgmental forecasting from experience, or experiential forecasting can be 

useful in a number of ways. First, it can be used by cognitive scientists in the 

study of sequential mechanisms of evidence integration in perceptual and 

preferential choice (Tsetsos et al, 2012) and in studies of sequential learning 
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(Gureckis and Love 2010). In these areas, there are no experimental paradigms, 

which use spatial representations of sequential stimuli.  

The real-time experiential forecasting paradigm can also have implications in 

the financial world. Traders typically experience series in real-time and have to 

forecast their future prices. Their tasks are different in many ways: they have 

larger working memory loads, they experience distractions and can often see 

multiple data points at once. It is possible that studies using the experiential 

paradigm could be used to produce findings that enhance forecasting 

performance by fine-tuning timing and boundary variables. This technique also 

has potential for investigating differences in decision speed and accuracy 

between experts and novices, for which much conflicting evidence has been 

found (see for example Muradoglu and Önkal, 1994; Thomson, Pollock, 

Henriksen & Macaulay, 2004; Thomson, Önkal, Avcioglu and Goodwin, 2004; 

Önkal, Yates, Şımga-Muğan and Öztin, 2003). If experts are faster at extracting 

critical information for series than novices, their accuracy will reach an optimal 

performance earlier. 

Limitations 

Although these implications are important in both applied and theoretical 

settings, it must be acknowledged that the experiments reported here have 

certain limitations, which would benefit from future research and use of modern 

technology. The set of experiments reported in this thesis serve mainly as 

evidence of underlying biases that might operate in settings where future 

judgments are to be made. Improvements are suggested under the minimal 
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experimental context used here. Nevertheless, this context might be different for 

real-world tasks, where much forecasting is carried out in environments where 

there is a wealth of domain information. Managers, for example, take into 

account a variety of domain information pieces when making forecasts; future 

macroscopic trends of the market, future promotions and competitors’ strategies 

are just a few of them. This suggests that perceptual and motivational biases 

might operate in these cases creating distortions (see for example Goodwin, 

2005; Goodwin and Fildes, 1999). Undoubtedly, one of the major obstacles to 

accurate predictions of future outcomes is the way in which humans introduce 

distortions. One apparent pervasive example is optimism bias. The impact of 

this kind of distortion on forecasting was acknowledged in the British 

government’s 2003 ‘Green Book’ intended for HM Treasury as a guide for 

Central Government. The Green book identified optimism bias as one of the 

key factors to be mitigated. Optimism bias has also been referred to by the IMF 

(International Monetary Fund) as a basis for error prone predictions of National 

Bodies handling of the current monetary crisis in the Eurozone. Clearly, this 

psychological phenomenon is thought to have a severe bearing on several 

important real world issues, which are closely associated with accurate 

predictions. Such considerations were not taken into account in the current 

experiments, where the aim was to isolate underlying biases with minimal 

information other than the shape of the given series itself. 

Moreover, contextual information can be provided in business settings in the 

form of judgmental prediction intervals or density forecasts, which were not 
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investigated here. Only point forecasts were assessed in this set of 12 

experiments. Nevertheless, the estimation of future prediction intervals and 

probability distributions is important in a variety of applied fields. For example, 

it is consistently used by those responsible for providing insurance against 

hurricane damage to property. Every year, insurers look at past records of 

hurricane occurrences and use advice from mathematical models to make 

judgments about the number of hurricanes that will strike the Atlantic seaboard 

of the USA. Insurers use these forecasts to set insurance rates. Practitioners in 

this sector take into account past historical values of hurricane counts, formal 

model-based hurricane forecasts from official sources, such as NOAA, from 

catastrophe risk modelers, and from in-house modeling outputs. All model 

information is provided in the form of prediction intervals rather than point 

forecasts in this important business sector, which influences thousands of 

human lives, and future estimations are also sketched in a prediction interval 

canvas. There is a wealth of interesting findings associated with biases 

associated with prediction intervals estimation (see for example O’Connor and 

Lawrence, 1989), which suggests that estimated prediction intervals tend to be 

too narrow. This important issue was only loosely related with the hypothesis 

drawn in Chapter 5 but, nonetheless, requires further investigation in light of the 

present findings. 

Except from the contextual considerations discussed above, the current thesis 

would have benefited from some methodological improvements as well. For 

example, experiments could have taken significant advantage from web 
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crowdsourcing tools with the aim to collect thousands of participants in each 

condition in the way Reimers and Harvey (2011) collected data. Modern 

technology provides nowadays various means of collecting data from large 

pools and this is especially important for judgmental forecasting studies, where 

noise is an important factor. The collection of data of this magnitude would 

have eliminated concerns related to the size of the sample, the type of series 

used, the understanding and generalizability of results and the potential 

influence of the sample characteristics or the individual differences associated 

with that (Eroglu and Croxton, 2010).  

7.3 Future directions 

Designing superior Forecasting Support Systems (FSS)  

Effective forecasting is a vital component of commercial competitiveness. 

Companies that produce effective forecasts can have competent supply chains, 

superior product availability and lower production costs. Thus, predictions 

elicited via the forecasting process affect all core functional areas of a firm 

because forecasts are used as input to inform decisions of these functional areas. 

In the supply chain domain, for example, predictions are accomplished via 

Forecasting Support Systems (FSS), which not only provide valuable 

information and statistical forecasts for the next periods but also allow for 

judgmental input from the forecaster (Armstrong, 2001). This input mainly 

concerns components that the statistical model cannot take into account such as 

promotions. In other cases, there might be insufficient data available for the 
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statistical model to predict data regularities. It is crucial, thus, to continuously 

improve the FSS design so that integration of management judgment can be 

carried out in an efficient way. Much existing research on judgmental 

forecasting has focused on the properties of the time series data. However, 

potentially equally important is the way in which data are presented to the user 

of the FSS. 

Towards that direction, a variety of findings stemming directly from this thesis 

can be used as potential recommendations for better integration of management 

judgment into Forecasting Support Systems: a first recommendation, stemming 

from results obtained in Chapter 4, would concern the usefulness of presenting 

to the forecaster historical data of adequate length (n > 40). In cases where this 

is not possible, it is advisable to present only the last value of the series, in order 

to avoid biases introduced by inappropriate use of pattern-based heuristic 

mechanisms when series of intermediate length are shown to the forecaster. 

Another suggestion, stemming from Chapter 6 findings (Experiment 6.1), 

concerns the screen margins; it is advisable to adjust the screen frames, 

especially when trended series are to be presented to the forecaster. Vertical 

screen borders might affect the judgmental process, rendering, thus, trend 

damping biases more pronounced if screen margins are not adjusted 

accordingly. Additionally, Chapter 3 findings suggest that it might be worth 

adding an option in forecasting systems where the forecaster is requested to 

produce distant horizon forecasts first and then proximal horizon ones; 

judgmental biases introduced via short-term noise introduction mechanisms 

could be reduced by adopting this approach. Finally, Chapter 6 findings suggest 
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that, in some cases, it might be beneficial for the forecaster to observe 

information in a dynamic rather than a static mode. These recommendations are 

valid for a variety of series and noise levels in the series, as it is evident from 

the data reported in this thesis. 

However, there are quite a few research ideas related to the above-mentioned 

presentation format findings that would benefit from future research. It would 

worth studying, for example, whether the findings of this thesis are still valid 

for series where rare events or extreme irregularities occur. These have a special 

importance in operational settings. Moreover, and since there are no specific 

guidelines on FSS design, it would certainly be advisable to focus on all aspects 

of FSS design, including those not mentioned in this thesis. Within graphical 

presentation, there are many ways in which time series can be presented - line 

graphs, bar charts, tables or scatterplots. There is clear evidence that the choice 

of graphical display format can affect the way data are perceived (e.g. Harvey 

and Bolger, 1996). So, research on display effects in forecasting that is designed 

to eliminate cognitive biases and, thus, make forecasts more efficient would 

certainly make sense.  

Judgmental Forecasting and visual perception research  

Work being conducted in the field of judgmental forecasting, can be now 

enhanced with new techniques developed for research in related areas. Eye-

tracking or mouse-tracking methodologies are two such techniques. These could 

be used to measure information seeking and exposure time for each of the 

series’ elements. Eye-tracking techniques could provide a useful tool because 
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they capture the gaze of the forecaster thereby revealing systematic fluctuations 

of visual attention (see for example, Wills, Lavric, Croft and Hodgson, 2007). 

This way, eye-tracking studies can reveal the way cognitive resources are 

allocated and can locate the elements to which special attention is paid. (In 

these settings, gaze is usually directed towards items of interest). Eye-tracking 

techniques would, thus, provide evidence of whether the forecaster is focused 

on global or local patterns in the series, of whether his attention is focused more 

on the last segments of a series or rather on initial segments of it or even on rare 

events. Questions related to pattern-based heuristics used during the forecasting 

process or fast heuristics that exploit differences found in the last segments of 

the series should perhaps be reconciled with the use of such techniques. Thus, 

such evidence would be crucial in unveiling the underlying mechanisms 

determining the most important factors of forecasting mechanisms.  

Drawing parallels between research in judgmental forecasting and the 

cognitive science of sequential processing in the accumulation of evidence 

The experiential forecasting paradigm created in this thesis shares common 

characteristics with tasks employed in the cognitive science of sequential micro-

processing of perceptual evidence over time (e.g. Tsetsos et al., 2012; Gureckis 

and Love, 2010; Summerfiled and Tsetsos, 2012). Nevertheless, investigations 

in these domains, as well as proposed models, remain distinct. Forecasting with 

the use of judgment in dynamic or static settings is concerned with how 

observers detect and use time series information to make predictions of future 

outcomes whereas research in the cognitive science of evidence integration 



Chapter 7 – Summary and Conclusions 

	
   266	
  

investigates how the observer detects, categorizes and assimilates information 

over time. It is possible that common mechanisms operate in these two areas. 

For example, in both fields, recency or anchoring mechanisms are found to 

operate when people are presented with series of stimuli (Epley and Gilovich, 

2006; Harvey 2007; Lawrence and O’Connor, 1995; Tsetsos et al., 2012; 

Fiedler and Juslin, 2006). Similarly, in both domains, rare events are often 

underestimated (O’Connor and Lawrence, 1989; Hertwig et al., 2004; Goodwin 

and Wright, 2010). Thus, behavior in these two types of tasks might stem from 

common mechanisms of adaptation (e.g., Harvey, 2011).  

Nevertheless, it is important to note here that cognitive methodologies used to 

examine perception and subsequent judgment of sequential stimuli in time 

typically involve micro-processing tasks, where subjects are presented with 

sequential evidence, which accumulate in a micro-time scale (e.g. seconds). In 

fact, studies of perception and subsequent judgment or choice in time rarely use 

larger temporal scales (e.g. day, months, years), as those found in judgmental 

forecasting from graphs. This renders regularities and biases found in 

judgmental forecasting from graphs even more valuable if a holistic framework 

of time perception and subsequent judgment is to be constructed. The few 

examples where larger time scales are used to unveal biases can be found in 

somewhat separate research fields of cognitive science. For instance, in 

affective forecasting, evidence suggests that people are inaccurate in predicting 

large time scale future outcomes and their reactions to those outcomes (e.g., 

Wilson & Gilbert, 2003). Inconsistencies related to large time scale future 
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predictions are also found in the intertemporal choice literature (e.g. 

Loewenstein et al., 2003). Finally, Trope and Liberman (2010) propose that 

large time scale judgmental problems are consistent with their Construal Level 

Theory (CLT), which proposes that the temporal location of a future event 

influences how we construe it; events that are distant are construed at a higher 

level, whereas those proximal to us are construed in a more thorough way. 

Therefore, the time scale for which people are making estimates of likelihood of 

future outcomes matters. This, in turn, would have implications for a unified 

framework of time perception and judgment. It might be possible to build 

parallels between findings in these separate domains with the aim to come up 

with complete accounts of sequential integration of stimuli in different scales in 

time. This would provide a common framework for understanding judgments 

made about future outcomes, under which an agent has to assimilate numerical 

information representing serial interrelated cues. 

Judgmental forecasting and risky choice with the use of modern 

technologies 

Findings from the judgmental forecasting literature are rarely used in practice in 

other than the financial and business settings although various domains could 

benefit from findings from them. Research in the domain of risky choice, is one 

such area. Most research into the psychology of risk has focussed on choices 

with immediate consequences, generally monetary gambles (e.g. Payne, 2005). 

However, there are various settings where decisions are made using sequential 

stimuli rather than discrete ones.  
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One such example is cumulative risk, with its pervasive implications for 

everyday life (Hogarth, Portell and Cuxart, 2007). People choose to expose 

themselves to many different risks in their everyday lives. Some have the 

potential for immediate catastrophic consequences, such as drink-driving and 

illicit drug use. For others, such as smoking and unhealthy eating, the 

immediate risk is vanishingly small, but the cumulative risks over years and 

decades can be very grave. Cumulative risk, thus, is perceived as less 

threatening relative to more immediate, isolated, short-term risks (Svenson, 

1984). A critical component of everyday risky behaviours is myopia for distant 

consequences which may appear intangible. One factor might be noise in such 

series. This suggests that cumulative risks are particularly susceptible to 

underestimation (as is the continuation of a trend in judgmental forecasting 

(Harvey and Reimers, 2013)). Nowadays, applications for smartphones are 

dedicated at helping people to monitor and control these cumulative risks, such 

as smoking, drinking and overeating (Froehlich, Chen, Consolvo, Harrison and 

Landay, 2007). Within these applications, people interact on their mobile 

phones on a daily basis, entering various attributes of their current states (see 

myCompass, www.mycompass.org.au, for self-report criteria & standards). 

Data are collected and retained according to protocols such as the Experience 

Sampling Method (see for example Hogarth et al., 2007). Historical data in the 

form of series are presented to the users (for example, weight loss or amounts of 

cigarettes used within a day) from which the users can extrapolate to form their 

anticipations for the future. Judgmental forecasting findings could be used in 

practice in such settings in an attempt to design interventions that mitigate risky 



Chapter 7 – Summary and Conclusions 

	
   269	
  

behaviours. For example, a simple model could provide corrections to the user 

forecasts (i.e. damping of a trend), enhancing, thus, accuracy of self-predictions. 

The end-anchoring option could be suggested to a user as the optimal strategy 

to extrapolate to the future. Such an option to the menu of an application could 

prevent the user from common damping extrapolation biases, as discussed in 

Chapter 3. This is one example where judgmental forecasting findings can be 

applied to the risky choice domain by using new technologies. Also, data 

collected from cumulative risk studies can be used to build a forecasting model 

to determine the factors that predict lapses in people’s control, with the use of 

hierarchical linear models (Bryk & Raudenbush, 2002) as well as fractal 

algorithms, which detect persistency in time-series (Koutsoyiannis, 2002). It 

may be the case that morning tiredness, for example, is predictive of smoking or 

overeating risk later in the day, or that boring activities are more likely to 

encourage lapses than interesting activities. An option of the corresponding 

application highlighting such links with the associated trend of the variable of 

interest (e.g. smoking or eating levels) could as well enhance the judgment of a 

person interested in eliminating influences of cumulative risks in their lives.  

7.4 Conclusion 

In this thesis, in a series of experimental studies, I investigated how judgmental 

input influences forecasting decisions when the presentation format of the task 

is manipulated. Forecasting decisions with the aid of human judgment are of 

paramount importance in a number of areas such as Finance, Supply Chain 
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Management, Environmental Operations and so on. It is noteworthy that 

nowadays, the area of Behavioural Operations, which incorporates applications 

for all the aforementioned fields, is becoming a recognized domain of research 

(e.g Journal of Operations Management’s special issue on Behavior Issues in 

OM, 2013). The area of Behavioural Operations aims at understanding the 

decision-making of managers under various settings and at using this 

understanding to generate interventions that would improve operations. The 

findings of the current thesis demonstrate that appropriate presentation of a task 

can enhance performance in tasks where effective forecasting is crucial for an 

organisation. Specifically, two factors were found to significantly improve 

accuracy in graphical presentations: the use of an end-anchor, the presentation 

of a sufficiently long series. Scale manipulations did not yield major effects, 

confirming findings of invariance in the graph perception literature. 

Furthermore, the findings revealed that judgmental forecasting from a simple 

dynamic paradigm, which simulates real-time experience of time series, elicits 

phenomena similar to those found in the classical literature of judgmental 

forecasting from static graphs; the forecaster was found to damp trends from 

noisy series, to introduction noise in the forecasts in an attempt to represent the 

series and to be sensitive to autocorrelation. These common characteristics 

underlying forecasting from graphs and from experience suggest that an 

integrated approach involving common cognitive mechanisms could be applied 

to all types of judgmental forecasting tasks.  Overall, the results of this thesis 

shed light in understudied areas of judgmental forecasting, refining existing 

knowledge of the way people use time series information to predict future 
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outcomes and revealing possibilities for an integrated framework for 

judgmental forecasting research, which could be proven useful both in applied 

settings, such as those associated with the emerging field of Behavioural 

Operations, but also in more theoretical settings investigating the way the 

human mind produces estimations about the future when encountering streams 

of stimuli.. 
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