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Abstract:
X-ray ptychography, a scanning coherent diffraction imaging method, was
used to reconstruct images of a ”Siemens star” test pattern with amplitude
and phase contrast. While studying how the use of illumination with an
increased bandwidth results in clear improvements in the quality of image
reconstructions, we found that an artificial change in the overall distance
scale factor of the algorithm leads to a systematic response in the image,
which is reproduced with an incorrect number of spokes. This pathology is
explained by the conflict between the length scales set by the scan and by
the diffraction patterns on the detector.
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1. Introduction

Coherent Diffraction Imaging (CDI) is a rapidly developing tool of optics. Its main advan-
tage is the ability to obtain images from the diffraction patterns alone, without the need for
lenses [1]. It makes use of phase retrieval techniques to allow the computation of the image as
a simple Fourier transform of its complex diffraction pattern. Ptychography involves shifting
the probe in small steps to record diffraction patterns from overlapping regions, and the in-
troduction of a real-space overlap constraint made the reconstruction methods more robust by
providing additional redundancy in the information given by the measurements [2]. This extra
information allows complete characterisation of the complex sample transmission function and
the scanned illumination wavefield, called the “probe” [3, 4], through recovery of their respec-
tive modes [5]. It also allows retrieval of their relative positions in real-space [6], providing
ways of dealing with experimental problems such as vibrations [7], partial coherence [8] and
uncertainties in scan positions. Both single-shot CDI and ptychography produce phase contrast
in the image of the object, and can achieve high accuracy in the phase measurement [9]. Pty-
chography also alleviates some of the problems with single-measurement CDI methods, such
as convergence difficulties for strong phase objects [10], and has proved to be a quantitative and
non-destructive microscopy technique for two- and three-dimensional images that is successful
for nano-materials and biological objects [11, 12].

In the infancy of ptychography, the illumination profile formed by a lens or other optical
component had to be simulated or known [2]. Now that reconstructions are readily obtainable
using improved algorithms [4, 13] that require only rough initial estimates of the probe, the
resolution [14] and convergence of the reconstructions [15] are subjects of continuing interest.
In CDI, non-uniqueness was declared to be pathologically rare for the 2D and 3D cases [16].
The redundancy in ptychography should in principle prevent non-uniqueness artefacts but this



is not yet established. There are simple symmetry concerns which can affect the reliability of
reconstructions of phase structures when the probe structure is unknown. For example, the zero-
order and linear components of the probe and object phase structures can cancel each other. It is
therefore acceptable to remove arbitrary phase ramps which appear in an image reconstruction.

In the experiments reported here, we investigated the behaviour of ptychographic algorithms
using “Siemens star” test objects, and explored the effect of the probe bandwidth on the quality
of the reconstructions obtained. In the course of these studies, we found that artefacts are present
in the reconstructed images when the overall distance scale factor is not accurately known.

2. Experimental set-up

Experiments were carried out at beamline 34-ID-C at the Argonne National Laboratory. The ex-
perimental set-up in the forward-scattering geometry is presented in schematic form in Fig. 1(a).

Fig. 1. (a) Sketch of the experimental setup at 34-ID-C with entrance slits (1), KB mirrors
(2), piezo-stage (3) and camera (4). A flight tube represented as a semi-transparent tube
here is used only for distances above 1 m. (b) SEM image of the test pattern. Siemens
star, diameter 11.4 µm. (c),(d) show reconstructed phase and amplitude images using data
measured at z =2.184 m. Scale bars inside images, 2 µm.

The X-ray probe was generated by means of a Kirkpatrick-Baez (KB) mirror system and
its size was varied by changing the size of the entrance pupil. The customized test pattern
(shown in Fig. 1(b)) is used during the initial stage of our experiments at APS to assist in the
successful recovery of both amplitude and phase of more general objects. It was fabricated
to our specification by ZonePlates Ltd [17] using electron beam lithography and reactive ion



etching. The pattern was prepared in 1.5 µm thick tungsten film evaporated on to a 1 µm thick
silicon nitride window, to provide about 70 % intensity transmission and about 0.9π phase shift
when illuminated by a 9 keV (λ = 0.138 nm) X-ray beam. The beam was focused by the KB
mirror system placed directly downstream of the coherence-defining slits (which were were
adjusted to select the coherent part of the incident beam). The X-ray beam energy was selected
by a Si(111) double crystal monochromator, and provided sufficient longitudinal (temporal)
coherence for this experiment.

The sample was scanned using an nPoint NPXY100Z25A dual-axis piezo stage, which was
mounted on top of a set of XYZ stepper-motors for larger range movements. A Princeton In-
strument PI-MTE 1300B charge-coupled device (CCD) with N ×N square pixels of width
∆p = 20 µm was placed downstream at a distance z from the test sample. In the small angle
geometry, a Fourier-space pixel of size ∆p on the detector is related to a real-space pixel size
∆x in the reconstructed image by the formula

∆x =
λ z

N∆p
. (1)

In the remainder of the paper, the distance N∆x will be referred to as the CDI window, since it
corresponds to the interval that could be reconstructed by Fourier transform of a single diffrac-
tion pattern.

3. Probe bandwidth experiment

In our set-up, a smaller probe with an increased bandwidth within the CDI window is easily
obtained by opening the KB entrance slits wider. According to classical diffraction theory of
lenses, the size of the focus scales as the reciprocal of the entrance aperture: (d ∼ 2λ f/a) where
d is the focus spot size, f the focal length and a the entrance aperture size. The X-ray beam is
effectively coherent within a nominal area of∼ 30×50 µm, so it is detrimental to open the slits
wider.

To study the effect of probe bandwidth with a significant change between probes within
the CDI window, two entrance slit settings that provide full coherence (10× 10 µm and 30×
50 µm) along with three distances (z = 0.55, 1.0 and 2.184 m) which are representative of
the available range of camera lengths were chosen. A concentric circular scan trajectory [18]
with 5n points on the nth ring, and a radius increment dr of 0.5 µm within a 12× 12 µm scan
range, generated 460 frames of far-field diffraction patterns for each measurement. The detector
region-of-interest (ROI) was set to N = 256 pixels, which gave real-space pixel sizes of ∆x= 14,
24 and 55 nm, respectively, for the three detector distances used. As the focal lengths of the KB
mirrors are 100 mm and 200 mm in the horizontal and vertical directions respectively, the two
slit settings gave nominal focus sizes of 2.7×5.4 µm and 0.9×1 µm.

A reconstruction algorithm based on the difference map (DM) approach [3] was used to re-
trieve the complex sample and illumination functions from the measured diffraction data. As
initial input for the algorithm, a random guess of the sample image and a 1×1 µm square aper-
ture for the illumination probe were used. For the first 10 iterations, only the object was updated,
while the illumination function started to update after 10 iterations until the final number of 100
iterations.

In Fig. 2, we can clearly observe that, for a given distance, sharper edges and improved
contrast are given by reconstructions with the smaller probe that has a larger bandwidth. We
observe as well that, for longer distances, the “36 spokes” label written on the sample becomes
visible beside the star pattern. To explain these results, we can define a quality criterion Ω by
coupling into a single product two fundamental quantities of ptychography, the overlap (Θ) and
the sampling S as both are varying in this experiment. The overlap is given by Θ = (d−dr)/d,
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Fig. 2. From left to right: reconstructed objects and probes for detectors located at distance
z = 0.55, 1.0 and 2.184 m from the sample. Top half: reconstructions for slit openings of
10× 10 µm. Lower half: reconstructions for slit openings of 30× 50 µm (note: the hori-
zontal KB mirror has one half the focal length of the vertical). The probes are shown on
a common array scale but a white frame has been drawn to represent the original size of
the CDI window. The amplitude of each probe is mapped to the image brightness, and the
phase is mapped to hue. The probe sizes are in good agreement with values predicted from
diffraction theory.



and the sampling S is defined as the CDI window size divided by the spot size d. The quantity
Ω = ΘS is an aggregate measure of the over-determination of the phase problem. In principle,
the value of Ω for a 1-dimensional calculation should be ≥ 1 as the overlap Θ ≥ 0.5 [19] and
the sampling S≥ 2 to satisfy the Nyquist condition. For 2-dimensional calculations, S ≥ 4 and
the overlap becomes Θ = ΘxΘy (using subscripts x and y for the two lateral dimensions of the
probe). From the values that are reported in Fig. 2, it seems that Ω needs to be about an order
of magnitude higher than the threshold values given here to obtain good reconstructions.

4. Non uniqueness artefacts

We also investigated the consequences of a 10% uncertainty in the assumed sample-to-camera
distance when reconstructing the data measured at distance z0 = 0.55m, and found images with
unexpected numbers of spokes appearing.
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Fig. 3. Reconstructed image phases (a)-(e) for different assumed distances z between sam-
ple and detector. The reconstructed object phase at the correct distance z0=0.55 m are shown
in Fig. 2(d). The closed bars (3 µm) are the size of the object set by the piezo scanner, while
the open bars are the length scale set by the CDI window size. Their sizes are equal when
the distance z = z0 = 0.55m. A circular cut (see Fig. 3(c)) located 3 µm from the centre of
each image was used to count the spokes in each reconstruction.

The assumed values for z were allowed to range from z = 0.4m to z = 0.8m, and this pro-
duced a continuous decrease in spoke numbers as z increased. The methodology for the data
collection and the ptychographic reconstructions was the same as described in section 3. There
were 17 reconstructions at different z values in the range of interest. It was found that 100
iterations were enough for all the reconstructions to reach a plateau in the error metric. The re-
constructed images using incorrect detector-to-sample distances all look plausible reconstruc-
tions, in terms of their circular symmetry and the recovered phase values. They also give the



correct diameter of 11.4 µm. The retrieved probes all look very similar (and closely resemble
the previously characterised wave-front for the same experimental set-up [20]), and have the
same extent in pixels. The relationship between the spoke numbers and the reciprocal of the
assumed detector distance z is linear (see Fig. 4), although some small flat regions at discrete
integer values of the spoke count can be seen on the plot.

In CDI, the reliability of the reconstructions is monitored by the R-factor [13] which quanti-
fies the agreement with the measured data and computed as

R =
∑

J
j ∑

Q
q (||I

j
obs(q)|− |I

j
calc(q)||)

∑
J
j ∑

Q
q |I

j
obs(q)|

(2)

(the summation is over the reciprocal-space coordinate q and the jth measured diffraction pat-
tern). In Fig. 4, it is found that the “correct” distance z = z0 does not coincide with a mini-
mum of R, indicating that its value cannot be used to discard solutions which are incorrect.
An alternative approach that is resistant to errors in z (for errors up to 20%), and can produce
reconstructions with the correct number of spokes is an image cross-correlation based method
for position determination [6].
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Fig. 4. Number of spokes as a function of the assumed sample-to-camera distance z in the
range 0.4 m to 0.8 m. The distance of reference, where the measured data were taken, is
z0 = 0.55m (≈ 1.8m−1 in this plot) and the number of spokes for the reference object is
36. The red dotted line is the predicted number of spokes (see discussion). For each z value
used, the corresponding R-factor is plotted (calculated at iteration 100 with all 460 frames).

4.1. Numerical simulations

To understand the experimental results seen in section 4, simulations of the experiment were
performed with conditions as close as possible to the experimental ones. The number of spokes
produced in these simulations reproduced the curve shown Fig. 4. In common with the experi-
mental reconstructions, the phase reconstructions in the simulations are clearer and cleaner than



the amplitude reconstructions, as shown in Fig. 5, where the use of z = 0.5m has produced a re-
construction with 39 spokes. To distinguish the possibility that the choice of algorithm was not
responsible for the observed effect, separate reconstructions using DM and ePIE [4] algorithms
were carried out, with each showing same behaviour.

Fig. 5. Amplitude and phase of a reconstructed Siemens star at 0.5 m, showing 39 spokes.
These results from a numerical simulation can be compared directly with the reconstruction
based on experimental measurements that is shown in Figure 3(b). Scale bar, 2 µm.

In CDI the correct size of the support is empirically known to eliminate the incorrect solution,
and changing the distance parameter z in ptychography has a similar effect to changing the
size of the support in CDI, suggesting that the results in Fig. 3 could resemble out-of-focus
images, and that the change in the spoke number with distance parameter z could be similar to
the Talbot effect for linear gratings [21, 22]. The Talbot effect is a self-imaging phenomenon
in which there are periodic variations in the Fresnel diffraction pattern along the direction of
propagation, with the original grating pattern reappearing at integer multiples of the Talbot
length, and a variety of patterns with smaller periods appearing at fractions of the Talbot length.
The Fresnel diffraction pattern at distance z from an object O can be calculated using a Fresnel
propagator in Fourier space given by

O(z) = F−1[exp(
−izq2

2k
)F (O)] (3)

where F denotes a Fourier transform operation, and the wavenumber k = 2π/λ . Using this
approach, simulated images of Siemens stars were propagated to distances which should pro-
duce extra spokes, but the resulting spoke patterns were found to be rather different, as shown
in Fig. 6, so the different reconstructions shown in Fig. 3 are not related simply by Fresnel
propagation.

Another concern was that direct-space objects with a high degree of circular symmetry,
combined with a circular scan, would produce the observed pathology. The circular scan was
originally suggested for the purpose of eliminating grid artefacts in ptychography [18] and
was found to improve data convergence and to reduce ambiguities in data reconstructions
by breaking the translation symmetries. Therefore, raster scans based on a square grid were
compared to circular scans. In practice both type of scan showed the same pathology as in
Fig. 3 so this behaviour is independent of the scan mode. Thinner Siemens stars, that imparted
smaller phase shifts (π/2,π/3) to the x-ray beam, were also simulated to test whether the
results could be attributed to phase wraps coming from helical phase ramps, but the response
in the images was the same as reported in Fig. 4.
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Fig. 6. Computed free-space propagation of the simulated Siemens star to planes situated at
5 mm intervals upstream from the reference position. The colour rendering shows complex
valued data after histogram equalisation to stretch the contrast of the images.

5. Discussions and conclusions

We have seen in section 3 that probes with increased divergence show higher quality recon-
structions despite a reduced degree of overlap. This indicates that probe bandwidth and probe
overlap are complementary factors, while the sampling of the probe is another important factor,
particularly when an increasing fraction of the signal power lies within the CDI window as the
camera length z is increased.

An unexpected pathology was discovered in the images of a symmetric star-shaped object:
images were found to show the wrong number of spokes. Fig. 3 shows clearly that the size of
the stars is the same when measured in units of the scanner (closed scale bars) but not when the
scale is set by the size of the CDI window (open scale bars). The spacing of the spokes varies
in the opposite way: the spokes have a period which is constant in units of the CDI window
size (open scale bars). Spokes with a real spacing d produce features on the detector with a
separation of λ z0/d, so if an incorrect detector distance z is used in the reconstruction process,
the spacing of the reconstructed spokes is wrong by a factor z0/z. The conflict between the
length scales results in a different number of spokes for star patterns reconstructed with the
detector located at z 6= z0, as plotted in Fig. 4, where there is good agreement between the
observations and the predictions of the model.

Our numerical simulations have reproduced the experimental results and we have shown that
a non-unique reconstruction can be found for symmetric objects in ptychography if the scan
parameters are not accurately known.

A question that needs to be addressed is whether the benefits of having more probe structure
in the CDI window at the cost of coherence (by adjusting slit openings beyond the nominal
coherence length) is better than having less structure with a higher degree of coherence, since
the partial coherence can, in principle, be corrected for during post-processing of the recorded
data [23].
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