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ABSTRACT 

Neural tube defects (NTDs), including spina bifida and anencephaly are severe birth defects of the 

central nervous system that originate during embryonic development if the neural fails to 

completely close. Human NTDs are multifactorial, with contribution of both genetic and 

environmental factors. The genetic basis is not yet well understood but several non-genetic risk 

factors have been identified as well as the possibility for prevention by maternal folic acid 

supplementation. Mechanisms underlying neural tube closure and NTDs may be inferred from 

experimental models, which have revealed numerous genes whose loss of function causes NTDs, as 

well as details of critical cellular and morphological events whose regulation is essential for closure. 

Such models also provide an opportunity to investigate potential risk factors and to develop novel 

preventive therapies. 
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1. INTRODUCTION 

Neural tube defects (NTDs) are severe birth defects of the central nervous system that originate 

during embryogenesis and result from failure of the morphogenetic process of neural tube closure. 

In higher vertebrates the neural tube is generated by shaping, bending and fusion of the neural plate 

and fusion in the dorsal midline progressively seals the neural tube as it forms. If closure is not 

completed, neuroepithelium remains exposed to the environment and consequently subject to 

degeneration and neuronal deficit. The type and severity of these ‘open’ NTDs varies with the level 

of the body axis which is affected. Thus, failure of closure in the prospective brain or spinal cord 

result in anencephaly and open spina bifida (myelomeningocele), respectively. 

 

While the unifying feature of open NTDs is the failure of completion of neural tube closure, there are 

many different possible causes, both genetic and environmental. In humans, it appears that most 

NTDs are multifactorial in causation, resulting from an additive contribution of several risk factors 

which are each individually insufficient to disrupt neural tube closure (the multifactorial threshold 

model)(Harris & Juriloff 2007). The challenge of identifying the primary cause of NTDs in individual 

patients is highlighted by the numerous candidate genes and environmental factors indicated by 

epidemiological studies and experimental models. Moreover, the potential for gene-gene and gene-

environment interactions introduces further potential complexity. 

 

2. UNDERSTANDING THE EMBRYONIC BASIS OF NTDS - NEURAL TUBE CLOSURE 

Determination of the specific causes of NTDs is best achieved in the context of an understanding of 

the mechanisms underlying neural tube closure (reviewed by (Copp & Greene 2013, Greene & Copp 

2009). Given the inaccessibility of the neurulation-stage human embryo, our knowledge of the key 

principles of neural tube closure comes mainly from analysis of experimental models, particularly 

other mammals, amphibians and birds, in which primary neural tube closure is achieved through 

folding and fusion of the neuroepithelium. 

 

2.1 Primary neurulation; sub-types of NTDs relate to stages of closure 

In the prospective brain and most of the spinal cord, neural tube formation essentially involves the 

bending of the neuroepithelium in the midline to generate neural folds that elevate, meet and fuse 

in the dorsal midline (primary neurulation). Rather than simultaneously rolling up along the extent of 

the rostro-caudal axis, neural tube closure is discontinuous with distinct sites of initiation located at 

characteristic axial levels. Moreover, the morphological and molecular requirements for closure vary 

along the body axis, such that an individual NTD usually only affects a portion of the neural tube. 
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NTDs can thus be attributed to failure of particular initiation events or disruption of the progression 

of closure between these sites. 

 

In mice, closure is first achieved on embryonic day 8.5 at the level of the hindbrain/cervical 

boundary (Closure 1) and failure of this event leads to craniorachischisis (Copp et al. 2003). Closure 

initiates at a second site on embryonic day 9, Closure 2, in the caudal forebrain or 

forebrain/midbrain boundary. Once initial contact and fusion have been established between the 

tips of the neural folds, closure spreads bi-directionally from the sites of Closure 1 and 2 and in a 

caudal direction from the rostral end of the neural tube (Closure 3). The open regions of neural 

folds, termed neuropores, gradually shorten leading to complete closure of the anterior neuropore 

(between Closures 2 and 3) on embryonic day 9, and the hindbrain neuropore (between Closures 1 

and 2) a few hours later. Cranial NTDs (anencephaly) result from failure of Closure 2, or incomplete 

‘zippering’ between Closures 1 and 2, which closes the midbrain and hindbrain.  If fusion does not 

progress from the anterior end of the neural plate (Closure 3), the resultant phenotype is a ‘split 

face’ usually accompanied by forebrain anencephaly.  

 

Unlike the cranial region where closure proceeds bidirectionally, spinal neurulation is entirely 

caudally directed as the embryo continues to grow. Primary neurulation completes with final closure 

of the posterior neuropore on embryonic day 10. Impaired progression of closure, and consequently 

the presence of a persistently open posterior neuropore, results in spina bifida and the size of the 

ensuing lesion relates directly to the axial level at which closure stops. 

 

2.2 Primary neurulation in humans 

Examination of human embryos suggests that initiation of closure is discontinuous, as in the mouse 

(Nakatsu et al. 2000, O'Rahilly & Müller 2002). Bending of the neural plate begins at around 17-18 

days after fertilisation, with an equivalent event to Closure 1 at around 22 days and completion of 

closure at the posterior neuropore by 26-28 days post-fertilisation. It appears that closure of the 

forebrain and midbrain in human embryos may be achieved by progression between the site of 

Closure 1 and the rostral end of the neural plate without an intervening initiation site analogous to 

Closure 2 (O'Rahilly & Müller 2002, Sulik et al. 1998). 

 

2.3 Secondary neurulation 

In mice and humans, the neural tube caudal to the mid-sacral region is continuous with the caudal 

end of the primary neural tube but forms by a distinct process, termed secondary neurulation 



6 
 

(Schoenwolf 1984, Copp & Brook 1989). This process involves condensation of a population of tail 

bud-derived cells bud to form an epithelial rod that undergoes canalisation to form the lumen of the 

tube in the lower sacral and coccygeal regions.  Malformations resulting from disturbance of 

secondary neurulation are ‘closed’ (skin covered) and often involve tethering of the spinal cord, with 

associated ectopic lipomatous material (Lew & Kothbauer 2007). 

 

3. MECHANISMS UNDERLYING NEURAL TUBE CLOSURE  

Studies of neurulation-stage embryos, both normal and developing NTDs, provide insights into key 

molecular and cellular pathways underlying the morphological tissue movements of neural tube 

closure (Copp & Greene 2010). In addition to ubiquitous requirements, the occurrence of isolated 

NTDs at cranial or caudal levels in humans and different mouse models suggests the likely 

involvement of region-specific mechanisms, dependent on different gene products. 

 

3.1 Shaping of the neural plate – convergent extension is required for initiation of closure 

Concomitant with the onset of neural tube closure, the neural plate undergoes narrowing in the 

medio-lateral axis (convergence) and elongation in the rostro-caudal axis (extension), owing to 

intercalation of cells at the midline (Keller 2002). Convergent extension depends on activity of a non-

canonical Wnt signalling pathway, homologous to the planar cell polarity (PCP) pathway first 

described in Drosophila  as regulating cell polarity in the plane of epithelia (Goodrich & Strutt 2011). 

Signalling occurs via a Frizzled (Fzd) membrane receptor and cytoplasmic Dishevelled (Dvl), but 

without stabilisation of beta-catenin.  

 

Functional disruption of PCP mediators prevents convergent extension and the neural plate remains 

broad in Xenopus (Wallingford & Harland 2001, Wallingford & Harland 2002) and mouse embryos 

(Greene et al. 1998, Ybot-Gonzalez et al. 2007). Hence, closure 1 fails, leading to craniorachischisis, 

in mice homozygous for mutations in ‘core PCP’ genes including Vangl2, Celsr1, or double mutants 

for Dvl-1 and -2, or Fzd-3 and -6 (Juriloff & Harris 2012). Craniorachischisis also results from mutation 

of the PCP-related genes Scrb1 (Murdoch et al. 2001) and Ptk7 (Lu et al. 2004) or genes encoding 

accessory proteins, such as Sec24b which affects Vangl2 transport (Merte et al. 2010). Ultimately, 

failure of closure initiation in PCP-mutant embryos is thought to result from insufficient proximity of 

the neural folds owing to the broadened midline. 

 

Failure of closure 1 in the majority of ‘core’ PCP mutant embryos precludes analysis of a requirement 

for convergent extension at later stages of neurulation. However, spina bifida occurs in some loop-
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tail heterozygotes (Vangl2Lp/+)(Copp et al. 1994) and in compound heterogotes of Vangl2Lp/+ with 

mutations of Ptk7, Sec24b or Sdc4 (Lu et al. 2004, Merte et al. 2010, Escobedo et al. 2013). Moreover, 

non-canonical Wnt signalling is compromised in Lrp6 null embryos that develop spina bifida (Gray et 

al. 2013). These observations suggest a likely continued requirement for PCP signalling as spinal 

neurulation proceeds. 

 

Despite the entirely open spinal neural tube in Vangl2Lp/Lp embryos with craniorachischisis, closure 

does occur in the forebrain and much of the midbrain implying that PCP-dependent convergent 

extension is not required throughout the cranial region. Nonetheless, exencephaly is observed in 

digenic combinations of Vangl2Lp/+ with some Wnt pathway genes (e.g. Dvl3+/-, Fzd1+/- and Fzd2+/- 

(Etheridge et al. 2008, Yu et al. 2010). Exencephaly also develops in mutants for the PCP ‘effector’ 

genes Fuz or Intu  but the role of these genes in cilium-dependent hedgehog signalling seems more 

likely to explain their loss-of-function effect on cranial neural tube closure than a role in regulating 

convergent extension (Gray et al. 2009, Zeng et al. 2010, Heydeck & Liu 2011) (see Section 3.2). Thus, 

components of PCP signalling potentially impact on neural tube closure via multiple cellular 

mechanisms. 

 

3.2 Bending of the neural folds – regulation by Shh and BMP signalling  

In order to achieve closure, the neuroepithelium must bend to bring the tips of the neural folds into 

apposition. Bending occurs in a stereotypical manner at ‘hinge points’; a median hinge point (MHP) 

in the midline and paired dorsolateral hinge points (DLHPs) that arise laterally (Shum & Copp 1996). 

The morphology varies along the body axis with differing modes in the upper (MHP only), mid- (MHP 

and DLHPs) and caudal (DLHPs only) regions of the primary neural tube.  

 

The mechanisms underlying neuroepithelial bending are not fully understood, but one notable 

feature of the MHP is the predominance of wedge-shaped cells (wider basally than apically) 

compared to non-bending regions (Schoenwolf & Smith 1990). At neural plate stages the 

neuroepithelium is a pseudostratified epithelium in which nuclei move to the basal pole during S-

phase owing to inter-kinetic nuclear migration. Prolongation of S-phase at the MHP provides a 

possible means by which regulation of the cell cycle may contribute to cell wedging and hence MHP-

formation (Schoenwolf & Smith 1990). 

Bending is regulated by signals emanating from non-neural tissues dorsal and ventral to the neural 

folds (reviewed by (Greene & Copp 2009).  The MHP is induced by signals from the notochord, 

located immediately ventral to the midline of the neuroepithelium (Smith & Schoenwolf 1989, Ybot-



8 
 

Gonzalez et al. 2002). At the molecular level, notochord-derived Shh induces the floor plate of the 

neural tube at the site of the MHP (Placzek & Briscoe 2005, Chiang et al. 1996).  However, this is not 

essential for spinal neural tube closure which completes in the absence of a floor plate in mouse 

embryos lacking Shh or Fox A2 (Chiang et al. 1996, Ang & Rossant 1994). Thus, the MHP may be 

functionally important in floor plate development but is not essential for neural tube closure. 

 

In contrast to the MHP, DLHPs appear essential for closure of the neural tube in the low spinal 

region. For example, Zic2 mutant embryos, in which DLHPs are absent, develop severe spina bifida 

(Ybot-Gonzalez et al. 2007). The formation of DLHPs is actively regulated, with interplay of inhibitory 

and inductive signals determining their appearance at different axial levels (Copp & Greene 2013). 

These include inhibitory effects of Shh signalling from the notochord and BMP signalling from the 

surface ectoderm at the dorsal tips of the neural folds. These signals are opposed by the BMP 

antagonist noggin whose expression in the dorsal neural folds is sufficient to induce DLHP (Ybot-

Gonzalez et al. 2002, Ybot-Gonzalez et al. 2007).  

 

In contrast to absence of Shh signalling, NTDs do result from mutations which enhance Shh 

signalling, for example through deficient function of inhibitory or cilia-related genes such as Gli3, 

Rab23, Fkbp8, Tulp3 and Ift40  (Murdoch & Copp 2010, Miller et al. 2013). Mutants involving 

increased Shh signalling display NTDs at cranial and/or spinal levels. While spina bifida appears to be 

associated with suppression of dorsolateral bending of the neural folds (Murdoch & Copp 2010), the 

mechanism underlying cranial NTDs is not clear. 

 

3.3 Cranial neurulation – additional complexity and sensitivity to disruption 

The neural folds in the cranial region bend in the midline and dorsolaterally as in the spinal region 

but the closure process appears morphologically more complex. The folds are initially biconvex, with 

the tips facing away from the midline, and then switch to a biconcave shape allowing the tips to 

approach in the midline. The additional complexity of cranial compared with spinal neurulation 

appears to be reflected in a more extensive genetic underpinning and a greater sensitivity to 

disruption, at least in rodents. Exencephaly occurs in approximately three times as many knockout 

mouse models as spina bifida and is the NTD type most commonly induced by teratogens (Copp et 

al. 1990, Harris & Juriloff 2010). 

 

Cranial neurulation may rely on specific contributory factors that are not involved in the spinal 

region such as expansion of the mesenchyme underlying the neural folds (Greene & Copp 2009, 
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Zohn & Sarkar 2012). Moreover, disruption of the actin cytoskeleton prevents closure in the cranial 

but not the spinal region (Morriss-Kay & Tuckett 1985, Ybot-Gonzalez & Copp 1999). Similarly, 

exencephaly is observed but spinal neurulation completes successfully in null mutants for several 

cytoskeletal components (e.g. n-cofilin, vinculin) (Gurniak et al. 2005, Xu et al. 1998). Nevertheless, 

apically-located actin microfilaments are present throughout the neuroepithelium (Sadler et al. 

1982), while functional disruption of the cytoskeleton–associated proteins MARCKS-related protein 

or Shroom3 cause both spinal and cranial NTDs (Hildebrand & Soriano 1999, Xu et al. 1998), 

suggesting that regulation of the acto-myosin cytoskeleton plays a role in closure in both regions. 

Shroom proteins appear to play a key role: expression of Shroom in Xenopus is sufficient to induce 

apical constriction of epithelial cells while functional disruption inhibits neural fold bending and 

suppresses closure (Haigo et al. 2003). 

 

3.4 Adhesion and fusion of the neural folds 

Once the neural folds meet at the dorsal midline, a process of adhesion, fusion and remodelling 

gives rise to two discrete epithelial layers, with the nascent neural tube overlain by an intact surface 

ectoderm (Pai et al. 2012). At the closure site the neural fold tips are composed of neuroepithelium 

continuous with the non-neural surface ectoderm. The cell type that adheres first may differ at 

varying axial levels (Geelen & Langman 1979, Ray & Niswander 2012). Nevertheless at all levels, 

initial contact appears to involve sub-cellular protrusions, resembling lamellipodia and filopodia, 

observed by electron microscopy (Geelen & Langman 1979) and in live embryos (Pyrgaki et al. 2010). 

The molecular basis of adhesion is not well characterised, perhaps due to functional redundancy 

among the proteins involved. However, a role for interaction of cell surface ephrin receptors with 

Eph ligands is suggested by the occurrence of cranial NTDs in mice lacking ephrin-A5 or EphA7 

(Holmberg et al. 2000), and delayed spinal closure in embryos exposed to peptides that block 

ephrinA/EphA interactions (Abdul-Aziz et al. 2009). 

 

Knockout of protease-activated receptors (PAR1 and PAR2) in the surface ectoderm also causes 

cranial NTDs, implicating a role for signalling via these G-protein coupled receptors in closure 

(Camerer et al. 2010). Further evidence for the function of the non-neural ectoderm is provided by 

Grhl2 null mutants which fail in closure throughout the cranial region and exhibit spina bifida (Rifat 

et al. 2010, Werth et al. 2010, Brouns et al. 2011). Grhl2 is expressed in the surface ectoderm 

overlying the neural folds and regulates expression of several components of the apical adhesion 

junction complex, including E-cadherin (Werth et al. 2010, Pyrgaki et al. 2011). 
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3.5 Regulation of cell proliferation and cell death 

During neurulation the embryo grows rapidly. Cell cycle exit and neuronal differentiation begin in 

the neuroepithelium shortly after closure and maintenance of adequate proliferation in the 

neuroepithelium appears crucial for closure, particularly in the cranial region. Thus, in mice NTDs can 

be caused by exposure to anti-mitotic agents (Copp et al. 1990) or mutation of genes encoding 

proteins associated with cell-cycle progression (e.g. neurofibromin 1, nucleoporin) or prevention of 

neuronal differentiation (e.g. Notch pathway genes Hes1, Hes3, RBP-J )(Harris & Juriloff 2010, 

Harris & Juriloff 2007). Conversely, excessive cell proliferation is also associated with NTDs in several 

mouse models, such as Phactr4 mutants (Kim et al. 2007). 

 

Characteristic patterns of apoptotic cell death occur in the neural folds and the midline of the closed 

neural tube (Geelen & Langman 1979, Massa et al. 2009, Yamaguchi et al. 2011). Increased cell 

death could hypothetically inhibit closure through compromising the functional and/or mechanical 

integrity of the neuroepithelium. It is associated with NTDs in a number of teratogen-induced and 

genetic models, although only rarely has a direct causal link been definitively established (Copp & 

Greene 2013, Fukuda et al. 2011). The occurrence of exencephaly in mice lacking apoptosis-related 

genes such as caspase3 or Apaf1 suggests a requirement for apoptosis in closure (Harris & Juriloff 

2010). However, forebrain and spinal closure occurs normally in these models and pharmacological 

suppression of apoptosis does not cause NTDs, suggesting that it is dispensable for completion of 

closure (Massa et al. 2009). 

 

4. CLINICAL FEATURES OF NEURAL TUBE DEFECTS 

 

4.1 Open NTDs and associated conditions 

Open NTDs can result from failure of closure at a de novo initiation site or incomplete progression of 

closure following successful initiation. Where embryos are available for examination, as in 

experimental models, NTDs can be recognised during or immediately after neurulation stages owing 

to the persistently open neural folds. However, at later embryonic and fetal stages the 

morphological appearance varies considerably owing to secondary changes and degeneration. 

 

In cranial NTDs, the open neural folds undergo growth and differentiation and typically appear to 

bulge from the developing brain, termed exencephaly. Inability to form the skull vault over the open 

region leads to degeneration of the exposed neural tissue and the characteristic appearance of 
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anencephaly, observed later in human or rodent pregnancy (Wood & Smith 1984, Seller 1995). Both 

anencephaly and craniorachischisis (~10% of NTDs) are lethal conditions at or shortly after birth.  

 

Open neural folds in the spinal region prevent the sclerotome-derived vertebral arches from 

covering the neuroepithelium, the consequent opening in the vertebral column giving rise to the 

term spina bifida (Copp et al. 2013). The neural tissues may be contained within a meninges covered 

sac that protrudes through the open vertebrae (myelomeningocele; spina bifida cystica), or exposed 

directly to the amniotic fluid (myelocele). Babies born with open spina bifida usually survive with 

appropriate medical care, but suffer neurological impairment whose severity depends on the level of 

the lesion. Associated conditions include hydrocephalus, Chiari type II malformation and vertebral 

abnormalities as well as genitourinary and gastrointestinal disorders. 

 

4.2 Diagnosis, treatment and maternal-fetal surgery 

NTDs can be diagnosed prenatally by ultrasound (Cameron & Moran 2009). However, where 

prenatal diagnosis is not routinely available and/or therapeutic abortion not an option, many babies 

with NTDs are born. Post-natal medical care for babies born with open spina bifida usually involves 

surgery to close and cover the lesion. Multiple subsequent surgeries are commonly required to 

alleviate tethering of the spinal cord, treat hydrocephalus and/or address orthopaedic and urological 

problems.  

 

As open NTDs arise early during pregnancy, there is a prolonged period during which secondary 

neurological damage may occur owing to exposure of nervous tissue to the amniotic fluid 

environment. These considerations provided impetus for development of in utero fetal surgery for 

spina bifida which may improve neurological outcome compared with post-natal repair, although 

with fetal and maternal risks (Adzick et al. 1998, Adzick et al. 2011). Experimental models of spina 

bifida are being used to investigate the possible combination of surgical intervention with additional 

therapy, intended to remediate neural damage. Examples include the implantation of biodegradable 

scaffolds to promote neural regeneration and/or neural stem cells to populate the damaged spinal 

cord (Saadai et al. 2011, Saadai et al. 2013). 

 

4.3 Disorders of the closed neural tube  

 This review focuses on open NTDs, characterised by failure of neural tube closure. Various other 

conditions are also associated with abnormalities of the closed spinal cord and are often categorised 

as NTDs under a broader definition. There is also a less well-defined group of closed spinal NTDs in 
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which the vertebral arches are malformed but covered by skin. These conditions, including spina 

bifida occulta and ‘spinal dysraphisms’, vary widely in clinical presentation. The more severe sub-

types are associated with various abnormalities of the spinal cord, lipoma and/or anorectal 

abnormalities. The embryonic origin of closed spina bifida is not well defined but is hypothesised to 

involve abnormalities of secondary neurulation (Copp et al. 2013). 

 

Abnormal development of the vertebrae or cranium may also allow herniation of the closed neural 

tube through the affected region in the rare form of spina bifida, meningocele (spina bifida cystica) 

or encephalocele, respectively. 

 

5. CAUSES OF NTDs 

NTDs are among the most common birth defects worldwide with a prevalence that varies from 0.5 

to more than 10 per 1,000 pregnancies. This likely reflects differing contributions from risk factors 

such as nutritional status, prevalence of obesity and diabetes, usage of folic acid supplementation 

and/or fortification, the presence of environmental toxicants and differing genetic predisposition 

between ethnic groups. In most populations there is also a striking gender bias with a higher 

prevalence of anencephaly among females than males. Many NTD mouse strains also show a female 

preponderance among cranial NTDs, apparently reflecting a fundamental higher sensitivity of cranial 

neural tube closure to disturbance in female embryos (Juriloff & Harris 2012). Overall, although a 

number of risk factors have been identified these may account for less than half of NTDs, suggesting 

that additional genetic and non-genetic factors remain to be identified (Agopian et al. 2013). 

 

5.1 Environment factors  

Various teratogenic agents induce NTDs in rodent models (Copp et al. 1990, Copp & Greene 2010). 

In humans, teratogens that have been associated with NTDs include the anti-convulsant drug 

valproic acid (Wlodarczyk et al. 2012), and the fungal product fumonisin (Missmer et al. 2006). Other 

non-genetic risk factors include maternal fever and excessive use of hot tubs (Moretti et al. 2005), 

consistent with the induction of NTDs by hypothermia in rodent models.  

 

Maternal obesity or diabetes are well-recognised risk factors for NTDs (Correa et al. 2003). 

Determination of the cause of diabetes-related NTDs is hampered by the complexity of the diabetic 

milieu, although hyperglycemia alone is sufficient to cause NTDs in cultured rodent embryos.  It has 

been proposed that NTDs may result from increased oxidative stress, altered expression of genes 

such as Pax3, and neuroepithelial cell apoptosis (Fine et al. 1999, Reece 2012). Recent findings 
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suggest that activation of apoptosis signal-regulating kinase 1 (ASK1) in hyperglycaemic conditions, 

leads to activation of the apoptosis mediator caspase 8 via stimulation of the FoxO3a transcription 

factor (Yang et al. 2013). 

 

Nutritional factors and folate 

The historical link between lower socioeconomic status and higher risk of birth defects led to 

examination of the possible involvement of nutritional factors in NTDs. Lower levels of the B-vitamin 

folate were observed in mothers of NTD fetuses (Smithells et al. 1976), prompting an intervention 

trial of a folic acid-containing multivitamin supplement for prevention of NTD recurrence (Smithells 

et al. 1981, Schorah 2008). A multi-centre randomised controlled trial confirmed that maternal folic 

acid supplementation (at 4 mg/day) significantly reduces the recurrence risk (Wald et al. 1991). 

Additional clinical trials provided evidence for reduction of occurrence risk (Czeizel & Dudás 1992, 

Berry et al. 1999, Czeizel et al. 2011). 

 

Questions remain over the mechanism by which folic acid prevents NTDs (Blom et al. 2006, Copp et 

al. 2013). Although maternal folate status is a risk factor, in most cases, maternal folate levels are 

within the ‘normal’ range and rarely clinically deficient. Nonetheless, there is an inverse relationship 

between blood folate concentration and risk of an affected pregnancy (Daly et al. 1995). It has been 

suggested that sub-optimal folate levels may contribute to development of NTDs in individuals who 

are genetically susceptible. Such a gene-environment interaction has been demonstrated in mice, 

where folate deficiency does not cause NTDs, unless present in combination with mutation of a 

predisposing gene, such as Pax3 (Burren et al. 2008). 

 

Folate one-carbon metabolism comprises a complex network of inter-linked reactions that mediate 

transfer of one-carbon groups for a number of biosynthetic processes (Stover 2009). Among these, 

attention has particularly focussed on the requirement for nucleotide biosynthesis and methylation 

reactions in neural tube closure. Abnormal thymidylate and purine biosynthesis have been identified 

in mouse NTD models (Fleming & Copp 1998, Beaudin et al. 2011) and in a proportion of NTD cases 

(Dunlevy et al. 2007), while deficient methylation may also be implicated in NTDs (Section 5.3). 

 

5.2 Genetics of NTDs 

Most NTDs occur sporadically, with a relative scarcity of multi-generational families. Nevertheless, 

there is strong evidence for a genetic component in the etiology of NTDs and the pattern of 

inheritance favours a multifactorial polygenic or oligogenic model, as opposed to an effect of single 
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genes with partial penetrance (Harris & Juriloff 2007). Most studies of NTD genetics have focussed 

on one or more candidate genes (reviewed by (Boyles et al. 2005, Greene et al. 2009, Harris & 

Juriloff 2010). In general these have been: (i) human orthologues of genes whose mutation causes 

NTDs in mice, of which there are more than 200 examples; or (ii) genes related to environmental risk 

factors, particularly folate metabolism. 

 

Case-control association studies have implicated several genes while mutation screening by 

sequencing has identified putative pathogenic mutations. However, the definitive assignment of a 

gene variant as causative is complicated by the apparent multigenic nature of NTDs, and the large 

number of possible candidate genes, modifier genes, epigenetic factors and environmental 

influences. Moreover, where putative mutations have been identified in specific genes, each has 

only been involved in a small proportion of NTD patients, suggesting that there is considerable 

heterogeneity underlying the genetic basis of NTDs. Thus, although the morphological and cellular 

basis of neural tube closure has become increasingly well understood, the genetic basis of NTDs in 

individual cases remains largely unclear. 

 

Gene-gene interactions and effect of modifier genes 

Mouse studies suggest three broad mechanisms by which genetic interactions may result in NTDs. 

(1) In some instances functional redundancy makes it necessary for mutation of two orthologous 

genes, (e.g. Dvl1-Dvl2 (Hamblet et al. 2002), Cdx1-Cdx2  double knockouts (Savory et al. 2011)), in 

order to reveal a requirement in neural tube closure. (2) Additive effects of heterozygous mutations 

may result in NTDs that resemble those of individual homozygotes (e.g. Dvl3 with Vangl2Lp 

(Etheridge et al. 2008). (3) Variation in the penetrance and expressivity of NTD phenotypes between 

inbred strains of mice is widely reported and thought to reflect variants in modifier genes. For 

example, the rate of exencephaly resulting from Cecr1 mutation is strongly affected by FVB/N strain 

background (Davidson et al. 2007).  While the identity of modifier genes for NTDs has rarely been 

determined, a variant in Lmnb1 is present in some mouse strains and significantly increases the 

frequency of NTDs in curly tail (Grhl3ct) embryos (de Castro et al. 2012).  

 

Genes implicated through experimental models 

In mice, mutation of genes encoding components of the PCP pathway causes NTDs (Section 3.1). 

Sequencing of PCP genes in humans has identified putative mutations in CELSR1, VANGL1, VANGL2, 

FZD6, SCRIB1 and DVL2 in a proportion of patients with craniorachischisis, spina bifida, anencephaly 

and closed forms of spina bifida (Kibar et al. 2007, Lei et al. 2010, Robinson et al. 2012, De Marco et 
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al. 2013, Chandler et al. 2012, Lei et al. 2013) and reviewed by (Juriloff & Harris 2012). As in mice, 

heterozygous human PCP mutations may hypothetically interact with other genetic NTD risk factors 

in a digenic or polygenic fashion, to cause a range of NTD types. This could potentially involve 

summation of multiple variants in PCP genes. For example, a putative mutation in DVL2 was 

identified in a spina bifida patient in combination with a second, previously identified missense 

variant in VANGL2 (De Marco et al. 2013).  

 

Among other genes implicated in NTDs from mouse models, association studies have not provided 

evidence for a major contribution to risk and few positive results have emerged from sequencing-

based mutation screens. As data begins to emerge from large-scale exome sequencing studies of 

NTD patients, it will become possible to evaluate the contribution of multiple genes in the same 

patient cohorts and the mutational load associated with individual risk. 

 

Analysis of genes related to environmental risk factors 

The identification of environmental factors such as maternal diabetes and folate status as risk 

factors for NTDs provides impetus for analysis of related genes in affected families. Risk could 

potentially be associated with maternal genotype, if genetic variation alters maternal metabolism 

and secondarily affects the developing embryo. The inheritance of maternal alleles by the embryo 

complicates interpretation of such effects. Alternatively, a genetically determined abnormality in the 

embryo itself could influence risk of NTDs; potentially through interaction with a predisposing 

environmental factor. For example, it may be informative to analyse genetic data on folate-related 

genes in the context of maternal folate status (Etheredge et al. 2012). 

 

Association with risk of spina bifida has been reported for several genes implicated in diabetes, 

obesity, glucose metabolism and oxidative stress, including GLUT1, SOD1 and SOD2 (Davidson et al. 

2008, Kase et al. 2012). Maternal variants in the obesity-related genes FTO, LEP and TCF7L2 are also 

associated with NTDs, consistent with maternal obesity being a risk factor (Lupo et al. 2012). 

 

Genes related to folate one-carbon metabolism have been perhaps the most intensively group of 

candidates for NTDs (reviewed by (Blom et al. 2006, Greene et al. 2009, Shaw et al. 2009)). The 

C677T polymorphism of MTHFR, which encodes an alanine to valine substitution, has been 

associated with NTDs. The TT genotype is found at higher frequency among cases than controls in 

some populations (e.g. Irish) but not others (e.g. Hispanics) (Botto & Yang 2000). Several studies 
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indicate positive associations with other folate-related genes, including MTRR, although these have 

generally not been not observed in all study populations. 

 

In mice, mutations in folate-metabolising enzymes (e.g. Mthfd1) are sometimes lethal before the 

stage of neural tube closure (e.g. (MacFarlane et al. 2009, Christensen et al. 2013) while others do 

not disrupt closures (eg. (Chen et al. 2001, Di Pietro et al. 2002). Null embryos for the folate 

receptor, Folr1 die pre-neurulation but develop NTDs when supplemented with sufficient folic acid 

to prevent early lethality (Piedrahita et al. 1999). NTDs are also observed in Shmt1 knockouts, under 

folate-deficient conditions (Beaudin et al. 2011). In contrast, NTDs occur ‘spontaneously’ in mice 

carrying loss-of-function alleles of Amt (Narisawa et al. 2012) or Mthfd1L (Momb et al. 2013), both of 

which encode enzymes of mitochondrial folate metabolism (Tibbetts & Appling 2010). Interestingly, 

the homologous genes in humans has also been linked to NTDs. Missense mutations have been 

identified in NTD patients in AMT, as well as GLDC which encodes its partner enzyme in the glycine 

cleavage system (Narisawa et al. 2012). Genetic associations with NTDs have been reported for 

MTHFD1L (Parle-McDermott et al. 2009) and SLC23A32 (MFTC), encoding a mitochondrial folate 

transporter (Pangilinan et al. 2012). Altogether, these findings suggest that NTD risk is influenced by 

function of mitochondrial folate metabolism, a major source of one-carbon units to the cytoplasm. 

 

5.3 Gene-regulatory mechanisms and NTDs 

In addition to the potential multigenic nature of NTDs, identification of causative genes may be 

complicated by the potential involvement of aberrant gene expression, perhaps resulting from 

mutations in regulatory elements. For example, mutations resulting in insufficient expression of 

Grhl3 or excess expression of Grhl2 cause NTDs in mice in the absence of coding mutations 

(Gustavsson et al. 2007, Brouns et al. 2011). Further complexity may be added by the potential for 

regulation by epigenetic modifications such as DNA methylation, histone modification or chromatin 

remodelling, each of which has been associated with NTDs in mice and in some cases in humans 

(reviewed by (Harris & Juriloff 2010, Greene et al. 2011)). For example, methylation of LINE-1 

genomic elements was lower than normal in DNA of anencephalic but not spina bifida fetuses (Wang 

et al. 2010). 

 

A simple model predicts a positive correlation between folate status and methylation. However, 

data from human pregnancy suggests the relationship is not straightforward (Crider et al. 2012). A 

recent study found an inverse correlation of LINE-1 methylation with maternal and cord blood 

folate, while different imprinted genes showed positive or negative associations (Haggarty et al. 
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2013). Somewhat counter-intuitively use of folic acid supplements was associated with reduced 

LINE-1 methylation. 

 

A requirement for DNA methylation in mouse neural tube closure is suggested by the occurrence of 

NTDs in knockouts of Dnmt3b, encoding a DNA methyltransferase, and in embryos cultured with 5-

azacytidine (Okano et al. 1999, Matsuda & Yasutomi 1992). Similarly, inhibition of the methylation 

cycle reduces DNA methylation and causes NTDs in cultured mouse embryos (Dunlevy et al. 2006, 

Burren et al. 2008). However, Mthfr null embryos do not develop NTDs despite a significant 

reduction in global DNA methylation (Chen et al. 2001), nor is there an exacerbating effect of Mthfr 

loss-of-function on Pax3 or curly tail mutants, although both show increased rates of NTDs under 

folate-deficient conditions (Pickell et al. 2009, Burren et al. 2008, de Castro et al. 2010). Thus, 

questions remain over the relationship between folate status, DNA methylation and risk of NTDs. 

 

Other epigenetic mechanisms include various modifications of histone proteins, which potentially 

miss-regulate genes that influence neurulation. NTDs occur in mice carrying mutations in the histone 

demethylases Jarid2 (Takeuchi et al. 1999) and Fbxl10 (Fukuda et al. 2011). Similarly, histone 

acetylases and deacetylases, which regulate the equilibrium of histone acetylation, are implicated in 

NTDs. An acetylase-specific knock-in mutation of Gcn5 causes cranial NTDs (Bu et al. 2007), as does 

loss of function of another histone acetylase, p300 (Yao et al. 1998). Increased acetylation is also 

associated with NTDs. For example, cranial NTDs occur in mice carrying mutations in histone 

deacetylases Sirt1 or Hdac4 (Cheng et al. 2003, Vega et al. 2004). The teratogenic effects of valproic 

acid and trichostin A may also be mediated through their inhibition of histone deacetylases (Finnell 

et al. 2002). 

 

6. PRIMARY PREVENTION OF NTDs 

6.1 Folic acid supplementation and fortification 

The reduction in risk of NTDs following maternal folic acid supplementation led to public health 

recommendations that women who may become pregnant should consume 0.4 mg of folic acid daily 

or 4 mg daily following a previous affected pregnancy (Czeizel et al. 2011). To ensure that additional 

folate was received, food fortification programmes were introduced in many countries. This 

approach has raised blood folate levels and been associated with lower frequency of NTDs (Crider et 

al. 2011). The magnitude of effect varies, with greatest reduction where pre-existing rates were 

higher (Blencowe et al. 2010, Rosenthal et al. 2013). Some countries have delayed decision on 

fortification owing to safety concerns (e.g. possible enhancement of bowel cancer) but a recent 
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meta-analysis found no evidence for increased cancer rates following folic acid supplementation 

(Vollset et al. 2013). 

 

6.2 Folate-resistant NTDs 

Folic acid supplementation in clinical trials has not approached 100% NTD prevention and an 

estimated one-third of NTDs may be folic acid-resisant (Blencowe et al. 2010). A study in the USA, 

where folate fortification of food is mandatory, found no apparent protective effect of folic acid 

supplements (Mosley et al. 2009), suggesting that increased dosage would not necessarily provide 

additional preventive effects. 

 

Given the multifactorial causation of NTDs it seems reasonable to suppose that optimal prevention 

will require a combination of multiple interventions. Possible approaches may relate to folate one-

carbon metabolism. For example, like folate there is a graded relationship between lower levels of 

circulating vitamin B12 and increasing risk of an NTD-affected pregnancy (Molloy et al. 2009). Perhaps 

use of B12 supplements would further reduce the frequency of NTDs, although this remains to be 

tested.  

 

Another possibility is that folic acid cannot ameliorate some defects that result from abnormal folate 

metabolism, owing to defects in the intervening enzymes required to transfer one carbon units to 

key downstream metabolites. In this case supplementation with alternative folates, such as 5-methyl 

THF (Czeizel et al. 2011), or key downstream molecules could potentially be advantageous. For 

example, supplementation with formate prevented NTDs in Mthfd1L null mice (Momb et al. 2013), 

while combinations of thymidine and purine precursors prevented NTDs in curly tail mice, in which 

folic acid is not protective (Leung et al. 2013).  

 

In addition to folate and vitamin B12, lower maternal levels of other vitamins, including vitamin C, 

have been reported in NTDs (Smithells et al. 1976). Conversely, intake of several vitamins and 

maternal diet are associated with lower risk of NTDs suggesting that nutrients other than folic acid 

may be beneficial (Chandler et al. 2012, Sotres-Alvarez et al. 2013). Experimental analysis of 

individual vitamins found myo-inositol deficiency to cause NTDs in cultured rodent embryos 

(Cockroft 1988). Inositol supplementation significantly reduced the frequency of NTDs in curly tail 

mice (Greene & Copp 1997) and in rodent models of diabetes (Reece et al. 1997). 

 

7. FUTURE PERSPECTIVES 
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Experimental models provide systems for analysis of the developmental events of neural tube 

closure and fundamental cellular and morphological processes continue to be defined in more detail. 

In principal NTDs may result from insufficiency of one or more of the key driving forces (eg, cellular 

properties and/or morphological movements) that are necessary to achieve closure, for example, 

through mutation of a PCP gene. Alternatively, a genetic lesion or environmental insult may disrupt 

the closure process even where the underlying machinery is intact, for example through induction of 

aberrant cellular behaviour such as excess apoptosis. Experimental models require careful analysis 

to disentangle these possibilities. A key challenge will be to understand how the molecular and 

cellular determinants of neurulation relate to the biomechanical forces required to fold the 

neuroepithelium to achieve closure. 

 

Advances in exome and whole genome sequencing offer the potential to begin to understand the 

genetic basis of NTDs in humans. The multifactorial complexity of NTDs means that analysis of data 

from such studies will present a major challenge. Moreover, there will be a need to integrate genetic 

data with information on epigenetic and environmental factors to obtain a more complete 

understanding of the cause of individual NTDs. 

 

Folic acid supplementation provides a means to reduce NTD risk and represents a major public 

health advance. Nevertheless, the heterogeneity of NTDs suggests that primary prevention may be 

best achieved by multiple interventions and use of additional micronutrients alongside folic acid may 

provide an opportunity to further reduce risk.  
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