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Abstract

Anchorage independent growth is one of the hallmarks of oncogenic transformation. Here we show that infrared
fluorescent protein (iRFP) based assays allow accurate and unbiased determination of colony formation and anchorage
independent growth over time. This protocol is particularly compatible with high throughput systems, in contrast to
traditional methods which are often labor-intensive, subjective to bias and do not allow further analysis using the same
cells. Transformation in a single layer soft agar assay could be documented as early as 2 to 3 days in a 96 well format, which
can be easily combined with standard transfection, infection and compound screening setups to allow for high throughput
screening to identify therapeutic targets.
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Introduction

Anchorage independent growth and focus formation are long

established assays of oncogenic transformation [1,2]. Manual

counting of colonies is the standard technique to determine

oncogenic growth, although this method is time consuming and

prone to subjective bias. To increase throughput as well as to

overcome potential subjectivity, protocols to fix and/or stain the

cells (e.g. PFA fixation and crystal violet stain, MTT [3], or

alamarBlue stain [4]), followed by scanning and quantification

with ImageJ or other proprietary software have been developed.

This decreases processing time and largely eliminates the risk of

human error, but does not document the onset of induced clonal

outgrowth and in the case of soft agar the growth dynamic of

individual colonies. In addition, the fixation and staining process

renders the sample unsuitable for subsequent analysis such as

western blotting or qRT-PCR.

Quantification of infrared fluorescent proteins (iRFPs) signal has

been shown to be an objective and sensitive marker to determine

the proliferation behavior in several systems [5-7]. Here we

demonstrate that quantification of iRFP is an unbiased and

expeditious method to assess focus formation and soft agar growth

over time.

Materials and Methods

Plasmids / Cell Lines
All plasmids and cell lines used were described previously [7].

Tissue Culture
iRFP 3T3 (mouse fibroblasts, selected with 4 mg/ml puromycin,

Life Technologies, A11138-03) were cultured in 10% DCS (Donor

Calf Serum, Life Technologies, 16030–074) supplemented with

glutamine (Life Technologies, 25030–081) and were incubated

with nutlin (Sigma Aldrich, N6287) and actinomycin D (Sigma

Aldrich, A9415) in a 37uC incubator at 5% CO2 in 8 well plates

(NUNC, 167064) or 96 well plates (Corning 3340) as described

[7]. Transfections were carried out using Genejuice (Merck

Millipore, 70967) according to manufacturer’s instructions.

Infections were carried out using the Phoenix eco retroviral

system [8].

Soft Agar Assay
Two layer soft agar assays were carried out in 8 well plates by

first pouring a bottom layer of 1 ml 0.75% agarose (Melford,

MB1200) in 1X DMEM (from 2X DMEM stock, Millipore, SLM-

202-B). After solidification the indicated cell lines (transformed or

parental iRFP 3T3 fibroblasts, 2000 cells per well) were mixed

with 1 ml of 1X DMEM (from 2X DMEM stock, Millipore, SLM-

202-B) with 10% DCS and 0.75% agarose (Melford, MB1200,

1 ml per well), cooled to 41uC and plated on top of the bottom

layer. Wells were topped up with 2 ml of growth medium (10%

DCS DMEM), which was changed every 2 to 3 days.

Single layer soft agar assays were carried out in 96 well plates by

pouring 50 ml 1.5% agar with a final concentration of 1X DMEM

(bought as 2X DMEM, see above) into each well. After

solidification, cells were plated at the indicated concentrations in

150 ml of growth medium. Quantifications were carried out using

LI-COR Odyssey (LI-COR) and Image Studio software (version

2.1.10). Data was plotted using Prism (Graph Pad). Cell numbers

were counted using a CASY cell counter (Roche).
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Results and Discussion

Since we have demonstrated previously that iRFP fluorescence

closely correlates with cell number [7], we reasoned that it could

also be used to assess different parameters of oncogenic

transformation. To test whether iRFP detection can be used to

monitor and quantify oncogenic transformation in a 2D focus

formation assay (measuring loss of contact inhibition and clonal

outgrowth due to loss of anchorage dependence), we plated 36105

iRFP expressing 3T3 mouse fibroblasts and infected them

subsequently with cMyc/Ha-RasG12V or eGFP as a control in

8 well dishes. The plates were scanned repeatedly and the iRFP

signal was quantified as a proxy for density. As expected [9], 3T3

cells infected with eGFP grew to confluence and density-arrested

subsequently (Figure 1A), which resulted in a plateauing of the

fluorescence signal over time after 93 hours (Figure 1B). As shown

previously, this demonstrates that once arrested, the control cells

do not continue to accumulate iRFP signal. cMyc/Ha-RasG12V

infected 3T3 cells initially grew in a similar manner to control

cells, but continued to proliferate after 100 hours (Figure 1A, B)

Figure 1. Colony formation analysis via iRFP quantification. (A) Odyssey LI-COR scans of cMyc/Ha-RasG12V or eGFP infected iRFP 3T3
fibroblasts at the indicated time points. Scan settings: Resolution 169 mm, offset 2.5 mm, intensity (700 nm) L02. (B) Quantification of LI-COR scans at
the indicated days. Graph represents the individual signal of replicate wells. Scan settings as in (A). (C) Light microscopy images before and after
infection with the indicated constructs. (D) Odyssey LI-COR scans of iRFP 3T3 fibroblasts 16 days post transfection with cMyc/Ha-RasG12V transfected
or parental iRFP 3T3 fibroblasts. (E) Quantification of LI-COR scans shown in (D). Each bar represents the quantification of a single well. Scan settings
as in (A).
doi:10.1371/journal.pone.0098399.g001
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Figure 2. Soft agar assay analysis via iRFP quantification. (A) Odyssey LI-COR scans of cMyc/Ha-RasG12V infected or parental iRFP 3T3
fibroblasts at the indicated time points. Cells were counted and plated at 2000 cells per well in 0.75% 1X DMEM soft agar onto a 1X DMEM 0.75%
agarose layer. The white box indicates the area scanned in high resolution in (C) Scan settings: Resolution 169 mm, offset 4 mm, intensity (700 nm)

iRFP as Real Time Marker for Transformation
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and showed a strong increase of iRFP signal compared to

untransformed cells (Figure 1B). We did not observe outgrowth of

individual colonies, but rather a continuous growth of the great

majority of all cMyc/Ha-RAS G12V infected cells (Figure 1C).

This is likely due to the high retroviral infection and integration

rate [8], which resulted in transformation and loss of contact

inhibition of most if not all the cells. To test if iRFP quantification

is suitable to determine transformation that happens at a much

lower and slower rate, we expressed the same oncogenes in iRFP

3T3 cells by transient transfection. This greatly reduces the

number of cells expressing both oncogenes as well as the likelihood

of integration and therefore continuation of expression. After 16

days, cMyc/Ha-RasG12V transfected cells showed clear out-

growth of colonies by comparing the parental GFP transfected

cells (Figure 1D) and iRFP quantification allowed us to quantify

the oncogenic outgrowth per well by an increase of iRFP signal in

the oncogene transfected cells (Figure 1E). This demonstrates that

iRFP scanning can be used to document the shape and size of

colonies without any fixing, staining or other outside interference.

In addition, quantification per well is a suitable and simple readout

to assess colony-formation assays in an unbiased way without the

need for manually counting colonies.

Although colony formation assays are important for determin-

ing oncogenic transformation, anchorage independent growth

assays (for example soft agar assays) correlate more closely with in

vivo tumor growth of xenografts in mice [10]. To test if iRFP

quantification can be applied to soft agar assays to measure

anchorage independent growth, we plated parental iRFP express-

ing 3T3 cells (parental control) and cMyc/Ha-RasG12V infected

iRFP 3T3 (transformed 3T3s) cells in double-layered soft agar.

The wells were scanned and the iRFP signals were quantified

approximately 30 minutes after plating to determine the starting

level of fluorescence (Figure 2A, left panel). We scanned the plate

repeatedly to monitor the growth behavior from individual cells

into colonies over several days. As expected, the parental iRFP

fibroblasts did not show any sign of growth by observation or by

iRFP fluorescence quantification (Figure 2A right, top row), while

the transformed iRFP 3T3s grew as iRFP positive colonies

(Figure 2A right, bottom row). By quantifying the assays

repeatedly over a period of 356 hours, we were able to generate

growth curves of individual wells to visualize the increasing

difference between the two cell populations over time (Figure 2B)

with an observable difference between transformed to parental

fibroblasts as early as day 6 (144 h, Figure 2B). To test if iRFP

quantification can be used to monitor growth of individual soft

agar colonies, high-resolution images of a population of trans-

formed cells were scanned and the colony-growth behavior was

documented over time (Figure 2C). Quantifying the signal of

individual colonies allowed us to determine individual growth

curves for each colony (Figure 2D). iRFP detection assay therefore

is a powerful tool to monitor soft agar colony formation without

outside intervention. This technique allows for the generation of

growth curves on a per-well and a per-colony base over time, while

at the same time retaining the sample for further analysis at the

endpoint of the experiment.

Classic double layer soft agar assays are not easily transferred

into a high throughput setting, since once seeded between the agar

layers the cells cannot be easily treated with compound or

genetically modified with infection or transfection. To overcome

these limitations we performed one layer soft agar assay, using the

same cell pools in a 96 well based format, which can be easily used

in a high throughput screening setup. In traditional soft agar

assays, colonies arise from single cells. To replicate this in a 96 well

assay, we plated transformed iRFP 3T3s at a very low

concentration (approximately 0.7 cells in 150 ml) to achieve single

cell per well cultures. Interestingly, there was a substantial amount

of heterogeneity in the growth behavior of different cells (Figure

S1A and B). This suggests that while single cells in single layer soft

agar can be used to measure clonal anchorage independent

growth, it may also generate heterogeneity and a high number of

empty wells (Figure S1A and B). This is likely due to the low

concentration of cells and the substantial impact on survival of

each individual cell by slight variations of the baseline stress level

in each individual wells during plating and at the early stages of

the assay. In addition, the single cell approach shows a later onset

and heterogeneity of colony outgrowth (Figure S1A and B). These

complications do not pose a problem to relatively small-scale

screens, where the operator could manually avoid treating wells

with no cells. In unbiased high throughput applications such a

setup would be unfavorable since a pre-screen of wells with cells

will further complicate automation. Furthermore it would be

favorable to eliminate the time it takes for the single cells to

establish colonies. We therefore addressed these issues by starting

with a higher cell number, which should reduce per well variability

and speed up the process of colony formation. We plated cells in a

single cell suspension at the indicated concentrations and

quantified the iRFP signal at the indicated times (Figure 3A to

D). The cells formed a single colony in the center of the well,

comparable to colonies derived from single cells (compare

Figure 3A and Figure S1B). This is presumably due to the

curvature of the soft agar coating (Figure 3A). Over time the

parental cells lost fluorescence, suggesting that the cells died,

presumably due to lack of attachment. In contrast, transformed

cells began to grow and increase in size over the duration of the

experiment, irrespective of the initial cell number. Interestingly,

the iRFP signal eventually reaches a similar level irrespective of the

cell number plated. This is likely to be a combination of several

effects including the high nutrient consumption of big colonies,

which cannot be supplied by daily media change, as well as

inadequate nutrient supply in the center of larger colonies. An

observable difference between parental and transformed 3T3 cells

seeded at the lowest density could be detected within two days

(Figure 3D). This demonstrates that the simplified one layer soft

agar assay in combination with iRFP quantification is a valid

approach to determine soft agar based transformation, and the

detection of transformation is much earlier and sensitive than

traditional soft agar methods (2 to 3 days compared to over 1

week). This is of particular importance because transfections of

screening libraries, due to their transient nature, rely on a

relatively rapid evaluation. A further advantage of this system is

that the cells do not have to be mixed with liquid agar but are

seeded directly onto agar coated wells, which allows a much

simpler format for robotization. In addition, cells can be easily

transfected or infected with interfering RNAs, over-expression

constructs or treated with compounds due to the lack of top agar

layer. This study underscores the versatility of iRFP fluorescence

based assay to determine colony formation and anchorage

independent growth, which is invaluable for an unbiased search

L02. (B) Quantification of (A) at the indicated time-points. Graph represents the individual signal of replicate wells. Scan settings as in (A). (C) High
resolution scans of colonies shown in (A) at indicated time-points. Scan settings: Resolution 21 mm, offset 4 mm, intensity (700 nm) L02. (D)
Quantification of (C). Graphs represent growth analysis of individual colonies. Scan settings as (C).
doi:10.1371/journal.pone.0098399.g002
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for therapeutic targets and for drug discovery. To test this, we

seeded 550 transformed 3T3s onto 50 ml of soft agar. As observed

before, these cells formed a colony in the middle of each well. At

the indicated time the cells were treated with 25 mM nutlin, 4 nM

actinomycin D (actD) or PBS (control) and the colonies monitored

for growth behavior. As observed before, transformed control

treated cells grew rapidly. In contrast to that, both nutlin and

actimomycin D treatment inhibited colony growth compared to

control cells (Figure 4A, B and C) and resulted in a gradual loss of

iRFP signal. A clear difference between control and treated cells

could be detected as early as 2 days after treatment. This shows

that iRFP based 96 well soft agar assays are suitable for anchorage

Figure 3. 96 well based soft agar assay to determine anchorage
independent growth kinetics with high throughput. (A) Odyssey
LI-COR scans of representative cMyc/Ha-RasG12V infected or parental
iRFP 3T3 fibroblasts at the indicated time points. Cells were counted
and plated at 3000, 1250 or 300 cells per well onto a 1X DMEM 1.5%
agarose layer. Scan settings: Resolution 169 mm, offset 4 mm, intensity
(700 nm) L02. (B-D) Quantification of cells plated at 3000 (B), 1250 (C)
and 300 (D) cells per well. Graphs represent growth analysis of
individual wells. Scan settings as (A).
doi:10.1371/journal.pone.0098399.g003

Figure 4. Effect of p53 inducing drugs on anchorage indepen-
dent growth in high throughput soft agar assays. (A,B) cMyc/Ha-
RasG12V infected 3T3 fibroblasts where plated at 550 cells per well onto
50 ml agarose. At the indicated time, nutlin (25 mM, A) or actinomycin D
(actD, 4 nM, B) was added and colony growth monitored by repeated
LI-COR scanning. Scan settings: Resolution 169 mm, offset 4 mm,
intensity (700 nm) L02. (C) LI-COR scan and bright field images of
colonies taken at the last time point of A and B. Red squares highlight
the colony shown in the respective bright field image.
doi:10.1371/journal.pone.0098399.g004
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independent growth high content screening with drug induced

growth inhibition as readout. In addition compounds that only

affect the exposed layer of the colony or single cells would score

relatively low. This increases the chance of identifying compounds

with an in vivo activity, since solid tumors are unlikely to be treated

with a compound that cannot inhibit the growth of a colony in

vitro. Although the data shown is based on transformed mouse

fibroblasts, the system can be easily adapted to a wide variety of

cell lines and screening setups allowing a much quicker and

unbiased quantification of both oncogenic transformation and its

inhibition.

Supporting Information

Figure S1 96 well based soft agar assay starting from single cells.

(A) iRFP quantifications of single cell colonies at the indicated time

points. Scan settings: Resolution 169 mm, offset 4 mm, intensity

(700 nm) L02. (B) iRFP scans and bright field images of example

colonies from single cells shown in (A) after 214 hours. Numbers

represent colonies highlighted in (A).

(TIF)
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