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Abstract: Poxviruses are important pathogens of man and numerous domestic and wild 

animal species. Cross species (including zoonotic) poxvirus infections can have drastic 

consequences for the recipient host. Bats are a diverse order of mammals known to carry 

lethal viral zoonoses such as Rabies, Hendra, Nipah, and SARS. Consequent targeted  

research is revealing bats to be infected with a rich diversity of novel viruses. Poxviruses 

were recently identified in bats and the settings in which they were found were  

dramatically different. Here, we review the natural history of poxviruses in bats and  

highlight the relationship of the viruses to each other and their context in the Poxviridae 

family. In addition to considering the zoonotic potential of these viruses, we reflect on the 

broader implications of these findings. Specifically, the potential to explore and exploit this 

newfound relationship to study coevolution and cross species transmission together with 

fundamental aspects of poxvirus host tropism as well as bat virology and immunology. 
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1. Background and Significance 

Poxviruses are double-stranded DNA viruses with large genomes (up to 300 kb) belonging to the 

family Poxviridae. The family is divided into the invertebrate-infecting entomopoxvirinae and 
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chordate-infecting chordopoxvirinae. The latter subfamily is further divided into ten genera and 

contains many important infectious agents of both animals and humans. The now-eradicated Variola 

virus (VARV, the causative agent of smallpox) illustrates the potential consequences of poxvirus 

infections having arguably caused more deaths in human history than any other infectious agent [1]. 

Aside from humans, chordopoxviruses are also found in a multitude of terrestrial, aquatic and arboreal 

animal species from diverse taxa e.g., crocodiles, sea lions, birds, camels, etc. [2,3] and many 

poxviruses are capable of infecting multiple host species and cause cross-species (including zoonotic) 

infections [4]. For example, monkeypox virus has been recognized as a zoonotic agent since  

the 1970s and is classed a bioterrorism agent [5]. Further to human disease burdens, cross species 

infections of poxviruses between non-human species can also have devastating consequences e.g., the 

near-extinction of red squirrels in the UK after the introduction of squirrelpox with grey squirrels from 

the USA [6]. Owing to the significance of these zoonotic and cross-species poxvirus infections, 

poxvirus host range is a key area of research. 

Poxviruses exhibit a heterogeneous host range with some poxviruses having a very broad host range 

(e.g., cowpox infects rodents, dogs, cats, horses, cows, primates including humans), and others being 

very specific (e.g., VARV is a human only pathogen). Although some poxvirus genera are known to 

exhibit broad host tropisms (e.g., orthopoxviruses) and are consequently thought to manifest greater 

zoonotic risks [7], phylogenetic relatedness among viruses is not indicative of poxvirus host  

range [8]. In fact, determinants of poxvirus host range are poorly understood and viral tropism is not 

typically restricted at the level of cellular entry. Due to highly conserved virion proteins, most 

poxviruses can enter a wide variety of host cell types, with restriction of infection occurring 

downstream of entry (either through a lack of host factors or through the innate immune  

system) [1,9,10]. Consequently, changes in poxvirus host range are typically determined by changes in 

virus genome complement (e.g., gene duplication/gain/loss) that allow for subversion of host 

restriction rather than point mutations [8,11,12], as is the case for some viruses e.g. parvovirus and 

influenza [13,14]. Genes that are known to cause shifts in poxvirus host range generally have functions 

relating to the interplay of the host innate immune mechanisms with the virus [8]. These genes are 

termed poxvirus host range genes and although approximately 15 have already been identified [10], 

more work is needed to fully understand their restriction mechanisms and to identify novel 

determinants of poxvirus host range. 

Bats are an ancient, highly diverse order of mammals that are known to be reservoirs for a large 

number of viruses [15]. “Bats” is the collective term for some approximately 1200 species of mammals 

thought to have diverged some 50 million years ago (mya; comparatively humans and great apes are 

thought to have diverged ~5 mya) [16,17]. Second only in diversity to rodents, bats are subdivided into 

two suborders, commonly called megabats and microbats, on the basis of behavioral and physiological 

traits as well as molecular evidence [18]. There has been a recent increase in interest regarding the 

relationship of bats with viruses (Figure 1) as some species of bats are reservoir hosts for lethal viral 

zoonoses such as SARS coronaviruses [19,20], paramyxoviruses (e.g., Nipah and Hendra  

viruses) [21,22], and filoviruses (e.g., Ebola and Marburg virus) [23,24] and numerous  

lyssaviruses [25]. Outbreaks of disease attributable to bat-related zoonoses have high economic and 

human costs and their discovery has resulted in concerted research effort to isolate and characterize 

viruses from bat populations. Consequently, large numbers of previously unknown viruses have since 
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been identified in bat populations for which the zoonotic potential is unknown, including novel 

influenza types and hepadnaviruses [26,27]. As a result, there has been well-grounded speculation that 

owing perhaps to physiological, ecological, evolutionary, and/or immunological reasons, bats may 

have a “special” relationship with viruses [15,28,29] and be particularly good viral reservoirs with 

exaggerated viral richness [30]. Indeed, a recent intensive study found that a single bat species likely 

carries ≥58 different viral species from only nine viral families [31]. As well as the obvious first step 

of considering the zoonotic potential of newly identified bat viruses, further exploring the impacts of 

these findings and the opportunities they present for multiple research fields is necessary to capitalize 

on these discoveries. 

Figure 1. Number of publications recovered from SCOPUS by year when using the search 

term “virus” with (dashed lines, primary axis) and without (solid line, secondary axis) 

taxonomic orders. 

  

Poxvirus infections have recently been identified in bats, comprising part of the increase in viral 

families newly identified in this taxonomic order. Here, we review the current evidence of poxvirus 

infections in bats, present the phylogenetic context of the viruses within the Poxviridae, and consider 

their zoonotic potential. Finally, we speculate on the possible consequences and potential research 

avenues opened following this marrying of a pathogen of great historical and contemporary importance 

with an ancient host that has an apparently peculiar relationship with viruses; a fascinating and likely 

fruitful meeting whose study will be facilitated by recent technological advances and a heightened 

interest in bat virology. 

2. The Natural History of Poxvirus Infection in Bats 

There are three documented detections of poxviruses in bat populations under distinct 

circumstances (summarized in Table 1). The viruses were detected in animals from both bat  

suborders on three different continents. They had varied clinical impacts on their hosts and were  

phylogenetically dissimilar. 
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Table 1. Summary of poxvirus detections in bat species. 

Bat Species Bat Family  Geographical Site Clinical Signs Evidence 
Genetic 

Characterization 
Virus Name Reference 

Eidolon helvum 
Pteropodidae 

(Megabat) 
West Africa Apparently healthy  

Sequence 

detection 

Partial sequencing 

(12kb) 

Eidolon helvum 

poxvirus 1 
[32] 

Eptesicus fuscus 
Vespertilionidae 

(Microbat) 
USA 

Tenosynovitis and 

osteoarthritis  
EM A Isolated 

Partial sequencing 

(19.5 kb)  
Eptesipoxvirus [35] 

Miniopterus 

schreibersii  

Vespertilionidae 

(Microbat) 
Australia Epidermal nodule  EM NA B NA [38] 
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2.1. Molecular Detection through Metagenomics 

Genetic sequence of one bat poxvirus was detected at high prevalence during active surveillance on 

apparently-healthy African straw-colored fruit bats (Eidolon helvum) [32]. Metagenomic analysis of 

pooled throat swabs collected from E. helvum in Ghana in 2009 contained poxvirus sequences most 

closely related with Molluscum contagiosum (MOCV) a human-only pathogen (Figure 2). Detected 

sequences were distributed across the MOCV genome and reconstructed sequences relating to 23 viral 

genes were deposited in GenBank as being derived from Eidolon helvum poxvirus 1 [32].  

Retrospective analysis of throat swabs from individual bats revealed a high prevalence of this virus in 

the apparently healthy study population with 13% (n = 5/40) of swabs containing poxviral DNA. 

Figure 2. Neighbor-joining phylogenetic tree based on a 799aa alignment of the RAP94 

protein of Poxviridae (please see Table S2 in Supplementary files). The approximate 

phylogenetic locations of Eptesipox virus (red) and Eidolon helvum poxvirus 1 (blue) are 

shown. Bootstrap support (of 1000) of relevant nodes are shown. 

  

Notably, the detection of true poxvirus sequences in this metagenomic study, in which sequences 

related to multiple genes distributed throughout the genome were found and reconfirmed in individual 

throat swab samples, is distinct from the detection of poxvirus-like sequences described in other 

metagenomic studies performed on pooled bat feces, whose presence was ultimately attributed to the 

presence of other (non-pox) viruses or viral elements integrated into host genomes [33,34]. 
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2.2. Viral Isolation and Clinical Infections 

Between 2009 and 2011, a poxvirus associated with pathology (tenosynovitis and osteoarthritis) 

was detected in six adult big brown bats (Eptescicus fuscus, a microbat) sampled at a wildlife center in 

the North Western United States [35]. The clinical illness of the bats was progressive and ultimately 

led to their euthanasia. Histopathological examination of the joint lesions was indicative of poxvirus 

infection, which was confirmed by electron microscopy. The virus was successfully isolated on an 

African Green Monkey cell line (BSC40) and the genome was partially characterized (seven full 

protein coding sequences). Phylogenetic analysis revealed that the novel Eptesipox virus was most 

closely related with Cotia virus, a virus detected in sentinel suckling mice in Sao Paulo, Brazil in 1961 

(Figure 2) [36,37]. 

Finally, a bat poxvirus was again detected in a clinical setting, in South Australia in 2009. The virus 

was identified as an incidental infection during investigation of an outbreak of parasitic skin disease in 

a population of Southern bentwing bats (Miniopterus schreibersii bassanii, a critically-endangered 

microbat species) [38]. Bats presented with white nodular skin lesions that contained encysted 

nematodes. However, in one of the twenty-one bats examined, an independent (non-nematode 

associated) lesion contained intracytoplasmic inclusion bodies indicative of poxvirus infection, which 

was confirmed with electron microscopy [38]. No further confirmation or characterization of the virus 

was reported, and both the epidemiology and consequent conservation implications of poxviral disease 

for this species remain unknown. 

2.3. Interrelationships of Bat Poxviruses 

The three detections of poxviruses in bat populations are distinct and inherently incomplete stories 

with very few common threads; high-prevalence detection in throat swabs from apparently healthy 

African megabats, severe joint disease in several North American microbats and, negligible though 

comorbid skin disease in an endangered Australasian microbat. Further to their varied clinical impact, 

the partial genetic characterization of the former two viruses shows that these viruses are genetically 

diverse. The two viruses are most closely related with the very distinct poxviruses, Molluscum 

contagiosum virus and Cotia virus respectively (Figure 2), and although only partially genetically 

characterized, a small (100 amino acids) region of overlap in their RAP94 proteins has only 62% 

amino acid identity (please see Table S1 in the Supplementary files). That this is as far as these new 

viruses can be contrasted demonstrates the dearth of information currently available for further 

investigation of poxviruses in bats. 

3. The Zoonotic Potential of Bat Poxviruses 

The finding of poxviruses in bats is not unique among wildlife taxa (in fact it would have been 

more surprising had they not been found to carry poxviruses) and there is no reason to believe they 

would have greater zoonotic potential than other animal poxviruses. Poxviruses with varying  

zoonotic potentials have been found in a broad range of wildlife taxa including hundreds of bird 

species, reptiles, marine mammals, macropods, marsupials, monotremes, ungulates, equids, and 

primates [1,2,5,39–42] and there is currently insufficient evidence available to determine what the 
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zoonotic potential of bat poxviruses might be on this spectrum. For example, although Eidolon helvum 

poxvirus 1 is closely related to MOCV, a human-only contagion, poxvirus-associated lesions mirroring 

MOCV-disease have also been found in horses, donkeys and a red kangaroo [41–43]. Similarly, the 

discovery of Eptesipox virus in North American brown bats is analogous to the discovery of the other 

North American poxviruses found in voles, skunks, raccoons and squirrels, which are also detected at 

high prevalence in their reservoir hosts [44,45]. Notably however, in the initial Eptesipox virus report, 

the authors comment that poxvirus infection manifesting as musculoskeletal disease (osteomyelitis) 

has also been reported in human VARV and Vaccinia virus (VACV) infections [35]. However, given 

that no bat poxviruses identified to date are orthopoxviruses, and the little information available, it is 

clear that much more detail is needed before the potential threat of bat poxviruses to man can be 

commented on. Notably however, the two hosts in which poxviruses have been identified are widely 

distributed across their respective continents (Africa and North America) and both habit urban areas, 

so have ample opportunities for contact with potential spillover hosts (i.e., humans and domestic 

animal species). 

To determine the zoonotic risk posed by bat poxviruses there are, as for other novel viruses, a 

number of obvious and relatively straightforward investigations that can be done. Full genomic 

characterization of these viruses to identify known and putative poxvirus host range genes (discussed 

further below) would be an obvious step. Similarly, testing the in vitro host range of isolated viruses 

such as Eptesipox virus would help inform whether human and further animal cell lines are permissive 

for infection (i.e., that they contain the necessary host factors to support infection and do not contain 

antiviral components that restrict infection). Serological and clinical surveillance of human populations 

for poxvirus infections in geographical regions near detection sites, and/or overlapping with bat home 

ranges would be a direct approach that would provide samples useful for evaluating multiple candidate 

zoonoses. Whether bat poxviruses pose a zoonotic threat will likely comprise part of the future 

research agenda as these investigations are prudent for the discovery of all novel viruses. However,  

our current knowledge on bat poxviruses does not allow us to make firm predictions about their ability 

to infect humans. 

4. Future Directions 

Irrespective of their potential role as zoonotic agents however, the study of poxviruses in bats opens 

unique avenues of highly relevant research for multiple research fields beyond the individual  

host-pathogen relationships. Further field (in situ), in vitro and in silico studies could elucidate the 

possible coevolution, cross species infections and mechanisms of host range restriction of bat 

poxviruses, the implications of which are relevant for bat ecologists, virologists and emerging 

infectious disease specialists (including those with a specific interest in bats) alike. 

4.1. Coevolution of Bats and Poxviruses 

It is likely that comparative phylogenetics of bats and poxviruses would inform and deepen our 

understanding of origins and evolution of both elements. Bats and poxviruses are diverse host and 

pathogen taxa respectively and given their 0.5 million years of likely co-existence [46], there is surely 

a vast amount of knowledge to be gained by studying the phylogenetic relationships between bats and 
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poxviruses. Further sampling of bat populations for poxviruses would undoubtedly dramatically 

expand the poxvirus phylogeny, as has occurred subsequent to the study of other viral taxa in bat 

populations [47–53]. Comparative phylogenetics of bats and their poxviruses could differentiate 

between ancient co-speciation, or a more recent introduction and dissemination, of poxviruses among 

bat species. The two thus far partially characterized bat poxviruses are quite distinct from each other 

and are both relatively basal (i.e., have older most recent common ancestors with other extant viruses) 

in the poxvirus phylogeny when compared with other mammalian-infecting poxviruses. It is possible 

that if evidence of coevolution between bats and poxviruses were present, as has been suggested for 

the North American poxviruses [44], this could inform the phylogenies of both bats and poxviruses 

which are complicated by convergent evolution and horizontal gene transfer respectively [54–56].  

In addition to allowing the study of co-evolution, such studies provide the context for the identification 

of cross-species infections. 

4.2. Cross Species Infections 

With concerted research effort to identify reservoir species of bat poxviruses and cross species 

infections of poxviruses in bats could be identified and would have important implications for both bat 

and zoonotic-disease specialists. Continued serological and molecular studies of naturally infected bat 

populations would allow the clinical effect and ecological impact of cross species poxvirus infections 

in bats to be assessed. We already noted that poxvirus infections across species barriers can devastate 

wildlife populations (e.g., squirrelpox, see introduction), an effect so severe that it was used to control 

introduced rabbit species in Australia in the 1950s [57]. White nose syndrome, a fungal pathogen 

causing massive die offs in North American bat populations, is an unfortunate contemporary example 

of the severe ecological impacts that emerging pathogens can have on bat populations [58,59].  

Hence, from an ecological perspective if a bat poxvirus, e.g., Eptesipox virus with its severe disease 

manifestations, were an emerging cross-species infection it would be useful to identify this rapidly, 

especially in already endangered species as is the case of the Southern bentwing bat in which a 

poxvirus was reported. Further to the conservation implications of such research, combining data 

regarding cross species infection and ecological aspects of host taxa (e.g., behavior, habitat, range 

overlap, host relatedness) will likely inform key concepts of virus sharing among bat species, as has 

been done with lyssaviruses [60,61]. 

4.3. Mechanisms of Poxvirus Host Tropism 

Given the heightened interest in bat virology, further analysis of bat poxviral isolates from  

both within- and cross-species infections will allow for a deeper understanding of the extent  

and mechanisms of poxvirus host restriction. Many bat cell lines have now been  

developed [62–66], and at least one of these allows productive poxvirus infection [62].  

Such tools will allow the in vitro refinement of host range definitions beyond detection in the field. 

Furthermore, full genome sequencing information of poxviruses (now a comparatively easy and cost 

effective task) would facilitate the in silico identification of poxvirus host range gene orthologues,  

as recently done by Bratke and colleagues who performed a systematic survey for the presence of 

known poxviral host range genes on among chordopoxviruses [3]. Furthermore, applying new 
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bioinformatics tools to genomic sequence information and host range data could facilitate the 

identification of novel host-range determinants, perhaps even unique to bat poxviruses [12,67].  

In addition, with the aforementioned in vitro tools in place, hypothetical host range genes can be 

validated, advancing our fundamental knowledge of poxvirus host range restriction. 

4.4. Bat Immunology and Virology 

Finally, and most speculatively, the identification of genes involved in poxvirus host range 

restriction in bats may represent a unique opportunity to study bat immunology, which may have 

broader implications for their confirmed roles as zoonotic reservoirs. Since genes that interplay with 

the host innate immune system, not those involved with cell entry, are typically responsible for host 

range determination in poxviruses [8,9], the identification of bat-unique poxvirus host range genes 

could facilitate the cognate identification of (possibly novel) host immune factors. This is particularly 

important for bats as they potentially have antiviral immunity distinct from our own, which seemingly 

allows them to harbor numerous human pathogens viruses asymptomatically [29]. Some preliminary 

evidence of this distinction existing for poxviruses is that in the single described report of infection of 

bat cell lines with poxviruses, bat cells were found to behave very differently from other mammalian 

cell lines, being susceptible to a highly attenuated strain of vaccinia virus [62]. With several bat 

genomes recently sequenced [68] and the capabilities of newer proteomic approaches, it is realistic that 

novel non-orthologous innate immune factors of bats (if they exist) could be identified. That these 

novel immune factors might then be candidate therapeutics against a range of viral zoonoses for which 

bats are the natural reservoir is an exciting, if not fantastical, point to ponder. 

5. Concluding Remarks 

Recent advances in the study of bats and their viruses as well as the current biotechnological 

revolution leave us in a position to explore questions of virology as never before. The recent detection 

of poxviruses in some bat species has occurred consequent to a heightened interest in bats‟ role as viral 

reservoirs. These new findings enable us to ask many exciting and important questions about both bats 

and poxviruses independently as well as their ecological and evolutionary relationships. Integrating the 

new and exciting tools of the „omics revolution with traditional laboratory and field studies allow us to 

interrogate these questions as never before. 
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