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Abstract

Human adenovirus serotype 5 (HAdV5)-based vectors administered intravenously accumulate in the liver as the result of
their direct binding to blood coagulation factor X (FX) and subsequent interaction of the FX-HAdV5 complex with heparan
sulfate proteoglycan (HSPG) at the surface of liver cells. Intriguingly, the serotype 35 fiber-pseudotyped vector HAdV5F35
has liver transduction efficiencies 4-logs lower than HAdV5, even though both vectors carry the same hexon capsomeres. In
order to reconcile this apparent paradox, we investigated the possible role of other viral capsid proteins on the FX/HSPG-
mediated cellular uptake of HAdV5-based vectors. Using CAR- and CD46-negative CHO cells varying in HSPG expression, we
confirmed that FX bound to serotype 5 hexon protein and to HAdV5 and HAdV5F35 virions via its Gla-domain, and
enhanced the binding of both vectors to surface-immobilized hypersulfated heparin and cellular HSPG. Using penton
mutants, we found that the positive effect of FX on HAdV5 binding to HSPG and cell transduction did not depend on the
penton base RGD and fiber shaft KKTK motifs. However, we found that FX had no enhancing effect on the HAdV5F35-
mediated cell transduction, but a negative effect which did not involve the cell attachment or endocytic step, but the
intracellular trafficking and nuclear import of the FX-HAdV5F35 complex. By cellular imaging, HAdV5F35 particles were
observed to accumulate in the late endosomal compartment, and were released in significant amounts into the extracellular
medium via exocytosis. We showed that the stability of serotype 5 hexon:FX interaction was higher at low pH compared to
neutral pH, which could account for the retention of FX-HAdV5F35 complexes in the late endosomes. Our results suggested
that, despite the high affinity interaction of hexon capsomeres to FX and cell surface HSPG, the adenoviral fiber acted as the
dominant determinant of the internalization and trafficking pathway of HAdV5-based vectors.
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Introduction

The human adenovirus (HAdV) capsid is composed of eleven

well identified structural proteins, of which the hexon is the major

component with 240 copies forming the 20 facets and 30 edges of

the icosahedral capsid. The penton is the second most represented

capsid protein, with 12 copies of penton located at each apex.

Each penton capsomere is made up of a fiber, a triple beta-

stranded fibrous protein [1], anchored to a pentameric protein, the

penton base, closing up the vertices of the icosahedron (reviewed

in [2,3]). HAdVs are divided into subgroups or species A to F,

covering 51 different serotypes. The members of species C

(HAdV2, HAdV5) and species B (HAdV3, HAdV35) are the

most studied and characterized in terms of capsid structure, cell

entry mechanisms, cellular response and gene transfer (reviewed in

[2,3]). The classical cell entry and trafficking pathway of HAdV5,

as demonstrated by epithelial cell models of adenoviral infection in

vitro, consists of (i) the fiber binding to CAR, the Coxsackie B and

Adenovirus Receptor [4–11], followed by (ii) the interaction of the

penton base RGD motifs with the cellular integrins alphaVbeta3

and alphaVbeta5, [12–15], which promotes virus endocytosis into

clathrin-coated vesicles [16,17]. In step (iii), partially uncoated

HAdV5 particles are released from the early endosomal

compartment into the cytosol, a process involving the capsid

protein VI [18,19]. (iv) Dynein and microtubules mediate the

cytoplasmic transit of the residual HAdV5 capsid, which docks at

the nuclear pore complex [20,21], before (v) the nuclear import of

the viral nucleoprotein core [22,23].

PLoS ONE | www.plosone.org 1 May 2011 | Volume 6 | Issue 5 | e18205



Contrasting with the vast scientific information available on

HAdV5 and its multiple interactions with host cell components,

the clinical application of HAdV5, the most widely utilised

serotype as gene transfer vector, has suffered from several

drawbacks. The prevalence of anti-HAdV antibodies in the

human population results in the rapid neutralisation of HAdV5

vector after in vivo administration. Secondly, intravenous delivery

of HAdV5 vector results in the liver uptake of the vast majority of

the virus particles, and therefore do not reach their target cells or

tissues. Numerous strategies have been employed to overcome

these hurdles, notably by engineering mutant or chimeric vectors

to evade the neutralising antibodies and ablate the hepatotropism

of the vector, but the results have been somewhat disappointing

(reviewed in [24]).

Recent breakthrough in the HAdV-host interactions showed

that the vector particle accumulation in the liver is the result of

HAdV5 binding to human blood coagulation factor X (FX) via the

hexon capsomeres, followed by the interaction of the HAdV5-FX

complexes to heparan sulfate proteoglycan (HSPG) molecules

which are present in high concentration at the surface of Kupffer

cells [25–34]. Further dissection of the molecular mechanism of

the HPSG-mediated cellular uptake of HAdV5-FX complex

revealed the importance of O- and N-sulfation of HPSG in this

high affinity pathway, and the requirement of alphaV integrins as

secondary receptors for an efficient internalization step [35]. In

contrast to HAdV5, it has been observed in vivo that HAdV35

vectors have liver transduction efficiencies which are of four orders

of magnitude lower than that of HAdV5 vectors [36]. Likewise,

fiber-pseudotyped or chimeric fiber-carrying HAdV5 vectors

showed less hepatotropism, compared to HAdV5. This was the

case for HAdV5F35, which carried serotype 35 fibers [37],

HAdV5/35 chimeric vector, which carried serotype 35 fiber knob

domains [38], and HAdV5F2/BAdV4, carrying chimeric human-

bovine fibers [39]. Intriguingly however, HAdV5, HAdV5F35 and

HAdV5F2/BAdV4 vectors were all composed of the serotype 5

hexon capsomere, thus suggesting the contribution of factors other

than hexon, FX and HSPG to the mechanism of liver uptake of

FX-HAdV5 complex in vivo. Both HAdV35 and the HAdV5F35

chimera use CD46, one of the cell attachment receptors

recognized by subspecies B HAdVs besides desmoglein-2 [40],

and to a lesser degree HSPG molecules, to infect epithelial cells

[41–44].

In the present study, we sought to determine the influence of

capsid proteins other than the hexon, viz. penton base and/or

fiber, on the interaction of FX with HAdV5-based vectors, and

their FX- and HSPG-mediated cell entry pathway and gene

transduction. To this aim, we analyzed the binding of wild type

HAdV5 (HAdV5wt), penton base or fiber mutants of HAdV5, and

fiber 35-pseudotyped HAdV5 vector (HAdV5F35) to heparan

sulfate in the presence or absence of FX by surface plasmon

resonance in vitro. We analyzed the effect of FX on the HAdV5wt-

and HAdV5F35-mediated transduction of CHO cells expressing

HSPG (CHO-K1), the alternative receptors for HAdV5 [45–47]

and HAdV35 viruses [41–44], and HSPG-negative CHO cells

(CHO-2241). Both cell lines lack the CD46 and CAR receptors for

HAdV5F35 and HAdV5, respectively.

We found that FX bound to HAdV5 hexon protein via its Gla-

domain, and enhanced the binding of HAdV5wt and HAdV5F35

vector particles to surface-immobilized hypersulfated heparin (HS)

in vitro, and to cellular HSPG in vivo. We also found that FX

augmented the efficiency of cellular transduction by HAdV5, but

had a negative effect on the transduction by HAdV5F35. Our

experimental data showed that this negative effect did not involve

the cell attachment or the endocytic step of the FX-HAdV5F35

complex, but the intracellular trafficking. In the presence of FX,

the HAdV5F35 particles accumulated in the late endosomal

compartment, resulting in a delay in their vesicular release and

nuclear import. Furthermore, HAdV5F35 were released in

significant amounts in the extracellular medium via exocytosis,

resulting in lower numbers of particles reaching the nucleus. Our

results suggested that the serotype 35 fiber determined the cell

internalization and trafficking pathway of the HAdV5F35 vector,

despite the absence of known fiber receptor at the plasma

membrane, and acted dominantly despite the interaction between

hexon and cell surface HSPG mediated by FX. This observation

has significant implications for the future design of target tissue-

redirected adenoviral vectors.

Results

Gla domain-dependence of FX-mediated binding of
serotype 5 hexon protein and adenovirions to heparan
sulfate in vitro

The interaction between soluble HAdV5wt hexon protein and

heparan sulfate in vitro, directly or indirectly via FX, was

investigated using surface plasmon resonance (SPR) analysis and

a hypersulfated form of heparin (HS), recognized as the best

structural model to mimic the heparan sulfate chains contained in

HSPG [48,49]. HS was covalently immobilized onto the biosensor

chip, and the binding of hexon to HS was assessed using FX in a

stoichiometric ratio of 1:1 with hexon protein. A truncated version

of FX devoid of its gamma-carboxylic acid (Gla) domain, FXGL,

was assayed in parallel experiments. As expected from previous

studies (reviewed in [24]), we found that hexon binding to HS was

enhanced in the presence of FX, but not with FXGL (Fig. 1 A),

and this enhancing effect occurred in a FX dose-dependent

manner (not shown). The binding of HAdV5wt virions to

immobilized HS with and without FX was also assessed by SPR,

using various stoichiometric ratios of FX per hexon trimeric

capsomere, as determined from the number of virus particles

present in the samples. FX enhanced the binding of HAdV5wt

virions to HS in a dose-dependent manner (Fig. 1 B). As for

isolated hexon protein, the Gla domainless FXGL showed no

significant enhancement of the binding of HAdV5wt virion to HS

(not shown). Of note, a weak signal of binding was observed with

control samples of FX alone (Fig. 1 A), used in amounts

equivalent to its average physiological concentration in human

adult serum (8 mg/ml), referred to as the maximum FX

concentration (FXmax). This excluded the possibility that the

signal of binding to HS observed with FX:hexon or FX:vector

complexes were due to the binding of free FX.

Two mutants of HAdV5 were then analyzed, HAdV5FTTAT,

mutated in the KKTK motif of the fiber shaft, and HAdV5PbEGD,

mutated in the RGD motif of the penton base. The KKTK

tetrapeptide had been identified as a putative HSPG-binding motif

[45,46,50], a function which is debatable [51]. FX used at 8 mg/

ml (FXmax) was found to enhance the binding of the two mutants

to HS to equivalent levels (Fig. 1 C). As for HAdV5wt, no binding

enhancement was observed with the Gla domainless version

FXGL, indicating that the FX bridge between HAdV5wt hexon

and HS required the integrity of its Gla domain. This confirmed

previous reports which showed that the Gla domain of FX

interacts with the hexon capsomere [26,33], whilst basic residues

Arg240, Lys236, Lys169, Arg165, Lys96, Arg93, and Arg125 in

the exosite of FX interact with HSPG [52]. Our results also

indicated that the mutations in HAdV5FTTAT and HAdV5PbEGD

had no effect on the FX-mediated binding function of HAdV5wt

hexon to HS.

Cellular Trafficking of FX-Ad5fiber35 Complex
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Requirement of HSPG expression at the cell surface for
FX-mediated enhancement of cell transduction by
HAdV5wt vector

We next assayed the transduction efficiency of HAdV5wt vector

in the presence or absence of FX or FXGL in a CAR-negative

cellular model, using CHO cells, which express HSPG at their

surface (control CHO-K1), or CHO-2241, which are deficient in

HSPG expression. The FX concentrations in the viral inoculum

ranged from 0 to 8 mg/ml (FXmax). In HSPG-positive CHO-K1

cells, FX, but not the Gla domainless FXGL, enhanced the

transduction efficiency (TE) of HAdV5wt in a dose-dependent

manner (Fig. 2 A). Of note, the maximum enhancement of

transduction was not reached with a concentration of FX in the

medium corresponding to a ratio of 720 copies of FX per virion

(i.e. with 3 FX per trimeric hexon capsomere), but with the highest

FX concentration (FXmax; Fig. 2 A), a result consistent with

sensorgrams shown in Fig. 1B. At FXmax, the increase of TE was

18-fold at 2,500 vp/cell, and 26-fold at 5,000 vp/cell (Fig. 2 B).

No detectable effect of FX on TE levels was observed in HSPG-

negative CHO-2241 cells (Fig. 2 B). This demonstrated that the

surface expression of HSPG molecules was indispensable for the

FX-mediated enhancing effect on the HAdV5wt cell binding and

transduction, confirming previous studies [24,37].

Absence of requirement of fiber KKTK motif and penton
base RGD motif for FX- and HSPG-mediated
enhancement of cell transduction by HAdV5 vectors

It was shown that mutation of the putative HSPG binding site in

the HAdV5wt shaft (91KKTK94) interfered negatively with the

cellular trafficking of the virions to the nucleus [45,51]. We

therefore evaluated the influence of FX on the capacity of

transducing CHO-K1 and CHO-2241 cells by the mutant vector

HAdV5FTTAT. In the absence of FX, HAdV5FTTAT transduced

CHO-K1 cells with a significantly lower TE, compared to

HAdV5wt used at the same MOI (2,500 vp/cell ; Fig. 3 A). In

the presence of increasing doses of FX, we observed a progressive

augmentation of the TE, with a 35-fold enhancement for the

FX:virion ratio of 3:1 for (viz. 720 copies of FX per 240 hexon

Figure 2. Cell transduction of CAR- and CD46-negative CHO cells by HAdV5wt in the absence of presence of FX. (A), Dose-response
effect of FX on cell transduction. CHO-K1 cells were transduced by GFP-expressing HAdV5wt vector in the presence of increasing concentration of FX.
Both FXmax and FXGLmax corresponded to 8 mg/ml. Results were expressed as relative transduction efficiency (RTE). Transduction efficiency, in
arbitrary units (AU), was given using the formula:TE = (percentage of GFP-positive cells)6(MFI). The RTE was calculated using the formula:RTE = (TE
with FX):(TE without FX), with the 1-value attributed to TE in the absence of FX. (B), CHO-K1 (double CAR- and CD46-negative cells) and CHO-2241
(triple CAR- , CD46-, and HSPG-negative cells) were transduced by HAdV5wt vector at MOI 2,500 (left half of the bar graph) or MOI 5,000 (right half of
the bar graph) in the absence or presence of FX (8 mg/ml). Results were expressed as RTE, with the 1-value attributed to the TE of CHO-K1 in the
absence of FX.
doi:10.1371/journal.pone.0018205.g002

Figure 1. SPR analysis of the in vitro binding of HAdV5 hexon capsomeres and HAdV5-based vectors to immobilized HS with or
without factor X (FX) bridging. Representative sensorgrams for (A) HAdV5 hexon capsomeres alone, or with FX or Gla domainless FXGL, (B)
HAdV5wt virions alone or with FX, and (C) HAdV5 virion mutants HAdV5FTTAT and HAdV5PbEGD alone or with FX. In (A) and (B), the molecular ratio of
FX to hexon protein (isolated capsomeres as in (A), or virion-encapsidated hexons, as in (B)) is indicated in parenthesis. The control sensorgrams with
FX and FXGL alone were obtained at FX and FXGL concentrations of 8 mg/ml, corresponding to the concentration in human adult serum (FXmax). In
(C), FX was also used at 8 mg/ml. Hexon capsomeres, HAdV5wt virions and HAdV5FTTAT and HAdV5PbEGD mutants bound to immobilized HS only in
the presence of FX. RU, response units.
doi:10.1371/journal.pone.0018205.g001
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capsomeres), and 65-fold for FXmax (Fig. 3 B). No enhancement,

but instead a slight decreasing effect of FX on TE was observed in

CHO-2241 (Fig. 3 A). This indicated that FX was able to rescue

the loss of infectivity due to the KKTK-to-TTAT mutation in the

fiber shaft, provided that HSPG molecules were present at the cell

surface. This also indicated that the putative HSPG-binding motif

KKTK was dispensable for the FX-mediated bridging of

HAdV5wt virion to surface HSPG molecules, confirming the

major role of hexon as the ligand of FX [24]. It could not be

excluded however that other fiber interactions, besides the

assumed interaction with HSPG, might be affected as a

consequence of the TTAT mutation, although the TTAT mutant

fibers folded as trimers and were incorporated at wild-type levels in

the adenoviral capsid (data not shown).

Human adenovirus serotype 35 (HAdV35) utilizes CD46 and

av-integrins as primary and secondary receptors, respectively

[41,53]. We next investigated the possible influence of RGD-

dependent integrins on the FX+HSPG-mediated enhancing effect

on transduction by HAdV5 vectors. To this aim, the HAdV5P-

bEGD penton base mutant was used in transduction assays of

CHO-K1 and CHO-2241 cells. In the absence of FX,

HAdV5PbEGD showed a lower TE of both CHO-K1 and

CHO-2241 cells, compared to HAdV5wt used at the same MOI

(Fig. 3 A). In the presence of FXmax, we observed an

enhancement of transduction of CHO-K1 cells, at levels similar

to those of HAdV5wt or HAdV5FTTAT (50- to 100-fold), whereas

no effect was detectable in CHO-2241 (Fig. 3 A). This showed

that FX was able to rescue the negative effect of the penton base

RGD-to-EGD mutation in HSPG-expressing CHO-KI cells, but

not in HSPG-negative CHO cells. Similar to the HAdV5FTTAT

fiber shaft mutant, this result implied that the penton base RGD

motifs and the integrins played no significant role in the

FX+HSPG-mediated enhancement of cell transduction using

HAdV5 vectors.

Interestingly, CHO-2241 seemed to be slightly more permissive

to HAdV5wt compared to CHO-K1 infected at the same MOI in

the absence of FX, which could suggest a higher accessiblity of

alternative virus attachment receptor(s) other than HSPG for the

primary binding of HAdV5wt to CHO-2241 cells, e.g. integrins

[12,54,55]. The possibility of integrins acting as alternative

attachment receptor of Ad5 to CHO cells in the absence of

CAR and HSPG were envisaged, based on the results obtained

with our RGD-mutant vector : HAdV5PbEGD transduced CHO-

2241 cells in the absence of FXmax with a 10-fold lower efficiency,

compared to HAdV5wt (Fig. 3 A). However, since CHO cells lack

ß-integrins and fail to express aVß3/5 integrin heterodimers at

their surface, other types of RGD-interactors/ligands might be

responsible for the low levels of HAdV5PbEGD-mediated trans-

duction.

Paradoxical behavior of serotype 35 fiber-pseudotyped
HAdV5F35 vector in the context of FX and HSPG

Fiber swapping between adenovirus serotypes has been widely

used as a rational strategy to (i) explore the various functions

associated with fibers in fundamental virology [56–58], (ii) to allow

fiber-pseudotyped vectors to evade prexisting neutralizing anti-

bodies [59,60], or (iii) to ablate the natural tropism of the virus and

confer a novel transductional retargeting capacity to the

pseudotyped vectors [24,27,34,37,61–67]. Novel and sometimes

unexpected properties, e.g. nonnative entry pathway and/or

aberrant cellular trafficking, have been observed with such

chimeric adenoviruses. This was the case for the serotype 35

fiber-pseudotyped HAdV5F35 vector [68], or for HAdV5F2/

BAdV4, which carried bovine-human chimeric fibers [39].

Figure 3. Transduction of CHO-K1 or CHO-2241 cells by GFP-expressing, fiber mutants of HAdV5-based vectors in the absence (w/
o) or presence of (with) FX (8 mg/ml). (A), HAdV5wt, mutants HAdV5FTTAT and HAdV5PbEGD and serotype 35 fiber-pseudotyped HAdV5F35 were
all used at MOI 2,500, and transduction efficiency were expressed as arbitrary units (AU), as described in the legend to Fig. 2. (B), Dose-response effect
of FX on cell transduction by HAdV5FTTAT mutant. CHO-K1 cells were transduced by GFP-expressing HAdV5FTTAT mutant vector in the presence of
increasing concentration of FX (FXmax = 8 mg/ml). Results were expressed as relative transduction efficiency (RTE; refer to the legend to Fig. 2).
doi:10.1371/journal.pone.0018205.g003
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A phylogenetic study of HAdV fiber shaft has revealed the

absence of the putative heparan sulfate (HS)-binding site (KKTK

motif) in all HAdVs other than species C [69]. The serotype 35

fibers carried by the chimeric HAdV5F35 vector lacked the

KKTK motif, and species B HAdV35 has been shown to

interact with cellular HSPG via capsid protein domains other

than the fiber knob [42]. We therefore wanted to determine the

capacity of our chimeric HAdV5F35 vector to bind to HS with

or without a FX bridge. Firstly, we analyzed the binding of

HAdV5F35 to immobilized FX in SPR assays, and found that

HAdV5F35 bound to FX with a higher response compared to

HAdV5wt used at the same particle input (Fig. 4 A). We also

observed a higher FX-mediated binding of HAdV5F35 to

surface-immobilized HS, compared to HAdV5wt (Fig. 4 B).

No effect was observed with FXGL (Fig. 4 B). In dose-

dependent binding assays, maximum binding was observed with

480 copies of FX per HAdV5F35 virion, i.e. a stoichiometric

ratio of 2 FX molecules per hexon capsomere, with no further

significant increase obtained using 3 copies of FX per hexon (720

FX copies per virion; Fig. 4 C). This differed from the

sensorgrams of FX-mediated binding of HAdV5wt to immobi-

lized HS, which was not maximal with 2 copies of FX per hexon,

and still increased in the range 2 to 10 copies of FX per hexon

(refer to Fig. 1 C). This difference could be due to the relatively

higher accessibility of hexon capsomeres to FX in short fiber-

carrying HAdV5F35 vector, compared to the long fiber-carrying

vector HAdV5Fwt.

The influence of FX-mediated bridging of HAdV5F35 to

cellular HSPG on the transduction of CHO-K1 cell was then

tested with increasing MOI, from 200 to 5,000 vp/cell. HAdV5wt

was used at the same MOI for comparison and as control. As

expected, the transduction efficiency with HAdV5wt vector was

significantly higher when FX was added to the virus inoculum,

from 14-fold to 30-fold higher at MOI 200 and 5,000 vp/cell,

respectively (Fig. 5, A and B, panels a). With HAdV5F35

however, no enhancing effect on transduction of CHO-K1 cells

was observed in the presence of FX, compared to the vector alone,

but instead a 3- to 4-fold decreasing effect at high MOI (Fig. 5, A
and B, panels b). Likewise, in control experiments using

HAdV5F35 and permissive CHO-CD46 cells, no increasing effect

of FX on cell transduction was observed, but a decreasing effect at

high vector doses (Fig. 5, A and B, panels c). A similar

phenomenon has previously been reported, and attributed to a

blockage in postinternalization step(s) of chimeric vectors carrying

serotype 35 fibers [37]. The fact that FX-HAdV5F35 complexes

were less efficient than FX-HAdV5wt complexes in cell transduc-

tion was paradoxical, considering (i) that both HAdV5wt and

HAdV5F35 carried the same hexon capsomeres of serotype 5, (ii)

which had the same ligand, FX, and (iii) that the FX-HAdV5F35

complexes were capable of binding to surface-immobilized HS

and to cellular HSPG with an apparent higher affinity than that of

the FX-HAdV5wt complexes.

Cell attachment and internalization of FX-HAdV5F35
complex in HSPG-expressing CHO cells

The following experiments were designed to explain the 2-log

difference between FX-HAdV5wt and FX-HAdV5F35 complex-

es in the transduction of CHO-K1 cells. We investigated the (i)

cell attachment, (ii) cellular uptake (endocytosis and internaliza-

tion), and (iii) intracellular trafficking of FX-HAdV5F35, in

comparison with FX-HAdV5wt complexes, to determine which

step(s) was blocked or altered in the infection pathway. The

rationale for using CHO-K1 cells as target cells, was that they

express neither CAR nor CD46, and thus made possible the

analysis of the cell entry pathway of the HAdV5wt and

HAdV5F35 vectors mediated by their FX-bridging to cellular

HSPG, while avoiding any bias due to adenovirus serotype-

specific receptors.

(i) Cell attachment. Samples of HAdV5wt and HAdV5F35

suspension were mixed with FX at a final concentration of 8 mg/

ml, and the mixture added to CHO-K1 cell monolayers at a MOI

of 5,000 vp/cell. Incubation was carried out for 1 h at 4uC, which

allowed for virus-cell attachment but not virus entry or endocytosis

[70]. After extensive rinsing to remove unattached virus, cells were

harvested and cell-bound virus determined by quantitative PCR

analysis (qPCR) of viral genomes after DNA extraction, based on

the fiber gene copy number normalized to the ß-actin gene. FX

significantly increased the amounts of cell-bound virions, by a

factor of 5 to 6 for HAdV5wt, and by a factor of 10 for

HAdV5F35 (Fig. 6 A). This confirmed the apparent higher

affinity of FX for HAdV5F35 as observed in vitro, compared to

HAdV5wt (refer to Fig. 4). However, this was in apparent

contradiction with the lower transduction efficiency of the FX-

HAdV5F35 complex, compared to FX-HAdV5wt (refer to Fig. 5),

and excluded the cell attachment as the limiting step for FX-

HAdV5F35-mediated transduction.

(ii) Cellular uptake. The subsequent step of endocytosis was

then investigated. After an incubation period of 1 h at 4uC with

FX-vector complexes at MOI 5,000, as above, samples of CHO-

K1 cells were transferred to 37uC and harvested after 1 h. After a

brief trypsin treatment, to remove vector particles remaining

bound to the plasma membrane [71], cell samples were subjected

to DNA extraction and viral genomes determined by qPCR, as

above. In the absence of FX, the intracellular content was not

significantly different between HAdV5wt and HAdV5F35. In the

presence of FX, there was a 2-fold increase in HAdV5wt uptake,

and a 4-fold increase for HAdV5F35 (Fig. 6 A). This suggested

that the mechanism responsible for the lower cell transduction by

the FX-HAdV5F35 complex did not involve the endocytic step of

the vector.

(iii) Extracellular release. The previous results incited us to

explore the exocytic pathway of cell-internalized vector particles,

i.e. the possibility that significant amounts of HAdV5F35 particles

might be released in the extracellular medium, either by shedding

of vector-containing microvesicles (MVs) budding from the plasma

membrane, or by exocytosis, i.e. the release of exosomes (EXOs)

segregated within the lumen of multivesicular bodies (MVBs)

(reviewed in [72]). CHO-K1 cell culture supernatants were

harvested at 2 h and 24 h post incubation with of HAdV5wt or

HAdV5F35 at MOI 5,000, with or without FX. The extracellular

MVs and EXOs from the culture supernatants were separated by

sequential and differential ultracentrifugation. After DNA

extraction, the amount of virus particles in each microparticle

population was determined by qPCR quantification of the viral

genomes. In the absence of FX, HAdV5wt genomes were

recovered in significant amounts in MVs and EXOs, and these

amounts decreased in both types of microparticles when

transduction was performed in the presence of FX (Fig. 6 B).

Interestingly, the profile was different for HAdV5F35, with and

without FX: (i) HAdV5F35 genomes were undetectable in either

microparticle population in the absence of FX, but became

detectable in the presence of FX; (ii) HAdV5F35 was recovered in

higher amounts in EXOs, compared to MVs (2-fold; Fig. 6 B).

This pattern suggested that the intracellular trafficking was likely

responsible for the low efficiency of FX-HSPG-mediated

transduction of CHO-K1 cells by HAdV5F35, and the next

experiments were designed to determine which subcellular

compartment(s) were possibly implicated.
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Figure 4. SPR analysis of the in vitro binding of chimeric HAdV5F35 vector to (A) surface-immobilized FX, or (B, C) immobilized HS
with or without FX or FXGL. (A), Representative sensorgrams for HAdV5wt vector (discontinuous lines) injected at 26109 and 46109 vp/ml, or for
HAdV5F35 injected at the same doses (solid lines). (B), Comparison of binding to HS of HAdV5wt and HAdV5F35 vector particles (26109 vp/ml) in the
presence of FX or FXGL at 720 copies per vector particle. Controls shown are FX and FXGL alone. For better clarity, the sensorgrams for virions alone,
which superimposed those of FX and FXGL, are not shown (refer to Fig. 1C). (C), Dose-response effect of FX on HAdV5F35 binding to immobilized HS.
Note that a detectable signal was observed for 120 copies of FX per virion, and reached the maximal value for 480 copies/vp.
doi:10.1371/journal.pone.0018205.g004

Cellular Trafficking of FX-Ad5fiber35 Complex

PLoS ONE | www.plosone.org 7 May 2011 | Volume 6 | Issue 5 | e18205



Intracellular trafficking and compartmentalization of
FX-HAdV5F35 complexes in HSPG-expressing CHO cells

(i) Live cell imaging. The capsids of HAdV5wt and

HAdV5F35 vectors were chemically labeled with Alexa-488, and

mixed with FX, before incubation with CHO-K1 cells at high

vector multiplicity (10,000 vp/cell). Intracellular virions were

tracked in situ in live cells by time-lapse microscopy at early times

of infection (0 to 4 h pi). As early as 20–30 min pi, most of the

HAdV5wt signal was found in the vicinity of or within the nucleus

(Fig. 7 A). This observation was consistent with the well-described

rapid process of endocytosis, endosomal escape and intracellular

trafficking of HAdV5wt virions [22,73], and suggested that FX

had no significant effect on the internalized HAdV5wt particles

and the kinetics of their intracellular transit. This implied that FX

acted at earlier steps, an hypothesis consistent with the role of

molecular bridge between viral hexon capsomeres and cell surface

HSPG played by FX. The fluorescence pattern of HAdV5F35

vector was however significantly different. At 30 min pi, no

fluorescent signal was observed in the nucleus, instead multiple

fluorescent dots were visible in the cytoplasm, and most of the

fluorescence remained cytoplasmic until 3 h pi (Fig. 7 B). This

suggested that HAdV5F35 particles were delayed in terms of

intracellular trafficking, compared to HAdV5.

(ii) Retention of HAdV5F35 particles in the late

endosomal compartment. To determine the nature of the

subcellular compartment in which HAdV5F35 was retained,

CHO-K1 cells were transduced by baculovirus vectors expressing

fluorescent markers designed for live-imaging of different cellular

organelles or compartments. We found that the green fluorescent

signal of HAdV5F35 colocalized with red fluorescent Lamp1

protein [74,75], a marker of the lysosomal/late endosomal

compartment (Fig. 7 C). This result suggested that the retarded

trafficking to the nucleus of HAdV5F35 particles was due to their

segregation into the late endosomal compartment.

(iii) Evaluation of the baculovirus-mediated labeling of

cellular organelles and compartments for the study of

adenoviral vector pathway in living cells. To verify the

validity of our observation of late endosomal compartment-

alization of HAdV5F35 particles, HeLa, HEK-293, CHO-K1 or

CHO-CD46 cells were transduced with recombinant baculo-

viruses expressing Lamp1-RFP, as above, or Rab5A-RFP [76], a

marker of the early endosomes, 24 h prior to incubation with

Alexa-488-labeled HAdV5wt particles or Cy5-labeled HAdV3

penton dodecahedrons (Pt-Dd). No image of colocalisation of

Alexa-488 labeled HAdV5wt with RFP-labeled early endosomes

could be captured, even after short incubation period: as early as

after 10–15 min incubation with living cells at 37uC, green

Figure 5. Comparison of transduction efficiency of (a, b) CHO-K1 cells or (c) CHO-CD46 by (a) HAdV5wt, and (b, c) chimeric
HAdV5F35 vectors at different MOI (200, 1,000 or 5,000 vp/cell) in the absence (w/o) or presence of (with) FX (8 mg/ml). Results were
expressed as (A) the percentage of GFP-positive cells, or (B) relative transduction efficiency (RTE; refer to the legend to Fig. 2). In B, the number on
top of each bar corresponded to the fold increase in RTE, with the 1-value attributed to the TE of CHO-K1 or CHO-CD46 cells transduced by
HAdV5F35 at MOI 200. Note that RTE of CHO-K1 cells with HAdV5F35 was lower in the presence of FX than in the absence of FX, at all MOI tested.
doi:10.1371/journal.pone.0018205.g005
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fluorescent dots of HAdV5wt were already found within the

cytoplasm, outside of the red fluorescent endosomal compartment

(Fig. 7 D). This confirmed the scenario described by Greber et al.,

which showed that incoming HAdV5wt particles escaped very

rapidly from early endosomes [73]. By contrast, Cy5-labeled Pt-

Dd localized in the late endosomal compartment of HeLa or CHO

cells after incubation at 37uC for 1 h (Fig. 7 E), as expected for

the HAdV3 pathway [40,77–79]. The usefulness of baculovirus-

mediated labeling of specific organelles for tracking adenovirus

particles or adenoviral components within living cells was

therefore validated using our in-house model of HAdV3 Pt-Dd.

Electron microscopy (EM) of cell-internalized HAdV5wt
and HAdV5F35 particles in the presence of FX

To further explore the cellular localization of internalized vector

particles in the presence of FX, CHO-K1 cells were incubated with

HAdV5wt or HAdV5F35 vector (MOI 10,000) alone or complexed

with FX (8 mg/ml). Cells were harvested at 2 h pi at 37uC, and

processed for EM. As expected for CAR-negative cells transduced

in the absence of FX, rare HAdV5wt virions were observed within

the cells, in vesicles (Fig. 8 A, i) or free in the cytoplasm (Fig. 8 A,
ii). Occasionally, HAdV5wt virions were seen attached to the

invaginated plasma membrane forming clathrin-coated vesicles: in

such cases, the average distance of the capsid to the plasma

membrane was found to be 2564 nm (m 6 SEM), a value

consistent with the length of serotype 5 fiber (Fig. 8 A, iii and iv).

This suggested that in the absence of CAR and FX, HAdV5wt

bound directly to components of the CHO-K1 plasma membrane

acting as alternative receptors. In the presence of FX however,

HAdV5wt found in vesicles seemed to be associated with electron

lucent material (Fig. 8 B, i). Very rare HAdV5wt particles were

found within the cells at 2 h pi, likely due to their rapid transit to the

nucleus and traverse of the nuclear pore (Fig. 8 B, ii).

The pattern was different for CHO-K1 cells incubated with FX-

HAdV5F35 complex for 2 h at 37uC. No particle with the regular

shape of adenovirions was observed in any of the cellular

compartments, but each cell section showed large vesicles

containing abundant, electron dense material (Fig. 9 a). This

pattern was consistent with the results of confocal microscopy

showing the accumulation of FX-HAdV5F35 complexes in

lysosomes (refer to Fig. 7). Interestingly at the cell surface,

HAdV5F35 particles were frequently seen connected to the plasma

membrane via a bridge consisting of filamentous material (Fig. 9 b–
d). The length of these bridges varied from 80 to 140 nm, with an

average at 105 nm, a value compatible with the thickness of the

fibrilllous glycocalyx coat (77 to 201 nm; [80]). By contrast, in

control CHO-CD46 cells incubated with HAdV5F35 vector in the

absence of FX, cell-bound particles were seen at a distance of

1362 nm from the plasma membrane outer leaflet (Fig. 9 e), a

value compatible with the short-shafted serotype 35 fiber bound to

its CD46 receptor. Enlargements of cell-bound HAdV5F35

particles showed fuzzy material decorating the viral capsid (Fig. 9
d), conferring the whole complex a diameter of 10766 nm, instead

of 80–85 nm for free virions (Fig. 9: compare the sharp contour of

the control HAdV5F35 virion in panel e to the blurred contour of

FX-HAdV5F35 complex in panel d). We hypothesize that the

filaments emanating from the cell which bridged the vector to the

cell surface represented HSPG, components of the cell glycocalyx

[80], whereas the fuzzy material which coated the capsid

corresponded to FX molecules bound to hexon.

Cellular uptake and retention of FX with or without
adenoviral particles

Our observation that FX enhanced the vector-cell binding for

both HAdV5wt and HAdV5F35, but failed to augment the FX-

HAdV5F35-mediated cell transduction, raised the question of the

fate of FX after the cell attachment of the FX-vector complex: was

FX coendocytosed with HAdV5wt or HAdV5F35, or did it

remain outside of the cell? To address this issue, Alexa-555-labeled

FX was preincubated with Alexa-488-labeled vector particles, and

the complex added to CHO-K1 cells. As control, Alexa-555-

labeled FX was added to CHO-K1 cells alone, without

preincubation with the vector. Both types of samples were

followed by live cell imaging. We found that FX alone could bind

to CHO-K1 cells and was rapidly endocytosed: intracellular FX

was detected as early as 15–20 min post incubation (Fig. 10 A).

No detectable cellular uptake of FX was observed in HSPG-

deficient CHO-2241 cells (not shown). In CHO-K1 cells

incubated with the double labeled FX-HAdV5wt complex, both

fluorescent signals were observed within the cell at 15–20 min pi,

and most signals colocalized in cytoplasmic dots and patches

(Fig. 10 B). At later times pi (45–60 min), HAdV5wt particles

Figure 6. Cellular uptake and extracellular release of HAdV5wt
and HAdV5F35 vectors by CHO-K1 cells. (A), Cell attachment of
vector (MOI 5,000) was performed at 4uC for 1 h, and cellular
internalization at 37uC for 1 h, respectively, with or without FX (8 mg/
ml), as indicated on the x-axis. The number of viral genome copies was
determined by qPCR of the fiber gene, normalized to the ß-actin gene.
(B), Extracellular vectors associated with microvesicles (MVs) or
exosomes (EXOs) recovered from the extracellular medium at 72 h
post transduction, were determined as above.
doi:10.1371/journal.pone.0018205.g006
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were found to localize at the nuclear periphery or inside the

nucleus, and less colocalization with FX was visible (Fig. 10 C). In

CHO-K1 cells incubated with double labeled FX-HAdV5F35

complex, FX and virions remained colocalized within the

cytoplasm until late times pi (3 h pi; Fig. 10 D). This confirmed

the rapid intracellular transit of HAdV5wt, in contrast to the slow

trafficking and vesicular retention of HAdV5F35.

We next investigated whether the vesicular retention or

sequestration of HAdV5F35 could be explained by a higher

stability of FX-HAdV5F35 complex in the acidic environment of

the late endosomal compartment, compared to the higher pH of

early endosomes, the endocytic compartment of HAdV5wt. This

was determined indirectly, using SPR analysis of the apparent

affinity between FX and serotype 5 hexon, the capsomeres which

were in common between HAdV5F35 and HAdV5wt and the

targets of FX. FX was covalently immobilized onto the biosensor

chip, and hexon protein diluted in the same 0.05 M phosphate

buffer but with the different Na2HPO4:NaH2PO4 ratios required

to obtain the desired pH values. The sensorgrams obtained

showed that the profile of binding of serotype 5 hexon to FX was

significantly higher at pH 5.7, compared to neutral pH, with an

intermediate interaction observed at pH 6.3 (Fig. 11). This

suggested that the FX-HAdV5F35 complex dissociated at slower

rate in the acidic environment of late endosomal vesicles,

compared to that of FX-HAdV5 complex in early endosomes.

This vesicular sequestration would account for the lower

Figure 7. Confocal microscopy of live cells transduced by adenoviral vector particles or capsid components (penton dodecamers).
(A–C), Confocal microscopy of live cells (CHO-K1) transduced by Alexa-488-labeled adenoviral vectors, used at 10,000 vp/cell and complexed with FX
(8 mg/ml). (A) HAdV5wt, 30 min pi; (B, C) HAdV5F35, 3 h pi. (i), Green channel image; (ii), phase contrast; (iii), merge of (i) and (ii). In (C), CHO-K1 cells
were transduced by recombinant baculoviral vector expressing RFP-tagged, late endosome marker Lamp1 protein, 24 h before incubation with
HAdV5F35 vector. (i), Green channel image; (ii), phase contrast; (iii) orange channel; (iv), merge of (i) and (iii). (D) Live HeLa cells transduced by
recombinant baculovirus expressing RFP-tagged, early endosome marker Rab5A protein, were incubated 24 h later with Alexa-488-labeled HAdV5wt
particles without FX, at 10,000 vp/cell and 37uC. Picture shown was taken at 20 min after incubation with HAdV5wt. Note that most of the virus signal
is weak and diffuse, but some green fluorescent dots are visible within the cytoplasm (white arrows). (E), Live CHO-CD46 cells transduced by
recombinant baculovirus expressing RFP-tagged, late endosome marker Lamp1 protein, were incubated 24 h later with Cy5-labeled HAdV3 penton
dodecahedrons (Pt-Dd) at 37uC. Picture shown was taken at 60 min after incubation with Pt-Dd. (i), Cy5 channel; (ii), phase contrast image; (iii) RFP
channel; (iv), merge of (i) and (iii).
doi:10.1371/journal.pone.0018205.g007
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transduction efficiency of (i) the FX-HAdV5F35 complex,

compared to FX-HAdV5wt complex (refer to Fig. 5, panels a

and b), and (ii) of the FX-HAdV5F35 complex, compared to the

HAdV5F35 vector alone (refer to Fig. 5, panels b).

Discussion

It was recently shown that HAdV5 interaction with human

blood coagulation FX, which results in the formation of FX-

HAdV5 complexes, is the major parameter responsible for the

massive liver uptake of HAdV5 vector particles administered

systemically. FX binds to the hexon capsomeres via its Gla

domain, and subsequently interacts with cell surface-exposed

HSPG molecules which are present in abundance at the surface of

liver Kupffer cells [25–34]. This prompted several laboratories to

engineer HAdV5-based vectors with hexon modifications designed

to abolish the FX binding and reduce their hepatotropism

(reviewed in [24]). However, the species B member HAdV35

Figure 8. Electron microscopy of CHO-K1 cells incubated with HAdV5wt at 10,000 vp/cell, (A) in the absence (w/o), or (B) presence
of FX (8 mg/ml) for 2 h at 376C. (A), (i) and (ii): General views of cell sections showing (i) intravesicular and (ii) cytoplasmic vector particles. In (iii)
and (iv), a vector particle (Vir) is seen within a clathrin-coated vesicle (CCV); (iv), enlargement of the CCV shown in (iii), with measurements of the
space between the vector particle and the inner leaflet of the vesicular membrane. N, nucleus; NPC, nuclear pore complexes viewed in a tangential
section. (B), (i): vector particle within an endocytic vesicle in the vicinity of a nuclear pore; (ii), viral core seen in the process of traverse of the nuclear
pore.
doi:10.1371/journal.pone.0018205.g008
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[36], the serotype 35 fiber-pseudotyped vector HAdV5F35 [37],

and the HAdV5/35 chimeric vector carrying serotype 35 fiber

knobs [38] all showed a decreased hepatotropism, compared to

HAdV5. Likewise HAdV5F2/BAdV4, another fiber-pseudotyped

vector which carried human-bovine chimeric fibers, was able to

bind to FX in vitro, but ineffective to promote liver transduction in

vivo [39]. The fact that both HAdV5F35 and HAdV5F2/BAdV4

vectors carried the same hexon capsomere serotype and varied

only in their fiber subtype incited us to explore the role of the fiber

in the cell entry pathway and transduction mediated by HAdV5-

based vectors in the presence of FX.

Our results confirmed that FX bound to HAdV5 hexon protein

via its Gla-domain and enhanced the binding of serotype 5 hexon

protein and HAdV5wt virus particles to surface-immobilized HS.

We also found that FX promoted the interaction of HS with

HAdV5FTTAT and HAdV5PbEGD mutants in vitro, significantly

enhanced the cell transduction by HAdV5wt, and was able to

rescue the lower infectivity of HAdV5FTTAT and HAdV5PbEGD

mutants. Since FX contains a RGD tripeptide motif at position

227–229, it was conceivable that in the case of HAdV5PbEGD

mutant, FX might compensate for the integrin binding defect of

penton base EGD mutant. However, this hypothesis could be

excluded for two reasons: (i) activated FX (FXa) which had lost the

activation peptide (amino acid sequence 183–234) including the

RGD motif, showed the same effect on HAdV5PbEGD infectivity

as RGD-containing FX (data not shown); (ii) the activity of FX

required the presence of HSPG at the cell surface, whereas RGD-

dependent integrins seemed to be dispensable.

Intriguingly, however, we found that, although FX promoted

the binding of fiber-pseudotyped vector HAdV5F35 to HS in vitro

and to cellular HSPG in vivo, it failed to enhance, but instead

decreased, the HAdV5F35-mediated transduction of CAR- and

CD46-negative, but HSPG-positive CHO cells. It was recently

hypothesized that the absolute levels of CAR, CD46, and HSPG

on the surface of target cells would define the importance of FX in

modulating cell binding and transduction mediated by HAdV5,

HAdV35, and serotype 5/35 chimeric viruses: thus, in the

presence of FX, the high affinity of serotype 35 fiber for CD46

Figure 9. Electron microscopy of CHO-K1 cells (a–d) incubated with HAdV5F35 at 10,000 vp/cell in the presence of FX (8 mg/ml), and
harvested after 2 h at 376C. (a), Representative CHO-K1 cell section showing a cytoplasmic vesicle containing abundant electron dense material.
(b–d), Cell surface-bound HAdV5F35 particles. (e), CHO-CD46 cells incubated with HAdV5F35 in the absence of FX (w/o FX). Note the difference in
size and sharpness of the viral contour between HAdV5F35 particles seen in (e) and in (b–d).
doi:10.1371/journal.pone.0018205.g009
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would overcome the serotype 5 hexon:FX interaction, resulting in

reduced liver transduction by the chimeric vector HAdV5F35 in

vivo, compared to HAdV5 [37]. However, this did not explain the

limitation by FX of the transduction of CHO-CD46 cells in vitro by

chimeric vectors carrying serotype 35 fibers, as previously reported

[37], and observed in the present study (refer to Fig. 5), or the

lower transduction of CD46 transgenic hepatocytes by a chimeric

HAdV5/35 vector in vivo [38]. In the latter study, CD46-

transgenic mice injected with a HAdV5/35-based chimeric vector

carrying serotype 35 fiber knobs showed a two orders of

magnitude lower liver transduction and 20-fold lower adenoviral

genome content, compared to HAdV5-based vector [38].

Our analysis of the cell entry and trafficking pathway of

HAdV5F35 vector in complex with FX provided some clues to

reconcile these apparent contradictions, and to understand the

possible mechanisms underlying the FX effect. We showed that

FX augmented by 10-fold the attachment and cellular uptake of

HAdV5F35, and confirmed that the negative effect of FX on

HAdV5F35-mediated cell transduction did not result from a

binding defect at the cell attachment step, but was due to

Figure 10. Confocal microscopy of live cells (CHO-K1) incubated with (A) Alexa-555-labeled FX alone (8 mg/ml), or (B, C) in complex
with Alexa-488-labeled HAdV5wt, or (D) in complex with Alexa-488-labeled HAdV5F35, both vectors used at 10,000 vp/cell. Images
were taken at 10-min intervals, until 3 h post incubation (pi). (i), phase contrast image; (ii) orange channel; (iii) green channel.
doi:10.1371/journal.pone.0018205.g010
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intracellular mechanisms, as previously hypothesized [37]. Ac-

cording to our data, (i) the primum movens was the fiber 35-mediated

addressing of HAdV5F35 particles (bound or unbound to FX) to

the late endosomal/lysosomal compartment; (ii) FX-bound

HAdV5F35 particles remained sequestered in this compartment,

due to the higher stability of the FX-HAdV5F35 complexes in an

acidic environment, which in turn (iii) delayed the trafficking of

HAdV5F35 particles to the nucleus. (iv) An additional mechanism

involved the exocytic pathway: following the cellular uptake of

FX-HAdV5F35 complexes, significant amounts of exosome-

associated HAdV5F35 were released in the extracellular milieu,

a phenomenon which was not observed in the absence of FX. This

was not observed with HAdV5wt either, with or without FX. Our

results therefore addressed the puzzling question why, in contrast

to HAdV5 vectors, fiber-chimeric vectors such as HAdV5F35 do

not efficiently transduce liver cells after intravenous injection,

although they contain the same HAdV5 hexons, which mediate

binding to heparan sulfate on liver cells via blood FX. Our data

suggested that the retention of HAdV5F35 particles in late

endosomal compartments, triggered by HAdV35 fibers, was

further enhanced by the hexon:FX:heparan sulfate interaction.

This mechanism led to an abortion of HAdV5F35 transduction in

the presence of FX, and most likely explained why HAdV5F35

vectors do not transduce liver cells after intravenous injection in

mice.

The intracellular trafficking pathway of subspecies B HAdVs

has been well studied [41,58]. It has been shown that, despite high

levels of binding to cells and similar internalization kinetics, fiber-

pseudotyped or full serotype species B HAdVs remain in late

endosomes or lysosomes for relatively long periods of time after

infection, and take significantly longer than species C HAdV to

reach the nucleus [41,58]. This supposedly favored the recycling of

the vectors to the cell surface and reduce their transduction

efficiency, in contrast to HAdV5. Our experimental data on

exosomal release of serotype 35 fiber-pseudotyped vector

HAdV5F35 infection in the presence of FX supported the latter

hypothesis. In conclusion, FX would be benefical to the infection

of CAR-lacking cells by species C HAdVs, e.g. HAdV5, which

transit via the early endosomal pathway, but detrimental to species

B HAdVs, e.g. HAdV35, which follow the late endosomal

pathway.

In the light of the acid stability of the FX-HAdV5F35 complex

that we observed, it remained to explain the relative efficient

transduction of CHO-CD46 cells by HAdV5F35 in the presence

of FX (refer to Fig. 5). We assume that in the absence of CD46,

such as in CHO-K1 cells, only the alternative receptors HSPG via

the intermediate ligand FX would mediate the cell binding and

entry of HAdV5F35, and all or nearly all vector particles would be

complexed with FX, and retarded or trapped within the late

vesicular compartment. In the presence of CD46 receptors

however, e.g. in CHO-CD46 cells, FX became dispensable, and

a significant number of free, FX-unbound HAdV5F35 particles

would be endocytosed via the CD46 pathway. These free particles

would normally escape the late endosomal vesicles and reach the

nucleus, unlike FX-complexed HAdV5F35 particles.

Previous analyses of the intracellular fate of chimeric adenovi-

ruses have shown that the fiber protein is the major determinant of

the cell trafficking of incoming virions [57,58,81]. Thus, the

targeting of HAdV5 pseudotyped with fibers of serotype 7 (a

serotype belonging to species B HAdV) to the lysosomal pathway is

under the control of the fiber serotype [57]. The present study

provided another example of dominant effect of species B fiber,

serotype 35 fiber, which occurred in the absence of CD46 and any

other cognate fiber receptor at the plasma membrane. The

endocytosis and retention of FX-HAdV5F35 complex in the late

endosomal compartment, characteristic of species B HAdVs

[41,58], implied that the nature of the adenoviral fiber was

dominant over the high affinity serotype 5 hexon:FX interaction as

a determinant of the choice of the endocytic compartment and

intracellular trafficking pathway of HAdV particles. This con-

firmed previous reports on the intracellular functions associated

with the fibers carried by incoming adenovirions [57,58,70,81,82].

The molecular mechanism and factors involved in the cellular

traffic determinism of adenoviral fiber remains an open question,

Figure 11. SPR analysis of the pH-dependence of FX:hexon protein interaction. FX was immobilized on the sensorchip, and a hexon
protein solution in 150 mM NaCl, 0.05 M sodium phosphate buffer of various pH values was injected into the flowcell.
doi:10.1371/journal.pone.0018205.g011
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but should be taken into consideration in the future design of

target tissue-redirected adenoviral vectors.

Materials and Methods

Cell lines
E1A-E1B-trans-complementing HEK-293 cell line (abbreviated

293; CRL 1573) was obtained from the American Type Culture

Collection (Manassas, Va). HEK-293 cells were cultured as

monolayers in DMEM supplemented with 10% fetal calf serum

(FCS, Sigma), penicillin (200 U/ml), and streptomycin (200 mg/

ml; Gibco-Invitrogen) at 37uC and 5% CO2. The 293-derived,

fiber-trans-complementing cell line, abbreviated 293-Fiber, was

obtained from Transgene SA (Strasbourg, France). 293-Fiber cells

were grown in the same medium as 293 cells, supplemented with

hygromycin at 350 mg/ml [70,83]. Chinese hamster ovary cells

CHO-K1, and proteoglycan-deficient CHO-2241 cells (pgsB-618,

ATCC code CRL-2241) were obtained from the European

Collection of Cultured Cells via the Institut de Biologie

Structurale, Grenoble, France [79]. CAR-expressing CHO cells

(CHO-CAR) were obtained from Dr. J. Bergelson [4], and CD46-

expressing CHO cells (CHO-CD46) from Dr. D. Gerlier [84].

CHO-K1, CHO-2241, CHO-CAR and CHO-CD46 cells were

cultured as monolayers in Alpha-MEM supplemented with 10%

FCS, penicillin and streptomycin as above (Gibco-Invitrogen). All

cells were incubated at 37uC under 5% CO2 .

HAdV5-based vectors and nomenclature
Replication-deficient HAdV5 vectors (E1A–E1B, and E3

deleted) expressing GFP were propagated in trans-complementing

cell line 293. Their genetic construction and phenotypes have been

described in detail in previous studies [85–93]. Since all the vectors

used in the present study contained the same reporter gene coding

for the green fluorescent protein (EGFP) cloned downstream to the

hCMV promoter, their acronyms did not specify this reporter

gene, in contrast to our previous studies. For reason of

simplification, their acronyms only referred to the capsid

component serotype and to the protein mutated, penton base

(Pb) or fiber (F).

(i) HAdV5 vector with wild-type (wt) capsid. Control

HAdV5 vector with nonmodified capsid was abbreviated

HAdV5wt.

(ii) Penton base mutant. Mutant HAdV5PbEGD carried a

RGD-to-EGD substitution at position 340 in the penton base

coding sequence.

(iii) Fiber shaft substitution mutant. In the HAdV5FTTAT

vector, the KKTK motif at position 91–94 in the fiber shaft

domain was modified into 91-TATT-94 using conventional PCR-

based mutagenesis [88,91].

(iv) Chimeric fiber vector HAdV5F35. HAdV5F35 carried

the HAdV serotype 35 fiber knob and shaft domains fused to the

HAdV5 fiber tail [68,85].

Adenovirus purification and titration
HAdV5-based vectors were purified by CsCl gradient ultracen-

trifugation using conventional methods [85,94]. The infectious titer

of the HAdV5 vector stocks was determined by the plaque assay

method in HEK-293 or in double trans-complementing cell line 293-

Fiber [70] for HAdV5 fiber mutants, and expressed as PFU per ml

[91,92]. The titer in physical particles (viral particles; vp) was

determined by absorbance measurement at 260 nm (A260) of 1-ml

samples of SDS-denatured virions (0.1% SDS for 1 min at 56uC) in

a 1-cm-path-length cuvette, using the respective formula: A260 of

1.0 = 1.161012 vp/ml for HAdV5 (genomic DNA = 36 kbp).

HAdV5 particle titers ranged from 561011 to 161012 vp/ml, with

infectious titers between 261010 and 561010 PFU/ml [95].

Fluorescent labeling of adenovirus particles and FX
protein

Alexa FluorH 488 dye (tetrafluorophenyl ester; Molecular

Probes; Invitrogen), and Alexa FluorH 555 dye (succinimidyl ester;

Molecular Probes; Invitrogen), were abbreviated Alexa-488 and

Alexa-555, respectively. Random labeling of HAdV5wt or

HAdV5F35 vector particles with Alexa-488 was carried out as

follows. Aliquots of 161012 vector particles in suspension in

0.05 M HEPES buffer pH 7.2 (900 ml, final volume) were

incubated with chemically reactive Alexa-488 used at a 20-fold

excess over the 18,000 amino groups present at the surface of the

adenoviral capsid, for 2 h at room temperature (RT) and in argon

atmosphere. The reaction was stopped by adding 100 ml 1 M

lysine solution in 0.05 M HEPES buffer pH 7.2, corresponding to

a 5-fold excess of lysine over the Alexa-488 reagent. After 1 h

incubation at RT, the labeled-vector particles were separated from

unreacted dye by gel filtration on a PD10 column. For labeling of

FX protein with Alexa-555, FX protein (5 mg/ml) was reacted

with 1 mM Alexa FluorH 555 dye in 0.05 M HEPES buffer

pH 7.2, for 1 h at RT, and excess of unreacted dye eliminated by

dialysis against PBS.

Live cell imaging and time-lapse microscopy
Samples of CHO-K1 or CHO 2241 cell monolayers (56105

cells/well) were seeded directly onto poly L-lysine-coated glass

dishes (Mattek Corp., USA), and maintained in the appropriate

medium at 37uC for 24 h. Cells were infected with 35 ml of

recombinant baculovirus suspension expressing fluorescent mar-

kers of cellular organelles or compartments (CellLightTM Lyso-

somes-RFP and CellLightTM Endosomes-RFP *BacMam 2.0*) per

cm2 of monolayer in serum-free medium for 4 h at RT, according

to the supplier instructions (Invitrogen). Suspension was then

withdrawn and replaced by culture medium supplemented with

10% FCS. Cell samples were further incubated overnight at 37uC
under 5% CO2 atmosphere, then processed for infection with

fluorescent-labeled vector particles, as follows. The following day,

the cells were washed with cold PBS (4uC), and overlaid with 1 ml

fresh and cold (4uC) medium. Alexa-488-labeled vector particles

(10,000 vp/cell, in a volume of 100 ml) were added to the medium,

and incubated on ice for 1 h. The cells were then washed 3 times

with PBS, followed by fresh and cold (4uC) medium. Cell samples

were kept on ice until they were transferred to 37uC in the

incubation chamber of the confocal microscope. Observations

were performed from 10 min to 3 h pi, using an inverted confocal

laser scanning microscope (LSM 510 Meta; Carl Zeiss, IAB),

equipped with a 636 oil immersion objective (Plan-Apochromat

636/1.4) and a humidified CO2- and temperature-controlled

incubation chamber. The Alexa-488 dye was excited by the Argon

laser and the emission was collected with a BP 500–550 nm filter.

Orange channel used 543 nm HeNe laser excitation and LP560

emission filter. The images were mainly collected in the focal plane

crossing the cell nucleus with a resolution of 5126512 pixels

(Zoom 1) and 46 line average. The collection time was 3 s per

channel. The pinhole of the fluorescence channels was set to one

Airy unit corresponding to the optical section of less than 1 mm

and the signal intensity was adjusted with a PMT gain to

completely fill the detector dynamic range. The two channels were

acquired in a sequential mode to avoid spectral cross-talk, and the

acquisition of transmitted light image was concomitant with the

green channel.
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Flow cytometry
Aliquots of cells (26105 per well) were seeded in fully

supplemented appropriate medium into 24-well plates. 24 h later,

the cells were washed three times with PBS, and 500 ml of

appropriate medium containing 1% penicillin/streptomycin and

10% glutamine but no FCS was added. For transduction assays,

different vector preparations were added to the medium at various

MOI, with or without incubation with FX at different concentra-

tions. After 2 h, the cells were extensively washed with PBS

prewarmed at 37uC, then 1 ml of fresh fully supplemented

medium was added and cells further incubated at 37uC for an

additional 22 h. Cells were resuspended in PBS and analyzed by

flow cytometry, using a FACSCantoTM II cytometer (Becton

Dickinson Biosciences). 20,000 events were acquired for each

sample and the results were analyzed using the DIVA 6 software

(Becton Dickinson).

Surface plasmon resonance (SPR) assays
The source of naturally hypersulfated heparin (HS), sodium salt,

was the porcine intestinal mucosa (Sigma). HS calibrated to 9 kDa

was biotinylated and immobilized on a CM4 BIAcore sensorchip

(GE Healthcare, Saclay, France), using a BIAcore3000 (GE

Healthcare), as previously described [48,49]. Two flowcells were

prepared by sequential injections of EDC/NHS, streptavidin, and

ethanolamine. One of these flowcells served as negative control,

while biotinylated heparin was injected on the other one, to get an

immobilization level of 80–90 response units (RU). All SPR

experiments were performed using HBS buffer (10 mM HEPES,

150 mM NaCl, pH 7.4) supplemented by 3 mM CaCl2, at a flow

rate of 5 ml/min. Interaction assays involved injections of different

amounts of protein or virus over the heparin-coated and negative

control surfaces, followed by a 3-min dissociation time with buffer.

At the end of each cycle, the heparin surface was regenerated by

injections of 2 M NaCl (2 min). Sensorgrams shown corresponded

to on-line subtraction of the negative control to the heparin surface

signal.

Preparation of plasma membrane-shedded microvesicles
(MVs) and MVB-released exosomes (EXOs)

(i) Source of MVs and EXOs. Confluent CHO-K1 cells

were transduced with HAdV5wt or HAdV5F35 at MOI 5,000,

with or without FX, and harvested at 2 h and 24 h pi. The cell

culture medium was harvested and floating cells were pelleted by

centrifugation at 2,0006 g for 10 min. The supernatant was

further clarified from cell debris by centrifugation for 2 min at

13,0006 g and 4uC. This final supernatant (S0) was the source of

plasma membrane-derived MVs and EXOs, prepared as

described in [96].

(ii) Isolation of MV. Fraction S0 was centrifuged for 2 h at

30,0006 g and 4uC, and pellet P1 was saved: it mainly contained

MVs.

(iii) Isolation of EXOs. Supernatant S1 was further

centrifuged at 100,0006 g and 4uC for 2 h, giving supernatant

S2, which was discarded, and pellet P2, which contained EXOs.

Pellets were resupended in PBS and subjected to DNA extraction,

using QIAamp DNA Blood Mini kit (Quiagen).

Quantification of AdV vector genomes by real-time PCR
and real-time RT-PCR

HAdV5 vectors which were possibly carried over with MVs

were detected and quantitated by real-time PCR, using HAdV5 or

HAdV35 specific primers and probe selected from the fiber gene.

Extraction of DNA was carried out using the QIAamp DNA

Blood Mini Kit (Quiagen) and real time PCR reactions were

carried out using the LightCycler DNA Master SYBR Green I kit

(Roche) and the LightCycler instrument (Roche). For the serotype

5 fiber gene, the primers used were: sense 59-GCTACAGTTT-

CAGTTTTGGCTG-39 and antisense 59-GTTGTGGCCAGAC-

CAGTCCC-39 ; for the serotype 35 fiber gene, the primers used

were : sense 59- TGGCTTCACACAAAGCCCAGACG-39 and

antisense 59- ACACGTAGCCATTAACAAGCCCTCC-39. As

internal control, ß-actin gene was amplified using the following

primers, sense 59-GCTGTGTTCTTGCACTCCTTG-39 and

antisense 59- CGCACGATTTCCCTCTCAGC-39.

Proteins
FX, activated FX (FXa) which lacked the RGD motif

contained in the activation peptide [97], and the truncated form

FXGL (Gla domainless) were all purchased from CRYOPREP

(Montpellier, France). Proteolytically inactive human FX, blocked

with Dansyl-EGR (FX-DEGR), was also purchased from

CRYOPREP. HAdV5wt hexon, penton (penton base + fiber)

and fiber proteins were isolated from lysates of HAdV5wt-

infected 293 cells [85]. HAdV5wt penton base and penton base

RGD-340-EGD mutant, were recombinant proteins isolated

from recombinant baculovirus-infected cells [98,99]. Viral

proteins were purified according to a conventional protocol

adapted to fast protein liquid chromatography [100–103].

Protein samples were analyzed by sodium dodecyl sulfate

polyacrylamide gel electrophoresis (SDS-PAGE) and western

blotting, as previously described [85].

Adenovirus type 3 penton dodecahedron (Pt-Dd)
purification, labeling and intracellular trafficking

HAdV3 Pt-Dd was produced in recombinant baculovirus-

infected insect cells coexpressing HAdV3 penton base and fibre

proteins, as previoulsy described [40,77–79]. HAdV3 Pt-Dd was

purified by sucrose gradient density, and dialysed against HEPES-

NaCl buffer (20 mM HEPES, pH 7.4, 150 mM NaCl). Fluores-

cent-labeled Pt-Dd was obtained by incubation of a Pt-Dd protein

solution at 1 mg/ml with Cy5-monoNHS-Ester at 1 mM (GE

Healthcare, PA15101) for 2 h at room temperature, followed by

extensive dialysis against PBS to remove unbound dye. Cy5-

labeled Pt-Dd (10 mg/ml) was incubated at 37uC for 10 min to 2 h

with CHO-CD46 cells transduced one day before with recombi-

nant baculovirus suspension expressing the Lamp1 fluorescent

marker of the late endosome/lysosome compartment (CellLightTM

Lysosomes-RFP *BacMam 2.0*; Invitrogen), as described above.

After removal of Cy5-labeled Pt-Dd and rinsing the cell monolayer

with prewarmed medium, live imaging was performed using the

LSM 510 Meta inverted confocal laser scanning microscope (Carl

Zeiss, IAB) as above, with the RFP and Cy5 filters.

Electron microscopy (EM)
Specimens were processed for EM and observed as previously

described [104,105]. In brief, cells were harvested at 2 h pi,

pelleted, fixed with 2.5% glutaraldehyde in 0.1 M phosphate

buffer, pH 7.5, post-fixed with osmium tetroxide (2% in H20) and

treated with 0.5% tannic acid solution in H20. The specimens

were dehydrated and embedded in Epon (Epon-812; Fulham,

Latham, NY). Ultrathin sections were stained with 2.6% alkaline

lead citrate and 0.5% uranyl acetate in 50% ethanol, and post-

stained with 0.5% uranyl acetate solution in H2O. Grids were

examined under a Jeol JEM-1400 electron microscope, equipped

with an ORIUSTM digitalized camera (Gatan France, 78113-

Grandchamp). For statistical EM analyses, a minimum of 50 grid
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squares containing 5 to 10 cell sections each were examined for

counting virions in different cell compartments.

Statistics
Results were expressed as mean 6 SEM. of n observations. Sets

of data were compared with an analysis of variance (ANOVA) or a

Student’s t test. Differences were considered statistically significant

when P,0.05. Symbols used in figures were (*) for P,0.05, (**) for

P,0.01, (***) for P,0.001, and ns for no significant difference,

respectively. All statistical tests were performed using GraphPad

Prism version 4.0 for Windows (Graphpad Software).
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