Schuller, Bjoern et al. (2013) *The INTERSPEECH 2013 computational paralinguistics challenge: social signals, conflict, emotion, autism.* In: INTERSPEECH 2013: 14th Annual Conference of the International Speech Communication Association, 25-29 August 2013, Lyon. Copyright © 2013 The Authors A copy can be downloaded for personal non-commercial research or study, without prior permission or charge Content must not be changed in any way or reproduced in any format or medium without the formal permission of the copyright holder(s) When referring to this work, full bibliographic details must be given http://eprints.gla.ac.uk/93665/ Deposited on: 23 May 2014 # The INTERSPEECH 2013 Computational Paralinguistics Challenge: Social Signals, Conflict, Emotion, Autism* Björn Schuller¹, Stefan Steidl², Anton Batliner¹, Alessandro Vinciarelli^{3,4}, Klaus Scherer⁵ Fabien Ringeval⁶, Mohamed Chetouani⁷, Felix Weninger¹, Florian Eyben¹, Erik Marchi¹, Hugues Salamin³, Anna Polychroniou³, Fabio Valente⁴, Samuel Kim⁴ ¹Technische Universität München, Machine Intelligence & Signal Processing Group, MMK, Germany ²FAU Erlangen-Nuremberg, Pattern Recognition Lab, Germany ³University of Glasgow, School of Computing Science, Scotland ⁴IDIAP Research Institute, Martigny, Switzerland ⁵Swiss Center for Affective Sciences, Geneva, Switzerland ⁶University of Fribourg, Switzerland ⁷Université Pierre et Marie Curie, Paris, France schuller@tum.de ### **Abstract** The INTERSPEECH 2013 Computational Paralinguistics Challenge provides for the first time a unified test-bed for Social Signals such as laughter in speech. It further introduces conflict in group discussions as new tasks and picks up on autism and its manifestations in speech. Finally, emotion is revisited as task, albeit with a broader ranger of overall twelve emotional states. In this paper, we describe these four Sub-Challenges, Challenge conditions, baselines, and a new feature set by the openSMILE toolkit, provided to the participants. **Index Terms**: Computational Paralinguistics, Social Signals, Non-Linguistic Vocalisations, Emotion, Voice Pathology ## 1. Introduction With the INTERSPEECH 2009 Emotion Challenge [1], the IN-TERSPEECH 2010 Paralinguistic Challenge [2], the INTER-SPEECH 2011 Speaker State Challenge [3], and the recent IN-TERSPEECH 2012 Speaker Trait Challenge [4] we organised challenges and official exchange fora as exist for many more 'traditional' speech tasks, comparable to the NIST evaluations (cf. e.g., [5]) or related audio and text processing disciplines such as the MIREX [6], CLEF and TREC challenges in the field of Music and Text Information Retrieval [7]. The novel Challenge for INTERSPEECH 2013 broadens the scope and increases the number of tasks and new databases provided in response to the increased participation [8]: We pick up on INTERSPEECH 2013s theme "Speech in Life Sciences and Human Societies" by addressing the novel tasks social signals [9] and conflict in communication [10] - extending to dyadic speech and speaker group analysis in realistic every-day conditions. As our previous tasks, these have never been addressed in such an open and strictly regulated comparison, but bear highest application potential. Further – due to the former popularity – we revisit speech emotion and speech pathology with new data. This includes as novelty the recognition of speakers with autism spectrum condition by their acoustics [11, 12, 13] and acted emotion data taking into account potential differences to naturalistic data [14]. We subsume these tasks under the umbrella of Computational Paralinguistics [15]. In these respects, the INTERSPEECH 2013 COMPUTATIONAL PARALINGUISTICS CHALLENGE (COMPARE) shall help bridging the gap between excellent research on paralinguistic information in spoken language and low compatibility of results in four Sub-Challenges: In the *Social Signal Sub-Challenge*, non-linguistic events such as laughter or sigh of a speaker have to be detected and localised based on acoustics. In the *Conflict Sub-Challenge*, group discussions have to be automatically evaluated with the aim of recognising conflict. In the *Emotion Sub-Challenge*, the emotion of a speakers voice within a closed set has to be determined by a suited learning algorithm and acoustic features. In the *Autism Sub-Challenge*, the type of pathology of a speaker has to be determined by a suited classification algorithm and acoustic features. The measures of competition will be Unweighted Average Recall (UAR) and temporal deviation depending on the Sub-Challenge. In addition, Area Under the receiver operating Curve (AUC) and Correlation Coefficient (CC) will be partially given. Transcription of the train and development sets will be known. Contextual knowledge may be used, as the sequence of chunks will be given. All Sub-Challenges allow contributors to find their own features with their own machine learning algorithm. However, a novel standard feature set will be provided per corpus that may be used. Participants will have to stick to the definition of training, development, and test sets. They may report on results obtained on the development set, but have only five trials to upload their results on the test sets, whose labels are unknown to them. Each participation will be accompanied by a paper presenting the results that undergoes peer-review and has to be accepted for the conference in order to participate in the Challenge. The organisers preserve the right to re-evaluate the findings, but will not participate themselves in the Challenge. ^{*} This is a preliminary version. Baselines may be updated during the ongoing Challenge. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007–2013) under grant agreement No. 289021 (ASC-Inclusion). The authors would further like to thank the sponsors of the challenge, the HUMAINE Association and the Social Signal Processing Network (SSPNet). The responsibility lies with the authors. # 2. Challenge Corpora #### 2.1. SSPNet Vocalisation Corpus (SVC) In the Social Signals Sub-Challenge the "SSPNet Vocalization Corpus" (SVC) serves for analyses and comparison. It is composed of 2763 audio clips (11 seconds length each) annotated in terms of laughter and fillers. Laughter [16, 17, 18] corresponds to vocal outbursts typical of amusement, joy, scorn or embarrassment. Fillers [19] are vocalisations like "uhm", "eh", "ah", etc., 'filling' the time that should be occupied by a word (generally in correspondence of hesitations, uncertainty or attempts to hold the floor). The corpus was extracted from a collection of 60 phone calls involving 120 subjects (63 female, 57 male) [20]. The participants of each call were fully unacquainted and never met face-to-face before or during the experiment. The calls revolved around the Winter Survival Task: the two participants had to identify objects (out of a predefined list) that increase the chances of survival in a polar environment. The subjects were not given instructions on how to conduct the conversation, the only constraint was to discuss only one object at a time. The conversations were recorded on both phones (model Nokia N900) used during the call. The clips were extracted from the microphones of the phones. Therefore they contain the voice of one speaker only. Each clip lasts for 11 seconds and was selected in such a way that it contains at least one laughter or filler event between t = 1.5 seconds and t = 9.5 seconds. Clips from the same speaker never overlap. In contrast, clips from two subjects participating in the same call may overlap (for example in the case of simultaneous laughter). However, they do not contain the same audio data because they are recorded with different microphones. Overall, the database contains 3.0 k filler events and 1.2 k laughter events. Both types of vocalisation can be considered fully spontaneous. The SVC will serve to evaluate features and algorithms for the determination and localisation of speakers' social signals in speech. By that, the Social Signals Sub-Challenge for the first time introduces a frame-wise detection and localisation task instead of supra-segmental classification as in the other Sub-Challenges as well as all previous Challenges. For the purpose of the Challenge, the data was divided into speaker disjoint subsets for training, development, and testing. For transparency, this was simply done by using calls 1-35 (70 speakers) for training, calls 36-45 (20 speakers) for development, and calls 46–60 for testing. The Challenge data is delivered with a manual segmentation of the training and development data into 'garbage', 'laughter', and 'filler' segments, in the 'master label file' (MLF) format used by the Hidden Markov Model Toolkit (HTK) [21]. Further meta data is not provided. The resulting partitioning by numbers of utterances, number of vocalisation segments (filler, laughter) as well as vocalisation and garbage frames (100 per second), is shown in Table 1. ## 2.2. SSPNet Conflict Corpus (SC²) In the Conflict Sub-Challenge the "SSPNet Conflict Corpus" (SC^2) is used [22]. It contains 1 430 clips of 30 seconds extracted from the Canal9 Corpus - a collection of 45 Swiss political debates (in French) – including 138 subjects in total: 23 females (1 moderator and 22 participants) and 133 males (3 moderators and 120 participants) The clips have been annotated in terms of conflict level by roughly 550 assessors recruited via Amazon Mechanical Turk. Each clip is assigned a continuous conflict score in the range [-10, +10], giving rise to a straightforward regression task ('Score' task). A binary classification task is created based on these labels, namely to classify into 'high' (\geq 0) or 'low' (< Table 1: Partitioning of the SSPNet Vocalisation Corpus into train, dev(elopment), and test sets: Numbers of utterances, vocalisation segments (laughter, filler), and vocalisation / 'garbage' frames. ¹: 79 572 after training set balancing by re-sampling. | # | train | dev | test | Σ | | | |------------|------------------------|---------|---------|-----------|--|--| | Utterances | | | | | | | | Σ | 1 583 | 500 | 680 | 2 763 | | | | Segments | | | | | | | | laughter | 649 | 225 | 284 | 1 158 | | | | filler | 1710 | 556 | 722 | 2 988 | | | | Frames | | | | | | | | laughter | 59 294 | 25 750 | 23 994 | 109 038 | | | | filler | 85 034 | 29 432 | 35 459 | 149 925 | | | | garbage | 1 591 442 ¹ | 492 607 | 684 937 | 2 768 986 | | | | Σ | 1735770 | 547 789 | 744 390 | 3 027 949 | | | Figure 1: Level of conflict ($\in [-10, +10]$) histograms for the Challenge partitions of the SSPNet Conflict Corpus. Table 2: Partitioning of the SSPNet Conflict Corpus into train, dev(elopment), and test sets for binary classification ('low' $\equiv [-10,0[$, 'high' $\equiv [0,+10]$). | # | train | dev | test | Σ | |---------------------|-------|-----|------|----------| | low | 471 | 127 | 226 | 824 | | high | 322 | 113 | 171 | 606 | | $\overline{\Sigma}$ | 793 | 240 | 397 | 1 430 | 0) level of conflict ('Class' task). As several subjects occur in debates with different moderators, a truly speaker independent partitioning is not possible on the data. Since all participants except the moderators do not occur more than a few times (most of them only once), the following strategy was followed to reduce speaker dependence to a minimum. All broadcasts with the female moderator (speaker #50) were assigned to the training set. The development set consists of all broadcasts moderated by the (male) speaker #153, and the test set comprises the rest (male moderators). This also ensures that the development and test set are similar in case that the gender of the moderator should have an influence. The resulting partitioning is shown in Table 2 along with the distribution of binary class labels and continuous ratings (Figure 1) among the partitions. As meta data, manual speaker segmentation, as well as role (participant / moderator) and gender of the subjects are provided for the training and development sets. Participants are encouraged to use the manual speaker segmentation for development of features extraction, but for the test set an automatic speaker diarisation system has to be used. Freely available alternatives for this task comprise the LIUM [23]¹ and Alize LIA-RAL² toolkits. # 2.3. Geneva Multimodal Emotion Portrayals (GEMEP) For the *Emotion Sub-Challenge* we selected the "Geneva Multimodal Emotion Portrayals" (GEMEP) [24]. It contains 1.2 k ¹http://lium3.univ-lemans.fr/diarization/doku.php/welcome ²http://mistral.univ-avignon.fr/index_en.html Table 3: Partitioning of the GEMEP database into train, dev(elopment), and test sets for 12-way classification by emotion category, and binary classification by pos(itive) / neg(ative) arousal (A) and valence (V). +: Mapped to 'other' and excluded from evaluation in 12-class task. *: Mapped to 'undefined' and excluded from evaluation in binary tasks. | # | train | dev | test | A | V | Σ | |-----------------------|-------|-----|------|-----|-----|----------| | admiration+ | 20 | 2 | 8 | pos | pos | 30 | | amusement | 40 | 20 | 30 | pos | pos | 90 | | anxiety | 40 | 20 | 30 | neg | neg | 90 | | cold anger | 42 | 12 | 36 | neg | neg | 90 | | contempt+ | 20 | 6 | 4 | neg | neg | 30 | | despair | 40 | 20 | 30 | pos | neg | 90 | | disgust+ | 20 | 2 | 8 | -* | _* | 30 | | elation | 40 | 12 | 38 | pos | pos | 90 | | hot anger | 40 | 20 | 30 | pos | neg | 90 | | interest | 40 | 20 | 30 | neg | pos | 90 | | panic fear | 40 | 12 | 38 | pos | neg | 90 | | pleasure | 40 | 20 | 30 | neg | pos | 90 | | pride | 40 | 12 | 38 | pos | pos | 90 | | relief | 40 | 12 | 38 | neg | pos | 90 | | sadness | 40 | 12 | 38 | neg | neg | 90 | | shame+ | 20 | 2 | 8 | pos | neg | 30 | | surprise ⁺ | 20 | 6 | 4 | _* | _* | 30 | | tenderness+ | 20 | 6 | 4 | neg | pos | 30 | | Σ | 602 | 216 | 442 | | | 1 260 | instances of emotional speech from ten professional actors (five female) in 18 categories. In the Challenge task, these will need to be classified into 12 categories (multi-class task). We further provide results for the two dimensions arousal and valence (binary tasks). Participants can use separate systems for the tasks, but approaches involving multi-task learning are especially encouraged. The GEMEP database contains prompted speech comprising sustained vowel phonations, as well as two 'nonsensical' phrases with two different intended sentence modalities, each expressed by each actor in various degrees of regulation (emotional intensity) ranging from 'high' to 'masked' (hiding the true emotion). Given this layout, a partitioning that is both text and speaker independent is not feasible. Hence, the following strategy was followed: Vowels and phrase #2 are used for training and development, subdividing by speaker ID, and phrase #1 is used for testing. Masked regulation utterances are only contained in the test set in order to to alleviate potential model distortions. By the above partitioning, we obtain text independence. Since six of the 18 emotional categories are extremely sparse (\leq 30 instances in the entire GEMEP database), we restrict the evaluation to the 12 most frequent ones in the multi-class classification task. For the arousal / valence tasks, mappings are only defined for selected categories such as to obtain a balanced distribution of positive / negative arousal and valence among the categories. Nevertheless, the remaining data is given to the participants (with labels in 18 categories for the training and development sets); it can be used, e.g., to train 'background' or 'garbage' models. The resulting partitioning is shown in Table 3. As meta data, actor IDs, prompts, and intended regulation are provided for the training and development sets. ## 2.4. Child Pathological Speech Database (CPSD) The Autism Sub-Challenge is based upon the "Child Pathological Speech Database" (CPSD) [25]. It provides speech as recorded in two university departments of child and adolescent psychiatry, located in Paris, France (Université Pierre et Marie Curie/Pitié-Salpêtière Hospital and Université René Descartes/Necker Hos- Table 4: Partitioning of Child Pathological Speech Database into train, dev(elopment), and test sets for four-way classification by diagnosis, and binary classification by typical / atypical development. Diagnosis classes: TYPically developing, Pervasive Developmental Disorders (PDD), pervasive developmental disorders Non-Otherwise Specified (NOS), and specific language impairment such as DYSphasia | # | train | dev test | | Σ | | | | |---------------------|-----------------------|----------|-----|----------|--|--|--| | | Typically developing | | | | | | | | TYP | 566 | 543 | 542 | 1651 | | | | | | Atypically developing | | | | | | | | PDD | 104 | 104 | 99 | 307 | | | | | NOS | 104 | 68 | 75 | 247 | | | | | DYS | 129 | 104 | 104 | 337 | | | | | $\overline{\Sigma}$ | 903 | 819 | 820 | 2542 | | | | pital). The dataset used in the sub-challenge contains 2.5 k instances of speech recordings from 99 children aged 6 to 18 years. 35 of these children show Pervasive Development Disorders either of autism spectrum condition (PDD, 10 male, 2 female), specific language impairment such as dysphasia (DYS, 10 male, 3 female) or PDD Non-Otherwise Specified (NOS, 9 male, 1 female) according to the DSM-IV criteria. A monolingual control group consists of 64 further children (TYP, 52 male, 12 female). The French speech includes sentence imitation of 26 sentences representing different modalities (declarative, exclamatory, interrogative, and imperative) and four types of intonations (descending, falling floating, and rising). Two evaluation tasks have been defined: a binary 'Typicality' task (typically vs. atypically developing children), and a four-way 'Diagnosis' task (classifying into the above named categories). Partitioning into training, development and test data is done by order of speaker ID, is stratified by age and gender of the children, and speaker-independent. See Table 4 for the class distribution among partitions. As speaker meta data, age and gender of the children are given. ## 3. Challenge Features For the baseline acoustic feature set used in this Challenge, we slightly modified the acoustic feature set used for the INTER-SPEECH 2012 Speaker Trait Challenge [4] - the most effective used in the series so far. Again, we use TUM's open-source openSMILE feature extractor [26] and provide extracted feature sets on a per-chunk level (except for SVC) and configuration files for openSMILE will be provided together with the next openSMILE public release. Voice quality features (jitter and shimmer) were slightly improved, Viterbi smoothing for F_0 was added, and the exceptions which functionals are applied to which LLD were simplified. The set includes energy, spectral, cepstral (MFCC) and voicing related low-level descriptors (LLDs) as well as a few LLDs including logarithmic harmonic-to-noise ratio (HNR), spectral harmonicity, and psychoacoustic spectral sharpness. Altogether, the 2013 COMPARE feature set contains 6373 features. For the Social Signals Sub-Challenge that requires localisation, a frame-wise feature set is derived from the above. Taking into account space and memory requirements, only a small set of descriptors are calculated by frame, following a sliding window scheme to combine frame-wise LLDs and functionals. In particular, frame-wise MFCCs 1–12 and logarithmic energy are computed along with their first and second order delta (Δ) regression coefficients as typically used in speech recognition. They are augmented by voicing probability, HNR, F0 and zero-crossing rate, as well as their first order Δs . Then, for each frame-wise LLD the arithmetic mean and standard deviation across the frame itself and eight of its neighbouring frames (four before and four after) are calculated. This results in $47 \times 3 = 141$ descriptors per frame. ## 4. Challenge Baselines As primary evaluation measure, we retain the choice of unweighted average recall as used since the first Challenge held in 2009 [1]. The motivation to consider unweighted rather than weighted average recall ('conventional' accuracy, additionally given for reference) is that it is also meaningful for highly unbalanced distributions of instances among classes, as is given in the Autism Sub-Challenge. Given the nature of the Social Signals Sub-Challenge's detection task, we also consider the Area Under the Curve measure[27] for the laughter and filler classes on frame level (100 frames per second); the unweighted average (UAAUC) is the official competition measure of this Sub-Challenge. For this reason, participants are for the first time required to also submit posterior class probabilities ('confidences') per frame in this Sub-Challenge. Besides, in the Conflict Sub-Challenge, we additionally consider the Pearson correlation coefficient as evaluation criterion for regression on the 'continuous valued' original labels, following the 2010 Challenge which also featured a regression task [2]. A novelty of this year's Challenge is the provision of a 'recipe' for re-producing the baseline classification and regression results on the development set in an automated fashion, including pre-processing, model training, model evaluation, and scoring by the competition and further measures. For transparency and reproducibility, we use opensource classifier implementations from the WEKA data mining toolkit [28]. To provide a (somewhat) unified scheme for tackling the various tasks in this Challenge, we restrict ourselves to static classification (regression) for all tasks. To this end, linear kernel Support Vector Machines (SVM) / Support Vector Regression (SVR) are used, which are known to be robust against overfitting. As training algorithm, we use Sequential Minimal Optimisation (SMO). For each task, we choose the SVM complexity parameter $C \in \{10^{-3}, 10^{-2}, 10^{-1}, 1\}$ that achieves best UAR on the development set. To obtain (pseudo) class posteriors, logistic models are fitted to the SVM hyperplane distance based on the training set. To cope with imbalanced class distribution in the Autism Sub-Challenge, up-sampling is applied. The underrepresented categories (PDD, PDD-NOS, SLI) in the four-way 'Diagnosis' task are upsampled by using a factor of five; in the binary 'Typicality' task a factor of two is applied. Conversely, for the Social Signals Sub-Challenge, down-sampling is used, where only 5 % of the 'garbage' frames are kept. No re-sampling of the training set is done for the other Sub-Challenges. The baseline recipe provided to the participants performs training set re-sampling in a reproducible way. For evaluation on the test set, we re-train the models using the training and development set, applying re-sampling as above. Let us briefly summarise the baseline results as displayed in Table 5. Due to the different nature of the tasks and evaluation measures, we also present chance level baselines. For AUC and CC, these are obtained as mean and standard deviation over 25 random trials on the development set, using random class posteriors (AUC) or prediction of Gaussian random numbers with mean and standard deviation of the training set labels (CC). For UAR, they correspond to the dummy predictor always deciding for the most frequent class in the training set. In the Social Signals Table 5: Challenge Baselines. Competition measures / results are highlighted in bold face. C: Complexity parameter in SVM/SVR training (tuned on development set). Devel: Result on development set, by training on training set. Test: Result on test set, by training on the union of the training and development sets. Chance: Expected measure by chance (cf. text). UAAUC: Unweighted average of AUC for detection of the laughter and filler classes. | [%] | C | Devel | Test | Chance | | | | |------------------------------|-------|-------|------|-----------------|--|--|--| | Social Signals Sub-Challenge | | | | | | | | | AUC [Laughter] | 0.1 | 86.2 | 82.9 | 50.0 ± 0.18 | | | | | AUC [Filler] | 0.1 | 89.0 | 83.6 | 50.0 ± 0.21 | | | | | UAAUC | | 87.6 | 83.3 | 50.0 ± 0.13 | | | | | Conflict Sub-Challenge | | | | | | | | | CC [Score] | 0.001 | 81.6 | 82.6 | -0.8 ± 2.3 | | | | | UAR [Class] | 0.1 | 79.1 | 80.8 | 50.0 | | | | | Emotion Sub-Challenge | | | | | | | | | UAR [Arousal] | 0.01 | 82.4 | 75.0 | 50.0 | | | | | UAR [Valence] | 0.1 | 77.9 | 61.6 | 50.0 | | | | | UAR [Category] | 1.0 | 40.1 | 40.9 | 8.33 | | | | | Autism Sub-Challenge | | | | | | | | | UAR [Typicality] | 0.01 | 92.8 | 90.7 | 50.0 | | | | | UAR [Diagnosis] | 0.001 | 52.4 | 67.1 | 25.0 | | | | Sub-Challenge, detection of fillers seems slightly 'easier' than detection of laughter, and for both a somewhat acceptable performance in terms of AUC (> 86 %) is achieved – yet with large room for improvement, showing the challenge of vocalisation localisation in naturalistic recordings of spontaneous speech. In the Conflict Sub-Challenge, it turns out that the simple baseline already delivers a remarkable performance (79.1 % UAR) on the binary classification task - this is somewhat surprising, as the baseline features and classification do not respect at all the multi-party conversation scenario (e.g., mean F0 is calculated on average across all participants). In the Emotion Sub-Challenge, the baseline delivers acceptable performance on the development set, whereby arousal seems easier to classify than valence – this is a well known phenomenon when using acoustic features only. On the test set, a performance drop is observed for valence. In the 12-way task there is a large room for improvement (40.1 % UAR on development), indicating the challenge of classifying subtle emotional differences even in acted emotional speech. Finally, in the Autism Sub-Challenge, the binary Typicality task can be solved very robustly (92.8 % UAR on development) already by the baseline, while better algorithms are clearly sought after for the Diagnosis task (52.4 % baseline UAR on development). ## 5. Conclusion We introduced the INTERSPEECH 2013 Computational Paralinguistics Challenge. As for previous Challenges, we focused on realistic settings including radio broadcast, and genuine pathologic speech – the baseline results show the difficulty of the investigated automatic recognition tasks. In contrast, however, we also included a task based on acting in studio conditions for the first time. We have provided a baseline using a rather 'brute force' feature extraction and classification approach for the sake of consistency across the Sub-Challenges; particularly, for the *Conflict Sub-Challenge*, no information on speaker segmentation is used or assessed in the baseline. Hence, it will be of interest to see the performance of methods that are more tailored to peculiarities of the presented tasks. ## 6. References - [1] B. Schuller, A. Batliner, S. Steidl, and D. Seppi, "Recognising realistic emotions and affect in speech: State of the art and lessons learnt from the first challenge," *Speech Communication*, vol. 53, no. 9/10, pp. 1062–1087, 2011. - [2] B. Schuller, S. Steidl, A. Batliner, F. Burkhardt, L. Devillers, C. Müller, and S. Narayanan, "Paralinguistics in Speech and Language State-of-the-Art and the Challenge," Computer Speech and Language, Special Issue on Paralinguistics in Naturalistic Speech and Language, vol. 27, no. 1, pp. 4–39, January 2013. - [3] B. Schuller, S. Steidl, A. Batliner, F. Schiel, J. Krajewski, F. Weninger, and F. Eyben, "Medium-Term Speaker States A Review on Intoxication, Sleepiness and the First Challenge," Computer Speech and Language, Special Issue on Broadening the View on Speaker Analysis, 2013, 14 pages. - [4] B. Schuller, S. Steidl, A. Batliner, E. Nöth, A. Vinciarelli, F. Burkhardt, R. van Son, F. Weninger, F. Eyben, T. Bocklet, G. Mohammadi, and B. Weiss, "The INTERSPEECH 2012 Speaker Trait Challenge," in *Proceedings INTERSPEECH 2012*, 13th Annual Conference of the International Speech Communication Association, ISCA. Portland, OR: ISCA, September 2012, 4 pages. - [5] M. Przybocki and A. Martin, "NIST Speaker Recognition Evaluation Chronicles," in *Proceedings of Odyssey 2004*, *The Speaker and Language Recognition Workshop*, Toledo, Spain, 2004, pp. 12–22. - [6] J. Downie, A. Ehmann, M. Bay, and M. Jones, "The Music Information Retrieval Evaluation eXchange: Some Observations and Insights," in *Advances in Music Information Retrieval*, W. Zbigniew and A. Wieczorkowska, Eds. Springer, 2010, pp. 93–115. - [7] T. Mandl, "Recent developments in the evaluation of information retrieval systems: Moving towards diversity and practical relevance," *Informatica*, vol. 32, pp. 27–38, 2008. - [8] B. Schuller, "The Computational Paralinguistics Challenge," *IEEE Signal Processing Magazine*, vol. 29, no. 4, pp. 97–101, July 2012. - [9] A. Vinciarelli, M. Pantic, and H. Bourlard, "Social signal processing: Survey of an emerging domain," *Image and Vision Computing*, vol. 27, pp. 1743–1759, 2009. - [10] W.-M. Roth and K. Tobin, "Solidarity and conflict: aligned and misaligned prosody as a transactional resource in intraand intercultural communication involving power differences," *Cultural Studies of Science Education*, vol. 5, p. 807, December 2010. - [11] J. McCann and S. Peppe, "Prosody in autism spectrum disorders: a critical review," *International Journal of Language and Communication Disorder*, vol. 38, pp. 325–350, October–December 2003. - [12] J. van Santen, E. Prudhommeaux, L. Black, and M. Mitchell, "Computational Prosodic Markers for Autism," *Autism*, vol. 14, pp. 215–236, 2010. - [13] D. Bone, M. P. Black, C.-C. Lee, M. E. Williams, P. Levitt, S. Lee, and S. S. Narayanan, "Spontaneous-Speech Acoustic-Prosodic Features of Children with Autism and the Interacting Psychologist," in *Proceedings of Inter-Speech*, Sep. 2012. - [14] T. Vogt and E. André, "Comparing Feature Sets for Acted and Spontaneous Speech in View of Automatic Emotion Recognition," in *Proceedings of the International Conference on Multimedia and Expo (ICME)*, Amsterdam, The Netherlands, 2005, pp. 474–477. - [15] B. Schuller and A. Batliner, Computational Paralinguistics: Emotion, Affect and Personality in Speech and Language Processing. Wiley, 2013, to appear. - [16] J. Bachorowski, M. Smoski, and M. Owren, "The acoustic features of human laughter," *Journal of the Acoustical Society of America*, vol. 110, pp. 1581–1597, 2001. - [17] J. Vettin and D. Todt, "Laughter in Conversation: Features of Occurrence and Acoustic Structure," *Journal of Nonverbal Behavior*, vol. 28, no. 2, pp. 93–115, January 2004 - [18] H. Tanaka and N. Campbell, "Acoustic Features of Four Types of Laughter in Natural Conversational Speech," in Proceedings of the 17th International Congress of Phonetic Sciences (ICPhS), Hong Kong, 2011, pp. 1958–1961. - [19] H. Clark and J. Fox Tree, "Using "uh" and "um" in spontaneous speaking," *Cognition*, vol. 84, no. 1, pp. 73–111, 2002. - [20] A. Vinciarelli, H. Salamin, A. Polychroniou, G. Mohammadi, and A. Origlia, "From nonverbal cues to perception: Personality and social attractiveness," *Cognitive Behavioural Systems*, pp. 60–72, 2012. - [21] S. Young, G. Evermann, M. Gales, T. Hain, D. Kershaw, X. Liu, G. Moore, J. Odell, D. Ollason, D. Povey, V. Valtchev, and P. Woodland, *The HTK book (v3.4)*. Cambridge University Press, 2006. - [22] S. Kim, M. Filippone, F. Valente, and A. Vinciarelli, "Predicting the conflict level in television political debates: an approach based on crowdsourcing, nonverbal communication and gaussian processes," in *Proc. of ACM International Conference on Multimedia*. Nara, Japan: ACM, 2012, pp. 793–796. - [23] S. Meignier and T. Merlin, "LIUM SpkDiarization: An open source toolkit for diarization," in *Proc. CMU SPUD Workshop*, Dallas, TX, USA, 2010. - [24] T. Bänziger, M. Mortillaro, and K. Scherer, "Introducing the Geneva Multimodal expression corpus for experimental research on emotion perception," *Emotion*, vol. 12, pp. 1161–1179, 2012. - [25] F. Ringeval, J. Demouy, G. Szaszák, M. Chetouani, L. Robel, J. Xavier, D. Cohen, and M. Plaza, "Automatic intonation recognition for the prosodic assessment of language impaired children," *IEEE Transactions on Audio, Speech & Language Processing*, vol. 19, pp. 1328–1342, 2011. - [26] F. Eyben, M. Wöllmer, and B. Schuller, "openSMILE The Munich Versatile and Fast Open-Source Audio Feature Extractor," in *Proc. ACM Multimedia*. Florence, Italy: ACM, 2010, pp. 1459–1462. - [27] I. H. Witten and E. Frank, *Data mining: Practical machine learning tools and techniques, 2nd Edition.* San Francisco: Morgan Kaufmann, 2005. - [28] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. Witten, "The WEKA Data Mining Software: An Update," *SIGKDD Explorations*, vol. 11, 2009.