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The successful establishment of a species in a given habitat depends on the ability of each
of its developing stages to adapt to the environment. In order to understand this process
we have studied the adaptation of a euryhaline fish, the sea-bass Dicentrarchus labrax,
to various salinities during its ontogeny. The expression and localization of Aquaporin 1a
(AQP1a) mRNA and protein were determined in different osmoregulatory tissues. In larvae,
the sites of AQP1a expression are variable and they shift according to age, implying func-
tional changes. In juveniles after metamorphosis (D32–D48 post-hatch, 15–25 mm) and in
pre-adults, an increase in AQP1a transcript abundance was noted in the digestive tract, and
the AQP1a location was observed in the intestine. In juveniles (D87–D100 post-hatch, 38–
48 mm), the transcript levels of AQP1a in the digestive tract and in the kidney were higher
in sea water (SW) than at lower salinity. These observations, in agreement with existing
models, suggest that in SW-acclimated fish, the imbibed water is absorbed via AQP1a
through the digestive tract, particularly the intestine and the rectum. In addition, AQP1a
may play a role in water reabsorption in the kidney. These mechanisms compensate dehy-
dration in SW, and they contribute to the adaptation of juveniles to salinity changes during
sea-lagoon migrations. These results contribute to the interpretation of the adaptation of
populations to habitats where salinity varies.
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INTRODUCTION
Aquaporin 1 (AQP1) was the first water channel to be identified
following its cloning and isolation from a human bone marrow
library (Preston and Agre, 1991; Agre, 1997). Since then, a num-
ber of AQP homologs with wide tissue distributions (Takata et al.,
2004) have been found in all living organisms (Hohmann et al.,
2001; Cerdà and Finn, 2010). These proteins allow the fast flux of
water across the cell membrane (Parisi et al., 1997). In mammals,
13 homologs of this protein are known, with some also involved
in the exchange of glycerol and other low molecular weight solutes
such as urea, CO2, or NH4 (Verkman and Mitra, 2000; Takata
et al., 2004). The AQPs have been divided into two groups accord-
ing to their transport selectivity, the aquaporins (e.g., AQPs Z,
0, 1, 2, 4, 5, 6, and 8) and aquaglyceroporins (AQPs 3, 7, 9, 10,
and GlpF; Kozono et al., 2002). A third group, named the sub-
cellular aquaporins, has been proposed for other related AQP-like
proteins called AQP 11 and AQP 12 (Ishibashi, 2006). The distrib-
ution, function, structure, and molecular characteristics of AQP1
have been extensively reviewed (Jung et al., 1994; Walz et al., 1997;
Verkman and Mitra, 2000; Stahlberg et al., 2001; Kozono et al.,
2002; Agre, 2006; Cerdà and Finn, 2010).

Homologs of AQP1 have been identified in several species of
teleost fish including the European eel (Anguilla anguilla; AQP1
and AQP1dup; Cutler and Cramb, 2000; Martínez et al., 2005c), the
Japanese eel (Anguilla japonica; S-AQP1, L-AQP1, AQP3, AQP8,

and AQP10; Aoki et al., 2003; Kim et al., 2010), the gilthead
sea-bream (Sparus aurata; AQP1, AQP1-like SaAQP1o, SaAQP1a
and SaAQP1b, AQP1a; Fabra et al., 2006; Raldúa et al., 2008;
Cerdà and Finn, 2010), the sole (Solea senegalensis; AQP1), the
zebrafish (Danio rerio; AQP1), the black sea-bass (Centropristis
striata; AQP1; Fabra et al., 2005), the silver sea-bream (Sparus
sarba; AQP3; Deane and Woo, 2006), the European sea-bass
(Dicentrarchus labrax ; AQP1; Giffard-Mena et al., 2007), the black
porgy (Acanthopagrus schlegeli; AQP1; An et al., 2008), the kil-
lifish (Fundulus heteroclitus; FhAQP0, FhAQP1a, and FhAQP3;
Tingaud-Sequeira et al., 2009), the rainbow wrasse (Coris julis;
AQP1 and AQP3; Brunelli et al., 2010), and recently in the catfish
(Heteropneustes fossilis; AQP1b; Chaube et al., 2011). As in other
euryhaline teleosts, the European sea-bass larvae are confronted
with salinity variations as they drift to coastal waters (Sabriye et al.,
1988; Beyst et al., 2001) and subsequently when they enter lagoons
and estuaries (Jennings and Pawson, 1992; Brehmer et al., 2006).
This migration is accomplished after the metamorphic transition
from larva to juvenile that occurs between D40 and D72 (18–
25 mm; Varsamos et al., 2001, 2002, 2004; Saillant et al., 2003b).
Metamorphic changes include morphological and physiological
changes, one of them being an increase in the capacity to osmoreg-
ulate (Balon, 1999; Varsamos et al., 2001; Falk-Petersen, 2005). In
this species, the osmoregulatory abilities tend to increase during
ontogenesis with a particular increase of low-salinity tolerance
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following the metamorphic larva/juvenile transition (Lasserre,
1971; Jensen et al., 1998; Varsamos et al., 2001). The organs
involved in osmoregulation in the sea-bass have been studied
(Nebel et al., 2005a,b; Varsamos et al., 2005; Giffard-Mena et al.,
2006). As in other teleosts, the sea-bass hyper-osmoregulate at
salinities lower than 10–11 ppt, and they hypo-osmoregulate at
salinities higher than these iso-osmotic values. In fresh water the
fish gains water and loses ions; in order to compensate for these
movements, ions are absorbed mainly by the gills, and the kidneys
produce and excrete relatively large volumes of hypotonic urine. In
sea water (SW), where the opposite situation occurs, the fish gains
ions and loses water. Under these conditions, the fish drinks SW
which is then desalinated in the esophagus and stomach, before the
water and remaining salts are absorbed through the intestine fol-
lowing an osmotic ion gradient established in epithelial cells by the
activity of Na+/K+ ATPase (Marshall and Bryson, 1998; Marshall
and Grosell, 2005). Excess plasma ions are excreted by the gills,
and the kidney produces low volumes of isotonic urine (Marshall
and Grosell, 2005; Nebel et al., 2005a; Giffard-Mena et al., 2006).

Several studies in the eel have shown that AQP1 is expressed
more strongly in the intestine of SW-acclimated fish than in those
fish acclimated to fresh water (FW; Martínez et al., 2005a,c).
These results are correlated with an increase in drinking rate and
with the absorption of water by the intestine (Aoki et al., 2003).
Similar studies have shown that AQP1 transcript abundance is
higher in the intestine of SW- compared to FW-acclimated sea-
bass (Giffard-Mena et al., 2007), gilthead sea-bream (Raldúa et al.,
2008), and Atlantic salmon (Tipsmark et al., 2010). However, a
study conducted with the black porgy reported higher levels of
AQP1 mRNA levels during FW acclimation (An et al., 2008).
The functional water transport capacity of AQP1 in fish has been
shown in the gilthead sea-bream. In this species the SaAQP1a
and SaAQP1b are both water selective channels being true human
AQP1 paralogs (Raldúa et al., 2008). It also has been shown that
four eel AQPs have similar transport specificities as their human
orthologs: as in humans, the eel AQP1, as well as killifish AQP1,
transports water but not urea or glycerol (Hill et al., 2007; MacIver
et al., 2009; Tingaud-Sequeira et al., 2009). Nevertheless, zebrafish
AQP1 transports water, glycerol and urea (Tingaud-Sequeira et al.,
2010) indicating paralogy among species.

Studies concerning AQPs during the post-embryonic devel-
opment of fish are scarce. To our knowledge, the only work on
this subject relates to the sea-bream Sparus sarba, where AQP3
has been detected from day 14 (D14) until D46 post-hatch. This
protein becomes important from D28 and is expressed in several
tissues (including the kidney, liver, brain, heart, and spleen). Its
expression is not significantly different in SW and FW, except for
the gills where it is more abundant in FW, perhaps as means of
protection against the osmotic swelling of the cells (Deane and
Woo, 2006). Its regulation during larval development has been
related not only to osmoregulatory processes, but also in cell
shape changes, migration, proliferation during metamorphosis,
and sperm motility (Papadopoulos et al., 2008; Zilli et al., 2009;
Cerdà and Finn, 2010).

In this study, we present results on the expression and localiza-
tion of AQP1a during the ontogeny of the sea-bass Dicentrarchus
labrax (Linné, 1758), from hatching larvae (day 0; D0, 3.5 mm)

to pre-adult fish, during acclimation to SW, diluted sea water
(DSW) or FW. An important role for the gut in water absorption is
identified. The AQP1 gene has been found during screening of
the complete zebrafish (Danio rerio) genome for functional aqua-
porins (Tingaud-Sequeira et al., 2010). According to this data,
a recent classification proposes that genes have evolved from a
teleost-specific local duplication of an ancestral AQP1 gene during
evolution. Therefore, the so-called sea-bass AQP1 (Giffard-Mena
et al., 2007) should be named AQP1a from now on, and we will
use this terminology thereafter.

MATERIALS AND METHODS
ANIMALS AND EXPERIMENTAL CONDITIONS
European sea-bass Dicentrarchus labrax were provided by a local
hatchery (“Les Poissons du Soleil,” Balaruc) located in the south-
west of France. In the present study five different developmental
stages were investigated: three larval stages (3.5–25 mm in total
length), one stage following the metamorphic transition to the
juvenile phase (38–48 mm), and 2-year-old pre-adults (133 mm
long; Table 1). The choice of these developmental stages was based
on specific associated physiological events well described previ-
ously (Barnabé et al., 1976; Barnabé, 1989; Chatain, 1994; Pickett
and Pawson, 1994; Varsamos et al., 2001; Saillant et al., 2003a) and
on the fact that they cover all the main post-embryonic phases
including the larval, juvenile and pre-adult phases.

Hatching was carried out in the fish farm from naturally
spawned eggs maintained in SW at 34 ppt and 15˚C. Larvae at
different ages were transported to culture facilities of the Univer-
sity of Montpellier 2. Each group of larvae was divided in two 20 l
aquaria, and was progressively conditioned over a period of 5 h to
two different salinity strengths: SW (1029 mOsm·kg−1

∼ 35 ppt)
and DSW (147 mOsm·kg−1

∼ 5 ppt), obtained by addition of
dechlorinated fresh tap water. All larval stages were kept at each
salinity for 48 h. Juveniles were kept for 48 h (D80), or for 10
(D87 and D96) and 15 (D100) days at each salinity (D, days post-
hatch). Pre-adults (133 ± 14 mm, 28 ± 7 g) were maintained for
2 years in SW or in FW at 0.3 ppt (9 mOsm·kg–1). Temperature
and photoperiod were set at 18 ± 0.5˚C and at 12 h light/12 h
dark. The osmotic pressure of the media was measured with a

Table 1 | Dicentrarchus labrax stages used for immunofluorescence,

quantitative PCR (Q-PCR) and Western blot.

Stage Length

(mm)

Immuno

fluorescence

Q-PCR Western

blot

Larvae 3.5–5 D1, D3 D0, D2 –

Preflexion

larvae 5–7.5 D10 D6 –

Postflexion

larvae 15–25 D33, D42 D32, D48 –

Juveniles 38–48 D96 D80, D87, D100 –

Pre-adults 133 ± 14 Two-year-old – Two-year-

old

Size (total length range, n = 10).

D, days after hatch; –, not evaluated in this work.
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micro-osmometer Model 3300 (Advanced Instruments, Needham
Heights, MA, USA) and their salinity was evaluated from the
relation 100 mOsm·kg−1

∼ 3.4 ppt.
Following mouth opening (D5), the individuals received

Artemia nauplii and fine particle artificial fish food (Gemma/Nutreco
Aquaculture, Vervins, Picardie, France; particle diameters accord-
ing to fish length: 50–250 μm from 10 mm, 180–400 μm from
20 mm, and 315–500 μm from 25 mm). Juveniles and pre-adults
were fed with Aphymar granulates (Aphytec, Mèze, France)
to apparent satiation once a day. The fish were unfed 24 h
before sampling and they were anesthetized using phenoxy-2-
ethanol (150 μg·l−1). Samples from different stages were processed
for immunohistological studies, quantitative (real-time) PCR or
Western blot analyses (Table 1). All procedures were carried
out according to the French law concerning animal scientific
experimentation.

RNA EXTRACTION AND REVERSE TRANSCRIPTION
Total RNA was extracted using TRIzolTM Reagent (Invitrogen,
Carlsbad, CA, USA) from whole animal sub-pools of 30 larvae
(D0), 10 larvae (D2), 10 preflexion larvae (D6), 5 postflexion
larvae (D32, D48), with three pools for each stage. In juveniles
(D80, D87), extracts were made from six whole animals. In juve-
niles at D100, the gut (from esophagus to rectum), kidney, and
gill (filament and lamella removed from four gill arches on the
right side of the body) were dissected separately from three indi-
vidual fish. The animal and tissue quantities were calculated in
order to have approximately 0.1 g to maintain a constant value for
extraction according to manufacturer.

A treatment with DNase I (Invitrogen) was applied to the total
RNA to prevent genomic DNA contamination. Total RNA concen-
tration was determined by OD260 measurements in a NanoDrop
ND-1000 Spectrophotometer V3.3 (NanoDrop Technologies Inc.,
Wilmington, USA), and its purity was verified using the 260/280
absorbance ratio. The integrity and relative quantity of total RNA
were checked by electrophoresis. Total RNA (350 ng) from each
developmental stage were reverse transcribed into cDNA in a reac-
tion mixture containing 500 μg·ml−1 of oligo (dT) primer and
200 U of M-MLV RT (Invitrogen) following the manufacturer’s
instructions.

QUANTITATIVE REAL-TIME PCR
In order to quantify AQP1a transcript abundance throughout
development and across salinities, the relative abundance of
AQP1a transcripts (DQ924529), in each sample, was normalized
to the amount of an endogenous reference, the gene encoding the
sea-bass elongation factor gene (EF1α, AJ866727). This kind of
normalization also takes into account the efficacy of the reverse
transcription reaction. The EF1α expression levels did not change
between salinities (data not shown) and it has been previously
validated in other species and in sea-bass as a housekeeping
gene (Nebel et al., 2005b). The AQP1a primers were designed
using the Primer 3 software v 0.4.0 (National Human Genome
Research Institute, USA; AQP1F, 5′-CAA-GGC-AGT-CAT-GTA-
TAT-TG-3′ and AQP1R, 5′-AGA-GAG-TTG-AGC-CCC-AGT-3′).
Quantitative PCR (Q-PCR) analyses were performed with a Light-
Cycler™system version 3.5 (Roche Molecular Biochemicals) using

1× of the Lightcycler-FastStart DNA Master SYBR-Green I™Mix
(Roche Applied Science), 0.5 μM of each forward (F) and reverse
(R) primers and 0.5 μl of transcribed cDNA. Q-PCR reactions
were achieved for 40 cycles in 10 μl volume. Melting curve
analysis was performed with continuous fluorescence acquisition
(65–95˚C) at a temperature transition rate of 0.05˚C/s to deter-
mine the amplification specificity. The relative transcript level of
each gene at each stage and salinity was calculated for 100 copies
of the housekeeping gene (EF1α) using the following formula:
N = 100 × 2(Ct EF1α − Ct AQP1) (Rodet et al., 2005) where N, means
the copy numbers and Ct is the cycle threshold (defined as the
number of cycles required for the fluorescent signal to cross the
threshold, i.e., exceeds background level). Ct levels are inversely
proportional to the amount of target nucleic acid in the sample.

PHYLOGENETIC ANALYSIS AND ANTIBODY PRODUCTION
BLAST alignment was made from public GenBank for sea-bass
AQP1 DQ924529 (Giffard-Mena et al., 2007; AQP1a according
to phylogeny nomenclature analysis as stated before). Neighbor
joining (NJ) methods were used for comparisons of paralogs trees
rendered with Geneious v5.3 (Drummond et al., 2010). Final trees
were annotated with species names using Adobe Photoshop. Phos-
phorylation sites were searched with NetPhos 2.0 Server (Technical
University of Denmark). A polyclonal antibody was raised in
rabbit against a synthetic peptide corresponding to part of the car-
boxyl terminus region of the sea-bass Dicentrarchus labrax AQP1
molecule (amino acid residues 248–261 in sea-bass. The anti-
gen C*NGGNDATTVEMTSK was conjugated with keyhole limpet
hemocyanin (KLH*). The antiserum was obtained after three
booster injections, and the IgG fraction was obtained after affinity
purification by a commercial company (Genosphere Biotechnolo-
gies, Paris, France). Since extensive work has been done recently
on piscine (Cerdà and Finn, 2010) and teleost (Raldúa et al., 2008;
Tingaud-Sequeira et al., 2008, 2010) aquaporins, we presented
only the alignment of sequences that have been used to develop
antibodies for fish AQP1a for cellular location.

WESTERN BLOTTING
The gills, the kidney, and the digestive tract (specifically rectum)
were used to verify the AQP1a antibody specificity. These tissues
were dissected from SW sea-bass pre-adults. Their epithelia were
scraped off with a sterile blade and homogenized with a 5-ml
syringe and sterile needle (gage 22) in a lysis buffer consisting
of SEI buffer (0.5 M sucrose, 0.01 M Na2 EDTA, 0.05 M imida-
zole) pH 7.4, containing 20% of enzymatic protease inhibitors
(Complete™ MINI EDTA-free, Roche, Mannheim, Germany) for
inhibition of serine and cysteine proteases and therefore for stabi-
lizing and protecting isolated proteins. The lysate was centrifuged
at 3000 g for 5 min at 4˚C. The supernatant was frozen at −20˚C
for later Western blotting. The protein concentration was quan-
tified by the Bradford method (Bradford, 1976). Samples (30 μg
protein) were solubilized and denatured by addition of 0.33 vol-
umes of 4× loading buffer (0.25 M Tris, 8.33% SDS, 40% glycerol,
2.8 M β-mercaptoethanol, and 0.02% bromophenol blue) and
incubated at 100˚C for 15 min. The proteins were separated by
SDS-polyacrylamide gel electrophoresis (15% polyacrylamide).
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After electrophoresis, the proteins were transferred to a polyvinyli-
dene difluoride (PVDF) membrane (0.45 μm; Schleicher and
Schuell, Saint Marcel, France). After blocking with phosphate
buffered saline (PBS, pH 7.3) containing 5% skimmed milk for
3 h at room temperature, the membrane was incubated overnight
at 4˚C with the anti-sea-bass AQP1a polyclonal antibody at
5 μg·ml−1 (1:1780) in a PBS-containing 0.5% skimmed milk and
0.05% Tween 20. After washing two times for 5 min in PBS contain-
ing 0.5% Tween 20 and one time for 10 min in PBS, the membrane
was incubated for 1 h at room temperature with the peroxidase-
conjugate anti-rabbit IgG (Sigma) at 3.7 μg·ml−1 (1:2000) in PBS,
0.5% skimmed milk, and 0.05% Tween 20 solution. For negative
controls, membranes were incubated with a solution lacking the
primary antibody but supplemented with the same dilution of rab-
bit pre-immune serum. Membranes were washed and developed
by chemiluminescence with luminol (0.25 M luminol diluted in
DMSO, 0.09 M coumaric acid diluted in DMSO, 0.1 M Tris pH
8.5, and 0.0035% H2O2) for 1 min to visualize the immunoreac-
tive bands with a UV-transilluminator (Roche) and LumiImage
software (Boehringer, Mannheim).

INDIRECT IMMUNOFLUORESCENCE
Tissues extracted from fish at different developmental stages
(Table 1) were fixed in Bouin solution over 48 h, then rinsed with
30% ethanol until elimination of the strong yellow color, and then
replaced with 50 and 70% ethanol. The fixed material was dehy-
drated, embedded in Paraplast medium (Sigma), and sectioned
as described previously (Giffard-Mena et al., 2006). Sections were
incubated for 2 h at room temperature with the sea-bass specific
anti-AQP1a primary antibody diluted 1:30. For negative controls,
sections were incubated with a solution lacking the primary anti-
body but with equivalent dilutions of pre-immune serum instead.
Immunofluorescence was detected after incubating the sections
with a 1:150 dilution of fluorescein 5′ isothiocyanate (FITC) anti-
rabbit antibody (Sigma, MO, USA). The sections were observed
with a Leitz Diaplan fluorescence-fitted microscope (450–490 nm
filters; Leica Microsystems, Rueil-Malmaison, France) in order to
localize the cells immunoreactive to AQP1-a (called thereafter
AQP1a-cells).

MORPHOMETRIC ANALYSIS
Intestinal sections from the anterior intestine, posterior intestine,
and rectum stained as described above were examined using the
Leitz Diaplan fluorescence-fitted microscope (six sections from
three fish in SW, DSW, or FW were used). Photos from ran-
domly selected areas (74 × 103 μm2) were taken at 25× mag-
nification with a Leica DC300F digital camera adapted to the
microscope, and a Leica FW4000 software (Leica Microsystems,
Rueil-Malmaison, France). Digital images were analyzed using
web-based imaging software (Image J v1.34s, Wayne Rasband,
National Institute of Health, USA) to determine the number and
surface areas of AQP1a-cells.

STATISTICS
Analysis of variance (ANOVA) and non-parametric Student’s t -
test were used for statistical comparisons of the mean values
(p < 0.05) for three replicates of larvae and post-larvae pools (D0,

D2, D6, D32, and D48) or six individual fish at juvenile stage (D80
and D87) in each salinity condition (SW and DSW).

RESULTS
DIFFERENTIAL AQP1a ABUNDANCE DURING ONTOGENY ACCORDING
TO SALINITY
The abundance of AQP1a was followed by Q-PCR at different
developmental stages in sea-bass acclimated to SW and DSW for
48 h (D2, D6, D32, D48, and D80), 10 days (D87), and 15 days
(D100). Transcript levels of the housekeeping gene EF1α did not
change when two salinities where compared (not shown).

The abundance of AQP1a transcripts was similar between
stages and salinities from D0 SW larvae until D48 (Figure 1). At
D80, the AQP1a transcript levels showed significant increases (0.4-
fold) in DSW- compared to SW-acclimated fish. Although there
was a steady and progressive increase in AQP1a transcript abun-
dance in SW-acclimated fish through developmental stages D32–
D87, a similar progressive increase was only maintained until D80
in DSW-acclimated fish, but then it was followed by a significant
fall in mRNA abundance at juvenile D87 stage. As a consequence,
at D87, the AQP1a transcript level was significantly higher (0.8-
fold) in SW-acclimated fish compared to DSW-acclimated fish
(Figure 1).

In juveniles (D100; Figure 2), the AQP1a transcript level in
the gut was significantly higher (by 2.6-fold) in SW-acclimated
fish than in DSW-acclimated fish. In the kidney, which exhibited
the highest levels of expression, the AQP1a level was also signifi-
cantly higher (by 2.2-fold) in SW- than in DSW-acclimated fish. In
the gill, the AQP1a transcript level was lower than in intestine or
kidney and no significant difference was observed following
salinity transfer.

FIGURE 1 | Dicentrarchus labrax. AQP1a transcript abundance evaluated
by quantitative PCR, during sea-bass ontogeny, following a 48-h acclimation
period in SW and DSW, only D87 was acclimated for 10 days. D0 larvae
(hatching time) were only exposed to SW. Each value is the
mean ± standard error of larvae pools from three samples (D0, D2, and D6,
with 30, 10, and 10 fish respectively) or post-larvae pools (D32 and D48,
with five fish in each pool) or juvenile individual animals (D80 and D87, six
individual fish for each stage). Asterisk (*) indicates differences between
SW and DSW samples (p < 0.05). D, days post-hatch. SW, sea water
(1029 mOsm·kg−1

∼ 35 ppt); DSW, diluted sea water
(147 mOsm·kg-1

∼ 5 ppt).
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FIGURE 2 | Dicentrarchus labrax. AQP1a transcript abundance in tissues
of juvenile sea-bass (D100) in SW and DSW evaluated by quantitative PCR.
Each value is the mean ± standard error of three measurements (each
measurement with three fish). Asterisk (*) indicates significant differences
between SW and DSW samples (p < 0.05). D, days post-hatch. SW, sea
water (1029 mOsm·kg−1

∼ 35 ppt); DSW, diluted sea water
(147 mOsm·kg−1

∼ 5 ppt).

ALIGNMENT AND WESTERN BLOT DETECTION OF AQP1A
The molecular phylogeny of five teleost AQP1a to sea-bass brings
out differences on specific amino acids (positions 252, 255–257 of
alignment; Figure 3A). AQP1a sea-bass protein sequence has sev-
eral high score phosphorylation sites (Ser6,38,188,224,239, Thr255,259,
and Tyr245), the residues S38,224 with 0.99 score. Figure 3A shows
only Y245, T255, and T259 (0.82, 0.63, and 0.71). The phylogenetic
tree indicates a closer genetic relation with gilthead sea-bream
than eels and greater distance with zebrafish (Figure 3B). The
immunoreactive bands found in the three tissues (gill, kidney,
and gut) with molecular masses of 28 kDa correspond to the cal-
culated molecular mass of the AQP1a channel (Figure 3C). A
smaller band at 25 kDa was also detected in all tissues. These spe-
cific bands were absent in control blots (the rectum negative lane
is shown).

AQP1a IMMUNOLOCALIZATION AND MORPHOMETRIC ANALYSIS
DURING ONTOGENY ACCORDING TO SALINITY
The cellular localization of AQP1a was detected by immunoflu-
orescence during the ontogeny of the sea-bass acclimated dur-
ing 48 h, from SW to DSW (D1, D3, D10, D33, and D42),

FIGURE 3 | Dicentrarchus labrax. Alignment, phylogenetic tree, and
antibody specificity for AQP1a. (A) Complete AQP1a amino acid sequence
alignment from some fishes. Only C termini is shown, the green bar at the
bottom of alignment indicates the section chosen for developed antibodies
(sea-bass peptide developed in this work is indicated by an arrow).
Non-conserved residues are unboxed. The consensus sequence logo is
scaled according to amino acid conservation, numbers on top correspond to
this alignment. Numbers next to sequences corresponds to original sequence

numbering. Potential phosphorylation sites for sea-bass are indicated with an
asterisk. (B) Phylogenetic relationships among aligned AQP1a aquaporins. The
unrooted phylogenetic tree was constructed using the NJ method. The bar
indicates the mean distance of 0.03 changes per amino acid residue. (C)

Representative Western blot of protein extracts (30 μg) from gills (G), kidney
(K), and rectum (R). Negative control without the primary antibody (S).The
apparent molecular masses (kDa) are indicated on the left. The arrow
indicates the ∼28 kDa sea-bass AQP1a protein.
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FIGURE 4 | Dicentrarchus labrax. AQP1a immunolocalization in SW-
(A,B,C,F) and DSW-acclimated (D,E) animals. (A) Posterior intestine section
of a larva at D1 displaying no fluorescence. (B) Larva at D3 with
autofluorescence in eyes and yolk, showing immunopositive reaction to
AQP1a in crystalline, muscle, liver, and in tegumentary cells (the presence of

AQP1a is indicated by arrows). (D) Crystalline detail in a D3 larva. (E) Liver
detail at D10. No fluorescence at D3 (F) in gills and (C) in digestive tract. C,
crystalline; GA, gill arch; L, lumen; Li, liver; M, muscle; PI, posterior intestine;
R, rectum; T, tegument; TI, tegumentary cell; Y; yolk; SW, sea water; DSW,
diluted sea water.

10 days (D96), and 2-year-old. Positive immunoreactive cells are
subsequently designated AQP1a-cells. Negative control sections at
each developmental stage in the absence of AQP1 primary anti-
body exhibited no fluorescence. Control negatives display a lemon
pale coloration very different from the strong green fluorescence
of labeled protein (gills and gut are showed in Figure 3C respec-
tively). However, autofluorescence was noted in the eyes, the yolk
(in larvae; Figures 4B,D), muscle (Figure 6D), and in blood cells,
particularly visible in the gills and in blood vessels of the intestine
(Figures 6A,B and 7A,F).

In larvae at D1 sampled about 8 h after hatch in SW, AQP1a-
cells were not detected in any organ (as an example, see the
posterior intestine, Figure 4A). In SW-acclimated larvae at D3
(Figure 4B) and in both SW- and DSW-acclimated larvae at
D10 (Figure 4E), AQP1a immunofluorescence was noted in the
crystalline lens epithelium of the eye and in the liver. However, spe-
cific immunofluorescence was not detected in the digestive tract
(Figure 4C) nor the gills (Figure 4F) at any salinity (only shown
for SW). At D3, a few AQP1a-positive tegumentary cells were
also present in SW-fish (Figure 4C). At D33, AQP1a-cells were
observed at the same location as at D10 but only in SW-acclimated
fish (not illustrated).

In postflexion larvae at D42, AQP1a-cells were detected in
the epithelium of the anterior intestine (Figures 5A,B), posterior
intestine (Figures 5C,D), and in the rectum (not illustrated) at
both salinities. Moreover, AQP1a immunoreactivity in the brush
border was detected in the anterior intestine and rectum in SW
(Figures 5A and 7F,G). This signal was verified several times in
different sections and individuals in order to rule out an arti-
fact. Some AQP1a-cells were detected in the liver of SW- and
DSW-acclimated fish (not illustrated).

In juveniles at D96 (Figure 6),AQP1a-cells were observed in the
gills at both salinities (Figures 6A,B) and also in the submucosa
and epithelial cells of the esophagus (Figures 6C,D). AQP1a-cells
were present in the anterior intestine submucosa of SW-acclimated
fish, but no signal was observed in the posterior intestine and
rectum (not illustrated). At this developmental stage, no AQP1a
immunoreactivity was observed in the crystalline epithelium of
the eye, nor in the liver at any salinity (not illustrated).

In pre-adult fish (2-year-old fish exposed from 2 months of age
to either SW or FW), AQP1a-cells were observed in the gills. They
were mainly located in the filaments, but some AQP1a-cells were
also present along the lamellae in both SW- and FW-acclimated
fish (Figures 6E,F). AQP1a-cells were observed in the anterior
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FIGURE 5 | Dicentrarchus labrax. AQP1a immunolocalization in anterior
(A,B) and posterior intestine (C,D) of SW- (A,C) and DSW-acclimated (B,D)

postflexion larvae at D42. The presence of AQP1a-cells and epithelial cell
fluorescence is indicated by arrows. AI, anterior intestine; PI, posterior
intestine; SW, sea water; DSW, diluted sea water.

intestine (Figures 7A,B), posterior intestine (Figures 7C–E), and
rectum (Figures 7F–H). Most AQP1a-cells were located in the
submucosa for all tissues in both SW- and FW-acclimated fish,
but some immunoreactive cells were also present at the base of the
columnar epithelial cells in the three segments (Figures 7B,H).
In the rectum, immunostained cells were predominantly located
at the base of the fold between intestinal villi, while in the ante-
rior intestine AQP1a-cells were also abundant at the apical side
of intestinal villi (Figures 7F–H). Immunoreactivity was also
detected in the brush border apical section of the anterior intestine
and rectum in both salinities, although it appeared stronger in the
rectum of SW-acclimated fish (Figure 7G).

Morphometric analyses revealed several differences in the num-
ber and size of AQP1a-cells (Figure 8). These cells were more
abundant in pre-adults than in juveniles. In juveniles (D96),
AQP1a-cells were found in the anterior intestine only, and only
in SW-acclimated fish. No immunoreactive cells were found in the
anterior intestine of DSW-acclimated juvenile fish (Figure 8A).
In pre-adult fish, the relative number of AQP1a-cells was highest
in the anterior intestine, and it was higher in the rectum than in
the posterior intestine. At each segment of the digestive tract, the
number of AQP1a-cells was significantly higher in SW than in FW,
by 49% in the anterior intestine, 50% in the posterior intestine,
and 46% in the rectum (Figure 8A). The size of the cells was not
different in the anterior intestine of SW-acclimated juveniles and
pre-adults (Figure 8B). In pre-adults, slight but significant changes
in the AQP1a-cell size were observed, with the largest cells found

in the rectum and the smallest in the posterior intestine at both
salinities. In the three sections of the digestive tract, the cell size
was significantly higher (+16%) in SW than in FW (Figure 8B).

DISCUSSION
AQP1a is an important water channel involved in whole body
osmoregulation in teleosts. This study shows the expression and
localization of AQP1a at different osmoregulatory sites during the
ontogeny of the sea-bass acclimated to different environmental
salinity changes. One of the main results of this study indicates that
a significant increase in AQP1a mRNA levels is detected around
the time of metamorphosis of larvae into juveniles (D48–D80 in
this work). Also, the number and size of AQP1a-cells is signifi-
cantly higher in the gut sections of SW-acclimated fish compared
to DSW-/FW-acclimated fish, strongly suggesting an important
role of AQP1a for water absorption in SW-acclimated fish gut. In
early larvae, the protein is also expressed in tegument, eyes, and
liver and from D96 in gills and esophagus.

Western blot analyses suggest that Dicentrarchus labrax gill,
kidney, and rectal tissues contain an AQP1a of around 28 kDa.
This value is similar to those reported in mammals (Preston and
Agre, 1991; Verkman and Mitra, 2000) and fish (Aoki et al., 2003;
Martínez et al., 2005a). The 25 kDa band may correspond to a non-
phosphorylated form of the protein (Verkman and Mitra, 2000;
King and Agre, 2001; Fabra et al., 2006). Similar two-band profiles
have been observed in gilthead sea-bream SaAQP1o (Fabra et al.,
2006). Although further functional analysis of SaAQP1o (AQP1b;
Tingaud-Sequeira et al., 2008) and discovery of AQP1a in eggs of
this species, revealed that only AQP1b is able to be phosphorylated,
several potential sites are present in AQP1a from the sea-bass, par-
ticularly S38 and S224 (0.99) indicating that sea-bass AQP1a has a
strong probability of being a regulated form by phosphorylation.
Another explanation is that aquaporins contains a number of gly-
cosylation sites which may account for different molecular sizes as
reported for AQP3 (Lignot et al., 2002a; Deane and Woo, 2006).

The profiles of AQP1a expression during the ontogeny of sea-
bass show that transcripts are already expressed at hatch and
during the larval and juvenile stages. The level of transcripts does
not vary significantly from D0 and after mouth opening between
D6, and is lower during the larval period than in juveniles (D80–
D87). The protein has been detected at most observed stages in the
crystalline epithelia of the eye and in the liver. The potential roles
of mammalian AQP1 in the crystalline epithelium include the reg-
ulation of tear volume, the ionic composition, intraocular pressure
and size of the sub-retinal compartment, and the hydration and
transparency of the cornea (Levin and Verkman, 2006). In the rat,
AQP1 expression was observed in the liver in the endothelial cap-
illary cells, where the protein has been proposed to be involved in
the transcellular movement of water, and in the formation of bile
(Matsuzaki et al., 2004). The corresponding functions of AQP1a
in the eyes and liver of fish are unknown. Although AQP1a is not
expressed in these organs in the sea-bass after D33, the water trans-
porting functions in these tissues might be taken over by another
aquaporin.

At D3, immunofluorescence has revealed the presence of
AQP1a in some tegumentary cells, but only in SW-acclimated lar-
vae. At this larval stage, tegumentary ionocytes, that are active in
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FIGURE 6 | Dicentrarchus labrax. AQP1a immunolocalization in juveniles at
D96 in gill lamellae and filament (A,B), esophagus (C,D), and in pre-adult gill
(E,E′,F). Acclimation in SW (A,C,E,E′), DSW (B,D), or FW (F). The presence of

AQP1a-cells is indicated by arrows. GF, gill filament; La, lamellae; RBC, red
blood cell; SW, sea water; DSW, diluted sea water. E′ is a negative control
without primary antibody.

ion transport, as indicated by the abundance of Na+/K+ ATPase,
represent the main site of osmoregulation (reviewed by Varsamos
et al., 2005). The precise osmoregulatory role for AQP1a in these
cells at this stage is difficult to determine, especially since water
would tend to flow out of the cell when larvae are in the marine
environment. The reverse process, necessary to maintain the water
content of these hypo-osmoregulating larvae submitted to dehy-
dration (Varsamos et al., 2001), would necessitate the establish-
ment of a strong ionic gradient against full SW at the basal side
of tegumentary cells, which is unlikely. If sea-bass AQP1a sea-bass
is also able to transport urea and or glycerol (as zebrafish does;
Tingaud-Sequeira et al., 2010), this protein could also function to
transport osmolytes to maintain osmotic pressure and therefore
regulate cell volume. A functional analysis is required in order to
understand this point.

Since AQP1a was not detected in the digestive tract or the gills
in early larval stages, and as at stages D3–D48, there was no dif-
ference between fish kept at differing salinities, AQP1a does not
appear to have a major functional role before metamorphosis.
However, the maintenance of water balance remains necessary as
the larvae are then completing their passive marine drift toward
the coasts and are exposed to salinity fluctuations. The mecha-
nism of water absorption, if carried out by the developing digestive
tract as in later stages (Aoki et al., 2003; Giffard-Mena et al., 2007;
Raldúa et al., 2008; Brunelli et al., 2010; Cerdà and Finn, 2010;
Kim et al., 2010), could be based on the presence of an aqua-
porin isoform different from AQP1a, as described in the sea-bream
Sparus aurata whose SaAQP1o (AQP1b) may facilitate hydration
in oocytes (Fabra et al., 2005, 2006; Tingaud-Sequeira et al., 2010).
Another candidate would be AQP3, detected in several tissues of
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FIGURE 7 | Dicentrarchus labrax. AQP1a immunolocalization in the anterior
intestine (A,B), posterior intestine (C,D,E), and rectum (F,G,H,H′) from SW-
(A,C,D,F,G) and FW-acclimated (B,E,H,H′) 2-year-old pre-adults. The presence
of AQP1a-cells is indicated by arrows. Immunoreaction was mainly observed
in the submucosa (SBM), but also in cells present among columnar epithelial

cells (Ec). Immunoreaction for AQP1a in the apical brush border cells (Bb) was
stronger in the rectum of SW-acclimated fish than in FW-acclimated fish. Bb,
brush border; Ec, epithelial cells; L, lumen; RBC, red blood cell; SBM,
submucosa; SW, sea water; FW, fresh water. H′ is a negative control without
primary antibody.

Sparus sarba larvae and particularly in FW gills, which could act
in the regulation of the cell volume (Deane and Woo, 2006). A
similar function had been postulated for AQP3 in Dicentrarchus
labrax (Giffard-Mena et al., 2007).

When Dicentrarchus labrax reach the juvenile stage (environ
25 mm, D80), a low but significant increase in AQP1a transcript
abundance corresponded to the first occurrence of AQP1a protein
in the gut (anterior intestine, posterior intestine, and rectum). The

increase of AQP1a mRNA, detected in larvae at D48 and D80 after
48 h of acclimation to DSW is probably not associated with water
uptake, since additional water absorption would impose an addi-
tional osmoregulatory burden to the fish. This fact strengthens the
hypothesis of a specific function for this paralog at low salinities
and at a developmental stage that corresponds to the metamorphic
transition (Giffard-Mena et al., 2006). As whole fish have been used
for this quantification, further measures on separate organs should
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FIGURE 8 | Dicentrarchus labrax. Morphometric analysis of AQP1a-cells
in selected organs of juvenile (D96) and 2-year-old pre-adult sea-bass
acclimated to SW and DSW or FW. The number of AQP1a-cells (A) and
their surface area (B) are shown. Values are mean ± standard error.
Different letters indicate significant differences between values (p < 0.05,
n = 6). AI, anterior intestine; PI, posterior intestine; R, rectum; SW, sea
water; DSW, diluted sea water; FW, fresh water.

be conducted. Longer acclimation periods for larval stages are not
possible since this would change the developmental stage; also, and
it has been shown for other proteins such as Na+/K+-ATPase that
48 h acclimation trials are long enough to detect changes and sta-
ble responses in expression (Varsamos et al., 2004; Giffard-Mena
et al., 2007).

In juveniles at D96–D100, when salinity acclimation was
extended to 10–15 days, the expression of AQP1a in the digestive
tract was consistently significantly higher in SW than in DSW.
This fact reflects the capacity of juvenile fish at this age to cope
with sustained salinity changes over long periods. Similar changes
occurred in the kidney, but not in the gills. The protein is detectable
through immunofluorescence in the gills, but the lack of change
of its expression or localization according to salinity suggests that
AQP1a has a limited osmoregulatory role in this organs, unlike
AQP3 which seems to have a key role in adult sea-bass, particularly
in FW (Giffard-Mena et al., 2007).

Within the digestive tract of juvenile sea-bass (D87), the highest
AQP1a mRNAs abundance is found in SW-acclimated fish, which
is in accordance with a high level of AQP1a protein expression in

the anterior intestine. This is in consistent with the model of water
absorption within the gut of adult fish, and which compensate
for the dehydration effects of the environment (Aoki et al., 2003;
Marshall and Grosell, 2005). It confirms the specific localization of
AQP1a protein for this species. In sea-bass, the anterior intestine
appears as the first section involved in osmoregulation. A previous
study of its ontogeny has shown that it develops faster than other
gut sections (Giffard-Mena et al., 2006). The AQP1a C-terminus
is the most divergent region of sequence and it is known to play a
role in AQPs intracellular trafficking (Raldúa et al., 2008). The dif-
ferences in the teleost peptides (see consensus sequence, Figure 3)
seems to be determining on tissue AQP1a distribution, mainly in
gut sections.

In the digestive tract of 2-year-old pre-adult sea-bass, the num-
ber and size of AQP1a-cells were markedly higher in SW than in
DSW, with highest values in the anterior intestine and rectum,
respectively. Higher levels of this protein in SW were also found
in other fishes (Aoki et al., 2003; Martínez et al., 2005a; Raldúa
et al., 2008; Tipsmark et al., 2010), but its localization in some
of them was restricted to the apical epithelia. In the sea-bass, the
immunoreactive cells constitute a continuous cellular layer at the
base of folds, in the conjunctive tissue (submucosa), the blood
vessels and also on the apical brush border of the epithelium,
especially in the anterior intestine and rectum. Apical localiza-
tions of AQP1a have previously been reported in the European
eel (Martínez et al., 2005a), Japanese eel (Aoki et al., 2003), and
in the gilthead sea-bream (Raldúa et al., 2008; Cerdà and Finn,
2010). The apical localization of AQP1a in the epithelial cells of
the intestine points to a water flux through these cells. Another
type of AQP is most probably present at the basolateral side of
these cells, allowing a flux of water through the conjunctive tissue
(Aoki et al., 2003; Tipsmark et al., 2010). The strong cellular den-
sity of AQP1a-cells in the submucosa of the sea-bass gut in SW
is notable. Although these conjunctive cells do not form a con-
tinuous layer, several of them are very close at certain locations:
they may increase the permeability of the submucosa, allowing a
water flux from the intestinal lumen to the blood as suggested for
salmon AQP1a (Tipsmark et al., 2010) and eel (Martínez et al.,
2005a). Water would follow an osmotic gradient established by
ionocytes located in the intestinal epithelium, with a basolateral
localization of Na+/K+ ATPase (Giffard-Mena et al., 2006, 2007).
Conversely, the presence of AQP1a in these cells may indicate that
they regulate their own cellular volume or that they are involved
in accelerating cell migration, particularly during the build-up of
new blood vessels (Papadopoulos et al., 2008).

In the sea-bass, AQP1a has been observed in esophageal cells
from juveniles (D96) in SW and DSW. This is the first report
of AQP1a in this organ of that species. The esophagus water
permeability is low in marine fish: this organ would mainly partic-
ipate in the desalinization of imbibed SW (Venturini et al., 1992;
Ando et al., 2003). However the earlier discovery of aquaporins
in this organ (Lignot et al., 2002b) has led to suggestions of other
physiological roles for this water transporter in this gut segment,
including cell volume homeostasis (Martínez et al., 2005b), water
trafficking associated with mucus secretion or maintenance of wet-
ness of the epithelium (Lignot et al., 2002b), passive transcellular
water fluxes from or to the luminal fluid imbibed from either FW
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or SW, or protection of epithelial cells from the effects of swelling
or shrinkage (Martínez et al., 2005b). Similar roles could also exist
in the sea-bass.

In the present study, AQP1a expression was detected in pre-
adult kidney of sea-bass by Western blot analysis and by Q-PCR.
However, due to the high levels of autofluorescence within this
tissue, the specific signals were not strong enough to determine a
cellular localization of AQP1a. Although, this protein was been
apical located within the renal tubules of eel and sea-bream
(Martínez et al., 2005a; Raldúa et al., 2008). The high levels of
AQP1a transcripts in the sea-bass kidney in SW may be related
to required increases in water reabsorption from the renal tubules
into the blood, contributing to a decrease in water loss via the
urine (Marshall and Grosell, 2005). The presence of AQP1a in
the kidney of both the adult eel (Martínez et al., 2005c) and pre-
adult sea-bass (Giffard-Mena et al., 2007) is probably related to
the reabsorption of water from the tubular fluids, a process of
particular importance to prevent dehydration in SW-acclimated
fish. This hypothesis is supported by lower urinary excretion rates
found in sea-bass acclimated to SW rather than DSW (Nebel et al.,
2005a). In FW fish, urinary excretion is important and allows to
eliminate the excess of water, while reabsorption of ions by the
kidney and bladder ionocytes limits ion loss (Nebel et al., 2005a).
Results concerning the detection of AQP1 and AQP1 dup in the
kidney of eels acclimated in SW are contradictory; the increased
abundance of AQP1 transcripts found in FW-acclimated yellow
eels is difficult to link with the need for eliminating water excess
(Martínez et al., 2005c). Interestingly, increases in expression of
AQP1 transcripts were not observed in migratory silver eels when
still in FW, indicating that expression of AQP1 within the kidney
is regulated more by developmental changes than environmental

salinity variations (Martínez et al., 2005c). Therefore AQP1 might
have a more important role in the control of cellular volume within
the kidney rather than the bulk transepithelial movement of water
(Martínez et al., 2005c). Conversely, AQP1 may also be involved in
the absorption or secretion of water in the renal proximal tubules
(Cutler et al., 2006). A recent study (Cerdà and Finn, 2010) has
shown that these were actually paralogs including AQP1a, AQP1b,
and AQP10b.

CONCLUSION
The regulation of AQP1a in the euryhaline sea-bass begins at the
metamorphic transition. Elevated AQP1a mRNA levels in juve-
nile gut and kidney in SW-acclimated sea-bass suggest a key role
in water absorption. The expression of AQP1a protein in the gut
starts at metamorphosis (D42, 21 mm) and increases in juveniles
(from D96, 43 mm) indicating an approximate time for water reg-
ulation through AQP1a-cells in developing fish. The importance
of other aquaporin family members still remains to be elucidated.
These results contribute to the interpretation of the adaptation of
the sea bas to their habitats and their variability, as metamorpho-
sis occurs just prior to the migration from the sea to estuaries and
lagoons, i.e., to areas where salinity fluctuates.
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