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Thermal versus quantum fluctuations of optical-lattice fermions
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We show that, for fermionic atoms in a one-dimensional optical lattice, the fraction of atoms in doubly
occupied sites is a highly nonmonotonic function of temperature. We demonstrate that this property persists even
in the presence of realistic harmonic confinement, and that it leads to a suppression of entropy at intermediate
temperatures that offers a route to adiabatic cooling. Our interpretation of the suppression is that such intermediate
temperatures are simultaneously too high for quantum coherence and too low for significant thermal excitation
of double occupancy thus offering a clear indicator of the onset of quantum fluctuations.
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I. INTRODUCTION

The international effort to emulate the behavior of corre-
lated electrons in solids using ultracold atomic systems [1–3]
is by now a familiar topic. Experimental progress has been
rapid, and the Mott insulating state of fermionic atoms in a
three-dimensional (3D) cubic optical lattice has been observed
[4,5]. However, to explore the key open questions about the
Hubbard model, for example, how similar its phase diagram
really is to that of the high-temperature superconductors [6],
it is necessary to achieve a significantly lower entropy per
particle than at present. To be quantitative, the entropy per
particle must drop below kB ln 2; this is the scale at which
antiferromagnetic correlations begin to set in.

The role of theory in recent work on this problem has been
vital. On the one hand, experimental work is being conducted
to help elucidate the properties of the Hubbard model at
low temperatures. On the other, the interpretation of the data
taken in experiments often depends heavily on the theoretical
understanding of the Hubbard model itself. For example, one
experiment [5] measured the density profile of the cloud under
varying amounts of harmonic confinement; the Mott insulator
was identified by close comparison with theoretical predictions
of the same. In more recent experiments [7], measurements of
the fraction of doubly occupied sites in the optical lattice, d,
were compared with theory to show that these experiments are
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still dominated by thermal (rather than quantum) fluctuations,
a topic we take up below.

As well as being relevant for interpretation of measurements
on ultracold atomic systems, good theoretical understanding is
crucial for the development of experimental cooling protocols.
Here also the behavior of the double-occupancy fraction as
a function of temperature is important, as it has a direct
relation to the entropic properties of the system. For example,
the Pomeranchuk-like cooling method outlined in Ref. [8]
relies on an entropy enhancement, observable as a surprising
suppression of double occupancy at intermediate temperatures.
Whether this effect is strong enough to be useful is thus a key
question; recent numerical calculations tackling this issue in
3D lattices [9] are suggestive but results in 2D lattices [10,11]
are mixed. Highly accurate theoretical methods will be needed
at low temperatures.

Motivated by these requirements—interpretation of data
and design of cooling protocols—we address in this work
the following two questions. First, how good is the double
occupancy as a probe of the temperature? And second,
under what circumstances do we see the suppression of
double occupancy at intermediate temperatures required for
the adiabatic cooling protocol of Ref. [8]? We construct an
accurate theoretical framework for treating low-temperature
fermions in one dimension. We shall find that, in a 1D
optical lattice, d(T ) is a nonmonotonic function of temper-
ature. From the point of view of temperature measurement,
this is a disadvantage; on the other hand, the resulting
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double-occupancy suppression indicates a large entropy en-
hancement, offering a clear route to adiabatic cooling. We
shall argue that the enhancement of double occupancy occurs
for different reasons in different temperature regimes: it is
driven by thermal fluctuations at high temperatures, but by
quantum fluctuations at low temperatures. We thus interpret the
suppression in double occupancy at intermediate temperatures
as occurring because the system is, loosely speaking, too hot
for quantum coherence, but too cold for significant thermal
excitation of double occupancy. Finally, we shall show that
these local effects can be measured quantitatively with a
bulk observable even in the presence of realistic harmonic
confinement.

Our method combines zero-temperature Bethe-ansatz (BA)
studies with finite-temperature series expansions. Recent
implementations of BA [12] compute observables such as the
core compressibility [13]. Here, however, we show that double
occupancy alone indicates a large entropy enhancement, even
though the 1D system is not a Fermi liquid. By focusing on 1D
Hubbard physics we demonstrate that exact calculations over
the entire temperature range can be used as a platform to guide
experiments in the construction of low-temperature quantum
states in optical lattice emulators.

II. MODEL

We consider the Hubbard model of cold fermionic atoms in
a one-dimensional optical lattice,

H = −t
∑

〈i,j〉,σ
c
†
iσ cjσ + H.c. + U

∑
j

nj↑nj↓ −
∑
j,σ

εjnjσ .

(1)

The indices i and j are integers labeling the sites of the
lattice; the index σ =↑ , ↓ labels two different hyperfine states
of the N atoms in question, and we take both of these states to
have equal total populations N↑ = N↓ = N/2. The operator
cjσ annihilates a fermion of species σ on site j ; the number
operator njσ is defined as c

†
jσ cjσ .

The first term in Eq. (1) represents the quantum tunneling
of atoms between neighboring sites of the lattice; the second
the repulsion due to s-wave scattering when two atoms are
present on the same site; and the third the single-atom site
energy. This last term may be site dependent; for example, if
the system were confined to a box of length 2L we would have
εj = 0 for ja � L, εj = ∞ otherwise. In the more realistic
case of harmonic trapping, it would be given by

εj = ta2j 2/L2, (2)

where a is the lattice spacing and L is a length scale related
to the curvature of the trap. The hopping parameter t depends
on the depth of the optical lattice; the on-site repulsion U on
the s-wave scattering length, which is tunable via Feshbach-
resonance methods; and the on-site energies εj on the shape
and amplitude of the trapping potential.

III. RESULTS (HOMOGENEOUS CASE)

We begin our analysis with an analytic study of the
zero-temperature double occupancy in the bulk limit (obtained
by assuming a box potential as defined above and taking the

thermodynamic limit L,N → ∞, N/L = constant) at half
filling (μ = U/2). The double-occupancy fraction, defined as
the fraction of atoms in doubly occupied sites, is given by

d = (2/N ) (∂F/∂U )T ,N = (2/N)
∑

i

〈n↑
i n

↓
i 〉, (3)

where F = E − T S is the free energy for entropy S and N

is the total number of particles. We compute the bulk double-
occupancy fraction at half filling from the exact solution of
Lieb and Wu [14]

dLW(U ) =
∫ ∞

0
dωJ0(ω)J1(ω)sech2(ωU/4). (4)

Here, Jn is the nth-order Bessel function. Here and in the
following we work in units of t unless otherwise noted.
This expression shows that strong quantum fluctuations in the
ground state induce finite double occupancy, even at 〈n〉 = 1
and large U .

Weak thermal fluctuations compete with quantum fluctu-
ations at low temperatures (T � t). Using results from the
quantum transfer matrix method [15] we include thermal
fluctuations to find the exact expression for the low-T double-
occupancy fraction

d(T ) −−→
T �t

dLW(U ) − C(2π/U )T 2 + O(T 3), (5)

where the function

C(x) ≡ x2

12

{
1 − I0(x)[I0(x) + I2(x)]

2I1(x)2

}
(6)

is related to the unity central charge predicted by conformal
field theory for the Heisenberg universality class [15]. I

is the nth-order modified Bessel function. It is striking to
note that C > 0 for all U . Thus weak thermal fluctuations
counterintuitively lower the double occupancy in the 1D
Fermi Hubbard model. In contrast, large thermal fluctuations
dramatically increase double occupancy.

We use a fourth-order high-temperature series expansion of
the 1D Hubbard model to include large thermal fluctuations.
Expansion of the free energy in powers of t/T about the atomic
limit allows calculation of high-temperature observables that
compare well with finite-temperature BA calculations [16].
We compute the double-occupancy fraction to fourth order.
For brevity, we present the equation only up to second order
(for the full expression see the Appendix)

d(T ) −−−−→
T �t2/U

−
[
T U + T U cosh

(
U

2T

)]−1

+ 1 − 4U−2

e
U
2T + 1

+ tanh (U/4T ) sech2 (U/4T ) /(4T 2)

+ 2/U 2 + O(T −4)

Figure 1 matches the low-T expansion [Eq. (5)] with the
fourth-order high-T expansion of d within their respective
regimes of convergence. Pronounced dips form when quantum
and thermal fluctuations compete to dramatically enhance the
entropy [the entropy can be obtained from the Maxwell relation
(∂S/∂U )T ,N = −(N/2) (∂d/∂T )U,N ]. The finite value of d at
T = 0 is due entirely to quantum fluctuations but the double
arrow indicates the effect of thermal fluctuations at T = 2t .
The related Pomeranchuk-like effect in higher-dimensional
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FIG. 1. (Color online) Double-occupancy fraction versus temper-
ature for the uniform 1D Hubbard model at half filling for several U/t .
The dashed line indicates the low-T expansion (5); the solid line is the
fourth-order high-T expansion; the dot-dashed line is the exact result
for a two-site Hubbard model in the grand canonical ensemble; and the
dotted line is the same but with the number of particles set to exactly
two. At low T , nonzero d arises from coherent quantum fluctuations,
but at intermediate temperatures this coherence is destroyed, leading
to a suppression of d(T ) shown by the double-headed arrow.

lattices has been discussed in terms of Fermi-liquid properties
[8,17] but it is well known that 1D Hubbard models exhibit
non–Fermi-liquid behavior.

We can understand the competition between quantum and
thermal fluctuations in terms of a two-site Hubbard model,
which does not rely on Fermi-liquid effects. At half filling the
two-particle sector has the lowest energy at T = 0 for U > 2t .
The ground state uses quantum fluctuations to lower its energy
by hybridizing basis states. The singly occupied basis states
correspond to the singlet (|↑,↓〉 − |↓,↑〉)/√2 and the triplet
{|↑,↑〉, (|↑,↓〉 + |↓,↑〉)/√2, |↓,↓〉} states. The singlet will
mix with the doubly occupied states {|↑↓,0〉,|0,↑↓〉} to lower
its kinetic energy without paying a large penalty from the
interaction energy. The ground-state energy becomes E0 =
U/2 −

√
U 2/4 + 4t2 ≈ −4t2/U for t � U .

At small but finite temperature, the three triplet states, all
with energy E1 = 0, allow thermal fluctuations to increase the
entropy considerably (and therefore lower F ) as we increase
T . However, these three excited states involve no double
occupancy and therefore d decreases. As T is increased further,
however, even higher-energy states are populated. These other
states (e.g., |↑↓,0〉 − |0,↑↓〉) involve double occupancy again,
so the double occupancy goes up once more for large T . The
nonmonotonic behavior of double occupancy is closely related
to the separation of energy scales between the spin and charge
degrees of freedom [18,19].

Figure 1 plots d for the two-site Hubbard model for
comparison with the thermodynamic limit. The pronounced

FIG. 2. (Color online) Schematic of trap filling in three different
regimes with decreasing U from left to right. Left: Mott insulator with
single occupancy, Center: Doubly occupied sites at the trap center
flanked by edges with low filling. Right: A band insulator dominated
by doubly occupied sites. These sketches ignore both quantum and
thermal fluctuations.

dip in d corresponds to a finite T entropy gain. The remarkably
close agreement between the expansions and the exact two-site
results suggests that spinons and holons could be thought
of in a localized picture. The close agreement also suggests
that entropy gain when increasing interaction at intermediate
temperatures is a generic feature of few-particle bonding in
nonfrustrated Hubbard models.

IV. RESULTS (HARMONICALLY TRAPPED CASE)

We now address the competition between thermal and
quantum fluctuations under realistic parabolic trapping. Let
us first consider the situation in the absence of fluctuations,
sketched in Fig. 2. The left and right schematics show
two scenarios where double occupancy should show a clear
indication of the underlying trapped state. For large U (left) the
deep Mott insulator regime corresponds to strong suppression
of all doubly occupied sites. The low-U regime (right) shows
the band insulator, identifiable with a large number of doubly
occupied sites. The central schematic shows a mixture of both
singly occupied sites at the edges and doubly occupied sites
near the trap center. When fluctuations are turned on, the
situation will be complicated further by the appearance of
metallic regions and finite double occupancy at sites where
〈n〉 < 2.

At first it may appear that trapping will hamper efforts
to distinguish between thermal and quantum fluctuations in
observations of double occupancy. We will use the Bethe-
ansatz local-density approximation (BA-LDA) [20] to show
that bulk values are indeed observable in strongly inhomoge-
neous and relatively small trapped systems. Interestingly, local
measurements [21] are not required to recover the bulk physics;
a global measurement carried out on the whole trapped system
suffices.

We consider finite values of L in Eq. (2) to study
trapped systems with up to N ∼ 500 particles with BA-LDA.
Figure 3 plots the double-occupancy fraction versus Na/2L,
an effective filling in the trap in the thermodynamic limit
L,N → ∞, Na/2L = constant [22,23]. For low particle
numbers, Na/2L � 1, the trap is entirely compressible due
to edge effects. Near Na/2L ∼ 2 the central region forms
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FIG. 3. The circles indicate double-occupancy fraction versus
particle number in a trapped system (L = 50) at T = 0 for half filling
at the trap center and U/t = 8 computed using BA-LDA. The solid
line is the bulk value in the Mott insulating ground state [Eq. (4)]. The
insets, from left to right, show the corresponding density as a function
of position in the trap for 100, 216, and 300 particles, respectively.

a Mott insulator at the trap center. At T = 0 the system
is dominated by quantum fluctuations manifest in the finite
double occupancy even in a regime with 〈ni〉 � 1 for all
i. d in the trap converges to dLW in the formation of a
plateau. Observation of this plateau indicates a strong Mott
insulator with quantum fluctuations. d excludes edge effects
and therefore allows a measurement of the bulk value of d,
dLW, even in an inhomogenous mesoscopic system. Increasing
N further turns on double occupancy at the trap center leading
to a pronounced cusp near Na/2L ∼ 2.5.

We use a second-order high-temperature series expansion
to include finite temperatures in the trap. The series from
Ref. [13] is adapted to one dimension. The series we use
for the trapped system is exact up to O((t/T )4). Figure 4
compares the second-order series at finite T and the BA-LDA
at T = 0. From the top panel we see that strong thermal
fluctuations tend to increase d above the bulk value for the
Mott plateau near Na/2L ∼ 2.3. For larger U the Mott gap
suppresses thermal fluctuations. In the bottom panels we see
that thermal fluctuations tend to decrease d in the trap for
T � 2t . The double-arrow line in the bottom panel shows
that the effects of weak thermal fluctuations for T = 2t in
a uniform system (Fig. 1) are also observable in a trap. We
predict that even lower temperatures will tend to increase d

to its bulk value, dLW in the Mott regime. Thus an increase of
d with decreasing T demonstrates an observable capable of
pinpointing a regime with dominant quantum fluctuations and
low entropy per particle. This regime can be used for adiabatic
cooling and constructing higher-dimensional optical lattices
with low entropy.

V. CONNECTION TO ADIABATIC COOLING

Our results complement a protocol for adiabatic cooling [8].
A Maxwell relation can be used to show that the thermal
suppression of double occupancy implies a suppression of
temperature with U [8]. Adiabatic cooling proposes to use
changes in a tunable optical-lattice parameter, U , to cross
phase boundaries at fixed entropy. The suppression of double
occupancy that we find here implies that one-dimensional
systems offer a controlled platform for adiabatic cooling

0

0.04d

0

0.1

d

0 2 4 6
Na/2L

0

0.01d
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Series T=2t
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FIG. 4. (Color online) The circles and solid line show the same
as Fig. 3 but for three values of U . The dashed (dotted) lines show
results computed from an exact second-order high-temperature series
expansion at T = 2t (T = 4t). The plateau at finite d indicates strong
quantum fluctuations. The double arrow in the bottom panel indicates
the observable effects of weak thermal fluctuations in a trap and
corresponds to the double arrow in Fig. 1.

that can be used to systematically prepare low-temperature
systems in higher dimensions. Lowering the optical-lattice
depth along one (or two) perpendicular directions in the lattice
adds the term −t⊥

∑
σ,〈i,j〉⊥ c

†
iσ cjσ + H.c. to the Hamiltonian,

increasing the dimensionality from 1D to 2D or 3D. Thus by
isentropically changing t⊥, experiments will be able to identify
and prepare higher-dimensional optical lattice emulators from
benchmark 1D configurations at entropies per particle where
quantum fluctuations dominate (i.e., below kB ln 2). Although
this does not put the system in a regime of low entropy
per particle a priori, adiabatic cooling may allow a 3D
system to cross the transition line from a paramagnetic to
an antiferromagnetic phase.

VI. CONCLUSION

We have studied the behavior of the fraction of atoms in
doubly occupied sites, d, for the homogeneous and trapped
Hubbard model. In the homogeneous system, d shows a
dip as function of temperature, which signals the onset of
antiferromagnetic correlations. We also find that this important
regime can be clearly identified even in harmonically trapped
systems. The double-occupancy fraction increases with
the number of particles in the trap, but remains flat when
the trap has a large central plateau in its density profile. The
temperature behavior of d in the harmonic trap with a large
central plateau is similar to that of half-filled homogeneous
systems and can be used to conclusively identify a regime with
dominant quantum fluctuations and low entropy per particle.
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Such an identification will set the stage for the preparation of
states with antiferromagnetic correlations in optical lattices.

Note added. Recently, we became aware of related work
in several different lattice geometries [24] that also supports
a similar entropy-enhancement scenario to that put forward in
Ref. [9a] but beyond the dynamical mean field theory (DMFT)
approximation.
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APPENDIX

Here we present an expression for the double-occupancy
fraction at half filling in units of t = 1 up to fourth order in
t/T based on the free energy of Ref. [16]:

d = [
2T 4U 4

(
e

U
2T + 1

)5]−1
e

5U
4T

{
4T cosh

(
U

4T

)[
3T 3U 4 − T 3(U 4 − 4U 2 + 36) sinh

(
U

T

)
+ T 2U (T U 3 + 12) cosh

(
U

T

)

− 4T 2(U 2 − 6)U + U{4T 2[U 2(T U − 1) + 9] − 3U 2} cosh

(
U

2T

)
+ 2T [−T 2(U 4 − 4U 2 + 36) + U 4 − 6U 2]

× sinh

(
U

2T

)
+ 6U 3

]
+ U 4

[
sinh

(
3U

4T

)
− 11 sinh

(
U

4T

)] }
+ O(T −6). (A1)
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[7] R. Jördens et al., Phys. Rev. Lett. 104, 180401 (2010).
[8] F. Werner, O. Parcollet, A. Georges, and S. R. Hassan, Phys.

Rev. Lett. 95, 056401 (2005).
[9] E. V. Gorelik, I. Titvinidze, W. Hofstetter, M. Snoek, and
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