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Quantum correlations in the one-dimensional driven dissipative XY model
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We study the nonequilibrium steady state (NESS) of a driven dissipative one-dimensional system near a critical
point, and explore how the quantum correlations compare to the known critical behavior in the ground state.
The model we study corresponds to a cavity array driven parametrically at a two photon resonance, equivalent
in a rotating frame to a transverse field anisotropic XY model [C.-E. Bardyn and A. Imamoğlu, Phys. Rev. Lett.
109, 253606 (2012)]. Depending on the sign of transverse field, the steady state of the open system can be either
related to the ground state or to the maximum energy state. In both cases, many properties of the entanglement are
similar to the ground state, although no critical behavior occurs. As one varies from the Ising limit to the isotropic
XY limit, entanglement range grows. The isotropic limit of the NESS is, however, singular, with simultaneously
diverging range and vanishing magnitude of entanglement. This singular limiting behavior is quite distinct from
the ground state behavior; it can, however, be understood analytically within spin-wave theory.
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I. INTRODUCTION

A central feature of critical behavior in any non-mean-field
phase transition is the existence of a diverging correlation
length [1,2]. Such divergences explain why universal theories,
controlled only by symmetries of the problem, apply in
the vicinity of a critical point. They also lead to scaling
behavior [2] of correlation functions. More recently, it has
been noted that measures of specifically quantum correlation,
e.g., entanglement [3], also show scaling behavior [4–7].
Entanglement is one of the characteristic traits of quantum
mechanics [3] and is of practical significance as it captures
quantum correlations which can be a resource for quantum
cryptography, quantum teleportation, and dense coding [8].
Despite the diverging correlation length at critical points,
entanglement generally has a finite range [4,5,7]; critical
scaling is instead seen in the magnitude of the entanglement.

In a dissipative system, coupling to an external environ-
ment [9] leads to dephasing, and consequent degradation of
quantum correlations, ultimately reducing the system to a
classical description [10,11]. Nonetheless, in a coherently
driven dissipative system, i.e., pumped by an external coherent
drive, nontrivial steady states can be found [12–29]. In
an extended interacting driven dissipative system, such as
an array of coupled nonlinear cavities as discussed below,
this enables nonlocal quantum correlations to exist in the
nonequilibrium steady state. Such systems allow one to
study quantum correlations out of equilibrium, and to study
whether dissipation has particular significance for distinctively
quantum correlations such as entanglement.

The aim of this paper is to explore the range and scaling
of quantum correlations in the nonequilibrium steady state
(NESS) near to a critical point of the corresponding equi-
librium system. A natural system in which to address such
questions is an array of coupled cavities [30–34]. Such systems
allow for tunable coupling and nonlinearity, and inevitably
have dissipation, as light escapes from the cavities. Recently

*cj30@st-andrews.ac.uk

Bardyn and Imamoğlu [35] have shown that such systems
can in certain limits map to dissipative spin chain models, as
explained below. Their proposed configuration allows tuning
of both the anisotropy of the spin-spin coupling, and of a
transverse field. We study the nonequilibrium steady state,
i.e., the long-time behavior, in the presence of dissipation.
Within this scenario, we determine the dependence of quantum
correlations on both of these parameters, exploring the range
from the transverse field Ising model to the transverse field
XY model.

The transverse field Ising model is a paradigmatic example
of quantum critical behavior [1], and so the scaling of entangle-
ment in the equilibrium Ising model (or anisotropic XY model)
was one of the first examples studied [4–6]. As noted above,
while the magnitude of entanglement shows critical scaling,
the range over which nonzero entanglement exists does not
[4,5]. This finite range behavior persists for all models in
the Ising universality class [5,36,37]. Following these early
studies, there have been many subsequent explorations of
critical entanglement, including the spin-boson system [38]
which can be viewed as a phase transition of a dissipative
quantum system. For a review, see Ref. [7].

A major difficulty in understanding a many-body quantum
system is the exponential growth of Hilbert space dimension
with the system size. One method to overcome this difficulty
is to use a matrix product state (MPS) approach [39,40]. Such
methods make use of the fact that many physically relevant
states have entanglement which is either constant or grows
at most polynomially with system size [10]; an MPS can
efficiently represent such a state. The MPS representation
of a state is the concept underlying the density matrix
renormalization group (DMRG) [41,42] approach. While the
DMRG was originally used as a method to determine ground
states of interacting systems, it was later extended to study
dynamics [43–48], by an approach known as time evolving
block decimation (TEBD). All these approaches ultimately
rely on the fact that an efficient MPS representation of
the relevant states of the system exists; for a discussion of
this see, e.g., Ref. [49]. These approaches have also been
extended to open systems (mixed states), by introducing
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matrix product operators (MPO) [50–52]. This allows one to
efficiently time evolve the density matrix equations of motion
for one-dimensional (1D) open systems, and thus find the
nonequilibrium steady state.

The remainder of this paper is organized as follows.
Section II reviews the basis of our calculations. In particular,
Secs. II A and II B introduce the effective Hamiltonian we
study and its coupling to an external environment; Sec. II C
reviews the measures of quantum correlations we calculate;
and Sec. II D outlines the MPO method we use to find
the steady state. Section III then presents the results of
our numerical calculation. After reviewing the nature of the
steady state in Sec. III A, and comparing these results to the
mean-field theory of our model in Sec. III B, Secs. III C–
III E discuss the dependence of quantum correlations on
each of the model parameters in turn. Finally, Sec. IV
discusses analytic calculations which can reproduce the
behavior seen for weak driving. In Sec. V we summarize our
findings.

II. DRIVEN-DISSIPATIVE MODEL AND OBSERVABLES

A. Effective Hamiltonian

We consider a coupled cavity array realization of the
transverse field anisotropic XY model, as introduced in
Ref. [35]. For completeness, we briefly summarize the nature
of such a model here. As illustrated in Fig. 1 the model consists
of a 1D array of optical cavities, supporting photon modes,
described by bosonic operators cj with hopping amplitude
J between the cavities so that H =∑hj − J

∑
j [c†j cj+1 +

H.c.]. The on-site Hamiltonian hj = ωcc
†
j cj + Uc

†
j c

†
j cj cj

incorporates an optical nonlinearity U . Physically this can
be induced by coupling each cavity to a saturable optical
absorber [25,30,33].

In addition to these elements, which would lead to a
Bose-Hubbard model [53], we include a two-photon driving
term as proposed in Ref. [35]. Specifically, we consider a
drive � cos(2ωpt) near two-photon resonance, i.e., ωp � ωc,
and we work in the limit of strong optical nonlinearity. In
this limit, the problem simplifies, as one may truncate each
site to occupations 0 or 1. Furthermore, this implies that the
two-photon pump is only resonant for the creation of pairs
of photons on adjacent cavities. When restricted to the 0,1
occupation subspace, one may replace each cavity mode with
a spin 1/2, i.e., replace bosonic operators by Pauli matrices
(cj ,c

†
j ) → (σ−

j ,σ+
j ). Here σ±

j = (σx
j ± iσ

y

j )/2 in terms of
regular Pauli matrices. In this notation, the Hamiltonian

J J J J
κ κ κ κ κ

Ω Ω Ω Ω

FIG. 1. (Color online) Cartoon illustrating coupled cavity array
with hopping J , two-cavity pumping �, and loss rate κ .

becomes

Ĥ0 =
∑

j

ωc

2
σ z

j − J
∑

j

(σ+
j σ−

j+1 + σ−
j σ+

j+1)

−�
∑

j

(σ+
j σ+

j+1e
−2iωpt + σ−

j σ−
j+1e

2iωpt ). (1)

The explicit time dependence appearing here can be removed
by a transformation to a rotating frame. In such a frame the
Hamiltonian is given by

Ĥ = −J
∑

j

[
gσ z

j + (σ+
j σ−

j+1 + σ+
j+1σ

−
j )

+�(σ+
j σ+

j+1 + σ−
j+1σ

−
j )
]
, (2)

where we have introduced dimensionless parameters g =
(ωp − ωc)/2J and � = �/J . This can also be written in the
canonical form of the Ising model [54]:

Ĥ = −J
∑

j

[
gσ z

j + 1 + �

2
σx

j σ x
j+1 + 1 − �

2
σ

y

j σ
y

j+1

]
. (3)

The parameter � describes the anisotropy of the interaction:
� = 0 corresponds to the isotropic XY model, and � = 1
to the Ising model. For 0 < |�| � 1 the Hamiltonian is in
the Ising universality class. In the ground state, changing the
transverse field g will induce a quantum phase transition [1]
at |g| = 1, between a phase with 〈σx〉 �= 0 for |g| < 1, and a
phase with vanishing 〈σx〉 for |g| > 1.

B. Dissipation

In addition to the terms described so far, each cavity is
also assumed to couple to a continuum of radiation modes
describing irreversible loss into the environment [9]. At optical
cavity and pump frequencies, one may eliminate such modes
via the Born-Markov approximation [9,55], producing the
master equation

d

dt
ρ = −i[Ĥ ,ρ] + κ

∑
j

[2σ−
j ρσ+

j − σ+
j σ−

j ρ − ρσ+
j σ−

j ].

(4)

The dissipation described in Eq. (4) corresponds to indepen-
dent incoherent loss from each cavity. In the spin language, this
corresponds to a process that flips the spin from up to down.
Such dissipation corresponds to a zero-temperature bath; this is
appropriate when considering optical frequency systems as the
characteristic energy scales are much larger than temperature.
In the following we introduce the dimensionless κ̃ = κ/J ,
and consider the steady state of the system as a function of the
parameters (g,�,κ̃). In the remainder of the paper all energies
are thus given in units of J .

It is important to note that the form of Eq. (4) can only follow
from an originally time-dependent, i.e., pumped system. For a
time-independent system coupled to an external bath, a correct
treatment of the bath [56] must lead to a master equation which
drives the system toward its thermal state. Such behavior is
clearly required to be consistent with equilibrium statistical
mechanics. The same is not, however, true of a time-dependent
Hamiltonian—in the rotating frame, coupling to the bath need
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not satisfy detailed balance due to the “extra” time dependence
induced by the pump frequency [57]. The crossover between
these limits as one varies ωc,ωp while keeping g constant is
an interesting question for future work.

C. Measures of quantum correlations

To quantify the quantum correlations between different
sites requires some care, since a given pair of sites will
in general be entangled both with other sites and with the
external environment. As such, it is important to use a measure
of the quantum correlation between a specific pair of sites.
The measure of pairwise entanglement we will use will be
negativity N defined as

N = max

(
0,

4∑
i

|λi | − 1

)
, (5)

where λi are the eigenvalues of the partially transposed
two-qubit density matrix ρ

TB

AB [3], where TB indicates transpose
for system B. According to the Peres-Horodecki criterion
[58,59] a (mixed) state of a bipartite system is separable if
the negativity is zero. For any separable state, the density
matrix would remain positive under a partial transpose. In an
entangled state a partial transpose may produce a nonpositive
density matrix [60]. The negativity as defined in Eq. (5) is a
measure of whether the partial transpose produces negative
eigenvalues. A nonzero value of negativity serves both as a
necessary and sufficient condition for the inseparability of a
general two-qubit state [58,59].

For pure states entanglement is a sufficient measure of
quantum correlations and quantifies the ability of a state
to act as a resource for quantum computational speedup
[61]. For mixed states separability (vanishing entanglement)
does not in general imply classicality [62–64]—computational
speedup for mixed state quantum computing can occur without
entanglement [65]. Such speedup has been attributed to the
presence of nonzero quantum discord [62–66] D defined [64]
as follows: Consider a bipartite system AB in a state ρ, and a
local measurement performed on subsystem B with its result
ignored. Such a measurement will cause a disturbance of
subsystem A for almost all states. There is, however, a class
� of states that is unchanged by such a measurement. For
such states χ ∈ �, known as “classical-quantum” states, one
may write χ =∑i piρAi ⊗ |i〉BB〈i|, where pi is a probability
distribution, ρAi is the marginal density matrix of A, and the
states |i〉B form an orthonormal set. Geometric discordD is the
distance between the state ρ and the closest classical-quantum
state χ ∈ �. Explicitly, for an arbitrary mixed state ρ of a
d ⊗ d quantum system it is D(ρ) = d

d−1 minχ∈�||ρ − χ ||2,

where ||M|| =
√∑

i m
2
i is the Hilbert-Schmidt norm of the

operator M with eigenvalues mi .
In the specific case of two-level systems (qubits), a closed

form for D exists [64,67]. Writing the state of two qubits as

ρ = 1

4

3∑
i,j=0

Rijσi ⊗ σj , R =
(

1 yT

x t

)
, (6)

where σ
0,1,2,3
j = {1j ,σ

x
j ,σ

y

j ,σ z
j }, and R is given in block

structure above, one may then construct the 3 × 3 matrix

S = (1/4)(xxT + ttT ) from which

D = 2 Tr[S] − 2λmax(S), (7)

where λmax(S) is the largest eigenvalue of the matrix S.

D. Matrix product state evolution

As noted above, to find the nonequilibrium steady state, we
time evolve Eq. (4) using a matrix product operator approach
[50–52]. We here briefly summarize the method used in our
calculation. Further details of our specific implementation can
be found in Ref. [68].

Our problem requires time evolving the density matrix of
a chain of N two-level systems. This density matrix may be
written in the form

ρ =
∑

{i1,i2,...,iN }
ci1,i2,...,iN

N⊗
j=1

σ
ij
j (8)

with σ
0,1,2,3
j as given earlier forming a basis for the density

matrix on each site. The central point of the MPO approach
is to write the coefficients ci1,i2,...,iN in terms of matrices 
[j ]ij

and vectors λ[j ] as follows:

ci1,i2,...,iN =
∑
{αj }



[1]i1
1,α1

λ[1]
α1


[2]i2
α1,α2

· · · 
[j−1]ij−1
αj−2,αj−1λ

[j−1]
αj−1



[j ]ij
αj−1,αj

· · ·

×
[N−1]iN−1
αN−2,αN−1

λ[N−1]
αN−1



[N]iN
αN−1,1

.

The matrix 
[j ]ij , corresponding to basis component ij on site
j , is a χj−1 × χj matrix, and λ[j ] is a set of χj coefficients
associated with the bond between site j and site j + 1. Here
χj is the (integer) bond dimension of the matrix associated
with bond j . If all χj = 1, then one has entirely separable
density matrix, i.e., ρ =⊗ ρj , equivalent to a mean-field
approximation. If χj are sufficiently large, any state can
be written in the above form—the required size for our
two-level-system density matrix is χj = min(4j ,4N−j ). To
efficiently simulate such a system we restrict χj < χmax.
For a fixed χmax, the size of computation scales linearly
with chain length. Despite this, the representation is able
to accurately describe the full quantum dynamics in many
problems.

To time evolve the state, we follow the algorithm described
in Refs. [40,51]. The master equation may be written in
a superoperator form, with the density matrix as a vector
ρ → |ρ〉, so that ∂t |ρ〉 = M|ρ〉. The superoperator M can be
decomposed as M =∑j M

pair
j,j+1, with the one-site operations

split between the appropriate pair operators. Evolution by
a time step δt corresponds to propagating the coefficients

[j ]ij ,λ[j ] under the operator exp(Mpair

j,j+1δt). This is done by
converting the MPO representation for a given pair of sites
into its explicit form, evolving the pair, and then performing a
singular value decomposition (SVD) [3] to return the final
form to MPO representation. The rank χj after such an
update will generally have increased, but can be restored to
χj � χmax by keeping only the largest χmax singular values in
the SVD.

To extend from a single pair to many, the overall su-
peroperator M can be divided into parts on odd and even
sites j and, using the Suzuki-Trotter expansion eMδt =
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N

g−−

FIG. 2. (Color online) Negativity N vs transverse field g, com-
paring MPO numerical solution for χmax = 20 (blue, solid) to exact
diagonalization (red, dashed) for a four-site Ising model. Parameters
(in units of J ): � = 1, κ̃ = 0.5.

eModdδt/2eMevenδt eModdδt/2 + O(δt3). Since Modd involves a sum
of pair operations which each mutually commute, all the
updates in Modd can be performed in parallel. The same applies
to Meven.

To demonstrate the accuracy of our implementation [68],
Fig. 2 shows a comparison between exact diagonalization of
the four-site master equation and the open system MPO code
with χmax = 20 showing close agreement. These results, as
all results in our paper, are calculated for a chain with open
boundary conditions. For longer chains, comparison with exact
solutions is not feasible so we instead check for convergence of
numerical results with matrix rank χmax. Efficient simulation
depends on whether convergence is achieved for sufficiently
small values of the matrix rank χmax. If correlation lengths
diverge, such as at critical points, strong long-range corre-
lations exist. In such cases convergence would only occur
at large χmax and and evolution becomes computationally
expensive. In our system, we will see that the dissipation κ̃

suppresses such long-range correlations; for small values of
κ̃ the computational cost would increase, particularly near the
equilibrium critical points |g| = 1. It is important also to note
that in this paper we are only concerned with convergence
of the steady-state properties. If one is also interested in
the short-time dynamics, the required matrix rank may be
much larger [69], due to transient correlations arising before
dissipation has time to act. In addition to convergence with
matrix rank, we also find and check that properties near the
middle of the chain converge with increasing chain length.

III. SCALING OF QUANTUM CORRELATIONS IN
NONEQUILIBRIUM STEADY STATES

A. Nature of the nonequilibrium steady state

Before discussing the quantum correlations in the nonequi-
librium steady state of Eq. (4), we first discuss the nature of
the steady state itself. The dissipation term on its own would
drive the system to a state with all spins pointing down. In
the following we denote this state as the trivial empty state. In
general (unless � = 0), this trivial state is not an eigenstate
of the Hamiltonian so is not the steady state. An observable
that gives a clear indication of the nature of the steady state is

−

g
−−

−

σ x σ x
l

l
l
l
l

σ x σ x
l

l
−
−

−

−

−−

−

(a)

(b)
(c)

FIG. 3. (Color online) Panel (a) showing spin-spin correlations
〈σ x

j σ x
j+l〉 as a function of transverse field. The different lines

correspond to different separations. Panel (b) showing decay of
spin-spin correlations 〈σ x

j σ x
j+l〉 as a function of separation l between

the spin sites. Both panels plotted for the Ising limit (� = 1). It
is clearly seen that the NESS exhibit FM and AFM ordering for
negative and positive values of transverse field (g = ±1). Inset [panel
(c)] shows short-range incommensurate order for lower values of
transverse field (g = ±0.1). The axes in the inset are the same as in
the main plot. Other parameters (in units of J ): κ̃ = 0.5 and MPO
calculation performed for N = 40 site chain, with χmax = 20.

the correlation function 〈σx
j σ x

j+l〉. This is plotted in Fig. 3 for
� = 1, for sites near the center of the chain, hence avoiding
edge effects.

As is clear from Fig. 3, in the NESS, the x components
of spin show (short-range) ferromagnetic order for transverse
fields around g � −1 and antiferromagnetic order for fields
around g � 1. In comparison, in the ground state of the
Ising model there are ferromagnetic correlations for |g| <

1, regardless of the sign of g. As will be proven below,
there is a direct relation between the NESS for positive
and negative g, corresponding to a π rotation around the z

axis on every second lattice site. This duality implies that if
(short-range) ferromagnetic correlations are seen for a given g,
antiferromagnetic correlations will exist for g → −g. As well
as this formal duality, we will also discuss next a more intuitive
picture for the different behaviors at positive and negative g, a
picture substantiated by analytic results of mean-field analysis
given in Sec. III B.

For large negative g, the ground state is compatible with
the dissipation terms: both favor spins pointing in the −z

direction. For weak decay (κ → 0), steady states of the
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collective dynamics generally correspond to stationary points
of the closed-system dynamics. Such stationary points will
correspond to extrema of the energy. The ferromagnetic
correlations seen for g < 0 clearly reflect the properties of the
ground state, including a peak in correlations near g = −1,
where the ground state undergoes a quantum phase transition.
In contrast, for large positive g the ground state is incompatible
with the dissipation. However, the maximum energy state,
which is also a stationary point of the dynamics is compatible
with the dissipation. The behavior of the correlations seen in
Fig. 3 suggests that for g < 0, the attractor of the dynamics
is related to the ground state, while for g > 0 the attractor
is instead related to the state of maximum energy. Similar
behavior has been seen in the dynamics of the Dicke model,
where duality under change of sign of cavity-pump detuning
leads to an inverted normal state [70].

The proof of the duality under change of the sign of g

follows by considering transformations of the density matrix
that relate its steady state for g to that for −g. We consider
dividing the chain into sublattices of odd and even sites. The
switch from ferro- to antiferromagnetic order is equivalent
to the statement that correlations between sites on different
(the same) sublattices are odd (even) functions of the field
g. Two dualities are required to show this. First, duality
under Ĥ → −Ĥ , ρ → ρ∗. This follows from taking the
complex (not Hermitian) conjugate of the equation of motion.
Since both Ĥ and all the loss terms are real, this complex
conjugation means that Ĥ → −Ĥ is equivalent to ρ → ρ∗.
The second duality concerns rotation around the z axis on
one sublattice, ρ → R̂oddρR̂odd, where R̂odd =∏j=1,3,5... σ

z
j ;

this has the effect of modifying Eq. (3) by changing the
sign of the intersite couplings; this is equivalent to the
combination H → −H,g → −g. Combining this duality with
complex conjugation, one finds that interchanging g → −g

alone is equivalent to ρ → R̂oddρ
∗R̂odd. This transformation

swaps the sign of correlations between the two sublattices as
required. The dualities involved make clear the role of the
inversion H → −H in relating the steady states for g → −g,
corroborating the statement that the g > 0 steady state is
related to the maximum energy state.

As can be seen in Fig. 3(c), for small values of g,
correlations become small, and vanish as g = 0. In the small g

regime these small short-range correlations are neither strictly
ferromagnetic nor antiferromagnetic, but instead show an
incommensurate ordering. Such behavior occurs in a regime
where the mean-field theory would predict the trivial state.
(Note that in other models, mean-field theory can also predict
incommensurate orderings [27].) As expected the spin-spin
correlation functions always respect the sublattice dualities as
discussed above.

The appearance of the trivial state as an attractor at g → 0,
cannot be simply related to minimum or maximum energy
states as in the earlier discussion. Note also that the above
dualities do not explain why the same-sublattice correlators,
which are even functions of g, should vanish at g = 0. The
state at g = 0 can nonetheless be directly understood: at
g = 0, � = 1, the effective magnetic field seen by any site
points purely in the x direction, and so the evolution combines
precession around the x axis with decay. Consequently, the x

component of all spins vanishes at this point. The correlators

〈σy

j σ
y

j+l〉 (not shown) do not generally vanish at g = 0, but still
show the odd–even symmetry discussed above. For � < 1 the
〈σx

j σ x
j+l〉 do not vanish at g = 0 either; this is discussed further

in Sec. III D.

B. Comparison with the mean-field theory

To further understand the differences between the NESS
and the ground state, we next discuss the mean-field prediction
for the NESS. While mean-field theory incorrectly predicts
long-range order in low dimensions, the nature of the order
predicted is reflected by the full MPO numerics. Within mean-
field theory it is possible to give closed-form expressions for
the phase boundary, and for the nature of the order anticipated
for given values of g,�,κ . This provides further intuition for
the differences between the NESS and the ground state.

In mean-field theory, the full density matrix is approximated
as a product state (i.e., equivalent to restricting χmax = 1 in an
MPO simulation). The equations of motion then reduce to the
following set of nonlinear Bloch equations:

d

dt

〈
σ̂ x

j

〉 =−κ̃
〈
σ̂ x

j

〉+2g
〈
σ̂

y

j

〉−(1 − �)
〈
σ̂ z

j

〉(〈
σ̂

y

j−1

〉+ 〈σ̂ y

j+1

〉)
,

d

dt

〈
σ̂

y

j

〉 =−κ̃
〈
σ̂

y

j

〉−2g
〈
σ̂ x

j

〉+(1 + �)
〈
σ̂ z

j

〉(〈
σ̂ x

j−1

〉+ 〈σ̂ x
j+1

〉)
,

d

dt

〈
σ̂ z

j

〉 =−2κ̃
(〈
σ̂ z

j

〉+ 1
)− (1 + �)

〈
σ̂

y

j

〉(〈
σ̂ x

j−1

〉+ 〈σ̂ x
j+1

〉)
+(1 − �)

〈
σ̂ x

j

〉(〈
σ̂

y

j−1

〉+ 〈σ̂ y

j+1

〉)
. (9)

One may either directly time evolve these equations to
determine steady states, or attempt to analytically solve these
equations in cases where the spatial dependence is relatively
simple. Below we first present the analytical approach, and
then discuss direct numerical evolution.

It is clear from Eq. (9) that the trivial state 〈σ̂ x
j 〉 = 〈σ̂ y

j 〉 =
0, 〈σ̂ z

j 〉 = −1 is always a fixed point, i.e., a steady state. This
trivial state does not break the Z2 symmetry of Eq. (4) and
so can also be referred to as a paramagnetic state [27]. While
such a steady state always exists, this state need not always be
stable to small fluctuations. To test linear stability, one may
linearize the equations of motion around the steady state, and
consider plane-wave fluctuations of the form⎛

⎝〈σ̂ x
j 〉

〈σ̂ y

j 〉
〈σ̂ z

j 〉

⎞
⎠ = −

⎛
⎝0

0
1

⎞
⎠+

∑
k

⎛
⎝xk

yk

zk

⎞
⎠ e−iνk t−ijk.

The equations of motion then yield a secular equation for the
frequencies νk , with solutions

νk = −iκ̃ ± 2
√

g2 + 2g cos(k) + (1 − �2) cos2(k) (10)

and νk = −2iκ̃ . The steady state is stable to such a plane-
wave fluctuation k if �[νk] < 0, meaning such fluctuations
exponentially decay.

It is clear that for |�| < 1, the trivial state is stable at
both g → 0 and g → ∞. The trivial state can be unstable at
intermediate g. For positive g, the most unstable fluctuations
have cos(k) = −1, i.e., antiferromagnetic (AFM) fluctuations,
whereas for negative g ferromagnetic (FM) fluctuations,
cos(k) = 1 are the most unstable. In the Ising limit � = 1,
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Δ

−
−

κ̃

g

FIG. 4. (Color online) Mean-field phase diagram for the
nonequilibrium steady state of Eq. (4) as a function of dimensionless
parameters g,�,κ̃ .

one can write a simple expression for the phase boundary,
κ̃ = 2

√
1 − (g ± 1)2, indicating that for small enough κ̃ the

normal state is unstable near to g = ±1.
In addition to the trivial state one may consider the

FM ansatz 〈σ̂ x
j 〉 = X, 〈σ̂ y

j 〉 = Y, 〈σ̂ z
j 〉 = Z, or AFM ansatz

〈σ̂ x
j 〉 = (−1)jX, 〈σ̂ y

j 〉 = (−1)jY, 〈σ̂ z
j 〉 = Z, and then find

X,Y,Z by substituting these forms into Eq. (9) and solving
the resulting cubic equation. One finds that for negative g,
there is a nontrivial FM solution (X,Y �= 0), which exists only
when the trivial state is unstable. (When the trivial state is
stable, the cubic equation only has one real root corresponding
to X = Y = 0, Z = −1.) For g > 0 the same statements apply
to the AFM ansatz. Whenever these nontrivial solutions exist
they can be shown to be stable.

This analysis predicts a simple phase diagram, corroborated
by direct numerical time evolution of Eq. (9). There are
three phases: trivial, FM, and AFM. The boundaries between
these are given by the surfaces νπ = 0, ν0 = 0 with νk from
Eq. (10). This phase diagram is shown in Fig. 4 as a function
of parameters g,�,κ̃ . It is clear that for a fixed κ̃ and with
decreasing value of �, the range of the transverse field strength
g over which the FM and AFM exist decreases. As � → 0,
for finite κ , the trivial state always occurs regardless of the
value g.

To compare the predictions of mean-field theory and the full
numerics, Fig. 5 compares their predictions for the correlation
function 〈σ̂ x

j σ̂ x
j+1〉 as a function of transverse field strength

g. In the trivial state, mean-field theory (MFT) predicts this
correlation to vanish, while in the ordered states it predicts
±X2, for the FM (AFM) states, respectively. As can be
seen, MFT does predict the kind of order that is seen, but
predicts sharp phase boundaries that are not seen in the full
numerics.

As noted above, direct time evolution of Eqs. (9) corrob-
orate the above phase diagram. However, the steady state
found does depend on the initial conditions used. Specifically,
considering small periodic perturbations around the trivial
state and time evolving Eq. (9) yields the AFM, trivial, and
FM states exactly as discussed above. In contrast, if time

−

g
−

−

σ x σ x

−

FIG. 5. (Color online) Spin-spin correlations 〈σx
j σ x

j+1〉 as a func-
tion of transverse field strength g. Parameters (in units of J ):
� = 1, κ̃ = 0.5 and MPO calculation performed for the N = 40 site
chain, with χmax = 20.

evolved from a random initial configuration, domains of FM or
AFM can exist, separated by defect sites (domain walls). The
dynamics of such domain walls becomes frozen within the
mean-field numerics. The absence of long-range order seen
in the full MPO numerics can be considered as the effect of
a superposition of many different configurations of domain
walls.

C. Correlations vs transverse field in the Ising limit

We now turn to the properties of quantum correlations
at � = 1 (the Ising model). For comparison, we summarize
here the ground state properties, as studied in [4–6]. In the
Ising model entanglement is short ranged: Only nearest- and
next-nearest-neighboring spins are entangled. The magnitude
of the nearest-neighbor entanglement, however, shows critical
scaling. At the critical point |g| = 1 Ref. [4] showed that
dC/dg (where C is concurrence, another measure of entan-
glement) scaled as a power of the system size. Consequently,
the peak value of C(g) actually occurs for |g| > 1, rather
than at the critical point. In the ground state, nearest-neighbor
entanglement only vanished at g → 0, |g| → ∞ [4]. Quantum
discord for the same model was studied in Ref. [36]. Discord
is not restricted to nearest neighbors, and is peaked near
|g| = 1.

Figure 6 shows the evolution of quantum correlations (neg-
ativity [71] and geometric quantum discord) with transverse
field g in the nonequilibrium steady state at � = 1, κ̃ = 0.5.
In addition, the integrated susceptibility Sxx

int =∑j 〈σx
i σ x

j 〉
(static spin structure factor) is shown. This correlation function
both serves as an example of a correlation function that does
not require specifically quantum correlations, and also as a
function which would diverge (as a power law of system
size) at the ground state critical point—such a divergence
reflects the appearance of quasi-long-range order in the spin-
spin correlator. The asymmetry of this correlation function
seen in Fig. 6(c) reflects the switch from ferromagnetic to
antiferromagnetic order.

Despite the switch between ferro- and antiferromagnetic
order with sign of g, which is absent in the ground state, several
features of the quantum correlations match closely the ground
state behavior. Entanglement has a short range, existing now
only between nearest neighbors as shown in Fig. 6(a), while
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−−
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int
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(a)

(b)

(c)

FIG. 6. (Color online) Evolution of quantum correlations with
transverse field g in the Ising limit. Panel (a) shows negativity
N , and panel (b) geometric quantum discord D. In addition the
integrated susceptibility Sxx

int =∑j 〈σ x
i σ x

j 〉 is shown in (c); at the
equilibrium critical point this would show a power-law divergence
with system size. Note that only one line is shown in panel
(a) because entanglement vanishes beyond nearest neighbors at
� = 1. Parameters as in Fig. 3.

discord extends to greater separations, Fig. 6(b). Negativity
also peaks at a value |g| > 1. These features exist for both
signs of g; this is because the entanglement measures are
not affected by the sublattice sign changes induced by the
duality discussed above. As discussed in Ref. [72], two-mode
squeezing is a sufficient condition for pairwise entanglement.
We have confirmed that in the range of g for which bipartite en-
tanglement vanishes, the two-mode spin squeezing parameter
is identically zero.

In contrast to the ground state, there is, however, no
critical behavior: The entanglement is an analytic function
of g with no singular behavior at |g| = 1. Similarly, the
integrated susceptibility does not diverge with increasing

system size but instead saturates. This reflects exponential
spatial decay of correlations, i.e., a finite correlation length,
as anticipated due to the dissipation. The absence of critical
behavior and the presence of only short-range correlations
suggests the NESS of this 1D system does not undergo any
phase transition. Such a result is to be expected, since any finite
temperature leads to short-range order for a 1D system with
short-ranged interactions. Although we consider dissipation
due to an empty (i.e., zero-temperature) bath, we consider
a nonequilibrium situation. As has been discussed elsewhere
(see, e.g., [23,24]), this leads to a nonzero low-energy effective
temperature.

Also in contrast to the ground state behavior, for small |g|
entanglement vanishes entirely. The nature of this disappear-
ance, i.e., the sharp threshold seen in Fig. 6(a), is a general
feature of entanglement in a dissipative system [73]—finite
amounts of dissipation can make a state become separable.
Discord, however, remains nonzero between nearest neighbors
at g = 0.

D. Correlations vs anisotropy (pump strength) �

In the ground state, the range of entanglement was found
to grow as one moves away from the Ising limit (� = 1),
toward the isotropic XY limit (� = 0) [5]. We therefore next
explore how pump strength � affects the scale and range
of correlations. Since the anisotropy parameter � is also
the strength of pumping the isotropic limit corresponds to
vanishing pump, the consequence of this double role of �.

We first consider how Fig. 6 is modified when � < 1.
Figure 7 shows the behavior of entanglement, discord, and
correlation functions for � = 0.05, close to the isotropic limit.
As discussed above, the 〈σx

N/2σ
x
N/2+l〉 still show the odd-even

symmetry, but the vanishing of all correlations at g = 0 no
longer occurs—the precession axis now lies within the xy

plane, and so the x component of spin need not decay to zero.
When � < 1, as in the ground state, entanglement extends
over a larger range, i.e., not only between nearest neighbors.
In addition, the peak entanglement now occurs near g = 0,
rather than at |g| > 1, i.e., quantum correlations attain their
maximal value away from the equilibrium quantum critical
point [74]. In addition, the peak value of entanglement (and all
correlations) is significantly smaller than that seen at � = 1.
From Fig. 7(c) it is clear that at large negative g there is
again short-range ferromagnetic order, and antiferromagnetic
order at large positive g. At smaller g, just as seen at � = 1,
the short-range ordering is incommensurate [see Fig. 7(d)].
However, the value of |g| required to see FM/AFM order is
larger for � = 0.05 than it was for � = 1, so that g = ±1
now shows incommensurate order. The correlations do still
respect the sublattice duality discussed earlier. In contrast
to the behavior at � = 1, the correlations always have a
small magnitude [compare the scale of Figs. 7(c) and 7(d) as
compared to Fig. 3]. This is consistent with the observation that
for � = 0.05, κ̃ = 0.5, the mean-field theory would predict
the trivial state independent of the value of g (see Fig. 4).

While � = 0.05 leads to a longer range of entanglement,
the symmetry of the problem remains Ising-like for all 0 <

� � 1. In the ground state, the combination of this fact and
universality together imply that the range of entanglement
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FIG. 7. (Color online) Evolution of quantum correlations with
transverse field g near the isotropic limit � = 0.05. Panels (a) and
(b) show negativity N and geometric quantum discord D as in Fig. 6.
Panel (c) shows spin-spin correlation 〈σx

j σ x
j+l〉 as in Fig. 3. Panel

(d) shows spatial dependence of correlations for the anisotropic XY

model. Parameters (in units of J ): κ̃ = 0.5 and MPO calculation
performed for the N = 40 site chain, with χmax = 20.

must remain finite as long as � is nonzero [36]. The same
behavior is indeed seen in the nonequilibrium steady state: For
any nonzero �, entanglement only extends over a finite range;

l =D

Δ

l

l =

l =
l =
l =
l =

Δ

N l

(a)

(b)

FIG. 8. (Color online) Evolution of quantum correlations with
anisotropy �. Panel (a) shows negativity N and (b) geometric
quantum discord D. Parameters (in units of J ): g = −1, κ̃ = 0.5
and MPO calculation performed for the N = 40 site chain, with
χmax = 20.

this range grows as � shrinks and diverges at � → 0. This can
be seen in Fig. 8 which shows the evolution of entanglement
and discord as a function of � for various different separations
between sites.

As anticipated above, the limit � → 0 is special, since
� corresponds to pumping strength. Specifically, as � → 0,
the range over which entanglement exists continues to grow,
but the magnitude of the entanglement for any pair of sites
ultimately vanishes. Thus the limit � → 0 is singular, with
diverging range of correlations, but vanishing magnitude. The
vanishing of negativity, and in fact of all correlations, at � = 0
can be easily understood from the equation of motion: At � =
0, the Hamiltonian conserves numbers of excited two-level
systems, while the dissipation reduces this number, so the
steady state must be the trivial empty state, which is a product
state and thus uncorrelated.

The origin of growing range of negativity can be found
by examining the structure and scaling of the two-site density
matrix. We first note that this density matrix has a simple
structure:

ρij =

⎛
⎜⎜⎜⎝

p11 0 0 x4

0 p10 x5 0

0 x∗
5 p01 0

x∗
4 0 0 p00.

⎞
⎟⎟⎟⎠ . (11)
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This structure is due to a symmetry of the equation of motion,
under the transformation ρ → R̂ρR̂ with R̂ =∏j σ z

j . The
consequences of such a symmetry for the Hamiltonian were
previously discussed [5]; the decay terms we consider also
respect this symmetry. Consequently the steady-state density
matrix should satisfy [R,ρ] = 0. Tracing over all but two sites,
[σ z

i σ z
j ,ρij ] = 0, which imposes the structure discussed above.

A state of the form (11) is entangled if and only if either
p10p01 < |x4|2 or p00p11 < |x5|2. In the limit of small � the
excited state populations p11,p01,p10 ∼ �2 and so p00 ∼ 1.
The off-diagonal matrix elements scale as |x4| ∼ �, |x5| ∼
�2. All of these expressions have prefactors that depend on the
separation between sites. However, regardless of these prefac-
tors, the scaling of p01,p10,x4 with � implies that as � → 0,
the first of the two criteria above will always be satisfied, i.e.,
for any pair of sites, there exists a �c such that for 0 < � < �c

they will be entangled. Furthermore, as discussed in Sec. IV,
this behavior can be derived analytically within a spin-wave
approximation.

E. Correlations vs decay rate

Having explored the dependence on the parameters �,g,
we conclude our discussion of numerical results by presenting
the dependence of quantum correlations on the decay rate κ̃ =
κ/J . Figure 9 shows the evolution with decay rate at g = −1,
and the two values of � shown in detail above. Whereas the
discord decreases monotonically with decay rate, the behavior

κ̃

N

Δ
Δ

D

κ̃

Δ
Δ

(a)

(b)

FIG. 9. (Color online) Evolution of quantum correlations with κ̃ .
Panel (a) shows negativityN , and panel (b) shows geometric quantum
discord D, for both Ising limit and small anisotropy limit. Parameters
(in units of J ): g = −1 and MPO calculation performed for the
N = 40 site chain, with χmax = 20.

of the negativity depends on anisotropy. In particular, in the
Ising limit, there is a nonmonotonic dependence, exhibiting
a separable but nonclassical state for sufficiently small κ̃ .
The appearance of nonzero entanglement with increasing κ̃

corresponds to the condition p01p10 = |x4|2: on increasing κ̃ ,
the probabilities p01 ≡ p10 decrease while |x4| varies little
at small κ̃ . Nonmonotonic dependence of entanglement on
decay rate has also been seen in other contexts [57]. Note
that the decay terms remain important even at κ̃ → 0. In this
limit the steady state is only attained at long times; the state
which is finally attained is still determined by the open system
dynamics.

IV. ASYMPTOTIC � → 0 BEHAVIOR AND
SPIN-WAVE APPROXIMATION

A. Spin-wave calculation of negativity

As noted above, for � = 0, the NESS of our model
corresponds to an empty state. This suggests that for small �

an approximation based on a low density of excited two-level
systems can be used: a bosonic spin-wave approach [54]. This
corresponds to reverting from two-level systems (hard core
bosons) to bosonic fields σ−

j → b̂j . Equation (2) thus becomes

Heff = −
∑

j

[g(2b̂
†
j b̂j − 1) + (b̂†j b̂j+1 + b̂

†
j+1b̂j )

+�(b̂†j b̂
†
j+1 + b̂j+1b̂j )]. (12)

This approximation is valid as long as double occupancy of a
site can be ignored. Fourier transforming both this and the loss
term, the master equation can be written as

dρ

dt
= −i

[∑
k

hk,ρ

]
+ κ̃
∑

k

[2b̂kρb̂
†
k − b̂

†
kb̂kρ − ρb̂

†
kb̂k],

(13)

hk = −
(
b̂
†
k b̂−k

)(
g + cos(k) � cos(k)
� cos(k) g + cos(k)

)(
b̂k

b̂
†
−k

)
,

so that each pair of modes k, − k form a closed subsystem.
To find steady-state correlations, we replace the density

matrix equation of motion, Eq. (13), by equivalent Heisenberg-
Langevin equations [55]. The Heisenberg-Langevin equations
can be derived by writing the Heisenberg equations for
the system operators coupled to a Markovian bath. After
eliminating the dynamics of the bath operators, one finds
equations for the system operators of the form

d

dt
b̂k = i[hk + h−k,b̂k] − κ̃ b̂k +

√
2κ̃ b̂in

k (t). (14)

The Markovian bath has two effects: It causes decay of
the system operator b̂k at the rate κ̃ , and it introduces an
“input noise” term b̂in

k (t). Since we consider decay into a
zero-temperature (i.e., empty) bath, there is only vacuum
quantum noise: The only nonzero noise correlation function
is 〈b̂in

k (t)b̂†in
k′ (t ′)〉 = δk,k′δ(t − t ′). Because of the anomalous

(pumping) terms in Eq. (12), the equation for b̂k couples to that
for b̂

†
−k and vice versa. The coupled equations for operators b̂k
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and b̂
†
−k can be written in a matrix form,

˙̂f (t) = Mf̂ (t) + m̂(t), (15)

in which f̂ (t) is the column vector comprising operators b̂k(t)
and b̂

†
−k(t), m̂(t) is the column vector containing the noise

operators:

f̂ (t) = (b̂k(t), b̂
†
−k(t))T ,

m̂(t) = (√2κ̃ b̂in
k (t),

√
2κ̃ b̂

†in
−k(t)

)T
;

and the matrix M is given by

M =
( −κ̃ + 2i [g + cos(k)] 2i� cos(k)

−2i� cos(k) −κ̃ − 2i [g + cos(k)]

)
.

The solution of Eq. (15) is f̂ (t) = eMt f̂ (0) +∫ t

0 eM(t−t ′)m̂(t ′)dt ′. Since the real parts of the eigenvalues
of M are negative, the first of these terms vanishes in the
long-time limit t → ∞. In this limit one then finds

b̂k(t)√
2κ̃

=
∫ t

0
dt ′
[
G1(t − t ′)b̂in

k (t ′) + G2(t − t ′)b̂†in
−k(t ′)

]
,

(16)
b̂
†
−k(t)√

2κ̃
=
∫ t

0
dt ′
[
G∗

1 (t − t ′)b̂†in
−k(t ′) + G∗

2 (t − t ′)b̂in
k (t ′)

]
,

where the propagatorsG1,2(τ ) are matrix elements of exp(Mτ ).
By introducing the dispersions εk = 2[g + cos(k)],ηk =
2� cos(k), ξk =

√
ε2
k − η2

k, the propagators can be written as

G1(τ ) = e−κ̃τ

[
cos(τξk) + iεk

sin (τξk)

ξk

]
,

G2(τ ) = iηke
−κ̃τ sin(τξk)/ξk.

To find the quantum correlations of the state, we first note
that since the problem involves noninteracting bosons, the
steady state is Gaussian, i.e., it can be fully characterized by
the covariance matrix Vj,k as given below. Introducing x̂j =
b̂j + b̂

†
j , p̂j = (b̂j − b̂

†
j )/i we have

Vj,k =
(

Aj Cjk

CT
jk Ak

)
, Cjk =

(〈xjxk〉s 〈xjpk〉s
〈xkpj 〉s 〈pjpk〉s

)
, (17)

and Aj = Cjj , where 〈xp〉s = 〈xp + px〉/2. To find these
correlators, it is sufficient to find 〈b̂†j b̂j+l〉 and 〈b̂j b̂j+l〉. In

the real space the correlator 〈b̂†j b̂j+l〉 can be expressed as

〈b̂†j b̂j+l〉 = 1

N

∑
k,k′

〈b̂†kb̂k′ 〉ei(k′−k)j eik′l . (18)

Using Eq. (16) one finds that for N → ∞,

〈b̂†j b̂j+l〉 = 1

4π

∫ π

−π

η2
k

ξ 2
k + κ̃2

dk eikl, (19)

and a similar expression for 〈b̂j b̂j+l〉. By substituting eik → z,
the integral becomes a contour integral around the unit circle
|z| = 1, so its value depends on the residue of those poles z =
Z with |Z| < 1. The four poles come in complex conjugate
pairs and can be found in closed form Z = ζ ±

√
ζ 2 − 1,

where ζ = [g ±
√

g2�2 − κ̃2(1 − �2)/4]/(1 − �2). Two of

these poles which we denote as Z0,Z
∗
0 lie within the unit

circle, and in terms of these one finds

〈b̂†j b̂j+l〉 = �2[α(Z0)l−1 + α∗(Z∗
0 )l−1], (20)

〈b̂j b̂j+l〉 = �β(Z∗
0 )l−1, (21)

where α,β are complex functions of κ̃,�,g. We have factored
out the asymptotic scaling with � at � → 0. Since |Z0| < 1,
all correlations decay exponentially with separation n.

The definition of negativity given earlier, Eq. (5), is specific
to qubits, i.e., two-level systems. For a Gaussian state an
alternate definition of negativity can be found in terms of
the symplectic eigenvalue ν̃2

− = (τ −√τ 2 − 4 Det[Vj,j+l])/2,
where τ = Det[Aj ] + Det[Aj+l] − 2 Det[Cj,j+l]. The state is
separable if ν̃− > 1, and so negativity for such states may be
defined as N = max(0,1 − ν̃−). Using the asymptotic scaling
of the elements of the covariance matrix with �, we find that
in the � → 0 limit

ν̃− �
√

1 − 4|〈b̂j b̂j+l〉|, N � 2|〈b̂j b̂j+l〉|. (22)

Within this limit, it is thus clear that N > 0 for all pairs of
sites, but N ∝ � and so N vanishes at small �, reproducing
the singular behavior found numerically in the previous
section.

κ =

σ − σ −
+

−

Δ −

κ =

κ =κ =
κ =
κ =

κ̃

ξc
(a)

(b)

FIG. 10. (Color online) (a) Correlation length ξc at � = 0.005
vs decay rate κ̃ . (b) Nearest-neighbor correlations |〈σ−

j σ−
j+1〉| vs

anisotropy � for several values of κ̃ . In both panels MPO numerics
(points) are compared to spin-wave theory (lines). Parameters (in
units of J ): g = −1, MPO calculation is performed for the N = 40
site chain with χmax = 20.

063835-10



QUANTUM CORRELATIONS IN THE ONE-DIMENSIONAL . . . PHYSICAL REVIEW A 88, 063835 (2013)

B. Comparing spin-wave approximation to numerics

The spin-wave theory relies on neglecting effects of
possible double occupation of a given site. While the prob-
ability of such an event is small for � → 0, it is not a
priori clear whether its effects are negligible, since the pair
creation term creates excitations on adjacent sites, hence
hopping can easily create a doubly occupied site within
the bosonic approximation. For this reason, we compare the
results of the MPO numerics and the spin-wave theory in the
limit � → 0.

We focus on the correlation function 〈σ−
j σ−

j+l〉, or its
equivalent bosonic form, which according to Eq. (22) de-
termines the asymptotic negativity as � → 0. Both MPO
and spin-wave results show this correlation function decays
exponentially with separation l (neglecting edge effects).
Consequently this correlation function can be character-
ized by its value for nearest neighbors l = 1 (N.B. the
l = 0 case vanishes by definition), and by its correlation
length ξc, defined as |〈σ−

j σ−
j+l〉| ∝ e−l/ξc . In the spin-wave

theory ξc = −1/ ln |Z0|. These two characteristic quantities
are shown in Fig. 10, focusing on the limiting behavior
at � → 0.

The correlation length shown in Fig. 10 shows that the
spin-wave theory accurately reproduces the results of the
numerics, and both show a diverging correlation length
(|Z0| → 1) in the limit κ̃ → 0. In contrast, the magnitude
of correlations (i.e., prefactors of the exponential decay) do
not match well except at κ̃ � 1. This can be explained as
follows: At small κ̃ , excitations created on adjacent sites can
easily hop to create doubly occupied sites, thus rendering the
bosonic approximation inaccurate. For κ̃ � 1, excitations on
adjacent sites are lost before hopping can create doubly excited
sites.

V. CONCLUSIONS

In the present work we have studied the nonequilibrium
steady state of a parametrically driven 1D coupled cavity array.
Making use of an MPO representation to determine the open
system evolution, we obtain the nonequilibrium steady state
of a dissipative transverse field Ising model. The steady state
can be related to the ground state configuration for transverse
field g < 0, and to the maximum energy configuration for
g > 0. Consequently, for either sign of g, many features of
the quantum correlations behave similarly to those in the
ground state Ising model. The most significant difference is
that dissipation destroys the phase transition, and so no critical
behavior occurs at |g| = 1 with correlation lengths remaining
finite. We have also compared the results of the MPO numerics
with the predictions of the mean-field theory. Mean-field
theory erroneously predicts long-range ordered phases, but
the nature of the ordering predicted is reflected by the MPO
numerics. We have identified a singular limit, of weak driving,
where the range of quantum correlations diverges, but the
magnitude of the correlations vanishes. This limiting behavior
can be recovered analytically from a spin-wave theory, which
accurately recovers the correlation length in this limit.
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Mech. (2004) P04005.
[46] A. Micheli, A. J. Daley, D. Jaksch, and P. Zoller, Phys. Rev.

Lett. 93, 140408 (2004).
[47] S. R. Clark and D. Jaksch, Phys. Rev. A 70, 043612

(2004).
[48] Z. Cai and T. Barthel, Phys. Rev. Lett. 111, 150403 (2013).
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[51] R. Orús and G. Vidal, Phys. Rev. B 78, 155117 (2008).
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