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Abstract 

 

The primary goal of this thesis is to investigate whether machine learning-

based methods can be successfully applied to make clinically relevant predictions. 

These techniques are applied to a range of data such as demographic, socioeconomic 

and neuropsychiatric variables but primarily to structural and functional magnetic 

resonance imaging (MRI) data. The main focus of this thesis is to investigate 

whether the application of these techniques can increase the understanding of 

psychiatric disorders. 

As MR images contain a large amount of information within each image, 

feature selection techniques, which can identify which brain regions are most 

relevant to the study, are of high importance to maximise the amount of relevant 

information that is entered into the machine learning approaches. Successfully 

combining feature selection and machine learning to psychiatric imaging studies has 

several advantages as the machine learning methods produce output that can separate 

two or more groups accurately on a subject-by-subject basis or make predictions of a 

continuous variable and the feature selection provides information on the 

neurobiology by, for example, highlighting brain regions that are consistently 

different between groups. 

Two psychiatric disorders are investigated in this thesis: Attention Deficit 

Hyperactivity Disorder (ADHD) and Major Depressive Disorder (MDD). ADHD 

core symptoms include difficulty in sustaining attention, hyperactivity and impulsive 

behaviour. MDD is a mood disorder that is associated with persistent and disabling 

symptoms of low mood, anhedonia, hopelessness, guilt, low self-worth, poor 

concentration, lack of energy, suicidal thoughts and altered appetite and sleep 

(American Psychiatric Association, 2000). Both disorders do not have any 

established and reliable diagnostic or prognostic biomarkers so the work undertaken 

in this thesis aims to identify possible biomarkers using machine learning methods. 
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Chapter 1: Introduction 

 

Differences in brain structure between patients suffering from various ‘functional’ 

psychiatric disorders (e.g. attention deficit hyperactivity disorder (ADHD) and major 

depressive disorder (MDD)) and healthy subjects are sufficiently subtle that they 

cannot be recognised by conventional radiological methods – namely qualitative 

visual inspection (Agarwal et al., 2010). Indeed, the term ‘functional’ was adopted 

for these disorders because it was once believed there were no structural brain 

abnormalities (Mwangi et al., 2012a). As an illustration, Figure 1 shows T1 weighted 

(‘structural’) MRI scans from a subject with ADHD and a healthy subject.  There are 

no obvious visual differences between these scans. 

Using imaging data such as structural and functional MRI to aid the 

identification of reliable biomarkers of functional psychiatric disorders could have 

significant implications for informing both clinical decision making and research into 

the causes and consequences of each disorder (Klöppel et al., 2012).  

Machine learning is a rapidly expanding research area that has resulted in the 

development of several computational models that attempt to identify patterns in data 

that can be constructed into a predictive model (Bishop, 2006). Depending on the 

machine learning approach used, this predictive model can then be applied to novel 

data to determine group membership or the prediction of a continuous variable 

related to novel data from subject(s) not used in the initial model building stage. 

Although these techniques originated in engineering, mathematics and computer 

science, they are ideally suited to psychiatric neuroimaging studies as the algorithms 

were originally designed to be applied to medical predictions (Kononenko, 2001). 

Machine learning studies have the potential to make predictions such as clinical 

diagnosis or prognosis, symptom severity, identification of patients at risk of 

developing disorder, and an estimation of the likelihood of response to treatment 

(Klöppel et al., 2012). 
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Figure 1: Two structural MRI images to highlight that differences in brain structure 

are so subtle that many disorders (such as ADHD) cannot be classified subjectively. 

Left: scan from healthy child. Right: scan from a child with ADHD.  
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As structural and functional MR images contain a large amount of 

information within each image, feature selection techniques that can identify the 

most relevant data to enter into the pattern recognition method, whilst discarding the 

less relevant or noisy data, provide two clear advantages when combined with 

machine learning methods. The first advantage is that reducing the number of 

features entered into the machine learning methods tend to reduce computational 

time (Theodoridis and Koutroumbas, 2006). The second advantage is feature 

selection provides information on neurobiology by highlighting brain regions that are 

most relevant to the predictive model (Mwangi et al., 2013). For example, when a 

high classification accuracy is achieved e.g. when predicting diagnosis between a 

psychiatric disorder group and healthy control group, the brain regions identified 

through feature selection are regions that support high accuracy discrimination – thus 

potentially identifying a biomarker of the psychiatric disorder. In addition, the use of 

feature selection may to produce a more accurate predictive model when data that are 

not relevant to the predictive model or noisy data are removed (De Martino et al., 

2008; Guyon and Elisseeff, 2003; Mwangi et al., 2013). 

There are many different types of feature selection techniques e.g. 

supervised/unsupervised methods, univariate/multivariate methods. These are 

described in more detail in Chapter 2. There are specific drawbacks to each method 

of feature selection but the more general drawbacks include additional parameters to 

optimise, increased chance of overfitting (particularly in multivariate feature 

selection methods) and failure to detect the relevant features through univariate or 

unsupervised feature selection (Guyon and Elisseeff, 2003). 

Two psychiatric disorders are investigated in this thesis: Attention Deficit 

Hyperactivity Disorder (ADHD) and Major Depressive Disorder (MDD). ADHD 

core symptoms include difficulty in sustaining attention, hyperactivity and impulsive 

behaviour. It affects around 5% of the general population under the age of 16 

(Polanczyk et al., 2007) and is the most commonly diagnosed psychiatric disorder in 

children.  

MDD is a mood disorder that is associated with persistent and disabling 

symptoms of low mood, anhedonia, hopelessness, guilt, low self-worth, poor 

concentration, lack of energy, suicidal thoughts and altered appetite and sleep 

(American Psychiatric Association, 2000) with no established pathophysiological 

mechanisms or biomarkers. Unipolar major depression was ranked in the top ten 
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diseases for global disease burden in 2001 (Lopez et al., 2006) and is estimated to be 

in the top three leading causes of burden by 2030 (Mathers and Loncar, 2006).  

Unfortunately, despite a wealth of convergent evidence that both ADHD and 

MDD are disorders with strong biological underpinnings, it has not yet been possible 

to identify reliable diagnostic or prognostic biomarkers (Coghill and Banaschewski, 

2009; Coghill et al., 2008; Schneider and Prvulovic, 2013). As a consequence, the 

diagnostic process remains dependent upon clinical history and rating scales.  

In this thesis, the main machine learning predictions were made using a 

patient group and matched control group, to provide a proof of concept that these 

techniques can be applied to clinical studies and to investigate which brain regions 

differentiate each disorder from controls. These machine learning approaches can 

also be applied to more clinically relevant questions, such as prediction of response 

to clinical treatment. This has the obvious advantages of potentially providing a 

reliable predictor of treatment response prior to exposure of the medication. 

Furthermore, it has the potential to increase the understanding of the mechanisms 

which underlie treatment response. 

Chapter 2 provides an overview on the methods used throughout this thesis 

with an emphasis on the main machine learning method used, the Support Vector 

Machine (SVM). Following this, Chapter 3 discusses studies that have applied 

machine learning methods to neuroimaging, with a focus on ADHD and MDD 

studies. Chapter 4 describes a preliminary investigation into whether 

sociodemographic, clinical and neuropsychological measures can be used to predict 

treatment response in ADHD using machine learning methods. Chapter 5 explores 

whether ADHD and control subjects can be accurately classified using structural MR 

images and machine learning. An ongoing study that involves scanning medication-

naïve children and adolescents with ADHD and healthy controls, with the ADHD 

group beginning a trial of medication after the scan, is outlined in Chapter 6. Whilst 

this study did not have enough subjects for an analysis due to unforeseen delays in 

the study outwith the control of the author, the work involved in this study and the 

planned future work are described, such as the prediction of both diagnosis and 

medication response. The results obtained when attempting to predict MDD vs. 

healthy controls using structural MRI is outlined in Chapter 7. Chapter 7 also 

outlines the results obtained when MDD patients’ symptom severity scores were 

predicted on the basis of their structural images. Chapter 8 describes the application 
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of machine learning methods to functional MR images to see if it is possible to 

classify MDD patients and healthy controls, on the basis of their brain activity, when 

receiving rewarding (‘win’) and aversive (‘loss’) stimuli. Finally, the overall results 

are briefly summarised and potential directions for future research discussed in 

Chapter 9.   
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Chapter 2: Methods  

 

This chapter provides a review of all the methods used in the experimental studies 

described in this thesis.  Methods developed by the author will be highlighted. 

 

2.1 Neuroimaging data quality 

 

Structural and functional neuroimaging studies of psychiatric disorders, such as 

ADHD and MDD, aim to either identify subtle average differences at a group level in 

comparison to controls, or use multivariate techniques aimed at predictively 

classifying individual subjects. As the signal/noise (signal = clinical features being 

tested for, noise = random and systematic confounds) ratio in MRI scans is low, it is 

very important to make sure one avoids the introduction of gross imaging artefacts, 

such as blurring due to movement and blood flow artefacts likely due to a sub-

optimal choice of image parameters.  

Gross artefacts have two potential effects.  First, they can substantially 

increase inter-subject variance and so obscure clinical features of interest.  Second, 

and more problematic, both the number and nature of gross artefacts are less likely to 

be balanced when comparing healthy controls with populations that may be unable to 

tolerate scanning such as those with Parkinson’s disease or ADHD. As a 

consequence, significant between-group differences (or individual-subject 

classification methods) may be driven by artefact rather than clinically relevant 

differences. In essence, differences in the number and nature of artefacts between 

groups (e.g. ADHD vs. control) could result in misleading results whereby between-

group artefact differences are misinterpreted as syndromal differences. 

The situation for subjective assessment of scans is somewhat different.  

Clearly it is still important to have good quality scans, but as radiological reporting 

can only detect relatively high signal/noise abnormalities, radiological reporting is 

less susceptible to such artefacts.  This means that the quality of an image may be 

acceptable for radiology purposes, but not for inclusion into a quantitative 

neuroimaging study. 

Examples of various types of gross artefact affecting a high proportion of 

child and adolescent scans from across a number of different neuroimaging labs can 

be found in the on-line ADHD-200 downloadable dataset: 
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http://www.incf.org/community/competitions/adhd-200-global-competition. 

Examples of commonly occurring artefacts from the ADHD-200 dataset are 

shown in Figure 2 and include: a blurred image - likely due to movement, part of 

brain missing - probably due to poor positioning of the subject relative to the head 

coil, blood flow artefacts - likely due to sub-optimal choice of image parameters, and 

a ‘wrap’ artefact - most likely due to a field of view that was too small.  A readable 

account of MRI physics imaging artefacts and their avoidance is available 

(McRobbie et al., 2010). It should be noted that there are many other sources of 

artefact including static magnetic field inhomogeneities and radiofrequency coils not 

producing the intended pulse shapes (McRobbie et al., 2010). Establishment of a 

good quality assurance (QA) program for neuroimaging research sites is therefore 

critical. Additionally, computational methods to detect some types of scanning 

artefacts http://www.fil.ion.ucl.ac.uk/spm/ext/ have been described. 

Every scan should be visually inspected for gross artefacts, before applying 

quantitative imaging methods, irrespective of the size of the dataset.  It is reassuring 

if artefacts are rarely found in a dataset that has been acquired with a stringent QA 

program in place. In contrast, data that has been acquired without QA and that 

contains a high proportion of gross artefacts is, arguably, uninterpretable.  Note, 

however, scans that do not contain gross artefacts may have more subtle artefacts 

that could still result in misleading findings. Examples of subtle artefacts include the 

susceptibility artefact (an artefact due to the proximity of air filled spaces in the head 

to various brain regions), localised blurring and flow artefacts (more subtle in spin-

echo sequences) (McRobbie et al., 2010). 

http://www.incf.org/community/competitions/adhd-200-global-competition
http://www.fil.ion.ucl.ac.uk/spm/ext/
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Figure 2: Examples of poor quality images from ADHD-200 dataset. From left to 

right: Blurred image artefact most likely due to movement, cerebellum not fully 

scanned most likely due to patient positioning within the head coil, blood flow 

artefacts most likely due to sub-optimal image parameters, and wrap artefact most 

likely due to a field of view that is too small. Such gross artefacts will obscure subtle 

syndromal differences in brain structure. 
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2.2 Pre-processing 

 

The first step used to analyse all structural or functional MRI (fMRI) datasets in this 

thesis (after checking data quality) was image pre-processing.  

MR images consist of many voxels (a unit of image information defining a 

region in three dimensional space – similar to a pixel, but in 3D). The primary goal 

of normalisation is to make images comparable on a voxel-by-voxel basis. There are 

various pre-processing techniques that can be used to normalise MR images such as 

Statistical Parametric Mapping (SPM - http://www.fil.ion.ucl.ac.uk/spm/) and the 

FMRIB (Functional MRI of the Brain) Software Library (FSL - 

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). All imaging studies described in this thesis used 

SPM8 for pre-processing. The process of normalising each brain on a voxel-by-voxel 

basis and then comparing each image volume between subjects at every voxel is 

called Voxel-Based Morphometry (VBM). 

All raw MR images acquired from MR scanners in this study were in DICOM 

format. Before image pre-processing can take place, the images were converted from 

DICOM to Analyze format using MRIConvert 

(http://lcni.uoregon.edu/~jolinda/MRIConvert/). 

Once the data was in Analyze format, the images were spatially normalised. 

This is an important stage to allow inter-subject comparisons (or in the case of fMRI 

data, which consists of a time series of images for each subject, intra-subject analysis 

followed by inter-subject testing) (Friston et al., 2007). 

 

2.3 Structural MRI Pre-processing and DARTEL  

 

The standard approach to pre-processing structural (e.g. T1 or T2 weighted) MR 

images include: segmentation, spatial normalisation and smoothing. A newer 

technique for pre-processing structural MRI images known as ‘DARTEL’ 

(Diffeomorphic Anatomical Registration using Exponential Lie Algebra) 

(Ashburner, 2007) has become available and is implemented in SPM8 (Friston et al., 

2007).  

The first step when using either the default SPM spatial normalisation routine 

(Ashburner et al., 2012) or DARTEL involves “segmenting” the images. 

Segmentation involves aligning each image and estimating the probability of grey 

http://www.fil.ion.ucl.ac.uk/spm/
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
http://lcni.uoregon.edu/~jolinda/MRIConvert/
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matter, white matter or cerebrospinal fluid (CSF) within each voxel in a brain scan. 

The procedure produces three separate images containing the respective voxel 

probabilities. As an example, a structural MR image of a healthy control is shown in 

Figure 3 (left) and the corresponding segmented grey matter image is shown in 

Figure 3 (centre). 

When spatially normalising using the default SPM method, it is usual to 

rescale images such that they match a standard anatomical template. SPM includes a 

number of templates including the Montreal Neurological Institute (MNI) template 

(Mazziotta et al., 1995). This was created by averaging a large number of normal 

adult brain scans scaled to the Talairach Atlas (Talairach and Tournoux, 1988). 

However, use of a standard adult spatial normalisation template is problematic in 

studies of children and adolescents and could also be an issue when investigating 

subjects with gross structural brain abnormalities, as the brain structure of these 

populations is not the same as a healthy adult’s brain structure. 

To address this issue, the DARTEL method introduced a stage in the analysis, 

following segmentation, involving the creation of a ‘study-specific brain template’. 

This template is then used in place of a standard adult template (such as the MNI 

template). Prior to the introduction of DARTEL it was still possible to create study-

specific templates (Good et al., 2001) but this was not always done. The DARTEL 

method employs a sophisticated normalisation technique that involves ‘spatial 

normalisation’, ‘warping’ (non-linear geometric transformations of the image) and a 

choice whether to include a ‘modulation’ step (Ashburner, 2007).  

The decision as to whether to include modulation is important. Modulation is 

used to control the effect of volumetric differences that would otherwise occur 

during spatial normalisation. SPM uses the terms “Preserve Amount” to describe the 

inclusion of modulation during normalisation and the term “Preserve Concentration” 

to describe normalisation without modulation.  

When “Preserve Amount” is selected (modulation applied) the regional and 

global intensity is preserved. In this case, when a region’s volume is increased during 

warping, the region’s tissue (e.g. grey or white matter) probability is proportionally 

reduced – thus the probability within the region remains constant. This means the 

total amount of matter present in the original and the normalised images should be 

identical. 
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Figure 3: Three stages of pre-processing a structural MRI image of a healthy control. 

Left: A ‘raw’ structural MRI image. Centre: A segmented grey matter image. Right: 

A DARTEL-processed, smoothed grey matter image. 
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Conversely, when “Preserve Concentrations” is used (no modulation applied) 

the concentration (ratio of intensity and volume) of the tissue probabilities in the 

original image is preserved. Therefore, when a region’s volume is increased the 

probability is increased accordingly such that the ratio remains constant. 

Ashburner (2012) advises that “Preserve Amount” (modulation) should be 

used when normalising structural MR images but “Preserve Concentration” (omitting 

the modulation step) should be chosen when normalising functional MR images. 

However, this is simply advice and there are no definitive conclusions as to which 

normalisation method is best. There are currently no studies that compare these two 

approaches. 

In summary, the SPM DARTEL technique aligns the images by creating a 

mean image for both grey matter and white matter segmented images (with an option 

to perform the equivalent calculation on the CSF segmented images). It then involves 

transformations to deform each individual image towards a study-specific template. 

The newly deformed images can again be averaged to create an anatomically 

'sharper' template and the process repeated.  

Another advantage of DARTEL is that the warping method preserves more of 

the image than previous warping methods (Ashburner et al., 2012). In essence, the 

key difference is that instead of fitting to the template by ‘pulling’ voxels from the 

original image, DARTEL ‘pushes’ each individual voxel in the original image to fit 

to the template. However, this method has a potential drawback as it tends to 

introduce aliasing artefacts (which appear as grid lines across the entire volume) in 

the images unless they are smoothed (Ashburner et al., 2012).  

The final step of both the default SPM8 normalisation and DARTEL is to 

smooth the images with a Gaussian kernel, to remove artefacts (e.g. aliasing effects) 

and optimise the signal/noise ratio (Friston et al., 2007). Figure 3 (right) shows an 

example of a DARTEL-processed image. The mathematics implemented in 

DARTEL is beyond the scope of this thesis but a detailed description is provided by 

Ashburner (2007). 

The result of DARTEL pre-processing is a series of brain images that are all 

accurately aligned to a study-specific template, with a given anatomical coordinate 

location in one image corresponding to the same anatomical coordinate location in 

the other subjects’ images.  
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Following pre-processing of structural MRIs, it is usual to perform 

conventional univariate group level image analysis to test null hypotheses of no 

significant effect using SPM (e.g. t-tests, linear regression). The pre-processed 

images can also be used for individual subject predictive modelling using 

multivariate techniques. The analyses that may be performed after pre-processing are 

discussed from section 2.6 to the end of Chapter 2. As DARTEL is a relatively new 

technique, released in 2007 (Ashburner, 2007), group-level analyses in the literature 

have mostly used standard normalisation pre-processing methods.  

 

2.4 fMRI Pre-processing 

 

fMRI pre-processing consists of: slice timing correction (optional in some 

circumstances), realignment, coregistration (optional), normalisation and smoothing.  

Slice timing correction attempts to compensate for differences in slice 

acquisition times. This correction is required if it is important to correct for each 

complete image consisting of slices taken at slightly different times, although this 

stage is often omitted as there is a debate regarding the effectiveness and importance 

of the slice timing correction (Sladky et al., 2011). 

The realignment ensures all images within the fMRI time series are oriented 

to a selected reference image. This is usually done by either aligning all scans to the 

first image or, more commonly, aligning to the mean image across the time series. 

The purpose of realignment is to remove movement related artefacts which can occur 

during an fMRI scan. The amount of realignment required for each image is recorded 

and is also used as a covariate 'of no interest' during first level fMRI analyses. 

The coregistration step is not always used during standard fMRI 

normalisation. When used in standard fMRI normalisation, coregistration is used to 

register each subject’s realigned fMRI volume to a structural scan from the same 

subject. Coregistration then involves spatially normalising the structural scan (which 

in theory might be done more accurately than spatially normalising the mean 

functional scan) and applying the spatial normalisation parameters to the functional 

scans. 

The normalisation and smoothing processes are identical in principle to the 

default SPM approach for structural scans: i.e. it involves spatially normalising all 

images towards a template image with a final step of smoothing the images. 
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The DARTEL method can also be applied to fMRI data when each subject 

has a corresponding structural MRI of high quality. The approach to normalising 

fMRI images using DARTEL involves performing the structural MRI DARTEL 

calculation (as described in section 2.3), coregistering each subject’s fMRI volume to 

the corresponding original structural MR image, then using the flow field created 

during each subject’s structural normalisation to warp the fMRI images towards the 

study-specific template created during the structural MRI DARTEL process. 

Unfortunately, the author found, through visual inspection of the normalised images, 

that this approach did not provide as accurate normalisation as the standard method 

for fMRI data as a number of brain landmarks were positioned and oriented 

incorrectly in comparison to the template image in many of the subjects. It is unclear 

what caused this poor normalisation but as the lower resolution fMRI images do not 

have as clearly defined landmarks compared to structural images, the error most 

likely occurs during coregistration towards the structural images or when using the 

flow fields generated during the structural normalisation to normalise the fMRI 

images. Accurate normalisation is essential to all neuroimaging analyses in this 

thesis in order to ensure each voxel corresponds to the same brain region in all 

subjects so the standard fMRI normalisation was used throughout. 

 

2.5 fMRI first level analysis 

 

When analysing fMRI data from multiple subjects, using a random effects design, 

the analysis initially takes place at the “first level” which is a within-subject analysis.  

This is followed by a “second level”, between subjects, analysis using summary 

images generated from each subject from the first level analysis. Structural MRI 

analysis does not involve an analogous first level analysis. It is essential in fMRI 

studies as it extracts and summarises the relevant information from the total fMRI 

volume for each subject to create a contrast image. 

SPM performs statistical analysis of fMRI data using a mass-univariate 

approach based on the General Linear Model (GLM). The standard approach for 

task-based fMRI involves: extraction of timing parameters and task information from 

the logfiles to create a design matrix, the estimation of the parameters for the GLM 

and the analysis of the results obtained from the relevant contrast vectors. 
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All fMRI first level analyses undertaken by the author have used an event-

related, random effects design. The first level model was created by identifying 

relevant time points for the contrast(s) of interest, creating a truncated delta function 

at each time point, which is then convolved with the haemodynamic response 

function (Ashburner et al., 2012). 

 

2.6 Second level analysis 

 

A comparison between subjects (or groups of subjects) is defined as a second level 

analysis, using the GLM to implement t-tests, correlations, etc. As mentioned 

previously, between subject analyses can be done on structural MRI data directly 

after pre-processing and also on the output from a first level analysis using fMRI. 

 

2.7 Neuroimaging data quality - Outlier analysis 

 

A key idea to analyse both the quality of the normalisation and the quality of each 

subject’s images in general was an outlier analysis. This involved comparing each 

voxel in a given subject's spatially normalised structural scan with the corresponding 

voxels from other subjects spatially normalised structural scans (within the same 

group: e.g. patient or control).  

Using a boxplot function, outliers were defined as data which were located 

outwith the “whiskers” of the boxplot. The default setting for the maximum whisker 

length, W, was 1.5 (Tukey, 1977), this corresponds to approximately 2.7 standard 

deviations (99.3% coverage if the data are normally distributed). This meant points 

were identified as outliers if they fell outwith the range Q1-W*(Q3-Q1) and 

Q3+W*(Q3-Q1), where Q1 and Q3 are the 25th and 75th percentiles, respectively. 

The threshold that was empirically selected for an acceptable percentage of 

voxels that were identified as outliers across the whole brain was 10%. This 

relatively lenient threshold allowed subjects to have a small proportion of the brain 

defined as an outlier (in comparison to the same diagnostic group) yet was low 

enough such that structural anomalies in anatomy or preprocessing issues could be 

identified in individual subjects.  
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2.8 Multivariate Pattern Analysis  

  

Multivariate pattern analysis (MVPA) is a term used to describe a range of 

approaches to pattern recognition. These techniques are being applied in various 

fields as they are able to detect subtle but consistent patterns of differences between 

groups at an individual subject level.  

MVPA can be separated into two groups, supervised learning and 

unsupervised learning (Bray et al., 2009; Shawe-Taylor and Cristianini, 2004). The 

difference between these two approaches is that supervised learning ‘learns’ using 

data with known class labels (training data) before predicting the class of previous 

unseen data (testing data), whereas unsupervised learning attempts to learn without 

being provided with group labels (Theodoridis and Koutroumbas, 2006). In this 

thesis only supervised learning is discussed in detail. For more information on 

unsupervised learning see Theodoridis and Koutroumbas (2006). 

Overfitting, a failure to generalise from training data when the trained 

classifier is presented with novel data, is a common issue in machine learning studies 

which results in poor predictive accuracy. An excessively high accuracy occurs 

during the training stage as the model fits to 'noise' (random variation) within the 

training data, resulting in misleadingly high training stage predictive accuracies, but 

an inability to generalise to novel data not used for training, resulting in inaccurate 

predictions. Cross-validation is commonly used to address this issue, which involves 

separation of data into training and testing groups. This means that accuracies 

obtained using cross-validation are reported only from the novel data, which 

therefore avoids reporting inaccurately high training stage prediction accuracies if 

overfitting had occurred. 

Cross-validation also avoids another potential issue in MVPA studies, 

‘double-dipping’ - when prior knowledge about the testing data set is ‘leaked’ into 

the training process. It is essential to keep the training and testing stages separate 

during cross-validation (Kriegeskorte et al., 2009). Consequently, any process 

occurring before MVPA takes place which could provide prior information about the 

testing set if performed on the full dataset (e.g. feature selection – described in 

section 2.14) must be performed on the training set only. 

Due to the relatively small numbers of scans in typical neuroimaging studies, 

'leave-one-out cross-validation' (LOOCV) is popular (Cristianini and Shawe-Taylor, 
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2000) as it maximises the number of the training data available. This approach 

involves selecting all but one of the subjects (from either group) for training and 

classifying the ‘left out’ subject in the testing stage. The selected ‘left out’ subject is 

then reintroduced to the training group and another subject removed. The process is 

repeated until all subjects have been left out once.  

The leave-one-out method is popular as it maximises the number of subjects 

in the training set. It does however take considerably more time to compute as the 

MVPA model must be optimised for each ‘left-out’ subject. Furthermore, it takes 

even longer if feature selection is also used, as the feature selection method must be 

repeated on each training set (i.e. without each ‘left-out’ subject), in order to avoid 

double-dipping. 

Other common cross-validation methods include two-fold and ten-fold cross-

validation which involve partitioning the data into two or ten equally sized 

subsamples (or ‘folds’) and training on all folds except one, predictively classifying 

the left-out partition. These approaches are very useful for large datasets such as 

those obtained in genetics studies as it reduces the time for calculations. LOOCV is 

equivalent to N-fold cross-validation (where N is the number of subjects in the 

dataset) and is mainly used in smaller datasets to maximise the number of subjects in 

the training set. 

As mentioned previously, overfitting is a result of fitting a pattern recognition 

method too closely to the training data such that it cannot generalise to novel testing 

data. There are a whole host of MVPA techniques but, to the author’s knowledge, all 

use one or more parameter which alters how closely the model fits the training data. 

These parameters, with respect to pattern recognition methods, are discussed in 

section 2.10.  

When overfitting occurs, the final classification accuracy for novel data is 

poor. A common technique to reduce overfitting is to use a second cross-validation 

process within the training set. For example, LOOCV is commonly applied within 

each training stage to identify which MVPA parameters (and potentially feature 

selection parameters, discussed in section 2.14) achieve the best results within the 

training set. Once the optimal parameters are found within the training set, it is then 

possible to apply these parameters in the classification of the previously unseen test 

set. The application of cross-validation within the training set allows the parameters 

to be tested on data not used during training to give an indication of the 
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generalisability of each combination of parameters prior to classification of the novel 

testing data. Provided there are no major differences between the training set and the 

testing set, this method reduces the likelihood of fitting the model too closely to the 

training data.  

Another important factor, which must be taken into account, is the need to 

ensure there are no significant confounding group level differences in the data (e.g. 

age, gender, IQ). For example, if the patient group were significantly older than those 

in the healthy control group, the pattern recognition method might base its 

predictions on subtle features of older brains for patients and younger brains for 

controls. This could result in substantial errors in prediction when scans from an 

older healthy control, or a younger patient are analysed. Similarly, if gross artefacts 

are more frequent in one group (e.g. movement artefacts or scanner artefacts due to 

poor data quality assurance) compared to another group, the classifier may base its 

prediction methods on artefacts and not syndrome-related differences in brain 

structure.  

Stratification/data selection is a practical approach to non-artefact confounds 

as it is not currently easy to ‘covary out’ such confounds, as would be done in 

traditional univariate group level null hypothesis testing (ANCOVA etc) (Linden, 

2012; Watkins et al., 2009). 

The number of subjects within each group is also an important factor in 

MVPA analyses as many of the MVPA techniques are sensitive to what is known as 

the ‘class imbalance problem’ (Mourão-Miranda et al., 2011; Theodoridis and 

Koutroumbas, 2006). Typically, class imbalance is only an issue when there are large 

imbalances between the groups. The class imbalance problem tends not to be an 

issue when using large datasets and classifying well separated groups. However, 

neuroimaging studies tend to have a small number of subjects and the groups are 

generally not easily separated. In the most extreme cases (such as where there are a 

small number of subjects and many ‘noisy’ or uninformative voxels – thus making 

the groups less separable), a few subjects’ difference between groups could make the 

numerically larger group considerably more likely to be predicted (Theodoridis and 

Koutroumbas, 2006). When there are many voxels included in a classification, the 

accuracy may be less than the expected 50% chance performance as too many noisy 

or irrelevant voxels are included when attempting to train the SVM, provoking the 

class imbalance problem. Similarly, when very few voxels are included, the accuracy 
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may drop due to too few voxels which support the classification. In these cases 

feature selection is crucial to ensure the classification is based on an optimal fit to the 

underlying pattern – making class imbalance less important. 

 

2.9 Support Vector Machine 

 

This section will discuss the mathematical principles of SVM. The SVM toolbox 

used in this study was written by Anton Schwaighofer (Schwaighofer, 2001) and part 

of the Piotr Dollar’s Image and Video Matlab Toolbox (Dollar, 2011) 

(http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html - V2.4 and V2.6).  

In general, SVM can be described as a two-class pattern recognition 

technique. During training, the SVM method uses a kernel function to construct a 

hyperplane (‘decision boundary’) that best separates the two groups. During testing, 

predictive classifications using novel (not used for training) data are done by 

identifying which side of the hyperplane a given novel datum lies. 

Given N subjects in a training set (the set of subjects used for identifying the 

optimal hyperplane), then {xi,yi} where i = 1…N, xi represents a vector for each 

subject (i.e. the selected voxels from a structural MR image), and yi represents a 

subject’s group label (e.g. -1 or 1 – where class labels are arbitrarily assigned to each 

value). The hyperplane can be described using the equation w. x + b = 0, where w is 

normal to the hyperplane and b/ || w || is the perpendicular distance from the 

hyperplane to the origin.  

When, for example, a linear kernel is being used to classify groups which are 

linearly separable, there exists a vector w and a scalar b such that the inequalities: 
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are consistent throughout the training set. In order to classify data which is not 

linearly separable Cortes and Vapnik (Cortes and Vapnik, 1995) introduced a ‘slack 

variable’, ξi (where i = 1…N ), which variably penalises misclassified data: 
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Eq. 2 

http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html%20-%20V2.4%20and%20V2.6
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The above equations can be combined: 
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Eq. 3 

 

The optimal hyperplane is identified as the boundary that minimises 

classification errors and maximises the ‘margin’ (defined as the shortest distance 

between the hyperplane and the closest subject) separating two groups.  To allow the 

SVM approach to cope with datasets that are not perfectly separable (datasets 

whereby no choice of hyperplane could perfectly separate the data without 

classification errors) Cortes and Vapnik (1995) introduced the “slack variable”. In a 

simple classification problem the classes are linearly separable and the, slack 

variable ξi (where i = 1…N) can be omitted.  However, the slack variable ‘soft-

margin’ means that classification can be performed even when there are data 

(subjects) located on the incorrect side of the hyperplane, as it acts to variably 

penalise each misclassified data as a function of distance from the hyperplane 

(Cortes and Vapnik, 1995; Fletcher, 2009). Provided the conditions of Eq. 3 are 

satisfied, the hyperplane is identified by minimising: 
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Eq. 4 

 

The parameter C corresponds to the soft-margin parameter which requires 

optimisation when applying linear and non-linear SVMs, as outlined in section 2.10. 

A full derivation of the mathematics involved in SVMs can be found elsewhere: 

Bishop (2006), Cristianini & Shawe-Taylor (2000), Fletcher (2009). 

Once the optimal hyperplane has been identified from the training data (e.g. a 

suitable soft-margin parameter has been selected - and also any additional parameters 

- such as the kernel width parameter - if using a non-linear SVM), the novel testing 

data can then be classified. SVM kernels are either linear or non-linear, with the 

latter often achieving higher classification accuracy (Song et al., 2011). Using a 

linear kernel, a new subject {x
*
,y

*
} is classified by: 
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Eq. 5 

 

where the sign of f(x
*
) determines which class label the subject is predicted to have 

(i.e. f(x
*
) -the predicted class label- is compared with y

*
 - the true class label - in 

order to determine whether that subject’s data has been correctly classified.  

The main equation for SVM (and Relevance Vector Machines; RVMs) 

classification is: 
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Eq. 6 

 

where K(x,xi) describes the kernel function (e.g. linear, polynomial, radial 

basis function, etc) (Bishop, 2006). In this study results have been reported for both a 

linear kernel (as shown in Eq. 5) and a Gaussian kernel (Eq. 7). There are other 

kernels such as a polynomial kernel and sigmoid kernel but the linear and Gaussian 

kernels were selected as they are commonly used in the literature (Fletcher, 2009; 

Shawe-Taylor and Cristianini, 2004). 
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Eq. 7 

 

2.10 Application of SVM  

 

Training a linear SVM involves varying one parameter, the soft-margin parameter, 

during the training stage of cross-validation. The soft-margin parameter, C, 

determines how closely the SVM 'tries' to fit to the training data; a low C value 

allows a small number of misclassifications in the training set to obtain the best 

predictive model whereas a high C value allows no misclassifications in the training 

set, potentially at the expense of the generalisability of the model. Therefore, if a 

large soft-margin parameter is selected then it is likely to lead to overfitting during 

training. Training a non-linear SVM involves optimising two or more parameters 

depending on the choice of non-linear kernel. For the most popular non-linear kernel 

functions (e.g. Gaussian, radial-basis function and polynomial kernels), two 
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parameters require optimisation (the soft-margin parameter and an additional ‘kernel 

width’ parameter, the latter having an effect of scaling the non-linear kernel 

function). There are non-linear kernels that require the optimisation of additional 

parameters, such as the sigmoid function but these are not discussed in this thesis. 

Typically, the more parameters that require optimisation, the longer the optimisation 

takes during training.  

During cross-validation, for each prediction of a left-out subject, all 

parameters must be 'tuned' using the training data set prior to predictive classification 

on the test data. In the studies outlined in this thesis, parameter selection was 

performed using an inner LOOCV procedure within the training set with all possible 

parameters tested using a ‘grid search’ procedure. The optimal combination of 

variables was selected based on the highest ‘training accuracy’ during the inner 

LOOCV. It is important to distinguish the accuracy during training (obtained from 

the inner LOOCV), which is used to guide parameter selection, from the true 

predictive accuracy achieved during the testing stage with novel data. Only the true 

predictive accuracy achieved during the testing stage is reported here. 

The combination of parameters that achieved the highest training stage 

accuracy is then applied during testing (i.e. when classifying the novel ‘held-out’ 

subject), to assess classifier performance using conventional methods: accuracy, 

sensitivity, specificity and chi-square significance of classification.  

SVM is one of the most popular supervised learning MVPA techniques, used 

most often in this thesis as it typically gives good classification performance 

(Craddock et al., 2009) and can be described relatively intuitively, without extensive 

mathematical presentation. Other methods such as one-class SVM, RVM and 

Gaussian Processes are briefly discussed in section 2.13. 

As an illustration of the general SVM approach, suppose MRI data from 10 

patients and 10 healthy controls have been pre-processed (in general, more subjects 

would be required to achieve high accuracy using this technique) and, as the 

technique is easiest explained with a two dimensional example, predictions are made 

based on data from only two voxels without feature selection and a linear SVM (to 

facilitate description). 

As mentioned previously, the classification process involves two stages: 

training, when the SVM ‘learns’ from the training set, and testing, where the testing 

set is classified (e.g. predicting whether each scan in the testing set belongs to the 
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patient or control group). In experimental studies, these predictions are then 

compared to the actual group membership to determine the level of success of the 

classifier.  

In our example LOOCV is used. Therefore, 19 of the 20 MRI images (9+10) 

were selected for SVM training; the ‘left out’ subject’s diagnostic status was then 

predicted in the SVM testing stage. This process was repeated until all 20 images 

were predictively classified.  

Considering now the SVM training stage in more detail, a way to visualise 

SVM training is a plot of the voxel value (e.g. grey or white matter probability value) 

from each subject in the training set. In our two voxel example, this corresponds to a 

two-dimensional plot. As the diagnostic status of each subject in the training set (all 

subjects other than the ‘left out’ subject) is known, the SVM training stage identifies 

a line which best separates the two groups - the ‘decision boundary’ (or 

‘hyperplane’) (Bishop, 2006), by optimising the SVM parameters. Once the optimal 

decision boundary has been estimated, the SVM training is complete. In our 

example, consider the ‘left out’ subject being a scan from a patient; this leaves 10 

controls and 9 patients in the training set. As this example is only considering two 

voxels (and not hundreds of thousands), the respective grey matter voxel 

probabilities can be plotted on a two-dimensional plot as described above. An 

illustration is shown in Figure 4 (left) where the decision boundary is the central line. 

When applying SVM to real data, the number of voxels required to achieve a high 

classification accuracy is obviously going to be larger than two and separation is 

usually never as straightforward as this example, as the SVM typically must allow 

for errors in classification, to find the best fitting decision boundary. 

The SVM testing stage involves plotting the ‘left out’ subject’s voxel 

probability values on the plot created in the SVM training stage. The prediction of 

which group the ‘left out’ subject belongs depends on which side of the decision 

boundary the subject is found. In our example, the subject is predicted to belong to 

the patient group as the ‘left out’ subject is plotted above the decision boundary (as 

shown in Figure 4 (right), with the ‘left out’ subject represented by a star). If the data 

point was plotted below the decision boundary, the scan would be predicted to be 

from a subject belonging to the control group. When more voxels are included in the 

SVM analysis the situation becomes complex to visualise, because the number of 

voxels included in the prediction equates to the number of dimensions the decision 
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boundary must be calculated over, but the basic mathematical concepts remain the 

same.  

By separating the total training set into a number of subsets it allows the 

decision boundary to be tested on various subjects, before the SVM testing stage, in 

order to make the decision boundary as generic as possible (thus avoiding 

overfitting). 
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Figure 4: A summary of the SVM process. If there are 10 patients and 10 healthy 

controls suppose the ‘left out’ subject in this example of the LOOCV step is a 

patient. The training set therefore consists of 9 patients and 10 healthy controls. In 

this example only two voxels from the brain are selected to simplify the description 

of SVM principles. Left: SVM training – A plot of the two selected features of each 

subject in the training set (patients represented by blue squares and healthy controls 

represented by red circles). The best fitting decision boundary is calculated from the 

subjects in the training set. Right: SVM testing – The ‘left out’ subject (represented 

by the star) is plotted and the prediction depends on which side of the decision 

boundary the subject lies. In this case the ‘left out’ subject scan lies above the 

decision boundary so would be predicted to be a scan of a patient (if below the 

decision boundary it would be predicted to be from a control). 
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2.11 Relevance Vector Machine 

 

This section will briefly outline the RVM method. The RVM algorithm was written 

by Mike Tipping (Tipping, 2001) and in this study the algorithm programming 

interface was created from a section of PRoNTo (Pattern Recognition for 

Neuroimaging Toolbox) Matlab code (Schrouff et al., 2013).  

Although the Bayesian learning framework on which RVM was built on is far 

more general, the RVM method was designed to follow the same functional form as 

SVM. Therefore, RVM also relies on the selection of a kernel and shares the same 

basis equations as SVM such as Eq. 6. 
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Eq. 6 

 

The main difference between RVM and SVM is that RVM employs a 

Bayesian framework to make predictions (Tipping, 2001). This means that there are 

several advantages of the RVM algorithm (compared to SVM). First, it can output 

probabilistic predictions. The standard SVM algorithm can only provide a binary 

output, whereas RVM can provide a level of confidence or uncertainty in each 

prediction. Second, and most importantly for the work undertaken in this thesis using 

the RVM algorithm, RVM is able to predict continuous variables, this technique is 

called Relevance Vector Regression (RVR). The RVM algorithm also has other 

advantages over SVM such as it automatically estimates the soft-margin parameter, 

kernel functions do not have to satisfy Mercer’s condition, and the method tends to 

be sparser. 

The RVM classification method was investigated to see if it could improve 

on the results obtained using SVM. However, despite all the advantages of RVM, the 

SVM algorithm has been found to be more robust by the author as it achieved 

consistently better results compared to RVM. For this reason RVM classification has 

not been discussed in more detail in this thesis - detailed description can be found 

elsewhere (Bishop, 2006; Tipping, 2001). Nevertheless, the RVM algorithm was 

found to accurately predict continuous variables, which can be used to predict 

clinically relevant information, such as symptom severity. 

The RVM code is freely available 

(http://www.vectoranomaly.com/downloads/downloads.htm) and the PRoNTo 

http://www.vectoranomaly.com/downloads/downloads.htm
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toolbox includes this algorithm amongst their pattern recognition tools and created an 

interface to implement the code. Custom Matlab code was written by the author to 

interface with the PRoNTo RVM toolbox. 

Another addition to the RVM toolbox was the use of 'sensitivity map' 

calculations with non-linear kernels. When applying a linear kernel to SVM or RVM, 

the relative contribution of each voxel to the prediction, the 'voxel weight', could be 

output from the procedure. However, a limitation of these algorithms was that the 

same approach could not be applied when applying non-linear kernels. However, 

Rasmussen et al. (2011) identified a method to calculate equivalent voxel weights for 

non-linear kernels. This method was used in this thesis. 

 

2.12 Application of RVR 

 

The RVM toolbox is implemented in an almost identical process as the SVM 

toolbox. The main difference is that the soft-margin parameter is automatically 

estimated rather than manually optimised.  

When performing RVR, however, the process was altered, as it was no longer 

possible to optimise the parameters using the training stage accuracies. Instead of 

using the training accuracy to test how well the model fit the data, the true 

continuous variables had to be compared with the predicted variables to determine 

the goodness of fit. There are a number of measures of goodness of fit, eleven of 

which are included in the gfit2 toolbox 

(http://www.mathworks.co.uk/matlabcentral/fileexchange/22020-goodness-of-fit-

modified/content/gfit2.m). The measures calculated using this toolbox include: the 

mean squared error, the normalised mean squared error, the root mean squared error 

(RMSE), the normalised root mean squared error, the mean absolute error (MAE), 

the mean absolute relative error, Pearson’s coefficient of correlation (R), the 

coefficient of determination, the coefficient of efficiency, the maximum absolute 

error and the maximum absolute relative error.  

Only three of these measures were selected for evaluating the goodness of fit 

during the training stage of regression studies undertaken by the author: RMSE, 

MAE and Pearson’s coefficient of correlation (R). The RMSE is calculated using the 

following equation: 

http://www.mathworks.co.uk/matlabcentral/fileexchange/22020-goodness-of-fit-modified/content/gfit2.m
http://www.mathworks.co.uk/matlabcentral/fileexchange/22020-goodness-of-fit-modified/content/gfit2.m
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where N describes the number of subjects in the training set, t describes the target 

values for the regression model and y describes the predicted values output from the 

regression model. 

Using the same notation the MAE is calculated using the following equation: 
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Finally, the sample Pearson correlation coefficient, R, is defined by the 

equation: 
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where t̄  and ȳ represent the mean values for the target values for the regression 

model and the predicted values output from the regression model respectively. As the 

Pearson correlation coefficient is a parametric test, the Shapiro-Wilk test was used to 

test whether each continuous variable followed a normal distribution before 

attempting to make predictions using RVR. 

There were two main methods used to optimise the training stage: a one 

variable approach and a multi-variable approach. 

The one variable approach is similar to the approach taken when comparing 

training stage accuracies. One of the three main goodness of fit variables highlighted 

was selected, the goodness of fit measure selected was computed for each 

combination of parameters (in the same way as the training stage accuracies) and the 

parameters which produced the best fit (the lowest score for MAE and RMSE and 

the highest for R) was selected. If more than one combination of parameters shared 

the optimal score then a 'tie-breaker' decision was required. If the correlation 

coefficient, R, was not the main comparison variable then this score was used as a 

tie-breaker, otherwise the MAE score was used. In the case of the same optimal 

scores being achieved in the tie-breaker also, Ockham’s Razor was implemented. In 

other words, when presented with two competing models that make exactly the same 
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predictions, the simpler model was considered better. Therefore the combination of 

parameters that produced the simplest model was selected (i.e. the lower kernel 

width parameters produce smoother, more general kernel functions, which tend to 

avoid overfitting). 

When training RVR using the multi-variable approach, the measures selected 

were normalised (brought within the range 0-1) and combined to make a single 

score. This approach resulted in very few tie-breaker situations when the three 

aforementioned variables were combined. In the cases where the same optimal 

combined score was achieved, Ockham’s Razor was implemented as described 

above. 

 

2.13 Alternative Classifiers 

 

Thus far, only SVM for classification and RVM for classification and regression 

have been described. The linear SVM is especially intuitive, easy to visualise and 

often gives good classification performance but has disadvantages: e.g. SVMs do not 

give a probabilistic output and the standard SVM algorithm cannot perform 

regression (although extensions to the SVM algorithm include regression (Smola and 

Schölkopf, 2004; Vapnik et al., 1997) – not discussed further here). Non-linear 

SVMs are slightly more complicated to conceptualise, but they are very similar to the 

linear SVM except they attempt to identify a decision boundary described by non-

linear functions such as a polynomial function, a radial basis function (RBF) or a 

Gaussian function, rather than a linear function. As mentioned, the RVM algorithm is 

very similar to the SVM algorithm as it uses the same basic equations for prediction. 

As RVM uses a Bayesian treatment to eliminate some of the limitations of SVM 

(Tipping, 2001), it provides probabilistic predictions and automatically selects the 

soft-margin parameter, generally making it faster to train. Furthermore, RVM is able 

to perform both classification and regression. As above though, despite the obvious 

advantages of RVM over SVM, the SVM algorithm tends to be more robust and 

consistently successful when performing predictive classification. However, there are 

many other pattern recognition methods, each with advantages and disadvantages. 

An adaptation to the SVM method is the use of one-class SVMs which 

attempt to identify outliers from a specific class or population (Schölkopf et al., 

2001; Shawe-Taylor and Cristianini, 2004). This method will not be discussed in 
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detail here: for an example of the application of this method to psychiatric research, 

Mourão-Miranda et al. applied one-class SVMs to classify fMRI images of 

depressed patients as outliers relative to healthy controls (Mourão-Miranda et al., 

2011). 

Another popular MVPA method is the use of Gaussian processes. As this 

method has not been used in this thesis, a detailed description and the mathematical 

underpinnings has not been provided here, see Rasmussen & Williams (2006) and 

Bishop (2006). Unlike SVM, where one function must be selected (e.g. linear, 

polynomial, RBF etc), a Gaussian process uses a distribution of every possible 

function, with higher probabilities for distributions which are more likely (Meyfroidt 

et al., 2009; Rasmussen and Williams, 2006). Gaussian processes apply Bayesian 

statistics to perform both classification and regression (Bishop, 2006; Meyfroidt et 

al., 2009; Rasmussen and Williams, 2006). An advantage of Gaussian processes is 

that they can classify more than two classes at a time. RVM is a special case of 

Gaussian processes theory (Rasmussen and Williams, 2006). 

As there are many MVPA methods it can be difficult deciding which 

classifier to choose. The ‘No Free Lunch Theorem’ suggests there is no single 

learning algorithm that always produces the highest accuracy (Alpaydin, 2004). A 

common approach is to try a range of classifiers for a given problem and dataset and 

select the one that performs the best on a separate validation set (Alpaydin, 2004). 

 

2.14 Feature Selection 

 

The resolution of structural and functional MR images is such that there are typically 

more than one-hundred thousand voxels in a whole brain scan from a single subject. 

The signal/noise ratio in MRI scans is low and therefore studies aiming to 

predictively classify individual scans typically report poor results when voxels from 

the whole brain are used, due to the large number of noisy and redundant voxels 

(Bray et al., 2009; Dash and Liu, 1997). As the number of features (or voxels) is very 

large in neuroimaging data compared to the number of subjects, it is common to 

reduce the number of features selected for entering into a classifier.  

Feature selection has many benefits as it can remove noisy voxels, reduce 

computation time, and reduce the number of redundant voxels by removing highly 

correlated voxels and voxels not otherwise useful for classification (De Martino et 
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al., 2008; Guyon and Elisseeff, 2003; Theodoridis and Koutroumbas, 2006). Feature 

selection can be a critical stage before classification or regression because if features 

were selected that did not aid prediction, the SVM may be unable to accurately 

distinguish the underlying pattern. Conversely, by selecting features that identify the 

pattern well, the likelihood of achieving a highly accurate prediction is increased 

(Mwangi et al., 2013). In addition, correctly identifying a subset of the most relevant 

features decreases the risk of overfitting. 

Aside from the practical advantage of implementing feature selection 

(increasing the accuracy of prediction) there is also another major advantage. As the 

methods identify which features (or in a neuroimaging study, brain regions) are 

relevant to the prediction, feature selection can identify which brain regions are 

consistently different between groups in a classification study, or which regions are 

correlated with certain continuous variables. This means that if a successful 

prediction can be achieved, the feature selection can potentially provide an insight 

into structural or functional brain differences that are consistent enough to produce a 

strong prediction - potentially identifying biomarkers or elucidating brain 

mechanisms.  

As with machine learning methods, there are supervised and unsupervised 

feature selection methods. However, as with the MVPA methods, only supervised 

methods are used in this thesis. The methods used in this thesis are outlined in more 

detail in section 2.15. The ‘No Free Lunch Theorem’ described at the end of section 

2.13 also applies to feature selection techniques. Each group of feature selection 

techniques have different advantages and disadvantages and there is no single 

method that will always select features that produce the highest accuracy (Alpaydin, 

2004). As with machine learning algorithms, a common approach is to try a range of 

feature selection methods for a given problem and dataset and select the one that 

performs the best on a separate validation set (Alpaydin, 2004). 

There are a number of proposed categorisations for many feature selection 

methods (Guyon and Elisseeff, 2003; Saeys et al., 2007), however only a brief 

introduction to this topic is possible here and these approaches are discussed in more 

detail in Saeys et al. (2007) and Mwangi et al. (2013). The first categorisation of 

feature selection methods is the distinction between supervised and unsupervised 

techniques. Like machine learning methods, supervised techniques selects features 

using data with known class labels (within the training data), whereas unsupervised 
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feature selection attempts to learn without being provided with group labels (Mwangi 

et al., 2013). 

Supervised methods can be separated into univariate and multivariate 

approaches. There are a wide range of alternative supervised feature selection 

methods, some of which can be used to filter the data (e.g. T-tests, Analysis of 

Variance and Pearson Correlation Coefficient (Chaves et al., 2009; Costafreda et al., 

2009a; Duchesnay et al., 2011; Guyon and Elisseeff, 2003)), others that use the 

output from machine learning predictions to test the importance of different 

combinations of variables (e.g. RFE (De Martino et al., 2008; Saeys et al., 2007)) 

and there exist some MVPA methods which perform the feature selection stage as 

part of the classification process (e.g. L1-regularisation and the elastic net (Park and 

Hastie, 2007; Shen et al., 2011)). T-tests and Analysis of Variance are examples of 

univariate feature selection methods (i.e. voxels are considered individually) which 

have been applied in the classification of Alzheimer’s disease (Chaves et al., 2009), 

Autism Spectrum Disorder (ASD) (Duchesnay et al., 2011) and MDD (Costafreda et 

al., 2009a). Using univariate statistical tests to filter the variables is common in the 

literature and has the advantages of being computationally fast, independent from the 

machine learning algorithm and, as they are univariate, they can easily be applied to 

both small and large datasets (Saeys et al., 2007). The fact that these methods are 

univariate is also a disadvantage as they ignore possible interactions between 

variables which, when combined, may improve classification accuracy (Saeys et al., 

2007). There are also multivariate feature selection methods that attempt to find an 

optimal combination of voxels such as Recursive Feature Elimination (RFE) (De 

Martino et al., 2008; Saeys et al., 2007). Multivariate techniques are able to identify 

interactions between variables but tend to be more computationally intensive and 

have a higher risk of overfitting (Saeys et al., 2007).  

The most common unsupervised feature selection methods include principal 

component analysis and independent component analysis. Principal component 

analysis uses a linear transformation to reduce the number of correlated variables 

such that it is able to capture most of the variance within the original data with fewer 

variables (Mwangi et al., 2013). As imaging data typically contain many correlated 

voxels, this analysis can significantly reduce the number of features. Independent 

component analysis assumes that the data comprises of a combination of non-

Gaussian, linearly combined, and statistically independent signals and Gaussian-
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distributed noise. Using these assumptions, this method attempts to extract the 

statistically independent multivariate signals to describe the data (Mwangi et al., 

2013).  

An important factor when applying feature selection algorithms is that 

double-dipping must be carefully avoided (Kriegeskorte et al., 2009). As described 

in section 2.8, double-dipping is a situation whereby information from the testing set 

is “leaked” into the training set. If feature selection was performed on the entire data 

set prior to cross-validation, then the features used in the classification would have 

been selected using the testing data. In this case the cross-validation process has been 

compromised as the test data is no longer novel to the classifier. Therefore in all 

analyses outlined in this thesis, the feature selection stage is performed N times (on 

each individual training set during each LOOCV loop) which ensures the testing set 

remains novel.  

 

2.15 Feature selection methods used in this thesis 

 

2.15.1 Mean-thresholding method 

 

The mean-thresholding method is essentially a simplified version of a t-test, which 

was developed by the author (similar to a t-test but without taking into account of the 

variance within the data). The method involves calculating the average image for 

each group, during the training stage (i.e. not including the single ‘left-out’ scan to be 

predictively classified). The absolute difference between each average image in the 

training set is then calculated. Each voxel is then sorted from the lowest to the 

highest absolute difference between the average images. The thresholding process of 

the mean-thresholding technique involved identifying the optimal absolute difference 

cut-off value for the difference between the average images –all voxels above this 

cut-off value were included in the SVM calculation. The thresholding component of 

this approach inspired the thresholding component of the thresholded t-test method 

(described in section 2.15.2). 

In order to identify the optimal cut-off value for each leave-one-out loop, a 

broad range of potential values was investigated. Within each (outer) leave-one-out 

loop the starting range was chosen to be very large (enough such that it would always 

include the optimal cut-off value). As it would take an unfeasibly long time to 
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optimise the parameters (e.g. two for the linear SVM - the soft-margin parameter and 

the optimal cut-off value - and three for the Gaussian SVM - the soft-margin 

parameter, the ‘kernel width’ parameter and the optimal cut-off value) for such a 

wide range of thresholds the soft-margin parameter (and the ‘kernel width’ parameter 

in the non-linear SVM) was initially set to unity in order to narrow down the wide 

range of potential thresholds. This range was reduced by performing an inner 

LOOCV with the SVM parameters fixed, identifying the thresholds which achieved a 

high training accuracy, centring the narrowed range on these thresholds, and then 

reducing the step size to investigate more thresholds within the range.  

The author also developed a variation on the mean-thresholding method that 

used the number of voxels as the threshold (e.g. top one-hundred voxels) rather than 

an arbitrary difference between groups. The method achieved similar results as the 

mean-thresholding method but tended to be less robust due to the variability in the 

number of predictive voxels contained in each combination of training data, so was 

not used further in work presented in this thesis. 

 

2.15.2 Thresholded t-test method 

 

T-tests are one of the most popular feature selection methods. The method used in 

this thesis involved calculating one t-test between the two groups in each training set 

(as implemented in SPM). The significance threshold of the t-test was set to the 

highest 'acceptable' level of significance (p < 0.05), aiming to include as many 

significant voxels as possible in the optimisation stage of the feature selection 

process. The z-scores at each of the significant voxels were then ranked in order of 

significance. This allowed a threshold to be defined which could optimise the 

number of relevant features included in the prediction. As described in section 2.10, 

the threshold that optimised the feature selection was identified during LOOCV at 

the same stage as the MVPA parameter selection, and kept constant during the 

testing stage accuracy determination. 

 

2.15.3 Thresholded linear regression method 

 

The previous two methods are appropriate for classification studies when the feature 

selection depends on the comparison between groups, however, they cannot be 
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applied to a one-group regression study. Using the group level regression framework 

in SPM, the method is identical to the thresholded t-test except continuous variables 

are entered rather than class labels. 

 

2.15.4 Recursive Feature Elimination 

 

The most popular multivariate feature selection technique is RFE (De Martino et al., 

2008; Duchesnay et al., 2011; Guyon and Elisseeff, 2003; Somol et al., 1999). This 

method can be used in both classification and regression studies. The main argument 

against univariate feature selection is that it is not able to take into account any 

interactions between voxels.  

As with the other feature selection approaches, RFE involved using the 

training data to identify the optimal set of voxels. As RFE is typically more prone to 

overfitting than univariate methods (Saeys et al., 2007), two or three-fold cross-

validation was typically applied during the training stage when using RFE. 

Backwards elimination (iteratively removing the least relevant voxels rather than 

iteratively adding the most important voxels) was also used during the inner cross-

validation loop for the RFE optimisation procedure.  

The procedure begins by performing training on the whole brain images of all 

subjects in the training set, identifying the weight of each voxel, removing the voxels 

which were in the lower half of the weights and repeating the training on the 

remaining voxels. The initial removal of 50% of the voxels was used to speed up the 

calculation as the process was repeated but with only the lowest 5% of the weights 

removed each time after the initial cull. The termination criteria for the RFE loop 

varied, but it was typically set to when there were 200 voxels or less remaining in the 

calculation. Once the termination criteria were met, each iteration was evaluated 

either using the training stage accuracy or one of the methods described previously to 

evaluate goodness of fit during regression. The optimal iteration selected was then 

used during the testing stage. 

The multivariate nature of the RFE approach meant that it became difficult to 

not overfit to the training data set, however, when the nested K-fold cross-validation 

used for optimisation was sufficiently low (e.g. 2 or 3 folds) the technique was able 

to generalise to novel data well. 
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Chapter 3: Literature review 

 

3.1 Introduction 

 

MVPA techniques allow predictions about a range of individual subjects’ clinical 

attributes (e.g. diagnostic status, symptom severity scores, identification of patients 

likely to develop given disorders) based on data such as, but not limited to, MRI 

scans (Klöppel et al., 2008; Koutsouleris et al., 2009; Mwangi et al., 2012b). MVPA 

techniques (e.g. using T1 weighted MRI images) have been successfully used to 

predict diagnostic status (in comparison to controls) in a range of psychiatric 

conditions such as: Alzheimer’s disease (Klöppel et al., 2008), ASD (Ecker et al., 

2010b), and MDD (Gong et al., 2011). MVPA techniques can be applied to 

quantitative data such as structural and fMRI and Diffusion Tensor Imaging (DTI) as 

well as a wide range of non-scanning data.  

The general direction this exciting field is headed is outlined, with an 

emphasis on the potential clinical implications of applying MVPA methods. 

 

3.2 Overview of Neuroimaging Studies applying MVPA techniques 

 

A number of published studies have now used MRI data in conjunction with MVPA 

techniques to make predictions about individual subject data. The most common 

MVPA neuroimaging studies attempt to use structural MRI to train a classifier to 

predict diagnostic status (patients versus controls). High classification accuracies 

have been reported in these studies in a number of disorders: e.g., predicting 

individual scans from patients with Alzheimer’s disease vs. healthy controls with 

96% accuracy (sensitivity – 0.97, specificity – 0.94) (Klöppel et al., 2008), MDD vs. 

controls with 90% accuracy (sensitivity – 0.93, specificity – 0.88) (Mwangi et al., 

2012a), and a study of ASD with 81% accuracy (sensitivity – 0.77, specificity – 

0.86) (Ecker et al., 2010b). 

In addition to the prediction of diagnosis there are also studies which have 

attempted to predict continuous scores such as symptom severity scores. Mwangi et 

al. (2012b) used structural MRI images of patients with MDD and RVR to predict 

depressive illness severity rating scores. They found that the T1 weighted scans 

allowed prediction of the self-rated Beck Depression Inventory-II (BDI) score, which 
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correlated significantly (p < 0.0001) with the actual patient self-rated BDI scores 

(Mwangi et al., 2012b). Clinical scores have also been successfully predicted from 

obsessive compulsive disorder using Support Vector Regression (Hoexter et al., 

2013) and patients with Alzheimer’s disease and mild cognitive impairment using 

RVR (Stonnington et al., 2010; Wang et al., 2010). Stonnington et al. found that 

predictions of the Mini-Mental State Examination (MMSE), Dementia Rating Scale 

(DRS) and Auditory Verbal Learning Test (AVLT) scores all correlated significantly 

(p < 0.0001) with the actual scores (Stonnington et al., 2010). 

The methods used to make individual predictions of diagnostic group or 

predicting rating scale values can be applied to create predictive models that can 

address clinical prediction for which there are currently no useful methods. For 

example, MDD has a large number of potential treatments that can take months or 

often years to evaluate for a patient. Identifying predictors of response to one 

therapy, versus another, early in the illness could therefore be beneficial. As progress 

towards this goal, Gong et al. (2011) reported that approximately 70% of depressed 

patients following standard antidepressant treatment showed some improvement. 

Using structural MRI and SVM these authors managed to predict responders vs. non-

responders to antidepressant treatment with an accuracy of 70% (sensitivity – 0.70, 

specificity – 0.70) (Gong et al., 2011). 

Other aims of applying pattern recognition techniques include the prediction 

of clinical outcome and/or trajectory of illness severity over time in patients and the 

identification of individuals who may be ‘at-risk’ for developing a given disorder. 

Koutsouleris et al. used structural MRI images to make individual predictions of 

healthy controls and ‘at-risk’ subjects, some of whom developed psychosis 

(‘converters’) and some of whom who did not (‘non-converters’) (Koutsouleris et al., 

2011). The authors reported accuracies of 92.3% (sensitivity – 0.94, specificity – 

0.91), 66.6% (sensitivity – 0.43, specificity – 0.91), and 84.2% (sensitivity – 0.81, 

specificity – 0.88) when making predictions between “controls vs. converters”, 

“controls vs. non-converters”, and “converters vs. non-converters” respectively 

(Koutsouleris et al., 2011).  A similar study by Plant et al, also using MRI images, 

achieved 75% accuracy (sensitivity – 0.56, specificity – 0.87) when predicting which 

subjects with mild cognitive impairment (MCI) would go on to develop Alzheimer’s 

disease (Plant et al., 2010). 
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MVPA methods can also be applied to imaging modalities other than 

‘structural’ MRI. Zhu et al. (2008; 2005) reported significant classification (85%, 

sensitivity – 0.78, specificity – 0.91) of ADHD children/adolescents vs. controls 

using resting state fMRI. Craddock et al. used resting state functional connectivity 

data to achieve a 95% accuracy when predicting clinically depressed patients vs. 

healthy controls (Craddock et al., 2009). Similarly, Ingalhalikar et al. used DTI to 

make individual predictions of schizophrenia vs. controls (91%) and ASD patients 

vs. controls (90%) (Ingalhalikar et al., 2010). Using event-related potential (ERP) 

EEG data, Mueller et al. reported predicting adult ADHD vs. controls category with 

an accuracy of 94% (Mueller et al., 2011). 

At this stage, it is important to mention typical limitations related to the 

current machine learning field in neuroimaging. It is generally not possible to train 

using data from one scanner and successfully predict, to a high degree of accuracy, 

using novel data from another scanner (Mwangi et al., 2012a). The reason is that 

even if scanners are nominally of the same field strength (e.g. 3T), there are 

differences in field strength nevertheless and these cause subtle distortions in brain 

regions close to air filled cavities (e.g. orbitofrontal cortex and subgenual anterior 

cingulate, inferior temporal lobe and brainstem) which are similar to the locations of 

the subtle psychiatric syndrome-linked signals, used to classify images - so a major 

confound.  Even when the same scanner is used, there are slow drifts in scanner 

performance over time and 'upgrades' can radically change a scanner's performance - 

causing the same problems. There are other potential reasons why a predictive 

classifier from one dataset cannot be naïvely used on a different data-set, as other 

subject-related confounds may also be present: e.g. differences in average age of 

subjects providing the 'independent' data, compared to the data the classifier was 

trained on.  Recognising what the real limitations are with machine learning based 

psychiatric studies allows new studies to be designed which can address the 

problems. 

 

3.3 Child and adolescent ADHD MVPA Neuroimaging studies 

 

There have been very few studies which have applied machine learning methods to 

structural or functional MR images of children and adolescents with ADHD. The 

majority of these studies participated in the ADHD-200 competition, or used the data 
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released as part of it. The ADHD-200 competition, mentioned previously, was 

released by the Neuroimaging Informatics Tools and Resources Clearinghouse 

(NITRC) and consisted of a multi-centre dataset of T1 weighted scans and resting 

state fMRI scans of 285 children with ADHD and 491 controls (Milham et al., 2012). 

Participants were given a first dataset with diagnostic labels to ‘train’ a predictor. 

They were then required to predict the diagnostic status and ADHD subtype 

(between inattentive-type (ADHD-I) and combined-type (ADHD-C) ADHD) of 

participants in a second, unlabelled, dataset.  

The winner of the ADHD-200 competition achieved a predictive accuracy of 

58% (sensitivity 21%, specificity 94%) for ADHD vs. controls (but achieved a 

higher accuracy of 89% when predicting between inattentive-type ADHD and 

combined-type ADHD) using combined resting state fMRI functional connectivity 

and T1 data (Eloyan et al., 2012).  

Eight other studies have published results using the ADHD-200 dataset. 

These reported the following for ADHD vs. control prediction: 67% using a texture 

analysis approach on T1 weighted brain images (Chang et al., 2012), 76% accuracy 

using resting state fMRI and T1 weighted brain images (Cheng et al., 2012), 56% and 

66% accuracy using resting state fMRI functional connectivity data respectively 

(Colby et al., 2012; Dai et al., 2012), 65% accuracy using resting state fMRI data 

(Solmaz et al., 2012). Another study which used resting state fMRI data was not able 

to predict diagnostic state much above chance, but could predict between ADHD 

subtypes (inattentive (ADHD-I) vs. combined (ADHD-C) type ADHD) with 70% 

accuracy (Sato et al., 2012). Similarly, Fair et al. attempted a 3 group classification 

(Controls vs. ADHD-C vs. ADHD-I) using resting state functional connectivity after 

controlling for micro-movements which achieved 69% accuracy (Fair et al., 2012b). 

Bohland et al. (2012) combined resting state fMRI functional connectivity, T1 

weighted brain images and non-imaging features into one classifier which achieved 

80% accuracy. 

Interestingly, the group which actually achieved the highest accuracy in the 

ADHD-200 competition used phenotypic data in the prediction and excluded all 

imaging data (Brown et al., 2012). However, they were disqualified from the 

competition as “the intent of the competition was imaging-based classification”. The 

accuracy achieved by Brown et al. was 63% for ADHD vs. controls. The fact that the 

highest accuracy achieved in this competition was found using non-imaging data is 
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unsurprising, given the significant quality issues in the ADHD-200 data set outlined 

in Chapter 2 and in the literature (Johnston et al., 2012; Lim et al., 2013). While 

investigating the quality of the dataset through visual inspection, 113 of the 176 

(64.2%) structural MRI scans randomly selected from seven scanning centres were 

found to contain a gross artefact. While investigating whether there were enough 

high quality scans from the two scanning centres with the most subjects, Peking 

University and New York University Child Study Center, 37/60 (61.7%) and 72/72 

(100%) randomly selected structural MRI scans were found to contain gross artefacts 

respectively. The NeuroImage dataset was also investigated in full but contained 

gross artefacts in 26/48 (45.8%) of the structural MRI scans. Finally, as the Oregon 

Health and Science University dataset was found to contain the lowest ratio of poor 

quality structural MRI scans from the random multi-centre sample (2/17, 11.8%, 

excluding the Washington University sample as it only contained controls), the full 

dataset was investigated for gross artefacts. Of the individual scanning centres 

investigated in the consortium, the Oregon sample was found to have the lowest 

proportion of gross artefacts (33/79, 41.8%). Given better quality imaging data, it 

would be expected that the classifiers would be more likely to identify genuine 

differences in psychopathology leading to more accurate predictions. Instead, the 

predictions may have been based on artefactual differences or differing signal-to-

noise ratios between images.  

Of the childhood ADHD, MRI and MVPA studies which did not use the 

questionable ADHD-200 data set, there are two which classified using resting state 

fMRI, one using resting state fMRI functional connectivity and one which used 

structural MRI.  

Zhu et al. reported significant classification (accuracy - 85%, sensitivity – 

0.78, specificity – 0.91) of ADHD children/adolescents vs. controls using resting 

state fMRI (Zhu et al., 2008; 2005). Liang et al. (2012) achieved an 80% accuracy 

(sensitivity – 0.81, specificity – 0.79) when classification was based on functional 

connectivity from resting state fMRI data. 

The only study which predicted between ADHD vs. controls using structural 

MRI data (which was not part of the ADHD-200 data set) achieved an accuracy of 

79% (sensitivity 76%, specificity 83%) when using the grey matter component (Lim 

et al., 2013). The brain regions which were used to separate the groups included the 

caudate, ventral striatum/putamen, insula, brainstem, thalamus, hypothalamus, 
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precuneus/cuneus, hippocampus, amygdala, cerebellar vermis and inferior and 

superior parietal regions (Lim et al., 2013) – regions which have been previously 

reported in group level analyses. 

This study also attempted to provide evidence that the classifier was disorder-

specific by including a third group, which consisted of boys with ASD group. The 

study aimed to predict ADHD vs. non-ADHD (Controls and ASD groups combined), 

ADHD vs. ASD and a 3 class classification process which achieved balanced 

accuracies of 77.1%, 85.2% and 68.2% respectively (Lim et al., 2013). 

To date, there have been no published manuscripts that have attempted to 

classify using the white matter compartment from structural MRI images or event-

related fMRI from children and adolescents with ADHD. Furthermore, there have 

been no machine learning studies which have attempted to predict medication 

response, symptom severity, and clinical outcome and/or trajectory of illness severity 

over time in children with ADHD. These are clear gaps in the literature, which could 

potentially aid diagnosis, treatment and understanding of ADHD. 

In summary, the application of machine learning techniques to ADHD 

neuroimaging is still a developing field. These methods have a large range of 

applications, and have the potential to be far more informative than the more popular 

mass-univariate methods. The goal of machine learning research in ADHD is to 

develop these methods for the prediction of diagnosis, while potentially identifying 

reliable biomarkers of ADHD – increasing the understanding of the disorder, before 

attempting to predict more challenging issues such as the trajectory of the disorder or 

response to treatment (Bray et al., 2009). 

 

3.4 MDD MVPA Neuroimaging studies 

 

Machine learning studies that attempt to make predictions using neuroimaging data 

of adults with MDD are far more common in the literature than the corresponding 

literature on ADHD. Alongside popular diagnostic prediction, studies have attempted 

to predict symptom severity (Mwangi et al., 2012b) and treatment response (Fu et 

al., 2008; Gao et al., 2012). 

One study by Fang et al. (2012) attempted to predict MDD diagnosis using 

DTI and SVM. The study achieved a classification accuracy of 92% (sensitivity – 

86%, specificity – 96%, p < 0.0001) with increased connectivity in the depressed 
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group compared to controls in the cortical-limbic network and, to a lesser extent, the 

temporal-occipital network (including connections coming from regions such as the 

cingulate gyrus, insula, hippocampus, caudate, putamen, pallidum and thalamus) 

(Fang et al., 2012). Unfortunately, this high accuracy may have been obtained 

through overfitting as the method does not explain how it was decided that the 

kernel-width parameter should be set equal to three throughout the classification 

process. Despite this concern, the demonstration that DTI data can be used to predict 

MDD to such a high accuracy is very encouraging. This is the only paper to have 

predicted MDD diagnosis using anatomical connectivity, but the senior author in this 

study, Dewen Hu, has also appeared as the senior author of five out of the seven 

manuscripts which apply machine learning methods to MDD functional connectivity 

data – all but one of which have been published in the last two years. 

The first study to successfully develop a predictor enabling diagnosis of 

major depression using functional connectivity was performed by Craddock et al. 

(2009). In this study, a number of different feature selection methods were tested 

with classification accuracies ranging between 63% and 95%. Lord et al. (2012) also 

applied a feature selection method and SVM to functional connectivity data to 

distinguish unipolar depression from healthy controls. In this study, Lord et al. found 

that their approach could achieve almost perfect separation between the groups 

(above 99% classification accuracy). The most influential features which guided this 

classification included the putamen, thalamus and insula, among other regions (Lord 

et al., 2012).  

Using a different approach, Zeng et al. (2012) achieved a 94% classification 

accuracy when predicting between major depression and healthy controls using 

whole brain functional connectivity. Regions which were most relevant to the 

prediction included the amygdala, anterior cingulate cortex, parahippocampal gyrus 

and hippocampus. Ma et al. (2012) also performed a diagnostic classification of 

MDD using functional connectivity but with a focus on connections from the 

cerebellum, achieving an impressive accuracy of 91%. 

The final study which attempted to classify solely between MDD and healthy 

controls using functional connectivity is, perhaps, the most interesting, despite 

having a lower accuracy than some of the other studies. This is because Zeng et al. 

(2013) successfully applied an unsupervised machine learning technique to predict 

diagnosis, achieving a classification accuracy of 93%. As mentioned previously, the 
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majority of machine learning studies which are implemented in the literature are 

supervised techniques (when the class membership of subjects in the training set is 

known by the classifier) but unsupervised classification involves the identification of 

an underlying pattern in the data without any knowledge of class membership 

(Bishop, 2006; Orrù et al., 2012). This result is significant because successful 

unsupervised classification means that the prediction provides a more objective 

diagnosis from neuroimaging evidence rather than relying on potential biases from 

patients or clinicians. The unsupervised machine learning approach used maximum 

margin clustering (MMC) and was developed as a result of SVM. The key principle 

in SVM is to maximise the separation (margin) between the two classes, but MMC 

develops this principle by defining class membership by identifying the maximal 

margin between subjects in the training set (Zeng et al., 2013). 

Yu et al. (2013) performed a multiclass diagnostic prediction between major 

depression, schizophrenia and healthy controls. In this study they achieved 81% 

classification accuracy (84.2% for MDD patients, 81.3% for schizophrenic patients 

and 78.9% for healthy controls). Regions which showed abnormal connections in 

both schizophrenia and major depression compared to controls included the medial 

prefrontal cortex, anterior cingulate cortex, thalamus, hippocampus and cerebellum 

and the regions which differentiated the two disorders included the prefrontal cortex, 

amygdala and temporal poles (Yu et al., 2013). 

The final functional connectivity MDD MVPA study did not attempt to 

predict diagnosis, but rather prediction of recovery. In this study by Gao et al. 

(2012), three groups were involved in the classification process, medication-naïve 

patients with major depression, healthy controls and previously depressed patients 

who achieved clinical remission through treatment. The aim was to train a classifier 

to predict between the depressed group and the control group to investigate which 

class the remission group would be predominantly attributed to. When using no 

feature selection, the remitted group were predicted to be healthy controls in 14 out 

of the 16 subjects (88%), but all sixteen of the remitted group were predicted to be 

controls when feature selection was implemented as part of the process. 

Functional connectivity is an emerging field with a large number of 

approaches to preparing and analysing the data. The results when applying functional 

connectivity data to machine learning are very impressive, however these results 

require independent replication using an identical approach as the optimal 
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preprocessing techniques for functional connectivity remain actively debated (Lord 

et al., 2012). Biomarkers identified using functional connectivity measures may 

require additional evidence such as the identification of a structural abnormality 

biomarker to provide a more reliable clinical diagnosis of MDD (Zeng et al., 2012). 

The application of machine learning methods to task-based fMRI images is 

another active research area. The first study which applied machine learning using 

task-based fMRI to MDD was by Fu et al. (2008). The task focused on the 

identification of the intensity of sadness in male and female faces. Considering no 

feature selection was used, the diagnostic classification accuracy of 86% (sensitivity 

– 84%, specificity – 89%, p < 0.0001) is very impressive when the prediction was 

based on the lowest intensity of sadness stimuli, however this accuracy was the 

highest of the reported techniques which ranged from 53% to 86% accuracy (Fu et 

al., 2008). In addition to attempting to predict diagnosis of depression, Fu and 

colleagues also attempted to predict which depressed patients (all of whom were 

psychotropic medication free for at least 4 weeks at the time of recruiting) would 

respond after 8 weeks to the antidepressant medication fluoxetine. Given the small 

sample size of responders vs. non-responders, the authors acknowledged that this 

goal was less likely to succeed which, unfortunately, was shown to be the case as 

their best classifier was only able to correctly identify 75% of non/partial-responders 

and 62% of full responders (p = 0.11). The same (or similar) emotional processing 

fMRI paradigm (displaying a varying degree of happiness or sadness expressed on a 

face) has been used in a large proportion of fMRI machine learning studies in 

depression. 

Mourão-Miranda et al. attempted to distinguish three groups, bipolar 

disorder, unipolar depression and healthy controls using responses to happy and 

neutral faces (Mourão-Miranda et al., 2012a). However, the only significant 

classification was when using the mildly happy faces vs. neutral faces contrast to 

classify bipolar disorder vs. unipolar depression (accuracy = 67%, specificity = 72%, 

sensitivity = 61%, p = 0.02). They also investigated whether it would be possible to 

predict between the fMRI contrasts intensely happy faces vs. neutral faces contrasts 

and mildly happy faces vs. neutral faces contrasts for each diagnostic group. In the 

prediction of the intensely happy faces and neutral faces contrast, all diagnostic 

groups achieved a significant classification accuracy (BD = 61%, UD = 70% and 

controls = 81%) whereas in the classification of the mildly happy and neutral faces 
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contrast only the control group achieved an accuracy above chance (75%) (Mourão-

Miranda et al., 2012a). This shows that the activation pattern of the latter contrast 

does not have as strong a pattern in the patient groups, potentially leading to an 

indirect diagnosis. 

Another study which attempted to classify between unipolar depression and 

bipolar disorder using a similar emotional processing paradigm was able to achieve 

an accuracy of 90% in the unipolar vs. bipolar prediction when using a happy vs. 

neutral faces contrast (specificity = 90%, sensitivity = 90%, p = 0.003), however, as 

this study only included ten subjects in each group, it requires replication (Grotegerd 

et al., 2012). The classification accuracy was reduced when predicting using the 

sad/angry vs. neutral faces contrast and when both contrasts were entered into the 

SVM classifier together (respective accuracies of 75% and 80%). Interestingly, in 

addition to the reported SVM accuracies, Grotegerd and colleagues (2012) also 

implemented a Gaussian Processes Classifier, however, all the accuracies were lower 

than their corresponding SVM values. 

The fMRI response to neutral faces in depression has also been investigated 

(Oliveira et al., 2013). In this study the goal was to train two classifiers to predict 

between happy or sad faces vs. neutral faces using only healthy controls. Following 

training, a new sample of controls and a MDD group were tested on the classifier to 

test the hypotheses that the confidence of the classification in the depression group 

would be significantly lower than in the control group due to the patterns of brain 

activations to emotional and neutral faces differing in depressed patients. The healthy 

controls were predicted above chance for both emotional and neutral faces stimuli, 

but the depression group classification only achieved a significant accuracy when 

classification was based on the emotional faces activations and not the neutral faces 

(Oliveira et al., 2013). However, it is possible that this result may be due to a lack of 

a strong pattern in either healthy controls, or MDD patients, when presented with the 

neutral faces stimuli as the accuracy when predicting neutral faces was greatly 

reduced in both groups. In other words, it is possible that the results are obtained 

from a classifier that identified a pattern that was based predominantly on emotional 

faces rather than any distinct pattern of activation from neutral faces. 

An interesting MVPA method which may be able to handle data with a large 

imbalance in class membership (e.g. between a large group such as healthy controls 

and a smaller, more difficult to recruit/successfully scan group such as a patient 
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group), is the application of the one-class support vector machine (OC-SVM). As 

discussed in Chapter 2, a large class imbalance could lead to poorer results, therefore 

using a subset of the larger group to train a classifier of “normality” and testing 

whether or not each of the remaining subjects are outliers is a elegant solution. 

Mourão-Miranda et al. (2011) used this approach on emotional processing fMRI data 

in depressed patients vs. controls and correctly identified 79% of controls as non-

outliers but only managed to correctly identify 52% of patients as outliers. Despite 

this disappointing result, further analysis identified that 70% of patients classified as 

outliers did not respond to treatment and 89% of patients classified as non-outliers 

responded to treatment, revealing a potential approach to identify treatment response 

(Mourão-Miranda et al., 2011). 

Hahn et al. (2011) proposed that combining a multitude of fMRI contrasts 

from a few different paradigms into one classifier would improve diagnostic 

classification accuracy. The fMRI paradigms implemented involved passively 

viewing facial expressions, the same or similar paradigm that is used in almost all 

fMRI MVPA MDD studies in the literature, and a monetary incentive delay task. The 

highest accuracy obtained from a single fMRI condition was 72% (when a contrast 

describing the anticipation of no loss was used, the median accuracy for all 

conditions was 60%), however, when 3 of the 15 conditions were combined the 

accuracy increased to 83% (sensitivity – 80%, specificity – 87%). The three 

conditions which led to the highest accuracy were neutral facial expressions, actual 

large reward and anticipation of no loss (Hahn et al., 2011). 

The only fMRI study which did not employ the emotional processing 

paradigm in an MPVA MDD analysis was performed by Marquand et al. (2008). 

This study achieved 68% when diagnosing MDD vs. healthy controls using a 2-back 

condition during an n-back working memory task.  

Emotional valence has also been investigated with respect to the emotional 

processing paradigm (Habes et al., 2013). The study was able to accurately predict 

different valence discriminations (between positive, neutral and negative valence 

stimuli) in depression. 

Prediction to discriminate healthy adolescents who are genetically high or 

low risk of developing mood disorders has also been performed using the same 

passive viewing of facial expressions paradigm (Mourão-Miranda et al., 2012b). This 

study achieved variable results when classifying based on different stimuli ranging 
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from 38-75% classification accuracy. The most interesting part of this study, 

however, was the follow up analysis, to investigate which of the at-risk group 

developed mood disorders. Using their best classifier (neutral faces presented during 

the happy face experiment which achieved 75% accuracy), Mourão-Miranda et al. 

identified that of the four at-risk individuals that were “misclassified” as healthy 

controls, three remained healthy and one did not take part in the follow up, 

potentially revealing why these subjects were not identified as “at-risk”. 

Furthermore, the six participants in the at-risk group who developed either major 

depression or anxiety disorders (out of the thirteen that took part in the follow up as 

three withdrew after the initial scan) had significantly higher probabilities of group 

membership than the other at-risk adolescents who remained healthy at the follow-up 

(Mourão-Miranda et al., 2012b). 

Another application of the emotional processing task is to investigate whether 

it can facilitate a prediction of response to cognitive behavioural therapy (CBT) in 

depression (Costafreda et al., 2009b). When predictions were based on neutral or the 

highest intensity of sad faces, the machine learning approach could distinguish 

responders and non-responders to CBT with 71% sensitivity and 86% specificity (p = 

0.029), however, when the medium intensity of sadness images were used, the 

accuracy dropped such that the sensitivity was 57% and the specificity 43% 

(Costafreda et al., 2009b). 

With one exception, all of the studies in fMRI machine learning applied in 

mood disorders have used an emotional processing fMRI paradigm. In the study 

which attempted to combine results from fMRI paradigms, it was found that 

receiving a large reward and the anticipation of avoiding a loss were very relevant to 

distinguishing depression from healthy controls. Therefore, the application of a 

reward and aversive events paradigm that was used and reported later in this thesis, is 

very relevant, yet relatively novel, to the literature. In addition, the studies outlined 

above tend to have very small sample sizes (typically less than twenty per group), 

which means that the group sizes analysed in this thesis are actually larger or 

equivalent to the majority of those in this field. 

Structural MRI is typically the most common imaging modality to be applied 

to machine learning methods due to the higher resolution, higher signal-to-noise ratio 

and easier interpretation of the results, in comparison to event-related fMRI. Machine 

learning studies are particularly interesting in neuroimaging when a study is able to 
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link strong classification accuracies back to the underlying biology. However, many 

machine learning studies have a primary goal to test a number of different classifiers 

or feature selection techniques rather than to discuss the results in the context of the 

groups being classified. One such study by Kipli et al. (2013) tests four different 

feature selection techniques on four different machine learning methods by 

attempting to classify structural MRI images (in particular, information extracted 

from structural MRI, e.g. volumes of various structures) of depressed individuals and 

healthy controls. The author suggests that the Information Gain algorithm 

outperforms OneR, SVM (using RFE) and ReliefF feature selection methods as it 

achieved the highest average accuracy (72%) when applied to four different 

classfiers (Kipli et al., 2013). A concern in this study, however, is that 77% (88/115) 

of subjects in this study belonged to the control group. Since the sensitivity and 

specificity of these results are not disclosed, it is unclear if the large class imbalance 

is an issue. Another study which focused more on various results from feature 

selection rather than the neurobiology, attempted to predict diagnosis between 

bipolar disorder and healthy controls, achieving accuracies ranging between 60-90% 

(Termenon et al., 2013). 

Single centre studies are encouraging, but one of the next developments is to 

implement machine learning based diagnosis in data from multiple scanners. This 

has been achieved by Mwangi et al. (2012a) when they successfully classified 

structural MRI scans of people with depression and healthy controls obtained from 

two scanning centres. Mwangi and colleagues (2012a) implemented both an SVM 

and RVM approach with the latter achieving a slightly higher classification accuracy 

(90%). In this study, grey matter reductions were identified in MDD compared to 

controls in the dorsolateral prefrontal cortex, medial frontal cortex, orbitofrontal 

cortex, temporal lobe, insula, cerebellum and posterior lobe – consistent with the 

literature from group-level VBM analyses. In addition, Mwangi et al. identified that 

the weights extracted for each subject during both the SVM and, to a lesser extent, 

the RVM classification correlated strongly with MDD severity scores (Mwangi et al., 

2012a). 

As well as identifying an approach to indirectly predict symptom severity 

scores, Mwangi et al. also used RVR to predict illness severity directly (Mwangi et 

al., 2012b). In this study, they found that it was possible to significantly predict the 

BDI scores from the whole-brain structural MRI scans but not the Hamilton Rating 
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Scale for Depression (HAM-D) (Mwangi et al., 2012b). As the BDI is a self-

administered rating scale and the HAM-D is performed through a semi-structured 

interview with the patient by a trained observer, this study raised an interesting 

question as to which score best reflects the underlying neurobiology of the symptoms 

of MDD. 

As well as predicting diagnosis of depression, Costafreda et al. (2009a) also 

attempted to predict response to either antidepressant medication (fluoxetine), or to 

cognitive behavioural therapy (CBT). The classification of response to antidepressant 

medication managed an impressive accuracy of 89% (sensitivity = 89%, specificity = 

89%, p =0.01) while the diagnostic classification achieved a lower accuracy of 68% 

(sensitivity = 65%, specificity = 70%, p =0.027). The prediction of response to CBT 

was not significant. 

The brain regions driving the prognostic classification included increased 

grey matter in the right rostral anterior cingulated cortex (BA 32), left posterior 

cingulate cortex (BA 31), left middle frontal gyrus (BA 6), and right occipital cortex 

(BA 19) in recovered patients and decreased regions in the orbitofrontal cortices 

bilaterally (BA 11), right superior frontal cortex (BA 10) and left hippocampus 

(Costafreda et al., 2009a). 

Another study that attempted to predict treatment response between 

treatment-resistant depression (TRD), treatment-sensitive depression (TSD) and 

healthy controls, using both grey and white matter images separated the diagnostic 

classification into two separate predictions: responders vs. controls and non-

responders vs. controls (Liu et al., 2012). Separating the responders’ and non-

responders’ diagnostic predictions improved the classification accuracies compared 

to Costafreda et al. (2009a). The predictions for TSD vs. controls achieved 82% 

accuracy using grey matter and 91% accuracy using white matter and for TRD vs. 

controls achieved 86% for both grey and white matter (Liu et al., 2012). When 

predicting treatment response, Liu et al. also managed to achieve 83% when using 

either grey or white matter images (2012). 

In a similar, but larger study, Gong et al. (2011) attempted to predict between 

non-refractory depressive disorder (NDD – responders to antidepressant treatment) 

vs. controls, refractory depressive disorder (RDD – non-responders to antidepressant 

treatment) vs. controls and NDD vs. RDD, using both grey and white matter 

structural MRI. The patient groups had no previous psychiatric treatment, including 
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receiving no antidepressant treatment, prior to scanning. The NDD and RDD vs. 

controls predictions yielded accuracies of 76% and 67% respectively using grey 

matter images and 85% and 59% respectively using white matter images (Gong et 

al., 2011). Counter intuitively, in these results, responders are easier to differentiate 

from controls than non-responders to antidepressant medication. The NDD vs. RDD 

classification yielded an accuracy of 70% using grey matter (specificity = 70%, 

sensitivity = 70%, p = 0.006) and 65% using white matter (specificity = 74%, 

sensitivity = 57%, p = 0.02). Combining the grey and white matter images did not 

improve accuracy more than classifying on grey matter alone. Despite this study 

having more subjects, the classification accuracy was reduced compared to the other 

two MDD prognostic prediction studies using structural MRI. 

There are two studies that have attempted multimodal classifications, both 

combining structural MRI and another imaging modality to classify MDD from 

healthy controls. The first of these studies combined structural MRI with proton 

magnetic resonance spectroscopy, managing to separate the females with MDD and 

the female controls with perfect accuracy (Floares et al., 2006). The second, involved 

testing a new classification approach, transductive conformal predictor (TCP), on 

data from earlier studies (Costafreda et al., 2009a; Fu et al., 2008; Nouretdinov et al., 

2011). The goal of this study was to repeat the diagnostic prediction using fMRI data 

(emotional processing task) and the prognostic prediction using structural MRI data 

(response after 8 weeks on anti-depressant medication) using TCP. Nouretdinov et 

al. found that their results were comparable with the methods used in previous 

studies (Costafreda et al., 2009a; Fu et al., 2008; Nouretdinov et al., 2011) yet the 

method provides a few advantages such as providing a measure of confidence for 

each prediction and the ability to handle multi-class predictions. 

Machine learning studies in MDD are far more common than in the child and 

adolescent psychiatry literature. The confidence to apply machine learning methods 

to increasingly difficult problems has shown that it is possible to predict relevant 

information such as treatment response and symptom severity. However, there are 

still a lot of gaps in the literature that remain and a lot of replication is required to 

increase confidence in these techniques further. A clear gap in the literature is the 

application of machine learning to fMRI paradigms other than those related to 

emotional processing, as only Hahn et al. and Marquand et al. have applied machine 

learning methods to fMRI data outwith this paradigm for MDD (Hahn et al., 2011; 
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Marquand et al., 2008). Furthermore, there has been no investigation into how one 

imaging modality relates to another (e.g. how the structural deficits reported in MDD 

influences the fMRI patterns of activation and deactivation). The work outlined in 

this thesis either describes work that is – to date - missing in the literature, or 

provides independent replication of prior studies in order to increase confidence in 

these methods. 

 

3.5 Summary 

 

Significantly high accuracies of individual diagnostic classification have been 

reported for both adult and younger populations, specifically MDD and ADHD. 

These studies have the potential to identify biomarkers and elucidate the mechanisms 

of psychiatric disorders. However, the results require independent replication in 

larger samples, and potentially in a multi-centre study, before it can be considered for 

any clinical applications.  

Furthermore, the application of pattern recognition techniques to clinically 

relevant questions, such as the prediction of outcome of disorders and prediction of 

treatment response, are very promising in the MDD neuroimaging literature. 

However, to the author’s knowledge, there are currently no ADHD studies that have 

reported similarly high accuracies in the prediction of treatment outcome, or 

syndrome outcome. Successful and reliable application of these techniques to ADHD 

populations could allow pattern recognition techniques to have a major role in future 

clinical practice. 

The key areas for future development include performing multi-class 

predictions (e.g. develop a classifier to be able to predict between ADHD, Autism 

Spectrum Disorder and healthy controls), an increase in the robustness of the 

machine learning methods, working with larger datasets to investigate particularly 

heterogeneous disorders and a process to highlight less certain predictions by 

including a probabilistic measure of confidence in the prediction (Klöppel et al., 

2012). 

Finally, it is important to emphasise that machine learning is an active 

research area in itself so methods are currently in development and being tested. 

These methods do not guarantee good results and it takes some time to develop an 

understanding of the various pitfalls involved in this research field. Failure to 
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appreciate the complexity of machine learning could lead to either falsely enhanced 

prediction or poor classifier performance. However, when applied correctly, these 

methods compliment neuroimaging studies perfectly as they can combine to create a 

multivariate insight into brain structure, function and connectivity. 
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Chapter 4: Predicting Methylphenidate Treatment 

Response in Drug-Naïve Boys with ADHD. 

 

4.1 Introduction 

 

Methylphenidate (MPH) is the most commonly prescribed stimulant medication for 

ADHD. Whilst ~70% of children will respond to and tolerate MPH, 30% do not 

(Humphrey, 1992).  

Denney and Rapport (1999) evaluated models designed to predict MPH 

response. None of the MPH response prediction studies they investigated could be 

replicated. Denney and Rapport proposed that a comprehensive model of MPH 

response must include both a biological and a behavioural component (Denney and 

Rapport, 1999). 

Coghill et al. (2007) investigated whether there was a correlation between 

clinical response to MPH and neuropsychological measures, and found that poor 

performance in the Delayed Matching to Sample (DMtS) task was the only predictor 

of response at baseline.  

The present study aimed to predict MPH response using a multivariate 

approach on a subset of the data identified by Coghill et al. (2007) as being the most 

relevant to medication response. The identification of this subset was through a 

principal components analysis which was not performed by the author and is 

discussed in more detail elsewhere (Coghill et al., 2007). Treatment response was 

determined using the method of Jacobson and Truax (Jacobson and Truax, 1991). 

Using this method, both “clinically significant change” and “reliable change” are 

required as criteria to determine full response. Following treatment, if the patients’ 

post-treatment severity scores move toward the controls’ scores, beyond a specified 

threshold (defined using pre-treatment severity scores for patients and controls) then 

the subject has achieved clinically significant change. Reliable change is a measure 

of how much each subjects’ scores changed during treatment and is calculated by 

dividing the difference between the pre-treatment and post-treatment scores by the 

standard error of difference between the two scores. Subjects who experienced 

significant adverse side-effects – irrespective of symptom changes – that caused the 

treatment to be stopped were also classed as non-responders. 
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4.2 Methods 

 

4.2.1 Subjects 

 

Of the 75 boys with ADHD included in Coghill et al. (2007), thirty-two were 

excluded, either due to incomplete data, or to ensure there were no significant 

differences in age or verbal IQ (estimated using the British Picture Vocabulary Scale 

(BPVS)) between the group of responders and group of non-responders. Of the 43 

boys with ADHD included in the present study, 30 were classed as responders (i.e. 

showing both “clinically significant change” and “reliable change”) and 13 were 

classed as non-responders to MPH. The neuropsychological tasks included several 

tasks from CANTAB (Cambridge Neuropsychological Test Automated Battery) and 

a separate computerised Go/NoGo task. 

Thirteen variables were included in the analysis: three demographic variables, 

three clinical variables and seven neuropsychological test scores. The demographic 

variables included were the BPVS percentile rank, decimal age, and deprivation 

(SIMD) score (an estimation of the socioeconomic background). The three clinical 

variables of interest included were the presence of comorbid oppositional defiant 

disorder or conduct disorder and the t-score baseline Parents ADHD Conners’ 

questionnaire. Finally, four neuropsychological task scores were taken from a 

Go/NoGo task and three from the CANTAB Visual Memory Battery (Pattern 

recognition, Spatial recognition, and DMtS total percent correct z scores
*
). These 

thirteen variables were a subset of the total number of variables and were identified 

by Coghill et al. (2007) using principal component analysis to be variables which 

would most likely distinguish responders to MPH from non-responders. 

The Go/NoGo task involved subjects being presented with a sequence of 

letters and numbers on the screen. The ‘type 1’ block corresponds to a ‘switch’ trials 

where subjects were required to withhold response when the stimulus has changed 

from letters to numbers, or vice-versa. The ‘type 2’ block corresponds to ‘non-

switch’ trials where the subjects were required to withhold response when a letter is 

presented if the previous stimulus was a letter and likewise for numbers. For both 

‘type 1’ and ‘type 2’, the output variables are the ‘mean number of errors for 

distractors’ (ERD), a measure of the average number of times the subject responded 

                                                 
*
 adjusted for age and BPVS 
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when they were required to inhibit their response, and the ‘reaction times to target 

stimuli’ (RTT), a measure of the reaction time when a correct response (key press) 

was required. Four variables were extracted from the Go/NoGo task: Go/NoGo - type 

1 RTT and ERD and Go/NoGo - type 2 RTT and ERD. The Visual Memory Battery 

tests the ability to recognise a previously presented abstract pattern in a forced choice 

procedure for the pattern recognition task, the ability to recognise the spatial 

locations of target stimuli for the spatial recognition task, and the ability to remember 

the visual features of a complex, abstract, target stimulus and to select from a choice 

of four patterns after a variable delay in the DMtS task (Coghill et al., 2007). All the 

variables above are described in more detail by Coghill et al. (2007).  

 

4.2.2 Variable preparation 

 

As a first step, the variables were normalised to reduce errors due to scaling. All 

scores were brought within the range 0-1 by simply subtracting the minimum value 

and dividing by the variance (maximum – minimum value). This ensured that the 

analysis selected variables based on their predictive value, rather than variability or 

magnitude.  

 

4.2.3 Discriminant Analysis 

 

Discriminant analysis was first conducted using IBM SPSS Statistics for Windows 

(v19). An automated variable selection method was used for the discriminant 

analysis. Variables were ranked in the order of the amount they lowered Wilks’ 

lambda (a statistical test which reflects the importance of a variable, smaller Wilks’ 

lambda values reflect greater importance to classification). The variable which 

lowered lambda the most was iteratively included with the variables used in the 

classification with the termination criterion that variable selection stops when the 

significance calculated using an F-test is less than p<0.05. 

 

4.2.4 Individual Scan Classification 

 

To attempt to classify responders and non-responders to MPH on individual subjects, 

a linear SVM (Vapnik, 1995; Vapnik, 1998) was explored. To avoid double dipping 
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(defined in Chapter 2), standard LOOCV was used, with a second (inner) leave-one-

out loop used for parameter selection. 

To improve prediction accuracy it is common to use feature selection 

methods to highlight the variables that contribute the most to the prediction (Mwangi 

et al., 2013). The feature selection technique used here was a “mean-thresholding” 

technique – a simple method created by the author.  

As described in Chapter 2, the mean-thresholding technique involves ranking 

the variables in order of the magnitude of the difference between the mean group 

values within each outer ‘leave-one-out’ loop (excluding the left out subject to avoid 

double dipping). As the number of variables was relatively small, the mean-

thresholding method was altered such that the lowest ranked variable was removed 

from the analysis and the classification was repeated with the reduced number of 

variables (in the inner ‘leave-one-out’ loop). The subsequent lowest ranked variable 

from the following classification was again removed and the process was repeated 

until there was one variable remaining. Therefore, rather than optimising an arbitrary 

threshold, as is necessary in the standard mean-thresholding method due to the 

typically large number of variables (voxels) in an imaging analysis, this approach 

optimised the number of variables required to classify the data. The classification 

accuracy, sensitivity and specificity were calculated during each of the iterations. 

To avoid the class imbalance problem (introduced in Chapter 2), the 

combination of variables/iteration which achieved the highest sensitivity (more 

accurately classifying those in the group with the fewest subjects – the non-

responders) were then selected for training and testing the SVM on the left out 

subject in the outer ‘leave-one-out’ loop. If two or more iterations obtained identical 

maximum sensitivity values then the accuracy was used as a secondary selection 

parameter. Therefore, as variable selection took place in each ‘leave-one-out’ loop, it 

is possible a different combination of variables could be selected for each individual 

prediction. A flowchart representation of the method is shown in Figure 5 and Figure 

6. 
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Figure 5: A flowchart of the SVM prediction technique. 
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Figure 6: A flowchart of the variable and parameter selection stage in Figure 5. 
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4.2.5 Euclidean Distance from the SVM Hyperplane Investigation 

 

To investigate whether the incorrectly classified subjects were closer to the linear 

hyperplane (in other words, close to being correctly classified) than the correctly 

classified subjects, the author created a function which calculated the shortest 

distance (the Euclidean distance) between the subject being classified and the 

hyperplane (which was tuned using the training set during cross-validation). The 

Euclidean distance was calculated by first identifying the vector normal to the 

hyperplane. As the SVM algorithm outputs the distance between the subject and the 

interception of the plane in the y-direction, the Euclidean distance was calculated 

using the SVM output, the vector normal to the hyperplane and standard 

trigonometric equations.  

 

4.3 Results 

 

4.3.1 Participant Characteristics 

 

Age and verbal IQ did not differ significantly (t-test, p>0.1). The MPH responder 

group mean age was 11.2 years (standard deviation 2.4) mean IQ was 40.3 (standard 

deviation 30.6). The MPH non-responder group mean age was 11.3 years (standard 

deviation 3.0) and the mean IQ 32.2 (standard deviation 28.8). There were no 

significant differences in task performance between groups. These results are 

outlined in Table 1. 

 

4.3.2 Discriminant Analysis 

 

The only variables which were selected during the discriminant analysis were the 

presence of conduct disorder and Go/NoGo - type 1 ERD. Using these two variables, 

the classification accuracy achieved was 67.4% (sensitivity = 0.69, specificity = 0.67, 

χ
2
 = 4.7, p = 0.03). The contrast matrix is displayed below: 



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
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Table 1: Clinical descriptors for responders and non-responders to MPH. Variables 

are shown as mean (standard deviation).  *chi-square test with other tests being t-

tests. 

 

 Responders 

(N=30) 

Non-responders 

(N=13) 

 

BPVS Percentile rank 40.27 (30.58) 32.15 (28.84) n.s. 

decimal age 11.19 (2.39) 11.26 (2.99) n.s. 

diagnosis of oppositional defiant 

disorder* 

21/30 9/13 n.s. 

diagnosis of conduct disorder* 14/30 2/13 n.s. 

deprivation score 4.27 (1.72) 4.08 (1.32) n.s. 

t-score baseline Parents ADHD 

Conners 

78.07 (4.25) 80.08 (4.03) n.s. 

Go/NoGo - type 1 RTT 441.61 (91.85) 504.37 (108.07) n.s. 

Go/NoGo - type 2 RTT 457.48  (70.20) 497.13 (116.15) n.s. 

Go/NoGo - type 1 ERD 2.85 (1.54) 1.92 (1.50) n.s. 

Go/NoGo - type 2 ERD 2.63 (1.81) 1.85 (1.49) n.s. 

Pattern recognition z score
*
 -1.12 (1.66) -0.56 (1.48) n.s. 

Spatial recognition z score
*
 -0.97 (0.89) -0.55 (1.17) n.s. 

DMtS total percent correct z 

score
*
 

-1.07 (1.23) -0.66 (0.96) n.s. 

 

                                                 
*
 adjusted for age and BPVS 

*
 adjusted for age and BPVS 

*
 adjusted for age and BPVS 
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4.3.3 Individual Subject SVM Predictions 

 

When no feature selection was used, this method achieved a marginally improved 

(compared with the discriminant analysis) predictive accuracy of 69.8% (sensitivity 

= 0.46, specificity = 0.8, χ
2
 = 3.1, p = 0.08). However, due to poor sensitivity the 

classification was not significant. The reason that sensitivity was lower than expected 

may be due to the class imbalance problem (Theodoridis and Koutroumbas, 2006). 

The contrast matrix (below) shows that classification accuracy in the non-responder 

group (given the label ‘-1’) was poor as only six out of thirteen subjects were 

correctly identified as non-responders: 












246

76

1

1

11

Actual

redictedP  

Combining feature selection and a linear SVM approach improved the 

accuracy to 76.7% (sensitivity = 0.54, specificity = 0.87, χ
2
 = 7.8, p = 0.005). 











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67

1

1

11

Actual

redictedP  

Presence of conduct disorder and Go/NoGo - type 1 ERD were the only 

variables which were selected in all of the cross-validation predictions (the same two 

variables selected during the discriminant analysis), although Go/NoGo - type 1 RTT 

was also selected in a high proportion of predictions (38/43 subjects). On average, 4 

variables were used in each prediction. The variables which were never selected 

(using the feature selection method) for predictions were decimal age, presence of 

oppositional defiant disorder, deprivation score and, interestingly, DMtS total 

percent correct z score
*
 which was previously highlighted by Coghill at al (2007) as 

the only neuropsychological predictor of clinical response at baseline. The number of 

times each variable was used in each ‘leave-one-out’ prediction (which variables 

were most relevant when distinguishing responders from non-responders) is 

highlighted in Table 2. 

                                                 
*
 adjusted for age and BPVS 
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Table 2: Frequency of variable selection in leave-one-out method. 

 Frequency of variable 

selection 

Percentage of leave-one-out 

loops variable selected 

BPVS Percentile rank 2 0.05 

decimal age 0 0 

presence of oppositional 

defiant disorder 

0 0 

presence of conduct disorder 43 1 

deprivation score 0 0 

t-score baseline Parents 

ADHD Conners 

24 0.56 

Go/NoGo - type 1 RTT 38 0.88 

Go/NoGo - type 2 RTT 2 0.05 

Go/NoGo - type 1 ERD 43 1 

Go/NoGo - type 2 ERD 9 0.21 

Pattern recognition z score
*
 12 0.28 

Spatial recognition z score
*
 1 0.02 

DMtS total percent correct z 

score
*
 

0 0 

 

                                                 
*
 adjusted for age and BPVS 

*
 adjusted for age and BPVS 

*
 adjusted for age and BPVS 
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4.3.4 Euclidean Distance from the SVM Hyperplane Investigation 

 

The results are shown pictorially in Figure 7, with the correctly classified and two 

types of incorrectly classified results separated on the y-axis. Subjects that were 

correctly classified were given the value zero, false positives (whereby non-

responders were predicted to be responders) were given the value 1 and false 

negatives (whereby responders were predicted to be non-responders) were given the 

value -1. These results are also displayed on a histogram in Figure 8, with the 

incorrectly classified subjects shown in green and the correctly classified subjects 

shown in blue. 
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Figure 7: Individual subject’s Euclidean distance from the linear hyperplane in the 

classification which achieved 76.7%. If the y-value = 0 the subject was correctly 

classified, if the y-value = 1 the subject was a non-responder who was predicted to be 

a responder (false positive) and if the y-value = -1 the subject was a responder who 

was predicted to be a non-responder (false negative). 
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Figure 8: Histogram of individual subject’s Euclidean distance from the linear 

hyperplane in the classification which achieved 76.7%. The blue bars show the 

correctly classified subjects and the green bars show the incorrectly classified 

subjects. 
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As this investigation is attempting to determine whether incorrectly classified 

subjects are located close to the hyperplane, the class labels of responder and non-

responder are not directly relevant – the important labels are correctly or incorrectly 

classified and the absolute Euclidean distance. Therefore the responders and non-

responders groups can be combined by taking the absolute value of the Euclidean 

distances. This means the number of datasets is larger and also the difference in 

group sizes between responders and non-responders is no longer an issue. Figure 9 

shows the histogram of the absolute Euclidean distance for the correctly and 

incorrectly classified subjects. Other than what appears to be an outlier in the 

incorrectly classified group, all incorrectly classified subjects are relatively close to 

the hyperplane whereas the correctly classified subjects tend to have a higher 

proportion of subjects further from the hyperplane. This is emphasised in Figure 10 

which shows the ratios of the correctly (blue line) and incorrectly (green line) 

classified subjects to total subjects within each of the histogram bins shown in Figure 

9. As the classification accuracy was 76.7% it is unsurprising that there is a higher 

ratio of correctly classified subjects than incorrectly classified subjects throughout, 

however, the difference between the ratios (as shown by the dashed magenta line) 

shows that there is a clear peak in the difference further away from the hyperplane, 

which only decreases due to the one incorrectly classified subject that is a suspected 

outlier due to its large Euclidean distance from the hyperplane. Given that all the 

other incorrectly classified subjects are clustered around the hyperplane and the 

correctly classified subjects have a higher ratio of subjects with high Euclidean 

distances from the hyperplane, it gives support to the idea that the Euclidean distance 

from the hyperplane could be used as a measure of the confidence of a classification. 

To investigate this idea further, the results would require replication in a larger 

dataset and also the approach used to calculate the Euclidean distance would need to 

be modified to be able to apply it to non-linear kernels. 
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Figure 9: Histogram displaying individual subject’s absolute Euclidean distance from 

the linear hyperplane in the classification that achieved 76.7%. The blue bars show 

the correctly classified subjects and the green bars show the incorrectly classified 

subjects. 
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Figure 10: A plot of the ratio of correctly (blue) and incorrectly (green) classified 

subjects to total number of subjects within the histogram bins displayed in Figure 9. 

The dashed magenta line shows the difference between the ratio of correctly 

classified subjects (blue) and the ratio of incorrectly classified subjects (green). 
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4.4 Discussion 

 

Variables which were not selected during classification are not necessarily without 

predictive value. For example, if variables are strongly correlated then some may be 

removed during feature selection, as multiple variables containing similar 

information do not improve classification (Guyon and Elisseeff, 2003). An 

uncorrelated set of variables is best for multivariate analyses. For example, the type 1 

Go/NoGo task was selected more often in the prediction of MPH response than the 

type 2 Go/NoGo task. As 9/13 of the variables failed the Shapiro-Wilk test for 

normality, which is required for parametric statistical testing (e.g. Pearson’s 

coefficient of correlation), a non-parametric Spearman’s rank-order (Spearman’s rho) 

correlation analysis was performed. This revealed that the RTT and the ERD scores 

from each of the two types of Go/NoGo task were significantly correlated with the 

corresponding variable in the other task type (RTT: ρ = 0.76, p<<0.001, ERD: ρ = 

0.78, p<<0.001). Therefore the selective inclusion of type 1 tasks is most likely due 

to the strong correlation between these variables. Similarly, the unexpected omission 

of the DMtS score may be explained by the strong and significant correlations with 

the Parents ADHD Conners’ (ρ = 0.44, p = 0.004) and pattern recognition (ρ = 0.35, 

p = 0.023) scores.  

Achieving a highly significant prediction of 77% for MPH response is an 

encouraging step towards a reliable method which could allow children to avoid a 

trial of medication which would prove to be ineffective, as defined by the Jacobson-

Truax method, or cause significant side-effects. However, it should be noted that the 

Jacobson-Truax criteria may be considered too stringent when describing clinical 

response. Further investigation is required in order to determine the boundary 

between response and non-response to treatment. The link between the Euclidean 

distance from the hyperplane and confidence of classification also merits further 

investigation. Nevertheless, if more sociodemographic, clinical and 

neuropsychological measures were available it may be possible to increase 

classification accuracy further. It is more likely, however, that further improvement 

could be obtained by combining the best sociodemographic, clinical and 

neuropsychological measures with genetic and/or neuroimaging data, as suggested 

by Denney and Rapport (1999). 
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Chapter 5: ADHD diagnostic classification using structural 

MRI data 

 

5.1 Introduction 

 

Being able to classify ADHD patients vs. healthy controls using MRI scans would be 

extremely valuable because, at present, diagnosis remains an entirely subjective 

clinical discipline, as there are no reliable biomarkers of ADHD to aid clinical 

practice. The brain regions that consistently differ between groups can point to 

biomarkers of the disorder and potentially elucidate the mechanisms behind ADHD. 

The main pharmacological treatment for ADHD is MPH, although many 

other medications exist such as dextroamphetamine and atomoxetine. All of these 

medications act to increase the release of the chemicals dopamine and noradrenaline. 

The dopaminergic and noradrenergic systems are commonly reported to be abnormal 

in ADHD (Del Campo et al., 2011). The dopamine system is most commonly found 

to be abnormal, and the dopamine rich basal ganglia is consistently identified to have 

decreased volume in children with ADHD (Ellison-Wright et al., 2008; Frodl and 

Skokauskas, 2012; Nakao et al., 2011). The basal ganglia have also been reported to 

be abnormal in adult ADHD as Volkow et al. found reduced dopamine release and 

reduced D2 receptors in the caudate (Volkow et al., 2007b) and ventral striatum 

(Volkow et al., 2007a). Although the therapeutic mechanisms of the medications 

used to treat ADHD are not yet fully understood, it has been postulated that they 

improve behavioural and cognitive abnormalities by correcting for an underlying 

hypo-dopaminergic disorder (Del Campo et al., 2011).  

In addition to the more frequently reported and studied dopamine 

abnormalities, potential abnormalities of the noradrenaline system have been 

investigated (Arnsten, 1998; Arnsten et al., 1996; Del Campo et al., 2011; Levy and 

Swanson, 2001). Noradrenergic cell bodies are primarily located in the brainstem 

locus coeruleus and send axonal projections to the prefrontal cortices, supporting 

cognitive functions (e.g. response inhibition, working memory) aspects of 

neuropsychological functioning which are regularly reported as abnormal in ADHD 

(Arnsten and Li, 2005; Del Campo et al., 2011; Seidman et al., 2005). For example, 

the fact that a popular treatment, atomoxetine, is a selective blocker of the 

noradrenaline transporter emphasises that noradrenaline dysfunction may be a key 
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component of ADHD (Chamberlain et al., 2006), however, to date, there have been 

no imaging studies of the noradrenaline system in ADHD. It is feasible that 

atomoxetine-increased noradrenaline function works by correcting a hypo-

noradrenergic abnormality, in addition to the suggested hypo-dopaminergic disorder. 

The main noradrenergic nuclei and some of the main dopaminergic nuclei are 

contained within the brainstem. As above, dopamine and noradrenaline abnormalities 

have been reported to be abnormal yet no neuroimaging studies have investigated 

whether brainstem abnormalities are present in ADHD without comorbidity. One 

study that investigated children with both epilepsy and ADHD reported a brainstem 

volume reduction compared to both epilepsy alone and healthy controls (Hermann et 

al., 2007). The lack of anatomical brainstem studies in ADHD can be explained by 

the fact that the brainstem is a difficult brain region to image and analyse and it has 

been suggested that it requires specialised methods (Diedrichsen, 2006; Diedrichsen 

et al., 2009). A recent study by Lim et al. (2013) identified the grey matter within the 

brainstem as a significant region when distinguishing children and adolescents with 

ADHD from healthy controls but this was closer to the midbrain than the 

dopaminergic and noradrenegic nuclei in the brainstem. 

As mentioned in Chapter 2, the sophisticated image processing algorithm, 

DARTEL, has been developed recently. It has been suggested that DARTEL 

provides more accurate whole brain normalisation than standard VBM when pre-

processing whole brain structure.  A study has compared an atlas created using 

DARTEL against the SUIT atlas (a spatially unbiased, high-resolution atlas template 

of the human cerebellum and brainstem) (D'Agata et al., 2011). In this manuscript 

the authors state that the DARTEL-created atlas performs equally well when 

compared with the specialist cerebellum and brainstem atlas. Notably, the SUIT atlas 

has recently been updated using DARTEL 

(http://www.icn.ucl.ac.uk/motorcontrol/imaging/suit.htm), adding support to the 

accuracy of this method in the brainstem.  

The majority of structural brain imaging studies use conventional VBM or 

volumetric analyses, which test for hypothesised group level (e.g. ADHD vs. control) 

structural and functional brain abnormalities. However, whilst these differences may 

be reasonably reproducible at a group level, they are subtle and inter-individual 

variation is substantial, therefore they cannot address how specific any abnormalities 

are for individual patients. Consequently, it has long been established that it is not 

http://www.icn.ucl.ac.uk/motorcontrol/imaging/suit.htm


 - 72 - 

possible to use traditional radiological (qualitative) categorisation of individual scans 

as an aid to diagnosis of these disorders. These limitations lead naturally toward the 

introduction of new methods, such as combining machine learning techniques with 

automated selection of informative brain regions through feature selection, to train 

diagnostic classifiers.  These methods have been reported to make highly accurate 

predictions in adults with Major Depression (Mwangi et al., 2012a), Alzheimer’s 

Disease (Klöppel et al., 2008) and Autism Spectrum Disorder (Ecker et al., 2010a). 

The only study to date (excluding studies which used the ADHD-200 dataset due to 

the data quality concerns, discussed in Chapter 3) which has managed to apply 

machine learning methods to childhood ADHD structural MRI data was published 

recently (Lim et al., 2013). In this study, the grey matter component of structural MR 

images of children and adolescents with ADHD, ASD and healthy controls were 

successfully classified (79% accuracy when predicting between ADHD vs. controls). 

The study did not investigate the white matter differences, which may have improved 

the classification accuracy further.  

At a group level, there are now extensive data that indicate subtle differences 

in brain structure between subjects with ADHD and typically developing controls. 

Total brain volume has been reported as ‘slightly but significantly smaller’ (Kelly et 

al., 2007; Seidman et al., 2005). A number of studies have investigated the dopamine 

rich basal ganglia in ADHD and several meta-analyses reported reduction in the 

volume of the putamen, caudate and pallidum in ADHD (Ellison-Wright et al., 2008; 

Frodl and Skokauskas, 2012; Nakao et al., 2011). Interestingly, Castellanos et al. 

(2002) reported that the caudate abnormality may normalise as a child matures 

towards adulthood, which may be clinically relevant, as the caudate is associated 

with motor activity and there is often a relative reduction in hyperactivity later in 

development. 

The other major brain region that is often assumed to play a prominent role in 

the development of ADHD is the prefrontal cortex (PFC). Again, reductions in 

volume have been described for the PFC (Seidman et al., 2005). More recently, 

evidence for significant reductions in volume in other regions have been described 

including the vermis of the cerebellum (Berquin et al., 1998; Bussing et al., 2002; 

Castellanos et al., 1996; Hill et al., 2003; Mostofsky et al., 1998), and the temporal, 

parietal and occipital lobes (Castellanos et al., 1996). Each of these regions are 

associated with important neuropsychological functions which have been reported to 
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be compromised in many individuals with ADHD (Coghill et al., 2005). Amygdala 

volume has been reported to show no abnormalities (Castellanos et al., 1996; Filipek 

et al., 1997) but more recently a decrease in volume (Plessen et al., 2006). Regions 

which had been studied previously but not found to exhibit significant abnormalities 

include the insula (Filipek et al., 1997; Hynd et al., 1990) and hippocampus 

(Castellanos et al., 1996; Filipek et al., 1997). However, these two regions were 

identified by Lim et al. (2013) as relevant to their ADHD vs. controls classification 

study. Group level differences between white matter are infrequently reported 

(Hermann et al., 2007). Seidman et al. (2005) reported white matter reduction in the 

corpus callosum and Carmona et al. (2005) reported no differences in white matter 

volume. 

Feature selection is an important aspect of the present study as there are many 

brain regions that do not provide useful information for diagnostic prediction. 

Inclusion of these regions impairs the accuracy of prediction (Johnston et al., 2012). 

Automated feature selection identifies brain regions supporting high accuracy 

individual classification, and therefore localises structurally abnormal brain regions.  

The cross-validation procedure used in this analysis was LOOCV.  This 

approach is ideal for clinical use, as it maximises the available data for ‘training’, 

whilst not assuming prior knowledge of diagnostic status for the ‘left out’ test 

subject. In cross-sectional studies, LOOCV is repeated with a different subject left 

out until all scans have been predictively classified; in longitudinal studies the 

process is repeated as new subject data are acquired and the outcomes of previous 

predictions become known. 

The present study used DARTEL and feature selection with SVM and 

LOOCV, to develop a method for predicting, with best accuracy, individual 

diagnostic status (ADHD vs. controls) using T1 weighted structural MRI scans. 

Predictive classification has previously been successfully applied to individual 

resting state fMRI scans (Zhu et al., 2008; 2005) and to functional connectivity data 

extracted from resting state fMRI scans (Liang et al., 2012) in ADHD subjects. T1 

weighted imaging has similar advantages to resting state fMRI in not requiring 

comprehension and cooperation with a paradigm, but also has the additional 

advantage of being more readily available at scanning centres and to provide better 

anatomical localisation than fMRI. The main hypothesis was that high accuracy 

classification would be achieved using brain regions automatically selected during 
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feature selection such as the brainstem and basal ganglia, given the common 

pharmaceutical action of medications used to treat ADHD, and the anatomical 

locations of dopaminergic and noradrenergic nuclei. 

 

5.2 Methods 

 

5.2.1 Subjects 

 

Structural T1 weighted scans were acquired by Dr Kerstin Konrad’s group at the 

Research Centre in Juelich, Germany, and the Department of Child and Adolescent 

Psychiatry of Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, 

Germany, from subjects participating in neuroimaging studies. Informed consent was 

obtained from all volunteers and their parents according to the Declaration of 

Helsinki. The study protocols were approved by the Ethics Committee of the RWTH, 

Aachen University Hospital, Germany. Volunteers were compensated for 

participation in the study. 

Of the thirty-five males with a diagnosis of ADHD who were recruited from 

the Department of Child and Adolescent Psychiatry and Psychotherapy in Aachen, 

thirty-four were included in this analysis. The subject which was removed from the 

analysis was excluded to ensure there were no significant differences in age or IQ 

between groups. Initial diagnosis was made by experienced clinicians according to 

the Diagnostic and Statistical Manual of Mental Disorders-IV (DSM-IV) (American 

Psychiatric Association, 2000) criteria and confirmed by an independent rater using a 

semi-structured diagnostic interview: either the Kiddie-Sads-Present and Lifetime 

Version (K-SADS-PL) (Kaufman et al., 1997) or “Diagnostische Interview bei 

Psychischen Störungen im Kindes- und Jugendalter” (K-DIPS) (Schneider et al., 

2009). All parents were asked to complete a German Questionnaire on ADHD 

symptoms, the FBB-HKS (Döpfner and Lehmkuhl, 1998), which includes DSM-IV 

and International Classification of Diseases-10 (ICD-10) items for ADHD diagnosis. 

Three subjects in the ADHD group fulfilled additional criteria for Externalising 

Disorders (oppositional defiant disorder and conduct disorder) and one subject had 

comorbid Dyslexia. Exclusion criteria included potentially confounding diagnoses 

such as Psychosis, Mania, Major Depression or Substance Misuse. Ten ADHD 

participants were being treated with either short- or long-acting MPH (Ritalin, 
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Concerta or Equasym) which was stopped at least 48 hours before scanning. None 

were taking any other psychotropic drugs.  

Fifty-five male typically developing controls were recruited from local 

schools and underwent an extensive psychiatric examination using the same 

standardised, semi-structured interviews as the ADHD volunteers. To make the 

groups balanced and to ensure there were no significant differences in age or IQ 

between groups thirty-four of the recruited controls were used in the analysis. None 

of these controls had a history of current or past psychiatric or neurological disorder 

and none were taking medication.  The ADHD and control volunteers had an 

Intelligence Quotient above 80 as assessed by either the Culture Fair Intelligence 

Test 20 (Weiß, 1998) or the Wechsler Intelligence Scale for Children (WISC version 

III or IV) (Wechsler, 1991; Wechsler, 2004). Handedness was assessed using the 

Edinburgh Handedness Inventory (EHI) (Oldfield, 1971). Apart from two left-

handed subjects in the ADHD group and one ambidextrous subject in the control 

group, all subjects were right-handed. 

Age and IQ did not differ significantly (t-test, p>0.1) between groups. The 

ADHD group mean age was 12.5 years (standard deviation 2.3) mean IQ was 99.8 

(standard deviation 11.5). The control group mean age was 13.2 years (standard 

deviation 1.0) and the mean IQ 103.7 (standard deviation 10.0). 

Of the thirty-four ADHD children and adolescents included in this study, five 

had inattentive-type ADHD, one had hyperactive-impulsive-type ADHD and the 

remaining twenty-eight had combined-type ADHD.  

The FBB-HKS (Döpfner and Lehmkuhl, 1998) questionnaire provides a 

syndrome severity score. These symptom severity scores can be categorised as raw 

inattention, hyperactivity and impulsivity scores, ranging from 0-25, 0-20 and 0-11 

respectively, with higher scores indicating increased symptom severity. The total 

scores are obtained by summing individual scores allowing total percentiles to be 

calculated. 

The mean inattention, hyperactivity and impulsivity scores for the ADHD 

group were 17.1, 13.1 and 6.9 respectively, and for the control group 1.9, 1.2 and 1.1 

respectively. The mean total scores for the ADHD and control groups were 37.2 and 

4.2 and the mean percentiles were 94.4 and 24.4 respectively. 

A particular strength of the study is that the dataset is relatively 

heterogeneous – particularly with the comorbidity, medication history and fairly 
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wide age range during a time of dynamic brain development. If high classification 

accuracy can be achieved using this dataset then it gives more confidence that the 

technique would achieve similar results in the general population. 

 

5.2.2 Image Acquisition 

 

For each participant structural whole-brain images were acquired using a 1.5T 

Siemens Sonata scanner (Siemens, Erlangen, Germany) using an isotropic T1-

weighted MP-RAGE (magnetisation-prepared rapid acquisition gradient echo) 

sequence with the following parameters: TR (repetition time) = 2200 ms, TE (echo 

time) = 3.93 ms, flip angle = 15°, FOV = 256 mm, matrix = 180 x 256, 160 slices, 

voxel size 1x1x1 mm, slice thickness 1 mm.  

 

5.2.3 Image Pre-processing 

 

In order to check that the data quality was of an acceptable standard, all scans were 

visually inspected for artefacts and particular care was taken to identify motion 

artefacts which appear as blurring or ‘ghosting’ (McRobbie et al., 2010). No scans 

showed blurring, ghosting or other gross artefacts. No scans were excluded from 

analysis. 

Due to the hyperactive and inattentive symptoms of ADHD, a potential 

limitation of the study is that the classifier predicts on the basis of movement during 

the scan, rather than syndrome linked structural brain differences. However, Yerys et 

al. (2009) suggested that the age of the subject may be more significant than 

diagnosis when investigating fMRI scan success rates as subjects both on and off 

MPH and healthy controls aged 10-12 achieved increased scan success rate 

compared with their respective 7-9 age groups (Yerys et al., 2009). In the present 

study there were no significant differences in age between groups. 

To exclude the possibility that more motion artefact is present in the ADHD 

group’s scans than the control group’s, spatial autocorrelation (Slotnick and 

Schacter, 2006) was investigated (https://www2.bc.edu/~slotnics/scripts.htm). 

Spatial autocorrelation determines the level of correlation between pixels (or voxels 

in the 3D case) in an image. When an object is smoothed, the level of spatial 

autocorrelation increases as the voxels become more correlated (i.e. with a larger 

smoothing radius). As mentioned previously, motion during a structural MRI scan 

https://www2.bc.edu/~slotnics/scripts.htm
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will appear as blurring or ghosting (McRobbie et al., 2010). Although there were no 

visible artefacts present, if more subtle systematic blurring or ghosting occurred then 

the level of spatial autocorrelation would be higher. The reasons for this are because 

a blurry region within an image would be equivalent to smoothing and ghost images 

are highly correlated with the original image. 

Therefore, to check that classification was not based on a systematic motion 

artefact in the ADHD group rather than genuine structural brain differences, the 

spatial autocorrelation values (in each of the three dimensions) were calculated from 

the raw structural MR images from both groups. No significant differences were 

identified between the two groups (x-direction: p = 0.57, y-direction: p = 0.50 and z-

direction: p = 0.97).  

Pre-processing was performed using the DARTEL toolbox (Ashburner, 2007) 

as implemented in SPM8 (http://www.fil.ion.ucl.ac.uk/spm). As described in Chapter 

2, the DARTEL procedure involves segmentation of T1 weighted images into 

separate grey matter, white matter and CSF compartment images and the creation of 

a study-specific anatomical template for spatial normalisation. Creation of a study-

specific template was important in this study as participants were at an earlier stage 

of development than the adults who contributed to the default SPM8 anatomical 

template. The DARTEL procedure included modulation to control for potential 

spatial normalisation rescaling problems (Ashburner, 2007). The resultant images 

were smoothed with an 8 mm full-width at half-maximum (FWHM) Gaussian kernel. 

 

5.2.4 Group Level Comparisons 

 

For a conventional group level VBM analysis, the null hypothesis of no difference in 

brain structure between ADHD participants compared to controls was tested using an 

unpaired t-test, as implemented in SPM8. Significance was defined as p<0.005 and 

was implemented using a simultaneous requirement for a voxel threshold of p<0.005 

and clusters to exceed 139 contiguous voxels.  These parameters were identified 

using a customised version of a popular Monte-Carlo neuroimaging algorithm 

(Slotnick et al., 2003). 

The customisation to the Monte-Carlo neuroimaging algorithm was required 

as the original code was designed to deal with lower resolution images such as fMRI 

rather than high resolution structural scans. The modifications included decreasing 

the resampling resolution (to decrease the computational strain during the Monte-

http://www.fil.ion.ucl.ac.uk/spm
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Carlo calculations) and increasing the range of values which the cluster size could 

take in the raw images (to allow for higher resolution input images). These 

modifications were approved by the author of the original Monte-Carlo 

neuroimaging algorithm, Scott Slotnick (personal communication). 

 

5.2.5 Individual Scan Classification 

 

Machine learning allowing individual predictions was implemented in Matlab (The 

Mathworks Inc.) using an SVM toolbox (Schwaighofer, 2001) and custom Matlab 

scripts. As described previously, SVM analysis consists of two stages: training the 

classifier, then testing the accuracy using data not used for training.  

To maximise the size of the training data, LOOCV (Cristianini and Shawe-

Taylor, 2000) was used. This procedure involves removing a subject (from either 

group) and using the remaining subjects as the SVM training set. This process is 

repeated until each subject is left-out once. It is important to ensure that no 

information is leaked from the training data to the testing data. 

As expected, a linear SVM classifier which used voxels from the whole brain 

achieved poor predictive accuracy, therefore a ‘feature selection’ method, which 

selected localised regions of the brain for SVM analysis in an automated manner 

(Bray et al., 2009; Johnston et al., 2012; Klöppel et al., 2008) was used. Poor 

predictive accuracy when using whole brain data is unsurprising because, when a 

large number of voxels are used with an SVM, most of these voxels are redundant 

(Dash and Liu, 1997). Feature selection can be very successful as it excludes many 

voxels that confer no useful information for prediction, but introduce 'noise' and 

correlated information, so degrading classifier performance. Feature selection was 

applied to a linear and a non-linear (Gaussian) SVM to investigate whether this 

improved predictive accuracy. 

A simple feature selection approach was used: the ‘mean-threshold’ method 

(described in Chapter 2). In order to ensure no prior information about the left out 

subject was ‘leaked to testing’ during feature selection, feature selection was 

performed during the parameter selection stage (inner LOOCV procedure) only. This 

ensured the features (brain regions) selected for classification were entirely 

independent from the ‘held-out’ image which was predictively classified.  
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In order to identify the optimal threshold for each leave-one-out loop, a broad 

range of potential values were investigated. Within each (outer) leave-one-out loop 

the starting range varied from 0.05 to the maximum absolute difference between 

groups in the training set (a range chosen to be large enough such that it would 

always include the optimal cut-off value). As it would take an unfeasibly long time to 

tune the parameters (2 for the linear SVM - the soft-margin parameter and the 

optimal cut-off value - and 3 for the Gaussian SVM - the soft-margin parameter, the 

‘kernel width’ parameter and the optimal cut-off value) for such a wide range of 

thresholds, the soft-margin parameter (and the ‘kernel width’ parameter in the non-

linear SVM) was initially set to unity in order to narrow down the wide range of 

potential thresholds. This range was reduced by performing an inner LOOCV with 

the SVM parameters fixed, identifying the thresholds which achieved a high training 

accuracy, centring the narrowed range on these thresholds, and then reducing the step 

size to investigate more thresholds within the new range. To demonstrate this range 

reduction technique, Figure 11 displays the average training stage accuracies of all 

subjects at each cut-off value over the large range of potential values for the white 

matter prediction. Figure 12 then shows the average training accuracy in the 

narrowed range of cut-off values being investigated (again for white matter 

prediction). As the narrowed threshold differs in each LOOCV loop, the vector 

elements (1 to 12) were used to create the average training stage accuracies across 

the narrowed ranges. This demonstrates that despite the differing choices of 

narrowed ranges, the peak accuracy was generally central within the range 

investigated. There is a clear peak in accuracy of prediction which the cut-off range 

centres on in each case. Once the range was sufficiently narrow, the SVM parameters 

and the narrowed threshold range were all tuned using a second inner LOOCV and a 

2/3 variable grid search procedure (depending on whether a linear/non-linear kernel 

was used). 

The combination of parameters which achieved the highest training stage 

accuracy was then applied during testing (i.e. when classifying the novel ‘held-out’ 

subject), to assess classifier performance: accuracy, sensitivity, specificity and chi-

square significance of classification. To demonstrate this grid search procedure, 

Figure 13 displays how the average training stage accuracy varied with soft-margin 

parameter and a narrowed cut-off range (the kernel-width parameter was fixed to 

unity for illustration purposes - for the white matter prediction). A summary of the 
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SVM technique is shown in Figure 14 with parameter and feature selection 

highlighted in more detail in Figure 15 and Figure 16. The soft-margin parameters 

investigated ranged from 1 to 5 and the kernel-width parameters ranged from 1 to 10.  
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Figure 11: Gaussian SVM white matter prediction, average training accuracy as a 

function of the wide-ranging cut-off values (used to identify the narrow range of cut-

off values for the 3-variable grid search – the soft-margin and kernel width 

parameters are fixed). 
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Figure 12: Gaussian SVM white matter prediction, average training accuracy as a 

function of mid-ranging cut-off values (the second iteration of the range reduction 

technique, vector elements are used instead of cut-off values as each subject differs 

on the range selected), used to identify the narrow range of cut-off values for the 3-

variable grid search – the soft-margin and kernel width parameters are fixed. 
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Figure 13: Gaussian SVM white matter prediction, average training accuracy versus 

variable soft-margin parameters and the narrowed cut-off ranges (vector elements are 

used instead of cut-off values as each subject differs on the range selected), in a 2-

variable grid search (the kernel width parameter was fixed for illustration purposes). 
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Figure 14: A flow diagram outlining the primary LOOCV procedure. The general 

procedure involved applying LOOCV on the pre-processed images, applying the 

‘mean-threshold’ method of feature selection and SVM parameter tuning (shown in 

more detail in Figure 15 and Figure 16) to the training data, training the SVM using 

the training data and the optimised parameters, then making a prediction for the left-

out subject.
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Figure 15: Parameter range reduction stage of the ‘mean-threshold’ feature selection 

method. In order to speed up the processing time, the range of threshold cut-off 

values was narrowed down by testing an arbitrarily wide range using an inner 

LOOCV procedure with fixed SVM parameters (fixed to unity). The selected range 

was based on the threshold cut-off values which achieved the highest training stage 

accuracy.
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Figure 16: The grid search procedure for parameter selection (including the 

optimal mean-threshold cut-off value). A second inner LOOCV procedure is 

performed whereby all combinations of mean-threshold cut-off values (from the 

narrowed range identified in Figure 15) and SVM parameters are tested. The 

combination which achieves the highest training stage accuracy are selected for 

training the SVM on the full training set for the classification of the left-out subject 

(Figure 14).
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5.2.6 Multivariate Feature Selection 

 

As an alternative to the mean-threshold feature selection technique, a multivariate 

feature selection method which has also been outlined in Chapter 2: RFE was also 

investigated. This was to test whether the accuracy associated with using a univariate 

feature selection method (mean-thresholding) could be improved by a multivariate 

feature selection method (RFE), as the univariate mean-thresholding process ignores 

possible multivariate interactions between voxels. 

The general approach is very similar to that used for the mean-thresholding 

method. As can be seen in Figure 17, the only difference from the mean-thresholding 

method (see Figure 14) is that the feature selection is completed prior to the 

parameter selection stage. The parameter selection method (Figure 19) was identical 

to the grid-search technique used previously (Figure 16) with the only difference 

being that only the SVM parameters were optimised rather than the SVM parameters 

and the mean-threshold value. 

The theory behind RFE is that each voxel can be ranked using the SVM 

training stage weights to determine its importance to the classification. There are 

many other multivariate feature selection methods but RFE tends to be a more 

popular and reliable approach than most. There are many differences in the 

implementation of RFE; the method decided on was an 11-fold cross-validation 

approach, with resampling and a backwards elimination percentage of 20%.  

As the training stage data contained 67 subjects (one subject was left-out for 

the final classification for each LOOCV stage), it was decided that 11-fold cross-

validation was a sufficient compromise between balanced groups (11 folds of 6 with 

one subject ignored (to account for class imbalance)) and the length of time required 

to run the RFE code. To ensure the results were replicable and to maximise the 

training data, the data were resampled three times with a different subject left out 

each time with the collated training stage accuracy recorded to provide a robust 

value. 

The feature selection component is performed over many iterations. The 

process involved beginning with the whole brain image, performing the 11-fold 

cross-validation and identifying the training stage accuracy (in fact the collated 

training stage accuracy after resampling) and the voxel weights (which determine the 

relative ‘value’ of that voxel towards the classification). These voxel weights were 
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ranked in order of importance and the lowest 20% of these voxels were removed 

from the analysis. The 11-fold cross-validation was then repeated with the remaining 

80% of the data with the process repeating until there were less than a thousand 

voxels remaining (arbitrary termination criteria). The iteration which achieved the 

highest collated training stage accuracy was then selected as the combination of 

voxels which would be used in the outer LOOCV process.  

 

5.2.7 Calculating the number of Voxels in each cluster 

 

In order to compare the brain regions identified in the main analysis with the regions 

identified in a conventional VBM group level analysis, the location of the clusters 

were compared. As it can be seen in Figure 23 that far fewer voxels were used in the 

main analysis than were identified in the VBM analysis, the size of each cluster was 

also investigated. SPM outputs the number of voxels in each cluster during VBM 

analyses (shown in Table 3 and Table 4) but each cluster identified in the main 

analyses had to be identified so that the cluster sizes could be compared (shown in 

Table 5 and Table 6).  

The author created an algorithm which could identify all the clusters of 

voxels used during classification and output the size of each cluster alongside other 

relevant information related to the regions used during classification. At each voxel 

selected after feature selection, the six neighbouring voxels (in three dimensions) 

were inspected to see if they were also selected. All the voxels’ neighbours that were 

included in the prediction were identified as belonging to the same cluster. Each 

identified cluster was checked by overlaying each individual cluster over the full 

image containing all the brain regions identified in the main analysis (the red regions 

in Figure 21) with all clusters correlating exactly. 



 - 89 - 

 

Figure 17: RFE method of feature selection with SVM. 
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Figure 18: RFE feature selection details for Figure 17 
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Figure 19: Parameter selection for RFE method in Figure 17. 
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5.3 Results 

 

5.3.1 VBM Analysis 

 

Compared to controls, ADHD was associated with significant decreases in grey 

matter volume in the bilateral putamen, bilateral superior cerebellum, amygdala, 

superior hippocampus, superior temporal gyrus, medial orbitofrontal cortex, bilateral 

precentral sulcus, inferior longitudinal fasciculus/lateral hippocampus and middle 

frontal gyrus. These are shown in Figure 20 (left) with details provided in Table 4. 

Compared to controls, ADHD was associated with significant decreases in 

white matter volume which were most prominent in the brainstem, which includes 

the pons-midbrain junction. Decreases were also found in the medial superior 

cerebellum, pyramidal tracts, frontal medial and occipital lobe. These are shown in 

Figure 20 (right) with details provided in Table 3.  

No grey or white matter volume increases in ADHD compared to controls 

were found.  
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Figure 20: VBM Group Level results.  Significantly (p<0.005) reduced grey matter 

(left) and white matter (right) volume in ADHD. Reduced grey matter volume in the 

basal ganglia (BG - putamen) and cerebellum (C) and significantly reduced white 

matter volume in the brainstem (BS) and cerebellum (C). 
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Table 3: MNI coordinates of each cluster of grey matter volume decreases. 

Region MNI coordinates Resampled voxels 

per cluster 

T-score 

x y z 

bilateral putamen -27 6 4.5 901 3.45 

 25.5 7.5 6 998 3.17 

bilateral superior 

cerebellum 

12 -39 -19.5 1021 3.18 

 -24 -46.5 -28.5 756 3.18 

Amygdala -24 -3 -12 901 3.14 

superior hippocampus -30 -19.5 -6 279 3.58 

superior temporal gyrus -57 6 -3 201 3.72 

medial orbitofrontal 

cortex 

1.5 49.5 -25.5 210 3.18 

bilateral precentral 

sulcus 

31.5 -10.5 39 1268 4.44 

 -39 -12 30 202 2.96 

inferior longitudinal 

fasciculus/lateral 

hippocampus 

40.5 -36 0 654 3.24 

middle frontal gyrus -37.5 30 22.5 145 3.11 
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Table 4: MNI coordinates of each cluster of white matter volume decreases. 

Region MNI coordinates Resampled voxels 

per cluster 

T-score 

x y z 

Brainstem 3 -21 -22.5 2817 2.98 

medial superior 

cerebellum 

-3 -55.5 -18 959 3.22 

pyramidal tracts -31.5 16.5 31.5 940 3.42 

frontal medial 12 54 6 140 3.07 

occipital lobe 6 -97.5 1.5 759 3.82 
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5.3.2 Individual Subject SVM Predictions 

 

During a preliminary investigation, using voxels from the whole brain (i.e. no feature 

selection) and a linear SVM resulted in a classification accuracy of 57% (sensitivity 

62%, specificity 53%, χ
2
 = 1.5, p = 0.22). Using the ‘mean-threshold’ feature 

selection method with an identified optimal threshold of 0.061 and a linear SVM, 

resulted in a marginally increased accuracy of 59% (sensitivity 62%, specificity 56%, 

χ
2
 = 2.1, p = 0.14). Feature selection therefore minimally improved the predictive 

accuracy of the linear SVM. However during this investigation it was discovered that 

applying feature selection in conjunction with a non-linear kernel such as the 

Gaussian kernel significantly improved classification accuracy. 

A Gaussian SVM was used to analyse the 34 structural MRI images of 

children satisfying DSM IV criteria for ADHD and 34 structural MRI images of 

control subjects. Feature selection was implemented using a ‘mean threshold’ 

procedure which selected voxels (training-data only) which differed between the 

ADHD and control groups by more than a given threshold. The analysis was done 

using; the grey matter compartment of T1 weighted images only, white matter 

compartment images only, and combined grey and white matter images.  

The analysis using white matter images alone resulted in an individual subject 

predictive accuracy of 93% (sensitivity 1.0, specificity 0.85, χ
2
 = 50.6, p <<0.0001).  

The analysis using grey matter images alone resulted in an accuracy of 63% 

(sensitivity 0.68, specificity 0.59, χ
2
 = 4.8, p <0.028), and that with grey and white 

matter images combined an accuracy of 81% (sensitivity 0.74, specificity 0.88, χ
2
 = 

26.5, p <<0.0001). Consequently, the most accurate predictions were supported by 

white matter images alone. Predictions using both grey and white matter images did 

not improve the accuracy of prediction. 

 

5.3.3 Brain Regions identified using Feature Selection 

 

When only white matter images were used for analysis, the largest volume of voxels 

selected during feature selection which supported the 93% accuracy of prediction 

were located in the brainstem.  As shown in Figure 21 (a) and listed in Table 5, this 

comprised a large region in the central pons with a small extension to midbrain, and 

a smaller bilateral region within the midbrain. For illustration, Figure 22 shows the 
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locations of the locus coeruleus (Keren et al., 2009) and ventral tegmental area nuclei 

(Guitart-Masip et al., 2012; Mai et al., 1997), in relation to the white matter region 

used for classification.  This white matter abnormality may involve the axonal 

projections to and from the locus coeruleus and ventral tegmental area.  Smaller 

regions in the bilateral frontal pole white matter deep to Broadmann’s Area (BA) 10 

and pyramidal tract were also identified, which might be related to prefrontal and 

motor abnormalities. 

When only grey matter images were used for analysis, regions supporting 

individual prediction at accuracy of 63% were identified in the dopamine rich 

putamen, bilateral frontal pole grey matter (BA 10) and bilateral inferior parietal 

lobule.  Grey matter regions are shown in Figure 21 (b) and listed in Table 6. 

 

5.3.4 Comparison between VBM analysis and Classification 

 

Brain regions identified using feature selection were compared with the results of a 

VBM group level analysis (p<0.005, whole brain level significance).  In the VBM 

analysis, only white and grey matter volume reductions were identified in ADHD 

subjects. As shown in Figure 23, white matter regions were identified in the 

brainstem and grey matter regions in the putamen, both of which overlapped with 

feature selection identified regions, indicating that prediction was based on 

significant white and grey matter volume reductions in the ADHD subjects. 
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Figure 21: (a) Feature selection (Gaussian SVM) identified brain regions in white 

matter. BS – brainstem regions comprising a lower region in the pons and smaller 

bilateral region in the mid-brain; FP - frontal pole white matter; PT - pyramidal tracts 

(b) Feature selection (Gaussian SVM) brain regions identified using grey matter. BG 

– basal ganglia; FP – frontal pole; STS – superior temporal sulcus; IPL – inferior 

parietal lobule; ITG – inferior temporal gyrus; TL – temporal lobe; OG – occipital 

gyrus. 
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Figure 22: Locations of the noradrenergic locus coeruleus (LC) and dopaminergic 

ventral tegmental area nuclei (VTA), in relation to the brainstem (BS) white matter 

region used for classification. LC and VTA locations from previous studies (Guitart-

Masip et al., 2012; Keren et al., 2009; Mai et al., 1997). 
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Table 5: MNI coordinates of each cluster of white matter identified using mean-

threshold feature selection with the Gaussian SVM. The number of resampled voxels 

contained in each cluster was calculated as discussed in Chapter 2. 

Region MNI 

coordinates 

Resampled voxels per 

cluster 

x y z 

brainstem (pons) 0 -25 -32 1581 

bilateral brainstem (midbrain) -9 -20 -10 47 

 9 -21 -13 15 

frontal pole white matter 18 52 5 441 

 -14 58 -5 166 

pyramidal tracts -26 18 27 571 

white matter deep to cingulate gyrus 19 39 23 322 

white matter deep to superior temporal 

gyrus 
48 -49 9 267 

inferior longitudinal fasciculus 34 -64 18 243 

 -27 -60 18 34 

white matter deep to cuneus 14 -93 12 193 

white matter deep to middle frontal 

gyrus 
34 43 14 127 

 36 4 41 70 

 38 30 26 117 

white matter deep to medial 

orbitofrontal cortex 
-28 40 -2 18 

white matter of superior parietal lobule 37 -65 38 40 

white matter of inferior parietal lobule 40 -55 46 34 

white matter deep to medial frontal 

cortex 
12 53 26 27 

white matter deep to lingual gyrus 21 -87 -2 15 

corpus callosum -20 32 8 26 
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Table 6: MNI coordinates of each cluster of grey matter identified using mean-

threshold feature selection with the Gaussian SVM. The number of resampled voxels 

contained in each cluster was calculated as discussed in Chapter 2. 

Region MNI coordinates Resampled voxels per cluster 

x y z 

basal ganglia (putamen) -21 9 -3 30 

bilateral frontal pole 26 59 -3 278 

 -27 54 0 97 

bilateral superior temporal sulcus 50 -38 5 532 

 -48 -27 -5 210 

bilateral inferior parietal lobule 45 -59 38 336 

 -40 -66 38 126 

bilateral inferior temporal gyrus 44 -66 -9 284 

 -60 -52 -9 258 

bilateral inferior frontal sulcus 40 35 14 312 

 -39 30 20 301 

 -37 41 9 64 

middle frontal gyrus -35 15 30 55 

 -36 4 48 70 

medial temporal gyrus -40 -70 18 214 

superior parietal lobe 32 -44 43 213 

occipital gyrus 17 -100 -6 182 

 -42 -72 -6 120 

 22 -95 10 95 

 33 -80 18 151 

superior temporal gyrus -47 -52 18 100 

precentral gyrus 38 -13 42 78 

middle temporal gyrus -47 7 -31 67 

inferior cerebellum -29 -44 -54 54 

postcentral gyrus 47 -23 42 36 
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Figure 23: Brain regions identified using feature selection (red), voxel based 

morphometry (green), and regions common to both analyses (orange).  BS – brain 

stem; SC – superior cerebellum; BG – basal ganglia; TL – temporal lobe; STG – 

superior temporal gyrus
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5.3.5 Multivariate Feature Selection 

 

The investigation into multivariate feature selection techniques was intended to 

demonstrate that a significant classification accuracy could be achieved using an 

alternative feature selection method. The combined grey and white matter image 

classification approach was used because it was hoped that this new feature selection 

method could improve upon the 81% classification accuracy achieved using the 

mean-thresholding method. The combined grey and white matter images were 

entered into the wrapper technique using 11-fold cross-validation as described, the 

accuracy achieved was 63% (sensitivity 0.68, specificity 0.59, χ
2
 = 4.80, p = 0.0284). 

Although significant, this testing stage accuracy is lower than the accuracy achieved 

using the univariate feature selection method and therefore this method was not 

investigated further.  

 

5.3.6 Group level differences between previously medicated and unmedicated 

ADHD subjects 

 

To confirm that the classification wasn't influenced by the 10 ADHD subjects that 

were being medicated around the time of the scan (but with the medication withheld 

48 hours prior to scanning) a group level analysis between the 10 medicated subjects 

and 10 of the medication naive ADHD subjects, matched on the basis of age, IQ and 

FBB-HKS, was performed.  

This analysis identified that there were no grey matter regions which were 

significantly decreased in the medicated group compared to the unmedicated group. 

Regions which showed an increase in the medicated group’s grey matter volume 

included BA20 (inferior temporal gyrus (46,-34,-18)), insula (-49, 16, -4) and (-48, -

10, 9), inferior frontal gyrus (-51, 34, -6), midbrain (-8, -9, -21), frontal pole (-21, 46, 

6) and medial temporal lobe (-30, 12, -30). There was a slight overlap in the grey 

matter used during the classification and the medicated/unmedicated group level 

analysis in the frontal pole.  

Increases and decreases were identified when comparing the white matter 

volume in the medicated and unmedicated ADHD groups. The increases (medicated 

greater than unmedicated) occurred in the white matter deep to the lateral 

orbitofrontal cortex (39, 34, -16) and the uncinate fasciculus (-40, 4.5, -18) and one 
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region showed a reduction in the white matter deep to BA7 (parietal lobe (48, -42, 

55)). Figure 24 shows the grey matter volume increases and white matter volume 

reductions and increases between the two groups. 

The brain regions which were identified in the white matter medication VBM 

analysis did not overlap any regions identified in the white matter prediction, 

increasing confidence that the classification is not directly influenced by the 

differences between medicated and unmedicated children. There was a small overlap 

between the grey matter regions but as the overlap was minimal (only included three 

voxels), it is likely that this is a result of analysing and classifying smoothed images. 

Figure 25 shows the small overlap between the regions used in the grey matter 

prediction and the regions which had significantly increased grey matter in the 

medicated group. 

Use of stimulant medication has been reported to be associated with 

normalisation of grey matter volume reduction, which would make predictive 

classification more difficult, although this effect has yet to be confirmed in 

longitudinal studies (Frodl and Skokauskas, 2012; Nakao et al., 2011). 
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Figure 24: Group Level (VBM) significantly (p<0.005) increased grey matter volume 

(left), decreased white matter volume (centre) and increased white matter volume 

(right) in medicated versus unmedicated ADHD patients. Medicated patients with 

ADHD had significantly increased grey matter volume in BA20 (inferior temporal 

gyrus), insula, inferior frontal gyrus, midbrain, frontal pole and medial temporal lobe 

compared to unmedicated ADHD patients. A white matter volume decrease was 

identified in the white matter deep to BA7 (parietal lobe) and increased white matter 

volume was identified in the white matter deep to the lateral orbitofrontal cortex and 

the uncinate fasciculus. 
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Figure 25: The overlap between the regions used in the grey matter prediction and 

the regions which had significantly increased grey matter volume in the medicated 

group. Blue: significant regions identified in the group level analysis (Figure 24) but 

not used in the grey matter classification (Figure 21 (b)). Red: regions used in the 

Gaussian SVM (Figure 21 (b)) but not identified as significant in the group level 

analysis (Figure 24). Purple: the region (frontal pole -FP) which was both identified 

in the group level analysis (Figure 24) and used in the grey matter prediction (Figure 

21 (b)).
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5.4 Discussion 

 

Using a Gaussian SVM in conjunction with anatomical feature selection, it was 

possible to classify individual scans from young males with ADHD and healthy 

controls, using white matter compartment of T1 weighted scans, with 93% accuracy. 

This is the highest accuracy reported for a predictive classification study in ADHD 

using ‘structural’ (T1 weighted) brain scans alone; most have used resting state fMRI 

though a few have combined resting state fMRI with T1 data for prediction, and none 

have used white matter images. 

The only other attempts to predict diagnostic status between children and 

adolescents with ADHD and healthy controls using only structural MR images 

achieved classification accuracies of 67% (Chang et al., 2012) and 79% (Lim et al., 

2013), although two other studies combined resting state fMRI and structural MRI to 

the same classification problem, achieving accuracies of 58% (Eloyan et al., 2012) 

and 76% (Cheng et al., 2012). The accuracy of the grey matter prediction in this 

study was a comparable figure, 63%, however, it is important to note that the 93% 

predictive accuracy was obtained using the white matter component of the structural 

images – images that none of the above studies investigated. 

The largest cluster of voxels which were relevant to the prediction which 

achieved 93% accuracy was in the brainstem. As mentioned previously, this region is 

adjacent to noradrenergic and some dopaminergic nuclei. The noradrenergic locus 

coeruleus nuclei lie in the posterior brainstem lateral to the periaqueductal grey 

matter and the dopamine ventral tegmental area (ellipsoid structures with an axis in 

the direction between the midbrain and pons) is located anteriorly in the ventral-

medial aspect of the brainstem (Afshar et al., 1978; Mai et al., 1997). The white 

matter region could therefore contain axonal connections between the locus 

coeruleus / ventral tegmental area nuclei and rest of the brain, raising the possibility 

of ‘catecholamine dysconnection’ (abnormality in connection (Stephan et al., 2009), 

in contrast to ‘disconnection’) contributing to the ADHD syndrome. If such a 

dysconnection exists in ADHD, this could provide a plausible explanation why 

medications which enhance dopamine and noradrenaline function are able to reduce 

associated behavioural abnormalities. 

Several reviews of the neural substrates of attention relevant to ADHD, have 

implicated a distributed network of regions including the brainstem Reticular 
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Activating System (RAS, which includes the locus coeruleus and ventral tegmental 

area nuclei), ascending white matter pathways from the RAS (mediating arousal), 

and descending pathways from the prefrontal cortex via the thalamus to the RAS 

(mediating inhibition), and basal ganglia / frontal lobe abnormalities (e.g. Riccio et 

al. (2002) and Voeller (1991)). It has been argued that disruption at any level of this 

system could lead to a behavioural phenotype that resembles ADHD (inattention, 

difficulty concentrating, distractibility, impulsivity, hyperactivity) (Riccio et al., 

2002; Voeller, 1991). A number of the ADHD and control subjects who contributed 

T1 weighted images to the present study also took part in an fMRI study of attention 

(Konrad et al., 2006). During the alerting component of an attention task, ADHD 

subjects showed abnormally increased activation at the midbrain-pons junction at a 

posterior brainstem region, which the authors suggested was the locus coeruleus 

(Konrad et al., 2006). Abnormal functional activity of the locus coeruleus could be 

linked to decreased white matter connections with the rest of the brain. 

In addition, Lim et al. (2013) reported that the brainstem was a relevant 

feature during classification of grey matter images which yielded 79% accuracy – 

although this region appears to be more posterior when compared with the white 

matter region identified in this study. The brain regions which were most relevant to 

this grey matter-based prediction included the caudate, ventral striatum/putamen, 

insula, brainstem, thalamus, hypothalamus, precuneus/cuneus, hippocampus, 

amygdala, cerebellar vermis and inferior and superior parietal regions (Lim et al., 

2013). A number of these regions were also identified in the current study. 

The frequently reported decrease in cerebellar grey matter volume (Berquin 

et al., 1998; Bussing et al., 2002; Castellanos et al., 1996; Hill et al., 2003; Lim et 

al., 2013; Mostofsky et al., 1998) was replicated in this study. Additionally, this 

study identified a decrease in cerebellar white matter volume. The decrease in grey 

matter volume identified in the temporal lobes has been reported by Castellanos et al. 

(1996). Whilst the amygdala has previously been reported to show no significant 

changes in grey matter (Castellanos et al., 1996; Filipek et al., 1997), it has also been 

reported to show a decrease in volume (Lim et al., 2013; Plessen et al., 2006) as 

found here. 

Reduced grey matter and white matter deep to BA 10 were identified in the 

relative classifications. BA 10 functions are diverse, including episodic memory 

retrieval and ‘multitask’ information processing, with evidence for lateral-medial and 
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rostral-caudal functional gradients, implying BA 10 is not a functionally 

homogeneous region (Gilbert et al., 2006). The frontal pole cortex has been found to 

develop late into childhood/adolescence which may increase susceptibility to 

developmental disorders (Tsujimoto et al., 2011). Partial disruption of BA 10 and its 

connections could therefore have widespread effects on cognition. A decrease in 

ADHD grey matter volume in the basal ganglia (putamen) was identified compared 

to controls which concords with previous studies (Ellison-Wright et al., 2008; Frodl 

and Skokauskas, 2012; Nakao et al., 2011) and further suggests dopamine 

dysfunction in ADHD. In addition, lesions of the basal ganglia of experimental 

animals can result in behavioural change reminiscent of some aspects of the ADHD 

syndrome (Alexander et al., 1986). 

Group level abnormalities in white matter are rarely investigated (Hermann et 

al., 2007). Whilst no differences in white matter volume were reported in one study 

(Carmona et al., 2005), another, larger study, described significantly reduced total 

white matter volume and significant reductions in the frontal, parietal, temporal and 

occipital lobes in ADHD (Castellanos et al., 2002). It is important to note that the 

decreased region in the brainstem, identified using both the VBM analysis and the 

classification algorithm, requires further investigation using DTI. When using the 

normalisation technique, as described, it is unclear whether the brainstem reduction 

results from a reduced volume or reduced white matter integrity in children and 

adolescents with ADHD.  Reduced brainstem volume has been reported previously 

in subjects with both ADHD and epilepsy compared with both a healthy control 

group and subjects with epilepsy alone (Hermann et al., 2007). 

An important aspect of the VBM group level analysis in the present study and 

analyses reported in the literature is the use of DARTEL. This means a study-specific 

template, created during the DARTEL process, is used to realign and warp the 

images to a standardised anatomical space. This is especially important here as the 

brains of children and adolescents are quite different from those of the adults that 

were used to create the default SPM templates. Importantly, in comparison to the 

traditional SPM VBM method, DARTEL has also an improved method for warping 

the MRI images towards the aforementioned study-specific template, resulting in 

more accurately aligned images across subjects (Ashburner, 2007), decreasing inter-

subject variance and therefore increasing the power of subsequent statistical 

analyses. As a DARTEL-created template has been shown to perform as well as a 
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specialist atlas of the cerebellum and brainstem (SUIT -

http://www.icn.ucl.ac.uk/motorcontrol/imaging/suit.htm)(D'Agata et al., 2011) it is 

considered to perform accurate normalisation in these regions. The SUIT atlas has 

since been updated to use the DARTEL approach “for more accurate results”. Whilst 

several of the abnormal regions identified have been reported previously, some have 

not, and it is possible this is in part a consequence of using DARTEL. 

A potential limitation to the present study is stopping medication two days or 

more before scanning in a minority (29%) of the ADHD subjects. Medication might 

be associated with structural brain change. To investigate whether this impacted on 

the results, ten previously medicated ADHD subjects were matched with ten of the 

medication naive ADHD subjects, on the basis of average age, IQ and FBB-HKS 

scores.  White matter differences in previously medicated ADHD subjects were 

identified.  However, none of the medication related regions overlapped with the 

white matter regions used for predictive classification and none were found in the 

brainstem. 

Another possible limitation is movement during the image acquisition. It’s 

unclear if movement would make classification more accurate or less accurate, but as 

described in section 5.2.3, a range of methods were used to exclude significant 

movement effects. It is important to emphasise that the high classification accuracy 

achieved here is only relevant for scans obtained from the same MR scanner. If 

images from a MRI scanner were classified using an algorithm developed using 

images from a different scanner, it is unlikely that the scans would be classified to 

the level of accuracy reported here. This is due to subtle differences in images 

obtained from different scanners (Moorhead et al., 2009). Work on possible scanner 

related confounds to prediction is required. Whilst the reported method achieved 

high predictive accuracy, it is important to note that this was in the context only of 

scans from volunteers with ADHD and controls. Further work would be required to 

establish the accuracy of the technique if scans from other diagnostic categories were 

included, and scans from subjects with comorbidities. Whilst the ADHD dataset 

includes subjects with comorbid disorders, there is insufficient data to conduct sub-

group analyses. 

In summary, it was possible to predictively classify scans from individual 

children and adolescents with ADHD to an accuracy of 93% using the white matter 

compartment of T1 weighted images alone.  This is of comparable diagnostic 

http://www.icn.ucl.ac.uk/motorcontrol/imaging/suit.htm
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accuracy to that reported for general adult psychiatric syndromes (Klöppel et al., 

2008; Koutsouleris et al., 2011; Mwangi et al., 2012a). The grey matter-based 

prediction achieved a lower, yet comparable, accuracy to similar studies in the 

literature (Chang et al., 2012; Lim et al., 2013). In addition, a number of group level 

reports of grey and white matter abnormalities in young males with ADHD were 

replicated. However, structural brain abnormalities which had not been reported 

previously were also identified, perhaps due to the use of DARTEL and in particular 

a large region of reduced white matter volume in the brainstem.  

Given the possible heterogeneity of the ADHD syndrome (Fair et al., 2012a), 

the results are encouraging for the identification of consistent imaging biomarkers, 

that can inform future work into the aetiology, pathophysiology and clinical 

management of ADHD.  To the author’s knowledge, brainstem white matter volume 

has not been specifically investigated in previous studies of ADHD.  The brainstem 

region identified here may constitute a biomarker for ADHD, although independent 

studies are required to replicate these findings, investigate the nature of the white 

matter abnormality using DTI, explore issues of diagnostic syndrome specificity and 

possible scanner related confounds to prediction. 
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Chapter 6: The iBOCA study  

 

6.1 Introduction 

 

The original goal of this PhD was to investigate whether it would be possible to 

apply machine learning methods to the iBOCA (Imaging Brains of Children and 

Adolescents) study. iBOCA is an ongoing study which involves scanning 

medication-naïve children and adolescents who have been diagnosed with ADHD, 

healthy sibling controls and volunteers with no family history of ADHD. After the 

scan, the children and adolescents with ADHD began a trial of MPH. 

The iBOCA study was designed to be analysed with three different aims. The 

first was to replicate the accurate diagnostic classification between patients and 

controls (discussed in Chapter 5). If the work was able to be replicated it could 

increase confidence in the robustness of the method and results. 

The second and main aim was to attempt to classify between responders and 

non-responders to MPH. This has the obvious advantages of potentially providing a 

reliable predictor of treatment response prior to exposure of the medication. 

Furthermore, it has the potential to increase the understanding of the mechanisms 

which underlie MPH response.  

As discussed in Chapter 3, prediction of treatment response is a developing 

research area with a small number of studies reported in the literature. Chapter 4, 

which described the prediction of medication response using sociodemographic, 

clinical and neuropsychological measures, demonstrated that it is possible to predict 

MPH response in children and adolescents with ADHD. However, it is hoped that 

structural and functional MRI data, in addition to sociodemographic measures and 

clinical scores, could improve prediction accuracy further and feature selection 

techniques could reveal potential biomarkers of MPH response. 

Finally, the third aim of the study was to test the dopamine transfer deficit 

(DTD) theory of altered reinforcement mechanisms in ADHD as suggested by Tripp 

and Wickens (2008). This is explained in more detail in section 6.8. 

Structural MRI was the primary imaging modality that was intended to 

perform the classification analyses for several reasons. First, as structural MRI had a 

shorter duration than the fMRI scans it was less likely to suffer from motion artefact. 

Second, structural MRI has been reported to allow accurate predictions of diagnosis, 
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as described in Chapter 5 and in the literature. However, if a high enough quality 

fMRI dataset was obtained, it was planned that the classification analyses could be 

repeated using various contrast images, or a combination of fMRI contrasts and 

structural images. 

 

6.2 Recruitment Criteria 

 

Subjects were recruited through participation in an existing EU FP7-funded 

pharmocovigilance study (ADDUCE) at Ninewells Hospital and Medical School in 

Dundee, UK. Informed consent was obtained from all volunteers and their parents. 

The study protocols were approved by the local Ethics Committee. 

Initial diagnosis was made by experienced clinicians according to the 

Diagnostic and Statistical Manual of Mental Disorders-IV (DSM-IV) (American 

Psychiatric Association, 1994) criteria using the KIDDIE SADS semi-structured 

clinical interview. The inclusion criteria included children and adolescents aged 

between 10 and 17 years and an IQ>70 (as assessed by the BPVS).  

Exclusion criteria included potentially confounding diagnoses – any other 

psychiatric disorder, including autism spectrum disorder, schizophrenia, bipolar 

disorder, depression, Tourette’s or major neurological disorder. All subjects were 

required to be medication-naïve.  

The primary outcome measure is clinical response, measured using the 

ADHD rating scale with responder status defined according to the methods of 

Jacobson and Truax (Jacobson and Truax, 1991) to define whether there has been 

clinically significant change and clinically meaningful response after six months of 

MPH treatment. 

Typically developing controls were recruited from healthy siblings of 

children with ADHD and volunteers with no family history of ADHD. All controls 

underwent psychiatric screening using the same interviews as the patient volunteers. 

None of the controls had a history of current or past psychiatric or neurological 

disorder and none were taking medication. Volunteers were compensated for 

participation in the study. 
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6.3 fMRI paradigm 

 

An event-related fMRI instrumental learning task involving reward processing was 

performed. The paradigm used was a modified version of the Pessiglione task 

(2006). This modified task has been previously applied in studies into MDD 

(discussed in Chapter 8) and drug addiction (Gradin et al., 2013).   

The aim of the task was that participants were required to attempt to win as 

many vouchers as they could whilst avoiding losing as many vouchers as possible. 

The volunteers were informed that they would be given a gift voucher with an 

amount dependent on how well they performed the task during the scan. 

The paradigm incorporated rewarding, neutral and aversive events into one 

task. One pair of novel fractal images was associated with each stimulus type (e.g. 

see Figure 26 where the reward pair is represented by a pair of square shaped images, 

the neutral – a pair of circular shaped images and loss – a pair of triangular shaped 

images). To remove the possibility that the fractal shapes were introducing a bias, the 

associations between the events and the pairs of fractal shapes were randomised 

across subjects. 

During reward trials there are two possible outcomes – either winning a 

voucher or there is no change in the number of vouchers. Conversely, the loss trials 

had two possible outcomes – either losing a voucher or there was no change in the 

number of vouchers. A neutral condition was also included whereby the number of 

vouchers would not be altered irrespective of the volunteer’s choice. The possible 

outcomes from each stimulus type are outlined in Figure 27. 
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Figure 26: The stimuli displayed during the modified version of the Pessiglione task. 

In this example the reward pair is represented by square-shaped fractal images, 

neutral by circular-shaped fractal images and the loss pair by triangular shaped 

fractal images but the shapes are randomly assigned to the 3 stimulus types. 
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Figure 27: The two possible outcomes for each stimulus type. The subjects were 

informed during task training that there was no difference between “No change in 

vouchers” and “Nothing”. 
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The full paradigm contained 240 trials in total (80 of each stimulus type). To 

reduce scanning time and increase tolerability for the children, the total number of 

trials was reduced to 180 trials (60 of each stimulus type). The task was separated 

into 3 scanning sessions of 60 trials (20 of each stimulus type) to allow volunteers to 

have a short break. Volunteers were informed during training that there would be no 

changes to the task between scanning sessions. Each session took approximately 15 

minutes to complete. 

At the beginning of each trial one pair of fractal images was presented, with 

the order of the fractal images being randomly assigned to the left or right of the 

screen. This was to ensure any potential bias towards a favoured hand or visual field 

did not have an effect on the overall results. The volunteer was required to choose 

between the left or right image using triggers in their hands. Once the choice was 

made, a red circle appeared around the selected fractal image. Subjects were 

instructed that there were no differences between images appearing on the left or the 

right and that the task is based on trial and error – therefore there is no way to get the 

favourable outcome on every trial. 

After three seconds from the beginning of the trial the images were replaced 

with a fixation cross, a small black “+” in the centre of a white background. If the 

subjects did not respond within the first three seconds then no feedback was given, 

and the fixation cross remained in place for the following four seconds of the trial. 

However, it was made clear to the participants that they should always make a choice 

(to avoid tactical play whereby non-response during the lose trials would result in a 

good outcome). In trials where subjects responded within the time limit, the fixation 

cross was shown for three seconds and the corresponding feedback was given for the 

final second of the trial. 

The scan was optimised for detection of the neural signals of interest for 

event-related fMRI, such that the inter-trial interval varied over the course of the 

paradigm using a program called optseq2 

(http://surfer.nmr.mgh.harvard.edu/optseq/). During the inter-trial interval a fixation 

cross was displayed for a variable amount time, ranging between 3 and 13.75 

seconds. Figure 28 displays an example trial which illustrates the sequence of images 

and the task timing. 

  

http://surfer.nmr.mgh.harvard.edu/optseq/
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Figure 28: An example trial to illustrate the sequence of images and the task timing. 

In this example the circular fractal pair is the neutral pair (as in Figure 26). This 

illustration displays the example when an image was selected within the time limit of 

3 seconds (precisely after ‘x’ seconds in this example). As this was a neutral pair 

there were two possible outcomes: “No change in vouchers” and “Nothing” (which 

are essentially the same thing – see Figure 27 for the possible outcomes for each trial 

type). Each trial took between 10-20.75 seconds depending on the inter-trial interval.  
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The participants were not informed before undertaking the task that each pair 

of images had one image which had a high probability (0.7) of giving a favourable 

reward (winning a voucher or avoiding losing one) and a lower probability (0.3) of 

delivering an unfavourable reward (not winning a voucher or losing one) whilst the 

other image had the reversed outcome probabilities. The Pessiglione task, on which 

this paradigm was based, used a 0.8/0.2 ratio (Pessiglione et al., 2006) but it was 

decided that decreasing this to 0.7/0.3 would ensure that the subjects would not be 

able to identify the pattern too early in the task. To successfully complete the task, 

the subjects had to learn, by trial and error, which images were most likely to give 

the favourable outcome. 

 

6.4 Personal input towards the fMRI paradigm 

 

The paradigm used in the previous studies was written and optimised for event-

related fMRI in Presentation 

(http://www.neurobs.com/menu_presentation/menu_features/features_overview) by 

a former Research Assistant and Professor Steele. It is necessary to include details of 

the task in this thesis: a) to describe the basis for testing the DTD theory of Tripp and 

Wickens, and b) the author re-implemented the task using Psychtoolbox 

(http://psychtoolbox.org/HomePage) which runs in Matlab 

(http://www.mathworks.co.uk/products/matlab/). 

Re-implementing the paradigm required understanding the processes used in 

the original 'Presentation' coded version of the task, identifying relevant 

Psychtoolbox functions and then translating each component of the task into 

Psychtoolbox format. A particular issue was the recording of the fMRI scanner 

pulses at the same time as the behavioural data. This is an essential component of all 

fMRI paradigm data recordings as the task is required to start exactly after the 

'discard acquisitions'. In Dundee, this corresponds to the fifth scanner pulse (the first 

four brain images acquired are discarded due to scanner transients). This issue was 

resolved by writing code which could receive the two different data streams 

simultaneously via different ports (the behavioural information was received through 

a USB port and the scanner pulse timings were received through a serial port). 

A major benefit of the rewritten paradigm was that the overall paradigm 

timing was better than the old 'Presentation' version. This paradigm timing 

http://www.neurobs.com/menu_presentation/menu_features/features_overview
http://psychtoolbox.org/HomePage
http://www.mathworks.co.uk/products/matlab/
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improvement is easily seen when each version of the paradigm were compared by the 

time taken to complete the same task with the same responses for one session. By the 

end of one session, the Presentation code overran the intended timing of the task by 

six seconds. In comparison, the Psychtoolbox code remained within 0.39 seconds of 

the correct full session timing. This was possible due to a custom “timing correction 

function” which was created to dynamically (as the task was running) adjust for any 

time delays. As can be seen in Figure 29, at all time points, the Presentation code 

took longer than intended whereas the Psychtoolbox based code varied between 

taking more and less time for each picture presentation (including the fixation cross 

image). This led to the mean deviation from the requested timing for each picture 

appearance in the Presentation code being 0.019 seconds in comparison with 0.001 

seconds in the Psychtoolbox code.  

This improved overall timing came at a slight cost, however, as the maximum 

range of timing deviations over the whole session was larger in the Psychtoolbox 

code than in the Presentation code (0.70 and 0.03 seconds respectively). This larger 

range is due to a small number of larger corrections being required during the 

“timing correction function” in order to “catch up” with the correct timing. This is 

not a significant concern though because it can be argued that having a larger range 

of timing deviations and more accurate timing overall is more important than the 

converse situation. 

In addition to writing the paradigm, the author was also able to resolve a 

problem in the scanner which was identified in the Psychtoolbox code but not in the 

old Presentation code. The issue which occurred was that there were two types of 

pulses being received in the logfiles, the correct ones from the scanner and some 

“phantom pulses” which occurred randomly throughout a number of fMRI sessions. 

As the Psychtoolbox code identified this randomly occurring “phantom pulse”, it 

prompted an investigation to identify the potential source of this issue. It was 

discovered that the issue came from a connection between the hardware which 

receives the behavioural data and the hardware which receives the scanner pulses. 

This connection is required for another experimental fMRI set-up but it is 

unnecessary for the configuration in this study. Once this cable was disconnected the 

issue was resolved. In order to prevent the same issue from re-occurring, custom 

code to check for such phantom pulses was written. 
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Figure 29: Comparison between the timing of the Presentation code (left) and the 

Psychtoolbox code (right). The Psychtoolbox code (written by the author) shows an 

improved overall timing over the same session with identical responses. 
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6.5 Review of the Practicalities of Scanning Children and Adolescents 

  

As this was the first child and adolescent neuroimaging study this research group had 

performed, the practicalities of scanning children and adolescents, particularly 

studies into childhood ADHD, were investigated and reviewed in the literature 

before the study began. Typically it takes about 7 min to obtain a high spatial 

resolution T1 weighted ‘structural’ Magnetic Resonance scan. From a subject’s 

perspective, the main requirement for the acquisition of high quality T1 data is to 

remain still during the scan, to avoid motion artefacts. In contrast, paradigm based 

fMRI is much more demanding for participants. Task-based fMRI scans require both 

comprehension of, and cooperation with, a paradigm whilst still ensuring head 

motion is minimised. Paradigm based fMRI studies of children and adolescents can 

therefore provide an indication of practical limits of the study design for this thesis. 

Findings from the fMRI results such as: success rates in completing the planned 

scans to an acceptable quality, typical total number of patients scanned in a study, 

length of time each subject was in the scanner, and the effect of medication on 

reducing motion artefact in the case of ADHD can provide useful information for 

potential success rates, study sizes, scan time tolerance rates and the effect of 

medication on scan success in future studies. 

Most children have difficulty in remaining motionless for prolonged periods 

and it would be reasonable to assume that this represents a greater challenge for 

children with disorders such as ADHD, where over activity is by definition, common 

(Banaschewski et al., 2010). During fMRI scanning, small movements of more than 

a single voxel of the head can render scan data uninterpretable by introducing 

movement artefact. It is therefore relevant to consider to what extent children are 

able to remain motionless and therefore, typically how long they would likely be able 

to tolerate scanning. It is also important to determine whether children can maintain 

task performance without head movement. Within fMRI, a ‘successful scan’ has 

been defined as “completion of the fMRI run with acceptable head motion and 

adequate task performance” where the criterion for “acceptable head motion” is less 

than one voxel of movement in any direction during a run (Yerys et al., 2009). 

In a study by Yerys et al. (2009), the success rate of completing single fMRI 

sessions across all subjects, all sessions for all subjects, and at least one session was 

investigated for children and young people with ADHD, ASD and epilepsy as well as 
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matched, typically developing controls. The authors concluded that, in comparison to 

controls, there was a significantly lower success rate for completing a single fMRI 

session in ADHD children. Specifically, the mean success rate for completing a 

single session for ADHD children (both on and off MPH) was 78%, whereas the 

mean success rate for age, IQ and gender matched controls was 96%. The lowest 

success rate for completing a single session was with children and adolescents with 

ASD where a 70% successful scan rate was achieved. Yerys et al. (2009) reported 

that, on average, only 50% of all ADHD patients (both on and off MPH) were able to 

complete an entire fMRI study, compared to an 88% completion rate for controls. 

They also reported that 95% of both the medicated and unmedicated ADHD subjects 

successfully completed at least one session in an fMRI battery. Furthermore, the 

percentage of ADHD children who successfully completed at least one session in an 

fMRI battery was higher than both the epilepsy group (93%) and the ASD group 

(81%).  

The main conclusion drawn by the authors was that in scanning children and 

adolescents with disorders such as epilepsy, ADHD and ASD, an extra 20-30% more 

patients should be recruited into studies, to compensate for anticipated failure to 

acquire successful scans. The authors also recommended recruiting an additional 10-

20% healthy control participants (Yerys et al., 2009). For more information relating 

to these important findings the reader is referred to Yerys et al. (2009). 

There is, however, some evidence that an additional 20-30% of patients might 

not always be sufficient to compensate for failed scans. Durston et al. (2003) had to 

exclude 50% (7/14) of ADHD patients’ fMRI data due to excessive head motion 

artefacts. Whilst such a low scanning success rate does not appear to be common in 

the literature, the exclusion of patient data due to artefacts is often not clearly 

discussed within study reports. Of those studies that did discuss the exclusion of data, 

the next largest percentage of data which had to be excluded (due to excessive head 

motion) were from three studies with exclusion rates of ~30% (Wang et al. (2009) - 

34.5% (10/29), Fassbender et al. (2009) - 29.4% (5/17), and Zhu et al. (2008) - 25% 

(3/12)). 

A particularly important factor affecting scan success rate is the age of the 

subjects. Indeed, Yerys et al. (2009) suggested that effect of age may in fact be as  

significant as the disorder. For example, ADHD patients aged 7-9 years completed a 

single session only ~70% of the time (both on and off MPH) whereas those aged 10-
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12 years achieved a success rate of ~82% (both on and off MPH). The success rate of 

these age groups completing an entire fMRI study was also consistent with this. On 

average, 43% of 7-9 year olds with ADHD (both on and off MPH) completed an 

entire fMRI study and in comparison an average of 54% of 10-12 year olds with 

ADHD patients (both on and off MPH) completed an entire study. The association 

with increased fMRI scanning success rate with age was also found with the other 

clinical groups (epilepsy and ASD) and the healthy controls. 

With respect to medication effects, Yerys et al. (2009) reported no significant 

difference in fMRI task success rate between medicated and unmedicated subjects 

with ADHD. There was an equal (50%) success rate in completing an entire fMRI 

study and the success rate of single runs was 79% and 77% for medicated and 

unmedicated ADHD patients respectively, with 48% of ADHD patients failing at 

least one session while on or off MPH.  

Excessive head motion is the most common cause of failure of fMRI 

scanning. Yerys et al. (2009) reported that medicated ADHD patients had the lowest 

percentage of failed runs due to excessive head motion, including when compared to 

healthy controls. Unfortunately, the reason why the medicated ADHD patients’ 

overall success rate was equal to the unmedicated ADHD patients’ overall success 

rate is not clear, as medicated ADHD patients failed a larger number of sessions 

classified by the authors as due to “other” reasons.  

When reviewing the literature of fMRI studies in ADHD it was discovered 

that 16.4 children and adolescents with ADHD and 15.3 controls (including only 

those used in the analysis) were included, on average, in the thirty-two studies 

investigated (a full list of the ADHD subjects scanned in the thirty-two fMRI studies 

is shown in Table 7). The largest number of ADHD patients scanned in a study was 

52 (Yerys et al., 2009), the smallest number of ADHD patients scanned (not 

including patients that were scanned but later excluded from the study) was 7 

(Durston et al., 2003). Desmond and Glover (2002) suggest that including 12 

subjects in an fMRI scanning study would be adequate to find voxel differences at a 

low significance threshold of p<0.05, however this depends entirely on the effect size 

of interest (smaller numbers of subjects result in a lower power to detect differences 

that are actually present, therefore an increased risk of type II errors). They also 

suggest the number of subjects must be doubled if a higher level of significance is 

required. As the average number of ADHD patients and controls in the thirty-two 
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studies reviewed was 31.7 subjects then it is clear that some studies may have 

required more subjects to obtain higher statistical power (Cohen, 1977). 

Consequently studies that have a low number of subjects and find negative results are 

of less interest as a null result could be due to a lack of statistical power. However, a 

study that rejects the null hypothesis, regardless of the number of subjects, is of more 

interest, as the result is significantly different from what would have been expected 

by chance. 

Statistical power can be difficult to estimate for neuroimaging studies as it 

varies from brain region to brain region; some brain regions (e.g. medial 

orbitofrontal cortex, inferior temporal lobes) adjacent to air filled spaces in the head 

(e.g. nasal sinuses, ear canals) are additionally affected by signal dropout (the 

‘susceptibility’ artefact), and statistical power is further affected by other factors 

such as poor image quality. For individual subject MVPA studies it is generally 

thought that even more subjects are required to achieve high accuracy and 

generalisability of predictions. In all fMRI studies discussed in this brief review, the 

total duration for an fMRI study was restricted to 30 minutes or less. 

In summary, when scanning children and adolescents, the time taken for 

scanning should be kept to less than 45 min and short breaks between sessions may 

help to minimise head movement and maintain task performance. This is consistent 

with Ernst and colleagues who suggest that studies should last ≤ 30 minutes for 

children younger than 8 years old but that children up to 12 years old may manage a 

scan of around 45 minutes (Ernst et al., 2003). Ernst et al. also recommend that 

children should receive training on how and when to remain still (Ernst et al., 2003). 

The literature therefore recommends that the planned number of subjects recruited 

for studies should be increased by 20-30% to compensate for expected failed scans 

(Yerys et al., 2009) if scanning children older than 12 years, or increased by ~50% if 

predominately scanning children in the 7-12 age range. 
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Table 7: The number of ADHD subjects in a selection of fMRI studies. 

fMRI Study Number of ADHD patients 

included in the analysis 

Number of controls included 

in the analysis 

Adler et al. (2005) 11 (bipolar + ADHD) 11 (bipolar only) 

Anderson et al. (2002) 10 6 

Booth et al. (2005) 12 12 

Brotman et al. (2010) 18 37 

Cao et al. (2008) 12 13 

Cao et al. (2009) 19 23 

Durston et al. (2003) 7 7 

Durston et al. (2006) 11 11 

Durston et al. (2007) 22 22 

Epstein et al. (2007b) 20 9 

Epstein et al. (2009) 10 14 

Fassbender et al. (2009) 12 13 

Hoekzema et al. (2010) 19 0 

Kobel et al. (2009) 14 12 

Konrad et al. (2006) 16 16 

Mostofsky et al. (2006) 11 11 

Passarotti et al. (2010) 11 15 

Peterson et al. (2009) 16 20 

Pliszka et al. (2006) 17 15 

Rubia et al. (2009b) 20 20 

Rubia et al. (2009a) 13 13 

Rubia et al. (2010a) 20 20 

Rubia et al. (2010b) 14 20 

Shafritz et al. (2004) 15 14 

Solanto et al. (2009) 20 0 (comparing ADHD 

subtypes) 

Suskauer et al. (2008) 25 25 

Vaidya et al. (2005) 10 10 

Van ’t Ent et al. (2009) 27 27 

Wang et al. (2009) 19 20 
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Yerys et al. (2009) 52 32 matched with the ADHD 

group (137 total) 

Zang et al. (2007) 13 12 

Zhu et al. (2008) 9 11 
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6.6 Practical Aspects of Preparing Volunteers for Scanning  

 

In order to prepare the volunteers for the scan, they required training to be able to 

play the task. The same fMRI paradigm was used for the task training but with 

different stimuli used, so children had not learned about the scanner stimuli 

contingencies before scanning. This training paradigm was also re-written in 

Psychtoolbox.  

As mentioned above, it has been reported that scan success rate in a 

paediatric population (and in particular those with ADHD) is improved with the use 

of a mock scanner (Epstein et al., 2007a; Slifer et al., 2002). However as 

professionally made mock scanners are expensive and require a large area, a low-cost 

version, with the key components was created instead. The main ideas behind the use 

of a mock scanner are the ability to practice performing the fMRI task whilst lying 

down, practising the button presses without looking away from the screen and also 

knowing the importance of minimising head motion during the scan.  

To create a mock scanner, a sturdy camp bed was used with a mirror attached 

to a home-made frame used to display a laptop screen positioned on a table at the top 

of the camp bed. As the volunteers were required to view the screen using a mirror, 

the computer display had to be mirrored to compensate. The design of the mock 

scanner is shown in Figure 30. 

In order to replicate the scanner environment further, a USB PC gaming pad 

was partly disassembled and wires soldered to the motherboard. The other ends of 

these wires were soldered to basic “push to connect” buttons. To make these buttons 

easier to use and more “child friendly” they were attached to basic hand grips. In 

order to translate PC gaming pad key presses into the equivalent of keyboard presses 

(the method the behavioural results were output from the scanner), JoyToKey 

(http://www-en.jtksoft.net/) software was customised to the relevant key presses. 

http://www-en.jtksoft.net/
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Figure 30: The mock scanner setup used to train volunteers in the iBOCA study.  
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Finally, in order to educate children and adolescents about the importance of 

minimising head motion, a bright white light was set-up at the top of the camp bed 

(underneath the table with the laptop and just above the volunteer’s head) and a large 

projection screen was set-up at the foot of the camp bed. Once the volunteer became 

confident in performing the task they were asked to continue playing while the light 

was switched on. When positioned correctly, the light casts a large shadow of the 

volunteer’s head on the projection screen, allowing them to view how much their 

head moved while performing the practice task. The volunteers were taught the 

importance of keeping their head as still as possible to get the best possible pictures 

and were invited to continue performing the task while monitoring their head 

movement. In addition the volunteers were invited to try various movements (such as 

kicking their legs) to see how much it might affect scan quality.  

A pilot study identified an additional method that could potentially reduce 

anxiety in a young population prior to the scan. In addition to this basic mock 

scanner set-up for task training, volunteers were invited to listen to the various noises 

they would hear during the scan. These were 10-20 second recordings, acquired by 

the author, of the five scan types they would undergo. If a volunteer opted to listen to 

the scanner sounds the author talked them through each of the five scan types with 

information provided of how long each would take alongside the noises they should 

expect. 

The author prepared the majority of the volunteers for their scans. 

 

6.7 Practical Aspects of Scanning: Data quality checks 

 

In addition to re-implementing the fMRI paradigm and being involved with scanning 

preparation, the author made sure that the data quality was also checked after each 

scan. This was considered crucial to identify any problem with scanning that could 

be rectified before the next scanning session.  It involved visual inspection of the 

images, normalising the structural and functional MRI data, and performing 'first 

level analysis' (of a random effects design) on the fMRI data. The normalisation was 

performed as described in the Methods section. The most important checks on the 

data were visual inspection for gross artefacts and inspection of the SPM calculation 

of the amount of movement in each direction, and the amount of rotation in each 

direction, over all sessions.  
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Acceptable scans were defined as those with no gross abnormalities (as 

checked during visual inspection). For fMRI scans, if movement greater than 1mm or 

rotation greater than 1° occurred in any direction between scans, the scans were 

further assessed to identify any artefacts. If a relatively large amount of movement 

occurred, one or more images in the fMRI volume would show gross artefacts. If the 

movement was over a short enough time such that only one image contained an 

artefact, replacing the image with the mean of the two neighbouring images was used 

as an approximate correction. However, if there were too many images with gross 

abnormalities then the subject had to be excluded from the analysis. 

Regularly performing data quality checks was also crucial as it determined 

whether a subject’s images met requirements to be included in the analysis and had 

the potential to identify and eliminate any potential systematic errors. Checking if a 

subject’s images meet requirements to be included in the analysis allows for the 

scanning success rate to be accurately evaluated as scanning proceeds, as above, 

highlighting if more needs to be done to improve data quality e.g. reduce head 

movement. Also, identifying potential systematic errors allows scanning problems to 

be identified and rectified much sooner, saving time and money on scanning. An 

example of the importance of regular quality assurance checks is the identification of 

the “phantom pulses”, discussed in section 6.4. This allowed potential problems to be 

identified swiftly and was resolved before another scan took place. 

 

6.8 Theory of ADHD Syndrome Mechanism: the Dopamine Transfer Deficit 

(DTD) Theory of Altered Reinforcement Mechanisms in ADHD 

 

A number of theories of ADHD have been proposed which could account for the 

aetiology of ADHD (Plichta and Scheres, 2013). However, the majority of these 

models do not provide testable hypotheses, unlike the DTD theory (Tripp and 

Wickens, 2008).  

The DTD theory proposes that children with ADHD have an abnormal 

sensitivity to positive reinforcement. This theory suggests that the mechanisms that 

cause this abnormal sensitivity occur due to an alteration in the magnitude and timing 

of anticipatory dopamine cell firing.  

When an unexpected reward is received, dopamine is released shortly after 

the reward event. As the learning between association of making a certain response, 
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such as choosing one of the presented stimuli, and receiving a reward increases, the 

release of dopamine increases at the response time (e.g. decision time) and decreases 

at the time of the actual reward delivery. The DTD theory proposes that the transfer 

of dopamine release from the reward/feedback time towards the response/decision 

time is abnormal in children with ADHD. The DTD theory is illustrated in Figure 31. 

The DTD theory centres around five key testable hypotheses. First, as 

learning proceeds, the dopamine response to the receipt of rewards is increasingly 

transferred to the decision/response time in healthy control children (as shown in 

Figure 31(A)). Second, in healthy controls, this transfer of dopamine towards the 

response time is maintained when the reinforcement is either delayed or intermittent. 

The third postulate is that for children and adolescents with ADHD, the dopamine 

transfer discussed in the first postulate (dopamine response at the feedback time 

transferring towards the decision time) is abnormal; specifically, the dopamine cell 

response at the response time is lower than in healthy controls due to a failure to 

transfer the dopamine signal from the feedback time (as shown in Figure 31(B)). The 

fourth hypotheses in the DTD theory is that when children with ADHD receive 

intermittent or delayed feedback, dopamine signalling also becomes intermittent or 

delayed. In other words, if an association between a response and obtaining a reward 

is learned and then the reinforcement becomes delayed or intermittent, then the 

learned association is not maintained (the dopamine signal at the response time 

becomes delayed or intermittent also). Finally, if the feedback which is reinforcing 

the dopamine signal is discontinued, healthy controls tend to maintain their response 

longer than children with ADHD due to their increased anticipatory dopamine 

release taking longer to be extinguished. 

The modified Pessiglione paradigm used in the iBOCA study is well suited to 

test these five postulates of the DTD theory as it contains reward trials which involve 

learning which stimulus at the decision time would most likely provide a reward. In 

addition to testing the DTD theory on the reward trials, the paradigm will also test 

whether the theory requires additional considerations with respect to loss/aversive 

information.  
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Figure 31: (A) A pictorial representation of the expected magnitude and timing of 

anticipatory dopamine cell firing in controls, compared to (B) the abnormal 

dopamine cell firing in the DTD theory. The DTD theory suggests that children with 

ADHD fail to correctly adjust their dopamine cell firing rate from the reward 

reinforcement/feedback time towards the response time in anticipation of a reward. 
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6.9 Discussion  

 

The practicalities of scanning children and adolescents with ADHD were reviewed.  

For most children aged 12 years or older, the scanning time can be extended up to 45 

min but an extra 20-30% of subjects should be recruited to compensate for expected 

failed scans. If mostly younger children are planned to be scanned, the scanning time 

should not exceed 30 min and recruitment of ~50% extra subjects should be aimed 

for. Pre-scan training of children is important to maximise the scan success rate and 

was implemented in this study.  

The quality of scans is very important to allow interpretation of results.  

Gross scanning artefacts must be avoided, it is necessary to establish robust QA 

programs for neuroimaging research labs, and every scan should be visually 

inspected for artefacts, even within a large dataset. Therefore, data quality checks 

were performed after each scan to ensure the image quality was maintained at a high 

level throughout the study. 

Although recruitment of unaffected siblings of children and adolescents with 

ADHD is more frequently associated with genetics studies, it has been shown that 

unaffected siblings share some of the anatomical differences associated with ADHD 

and, as such, form an intermediate group (Castellanos et al., 2003; Durston et al., 

2004). For the analysis outlined in this chapter, unaffected siblings and healthy 

subjects with no family history of ADHD are combined in the healthy control group. 

The reason for this is that the unaffected siblings have not shown significant 

symptoms of ADHD despite the same genetic and environmental background of 

volunteers with ADHD and therefore differences in brain anatomy or function could 

help elucidate why the patient group developed these symptoms. Whilst this is a 

potential limitation of the study as fewer differences may be identified between the 

patient and controls groups, any differences identified may be more closely linked 

with ADHD symptoms. The inclusion of this group in the study also allows further 

investigation between the three groups, similar to the studies by Castellanos and 

colleagues (2003) and Durston and colleagues (2004). For example, differences 

identified between volunteers with a family history of ADHD and those with no 

family history of ADHD could be linked with risk factors of ADHD. 
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Unfortunately, due to a number of administrative, financial and recruitment 

delays in the study outwith the control of the author, there have been too few subjects 

successfully scanned for the planned analyses to take place.  

As the prediction between ADHD patients and healthy controls using 

structural MRI data has been performed previously, it is anticipated that this can be 

replicated once enough data are acquired. In addition, the potential of the use of 

fMRI data in classification algorithms is encouraging due to the results from the 

MDD study in Chapter 8, which uses the same fMRI paradigm (for different 

reasons). Diagnostic classification analyses and testing of the DTD theory may 

increase the understanding of ADHD mechanisms. Additionally, the prediction of 

MPH response in children and adolescents with ADHD could have a substantial 

impact on the understanding of the mechanisms which support MPH response and, 

potentially, future clinical practice. 
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Chapter 7: Diagnostic Classification and Prediction of 

Symptom Severity in MDD 

 

7.1 Introduction 

 

MDD is a mood disorder which is associated with persistent and disabling symptoms 

of low mood, anhedonia, hopelessness, guilt, low self-worth, poor concentration, 

lack of energy, suicidal thoughts and altered appetite and sleep (American 

Psychiatric Association, 2000) with no established pathophysiological mechanisms 

or biomarkers. There have been a large number of studies which have reported 

group-level differences in brain structure between patients with MDD and healthy 

controls, the majority of which have reported reductions in MDD patients’ grey 

matter volume compared with healthy controls (Fu et al., 2003; Haubold et al., 2012; 

Koolschijn et al., 2009; Shah et al., 1998).  

Grey matter abnormalities in MDD subjects, compared with healthy controls, 

have been identified most consistently in the bilateral rostral anterior cingulate cortex 

(Bora et al., 2012). Kempton et al. (2011) reported that MDD subjects had larger 

lateral ventricular and CSF volumes compared with controls. Other regions reported  

to have decreased grey matter volume in at least one meta-analysis include the 

putamen, caudate, insula, globus pallidus, thalamus, hippocampus and many areas 

within the frontal lobe (Bora et al., 2012; Kempton et al., 2011; Koolschijn et al., 

2009). The amygdala and thalamus volumes were reported to show no significant 

differences between groups by Kooschijn et al. (2009) but the latter was found to be 

decreased in MDD patients in a more recent meta-analysis by Kempton et al. (2011).  

To the author’s knowledge, no white matter (T1 weighted MRI) VBM studies 

have been reported in MDD. However a number of DTI studies have been reported. 

All studies either found no significant differences in fractional anisotropy (FA, a 

measure of the level of direction/orientation of water diffusion) between groups 

(Kieseppä et al., 2010; Korgaonkar et al., 2011) or only decreases in FA (Cole et al., 

2012; Li et al., 2007; Ma et al., 2007; Steele et al., 2005; Zhu et al., 2011; Zou et al., 

2008). A decrease in the FA in the anterior limb of the internal capsule is the most 

consistently replicated finding (Cole et al., 2012; Zhu et al., 2011; Zou et al., 2008). 

Other regions which have been identified as having reduced FA in MDD subjects 

include the parahippocampal gyrus, posterior cingulate cortex, corpus callosum, 
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superior longitudinal fasciculus, anterior corona radiate, superior and middle frontal 

gyri, lateral occipitotemporal gyrus, and subgyral and angular gyri of parietal lobe 

(Cole et al., 2012; Li et al., 2007; Ma et al., 2007; Zhu et al., 2011; Zou et al., 2008). 

In addition, mean diffusivity (MD, a mean of the amount of water diffusion) was 

found to be increased in the MDD group in comparison with controls in the corpus 

callosum (Cole et al., 2012). 

Regions identified using VBM provide information about group level 

differences.  In contrast, techniques based on machine learning such as SVM, which 

include additional techniques such as feature selection, can determine which brain 

regions consistently differ between groups in order to produce an accurate individual 

subject classifier. Kipli et al. (2013) tested four different feature selection techniques 

with four different machine learning methods by attempting to classify structural 

MRI images (using information extracted from structural MRI e.g. volumes of 

various structures) of depressed individuals and healthy controls. The author 

suggested that the Information Gain algorithm outperformed OneR, SVM (using 

RFE) and ReliefF feature selection methods as it achieved the highest average 

accuracy (72%) when applied to four different classifiers (Kipli et al., 2013). As 

mentioned in Chapter 3, a concern is, however, that 77% (88/115) of subjects in this 

study belonged to the control group, and as the sensitivity and specificity of the 

results are not reported, it is unclear if the large class imbalance is an issue. Another 

study that focused on the results from various feature selection methods, attempted to 

predict diagnosis between bipolar disorder and healthy controls, achieving accuracies 

ranging between 60-90% (Termenon et al., 2013). Also, Costafreda et al. (2009a) 

used machine learning to classify MDD subjects and healthy controls, achieving 68% 

accuracy. 

A multicentre study by Mwangi et al. (2012a) successfully classified 

structural MR images between people with depression and healthy controls with the 

images obtained over two scanning centres. Mwangi et al. (2012a) implemented both 

an SVM and RVM approach with the latter achieving a slightly higher classification 

accuracy (90%). In that study, grey matter volume reductions were identified in 

MDD compared to controls in the dorsolateral prefrontal cortex, medial frontal 

cortex, orbitofrontal cortex, temporal lobe, insula, cerebellum and posterior lobe. 

Mwangi et al. also used RVR to predict illness severity (Mwangi et al., 

2012b). In that study, they found that it was possible to significantly predict the BDI 
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scores from the whole-brain structural MRI scans, but not the HAM-D (Mwangi et 

al., 2012b).  

This is the only study which has applied machine learning to predict 

individual severity scores in MDD, but there are a few studies which have calculated 

group level correlations with severity scores. The majority of these studies have 

performed correlation analyses with the HAM-D score. Vakili et al. (2000) found 

that the bilateral hippocampal volume was negatively correlated in males, but not 

females. Studies have also identified the bilateral dorsal prefrontal, bilateral medial 

frontal, inferior and superior frontal, orbitofrontal and cingulate cortices, bilateral 

temporal fusiform gyrus, occipital lobe, inferior temporal gyrus, 

amygdala/parahippocampal gyrus and postcentral gyrus as brain regions which are 

negatively correlated with the HAM-D score in MDD subjects (Chen et al., 2007; Li 

et al., 2010). In addition, a positive correlation between the HAM-D score and the 

occipital cortex and cerebellum were identified (Chen et al., 2007). The only study 

which reported significant correlations with the BDI score found that decreased grey 

matter volume in the right planum temporale correlated with an increase in BDI 

score (Takahashi et al., 2010), however, Kim et al. (2008) could not find a 

significant correlation between BDI scores and volume estimates within a number of 

a priori regions of interest. To the author’s knowledge, no study has performed a 

correlation between structural MRI and Montgomery-Åsberg Depression Rating 

Scale (MADRS) scores. 

Again, as there are no reports of white matter structural MRI correlations 

with symptom severity scores, correlations identified using DTI can be used to 

determine changes in white matter volume. Li et al. (2007) found no correlation 

between any of the prefrontal ROIs investigated and HAM-D scores but Zou et al. 

(2008) found that the anterior limb of the internal capsule, the region that was most 

frequently reported to have decreased FA in MDD subjects compared to controls, 

negatively correlated with the HAM-D score. The same region was also identified as 

negatively correlating with the Center for Epidemiologic Studies Depression Scale 

(Zhu et al., 2011). FA values within the corpus callosum and posterior tracts of 

subjects with MDD have also been found to negatively correlate with BDI scores 

(Cole et al., 2012). 

The main goal of the work described in this chapter was to attempt to 

accurately classify structural MRI scans of MDD patients and healthy controls and to 



 - 139 - 

investigate whether symptom severity scores could be accurately predicted in the 

patient group, similar to the studies by Mwangi et al. (2012a; 2012b). The machine 

learning studies discussed all used grey matter structural MR images only. White 

matter images are less frequently investigated and this is the first work applying 

machine learning techniques to T1 weighted white matter images from patients with 

MDD.  

 

7.2 Method 

 

7.2.1 Subjects 

 

Structural T1 weighted scans were obtained from subjects at the Clinical Research 

Centre, Ninewells Hospital and Medical School in Dundee, UK. Informed consent 

was obtained from all volunteers. The study protocols were approved by the local 

Ethics Committee. 

Twenty adults with a past or present diagnosis of MDD were recruited from 

the Advanced Interventions Service in Dundee. Diagnoses were made by 

experienced clinicians according to DSM IV criteria using the MINI PLUS interview 

schedule (Sheehan and Lecrubier, 1992). Exclusion criteria included potentially 

confounding diagnoses – any other primary psychiatric disorder, substance misuse or 

significant head injury. 18 MDD participants were being treated with one or more 

anti-depressant medication (venalfaxine (6), sertraline (3), trazodone (3), citalopram 

(2), fluoxetine (2), isocarboxazid (2), mirtazapine (2), ltryptophan (1), phenelzine 

(1), tranylcypromine (1)). In addition, 7 MDD participants were being treated with 

anti-psychotic medications (quetiapine (6) and chlorpromazine (1)) and 3 MDD 

participants were being given lithium augmentation.  

Twenty-one healthy, never-depressed controls were recruited mostly from 

partners, relatives and friends of patients and underwent psychiatric screening using 

the same semi-structured interview schedule as the patient volunteers. None of the 

controls had a history of current or past psychiatric or neurological disorder and none 

were taking medication. 

All MDD and control volunteers had a predicted premorbid Full Scale 

Intelligence Quotient above 106 (one control was not assessed for IQ) as assessed by 

the National Adult Reading Test (NART). Handedness was assessed using the EHI 

(Oldfield, 1971). Apart from 2 left-handed subjects in the control group and 1 and 3 
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ambidextrous subjects in the control and patient groups respectively, all subjects 

were right-handed (although one control and one patient could not be reported due to 

incomplete data). 

 

7.2.2 Image Acquisition 

 

For each participant structural whole-brain images were acquired using a 3T Siemens 

Magnetom TrioTim syngo scanner using a T1-weighted MP-RAGE sequence with 

the following parameters: TR = 1900 ms, TE = 2.64 ms, flip angle = 9°, FOV = 200 

mm, matrix = 256 x 256, 176 slices, voxel size 0.8x0.8x1 mm, slice thickness 1 mm.  

 

7.2.3 Image Pre-processing 

 

All scans were visually inspected for artefacts and particular care was taken to 

identify motion artefacts which appear as blurring or ‘ghosting’ (McRobbie et al., 

2010). No scans showed blurring, ghosting or other gross artefacts. No scans were 

excluded from analysis. 

Pre-processing was performed using SPM8 

(http://www.fil.ion.ucl.ac.uk/spm). The procedure involved segmentation of T1 

weighted images into separate grey matter, white matter and CSF compartment 

images and normalisation of the grey and white matter segmented images towards to 

the default SPM8 anatomical template. The resultant images were smoothed with an 

8 mm FWHM Gaussian kernel.  

In addition to the standard segmentation, warping and smoothing steps, a 

modulation step was included, as recommended in the SPM manual for structural 

MRI normalisation. This means that if a region is increased in volume during 

normalisation then the intensity within the region is proportionally reduced to 

preserve the overall intensity and, correspondingly, if the region’s volume is 

decreased the intensity is increased accordingly. 

 

7.2.4 Neuroimaging data quality - Outlier analysis 

 

As mentioned in Chapter 2, assessment of both the quality of the normalisation and 

the quality of each subject’s images is important before drawing conclusions from 

http://www.fil.ion.ucl.ac.uk/spm


 - 141 - 

the data. An outlier analysis, defined in section 2.7, was performed on the DARTEL 

pre-processed and standard VBM pre-processed images in this study (both using 

modulation, as suggested in the SPM8 manual (Ashburner et al., 2012)). This 

approach allows the identification of subjects with a high proportion of voxels which 

significantly differ from their corresponding group. As subjects would be expected to 

have a similar brain structure within each group, identification of many outliers in 

one subject suggests either the subject should not be included in the analysis due to a 

gross brain abnormality (which was not present in the rest of the group) or that the 

outliers were produced during the normalisation procedure. As all subjects were 

inspected for gross brain abnormalities, it is suggested that a high proportion of 

outliers may be due to limitations in the normalisation procedure. 

In general, the "Preserve Concentrations" (no modulation) alteration seemed 

to reduce the number of outliers in the subjects with the highest number of outliers 

when modulation was performed without dramatically altering the number of outliers 

in the other subjects. However, as modulation is suggested for structural MR images, 

DARTEL and standard VBM approaches with modulation were compared. 

The outlier analysis on the DARTEL processed images showed that the 

highest percentage of outliers in one subject was 11% for the grey matter images and 

13.7% for the white matter images. Two subjects had a percentage greater than 10% 

of their grey matter voxels as outliers and one subject for the corresponding white 

matter analysis. The mean percentages of outliers were similar in both the grey and 

white matter analysis (2.1% and 1.9% respectively) with a higher number of outliers 

in the control group in both cases. Figure 32 displays the DARTEL pre-processed 

results for both grey and white matter images, when each diagnostic group is 

considered separately, as in the outlier analysis. 
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Figure 32: A plot showing the percentage of voxels considered to be outliers in each 

diagnostic group (blue- controls, red- MDD) when using DARTEL. The dotted lines 

indicate the mean values for each diagnostic group and each imaging modality. 
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Using standard VBM, the subject with the highest proportion of outliers was 

found to have 13.5% of grey matter voxels considered outliers and, similarly, 9.7% 

of voxels was the maximum percentage of white matter outliers. Although the 

maximum percentage was higher in the grey matter images using standard VBM, the 

overall percentage was lower due to the drastically reduced maximum percentage of 

white matter outliers. Only one subject had a percentage of outliers greater than 10% 

in either the grey or white matter images – two fewer than when using DARTEL. In 

addition, the mean percentages of outliers were decreased in both grey and white 

matter images (1.9% and 1.8% respectively). The mean percentages of outliers for 

controls and patients were all reduced in comparison with the DARTEL approach, 

with the exception of patients’ white matter images. The difference in the percentage 

of outliers between patients and controls was also reduced using the standard VBM 

approach compared with DARTEL. Therefore, although the DARTEL approach has 

been reported to show greater pre-processing accuracy, it seems the DARTEL 

method may not be optimal for this dataset. Figure 33 displays the standard VBM 

pre-processed results for both grey and white matter images, when each diagnostic 

group is considered separately, as in the outlier analysis. 

On closer inspection, a trend was identified between basic brain statistics and 

the percentage of outliers when using standard VBM. Total brain size was identified 

to be significantly positively correlated (p = 0.001) with the percentage of white 

matter outliers, indicating that this method tended to be worse for normalisation of 

larger brains. In particular, a large CSF/brain ratio positively correlated strongly with 

the percentage of grey and white matter outliers (p= 0.011 and p < 0.001, 

respectively) which suggests the method struggles to normalise subjects with large 

ventricles. This is a concern as Elkis et al. (1995) identified a correlation between 

ventricular enlargement and MDD during a meta-analysis. Neither of these statistics, 

nor any other statistics investigated, correlated with the percentage of outliers when 

using DARTEL, therefore no justification for the poor performance of DARTEL 

normalisation could be identified.  
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Figure 33: A plot showing the percentage of voxels considered to be outliers in each 

diagnostic group (blue- controls, red- MDD) when using standard VBM. The dotted 

lines indicate the mean values for each diagnostic group and each imaging modality. 
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In a further investigation into the outlier issues, a third diagnostic group was 

investigated; an MDD neurosurgical group (i.e. the patients had received 

neurosurgery as treatment for refractory depression) of fifteen subjects (not discussed 

further in this thesis). The inclusion of this third group increased the number of 

outliers and the extent of outliers in the DARTEL-processed images. One subject in 

the non-surgical MDD group was found to have 25% outliers within the grey matter 

images and 18% outliers in the white matter images when compared with the other 

non-surgical MDD subjects. The number of subjects that had greater than 10% of 

their brain considered outliers with respect to their diagnostic group doubled in the 

control and non-surgical MDD patients for both grey and white matter. As standard 

VBM pre-processes each subject individually, the inclusion of the third group did not 

alter the number or extent of outliers using grey or white matter in the control and 

non-surgical group at all. Therefore, as standard VBM seemed to perform better with 

respect to outliers and was more robust to new data, this technique was used for pre-

processing the structural MR images. 

 

7.2.5 Individual Scan Classification 

 

Machine learning to allow individual predictions to take place was implemented in 

Matlab (The Mathworks Inc.) using an SVM toolbox (Schwaighofer, 2001), the 

PRoNTo toolbox for the RVR analysis (Schrouff et al., 2013) and custom Matlab 

scripts. 

SVM and RVR analysis both consisted of two stages: training the classifier, 

then testing the accuracy using data not used for training. In both cases, standard 

LOOCV was used for training with the SVM parameters being selected on the basis 

of training stage accuracy, whilst the RVR parameters were selected on the basis of a 

combination of three standard statistical variables: RMSE, MAE and Pearson’s 

correlation coefficient (R) as calculated using the toolbox 

(http://www.mathworks.com/matlabcentral/fileexchange/22020-goodness-of-fit-

modified/content/gfit2.m). 

Feature selection was used to identify brain regions supporting predictive 

classification. The feature selection method chosen during the SVM classification 

was a standard t-test, as implemented in the SPM toolbox. A t-test was performed for 

each LOOCV step (with the subject being classified removed from the training 

http://www.mathworks.com/matlabcentral/fileexchange/22020-goodness-of-fit-modified/content/gfit2.m
http://www.mathworks.com/matlabcentral/fileexchange/22020-goodness-of-fit-modified/content/gfit2.m
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process) with significance defined as p<0.05 at a whole brain corrected cluster level 

(Slotnick et al., 2003). The z-scores at each of the significant voxels were then 

ranked during LOOCV and the threshold, whereby voxels with z-scores above this 

threshold would be included in the classification, was optimised at the same stage as 

the SVM parameter selection, as described in Chapter 2. 

The RVR procedure was performed on patients only both with and without 

feature selection. The feature selection method selected for the RVR prediction 

involved multiple linear regressions as implemented in the SPM toolbox and the 

method for optimising the feature selection was analogous to the classification 

procedure and is described in more detail in Chapter 2. In addition, multivariate 

feature selection (RFE, as described in Chapter 2) was also tested to see if it could 

improve the prediction. RVR was used to investigate whether various symptom 

severity scores such as the HAM-D, the MADRS and the BDI could be predicted on 

individual subjects. Higher scores in each of these symptom severity scores indicate 

more severe symptoms of depression. As discussed in section 2.12, the RVR 

procedure assumes the variable being predicted (e.g. HAM-D, MADRS or BDI) is 

normally distributed. The Shapiro-Wilk test for normality found that each of these 

symptom severity scores satisfied this requirement. 

 

7.2.6 Group Level Comparisons 

 

The group level analysis involved performing the same calculations as described in 

the feature selection (excluding RFE) except the calculations were based on all 

subjects rather than all but the one dataset left out for classification. 

For the conventional group level VBM analysis, the null hypothesis of no 

difference in brain structure between patients and controls was tested using an 

unpaired t-test as implemented in SPM8. The group level regressions were 

performed as implemented in SPM8 using patients’ images and various symptom 

severity scores such as the HAM-D, the MADRS and the BDI.  

In both analyses, significance was defined as p<0.05 at a whole brain 

corrected cluster level (Slotnick et al., 2003).  

 

7.3 Results 

 

7.3.1 Participant Characteristics 
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Age and IQ did not differ significantly (t-test, p>0.1, excluding the control subject 

who failed to complete the IQ test from the IQ t-test calculation) and gender was not 

significantly different (as assessed by a chi-square calculation) between groups. The 

MDD group mean age was 51.8 years (standard deviation 11.2) mean IQ was 122.8 

(standard deviation 4.7). The control group mean age was 46.1 years (standard 

deviation 14.0) and the mean IQ 122.8 (standard deviation 5.8).  

The average HAM-D, MADRS and BDI illness severity rating scores in the 

MDD group were 16.1, 22.5 and 32.2, indicating depression severity in the moderate 

range. The degree of treatment-resistance was quantified by detailed inspection of 

the clinical notes rated according to the Massachusetts General Hospital (MGH-S) 

staging method (Fava, 2003). The MGH-S takes account of the number of failed 

‘adequate’ (i.e. exceeding a minimum dose and duration of a given medication) 

antidepressant treatment trials, including optimisation of antidepressant dose, 

antidepressant combinations and treatment augmentation. The average treatment-

resistance MGH-S score was 13.3 which is similar to a previous assessment of 

patients attending the AIS (15.5) and significantly greater than typical secondary care 

psychiatric (5.3) and primary care (0.5) treatment-resistance levels (Hazari et al., 

2013). 

These results are outlined in Table 8. 
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Table 8: Clinical descriptors for the MDD and healthy control groups in the 

structural MRI analysis. Variables are shown as mean (standard deviation). *chi-

square test with other tests being t-tests. 

 

 MDD Controls  

Age 51.80 (11.23) 46.14 (13.97) n.s. 

IQ 122.75 (4.71) 116.95 (27.38) n.s. 

Female/Total* 15/20 15/21 n.s. 

HAM-D 16.10 (5.58) 0.48 (0.93) <0.001 

MADRS 22.50 (7.97) 0.48 (1.03) <0.001 

BDI 32.20 (11.38) 0.43 (0.87) <0.001 

MGH-S 13.25 (10.49) N/A N/A 
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7.3.2 Individual Subject SVM Predictions 

 

A Gaussian SVM was used to analyse 20 structural MRI images of adults with a past 

or present diagnosis of MDD and 21 structural MRI images of control subjects 

matched for age, gender and IQ.  Feature selection was implemented using t-tests 

with a variable threshold which was optimised during cross-validation.  The analysis 

was done using the grey and white matter compartment of T1 weighted images 

separately. 

The analysis using grey matter images alone resulted in an individual subject 

predictive accuracy of 85% (sensitivity 0.85, specificity 0.86, χ
2
 = 17.7, p <0.0001).  

The analysis using white matter images alone resulted in a poorer accuracy of 

71% (sensitivity 0.45, specificity 0.95, χ
2
 = 6.9, p <0.0085).  

 

7.3.3 Brain Regions identified using Feature Selection 

 

When grey matter images were used for analysis, the largest regions supporting 

individual prediction at accuracy of 85% were identified in the caudate, insula, and 

periventricular grey matter. All the additional smaller regions which were used in the 

classification overlapped with the VBM results (discussed in section 7.3.4) aside 

from a few insignificant regions which rose above the significance level when the 

test subject’s image was not included in the t-test. Grey matter regions used in the 

classification are shown in Figure 34. 

When only white matter images were used for analysis, the largest brain 

region supporting 71% accuracy of prediction was in the cingulate gyrus. However, 

smaller regions in the posterior cingulate and the white matter deep to the insula 

were also identified. White matter regions used in the classification are shown in 

Figure 35. 
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Figure 34: Feature selection (Gaussian SVM) identified brain regions in grey matter. 

PV – periventricular grey matter; C - caudate; IN - insula. 
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Figure 35: Feature selection (Gaussian SVM) identified brain regions in white 

matter. CG – cingulate gyrus; PC – posterior cingulate; IN – white matter deep to the 

insula. 
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7.3.4 VBM Analysis (t-test) 

 

The brain regions identified using feature selection overlapped greatly with the 

results of the VBM group level analysis (p<0.05, whole brain level significance) as t-

tests were used in both cases (although the t-tests used during feature selection did 

not include the subject being classified and not all significant voxels from the t-tests 

were used in the prediction as it was thresholded). In the VBM analysis, mostly grey 

matter volume reductions were identified in patient group but a small number of 

increases were also found. As shown in Figure 36, the largest grey matter volume 

reductions were found in the caudate, insula, and periventricular grey matter. In 

addition, patients were also found to have significantly reduced habenula volume in 

comparison to controls. Identification of a reduced habenula volume is interesting as 

deep brain stimulation has previously been attempted in the lateral habenula in 

treatment resistant depression (Sartorius and Henn, 2007) and an MRC funding has 

recently been awarded to Dr Roiser to investigate “Habenula function in major 

depression”. 

The VBM analysis showed very few white matter volume reductions in the 

patient group such as white matter deep to the insula and a small region in the frontal 

lobe. Unexpectedly, an increase in patient’s white matter volume was identified in 

the cingulate gyrus and the posterior cingulate. Figure 37 shows the white matter 

VBM results. 

Figure 38 and Figure 39 also show the overlap between the VBM results and 

the results from the feature selection for grey and white matter respectively. It is 

unsurprising that these overlap so strongly as t-tests were used in both cases with the 

minor differences being that the t-tests used during feature selection obviously did 

not include the subject being classified and also as the t-tests were further optimised 

during feature selection, a subset of the significant voxels from the t-tests were used 

in the prediction. 
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Figure 36: Group level grey matter volume reductions in patients with MDD 

compared with healthy matched controls. PV- periventricular grey matter, C – 

caudate reductions, H – habenula and IN – insula. 
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Figure 37: Group level (a) reductions and (b) increases in white matter volume in 

patients with MDD compared with healthy matched controls. FR- frontal region, IN 

– white matter deep to the insula, CG – cingulate gyrus and PC – posterior cingulate. 
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Figure 38: Overlapping grey matter regions between features selected during 

classification (purple/blue) and regions selected in the VBM analysis (red/purple). 
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Figure 39 Overlapping white matter regions between features selected during 

classification (purple/blue) and regions selected in the VBM analysis (green/blue). 
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7.3.5 Whole Brain Individual Patient RVR Severity Score Predictions 

 

A linear kernel RVR was used to try to predict symptom severity scores (HAM-D, 

MADRS and BDI) using 20 structural MRI images of adults with a past or present 

diagnosis of MDD. The results outlined in this section are based on whole brain 

images (no feature selection, using either grey or white matter images separately).  

Using a linear kernel and whole brain grey matter images resulted in a 

significant correlation between the true and predicted HAM-D scores (RMSE = 

4.6963, MAE = 3.6212, R = 0.50712, p =0.0225). A significant correlation was also 

identified between the true and predicted MADRS scores (RMSE = 6.8328, MAE = 

5.441, R = 0.4822, p =0.0314).  

Using whole brain white matter images, the correlations increased in 

significance between the true and predicted HAM-D (RMSE = 4.1315, MAE = 

3.3398, R = 0.65662, p =0.0017) and MADRS (RMSE = 5.8122, MAE = 4.6029, R 

= 0.66422, p =0.0015) scores.  

The best fit line between true and predicted scores for both the HAM-D and 

MADRS predictions, and for both grey and white matter-based predictions, is shown 

in Figure 40 and the brain regions which had the highest weights are shown in Figure 

41. 

However, no significant positive correlations were found using the BDI 

scores using either grey or white matter images.  
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Figure 40: The best fit lines for whole brain severity score predictions (top: grey 

matter predictions, bottom: white matter predictions, left: HAM-D predictions, right: 

MADRS predictions). 
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Figure 41: The brain regions which were identified as the most predictive during the 

whole brain severity score predictions (top: grey matter predictions, bottom: white 

matter predictions, left: HAM-D predictions, right: MADRS predictions). 
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7.3.6 Individual Patient RVR Severity Score Predictions using Feature Selection 

 

Using feature selection to attempt to improve symptom severity score prediction over 

the whole brain predictions produced mixed results. When using thresholded 

multiple linear regression for feature selection, only the predicted BDI scores were 

significantly correlated with their corresponding true scores when using grey matter 

and a linear kernel (RMSE = 9.9218, MAE = 7.6304, R = 0.47901, p = 0.0326, 

shown in Figure 42). 

However, when using white matter images, the BDI score, again, could not 

be significantly predicted, but the HAM-D and MADRS scores were. Again, using 

thresholded multiple linear regression for feature selection, white matter images and 

a linear kernel, the HAM-D (RMSE = 4.545, MAE = 3.9984, R = 0.55618, p = 

0.0109) and MADRS (RMSE = 5.7784, MAE = 4.663, R = 0.68735, p = 0.0008) 

scores could be significantly predicted. The best fitting lines for each set of 

predictions is shown in Figure 43. 

Although these findings were significant when using thresholded multiple 

linear regression to perform feature selection, the linear trends identified were not 

quite as impressive as those shown in Figure 40, specifically, the white matter-based 

predictions without feature selection, and the level of noise in the prediction (as 

assessed by the RMSE and MAE values) was generally higher than those obtained 

using the whole brain calculations. Furthermore, the number of voxels and the brain 

regions identified in the predictions were too sparse and inconsistent to be confident 

in these results. Therefore, another feature selection approach was investigated to see 

if it could provide more reliable findings, RFE. As described in Chapter 2, the main 

issue when using RFE for feature selection is overfitting. This issue was controlled 

by reducing the number of folds during the inner N-fold cross-validation process 

which optimises the RVR and feature selection parameters. All RFE results 

described below used 3-fold cross-validation during optimisation of the training data 

and LOOCV on the outer cross-validation loop as this does not affect overfitting and 

maximises the data available to the training set.  

Using RFE on grey matter images provided the opposite result to those found 

using thresholded multiple linear regression and a linear kernel, namely, the BDI 

prediction was not significant and the HAM-D (RMSE = 4.5583, MAE = 3.6615, R 
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= 0.55464, p = 0.0111) and MADRS (RMSE = 6.6423, MAE = 5.9254, R = 0.54238, 

p = 0.0135) predictions were.  

The results are similar when using RFE and a linear kernel with white matter 

images, significant predictions are obtained for the BDI (RMSE = 9.5092, MAE = 

8.2958, R = 0.55068, p = 0.0119), HAM-D (RMSE = 4.7685, MAE = 3.6170, R = 

0.49548, p = 0.0263) and MADRS (RMSE = 6.5554, MAE = 5.8144, R = 0.56082, p 

= 0.0101). However, like thresholded multiple linear regression, the linear trends 

identified were not as compelling as the whole brain results and the average RMSE 

and MAE values are increased when using RFE when compared with the mean 

whole brain RMSE and MAE values. 

More promising results were obtained when a non-linear kernel, such as a 

Gaussian or RBF kernel, was used. When predicting HAM-D scores, both the 

Gaussian (RMSE = 3.5694, MAE = 2.7241, R = 0.76721, p < 0.0001) and the RBF 

(RMSE = 3.5715, MAE = 2.731, R = 0.764, p < 0.0001) kernels achieved a highly 

significant correlation between true and prediction scores, using RFE and white 

matter images. Furthermore, as seen in Figure 44, there is a clear linear trend 

between the scores and the RMSE and MAE scores are lower than the previous 

results using feature selection, demonstrating a better fit. The regions identified using 

RFE and non-linear kernels are shown in Figure 45. These results are less impressive 

for the MADRS predictions using a Gaussian (RMSE = 6.1539, MAE = 4.635, R = 

0.61211, p = 0.0041) and RBF (RMSE = 6.2768, MAE = 4.7325, R = 0.59312, p = 

0.0058) kernel but are still very significantly correlated. 
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Figure 42: The best fit line for the prediction of the BDI score using thresholded 

multiple linear regression feature selection and grey matter images. 
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Figure 43: The best fit lines for thresholded multiple linear regression-based white 

matter severity score predictions (left: HAM-D prediction, right: MADRS 

prediction). 
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Figure 44: The best fit lines for RFE-based white matter HAM-D predictions (left: 

Gaussian kernel, right: RBF kernel). 
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Figure 45: The regions identified using RFE-based feature selection on a non-linear 

kernel and white matter images to predict HAM-D scores (left: Gaussian kernel, 

right: RBF kernel). 
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7.3.7 VBM Analysis (Multiple Linear Regression) 

 

Multiple linear regressions were performed on patients’ grey and white matter 

images to see which regions positively or negatively correlate with symptom severity 

scores. As higher scores in each of these symptom severity scores indicate more 

severe symptoms of depression, it would be expected that negative correlations 

(whereby more severely depressed patients have less grey or white matter volume) 

would be more likely than positive correlations given the majority of the between 

group differences in this study and in the literature identify volume reductions 

compared with a control group. All results shown are p<0.05, whole brain level 

significance.  

The MADRS and HAM-D regressions gave similar results for both grey and 

white matter. Increased grey matter with increasing severity scores were found in the 

posterior cingulate gyrus and thalamus (shown in Figure 46). Also the anterior 

cingulate gyrus and basal ganglia were identified as having increased grey matter 

with increased MADRS score (Figure 46). Decreases were found in the 

hippocampus, medial orbitofrontal cortex and periventricular grey matter (shown in 

Figure 47 for HAM-D and Figure 48 for MADRS).  

Increased white matter with increasing severity scores were found in the 

posterior corpus callosum and medial corpus callosum (extending bilaterally as 

clearly shown in the MADRS calculation, Figure 49 (right)). Negative correlations 

were found in periventricular white matter, posterior brainstem, white matter deep to 

the putamen, various areas within the frontal lobe and for the HAM-D regression - 

the cingulate sulcus. These results are shown in Figure 49 and Figure 50. 

The grey matter correlation with the BDI scores identified increased grey 

matter volume in the cingulate sulcus and the lateral orbitofrontal area. The BDI 

regression showed that increased BDI severity scores correlated with reduced white 

matter volume (negative correlation) throughout the frontal lobe, the anterior corpus 

callosum, white matter deep to the basal ganglia, white matter deep to the thalamus 

and white matter deep to the ventral tegmental area. The significant regions from the 

negative correlations for grey and white matter are shown in Figure 51 and Figure 52 

respectively. Only a small region in the parietal lobe was found to have increased 

white matter with increased BDI score.  
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Figure 46: Group-level positive correlations between grey matter volume and HAM-

D (top) and MADRS (bottom). 
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Figure 47: Group-level negative correlations between grey matter volume and HAM-

D. 
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Figure 48: Group-level negative correlations between grey matter volume and 

MADRS. 
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Figure 49: Group-level positive correlations between white matter volume and 

HAM-D (left) and MADRS (centre and right). 
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Figure 50: Group-level negative correlations between white matter volume and 

HAM-D (A and B) and MADRS (C and D). 

 



 - 172 - 

 

Figure 51: Group level grey matter volume decreases in patients with MDD with 

increased BDI scores. 
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Figure 52: Group level white matter volume decreases in patients with MDD with 

increased BDI scores. 



 - 174 - 

7.4 Discussion 

 

The results show that when distinguishing MDD subjects and controls, grey matter 

may be more informative than white matter as it achieved the higher classification 

accuracy of 85% (compared with 71%). However, white matter was found to be 

more predictive of current symptom severity, both with and without feature selection, 

as assessed through the BDI, HAM-D and MADRS scores.  

Achieving a high classification accuracy using grey matter images is 

unsurprising as it has been reported in the literature at a comparable level (Costafreda 

et al., 2009a; Kipli et al., 2013; Mwangi et al., 2012a; Termenon et al., 2013). 

Although the white matter prediction achieved a lower significance than the grey 

matter, the result was still significant and it is the first study which has demonstrated 

that there are consistent differences between the white matter in MDD subjects and 

healthy controls which can distinguish subjects on an individual level with 

significant accuracy. 

The grey matter classification was driven by brain regions identified using 

feature selection. These brain regions included the caudate, insula and periventricular 

grey matter – all of which have been reported to be decreased in previous group level 

meta-analyses (Bora et al., 2012; Fu et al., 2003; Kempton et al., 2011; Koolschijn et 

al., 2009).  

All DTI comparisons between MDD and controls found no FA increases 

MDD subjects (Cole et al., 2012; Kieseppä et al., 2010; Korgaonkar et al., 2011; Li 

et al., 2007; Ma et al., 2007; Steele et al., 2005; Zhu et al., 2011; Zou et al., 2008) 

but the largest region identified in both the classification and VBM analyses was an 

increase of white matter in the cingulate gyrus. The cause of this increase is unclear; 

it is unlikely to be due to artefact as it would have to be a consistent artefact in one 

group compared to the other for the region to be included in the classification. The 

unexpected increase in white matter is unlikely to be due to outliers for the same 

reason. A limitation of this study is that a number of the subjects were taking anti-

depressant medication, however it is unclear what effect this would have on white 

matter as there have been no studies investigating this. Although psychiatric 

neuroimaging studies typically report reductions in volume, increases in white matter 

volume have been reported in other disorders such as ASD (Herbert et al., 2003; 

Herbert et al., 2004), treatment-naïve obsessive compulsive disorder (Atmaca et al., 
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2007), body dysmorphic disorder (Rauch et al., 2003) and schizophrenia (Suzuki et 

al., 2002). 

There are two different potential neurobiological explanations for this 

increased cingulate gyrus region. The simplest explanation is that there is a genuine 

increase of white matter in patients compared with controls in the cingulate gyrus. 

Although this might explain why a lesion in this area during a cingulotomy could 

alleviate symptoms, it is still unclear why this would not be reported in previous DTI 

studies. An alternative explanation is that modulation, which takes place during pre-

processing, increases the intensity of tissue in brain regions when the volume is 

decreased (and vice-versa) when normalising towards a template as modulation 

attempts to preserve the total amount of white matter across the whole brain. 

Therefore if the white matter volume around the cingulate gyrus was consistently 

larger in patients (in native space), then the intensity would be consistently increased 

in the same region after modulation. Increased white matter volume in the cingulate 

gyrus is a far more likely neurobiological explanation as it could be due to a number 

of things such as insufficient synaptic pruning during adolescence (Paus et al., 2008) 

or, more likely, a decrease in white matter integrity in the cingulate gyrus (Bennett et 

al., 2010). If white matter integrity was reduced in the cingulate gyrus then MD 

would be increased and/or FA would be reduced. In the DTI studies of MDD FA 

decreases have been reported in the posterior cingulate cortex and corpus callosum 

(Cole et al., 2012; Zhu et al., 2011) and the only study which reported MD 

differences found an increase in the corpus callosum (Cole et al., 2012) suggesting 

that white matter integrity was reduced around the cingulate gyrus. A reduction in 

white matter integrity may be due to cellular differences (such as the density of 

axons, the level of myelination, axonal diameter and inflammation) or larger, voxel-

sized differences (such as a decrease in the directional organisation of fibres within a 

bundle), it is possible that the increased white matter volume finding in the cingulate 

gyrus was identified due to a combination of these factors (Bennett et al., 2010). 

As this is the first comparison of the white matter (T1-weighted) images from 

MDD patients and controls, this finding requires replication. However, as all subjects 

in this study have DTI data, further investigation can take place to see if the cingulate 

gyrus differences are observable using DTI analyses and if further support for either 

of the arguments for a neurobiological difference between the groups can be 

acquired. 
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Mwangi et al. (2012b) found that they were able to predict the BDI score 

using whole brain grey matter images but not the HAM-D score. However, when 

using a similar approach, this study was able to predict HAM-D (and MADRS which 

was not discussed by Mwangi et al.) but not BDI. This discrepancy may be due to 

the fact that the present study had a wider range of symptom severity within the 

MDD group and/or because it is a single centre study. In any event, this work 

requires study of a larger dataset to investigate this issue further. The HAM-D and 

MADRS scores were both able to be significantly predicted based on both grey and 

white matter whole brain images, with the white matter images providing the best 

predictions of severity scores, whereas the BDI score could not be significantly 

predicted.  

Adding feature selection to the process did not dramatically improve the 

results. Using univariate feature selection, the grey matter images were able to 

predict the BDI scores but could no longer predict the HAM-D and MADRS scores 

significantly and the white matter results gave a poorer fit compared with the whole 

brain white matter results. Multivariate feature selection (RFE) improved the 

significance level of the grey matter MADRS and HAM-D predictions (compared 

with the whole brain results) and all three variables were significantly predicted 

using white matter images and RFE. However, there is a concern that, although the 

predicted values correlate with the true scores, the mean absolute error and root mean 

squared error values are higher than the corresponding whole brain, meaning that the 

prediction contains more noise. One particularly interesting result was the addition of 

non-linear kernels to RFE predictions. Although non-linear kernels did not improve 

the results using whole brain images or univariate feature selection-based 

predictions, both the Gaussian and RBF kernels dramatically improved the prediction 

of the HAM-D and, to a lesser extent, MADRS scores when prediction was based on 

multivariate feature selection (RFE) and white matter images. 

There are a number of limitations of this study. First, although the number of 

subjects in this study is comparable with similar studies, the results require 

replication in a larger study. Second, patients were taking a range of antidepressant 

medications at the time of scanning; however it is unclear to what extent this had an 

effect on these results. Sapolsky (2001) has argued that it is unlikely that grey matter 

volume reductions in MDD are as a result of antidepressant medication as there is 

evidence for antidepressant-induced neurogenesis with no arguments for reductions, 
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however, the small amount of increased grey matter volume may be a medication 

effect which needs further investigation. As there are no studies discussing the 

effects of antidepressant medication on white matter, it is unclear what effect it may 

have. Current medication status is also a potential confound when predicting 

symptom severity scores, however, Table 9 shows that there is no obvious link 

between current medication and symptom severity. Finally, as the MDD group were 

recruited with a past or present diagnosis of MDD the differences between the two 

groups may not have been as distinct as other studies, however, this range of 

symptom severity may have been an advantage in the prediction of symptom 

severity. 

To summarise, it was possible to replicate the accurate classification of grey 

matter images to distinguish MDD subjects and healthy controls (Costafreda et al., 

2009a; Kipli et al., 2013; Mwangi et al., 2012a; Termenon et al., 2013) and it was 

possible to extend this to accurately predicting diagnosis using the white matter 

component of structural MR images. It was possible to replicate the prediction of 

symptom severity using whole brain structural MRI (Mwangi et al., 2012b), however 

the severity scores which were able to be significantly predicted using the whole 

brain images were the HAM-D and MADRS scores but not the BDI score, contrary 

to the findings by Mwangi et al. (2012b). Furthermore, white matter tends to have an 

improved accuracy of prediction of symptom severity compared with grey matter. 

Although these results require replication in a larger population, these results provide 

encouragement that machine learning methods can increase the understanding of the 

neurobiology of MDD. 
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Table 9: Current Medication and State Illness Severity. No patients had psychotic 

symptoms and quetiapine was prescribed as an augmentation agent for 

antidepressants (Dorée et al., 2007), similar to the long established use of lithium, L-

tryptophan and triiodothyronine in treatment resistant depression. No obvious 

relationship between current medication and state illness severity was present. ‘mg’ 

indicates total dose per day, ‘mcg’ total micrograms per day.  

 

 Primary AD Secondary 

AD 

Augmentation Anti-

psychotics 

 

HAM-D 

 

1 fluoxetine 

(100 mg) 

trazodone 

(150 mg) 

  

21 

2 venalfaxine 

(525 mg) 

trazodone 

(150 mg) 

  

18 

3 isocarboxazid 

(40 mg) 

  quetiapine (75 

mg) 
19 

4 venlafaxine 

(300 mg) 

 lithium (200 mg)  

8 

5 sertraline 

(100 mg) 

trazodone 

(200 mg) 

 quetiapine 

(300 mg) 
11 

6 sertraline 

(300 mg) 

trazodone 

(300 mg) 

triiodothyronine 

(20 mcg) 

quetiapine 

(800 mg) 
24 

7 isocarboxazid 

(70 mg) 

   

18 

8 venalfaxine 

(225 mg) 

   

18 

9 sertraline 

(100 mg) 

  quetiapine 

(100 mg) 
13 

10 fluoxetine (60 

mg) 

mirtazapine 

(45 mg) 

lithium (900 mg)  

21 

11    chlorpromazin

e (150 mg) 
29 

12 sertraline 

(200 mg) 

  quetiapine 

(300 mg) 
16 



 - 179 - 

13 tranylcyprom

ine (70 mg) 

   

14 

14 venlafaxine 

(300 mg) 

 L-Tryptophan 

(6000 mg) 

 

19 

15 venlafaxine 

(525 mg) 

mirtazapine 

(45 mg) 

  

4 

16 citalopram 

(60 mg) 

   

14 

17 venlafaxine 

(75 mg) 

   

12 

18 citalopram 

(10 mg) 

   

13 

19 phenelzine 

(60 mg) 

 L-Tryptophan 

(3000 mg), 

lithium (1000 mg) 

quetiapine (75 

mg) 

16 

20 venalfaxine 

(300 mg) 

  quetiapine 

(200 mg) 
14 
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Chapter 8: High Accuracy Individual Diagnostic 

Classification in MDD using fMRI 

 

8.1 Introduction 

 

As anhedonia is one of the main symptoms of MDD, a blunted response to rewarding 

events is anticipated in patients and has been reported in the literature (Zhang et al., 

2013). A recent meta-analysis, investigating reward processing in MDD, found that 

decreased activity in the caudate, cerebellum, thalamus, anterior cingulate, putamen 

and insula and increased activity in the cuneus, middle frontal gyrus, superior frontal 

and fusiform gyrus, frontal lobe and lingual gyrus, were present in all types of 

rewarding stimuli investigated (Zhang et al., 2013). When investigating reward 

processing specifically associated with monetary rewards, the caudate, thalamus, 

insula and precuneus were found to have decreased activity and the inferior, middle 

and superior frontal gyrus, inferior parietal lobule, cuneus and anterior cingulate 

showed increased activity in MDD (Zhang et al., 2013). As the current study 

investigates brain activity at the outcome time, the most relevant finding by Zhang 

and colleagues (2013) was that they only identified decreased activation in the 

caudate in MDD during the analysis of monetary reward activations at the outcome 

time. 

The monetary incentive delay task consists of rewarding (win) and aversive 

(loss) events. At the feedback time, Knutson et al. (2008) found that rewarding 

events activated the medial prefrontal cortex, posterior cingulate cortex, caudate and 

hippocampus in both the unmedicated MDD group and the healthy control group. 

Also the putamen and sublenticular extended amygdala were activated in the 

controls, but not the MDD group (Knutson et al., 2008). When the avoiding a loss vs. 

receiving a loss contrast was investigated, the middle frontal gyri, parietal cortex, 

sublenticular extended amygdala and putamen were activated in the control group, 

whereas the MDD group only showed activation in the head of the caudate (Knutson 

et al., 2008). In a similar study, Pizzagalli et al. (2009) found that MDD subjects had 

significantly weaker activations in the nucleus accumbens and dorsal caudate during 

rewarding feedback.  

In another reward-related task, MDD patients were found to have greater 

activation in the inferior frontal gyrus and thalamus when receiving a reward 
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(Smoski et al., 2009). Also, failure to win resulted in greater activation in the 

caudate, auditory cortex, BA 41, occipital regions and frontal medial cortex in 

controls and in the MDD group greater activations were found in the middle, inferior, 

and orbitofrontal cortex (Smoski et al., 2009). 

In general, the most consistent finding in reward-based tasks at the outcome 

time is that MDD patients tend to have a decreased activation in the caudate and this 

was the only region identified in the meta-analysis by Zhang et al. (2013). The 

response to aversive events in MDD, however, is unclear as no studies investigating 

losing compared with avoiding a loss (rather than avoiding a loss compared with 

losing) could be identified.  

There are a number of studies that have attempted to predictively classify 

MDD patients vs. controls, however, only one study has applied machine learning to 

a reward or loss based paradigm. Hahn et al. (2011) proposed that combining 

contrasts from three different fMRI paradigms, an emotional processing paradigm 

and two modified monetary incentive delay tasks, involving an attempt to win money 

and avoid losing as much as possible, would improve classification accuracy more 

than could be achieved for an individual contrast. When attempting to classify fMRI 

contrasts individually, Hahn et al. found that the highest accuracy (72%) was 

obtained when subjects anticipated avoiding a loss (Hahn et al., 2011). However, 

when 3 of the 15 conditions were combined, the accuracy increased to 83% 

(sensitivity – 80%, specificity – 87%). The three conditions which led to the highest 

accuracy were neutral facial expressions, actual large reward and anticipation of no 

loss (Hahn et al., 2011). As two of the three fMRI contrasts found to be relevant to 

distinguishing depression from healthy controls by Hahn et al. (2011) were related to 

their reward and loss task, the application of the reward and loss paradigm in this 

chapter, may add to the literature.  

The study presented in this chapter used the reward and loss fMRI paradigm 

outlined in Chapter 6 to investigate neural responses in MDD and healthy controls. It 

is an instrumental task which requires the acquisition of learning to win points and to 

avoid losing points by choosing one of two pairs of stimuli and receiving feedback 

on the outcome of the choice. Control ‘baseline’ stimuli were also present. The 

rewarding and aversive events were analysed separately. Each contrast was 

investigated to determine whether brain activity patterns could accurately classify 

MDD and healthy controls on an individual level, using a similar approach to the one 
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that was used to classify structural MRI. In addition, possible correlations between 

symptom severity and brain activity were tested. 

 

8.2 Method 

 

8.2.1 Subjects 

 

Event-related fMRI scans were obtained from subjects participating in neuroimaging 

studies at the Clinical Research Centre, Ninewells Hospital and Medical School in 

Dundee, UK. Informed consent was obtained from all volunteers. The study was 

approved by the local Ethics Committee. 

Twenty adults with a past or present diagnosis of MDD were recruited from 

the Advanced Interventions Service in Dundee. One scan was excluded from the 

analysis due to a failure to adequately perform the fMRI task. 

Diagnosis was made according to MINI PLUS V5.0 criteria (Sheehan and 

Lecrubier, 1992). Exclusion criteria included potentially confounding diagnoses – 

any other primary psychiatric disorder, substance misuse or significant head injury. 

18 MDD participants were being treated with one or more anti-depressant medication 

(venalfaxine (6), sertraline (3), trazodone (3), citalopram (2), fluoxetine (2), 

mirtazapine (2), isocarboxazid (1), ltryptophan (1), phenelzine (1), and 

tranylcypromine (1)). In addition, 7 MDD participants were being treated with anti-

psychotic medications (quetiapine (6) and chlorpromazine (1)) and 3 MDD 

participants were being given lithium augmentation.  

Twenty-one healthy controls with no lifetime history of MDD were recruited 

mostly from partners, relatives and friends of patients and underwent psychiatric 

screening using the same semi-structured interview schedule as the patients. None of 

the controls had a history of current or past psychiatric or neurological disorder and 

none were taking medication. To balance the two groups in terms of total subjects, 

two randomly selected controls were removed from the dataset during machine 

learning.  

All MDD and control volunteers had a predicted pre-morbid Full Scale 

Intelligence Quotient above 106 as assessed by the NART. Handedness was assessed 

using the EHI (Oldfield, 1971). Apart from 2 left-handed subjects in the control 

group and 1 and 3 ambidextrous subjects in the control and patient groups 
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respectively, all subjects were right-handed (with one patient having failed to 

complete the EHI test). 

 

8.2.2 Image Acquisition 

 

For each participant functional whole-brain images were acquired using a 3T 

Siemens Magnetom TrioTim syngo scanner using an EPI (echo-planar imaging) 

sequence with the following parameters: TR = 2500 ms, TE = 30 ms, flip angle = 

90°, FOV = 224 mm, matrix = 64 x 64, 37 slices, voxel size 3.5x3.5x3.5 mm, slice 

thickness 3.5 mm, inter-slice gap = 0.5 mm. The first four BOLD (Blood-oxygen-

level dependent) volumes were discarded as standard. 

The fMRI paradigm was a modified version of the Pessiglione task 

(Pessiglione et al., 2006), incorporating rewarding, neutral and aversive events into 

one task. It has been described fully in Chapter 6. 

 

8.2.3 Image Pre-processing 

 

All scans were visually inspected for artefacts and particular care was taken to 

identify gross artefacts (McRobbie et al., 2010). A small number of individual 

volumes showed gross artefacts, all of which were due to head movement. The 

affected volumes were replaced by the average of the two neighbouring volumes.  

Pre-processing was done using SPM8 (http://www.fil.ion.ucl.ac.uk/spm). 

Images were first realigned towards the first image in each time series and co-

registered to the SPM8 MNI EPI template. The average realigned, co-registered 

images for each subject were used as a template to normalise each realigned and co-

registered volume to the SPM8 EPI template image. The resultant images were 

smoothed with an 8 mm FWHM Gaussian kernel.  

 

8.2.4 fMRI Analyses 

 

An event related random effects design was used for analysis. The times of each type 

of feedback (reward pair: win/nothing, loss pair: nothing/lose, and neutral pair: no 

change/nothing) were modelled as truncated delta functions and convolved with the 

BOLD function. These six vectors were entered into standard first level analyses for 

http://www.fil.ion.ucl.ac.uk/spm
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each subject. The six motion realignment parameters, as output by SPM, were 

entered into the design matrix as covariates to eliminate motion driven artefacts. Four 

contrasts were defined during the first level analysis. The first two were winning vs. 

failing to win (where ‘nothing’ was presented during the reward pair) and losing vs. 

avoiding a loss (where ‘nothing’ was presented during the loss pair). These two 

contrasts will be shortened for future reference to the basic win and loss contrasts. 

The other two contrasts involved including the neutral condition to eliminate any 

non-task-based activations/deactivations. These involved contrasting the basic win 

and loss contrasts with the basic neutral contrast (‘no change’ vs. ‘nothing’), and will 

be referred to as the controlled win and loss contrasts hereafter. 

Each contrast image was entered into second level analyses to test for within-

group (one-sample t-test) activations and between-group differences (MDD vs. 

control two-sample t-test). Also, the patient group was investigated further by 

performing a regression with various symptom severity scores, such as the MADRS, 

the HAM-D, the Hamilton Anxiety Rating Scale (HAM-A) the BDI and the Beck 

Hopelessness Scale (BHS). Higher scores in each of these scores indicate more 

severe symptoms. 

For the conventional group level VBM analysis, the null hypothesis of no 

difference in brain structure between patients and controls was tested using an 

unpaired t-test as implemented in SPM8. Significance was defined as p<0.05 at a 

whole brain corrected cluster level (Slotnick et al., 2003).  

 

8.2.5 Individual Scan Classification 

 

Machine learning to generate individual subject predictions was implemented in 

Matlab (The Mathworks Inc.) using an SVM toolbox (Schwaighofer, 2001) and 

custom Matlab scripts. SVM analysis consisted of two stages: training the classifier, 

then testing the accuracy using data not used for training. Standard LOOCV was 

used for training with the SVM parameters being selected on the basis of training 

stage accuracy. As in Chapter 7, the feature selection method applied during the 

training stage was the thresholded t-test, as implemented in the SPM toolbox.  

After the first level analyses, four different contrasts were extracted for each 

subject. These contrasts were classified independently in each case, in the same way 

as grey and white matter images were independently classified in the previous 

section. 
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8.3 Results 

 

8.3.1 Participant Characteristics 

 

Age and IQ did not differ significantly (t-test, p>0.1) and gender was not 

significantly different (as assessed by a chi-square calculation) between groups. The 

MDD group mean age was 50.8 years (standard deviation 10.6) mean IQ was 122.8 

(standard deviation 4.8). The control group mean age was 45.5 years (standard 

deviation 13.0) and the mean IQ 122.5 (standard deviation 5.8). There were no 

significant differences in task performance between groups. 

The average HAM-D, MADRS and BDI illness severity rating scores in the 

MDD group were 16.1, 22.5 and 32.2, indicating depression severity in the moderate 

range. The mean HAMA, BHS and MGH-S scores in the MDD group were 15.8, 

14.1 and 13.2, respectively. 

These results are outlined in Table 10. 
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Table 10: Clinical and task peformance descriptors for the MDD and healthy control 

groups in the fMRI analysis. Variables are shown as mean (standard deviation). *chi-

square test with other tests being t-tests. 

 

 MDD Controls  

Age 50.79 (10.6) 46.14 (13.97) n.s. 

IQ 122.58 (4.78) 116.95 (27.38) n.s. 

Female/Total* 15/19 15/21 n.s. 

HAM-D 16.00 (5.72) 0.48 (0.93) <0.001 

MADRS 22.05 (7.93) 0.48 (1.03) <0.001 

BDI 32.42 (11.65) 0.43 (0.87) <0.001 

HAMA 15.84 (5.66) 0.43 (0.98) <0.001 

BHS 14.05 (5.36) 1.43 (1.47) <0.001 

MGH-S 13.24 (10.78) N/A N/A 

Number of vouchers won 33.58 (4.96) 34.90 (4.35) n.s. 

Number of vouchers lost 29.05 (4.97) 29.10 (3.71) n.s. 

Total task score 4.53 (6.45) 5.81 (5.78) n.s. 
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8.3.2 Within-Group and Between-Group Analyses 

 

The basic and controlled contrasts, defined in section 8.2.4, provided similar results; 

however, the latter gave a clearer output as activations due to visual stimuli in the 

occipital lobe were removed. Therefore, the results from the basic contrasts are 

omitted at this stage. 

On reward trials, healthy controls were found to activate primarily in the 

nucleus accumbens, caudate, medial orbitofrontal cortex and the posterior cingulate 

(Figure 53 (left)). MDD patients exhibited activation in the insula and a weaker 

signal in the medial orbitofrontal cortex (Figure 53 (right)). 

When this contrast was entered into a between-group analysis (patients vs. 

controls), a significant failure to activate the nucleus accumbens, medial orbitofrontal 

cortex, posterior cingulate and, to a lesser extent, caudate was identified in the 

patient group (Figure 54 (left)). Furthermore, the insula activation identified in the 

within-group patient analysis shows up as increased in patients in the between-group 

analysis (Figure 54 (right)). 

On loss trials, healthy controls were found to deactivate in the nucleus 

accumbens and hippocampus whereas patients only deactivated the nucleus 

accumbens (Figure 55 (left and right correspondingly)). Whilst the control group did 

not show any relevant activation during aversive events, the patient group showed 

increased activation in the midbrain and insula (Figure 56). 

When comparing the controlled loss contrast between groups, the most 

significant brain region was the hippocampus (Figure 57), which was as a result of 

patients’ failure to deactivate this region. The insula which patients activated, and the 

control group did not, was also significantly different between groups (Figure 57). 
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Figure 53: Within-group analyses of the controlled win contrast, displaying 

activations in controls (left) and patients (right). 
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Figure 54: Between-group analysis of the controlled win contrast, displaying regions 

of increased activation in controls compared with patients (left) and increased 

activation in patients compared with controls (right). 
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Figure 55: Within-group analyses of the controlled loss contrast, displaying 

deactivations in controls (left) and patients (right). 
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Figure 56: Within-group analyses of the controlled loss contrast, displaying 

activations in the patient group. 
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Figure 57: Between-group analysis of the controlled loss contrast, displaying regions 

of increased activation in patients compared with controls. 
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8.3.3 Individual Subject SVM Predictions 

 

A Gaussian SVM was used to analyse 19 fMRI images of adults with a past or 

present diagnosis of MDD and 19 fMRI images of control subjects matched for age, 

gender and IQ.  Feature selection was implemented using t-tests with a variable 

threshold that was optimised during cross-validation.  The analysis was done using 

the four contrasts separately. 

The analysis using the basic win contrast images resulted in an individual 

subject predictive accuracy of 79% (sensitivity 0.79, specificity 0.79, χ
2
 = 10.5, p 

=0.0012). The basic loss contrast images obtained an accuracy of 84% (sensitivity 

0.89, specificity 0.79, χ
2
 = 15.3, p <0.0001). 

Including the neutral, control condition, increased both accuracies to 84% 

(sensitivity 0.79, specificity 0.89, χ
2
 = 15.3, p <0.0001) for the controlled win 

contrasts and 97% (sensitivity 0.95, specificity 1.0, χ
2
 = 30.5, p <<0.0001) for the 

controlled loss contrast. 

 

8.3.4 Brain Regions identified using Feature Selection 

 

The brain regions identified in the classification of the controlled contrasts were very 

small. The nucleus accumbens and medial orbitofrontal cortex were identified in the 

controlled win contrast classification and a single region in the hippocampus was 

identified in the controlled loss contrast classification. These are shown in Figure 58, 

with the brain regions identified during feature selection highlighted with respect to 

the corresponding between-group VBM results for each contrast. 
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Figure 58: The overlap between the regions identified during VBM analysis (blue 

and pink) and the brain regions identified during the classification of MDD patients 

and controls (pink) using a controlled win contrast (left) and a controlled lose 

contrast (right). 



 - 195 - 

8.3.5 Correlations with Severity Scores 

 

Linear regressions were performed using patients’ fMRI contrast images to test 

which brain activity correlated with symptom severity scores. Whilst the basic and 

controlled reward contrasts did not reveal any notable regions with respect to 

severity scores, the basic and controlled loss contrasts correlated more strongly with 

the severity scores investigated. 

The nucleus accumbens activity was found to negatively correlate with the 

MADRS and HAM-D scores (Figure 59) using the basic loss contrast (but not the 

controlled loss contrast). This suggests that the more severely depressed patients 

deactivated the nucleus accumbens more strongly when a loss was experienced as the 

within-group analysis in the patient group showed that the nucleus accumbens was 

deactivated during loss trials. However, as the control group also deactivated this 

region and there were no significant between-group differences in this region, this 

suggests patients might deactivate the nucleus accumbens more than controls, but not 

to a significant degree. This could be investigated in future analyses. 

The BDI correlated with an increase in activation in the controlled loss 

contrasts in the insula (Figure 60). This was an expected result as the patient group 

showed an increased activation in the insula in the within-group analysis which the 

controls did not, leading to a between-group difference in this region.  

A region of the anterior cingulate significantly correlated with the HAD-A 

score when the controlled loss contrast was investigated (Figure 61). This means that 

the more anxious patients had more activity in the anterior cingulate while 

experiencing a loss. 

Finally, the BHS positively correlated with a large hippocampal region during 

loss trials (Figure 62). As reported in section 8.3.2, the hippocampus significantly 

deactivated in controls but the patient group failed to significantly deactivate the 

hippocampus. The correlation with the BHS shows that increased feelings of 

hopelessness in patients correlate with less deactivation in the hippocampus. The 

extent of the subject's negative attitudes, or pessimism, about the future correlated 

strongly with the same brain area which distinguished patients and controls with 97% 

accuracy, demonstrating potential as an imaging biomarker of MDD in the 

hippocampus. 
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Figure 59: Group-level negative correlations between the basic loss contrast and total 

scores on the MADRS (left) and HAM-D (right). 
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Figure 60: Group-level positive correlations between the controlled loss contrast and 

total score on the BDI. 
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Figure 61: Group-level positive correlations between the controlled loss contrast and 

HAM-A. 
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Figure 62: Group-level positive correlations between the controlled loss contrast and 

total score on the BHS. 
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8.4 Discussion 

 

When predicting diagnosis using the controlled loss contrast, it was possible to 

almost perfectly distinguish the MDD group from controls on an individual basis. 

The classification was based on the finding that MDD patients failed to deactivate 

the hippocampus whilst controls successfully deactivated this region. The correlation 

identified between activity in the hippocampus and the BHS supports the assertion 

that this is a syndrome-based abnormality (and not a confound) as increased feelings 

of hopelessness in patients correlated with less deactivation in the hippocampus. The 

hippocampus is strongly involved in tasks involving learning and memory and so it is 

possible that the overactivity found in the hippocampus in MDD patients during loss 

trials could be due to the patients being hypersensitive to previous aversive events. 

Abnormalities in hippocampal volume have been previously reported in 

MDD (Sapolsky, 2001) and these have been found to remain in remission (Sheline et 

al., 1996). Whilst the patients in this analysis did not appear to have any structural 

differences in the hippocampus, grey matter in the hippocampus was found to 

negatively correlate with both the MADRS and HAM-D total scores, indicating there 

was a correlation between increased symptom severity and decreased hippocampal 

volume. An inverse relationship between glucocorticoid levels and hippocampus 

volume has been reported in animal and human studies (Sapolsky, 2001; Tessner et 

al., 2007). The glucocorticoid, cortisol, is released in response to stress. As a large 

proportion of patients with MDD have been found to hypersecrete cortisol (Sapolsky, 

2001), increased stress levels in MDD patients may explain why the hippocampus 

volume has been reported to be decreased.  

Patients’ abnormal brain activity in the hippocampus when experiencing a 

loss may also be due to stress. The hippocampus has a large amount of 

glucocorticoid receptors (Sapolsky, 2001) so if stress levels increase when a loss is 

received, cortisol is released which could increase hippocampal activity. It would be 

interesting to investigate the pattern of activity throughout the brain with structural 

differences taken into account as, if the hippocampal volume is reduced in patients 

compared to controls, the over-activation to aversive stimuli in patients would 

become even stronger when the smaller volume is taken into account.  

The insula is another region that was found to have significantly different 

activity between patients and controls. This region was also identified as having a 
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positive correlation with patients’ BDI scores, in that the more severely depressed 

patients tended to activate the insula more when experiencing a loss. Similar to the 

hippocampus, the insula is another region that was found to have reduced grey matter 

in MDD patients – making the increased activation more remarkable. 

The nucleus accumbens was deactivated in both groups during the loss 

contrasts; however the MADRS and HAM-D scores were found to negatively 

correlate with patients in this region using the basic loss contrast. It is possible that 

the patients may deactivate the nucleus accumbens more than controls. 

Anxiety, as assessed by the HAM-A questionnaire, was found to be 

correlated with the anterior cingulate activity in patients. Overactivity in this region 

when experiencing a loss is an interesting finding because it is approximately the 

same region where a lesion is created during a cingulotomy – a surgical procedure 

which is used in treatment resistant depression.  

The lower classification accuracy of 85% achieved using the controlled 

reward contrast is also an interesting result and is equal to the highest accuracy 

achieved when classifying the same groups using structural MRI. The brain regions 

that were selected using the feature selection method included the nucleus 

accumbens and the medial orbitofrontal cortex – both of which failed to significantly 

activate in MDD patients. The meta-analysis by Zhang et al. (2013) suggested that 

the only region which would demonstrate abnormal (reduced) activity in MDD 

patients at the reward outcome time was the caudate. This study found that although 

the caudate had reduced activity in the MDD group compared to controls, there were 

a number of other regions that were more significantly reduced, such as the nucleus 

accumbens, the medial orbitofrontal cortex and the posterior cingulate. Although 

reduced activation in the nucleus accumbens was not found in the meta-analysis, a 

study by Pizzagalli et al. (2009), one of the studies in the meta-analysis that had most 

similarities with the paradigm used in this study, reported the same result. Similar to 

the loss contrast, MDD patients also showed an increased activation in the insula, 

however, unlike the loss contrast, it was not found to be significantly correlated with 

BDI scores. 

The limitations of this study are similar to those outlined in Chapter 7: the 

results require replication in a larger study, the patient group were recruited with a 

past or present diagnosis of MDD and patients were taking a range of antidepressant 

medications at the time of scanning. It seems unlikely that the effects of medication 



 - 202 - 

were a major confound in this study as a number of brain regions identified in the 

classifier and fMRI analyses correlated with various symptom severity scores and 

previous results in the literature, suggesting that the results are based on diagnosis 

rather than a medication effect. 

To summarise, it was possible to accurately classify MDD subjects and 

healthy controls on an individual level using their biological responses to rewarding 

and aversive events. The brain regions which showed abnormal activity in the loss 

contrast were also found to be correlated with various severity scores, increasing the 

confidence in the results. The especially striking result is the high classification 

accuracy when machine learning methods were applied to the controlled loss 

contrast. This result requires replication in a larger dataset, but it is clear that the 

response to aversive stimuli is an under-researched and important research area that 

may be able to increase the understanding of MDD. 
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Chapter 9: Conclusion 

 

The application of machine learning to neuroimaging data has the potential to 

improve the clinical treatment and understanding of psychiatric disorders. This thesis 

has shown the potential of pattern recognition algorithms to complement clinical 

diagnosis and the potential to identify biomarkers of psychiatric disorders, using 

feature selection in conjunction with machine learning techniques.  

Machine learning-based methods have been successfully applied to predict 

MPH response in children and adolescents with ADHD using only demographic and 

clinical variables and neuropsychological test scores. Using only a small number of 

variables this method achieved an accuracy of 77% when predicting on novel data. 

However, if a wider range of uncorrelated variables were included (potentially 

including genetic or neuroimaging data) it is possible that accuracy could be 

increased further. 

In addition, it has been shown that machine learning algorithms can be 

combined with structural MRI images to predictively diagnose both ADHD and 

MDD, achieving accuracies of 93% and 85% respectively. Notably, white matter was 

found to be more predictive of ADHD diagnosis than grey matter, with a large 

brainstem volume reduction identified in children and adolescents with ADHD. The 

accuracy achieved and brain regions identified when predicting MDD diagnosis 

using grey matter images was comparable with similar studies (Costafreda et al., 

2009a; Kipli et al., 2013; Mwangi et al., 2012a; Termenon et al., 2013). 

Interestingly, although the white matter MDD prediction accuracy was poorer than 

the grey matter prediction accuracy, MDD subjects were found to have increased 

white matter volume in the cingulate gyrus and posterior cingulate which was 

predictive of MDD. Increases in white matter volume have been reported in other 

disorders such as ASD (Herbert et al., 2003; Herbert et al., 2004), treatment-naïve 

obsessive compulsive disorder (Atmaca et al., 2007), body dysmorphic disorder 

(Rauch et al., 2003) and schizophrenia (Suzuki et al., 2002). The white matter 

component of structural MRI is rarely investigated which may explain why it has not 

been reported previously, however, these findings require further examination using 

DTI. All subjects in the MDD study have DTI data which will be analysed in the 

future. A potential next step of these diagnostic classification studies is to test for 

multiple psychiatric disorders or multiple comorbid disorders. For example, a 
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method to diagnose individual subjects with unipolar or bipolar depression would be 

beneficial to clinicians.  

The MDD patients’ structural MR images were also used to predict symptom 

severity scores with white matter differences providing a more accurate prediction 

than grey matter. An interesting extension to this work could be to investigate if it is 

possible to predict the change of symptom severity over time. A longitudinal study of 

this type could identify brain differences which aid recovery, potentially providing a 

target for treatment. 

Finally, the machine learning methods were also shown to be able to 

successfully distinguish MDD patients and healthy controls by their brain activity in 

response to rewarding and aversive stimuli. When predicting on the basis of response 

to rewarding events, 84% accuracy was achieved with patients’ failure to activate the 

nucleus accumbens and medial orbitofrontal cortex driving the classification. The 

highest accuracy reported in this thesis was obtained when prediction was based on 

the responses to aversive events. Patients’ failure to deactivate the hippocampus 

when receiving a loss contributed to the classifier distinguishing patients and controls 

with 97% accuracy. Although fMRI resolution is poorer than structural MRI, the 

results obtained in this study suggest that fMRI may be able to provide more reliable 

predictions with machine learning algorithms than brain structure in MDD. Therefore 

future studies should investigate a wide range fMRI tasks to investigate whether they 

can be reliably used in machine learning-based predictions and increase the 

understanding of psychiatric disorders. 

Psychiatric disorders have previously been thought to originate from 

“functional” rather than structural differences in the brain. However, the work within 

this thesis shows that differences exist with regard to both brain structure and 

function, when comparing patients with MDD and healthy controls. It would be 

interesting to investigate how these two sets of brain abnormalities are linked and 

whether they can be combined to help increase understanding of MDD, plus identify 

the mechanisms which lead to this debilitating disorder.  

Future work may investigate whether a classifier which used images from a 

number of different modalities (e.g. structural and functional MRI, DTI, 

demographic and clinical variables, neuropsychological test scores and genetics data) 

could provide accurate and robust predictions to clinical problems. 
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There are a number of potential limitations to the methods implemented in 

this thesis which require further discussion. The machine learning-based methods 

implemented in this thesis require spatial normalisation when applied to 

neuroimaging data so that each voxel corresponds to the same brain region. 

However, by definition, spatial normalisation loses subject-specific data by distorting 

all subjects towards a template meaning potentially important individual subject 

structural abnormalities and irregularities are removed. Future work could involve 

creating a procedure to extract a number of characteristics (e.g. size, surface area and 

volume of each brain region) from the native space images to enter into a classifier. 

Many of the subjects in the ADHD and MDD groups analysed in this thesis 

had received treatment at the time of scanning. As discussed in Chapter 6, 

medication-naïve subjects with ADHD are currently being recruited to a study aimed 

at addressing this limitation in the ADHD prediction in Chapter 5. The MDD 

subjects analysed in this thesis were treatment resistant and so had an extensive 

medication history. It is unclear to what extent medication history could affect these 

analyses but future work could compare previously medicated and medication naïve 

subjects to investigate this further. 

Another potential limitation of the MDD studies in this thesis is that 

treatment-resistant MDD patients may have more pronounced structural and 

functional abnormalities when compared with subjects with first-episode MDD. It is 

unclear if a classifier developed using treatment-resistant subjects would obtain a 

higher, lower or similar accuracy when diagnosing first-episode MDD subjects. 

Intuitively, the pattern of brain regions which are abnormal in MDD may be easier to 

identify in the most severely depressed subjects which would increase the likelihood 

of training on the neurobiological abnormalities related to MDD (Fu and Costafreda, 

2013). However, if the brain regions affected by MDD vary with length of symptoms 

or treatment then a first-episode cohort may be required for a clinically useful 

prediction of diagnosis. This potential limitation merits further investigation to study 

the structural and functional brain alterations of subjects with MDD in a longitudinal 

study from the first episode onwards. 

More work is required to replicate all the results obtained in this thesis on 

much larger datasets but the initial results are encouraging. Furthermore, these 

methods also need to be applied to more interesting clinical questions such as the 

iBOCA study (described in Chapter 6), which aims to predict treatment response in 
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ADHD. That study acquired both structural and functional MR images and there are 

a number of different analyses planned once the recruitment is complete, as 

described in Chapter 6. 

There are many exciting applications of machine learning algorithms in 

psychiatric neuroimaging; however, it is important to note that machine learning is 

an active research field in itself. These techniques are continually being improved, 

developed and are becoming more robust. MR imaging is another independent 

research area with MR technology still improving and the accuracy and 

sophistication of normalisation algorithms progressing rapidly. Higher resolution 

images with fewer artefacts and more accurate normalisation techniques could 

increase the reliability and accuracy of machine learning-based predictions. 

These advances require investigation in the future and the author intends to 

continue to investigate various machine learning algorithms to determine which 

methods generally perform best for different pattern recognition problems. For 

example, Gaussian Processes are able to provide probabilistic output which may 

improve on results obtained using the RVR algorithm. They also have the advantage 

of being able to make multi-class predictions, a limitation of both SVM and RVM.  

Another approach to investigate various machine learning algorithms could 

include using Monte Carlo simulations to test various properties of classifiers prior to 

application in psychiatric neuroimaging. These could be applied to identify how 

robust each classifier is to outliers in the data or how sensitive it is to the class 

imbalance problem. This would provide a clear rationale when deciding which 

machine learning algorithm to implement in each study. 

A major assumption in all supervised machine learning studies is that the 

labels provided to train and test a classifier are correct. However, in psychiatric 

diagnosis there is no gold standard so some subjects may be diagnosed incorrectly, 

increasing the difficulty in identifying the underlying pattern of a psychiatric disorder 

(Fu and Costafreda, 2013). Furthermore, studies that contain misdiagnosed subjects 

cannot be expected to achieve perfect classification accuracy as these misdiagnosed 

subjects would influence both the training stage and the testing stage during cross-

validation. Therefore, it is possible that a machine learning-based study in psychiatry 

could identify the underlying pattern of a disorder without achieving 100% accuracy 

during cross-validation due to misdiagnosed subjects. The use of unsupervised 

machine learning algorithms eliminates the issue of misdiagnosis during the training 
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stage as these methods attempt to identify the underlying patterns in unlabelled data. 

This thesis only investigated supervised machine learning but studies using 

unsupervised machine learning algorithms have recently emerged with positive 

results (Zeng et al., 2013) – removing potential confounds such as diagnosis in the 

training subjects. Clearly, the potential issue of misdiagnosis remains during the 

testing stage but the influence of the misdiagnosed subjects is reduced when 

unsupervised machine learning algorithms are used. 

In summary, the results presented in this thesis demonstrate the potential of 

machine learning algorithms in psychiatry, demonstrating the success of these 

algorithms to predict diagnosis in two different psychiatric disorders using different 

imaging modalities. The studies contained within this thesis are a proof of concept 

and require replication in larger samples. These methods have started to be applied to 

clinically relevant questions which are less understood such as prognosis (Costafreda 

et al., 2009a), symptom severity (Mwangi et al., 2012b), identification of patients at 

risk of developing disorder (Koutsouleris et al., 2011; Koutsouleris et al., 2009), and 

an estimation of the likelihood of response to treatment (Gong et al., 2011). In 

addition, with the use of feature selection, machine learning studies have the 

potential to augment the knowledge of the neurobiology of various psychiatric 

disorders. 
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