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Abstract

Touchscreens are ever-present in technologies today. The large featureless sensors
are rapidly replacing the physical keys and buttons on a wide array of digital
technologies; the most common is the mobile device. Gaining popularity across all
demographics and endorsed for superior interface flexibility of soft designs and rich
gestural interactions, the touchscreen currently plays a pivotal role in digital
technologies. However, just as the touchscreen has enabled many to engage with
digital technologies, its barriers to access are excluding many others with visual and
motor impairments. The contemporary techniques to address the accessibility issues
fail to consider the variable nature of abilities between people, and the ever-changing
characteristics of an individual’s impairment. User models for personalisation are
often constructed from stereotypical generalisations of the similarities of people with
disabilities, neglecting to recognise the unique characteristics of the individuals
themselves. Existing strategies for measuring abilities and performance require users
to complete exhaustive training exercises that are disruptive from the intended
interactions, and result in the creation of descriptions of a user’s performance for that

particular instance.

This research aimed to develop novel techniques to support the continuous
measurement of individual user’s needs and abilities through natural touchscreen
device interactions. The goal was to create detailed interaction models for individual
users, in order to understand the short and long-term variances of their abilities and
characteristics, resulting in the development of interface adaptations that better

support interaction needs of people with visual and motor impairments.
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This thesis describes the development and evaluation of the Shared User Model
(SUM) Framework, developed to help improve the access and usability of
touchscreen devices by people with visual and motor-impairments. The framework is
intended to be embedded by application developers to create interaction models
autonomously and provide suitable interface adaptations to better support individual
users with visual and motor-impairments. The SUM Framework captures the user’s
natural application interactions in the form of low-level touch and device
movements, and then starts to model their individual interaction characteristics to

refine the gesture recognisers and tailor these interactions to the needs of the user.

The outcomes of this research stem from three foundational user studies. The first
study represented the initial requirements gathering and problem scoping stage of
this research, helping to better define the barriers and challenges to touchscreen
technologies. Findings from this study formed the basis for the SUM Framework,
targeting the interaction challenges faced by people with visual and motor-
impairments when using mobile touchscreens. The second study was devised to
evaluate the principle low-level interaction modelling approach of the SUM
framework, and gain further insight of the variances between users within
stereotypical groupings. While this study was pivotal to the development of the SUM
framework methodologies, the entire evaluation took place within a controlled
laboratory environment. The research concluded with a much longer four week in-
situ evaluation to address the limitations of the short timescale laboratory study, and
investigate the potential of SUM as a long-term solution for modelling users with

highly volatile abilities.
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This research presents the potential benefits of the SUM Framework to create more
accessible touchscreen interactions, supported by rigorous user evaluations from the
laboratory and in the wild. Finally, the thesis outlines a number of directions and

areas for future research expanding on the concepts developed within this work.
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Chapter 1. Introduction

This work has been motivated by two fundamental challenges. Firstly the need for
better user models, more representative of individuals’ current needs and abilities.
User models need to be capable of responding to the continuously fluctuating
abilities of individuals, this is particularly important for individuals with disabilities.
Secondly, there is a need for better touchscreen accessibility. Regardless of the
mainstream popularity of touchscreen devices they still pose challenges and barriers
to access for many disabled and able-bodied users alike. The primary objective of
this research is to develop techniques that allow user models to capture and respond
to individual abilities seamlessly, in turn improving the accessibility and usability of

touchscreen technologies.

1.1 The Need for Better User Models

User models are primarily used to personalise or tailor application content and
interface designs to better meet the needs of the end user. Typically a user model
would consist of information relating to the preferences, knowledge or abilities of
the end user that was otherwise unavailable during the design stages of the
application. Therefore, systems can be designed to adapt and respond to contextual
information to improve the interaction experience for the user. However, this
approach to designing relies on the premise that the information within the user
model accurately represents the current interaction propensities and requirements of

the user.



1.1.1 Representing Real-World Users

User Diversity. Within industry it is uncommon for companies to involve disabled
users in the design and development of new products and technologies. The adopted
strategies are to select individuals who are representative of much wider populations
to take part in design investigations and evaluations. While user centred design is
encouraged more and more in industry, the levels of involvement and diversity of
users is inadequate for the purpose of designing technologies that work for disabled
users. Interfaces are, at best, designed to meet the needs of generic abstractions of a
disability, neglecting full consideration of the range and daily fluctuation of
symptoms and characteristics. The task of creating an interface that accommodates

for all these factors quickly becomes more complex and costly.

Mobile Conditions. In addition to the human behaviours, there are external factors
that will influence interactions (e.g. lighting conditions, travel conditions); for
mobile technologies the number and variety of environments makes it impossible to
predict and design for all eventualities. Thus there is an increasing need for
interfaces that are able to adapt and respond on a more dynamic and individual basis.
This can only be achieved through systems that respond rapidly to changes in

conditions.

Continuous Calibration. User models are commonly used to tailor application
content and presentation at use time, applying contexts that were not present during
the design phase of applications, in order to provide a better user experience. There
are many different types of data a system might want to model; an individual’s

preference for one interface layout over another, the current task workflow, domain



specific knowledge in e-learning environments, measurements of the user’s typing
performance with a QWERTY keyboard, and so on. The type of model data
inevitably defines the scope and style of customisation possible. Likewise there are a
number of methods to capture the user model data; explicitly asking the user or
providing configuration features, including code to recognise domain specific
workflow sequences, requesting that the user complete a calibration task, or
implicitly capturing performance measurements from application activities. The
method for capturing user model data has tremendous implications for the user
model’s ability to respond promptly and in line with the needs of the user. Offering
user configuration options or initial calibration phases are among the most common
technique for capturing user data. Traditionally occurring within the first launch of a
device or application, these enable the user to explicitly define settings and provide
the system with a baseline measurement which is often never to be revisited. While
this initial configuration or calibration might have been sufficient for desktop
interactions of able-bodied users, this one time setup is insufficient for representing
users with variable abilities such as people with motor impairments. It also neglects
to consider the impact of the user’s current situation, which can be particularly
variable when considering mobile technologies. However, the current approaches to
user modelling would require the user to recalibrate or reconfigure the device in each

specific situation.

1.1.2 Why Touchscreens?
Although the motivation for improvements to user models is independent of any
single technology, this research focuses on mobile touchscreen devices due to their

mainstream appeal and increasingly ubiquitous nature. More than 500 million



touchscreen units shipped in 2012, with mobile devices accounting for 34% of all
units, and numbers are predicted to reach 660 million by 2015 (Cellular-News,
2008). Smartphone devices represented 60.1% of the smart connected devices
shipped in 2012, with tablet devices, portable PCs and desktop PCs representing
10.7%, 16.8% and 12.4% of the market share respectively. The worldwide market
share of smartphones increased by 53.1% from 2011 to 2012 (IDC, 2013). In 2011
the UK alone was reported to have 25.4 million smartphone users, a penetration rate
of 51.3%, which rose to 64% in 2012 (comscore, 2012a; 2013). The trends suggest
that users are moving away from traditional mouse and keyboard PC interfaces for

accessing content and towards mobile touchscreen interactions (comscore, 2012b).

Touchscreens have great appeal due to their ability to support new forms of human
interaction, including the interpretation of rich gestural inputs and the rendering of
novel user interfaces. However, the technology creates new challenges and barriers
for users with limited levels of vision and motor control due to its lack of tactile
cues. Furthermore, it relies on the user’s ability to accurately and consistently
perform the rich gestural inputs in alignment with the predefined parameters of the
gesture recogniser; for some users this is not always possible. Although there are
alternative devices and specially augmented hardware solutions to improve the
accessibility of touchscreen interaction (such as screen overlays), they result in
further exclusion from mainstream technologies, and threaten to stigmatise those

who use them.



1.2 Approach

This dissertation explores techniques to produce user models that are representative
of the diverse interaction abilities of individuals, continuously responsive to the
short-term variances affecting user performance, and present minimal interruption to
real-world interactions, with the goal of addressing the existing challenges with

touchscreen technologies by individuals with visual and motor impairments.

1.2.1 Sharing Data

To mitigate the risk of user models becoming out of date and requiring user
interruption to recalibrate, the proposed methods aim to reuse and share interaction
data between applications and users where possible. Rather than defining user
models that are specific to each application and reliant on domain knowledge to
function, this approach leverages the interaction behaviours that are common
amongst applications by decomposing their interfaces and interactions into the low-
level components and gestures such as buttons and taps, allowing an application-
independent user model to be created. Similarly, the component measurements can
be leveraged to permit the sharing of data between users, independent of their
stereotypical groups. The major challenge of sharing data between applications and
users is insuring that the data is useful and is going to help define the interaction
abilities of the current user. It is not enough to simply select all examples of button
taps and train the user model. By including users’ data where the interaction
behaviours are significantly different from the current user’s abilities, the resulting
user models could produce further recognition problems and failed interactions.

Therefore, techniques to select the appropriate training data are required.



1.2.2 Contextual Modelling

In order to support the sharing of user data between applications and users, a novel
method for selecting training data that matched the current interaction context was
proposed. The approach uses a small sampling window to measure the interaction
behaviours for each session. Features are extracted from these measurements and
used to identify previous sessions with similar interaction behaviours, thus selecting
relevant data to train the user models on. This method is independent of user and
application and therefore allows user models to be trained from other users’ data.
Furthermore, it increases the availability of interaction data for training and enabling

the development of user models specific to individual situations.

1.2.3 The SUM Framework

The Shared User Modelling (SUM) framework captures measurements of an
individual’s interaction performance through real-world application interactions,
allowing continuous measurements of users’ needs and abilities. For example, SUM
framework measures the duration of an individual’s onscreen taps to identify the
range of durations that define an intentional tap gesture for that individual, and
adapts the parameters of the tap gesture recognisers to meet the individual’s
interaction behaviours. Interaction measurements are domain independent, thus SUM
models can easily be shared between applications. The SUM Framework also
contains the necessary methods to apply user models and tailor application
interactions, removing the need for designers to have any knowledge of user
modelling or interface adaptation. SUM allows disabled users to interact with the

same technologies as able-bodied users, providing touchscreen interactions that are



more sympathetic to individual abilities using off the shelf mainstream technologies,

thus reducing the risk of exclusion or stigmatisation of disabled users.

At an abstract level, SUM is a technique combining domain independent user models
and adaptive interfaces to personalise touchscreen interactions. SUMs are built
through background processing of real-world application interactions, as opposed to
subjecting users to semantically meaningless calibration exercises to elicit
performance measurements. This dissertation demonstrates the application of SUM
to improve the access of touchscreen devices for people with low levels of vision and
motor ability. While there is a long history of interface adaptations for disabled
users, such efforts have focussed largely on adaptations for a specific disability or
device. SUM parameterises user interactions to define individual models of input
behaviours rather than relying on stereotypical user group characterisations and
impairment assumptions. Although this work focuses on touchscreen interactions by
users with visual and motor impairments, it aims to demonstrate the wider
application of this technique within other technologies involving users with different
interaction challenges. However, in its current state SUM is presently limited to

physical abilities.

The contribution of the present work is the proposal and evaluation of the novel
Shared User Modelling (SUM) approach as well as the design and development of
the SUM framework that implements novel user modelling and interface adaptation
methods. The SUM framework provides adaptations based an individual’s current
and fluctuating needs. SUM enables the measurement of user abilities and interaction

characteristics without the need for separate calibration exercises or explicit user



configuration settings. Shared user models can be built using interaction data across
multiple applications using input data captured from other users. The research
reported here focuses on a mobile touchscreen device, reflecting the growing

prevalence of such devices and the user interaction challenges they pose for many.

1.2.4 Research Approach

This research has adopted an iterative user centred design approach to define and
refine the SUM framework. Incremental versions of the SUM framework were
evaluated through user observations, laboratory studies and concluded with a four
week in-situ study involving users with visual and motor impairments. Interaction
logs were captured using the SUM framework; these were combined with pre- and
post-evaluation discussions, gathering additional user information and interaction
feedback. Refinements were made based on both quantitative device data and
qualitative user data, ensuring design changes were based on supportive data
evidence. The structure of this dissertation outlines the user evaluations and resulting

changes to the SUM framework.

1.3 Thesis Aims

The main objective of this thesis work is to explore and develop techniques to
improve the accuracy of user models to increase access and usability of mobile
touchscreen interactions by people with visual and motor impairments. Applying a
user centred and iterative design process, the research resulted in the creation of the
SUM framework. The SUM framework serves as a self-contained user modelling
and interface adaptation tool, designed specifically to model real-world application

interactions and tailor the interface to meet the current abilities and needs of



individual users. The SUM approach shares interaction data between users and
applications to train new user models based on the contextual measurements of the

current interaction abilities of users.

Thus, the thesis proposed in this dissertation is:

Sharing data between users and applications can produce models that usefully

represent the dynamic needs and abilities of individuals.

1.3.1 Key Research Questions

To investigate the proposed thesis the following research questions were defined:

* What are the common touch interaction characteristics and individual
variances of users with visual and motor impairments, and how can
affordances for individual abilities be made to improve touchscreen

interactions?

* (Can user abilities be accurately captured and modelled through natural

interactions within mobile touchscreen applications?

* How can user models respond to short-term changes and fluctuations of user

abilities and needs, without the need for continuous calibration exercises?

* Can measurements of users’ abilities be applied to improve the accessibility

of touchscreen interfaces?

1.4 Contribution to Knowledge

The research presented in this dissertation provides a comprehensive review of the

current accessibility state of mobile touchscreen technologies with respect to visual
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and motor impairments, as well as a critical reflection on the application of current

user modelling and adaptive interface techniques. Furthermore the methodologies

and evaluations conducted within this work impart new insights into the benefits,

and challenges faced, when conducting user studies outside of the controlled

laboratory environment. The work also presents a tangible proof of the utility of the

SUM Framework, a system developed to capture and monitor user interactions for

modelling and adaptation purposes.

The contributions to the field of accessible human computer interaction (HCI) of this

thesis are:

The exploration of interaction monitoring and modelling techniques to
support the creation of user models built from real-world application
interactions, leveraging the otherwise discarded low-level touch behaviours
within the gesture recognisers to develop a rich understanding of a user’s
abilities and interaction characteristics, thus removing the reliance for

calibration activities to train and update user models.

The development of a domain-independent structure for user models to
support the sharing of user information between applications and touchscreen
devices, and a software framework to utilise the user modelling and

adaptation capabilities of the model structure.

The rigorous evaluation of interaction modelling without the need for

measurement elicitation tasks, on touchscreen devices by people with visual
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and motor impairments, both within a controlled laboratory environment and
a real-world setting through a four week in-situ user study. These studies
provide a rich understanding of how users’ interaction behaviours and

abilities fluctuate both in short-term and long-term device usage.

* A detailed provisioning of procedures and tools to aid the transition from

laboratory to in-situ user evaluations of mobile touchscreen devices.

* The proposal and evaluation of a novel approach using contextual
measurements of user interactions to create user models specific to individual
sessions. The contextual models allow the creation of user models from other

users’ data, therefore are independent of stereotypical disabilities.

1.5 Thesis Structure

Chapter Two describes prior work in the field and its relation to SUM. The chapter
also aims to provide the reader with a snapshot of the current state of mobile
touchscreen technologies, exposing the challenges and barriers to access. It
highlights the contemporary methods to address the accessibility issues, from both
an industrial and academic perspective. Finally, the chapter outlines and discusses
the characteristics and abilities associated with the user population involved
throughout this research, to give the reader an understanding of the breadth and
variability of these characteristics and challenges to technology access, discussing
the contemporary approaches to designing for these populations and drawing the

reader’s attention to the impact of poorly considered designs.
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Chapter Three details a preliminary study carried out with older adults acting as
further requirements gathering beyond the knowledge gained from the literature
review. The preliminary study helped to scope the interaction challenges presented

by touchscreen interactions, and refine the background user modelling process.

Chapter Four leads on from the background modelling techniques discussed within
Chapter Three, and provides a complete technical overview of the devised SUM
Framework for modelling users’ interactions through natural interactions. This
chapter goes on to detail the development of the domain-independent model
structure supporting the sharing of user models between applications, and concludes
by scrutinising the limitations and other considerations of such user modelling

techniques.

Chapter Five discusses a laboratory-based study carried out with visual and motor
impaired users, to evaluate the use of the SUM Framework to develop adaptive
interfaces tailored to individuals (published in Montague, Hanson, & Cobley, 2012).
It concludes with a critical reflection of the laboratory-based study, discussing the
limitations of such studies and barriers to transitioning SUM user evaluations into

the wild outlining the necessary provisions to support in-situ evaluations of SUM.

Chapter Six outlines the development changes made to the SUM framework,
addressing the limitations identified from the laboratory user evaluation discussed in
Chapter Five. The chapter details the new provisions made to the SUM Framework

to support application in the wild.
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Chapter Seven discusses the design and execution of an in-situ user study with visual
and motor impaired users to explore the real-world behaviours and fluctuations of

individuals’ abilities.

Chapter Eight introduces a novel user modelling approach, leveraging the interaction
behaviours from individual sessions to produce user models that are specific to the
current interactions of the user. The chapter evaluates the proposed models using

simulations from the user data from the in-situ study of Chapter Seven.

Chapter Nine concludes the thesis and discusses the conducted research with relation
to the research objectives and hypotheses outlined above. It presents a critical

reflection of the findings and limitations; and details provisions for future research.
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Chapter 2. Related Work

This chapter aims to express the importance and need for accurate user modelling
methods in the on-going struggle for accessible technologies, with the focus of this
thesis being on touchscreen interactions. Concentrating on key works within the field
of accessible digital technologies and user modelling, this chapter provides a review
of relevant research. The chapter begins by discussing the larger philosophical
approach of this thesis, presenting the existing challenges within this area of HCI.
Next the chapter presents a critical review of current user modelling strategies and
systems. The chapter then outlines on-going work within the field of touchscreen
accessibility. Finally the chapter discusses each of these three areas in relation to the

work within this thesis.

2.1 Ability-Based Design

The concept of ability-based design has only recently been proposed by Wobbrock et
al. (2011) however, its core principles have been alluded to by other movements
such as Harper’s (2007) design-for-one. Harper (2007) examined the feasibility of
design-for-all as a real-world solution to creating accessible technologies, stressing
that the universal approach contradicts itself. The design-for-all approach argues that
we should design with everyone and every situation in mind, but we know that
human abilities and interaction situations are too diverse and broad to deal with in
this way (Vanderheiden, 2000). In contrast, the principle underlying of design-for-
one and ability-based design is simple: technologies should be designed in alignment
with what the user can actually do. With ability-based design, the disability

group/medical diagnosis of a person does not define his/her actual interface needs.
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People are individuals, each with unique needs and abilities. Our interfaces,

therefore, should reflect this.

Seven Principles of Ability-Based Design

1. Ability. Designers will focus on ability not dis-ability, striving to | Required
5 leverage all that users can do.
E 2. Accountability. | Designers will respond to poor performance by changing | Required
@ systems, not users, leaving users as they are.
3. Adaptation. Interfaces may be self-adaptive or user-adaptable to |Recommended
8 provide the best possible match to users’ abilities.
<
E 4. Transparency. | Interfaces may give users awareness of adaptations and | Recommended
E the means to inspect, override, discard, revert, store,
retrieve, preview, and test those adaptations.
5. Performance. Systems may regard users’ performance, and may | Recommended
monitor, measure, model, or predict that performance.
E} 6. Context. Systems may proactively sense context and anticipate its | Recommended
§ effects on users’ abilities.
)
7. Commodity. Systems may comprise low-cost, inexpensive, readily | Encouraged
available commodity hardware and software.

Figure 2.1 Seven Principles of Ability-Based Design extracted from (Wobbrock et al., 2011).
Wobbrock et al. (2011) describe the basic tenets of ability-based design in relation to

other design approaches. They outline seven basic principles of ability-based design,
shown in Figure 2.1. These principles outline the basic position of the approach, and
suggest methods of interface and system design. This approach removes the barriers
that define a user as being able-bodied or disabled, and instead invites designers to

consider individuals’ abilities, more specifically: What can he/she do?

2.1.1 Challenges in Ability-Based Design

Wobbrock et al. (2011) defined the following ability-based design challenges that
closely relate to the research objectives of this thesis work. Firstly, the success of
ability-based design relies on the system’s ability to accurately detect an individual’s

abilities. There is a need for these abilities to be periodically measured with low cost
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or disruption to the user’s intended workflow. In relation to this, another challenge is
to consider the user’s current situation. It is important for applications to understand
the wider context beyond the device. Successful ability-based design systems need to
factor in the environmental factors that influence an individual’s abilities. However,
to truly achieve contextually-aware systems we must first develop methods to
measure performance abilities away from the controlled laboratory setting, and
traditional semantically meaningless calibration tasks. This presents what could be
considered the greatest challenge, inferring an individual’s intention within free-form
tasks. Finally, once the aforementioned challenges have been addressed, it is crucial
that the systems understand how best to behave in response to these measurements.
These challenges constitute the rational and motivation for the research within this

dissertation.

2.1.2 Measuring Abilities

Regardless of the task or application, arguably the most important stage of ability-
based design is capturing accurate measurements of user abilities. The research
presented within this section demonstrates techniques and strategies applicable to the

accurate measurement of users.

Trewin and Pain (1997) presented a technique whereby an individual’s typing
behaviour and performance could be monitored in order to identify any keyboard
difficulties such as long key pressing and bounce errors. Trewin extended this work
and proposed novel filtering techniques to mitigate these types of errors, through
techniques known as the Dynamic Keyboard (Trewin, 2002). This program provided

optimal keyboard configurations for an individual’s varying needs in roughly real
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time. Targeted at individuals with motor impairments, the system was designed to
cope with highly variable user abilities, requiring regular assessments of typing
performance. The Dynamic Keyboard captured measurements by monitoring
keyboard behaviour during users’ natural interactions with the computer. This
technique enabled the system to periodically assess the user’s abilities without the
need for any user interruption. Building on the original Dynamic Keyboard work
Trewin (Trewin, 2004) demonstrated the adaptation capabilities of the system within
a real world context. Using these measurements the system was then able to make
modifications to the keyboard configurations helping to reduce typing errors such as
key repeats from pressing delays, and bounce errors from unintentionally tapping

keys multiple times.

Keates and Trewin (2005) recognised a similar need to support users with mouse
clicking, reporting the most common types of errors as slipping when clicking, and
unintentional or accidental clicks. Trewin et al. (2006) proposed a novel solution,
Steady Clicks, which was able to significantly reduce these errors using filtering
techniques to ignore mouse movements during clicks and accidental target
selections. Hurst et al. (2008a) later developed methods to automatically capture and
measure individual’s mouse performance, and assess if there was a need for
adaptation. Using Fitts’ law-style pointing and clicking tasks the system collected
movement and click behaviours and extracted features to classify participants as
having motor problems, or no motor problems with a 92.7% accuracy. Furthermore
they were able to predict with 94.4% accuracy whether Steady Click adaptations

would be of benefit to the individual.
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The SUPPLE ++ system used a similar Fitts’ law-style calibration task approach to
elicit the abilities of individuals, requiring the user to move a computer pointer to
select various onscreen targets (Gajos, Weld, & Wobbrock, 2010; Gajos, Wobbrock,
& Weld, 2008). These models of user performance were then used to automatically
create interfaces that provided the most optimal interactions for the user as shown in
Figure 2.2. SUPPLE++ provided adaptations such as scaling the size of controls and
substituting checkbox controls for lists or buttons, all such changes being based on
the performance abilities of the individual user. Gajos et al. (2008) tested the
interface adaptation system with motor-impaired users producing significantly fewer

errors and shorter completion times.

nnnnn
..........

vvvvvv

baseline ABO3 MIo9

Figure 2.2 Baseline dialog interface and two interface versions automatically generated by
SUPPLE++ extracted from (Gajos et al., 2008).

The major limitation of the method of determining adaptations used by Gajos et al.
(Gajos, Wobbrock, & Weld, 2007), and one often used by others (Trewin S., 2004),
is the need for users to complete a calibration task to inform the system of their
current abilities. The very nature of some impairments is their highly variable
behaviours. Thus, the individuals’ abilities often have large variations. Using the
proposed calibration technique to leverage user abilities may result in the need for
users to undergo the task before each system use, and ultimately, fails to capture user

needs that can change even within a session. Similarly abilities can be impacted by
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the situation of use (Sears & Young, 2002), meaning that the application of this
strategy in mobile technologies could inevitably result in users completing the

calibration tasks with each use due to the impact of environmental factors alone.

2.1.3 Sensing and Adjusting to Current Situations

Sometimes the impact of the user’s current situation can be overlooked as a factor
when designing technologies. People do not pick up their desktop computer tower,
keyboard, mouse and monitor then take it on a train ride. However, it is entirely
plausible to take your laptop computer, tablet device or mobile smartphone into this
situation. Moving away from the comfort of the living room or office exposes users
to potentially harsh extremes of lighting, stability, ambient noise and distractions.
Early efforts to capture environmental factors impacting on user interactions, such as
light levels, resulted in the need for users to be heavily equipped with numerous
sensors monitoring movements and locations using accelerometers, gyroscopes,
cameras, light sensors and GPS chips (Roto et al., 2004). However, in recent years
many of these sensors have become embedded in mainstream mobile technologies

allowing the previously body worn sensors to be replaced with a single smartphone.

In relation to this widespread availability of portable situation sensing devices there
has been an increase in the development of context aware systems. A number of
efforts have all investigated the effects of situational impairments (Sears, Lin, Jacko,

& Xiao, 2013) on user interactions.
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Figure 2.3 Walking User Interface for music application, extracted from (Kane, Wobbrock, &
Smith, 2008).

Walking User Interfaces, shown in Figure 2.3, was the name given to mobile
interfaces that adapted their form in relation to the users’ movement (Kane et al.,
2008). Using the device’s built-in accelerometer sensor, the application interface
increased the size of text and widgets as device movements increased. While
producing larger widgets simplified the target selection task, it also caused fewer
items to be visible at once on the screen. This forced users to perform a greater
number of scrolling operations, resulting in longer task times when using the

adaptive layout.

More recently, Nicolau and Jorge (2012a) investigated the effects of grip posture and
movement on mobile touchscreen text entry. They used the built-in accelerometer to
measure device movement and stability during repeated text entry tasks within single
handed portrait orientation, two handed portrait orientation and two handed
landscape conditions. Interestingly the authors reported that while two handed text

entry increased the input rates, it provided no additional device stability or
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improvement to accuracy of text-entry. Nicolau and Jorge (2012a) suggest that future

techniques should focus on dealing with poor aiming.

Bscrews ®bholts Mscrews ®bolts

W washers ™ nuts 1 " washers ™ nuts -

W rivets nails Wrivets nails

Figure 2.4 Original bar graph (left) and recoloured bar graph based on individual’s colour
vision abilities, generated using SSMRecolor (right) extracted from (Flatla & Gutwin, 2012).

While the aforementioned systems investigated mobile technologies and the
situational impact of movement on interactions, other types of adaptations are
possible. For example, Flatla and Gutwin (2011) investigated the effects of situation
on colour differentiation with desktop interactions. The situation-specific models
were constructed using a short calibration task that accounted for environmental
factors such as lighting as well as the individual’s own colour vision deficiencies.
They later presented SSMRecolor, where the system used the situation-specific
models to recolour interfaces tailored to an individual’s colour vision abilities and
current situation of use (Flatla and Gutwin., 2012). Figure 2.4 shows an example of
bar chart recolouring. Using the situation specific models, participants were
significantly more accurate at identifying differences between colours when

compared against other colour correction methods. This work demonstrated the
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nontrivial impact of environmental factors on the perception of visual interfaces,

specifically colour discrimination.

2.1.4 Measuring in the Real World

Laboratory-based evaluations allow researchers to control for external factors that
can influence participant interaction performance. Typically, these studies tailor
situations to remove distraction and interruption thus ensuring a user’s attention on
the task and relative precision in interaction accuracy. While highly controlled
laboratory experiments provide clean measurements with minimal errors, Chapuis et
al. (2007) have demonstrated that interaction behaviours captured within natural
settings differ from those captured within the laboratory. Additionally, laboratory-
based evaluations impose time restrictions on user studies. Characteristically lasting
no more than an hour at a time, they restrict the potential for capturing the
performance changes that naturally occur throughout daily usage. During the
Dynamic Keyboard evaluations, Trewin (2004) asked participants to provide typing

samples at various points throughout the day to begin to understand these changes.

Hurst et al. (2008b) conducted “in the wild” user evaluations to investigate the
pointing performance of individuals with motor impairments in natural usage
conditions. The initial phase of the evaluation required participants to complete
baseline calibrations using the IDA (Koester, LoPresti, & Simpson, 2005) software
suite, based on Fitts’ Law clicking tasks. Beyond this initial phase, participants were
free to login to the system and play games, or use other applications such as word
processing. Using application interaction models, the authors were able to infer user

intent from the mouse input, allowing measurements of overlapping button clicks,
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slips, accidental clicks, direction changes and excess distance travelled similar to the
type of measurements possible within the controlled laboratory setting (Hurst,
Hudson, Mankoff, & Trewin, 2008a). Hurst et al. (2008b) reported that participant
performance was highly variable both between and within sessions, further
supporting Trewin’s early findings that individuals’ performance can fluctuate due to
medication, progression of a disease, or as a symptom of impairment (Trewin et al.,
2006). Hurst et al. (2008b) argue that user evaluations with less control and
constraints can help to reduce the risk of fatigue and stress by allowing participants

to dictate their own break and interaction schedules.

More recently, Gajos et al. (2012) also explored real world user evaluations to
develop techniques for collecting accurate measurements of pointing performance
using unobtrusive methods, proposing that deliberate mouse pointing interactions
could be distinguished from the “noisy ” unintentional ones by extracting trajectories,
speed, acceleration and jerk features of the mouse movements. Using online
calibration tasks combined with natural data collection through a web browser
plugin, the authors were able to develop filters and techniques to identify mouse
interactions that occurred during periods of distraction allowing the collection of
laboratory-quality data for mouse pointer measurements as used within the earlier

SUPPLE (Gajos & Weld, 2004) evaluations.

2.1.5 Towards Accessible Interfaces
The use of suitable interactions is fundamental to the success of ability-based
systems. Research described so far in this chapter has all explored interface and

interaction techniques that maximise user accessibility or performance. However, not
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all interaction techniques are beneficial to everyone; most interaction adaptations are
defined for particular groups of people or disabilities. Although these interfaces are
not optimal for everyone, they offer valuable insights into the correlation of interface
adaptations and user abilities. Attention is now turned to the contrast between
subject dependent studies (Guerreiro, Nicolau, Jorge, & Gongalves, 2010a), which
investigate interfaces targeted to improve access for a specific user population, and
subject independent studies (Findlater & Wobbrock, 2012; Goel, Findlater, &
Wobbrock, 2012), that expore interfaces as a response to parameterised

measurements and abilities — typically adaptive systems.

Guerreiro et al. (2010a) examined the interaction challenges faced by tetraplegic
people when using mobile touchscreen devices. Recognising that existing touch key
models (Parhi et al., 2006, S. Lee & Zhai, 2009 and Y. S. Park et al., 2008) did not
work for this user population, the authors conducted in-depth laboratory evaluations
to explore various touch interaction methods: tapping, crossing (drawing a line
through targets), exiting (as crossing with targets on the edges of the device),
directional gesturing (on blank screen with no targets, participants draw a line in the
desired direction). Guerreiro et al. (2010a) used evaluation methods and analysis
reminiscent of Y. S. Park et al. (2008) however they reported optimal target sizes of
at least 12mm as opposed to the 9.6mm recommended by others such as (S. Lee &

Zhai, 2009; Parhi et al., 2006; Y. S. Park et al., 2008).

While Guerreiro et al. (2010b) found that their participants preferred tapping
interactions, the results showed that crossing, exiting and directional gestures were

all suitable for motor-impaired users. They also noted that some directional gestures
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produced poorer performance than others. They suggested that interfaces should
favour vertical and horizontal over diagonal directions for this particular user group.
These findings echo the earlier work by Froehlich et al. (2007) and Wobbrock et al.
(2003) who found that the edges provide added stability for target acquisition with

stylus touch input by users with motor impairments.

The Walking User Interfaces proposed by Kane et al. (2008) adopted a widget
scaling technique similar to (Guerreiro, Nicolau, Jorge, & Gongalves, 2010a) to
improve touchscreen device interactions made by able-bodied users while walking
(Figure 2.3), highlighting this relationship between user abilities and situational

impairments, as subsequently demonstrated by Nicolau (2013).

Henze et al. (2012) investigated both visual and non-visual adaptations to
touchscreen interfaces to address target acquisition tasks. Applying touch offset
models based on individuals’ touch behaviours, the authors evaluated the effects of
providing users with the visual feedback of a red dot showing the offset
interpretation of their touch, and non-visual methods which simply applied the touch
offset model to typing behaviour. The visual feedback interface is shown in Figure
2.5. Hezne et al. (2012) reported that with no scaling of targets, using only the touch
offset models and visual feedback of touch location they were able to reduce typing

error rates by 18.3%.
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Figure 2.5 Keyboard providing visual feedback of users’ touch location when typing the letter
“f”, extracted from (Henze et al., 2012).

Personalised input (Findlater & Wobbrock, 2012), used similar techniques to Henze
et al. (2012), creating touch models of users’ interactions with keyboard input on
large touchscreen devices. Using visual and non-visual techniques the personalised
input tailored keyboard layouts to match the typing behaviours of the individual,
shown in Figure 2.6. However, Findlater and Wobbrock (2012) found that while the
non-visual adaptations improved typing speeds when compared with the
conventional keyboard, the visual adaptations provided no improvement.
Furthermore, as shown in the subjective measures, participants preferred the non-
visual adaptations. Findlater and Wobbrock (2012) observed the typing speeds
decreasing when participants began using the visual adaptive interface condition.
They hypothesised this could be the result of an increased cognitive load due to the

frequently changing interface.

Figure 2.6 Personalized Input keyboard layouts generated for two users, extracted from
(Findlater & Wobbrock, 2012).

An important challenge relating to adaptive interfaces is the need for control. While
the aforementioned works have applied interface adaptations specific to each
application or task, the Dynamic Keyboard (Trewin, 2004) and ACCESS framework

(Heron, Hanson, & Ricketts, 2013) performed adaptations to system wide
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configurations. The Dynamic Keyboard continuously monitored typing behaviour
and adjusted the keyboard filters for all user interactions with the computer..
Similarly, the ACCESS framework would continually monitored users’ interactions
to assess if their needs were not being met with the current configuration settings of
the system’s input and output, at which point the framework would notify the user
and present possible configuration changes. Both Dynamic Keyboard and ACCESS
make adjustments to the configurations within the operating system settings panels
and are therefore, present and for all interactions and applications. Furthermore, by
altering the OS configuration settings that can be accessed independent of the
adaptation systems, they allow users to veto or revert any adaptations and changes
made on their behalf and thus, provide the end user with greater control over their
interaction experience. Furthermore, because the Dynamic Keyboard and ACCESS
framework examine low-level events beneath the application layer, they are able to
continuously monitor and measure user performance without the need for calibration

eXercises.

2.2 Discussion of Challenges

This section presents a review and discussion of several projects working with the
ability-based design area, providing a comparison of these works on the following
criteria: measurement method, scope of method, research environment, adaptability
and measurement subject. The section will explain and discuss each comparison

criteria in detail. A complete overview of the compared works is presented in Table

2.1 below.
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2.2.1 Measurement Method

Measurement method refers to the technique used to capture accurate measurements
of the user’s interaction abilities. There are a number of methods to acquire user
related measurements including: user preferences captured through configuration
panels or system prompts, a somewhat out-dated approach less applicable to ability-
based solutions; calibration tasks the most commonly adopted measurement method
(Table 2.1), requiring users to undergo a series of tests performing actions such as
mouse clicks or onscreen taps to collect clean representations of actions for
modelling; and finally natural interaction, considerably less common than
calibration tasks as it is much more complex to work with and extract clean models
of interactions. Natural interaction techniques capture user measurements in
unobtrusive background methods allowing users to engage with the technologies in
an unaffected way, while the calibration task approach subjects the users to periodic

interruptions to acquire updated measurements of their abilities.

The Dynamic Keyboard (Trewin, 2004) is an example of the natural interaction
measurement method, leveraging the interaction patterns between keyboard and
mouse usage to identify periods of intended keyboard typing, then monitoring users’
keystrokes to recognise possible typing difficulties and user abilities. The difficulty
for such systems is identifying intent: Did the user really mean to do that? Gajos et
al. (2012) investigated this challenge with mouse pointer interactions, using
calibration tasks to capture baseline measurements of user performance and classify
interactions that occurred during periods of distraction to distinguish them from

intended user interactions.
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Natural interaction measurement methods are to be strongly preferred, particularly
when considering users with abilities that are prone to large fluctuations and change

(Hurst, Mankoff, & Hudson, 2008Db).

2.2.2 Scope of Method

Scope of Method relates to the analysis technique applied to the measured data,
whether it is specific to a particular task application or whether it is generic enough
to apply to measurement data in multiple contexts. In most cases the analysis of data
must leverage task knowledge to infer intent of user interactions and improve
accuracy of user measurements (Table 2.1). Typically the method will involve the
user interacting with either a single or highlighted element, allowing the authors to
automatically infer that the user’s intention was to perform that action, such as
clicking (Gajos et al., 2012; 2007; Hurst, Hudson, Mankoff, & Trewin, 2008a; Hurst,
Mankoff, & Hudson, 2008b; Trewin et al., 2006) or tapping onscreen targets
(Findlater & Wobbrock, 2012; Guerreiro, Nicolau, Jorge, & Gongalves, 2010a; Y. S.
Park & Han, 2010). As a result of this, such systems require the inclusion of a

calibration task to elicit the user performance measurements.

Hurst et al. (2010) presented a method using computer vision techniques to locate
and identify targets. The common interaction behaviour across most applications
when responding to mouse clicks is to change the state of the button or target with
some form of highlight or selection visualisation. Collecting boxed grabs comprising
the 300x300 pixel area around the cursor before and after a mouse click event, Hurst
et al. (2010) were able to extract features from the screen shots to identify the

interface element the user clicked, as well as properties relating to the dimensions of
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the target, and the relative distances between the click location and target. This
approach provided data that could be analysed using the traditional mouse pointer
measurements for offsets, movements, target crossing and unintentional clicks.
Leveraging these common interaction behaviours (visual state changes of button
clicks) was key to the success of the method applied within (Hurst et al., 2010), and

provides the basic principles to build upon in order to strengthen this technique.

2.2.3 Research Environment

Research Environment describes the context for which the user measurements are
captured. Typically speaking, there are two categories of research environment:
laboratory and real world (Table 2.1). However research may also synthesise real
world conditions (Kane et al., 2008) to maintain a level of control that is not possible
in the real world. The inclusion of real world evaluation and user measurements are
vital for the consideration of situational impairments and variable health conditions

(Nicolau, 2013).

Controlled, task-specific laboratory studies are often adopted within the field of HCI
due to the high levels of control they offer. However this control comes at the price
of limiting the understanding of how users interact with systems in a real world
setting, over time, and while being unobserved. In-situ user evaluations can
illuminate real world behaviours and expose challenges and barriers that would have
never otherwise been identified. Again the force inhibiting the widespread adoption
of real world evaluations and measurements is understanding user intent. As a result
many researchers (Gajos et al., 2012; Goel et al., 2012; Henze, Rukzio, & Boll,

2011; Hurst, Mankoff, & Hudson, 2008b) have opted for the use of the semantically
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meaningless calibration tasks to obtain user measurements. However, Trewin (2004)
and Hurst et al. (2010) have demonstrated that it is possible to conduct these

evaluations outside of the controlled laboratory, capturing natural interactions.

2.2.4 Adaptability

Adaptability refers to the system’s ability and approach to adaptation: none, in which
the system provides users with a static interface and the work concentrates on
collecting measurements of performance; self-adaptive, in which the adaptation
process is entirely based on measurements and does not allow for user control; or
user-adaptive, in which adaptations are based on the measurements but can be

altered by users.

2.2.5 Measurement Subject

Measurement Subject is used to describe the basis for a system’s measurements or
interface adaptations, split into two categories: group and individual. Works
applying group level measurements or interface adaptations are not fully consistent
with the ability-based design ethos. However, their discoveries and methods are
fundamental to the development of design solutions that do consider the individual

nature of abilities and situations.
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Measurement Scope of Research Measurement e
Related Work method Method Environment Subject Adaptability
SUPPLE (Gajos et o o Self-
al., 2007; 2008) Calibration task Task Laboratory Individual Adaptive
Steady Clicks .
(Trewin et al., 2006) Calibration task Task Laboratory Group None
ICD-2 (Flatla & o .. Self-
Gutwin, 2011) Calibration task Task Laboratory Individual Adaptive
Automatic Mouse
Performance
Detection (Hurst, Calibration task Task Laboratory Group None
Hudson, Mankoff, &
Trewin, 2008a)
ACCESS Framework v .. User-
(Heron et al., 2013) Calibration task Task Laboratory Individual Adaptive
Touch Input for
Tetraplegics
(Guerreiro, Nicolau, Calibration task Task Laboratory Group None
Jorge, & Gongalves,
2010a)
Design for
Touchscreen Target o
Selection (Y. S. Park Calibration task Task Laboratory Group None
& Han, 2010)
Understanding
Pointing problems o ..
(Hurst, Mankoff, & Calibration task Task Real World Individual None
Hudson, 2008b)
Identifying Target
Intent (Hurst et al., Naturg ! System Real World Group None
Interactions
2010)
In Situ Pointing
Performance (Gajos Calibration task System Real World Individual None
et al., 2012)
Personalized Input Self-
(Findlater & Calibration task Task Laboratory Individual Adaptive
Wobbrock, 2012) P
Dynamic Keyboard
(Trewin, 2004; Naturg ! System Real World Individual User.-
Interactions Adaptive

Trewin & Pain, 1997)

Table 2.1 Overview of reviewed papers compared within the related work discussion section
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2.3 Physical and Visual Access Problems of Touchscreens

Based on the related works, the major challenges and barriers to access of
touchscreen devices by people with visual and or motor impairments relate to the
input methods of the technology. Specifically these access problems are around
target acquisition, the proposed solutions include tailored interface layouts (Gajos et
al., 2007; 2008); target scaling (Guerreiro, Nicolau, Jorge, & Gongalves, 2010a; Y.
S. Park & Han, 2010) and personalized touch offset models (Henze et al., 2011;
Findlater & Wobbrock, 2012) and gesture recognisers (Trewin, S., Swart, C., &
Pettick, D., 2013). However, many of the previously proposed solutions target a
specific disability or stereotypical user group, failing to address the diverse range of

motor and visual abilities within these populations.

2.4 Summary

Table 2.1 provides an overview of papers discussed in this chapter, describing the
work in the context of the discussed key parameters for adaptation. This chapter has
described the influential related works that have helped to shape the journey and
outcomes of this thesis. It began with a discussion of ability-based design, the
conceptual method selected by this research for its realistic goals and logical
approach to developing accessible technologies. The chapter presented the existing
barriers and challenges to achieving ability-based systems, discussing approaches to

adaptation that inspired the work carried out within this thesis.
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Chapter 3. Preliminary Research

The objective of this thesis is to investigate the barriers to touchscreen technologies
experienced by individuals with a diverse range of motor and visual abilities.
Primarily, the focus of the research is to improve the accuracy of user models for

people with fluctuating abilities.

Chapter Two framed the conceptual underpinnings of this thesis in terms of adaptive
technologies, then presented a review of the related work and a discussion of the
widely adopted approaches employed to address barriers to access of technologies.
This chapter begins with a review of work on touch screen interactions. It then
reports on the initial phase of the research, which aims to substantiate an
understanding of the range of user interaction behaviours with mobile touchscreen
devices through observations. The purpose of this initial study was also to inform the
technological approach of the research and to establish methods of capturing user

data using both the individual’s preferences and interaction characteristics.

Presented is an evaluation conducted with older adult participants using a mobile
touchscreen device in a way-finding context. The rationale for this study was to
observe the initial impressions and interaction behaviours of the users to identify the

challenges and barriers to use.

3.5 Understanding Touchscreen Interactions
Target acquisition with mobile touchscreens is a common obstacle for all users due
to finger occlusion or the “fat finger” problem (Vogel & Baudisch, 2007). With most

mobile devices, phones and tablets being scaled to fit comfortably into a handbag or
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trouser pocket, the current screen sizes rarely exceed 13cm (phones) and 26cm
(tablets). The impact of these sizes is that they force constraints on the maximum
dimensions an individual target can occupy. To compound the problem, the size of
the human index finger (ranging from 15.5mm to 18.2mm) in addition to its rounded
shape, makes it less than optimal for selecting small targets. This imposes constraints
on the minimum dimensions of interface elements intended for interaction. Parhi et
al., (2006) conducted user evaluations investigating the effect of target sizes with
respect to discrete (menu selections) and serial (entering text on a keypad) target
acquisitions made by young able-bodied users. Participants, in a standing position,
held the device in one hand while hitting targets with the thumb of the same hand.
The researchers controlled the size of the targets, and reported optimal target sizes of
9.2mm and 9.6mm for discrete and serial interactions. (S. Lee & Zhai, 2009) and (Y.
S. Park & Han, 2010) later confirmed these minimum size recommendations of
(~10mm) when using similar study designs measuring serial touch behaviours.
Where (Parhi et al., 2006) used targets with equal proportion, Lee et al. (2009)
further explored the effects of the target size in both portrait (4.9x8.3mm, narrow)
and landscape (7.5x6.5mm, wide) keyboards of the iPhone, which showed reduced
input speed and increased targeting errors for the narrow input condition. However,
the nature of the targeting errors is not discussed with regard to the targeting offsets,
due to the limitations of the study apparatus. Lee et al. (2009) used the device default
“off the shelf” keypad for the user evaluation, and performed keystroke analysis
based on the recorded observations. In contrast, the apparatus and study design used
by Park and Han (2010) allowed these types of errors to be captured by the device

and reported. Through programmatically recording the users’ touch input locations
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in relation to the 5x5 grid of 4mm, 7mm and 10mm targets, Park and Han used
similar methods to (Parhi et al., 2006), but adopted a seated position using one-
handed thumb touch input to hit the on-screen targets. (Y. S. Park & Han, 2010)
provided a more rigorous analysis of the touch inputs, exploring the distribution of
touch errors, success rates and touch convenience using the 5x5 regions, as opposed
to the 3x3 adopted in (Parhi et al., 2006). Park and Han’s (2010) inspection of the
touch behaviours using the 5x5 regions uncovered touch error offsets in both the x
and y axes. Moreover, they proposed corrective offset values of the device-sensed
touch locations for both axes and were able to significantly improve the success rates
of target acquisitions. Park and Han (2010) proposed touch offset shifts of -2,-3
pixels in the x, y axis (making a shift of 1.4mm in the real world) for their user

population.

3.5.1 Motor Impairments and Touch

All of the above user studies were carried out with young able-bodied participants,
some of who regularly used mobile touchscreen devices. However, Guerreiro et al.,
(2010a) conducted a comparable evaluation to Parhi et al. (2006), Lee et al. (2009)
and Park and Han (2010), investigating touch inputs by participants with motor-
impairments. The evaluation went beyond target acquisition with tapping
interactions and explored the ability of tetraplegic users to perform tapping, crossing
(drawing a line through targets), exiting (as crossing with targets on the edges of the
device), and directional gesturing (blank screen with no targets, participants draw a
line in the desired direction). Applying an equivalent analysis to that in (Y. S. Park
& Han, 2010), the tapping results identify a need for larger targets of at least 12mm

for users with motor-impairments. Furthermore, while the success rate distributions
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across the 5x5 grids share agreement for more accurate target acquisitions in the
centres of the screens, the regions around the edges of the device show extremely
conflicting views. It could be argued that these variations in the distributions are the
result of the differences within the study design. As opposed to adopting a seating
position (Y. S. Park & Han, 2010), participants were encouraged to place the device
in a comfortable position (including placing them on tables or armrests) and use any
part of their hand to interact with the device. This allowed them to behave more

naturally with the device.

3.5.2 Target Perception and Touch

Holz & Baudisch (2010) have carried out extensive investigations to identify the
inaccuracies in touch precision that may be attributed to the discrepancies in the
perception of human touch locations and the device interpretations from the contact
areas. They conducted a series of user studies to explore the rationale behind users’
targeting procedures through participant interviews and trials using low fidelity
paper targets, digital track-pads and cameras to capture participants’ targeting efforts
across multiple finger orientations and postures. The work evaluated new touch
models based on users’ perceived input, and six finger feature specific models
designed to correct for the targeting offsets, all of which produced lower error rates
than traditional contact models. The greatest results were achieved when using the
model built from the user’s projected centre point of the fingernail. In this
condition, targeting offsets were reduced to 1.6mm (40% of the magnitude used with
traditional contact models). This suggests that this is the targeting procedure applied
when users interact with touchscreens. However these models rely on knowledge of

finger features including the base, tip and the sides of finger nails; information that
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cannot currently be acquired through capacitive sensing technologies used within

mobile devices.

Collectively all of these studies are limited by the same weakness in that they failed
to consider that their constrained one-handed thumb interaction method might not be
the most natural or optimal configuration for all of their participants. Furthermore,
they all take place within a restrictive laboratory setting, far from the environment
usually associated with mobile devices. Through learning from the limitations of
these studies proceeding, this current user study aims to contribute to addressing a
gap in knowledge as it investigates the natural usage behaviours of touchscreens by

users within real-world tasks.

3.6 User Study

This section presents an exploratory study carried out with four older adults. The
objective of this evaluation was to identify the characteristics and behaviours of
users when interacting with mobile touchscreens, to identify the similarities and
differences between users and to better define and scope the challenges with
touchscreen interactions. Gregor and Newell (2001) discussed the dynamic nature of
the human species, calling attention to the various stages of change in a lifetime. In
particular they highlighted the decline in cognitive, physical and sensory abilities
over time. Therefore, the older adult population embody a diverse set of
characteristics and capabilities, many of which overlap with people with visual and
motor impairments. Furthermore, this study aims to inform the research direction

and data collection methods of this work.
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3.6.1 Participants

Four older adults were approached and recruited through the School of Computing’s
User Centre, which is a computer drop-in centre for older adults to learn about
technologies. The inclusion / exclusion criteria for this study required that the older
adults had low visual or, and motor abilities to participate, each participate self-
reported as meeting these requirements. The group consisted of two female and two
male participants aged between 60 and 86 years (M= 72, SD=12.11) (Table 3.1). All
participants owned and regularly used a mobile phone, none of which were
smartphones. None of the participants had used a mobile touchscreen before but each
participant reported using the self-serve touchscreens at supermarkets. See appendix

1 for information sheet and consent forms.

Participant Age Gender Impairment Accommodation
P1 60 Female None N/a
P2 36 Female Macular Degene.ratlon (left eye), Loss of Wears Varl.focal.
hearing (left ear) glasses, hearing aid
P3 64 Male None N/a
P4 78 Male Loss of vision Wears reading
glasses

Table 3.1 Overview of participant information: age, gender, impairment and accommodations.
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3.6.2 Apparatus
The mobile device selected for this study was the second generation Apple iPod

Touch (Figure 3.1) running iOS 3.0, full technical specifications are detailed in

Table 3.2.
iPod Touch
RAM 128MB
CPU 533MHz
Network Wifi / Bluetooth
Camera N/A
Battery 739 mA-h
Weight 115¢g
Microphone Yes
Accelerometer 3-Axis
Vibration Motor N/A
Screen Resolution 320x480
Pixels per inch 163
Screen Dimensions 74 mm (H)
49 mm (W)
110 mm (H)
Device Dimensions 61.8 mm (W)
8.5 mm (D)
Operating System i0S 3.0

Table 3.2 Summary of second generation iPod Touch hardware specifications (Wikipedia, n.d.)

A prototype indoor navigation application was produced using JavaServer Pages
(JSP) and MySQL database. This database contained a graph representation of the
School of Computing building, and supported navigation queries in the form of an
origin and destination location and optional route parameters. Each room or
passageway was defined and stored as a node within the graph, and vertices were
used to represent the connections between rooms and passageways within the

physical space. In addition to storing the connected locations, nodes could also have
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supplementary media items such as images. The indoor navigation prototype
application could request way-finding instructions between two locations and specify
additional constraint parameters for the route, for example, to provide a route that
avoids stairs. Origin and destination locations could be selected from a list of all
available rooms or people within the building, while route constraints needed to be
defined within the settings panel of the application. Once the origin and destination
locations were selected, the indoor navigation application would traverse the graph
to identify an appropriate route for the request, and return the user a series of
navigational instructions that included textual directions and media elements where
available, as shown in Figure 3.1. All the computation was performed server-side
and an HTML page was returned to the user’s mobile device. Whilst the HTML
prototype was highly portable, the loading times of the pages were very inconsistent.
To resolve this issue, web service access was added and the prototype was embedded
with a Simple Object Access Protocol (SOAP) client to retrieve the navigation
results. Code was added to the indoor navigation application to log user interactions,
tracking button selections and page loads. The interaction logs were collected via the
JSP web services, requiring the application to be in constant connection with an

active WiF1 network.

The indoor navigation application was designed in accordance with the iOS design
guidelines (Apple, 2009), ensuring the correct interface elements and layouts were
used and minimum target sizes all conformed with the iOS guidelines. Each button
was built using the standard UlButton interface element (with additional styles
applied) and therefore, responded as any other application available on iOS would be

expected to respond.
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The navigation interface presented to the user is detailed in Figure 3.1. The
participant could navigate between the way-finding instructions using the previous
and next buttons (F and H in Figure 3.1). When the previous or next buttons were
selected the application would send a SOAP request for the corresponding content,
loading the related image and text into the interface. Due to the device’s lack of
vibration motor, no tactile feedback was provided to participants. However, the
application did emit a beep when a tap gesture was recognised to inform the
participant of a successful action. The second generation iPod was never embedded
with the Apple VoiceOver screen reader software. Thus, in order to provide
participants with text-to-speech transcriptions the application was embedded with
code to communicate with the Google Translate' service. When participants pressed
the audio button (G) the application would beep then make a request to the Google
Translate service, which would then return an .mp3 file of the spoken text. Finally,
participants could hide and show the text instruction overlay by tapping the
show/hide button (C). This allowed participants to view the full image, particularly
useful when the instructions spanned multiple lines and occluded much of the image.

The interface components would only respond to a single finger tap gesture.

1 http://translate.google.com
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Go through the Automatic
Doors into the Queen
Mother Building

Figure 3.1 The 2nd generation iPod Touch running the Indoor Navigation app.

3.6.3 Procedure

Participants were informed that the rationale for the study was to investigate the
indoor navigation tool, and the personalised navigation interfaces. The study also
aimed to investigate the broader interaction behaviours of the users when using a
touchscreen mobile device in situational context. The study consisted of a single
session lasting 30-45 minutes, composed of three elements: an initial interview with

the researcher, two way-finding tasks using the mobile app, and a final discussion for

debriefing and feedback.

3.6.3.1 Initial interview
The initial interview collected data about each participant’s mobile phone usage and
touchscreen experience. The researcher provided the participants with a short tutorial

demonstration of the iPod touch, explaining that to interact with the onscreen targets
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the user must fouch the item to select it. A conscious decision was made not to
explain the touch sensing mechanisms thus allowing participants to explore the
interactions naturally: What makes a touch? Is it timing, pressure? Is my finger too

big, too small?

Within this initial interview participants also provided preferences (Figure 3.2) for
how they received the navigation information. They selected one or a combination
of interface modalities: fext, images, audio transcriptions, and their preferences for
the navigation route itself. Their preference for navigation included, for example,

whether they needed to avoid stairs when moving between floors.

Username

Avoid Stairs

Figure 3.2 iPod Touch showing the Indoor Navigation preference settings screen.

3.6.3.2 Way-finding TasksUsing the Mobile App.
All of the participants regularly visited the User Centre within the department.

However, none of them had ever explored the building beyond the ground floor. For
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this reason each of the way-finding tasks required participants to navigate from the
entrance of the building and locate offices in the upper levels of the building. Each
participant was asked to complete two way-finding tasks using only the navigation
instructions provided by the indoor navigation app. The application presented the
user with a single instruction using text, image and audio modalities depending on
individual preferences set previously, shown in Figure 3.1. No indoor localisation
was provided by the application, users were required to match the descriptions or
images to their current location and respond to the instructions accordingly. The
researcher walked with the participants during the way-finding tasks to make
observations, but provided no assistance with regards to touchscreen usage or the

way-finding tasks.

3.6.3.3 Final Discussion

Once both indoor way-finding tasks were completed, each participant returned to the
laboratory with the researcher for a study debrief and informal discussion about their
experience. During this discussion participants were free to comment on the study,
application or touchscreen technology, while also allowing the researcher to ask
questions relating to specific behaviours or instances within the tasks to help

understand the participant’s intentions.

3.7 Results

The primary goal of this user evaluation was to observe the touchscreen interactions,
to identify the behaviours that are common and unique across users. Secondly, this
study aimed to determine the barriers and challenges of touchscreen interactions by

users with lower levels of motor and visual ability. Finally, the objective was to
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inform the direction and technological approach of this dissertation to define
methods of capturing performance measurements. The results are discussed in

relation to the user implications and technical requirements of the approach.

3.7.1 User Implications

First, the study has implications for users’ ability to specify initial configurations for
software. Configuration screens are commonly presented to users upon the initial
launch of a device or an application as a quick way to establish some baseline user
preferences. As noted by Trewin (2000), in order to use these screens accurately,
users must understand the best settings for use. The current evaluation suggested that
the user may not always be able to provide this information due to his/her lack of
knowledge or experience with the very application he/she is attempting to configure.
For example, while users may be aware of their own limitations, they may be unable
to translate this knowledge to appropriately configure software. As a case in point,
one of the participants in this study understood a vision limitation, “/ need my
glasses for reading only” (P4). However, when asked “Would you like audio
transcriptions of the navigation instructions?” he replied “I’'m not sure; how big is

the text going to be?”

Similarly, P2 commented on the screen contrast as being “Ok sitting here, but I
couldn’t always make out the instructions on the screen”. This statement highlights
the differences between the environment within the laboratory where the preferences
were set, and the conditions the participants were exposed to during the way-finding

task. It is important to note that these were indoor way-finding tasks only, greater
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extremes might have been identified had participants also been asked to explore

outdoor environments with the device.

A second implication of this study was in terms of defining touch. Participants were
intentionally not informed of the parameters that defined a successful touch in order
for the researcher to better understand their perceived requirements and individual
touch behaviours. While none of the participants had ever used mobile touchscreen
devices before, they all had prior experience with touchscreen self-service kiosks,
which used resistive touch sensing. Resistive touchscreens require a reasonable
amount of pressure to allow the two layers within the monitor to contact and initiate
the touch. Since the participants were familiar with these kiosks, they made the
assumption that the mobile touchscreen behaved in the same way, requiring the
appropriate amount of pressure to action a touch. When they were asked to discuss
their experience with the mobile application, two of them commented on the device
not responding “so I pushed it again harder for longer and it seemed to work fine”
(P2). P4 used a similar strategy, “You have to press it really hard to hit the buttons”.
While participants P2 and P4 were applying increase amounts of pressure, P/
recognised that the device did not require additional force and that a light touch was
sufficient to make selections “It is much quicker (more responsive) than the ones
(touchscreens) at the shops”. The experimental apparatus did not capture
unsuccessful touches as they did not generate application actions such as new page
views. However, the participants all applied a similar strategy in the event of an
unrecognised tap of pushing the same target again. While P2 and P4 also talked
about applying more pressure, all of the participants suggested trying again and

holding the button for longer. Potentially this strategy could be applied to identify
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instances were the device fails to recognise an intentional input, helping to refine the

parameters of the recognisers.

Thirdly, this initial work can help define touches in terms of duration. Previous
studies investigated users’ abilities to successfully select touchscreen targets of
various sizes (S. Lee & Zhai, 2009; Parhi et al., 2006; Y. S. Park & Han, 2010) and
using different interaction methods (Guerreiro, Nicolau, Jorge, & Gongalves, 2010a).
However, they did not comment on the timings and durations of these interactions.
While the indoor navigation application was not logging the durations of the users’
touches, it was both observed during the study and reported by the participants that
timings were a factor of touches. P2 and P4 opted for the longer firm touch method,
P and P3 used touches that appeared to only just make contact with the screen for

an instant.

3.7.2 Technical Requirements

The indoor navigation application used within this study requires connectivity to an
active WiFi network at all times in order to receive navigation instructions and store
user interactions back to the web services. The WiFi network canvased the entire
building, although signal strengths varied throughout and in some cases the
connection was lost completely. Because the application relied on an active network,
connection to retrieve instructions or request audio transcriptions, the participants
occasionally experienced delays during the evaluation causing them to misinterpret
the instructions. For example, P3 was walking along the corridor while waiting on
the instructions loading, and received the message “walk down the corridor; take the

first door on the right”. However, by the time P3 received this instruction he had
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already walked beyond the first door on the right and therefore took the second door
and deviated from the route. At that point he was unable to re-orientate himself, and
did not complete the task. Similar disruptions were caused by the data logging
mechanisms. Since all data was logged directly to the remote server via web
services, any delays within these calls or responses affected the user interface and

their experience.

Also in relation to the connectivity issues, interface feedback was affected in other
ways. The application suffered from variable loading times where some instructions
would load instantly, while others would take several seconds. The participants
perceived these issues not as a problem of the device, but rather an issue with their
own level of touch, and as a result would alter their technique and select the button
again. When the participants touched down on a button, a highlighted state was
activated and this was deactivated on touch up. Upon a successful tap the device
played a beep sound to confirm this interaction. However, the device volume was set
again during the initial preference setting interview in the quiet laboratory. Once the
participants began the way-finding task they were exposed to real world ambient
noises and fluctuations, with the result that P2 and P3 reported not being able to
clearly hear any beeps or the audio transcriptions from the device during the way-

finding tasks.

Finally, the experimental application recorded interactions at button level, meaning
that the log files detailed the buttons that were selected and the corresponding
actions such as page loads, or playing audio transcriptions. These log files allowed

the researcher to understand how the device responded to the behaviours observed
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during the study, but they did not provide enough detail to accurately describe the
individual differences within users’ touch interactions. All data were captured
through the overwritten methods within the UIButton controls. These components
have access to finer grain details than recorded within this evaluation. However,
there is a need for local storage and periodical synchronisation of user data to reduce

the impact on network demands and device response behaviours.

3.8 Summary

Previous investigations of touchscreen behaviours enforced restrictive environmental
and interaction constraints, presenting participants with abstract calibration tasks far
from the real world applications and usage situations associated with these
technologies. This preliminary evaluation explored the individual characteristics of
touch interactions set within the context of a real world application. Using a stimulus
application developed in alignment with the current design guidelines and best
practices, the study allowed the researcher to identify the differences and similarities

of an individual’s interaction perceptions, strategies and behaviours.

As a result of the relaxed interaction constraints, this evaluation uncovered new
touchscreen interaction characteristics beyond the target acquisition challenges,
demonstrating the various differences of touchscreen interactions. While the
limitations of the experimental apparatus did not allow quantitative exploration of
these characteristics, the research observations were supported with participant
feedback suggesting the need for touchscreens capable of responding to differences
in gesture timings. Furthermore, this study identified the strategies applied by

participants to resolve unsuccessful tap gestures. Leveraging these behaviours
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would allow the recognition of failed intentional gestures to refine and personalise

the parameters that define the gesture’s success criteria.

User preferences were collected during an initial interview and applied to the
interface prior to the participants beginning the way-finding tasks. All participants
found the process of configuring settings difficult given that they had not yet used
the application. Participants were also making configuration choices within the
controlled laboratory space, where the environmental conditions did not always
match those of the building in which they carried out their way-finding tasks.
Interactions were affected by lighting conditions and ambient noise that were not
present during the initial configuration stage. Therefore, this study has highlighted
the need for greater consideration of contextual factors to support the configuration

of user interfaces.

Finally, the data logging techniques applied within this study did not provide enough
detail for an accurate analysis of the touch characteristics. There is a need for the
user input to be collected at a much higher degree of granularity to measure the

timing and duration of touch interactions.

3.9 Conclusion

This chapter introduced the exploratory investigation of touchscreen interactions
within the context of a real-world application, and was designed to serve as an
introductory description of the research conducted within this dissertation. The
chapter presented a preliminary user study that aimed to understand the variances in
abilities and behaviours of users when interacting with touchscreen devices. User

needs and requirements as well as technical implications were identified as a result



52

of this evaluation, and influenced the focus and approach adopted throughout the

remainder of the research work.
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Chapter 4. Development of the SUM Framework

The previous chapter described the preliminary study involving four older adults
using the indoor navigation touchscreen application. The application was embedded
with an interaction data collection layer to log the application interactions during the
study session and these were also combined with the researcher’s observations. The
resulting analysis of these logs and observations helped to identify and define a set

of touch interaction characteristics and behaviours to be further investigated.

This chapter describes the design of the first iteration of the Shared User Modelling
(SUM) framework, which will be referred to as version one throughout this thesis.
The chapter begins with a discussion of the challenges of and motivation for using
SUM. Following this is an overview of the software architecture for SUM version
one. This overview includes details of and the rationale for the data types recorded
and the storage structures used. The chapter concludes by considering the intended

method for embedding SUM framework into third party applications.

4.1 The Scope of SUM

Shared User Modelling (SUM) framework has been designed to support the user
modelling approach of this dissertation. The primary goal of the framework was to
provide the necessary methods to capture accurate measurements of user abilities
and performance from real-world interactions. Secondly, the framework needed to
enable user modelling of the recorded interactions. Finally, SUM had to provide

mechanisms to apply user models back into the applications. It was crucial to define
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the user modelling structure that would ensure the framework could support the

overall approach of this dissertation.

4.1.1 User Models

User-adaptive systems, more recently known as adaptive systems, have been a
popular area of research for decades, making use of the extensive user modelling
work pioneered by researchers such as Allen, Finin and Rich (Allen, 1990; Finin &
Drager, 1986; Rich, 1979). Rich (1979) proposed three fundamental considerations
for classification of user models: Are they models of a canonical (typical) user or are
they models of individual users? Are they constructed explicitly by the user himself
or are they abstracted by the system on the basis of the user's behaviour? Do they
contain short-term, highly specific information or longer-term, more general
information? Rich believed that the major differences along these dimensions
corresponded to the resulting forms of adaptive systems. Canonical models of users
assume a static state, therefore can be defined and embedded directly into the
application. Alternatively, modelling individual users requires data gathering
mechanisms to support the creation of the user models at the application usage time.
Similarly, when considering the selected methods of capturing the user data, the slow
to change or static aspects of interaction can be acquired through explicit definitions
whereas the quick to change dynamic aspects are better suited to implicit collection

methods by the system.

4.1.1.1 Stereotypes and Individual Representation
Models built from stereotypes of users can be agreed and defined during the design

stages of an application. By clustering users into groups based on their similarities,
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stereotypical profiles can then be used to tailor a system’s behaviour in alignment
with the profile characteristics. At use time, the actions and behaviours of users are
captured and classified into one or more of the stereotypical groups. The conceptual
approach of stereotypical user modelling supports the objectives and processes of the
universal design movement (Mace, Hardie, & Place, 1991.) encouraging designers to
think of specific user abilities and needs ahead of time and defining rules or

behaviours to match these user profiles at use time.

In contrast, user models that represent an individual must be constructed at use time,
collecting explicit preferences and user information or implicitly inferring attributes
and properties regarding the individual from his/her system behaviours. The
evidence collected at use time is associated with particular attributes stored within
the user model, allowing the adaptive systems to respond to properties and
characteristics on an individual basis. These types of user models are supportive of
the ability-based design (Wobbrock et al., 2011) approach, and the direction of user

models that will be constructed within this body of research.

4.1.1.2 Explicit and Implicit Modelling

Having users explicitly defining their own models provides clean data with a high
degree of certainty for the user intent. However, issues can arise with this method as
the user can misunderstand configuration options and may not provide the correct
information due to a lack of understanding of the resulting configurations, as was
observed and reported within the preliminary user studies (Chapter 3). Richards and
Hanson (2004) proposed an adaptation solution for web browsing, which provided

users with a simple preference dialog to tailor the presentation of web content
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complete with a live preview of the modifications. This solution was able to address
the challenges surrounding the users’ lack of knowledge over defining their interface
preferences. Nevertheless, having users define and configure their own preferences is
not suited to short-term models, “if users specified short-term models, they would
have time for little else” (Rich, 1983), and is therefore ill suited to users with
variable needs and abilities. Explicit definitions would require exhaustive input from

the user in order to continually accommodate changing needs and abilities.

User models constructed from implicit data collection rely on the system’s ability to
infer new knowledge with a reasonable degree of certainty in the user’s actions or
intentions. More often than not, the implicit information is captured using methods
that are tightly coupled with specific tasks. For example, a workflow within a word
processing application might be to format the document. From this task the system
might implicitly infer a user’s preferences for font typefaces, sizes and contrasts.
Similar to the issues of users misinterpreting the system when explicitly providing
information, the system can misinterpret user actions and infer false truths. For
example, the user might have been formatting the text document for someone else, in

which case those properties inferred are not associated with the user.

There is scope for hybrid systems that are capable of leveraging both explicit and
implicit data collection methods, implicitly measuring attributes and properties
specific to the user then having the user explicitly confirm or deny the resulting

inferences.
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4.1.1.3 Short-term and Long-term Information

Rich (1979) distinguishes between short-term and long-term models based on the
application of the model information: is it specific to the current task or can the
information be applied in a more general form, such as defining an individual’s
domain knowledge? (Rich, 1983). The approach of SUM is to model the current
needs and abilities of the user, then provide interface adaptations to better support
the interactions at that point. Therefore, SUM uses short-term models to respond
quickly to an individual’s needs rather than modelling his/her overall understanding

or domain knowledge of a particular application.

4.2 Design of SUM

The SUM framework is a software architecture designed to address the fundamental
challenges of designing accessible touchscreen interfaces. SUM is intended to be
embedded into applications to capture accurate measurements of a user’s current
abilities and needs, then adapt application interfaces to meet those needs and
abilities. The framework is domain and platform independent, and is designed to
support custom accessibility/usability adaptations to provide the most suitable
interaction experience for a person based on his/her specific needs at that point in

time.

In order to reduce the complexities of ability-based interface design, the SUM
framework extends and complements the existing application programming interface
(API) protocols supplied to developers by the mobile device operating systems (OS).
This architecture allows developers to embed the framework with little programming

overhead, disruption to design patterns or impact on application performance rates.
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SUM provides developers with a lightweight client framework, responsible for
capturing the user’s interactions via the various device sensors, then storing this data
within a local database. The framework is responsible for synchronisation of user
data with the remote SUMServer, and contains the necessary methods for handling
the resulting user models. This makes the process of creating personalised interface
adaptations automatic from the perspective of the developer, and invisible to the

users.

4.2.1 Features of SUM

The preliminary user study detailed in Chapter 3 helped to identify the interaction
preferences and challenges faced by users with low levels of visual and motor
abilities, when using mobile touchscreen devices. To address these challenges the

following features were defined for SUM user models and interface adaptations.

Duration, represents the time interval from the instance the user’s finger touches the
surface (Touch Begin) until it is then removed (Touch Ended). The user models will
allow the minimum and maximum duration parameters of the tap gesture recognisers

to be adapted.

Target bounds, contains both the width and height parameters of the interface
elements, and is expressed in pixel units as used by the devices. The user models will

contain a minimum target bounds for optimal visual representation.

Touch Offsets, capture the interaction offset behaviours of the user when touching

the screen. The user models will capture both the horizontal (X) and vertical (Y)
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touch offsets in pixel units, allowing the user’s touch inputs to be shifted and

corrected for.

Font Size, contains the minimum font size that the user can confidently read from the
screen. This property can be used to set the text sizes of interface elements. If the
font size results in a larger bounds than defined by the minimum target bounds, then

the interface element will use the bounding size required by the font size and text

label.

Modality Preferences, represents the user’s preference for textual, audio, and visual
modalities of interface components. The user models contain scalar values 0.0-1.0,

where 0 is a low preference and 1 is a high preference for the particular modality.

4.2.2 Structure

Figure 4.1 shows the high level architecture of SUM, demonstrating the way that the
SUM framework supports the reuse of user models between applications using a
centralised user model structure. Once the SUMClient (Section 4.2.3) libraries have
been embedded into the application, user interactions can be captured and stored
locally within the client database (Figure 4.7). Using HTTP requests with the
SUMServer (Section 4.2.4), the SUMClient can transfer new user data to be
synchronised with the user’s SUM model. Similarly, the SUMClient can request

specific model attributes to support the interface adaptations.
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Figure 4.1 UML diagram of the SUM Framework (all versions), illustrating applications
accessing the shared user model via RESTful requests with the SUM Web Services

4.2.3 Domain and Platform Independence

The SUM framework has been developed from the ground up, to fully support the
exchange of user information between applications and devices. By maintaining a
consistent capturing of data, and structure of data storage, between the local
application models and the remote server aggregated models, SUM ensures that any
and all user data can be mapped from one domain to another. Since the SUMClient
framework handles all of the sensor monitoring and storage, user interactions are
captured in an identical manner for each application using the framework. As a
result, unlike other conventional domain-independent modelling techniques, no
model mappings need to be generated for SUM application mappings within the

same device platform.
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However, due to the many varieties of mobile touchscreen devices, and the various
software OS available on the devices, there can be ambiguities in the sensor
recordings between the device platforms. These inconsistencies can be the direct
result of different hardware properties or sensors, or indirectly due to the individual
design of OS software. The result of the variances between device platforms means
that SUM is required to use model mapping techniques to ensure that user
information is interchangeable across device platforms. However, SUM maintains a
hardware profile for each device and OS pairing, providing the required information
to map sensor information between platforms. For example, the device D/ has the
following  attributes  (pixelWidth:320;  pixelHeight:480;,  mmWidth:76.2;
mmHeight:81.28), device model D2 similarly had the attributes (pixelWidth: 1024;
pixelHeight: 768; mmWidth: 177.8; mmHeight: 101.6). These attributes allow the
touch data and target information to be normalised and expressed using relative

positioning and sizing.

The user models are normalised using the device properties when the data is
aggregated in the SUMServer, with the server model representing a canonical model

as shown in Figure 4.2 below.
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Figure 4.2 Direct model mapping (left) and SUM canonical model mapping (right).

This approach was selected as opposed to the alternative of direct mapping between
devices for two reasons. Firstly, the canonical model simplifies the processing
structure of the SUM framework — the methods need only be coded to deal with this
one type of model. Second, the SUM framework scales for future devices. Using the
canonical model structure, adding a new device results in a single bidirectional
mapping from device Dx to SUM. In contrast, using a direct mapping approach
adding a single new device would require bidirectional mapping from Dx to all other
previously mapped devices. Figure 4.3 illustrates the effects of adding new devices

within both mapping approaches.
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Figure 4.3 Adding a new device, direct mapping (left) and SUM canonical model mapping
(right).
The adopted canonical mapping technique also serves as a safeguard to the
development of a standard user model structure in the future. Using the model
mapping technique previously discussed, the SUM canonical model could be
mapped to other user model structures. The process would require an expert to
manually define the attribute mappings between SUM and the new model structure

just once, which would then allow the interoperability for any previously connected

platforms through SUM to the new model structure.

4.2.4 SUMClient

The SUMClient manages interaction data capturing and synchronisation, meaning
that developers need only exchange their existing user interface controls with the
ones provided through the SUMClient application programming interface (API) to
pass interaction data to the framework. This is a simple substitution of the i0S
UlControl class with the SUMControl overwritten version, which is coupled with the

user model data. These new interface controls will log interaction data and refine the



64

associated gesture characteristics such as touch duration, target offsets match the

abilities of the user.

SUMServer

Local Database

Network Controller

User Controller

ty ' ty

User Interface
Controller

Device Controller Model Controller |

Device Hardware (o 5 Application

Figure 4.4 SUMClient software architecture showing the communication between internal
components

The overwritten UlControls provided through the SUMClient framework
automatically add the additional code required to capture and store any touch
interactions made with that UIControl. These interface controls respond to the three
touch states: touch begin, touch move and touch end. Since each control is embedded
with the code, the framework is able to directly map the user’s touch interactions
with the specific interface control. Figure 4.5 demonstrates this association, where

touch 7'/ occurs within interface control Ul4. The resulting interaction log would be:

Touch:{id:1, x:178, y:245, +timestamp:1370414769, duration:0.921,
target:{id:4, x:165, y:210, width:140, height:60} }
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Figure 4.5 Diagram showing the touch recording concept applied by the SUM Framework to an
interface.

Measuring the touch interactions at this level of detail allows measurements of touch
offsets, durations and time between touches to be made in relation to target locations
and sizes. Touch offsets are calculated as the distance of the user’s touch to the
centroid of the target. Duration represents the length of time from the instant the
touch-begin event is received, to the time of the touch-end event. SUMClient uses

millisecond accuracy of touch durations to identify small variations in timings.

SUMClient uses a mobile device’s built-in motion sensors to capture the raw device
motion values. To ensure high definition of motion events, data is logged at 100Hz.
No processing is performed within the SUMClient on the motion data; it simply
measures and stores the magnitude values from the sensor. At the time of
development, the sensors output the combined user motion and device orientation

within the same value. The iPod touch used within the preliminary research (Chapter



66

3) contained a tri-axis accelerometer capable of providing measurements of the
device movements as shown in Figure 4.6. The raw acceleration values were
processed within the SUMServer, applying filters to isolate motion data specific to

user movements, and device orientations.

+Y

A

~+X
+Z

Figure 4.6 Mobile device accelerometer axis relative to the device orientation.

Figure 4.7 shows the high-level table structure of the local database within the
SUMClient framework. SUM framework focuses on the accurate measurement and
modelling of user interaction abilities and the local database has been designed to
support these objectives. The database was developed using SQLite, a lightweight

SQL database engine that is compatible across the OS of most mobile devices.

2 http://www.sqlite.org/
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User

Log Application Touch Motion Device Model

Target Attribute

Figure 4.7 UML diagram of the SUM database structure (Version 1) used for capturing user
interaction.

User: For authentication purposes users must set up a username and password, at
which point they are allocated a unique user identification number. All user
measurements and constructed models can then be associated to an individual user
and not the device, thus allowing multiple users to share a single device and its

applications.

Application: Before an application can access the SUM framework to collect user
data and retrieve user models it must first be registered with the SUMServer. Once
registered, applications receive a unique application key (appKey) which is
associated with any data collected through that application. Creating this association
allows for closer inspection of user data in relation to the origins of its collection.
Furthermore, this is a fundamental component for the implementation of security
protocols to allow end users control over the data that can be captured or accessed by
a particular application. While these issues are outside the scope of this thesis, it is
recognised as an important component to the success of such user modelling

systems.
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Device: The SUM Framework has been designed as both domain and platform
independent. To support this functionality the system needs specific knowledge of
the device properties and sensors in order to create the required data mappings from
the device values to the normalised SUM model. The device profiles included the
following: maximum touches; screen width; screen height; wifi enabled; internet
enabled; has accelerometer; has gyroscope; has microphone; has camera and has

audio output.

Touch and Target: SUMClient captures touch measurements in relation to the user
interface elements that were being interacted with (Figure 4.5). A single tap gesture
recorded through SUM would contain the following: unique id; timestamp,; x and y
screen locations, duration of gesture; target x and y locations and target width and
height values. Capturing the interactions at this level of detail allows SUM to
perform similar measurements and analysis techniques as the contemporary projects

previously discussed within the scope of SUM (Section 4.1.1).

Motion: Device motion is captured through the built-in accelerometer or gyroscope
sensors; SUMClient captures the raw sensor output from each sensor update storing
the x, y, z magnitudes, and the timestamp. The motion magnitudes contain both the
device orientation and the user movement data, therefore filters would need to be
applied to isolate the specific information of interest. For example, applying a low
pass filter can reveal the effects of gravity on the devices accelerometer sensor and
applying the accelerometer axis overlays (Figure 4.6) to the motion data provides the

device’s orientation.
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Model and Attribute: SUM has been designed to respond to short-term changes in
user behaviour. Consequently, the user does not have a single user model; instead
new user models can be generated upon request, pulling newly available interaction
evidence to produce a user model that is fitting for the user’s current needs and
abilities. Each model has a unique identification number linked with the model
instance stored within the SUMServer and a timestamp for when the model was
created. Then, within the A#tribute table the model data is stored using the highly
flexible key-value pair structure, to allow SUM models to handle future attributes

beyond the current defined set of properties of interest.

Log: This attribute does not have a direct relationship to user measurements or
models. However, the log allows for checkpoints to be placed within the application
for debugging. Each log contains a text description and a timestamp. Within the
context of this research the log functions were used to gain a finer grain
understanding of the specific pages and actions associated with a particular touch.
For example, Page loaded: Contact details - John Smith therefore any touch
interactions after this timestamp took place within the Contact details page for John

Smith.

SUMClient does not perform any data modelling; it is responsible for collecting
measurements of touchscreen interactions and relaying this data to the SUMServer.
To retrieve a new user model the SUMClient sends an HTTP request to the
SUMServer to generate a new user model. SUMServer will then return a JSON

string containing the new model for the current user. For example,



70

model:{id:123, timestamp:1370414769, attributes:{

attribute:{key:Tap MinDuration,value:.021},

attribute: {key:Tap MaxDuration,value:.928},

attribute:{key:Tap MinTargetWidth,value:40},

attribute:{key:Tap MinTargetHeight,value:32},

3}
The model is then stored locally and can be accessed via SUMClient API calls to
retrieve specific model variables. While the SUM models would allow for any key-
value pair to exist, the SUMClient provides a standard set of functions to support
interface adaptations and queries consistently across applications avoiding domain
specific terms. The initial set of model attributes was selected based on the
characteristics identified within the preliminary study (Chapter 3) and related work
(Chapter 2). The SUMClient provides accessor methods for the features of SUM

(section 4.2.1):

e  Minimum and Maximum Duration

e Minimum Target Width and Height

o Target Offsets

e  Minimum Font Size

e Preferences for Text, Audio and Images
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4.2.5 SUMServer

The SUMServer consists of the SUM modeller, user model database and front facing
web services that manage application access, data synchronisation and user model
requests (Figure 4.9). To ensure data consistency, only applications embedded with
the SUMClient may access the web services. This restriction guarantees that any
data provided to the SUM Framework has been collected and maintained in a
consistent manner. The design is also supportive of the security and authentication
methods (Section 4.3.2). SUMServer has been developed using JSP and MySQL,

both of which are supported on most Apache server installations.

SUMClient

SUMServer
e

SUM database

Web Services <«»| Synchronisation [«

ty

SUM Modeller

Figure 4.8 SUMServer software architecture showing the communication between internal
components.

SUMServer uses a REST architecture, enabling lightweight mechanisms for
synchronising user data and requesting user models. The web services conform to

the best practices of REST allowing the SUMClient to take advantage of the device’s
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native REST API if available thereby helping to minimise code duplication and

reduce performance impact of the client functions.

Date synchronisation is manually performed through the settings panel embedded
within the application using the SUMClIient. The researcher can request that the
application transfer all local data or make a request for an up to date model for the

current user.

A new synchronisation request will create a new session entry associated with the
user and return the session’s unique identification number. Once the SUMClient
receives the session id, it can then parse all of the new user data making the
necessary POST requests to add the data with the session id. For example, adding the

touch event illustrated in Figure 4.5.

URI: jsp.computing.dundee.ac.uk/SUM/touch
Method: POST

Parameters:{session_id: (ID from SUMServer), x:178, y:245,
timestamp:1370414769, duration:0.921, target:{id:4, x:165, vy:210,
width:140, height:60} }

The SUM modeller does not use any machine learning techniques at present. Due to
the lack of detailed interaction measurements from the preliminary study (Chapter
3), the SUM framework uses simple statistical methods to define optimal parameters
from the user’s previous interactions. SUM modeller creates a Gaussian distribution
of the attribute’s values then defines bounding parameters using the lower and upper
Sth percentiles to identify the range of possible values within the given attribute.
Figure 4.9 illustrates the Gaussian distribution for the duration of a tap gesture,

successful timings occur within the inner bounds of the distribution.
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Figure 4.9 Gaussian distribution of touch durations: the highlighted areas represent the Sth and
95th percentile cut off points for the model.

4.3 Building with the SUM Framework

Although the primary goal of this work is to investigate the potential of the SUM
approach to user modelling, it was also important to define realistic methods to
achieve such models. Therefore, the SUM framework has been designed to match
the current mobile development workflows and present a minimal impact on device
performance and network activity. Similarly, much of the functionality such as
authentication and interface adaptation has been automated to remove the burden for

the developers.

4.3.1 Library and API

Designed to minimise disruption of mobile application development workflow, the
SUMClient is packaged into a single self-contained static library file for iOS
development. Developers can import the static library through the standard
development process, and then include the framework within the project by adding

#import SUM/SUMCore.h to the project’s AppName-Prefix.pch file. This will then



74

allow the developer to make calls to the SUMClient framework within any class file

in the project.

4.3.2 Authentication

Before an application can utilise the SUM framework’s features, it must first
authenticate with the SUMServer to ensure that access has been granted. After
registering with the SUM framework developers would be provided with their
unique application authentication key to be added in the application launch method
(Figure 4.10). This key is used to verify the application with each launch to ensure
access is granted. In the event of no active Internet connection, the application will
proceed to operate as normal using the local data without access to any SUMServer

features i.e. model requests, or data aggregation.

Upon the first launch of the SUM enabled application, if no user credentials are
identified, the framework will automatically prompt the user to login with his/her
username and password. Successful login details are then stored for future sessions
and can be removed via the application settings panel within the SUM
configurations. Once logged in, SUM will activate the logging procedures and begin

capturing user interactions.

- ( )applicationDidFinishLaunching: (UIA *)application {

Figure 4.10 Code required for SUMClient initialisation and application authentication
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4.3.3 Interface Adaptation

The SUM framework (version 1) is not an autonomous interface generating system
like the SUPPLE (Gajos et al., 2007) system, which creates interfaces optimised for
user abilities and removes the interface designer’s control and input. Instead, SUM
has been designed to supply an application with the optimal parameters for a user’s
current needs and abilities; allowing developers to receive this information and
decide on the appropriate actions to respond with. For example, the WalkType
system (Goel et al., 2012)) contains multiple interface layouts: one for small targets
with more on the screen and another with larger targets spanning the full width of the
screen, with fewer items visible at once. Using SUM, the system could have
requested the optimal target size for the user’s current abilities then selected the

appropriate interface that supported those requirements.

4.4 Conclusions

The design and development of SUM Framework were presented in this chapter.
SUM is a user modelling framework designed to collect measurements of touch
performance and adapt interfaces to match each user’s abilities. Background and
related work to support the need for the development of SUM were presented in this
chapter, along with some refinement of the scope and direction of this current
research. The core concepts of SUM were outlined and the technical design and
architecture of the framework were described. This was followed by a discussion of

the intended workflow of building applications using the SUM framework.
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Chapter S. Laboratory Evaluation with SUM

This chapter presents the laboratory user evaluations conducted with 12 participants
having visual and motor impairments. The evaluation uses three applications in
which the SUM framework is embedded (Chapter 4). The primary objective of this
study was to evaluate the application of the SUM framework as a method for
capturing user measurements and providing individual interface adaptations to
touchscreen devices. Secondly, this study aimed to further explore the characteristics
and behaviours of users when interacting with mobile touchscreen devices by
capturing detailed measurements of their onscreen interactions. The user study
details the process of embedding the SUM framework into touchscreen applications,
and outlines the analysis techniques used to retrieve accurate measurements of user

performance from SUM interactions.

5.1 User Study

This section presents the laboratory study carried out with 12 individuals with
various levels of visual and motor abilities. The objectives of this investigation were:
firstly, to evaluate the application of the SUM framework as a method of measuring
individual needs and abilities; secondly, the study explored adaptation techniques
designed to improve touchscreen accessibility and better support the users’
individual abilities and needs. Finally, this study aimed to review the use of shared
user models between applications to support accurate modelling of user abilities. To
understand the effects of the SUM adaptions, the following two-interface conditions

were defined:
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Static: The static interface condition represents the default interface designs and
interaction behaviours. Participants within the static interface group would receive
applications using the manufacturers default touch gesture recognisers, and interface
elements used the guideline (Apple, 2009) target properties (i.e. font sizes and target

bounds).

Adaptive: The adaptive interface condition represents the interfaces made possible by
the SUM framework. Participants within the adaptive interface group would receive
applications using the SUM adapted touch gesture recognisers (i.e. personalised
touch durations and offsets), and interface elements (i.e. target bounds would be
adjusted to the individual, and interface modalities would adjust based on
preferences). These adaptions were performed to the Indoor navigation and TV
Guide applications before the participants used them, and adaptions occurred

continuously during the Target Practice tasks.

5.1.1 Participants

As reviewed in previous chapters, persons with low vision and motor impairments
experience challenges when interacting with mobile touchscreen technologies. The
preliminary user evaluation involved older adults who exhibited characteristics of
low levels of vision and motor control, helping to expose the challenges and identify
strategies to mitigate these barriers. This laboratory evaluation aimed to examine the
utility of shared user modelling for individuals with visual and motor impairments,
providing adaptations that matched their individual abilities and not the stereotypical
characteristics of disabilities. Furthermore, the research intended to investigate the

feasibility of a model that would allow interaction features to be tailored to an
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individual. For these reasons, users with a variety of abilities were recruited to
evaluate the performance of the models across a diverse range of users. A total of
three male and nine female adults were recruited. They ranged in age from 21-71
(M=54, SD=20) and all possessed characteristics that would qualify them as low
vision and/or motor impaired. To ensure this evaluation exposed challenges
pertaining to the physical interactions of mobile touchscreens and not the barriers
relating to using digital technologies, all participants were required to own and use a
mobile phone (although not necessarily a smart phone) and have a computer. Table
5.1 provides information about the participating individuals and their characteristics.

See appendix 2 for information sheet and consent forms.
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Touchscreen . Current
ID | Age Gender Method Experience Group Impairment Accommodations
P1 67 Female Static None VM Tremors in hands, Medication to
short-sighted suppress symptoms
. Spinal injury, Medication to
P2 58 Male Static Self-se.r viee VM muscle spasms, suppress symptoms,
machines .. . .
sensitive to light powered wheelchair.
Dopa-responsive Reduced sensitivity
P3 57  Female Static None M dystonia, musclfa of keyboagd .an.d
cramps, tremors in mouse to minimise
hands erTors.
P4 66 Male Static Self-se.rvwe M Spinal injury, hand
machines and wrist pains
Retinal detachment, Guide dog,
P5 66  Female Adaptive None \Y% macula.r magnifying glasses,
degeneration, screen reader
diplopia software on PC
Macular Powered wheelchair,
P6 65 Female  Adaptive None VM degeneration in left full-.tlme. carers,
eye, tremors in mobile with large
hands buttons
No binocular vision,
P7 67 Female  Adaptive None \Y% reduced vision in Magnifying glasses
left eye.
touIc{hassc?een s I:c}l/foerilnelolblhl:iyn Wheelchair,
P8 21 Female  Adaptive . M Sy » Jocking medication to
phone (single joints and tremors in SUDDIESS SYMDIOmS
touch) hands PP ymp
Myalgic . Medication to
encephalomyelitis, ress mobilit
P9 71 Female  Adaptive None M muscle twitches and SUPPIESS MOBILY
. symptoms not
spasms in arms and nitive
hands cog
P10 | 64 Female  Static None \% Reduced vision in
left eye
Has used ipod Registered blind, Monocular, screen
. touch before, issues adjusting to  magnification on PC,
P11 23 Male Adaptive self-service v changes in light mobile with large
machines levels buttons
Ataxia with
oculomotor apraxia, Powered wheelchair,
reduced levels of full-ti
P12 | 22  Female Static None VM vision, muscle W-Ime carers,

twitches in hands
and difficulties with
fine motor control

Table 5.1 Overview of participant information

mobile with large
buttons
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5.1.2 Apparatus

The mobile device selected for this study was the second generation Apple iPod
touch (Figure 3.1) running iOS 3.0 as used within the preliminary research (Chapter
3). While this version of the OS shipped with a suite of accessibility features
including VoiceOver text to speech, these features were not available to the second

generation devices used within this study.

5.1.2.1 Experimental Apps

The three iPod Touch apps specifically developed for this study were: Target
Practice, Indoor Navigation and a TV Guide. Each application required the
participant to interact with on-screen controls using a single touch, known as a tap
gesture. Within the Target Practice and Indoor Navigation applications the device
responded only to a tap gesture. Whilst the primary input for the TV Guide was a
single tap, it also required the users to swipe vertically to scroll through the TV
listings. The interface adaptations created in the apps for visually impaired users also
provided for scaling of text sizes and provided a text-to-speech option. Those
adaptations, however, were largely based on user preferences as input, rather than
abilities input. For the purpose of the current SUM Framework investigation, these
adaptations will not be analysed in detail, although the user satisfaction ratings (to be
described later) will be reflective of the fact that adaptations were made for the

visually impaired participants.

Each of the three experimental apps was designed and built to conform with the i10S
interface guidelines (Apple, 2009). For all three, interface elements were given

minimum bounds of 10mm (60 pixels on this device) identified in previous research
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to be the optimal target size for daily users of these devices (S. Lee & Zhai, 2009;
Parhi et al., 2006; Y. S. Park et al., 2008). The SUMClient framework was
embedded into all the apps for device monitoring and communication with the

SUMServer for user modelling.

The apps shared user models by synchronising with the SUMServer after each
application task was complete. Similarly, at the beginning of each application task
the researcher would request the latest user model from the SUMServer for the
participant. Adaptations were applied specifically to users receiving the adaptive
interface condition (Table 5.1) before the participant used the application; default
values were employed for the static interfaces. However, all participants used the
Target Practice application in both interface conditions. Furthermore, the Target
Practice application performed interface adaptations in real-time (i.e. the targets
would scale up and down, likewise the minimum and maximum tap durations would

adjust). Complete details of the adaptations are outline in section 5.1.3.1.

5.1.2.2 Target Practice

The Target Practice app (Figure 5.1), was designed to capture baseline data about
participants’ abilities at the time of test. As users with disabilities can often
experience fluctuations in ability, this baseline data was essential. The app generated
200 pairs of targets within the screen. Users were asked to tap the ‘green targets
only’ (none of the participants indicated that they were colour-blind). If the
participant does not tap the target within 10 seconds of it appearing on the screen
then the application moves onto the next target pair, and generates two new targets.

Likewise if the participant touches the wrong target, or an empty location on the
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screen, the application will accept the input and move onto the next target pair until
the game is complete. The target positions were pseudo-random as constraints were
applied to the position generator to ensure good distribution of the targets.
Specifically, the screen was divided into three sections vertically and horizontally,
with the centre section twice the size of the other two for the vertical divisions

(1:2:1) and three times the size of the other two for the horizontal divisions (1:3:1).

Figure 5.1 Target Practice gameplay screens: static interface (A) and adaptive interface (B)
conditions.

5.1.2.3 Indoor Navigation

In the Indoor Navigation app shown in Figure 5.2, the user interactions and
appearance of this application remained unchanged from the version used with the
exploratory evaluations (Chapter 3). However, the technical design of the application
was refined based on the limitations identified from the previous evaluation. The

updated application preloaded all instruction content and media elements prior to the
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user undergoing the way-finding task. This change ensured that all instructions were
successfully loaded and maintained a consistent user experience regardless of WiFi
network strength or connectivity. The indoor navigation application was designed to
provide users with individually tailored way-finding instructions; it made adaptations
to the interface delivered to the user such as scaling visual interface elements. Way-

finding routes were kept consistent for each participant.

Participants were asked to complete two indoor way-finding tasks within the
University’s School of Computing building (an unfamiliar environment for them),
using only the instructions provided by the Indoor Navigation app. This navigation
was accomplished via stored location information and the user’s ability to match
descriptions or images to their current location (Montague, 2010). The navigation
tasks required that the participant physically navigate from one location to another.
Each participant performed both routes, however the order in which the participants

carried out the tasks was counterbalanced.

Instructions were provided as text way-finding directions and accompanying images,

with the option to have text read aloud using the audio button.
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10:03 =~ iPod = 18:49 =3
Routes Step 1/ 11 Hide Text Routes Step 1 /11 Hide Text

gﬁ;g;oa?ﬂht;eé;ﬁ?;“c Doors into the Go through the
Automatic
Doors into the

Queen Mother
Building

- O =

Figure 5.2 Indoor Navigation application instruction screen, static interface (A) and example of
a low vision interface of the adaptive interface (B)

5.1.2.4 TV Guide

The TV Guide app (Figure 5.3), provided users with fixed TV listings for seven
channels and 28 programmes. Users were asked to find specific TV programmes. To
do this, they needed to browse through lists and grids of channels and programmes.
Upon finding the programme they were asked to name the TV channel it airs on;
transmission date and time; read aloud the description text and then state any

available access formats (such as Audio Description being available).
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15:55 iPod 7 18:48 iPod 7 15:56 =

All Programmes venu  All Programmes Alprogram...  One Flew Over the...

One Flew Over the Cuckoos
Nest
:10pm Tue, 11 Aug 2011

Comic drama. Jack Nicholson plays Mick
Murphy, a two-bit crook who, facing a jail
sentence, feigns insanity to be sentenced
to a cushy mental hospital. But his plan
backfires when the hospital turns out to be
anything but cushy, with its oppressive
routines and a tyrannical head nurse who is
out to squash any vestige of the patients'

O

Figure 5.3 TV Guide application, programme list view for static condition (A) and example of a
low vision interface of the adaptive condition (B); programme details view for the static
condition (C).

5.1.3 Procedure

The evaluations were split between two sessions to ensure participants would not
experience exhaustion or fatigue during the study. Each session consisted of testing
two of the experimental apps, administration of a paper and pencil questionnaire and
a informal discussion with the researcher. The total session time for this first session
was between 45 and 70 minutes, with most participants completing in one hour.
They were gifted vouchers (worth £10) for their participation in each session. The

tasks were structured in two sessions, as follows:

5.1.3.1 Session 1
Experimental sessions were conducted in a university environment and began with

participants being given an overview of the research and each of them reading and
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signing the Informed Consent form prior to the start of the study. All participants

then completed the following steps, in order:

Interview: This background interview collected data about participants’ mobile
phone use, computer experience, handedness, and experience with touchscreen
devices. Of the 12 participants, all of them used a mobile phone on a daily basis.
Only three owned touch-enabled smart phones and they were the only participants to
have previously used a touchscreen mobile device. The researcher also discussed
participants’ abilities, asking questions about the use of glasses and assistive

technology devices.

Target practice tasks: Each participant did the target practice task twice — once
with the Adaptive interface and once with the Static interface. Participants’ touches
were analysed throughout the target practice task to produce the interaction changes
for the Adaptive condition. These changes were uniform scaling of target sizes and
adjustments to touch duration bounds. Target scaling factors were calculated based
on a participant’s offset distance (x) from target centroid when tapping targets.
k=1
2

Equation 5.1 Target scaling factor, where £ is the scaling factor and x-bar is the mean offset
distance from the target centroid.

To eliminate outlier values, the minimum (10th percentile for individual user) and
maximum (90th percentile per individual users) target offsets were removed

(Chapter 4).

Static interfaces had consistent target bounds of 60x60 pixels and no minimum or

maximum touch duration. The order of these two conditions was counterbalanced
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between participants such that half received the Static interface first. While using the
target practice app, participants were asked to relax in an armchair (or their own
wheelchair). Each test with the target practice task lasted about four to five minutes

(Static, M = 291 seconds, SD = 278.2 and Adaptive, M = 213 seconds, SD = 111.5).

Setting Preferences: Following the target practice task, the user inputs were
synchronised with the SUMServer. In addition, participants were asked about their
preferences in terms of audio and text presentation and their preferred volume level

was set. These preferences were entered into the user model by the researcher.

Indoor Navigation app: Participants were then given the Indoor Navigation app
with the interface condition matching the method for their allocated group. The

interface method allocation of each participant is shown in Table 5.1.

For the Adaptive method, two types of changes were made. The first applied the
scaling factor and touch duration bounds from the target practice task to the Indoor
Navigation interface elements. In addition, the individual’s preferences for text,
audio and images were applied, thus altering the modalities present in the interface.
For the Static method, the interface was shown with no accessibility adaptations, as
with the target practice app. Participants averaged about four minutes to complete
each of the two Indoor Navigation tasks. Participants were able to complete all of the
tasks with one exception in the Indoor Navigation study. This inability to complete

one task was due to a technical disruption caused by a loss of Wi-Fi connectivity.

Questionnaire for Indoor Navigation app: The Simple Usability Scale (SUS)

questionnaire (Brooke, 1996) was administered. This questionnaire consists of 10
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questions about usability, with participants being asked to respond on a five point
Likert scale. Although this questionnaire was initially designed to be a paper and
pencil test, it became clear with the first few participants that it was difficult for them
to read even the 14- point text and/or mark their answers. The researcher therefore
adopted the procedure of reading the statements aloud to participants and asking
them to verbally indicate their responses (“Strongly agree” “Agree” “Neutral”

“Disagree” or “Strongly disagree”).

Informal Discussion: Each session ended with the experimenter asking the
participant for feedback on her/his experience. This was augmented with the

researcher’s recorded observations.

5.1.3.2 Session 2

The structure of this second session was similar to that of session one. The total
duration of this second session was about one hour, ranging between 50 and 90
minutes for the 12 participants. The time between the two sessions varied with the
second session taking place from one week to three months after the first session,

depending on participant availability.

Interview: The experimenter began by asking participants about any known changes
in their abilities since the previous session. This proved to be useful, particularly in
one case, in which the participant had had a change of medication and was more
comfortable with the touchscreen than in the first session. The experimenter asked

questions about their TV viewing habits, whether they used subtitles (captioning),
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on-screen TV guides, on-demand services, recording systems, and how they planned

their TV viewing.

Target practice tasks: Participants repeated both target practice tasks, using the

Static and Adaptive interfaces in the same order they had used them in Session 1.

Vision test: Participants were given a Snellen eye test for both distance and reading.
The results of this reading test were added to the individual’s user model to identify
a font size for optimal viewing. i0S uses a variation of Helvetica by default, and its
pixel size is 16px for normal text. The assumption was that this text would be the
minimum size anyone should be given. Thus, 20/20 vision was allocated 16px, the
rest of the font sizes were calculated based on this value; for example, for 20/50

vision, 50/20*16px (our default size for this font) therefore the size was set at 40px.

TV Guide app: Each participant then performed the tasks for the TV Guide app.
Participants were tested with either the Static or Adaptive interface depending on
their assigned Method as shown in Table 5.1. For the Adaptive interface, elements
were adjusted to be consistent with the methods used in the Indoor Navigation
version, with the addition of the Snellen results being used to scale the text size. The
static interface again had no adaptations and participants received default text sizes
and touch properties for the device. The tasks for the TV Guide app took, on

average, 20 minutes to complete.

Questionnaire for TV Guide app: Participants were verbally asked the questions
from the SUS questionnaire, with respect to their experience with this second

sessions’ experimental app.
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Informal Discussion: Participants were given the opportunity to comment on any
features of the apps they wished to. The experimenter also followed up on any

observations made during each of the participants’ sessions (Figure 5.4).

Figure 5.4 Informal discussion and a participant sharing her experience of the laboratory study
and using the applications on the touchscreen device.

5.2 Results

The objectives of this study were to evaluate the use of the SUM framework to both
accurately measure user performance and provide appropriate interface adaptations.
Interface adaptations were made based on the user’s previous interaction data with
the experimental applications, for example, using the interactions within the target
practice game to perform adaptations to the interface of the Indoor Navigation
application. This approach allowed the interfaces to be tailored to the user’s abilities

and needs before he/she ever used it (these adaptations excluded the first application,



91

since no prior data existed). The study also aimed to further explore the
characteristics and behaviours of touchscreen interactions, building on the

investigation within the preliminary research (Chapter 3).

5.2.1 Qualitative
Qualitative measures were captured through researcher observations and informal

discussions after participants completed the application tasks.

5.2.1.1 Applications vs. Tasks

Previous works relied on explicit calibration exercises to obtain accurate
measurements of users’ performance (Gajos et al., 2007; Trewin et al., 2006), the
goal of SUM was to remove the need for ability elicitation tasks by capturing
measurements of user interactions in the background of real applications. Therefore,
this study involved participants using applications that would either be found already
in the mobile marketplaces (Target practice and TV Guide) or served a real world

purpose (Indoor Navigation).

Whilst SUM aims to address the challenges of background user modelling, it was
also important that the participants believed the applications served a purpose
beyond measuring their performance. Did the participant believe they were using a
real world application, or did it still feel like a calibration task? Participants were
asked to discuss their experience of using each application, and comment on their
desire to use such an application again outwith the evaluation. All participants
agreed that the TV Guide application would be very useful, and it was easier to find
shows than using the printed Radio Times TV guide. Likewise, most participants

(excluding PI1) believed the Indoor Navigation application would be extremely
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useful in their lives. P5 commented “It would be great for the visits to Ninewells
[hospital] for my checkups and appointments, sometimes it’s like a maze”. However,
none of the participants particularly enjoyed using the Target Practice game, “It
seemed very tedious and boring...I would not play this at home” expressed P§. Of
the three applications, Target Practice most resembled a calibration task. Participants
were guided to select an onscreen target with no rationale for why they must perform

this task, nor an incentive to continue to interact with the application.

Participants were asked to suggest possible uses or applications that would be
beneficial to have on such a mobile touchscreen device. Again, all participants
suggested the TV Guide application would be desirable, but with the additional
functionality to set reminders for TV Shows or remotely record them. Other
suggestions included accessing emails, video calling with family and general web
browsing, medication and appointment reminders, playing games and using social
networks. All of the ideas are currently possible and exist as applications on these
touchscreen devices. Furthermore, the interaction methods of the suggested
applications closely resemble those of the applications within this user study. Thus,
future evaluations should seek to incorporate these more desirable and appealing
applications to gain self-motivated interactions, as opposed to forcing participants to

engage with content that they have little to no interest in.

In conclusion, two of the experimental applications successfully resembled real
world applications, and convinced the participants that they were not simply

performing an ability elicitation task. Nevertheless, all participants felt that the
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Target Practice game was more of a task than an enjoyable application, suggesting

that more engaging applications would have been better.

5.2.2 Quantitative

With regards to touch errors, it was hypothesised that the SUM adaptive interfaces
would result in fewer errors than the static interface. To test this, the touches within
the Target Practice app were examined. For this task, it was clear if an error was
made. If the participant hit the wrong target or touched outside of the target this was

counted as an error.

Overall, there were 3,997 touches (3,603 within Target Practice app) with the Static
interface for the three apps, and 3,259 (2,989 within Target Practice app) for the

adaptive interfaces.

In the target practice task, participants were asked to touch all the green targets. Even
though there was a green target in each pair of target stimuli, in some instances
participants made no attempt to tap the target. This was due to the fact that some
believed the dark green target to be a shade of brown or black, not green. Therefore,

touch error rate was based only on the attempted targets within this task.

As hypothesised, the SUM Adaptive interfaces produced fewer touch errors than did
the Static interface #11) = 1.977, p < .05, one tailed (d = .632). The mean number of
touch errors per target practice interface was 18.83 (SD=19.41) and 27.67
(SD=26.36) for the Adaptive and Static interfaces. The touch data for target practice
taps was segmented into the 1:2:1, 1:3:1 sections used to distribute the touch targets

to investigate the spread of the errors. Figure 5.5 presents the error rate heat maps for
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the Adaptive and Static interface conditions. Whilst the Adaptive interface has lower
error rates, both interfaces have a similar pattern with lower error rates in the bottom
(vertically) and right-hand side (horizontally). The researcher had expected to see
smaller numbers of errors in the bottom of the screen as the distance from the arm
support increases (Guerreiro, Nicolau, Jorge, & Gongalves, 2010a). Although our
participants were not asked to hold the device in a particular manner, the researcher
observed similarities between their hold and touch configurations. For example,
participants grasped the device in the left hand and used one finger or a combination
of thumb, index and middle fingers from their right hand. As the device is thus
positioned closer to the origin of the participant’s right hand (used for interactions),
the distance to the target is lower in these areas. This could explain the lower error

rates along the right-hand side.

Figure 5.5 Error rates within the Target Practice game for each of the screen location segments,
(A) adaptive interface (B) static interface condition.
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As well as identifying error rates within specific screen locations, our data also
revealed the touch locations relative to the centre of the targets. Tables 5.2 and 5.3
summarise the finger locations relative to all targets hit or missed during the target
practice exercise. The term origin refers to hitting the target’s centroid x or y
coordinate exactly (dependent on the screen locations, vertical or horizontal). Of
these, statistical analyses showed significant differences in the error locations for the
vertical-vertical errors (Table 5.2), x*(4) = 29.84, p<.001. Specifically, within the
vertical locations there was a relatively even distribution between participant touches
above and below the origin, but for the horizontal touch locations the participants

selected the right of targets the majority of the time.

Vertical Vertical Offset Location
Screen
Location Above Origin Below
Top 45.6% 3.0% 51.5%
Centre 39.4% 2.7% 57.9%
Bottom 46.3% 2.0% 51.7%

Table 5.2 Summary of vertical touch locations relative to the target centroid within vertical
screen locations.

Horizontal Horizontal Offset Location
Screen
Location Left Origin Right
Left 30.2% 1.5% 68.3%
Centre 29.5% 2.2% 68.3%
Right 31.9% 1.3% 66.8%

Table 5.3 Summary of horizontal touch locations relative to the target centroid within
horizontal screen locations.

The capacitive touchscreens found in the iPod devices are highly sensitive and able
to detect touch input with next to zero finger pressure, often seen as one of the

advantages of the technology. For some individuals, however, this highly sensitive
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screen is challenging. Three of our participants experience intermittent hand tremors,
and consequently found themselves making unintentional taps. P1 and P9 both own
10S devices. However, P9 chooses not to use her iPod touch because of these issues.
Instead she uses an LG touchscreen phone because “it has a much lower sensitivity

than the iPod”.

Figure 5.6 illustrates the tap durations of each user collected from interactions within
the mobile apps. Tap durations were statistically significantly different between the
participants, Welch’s F(11, 1245.43)=905.5, p<.001. Post-hoc analysis revealed
significant differences at the level (p<.00064 using Bonferroni correction), between
each participant pair with the exception of P1 (.044) and P8 (.038) (p=.357); P3
(.177) and P11 (p=948); P5 (.335) and P6 (.415) (p=.075); P5 and P12 (.264)
(p=.096). These results suggest that there could not be a minimum and maximum
duration that would be optimal for everyone. The SUM Framework used the duration
data and adjusted the level of sensitivity by applying more restrictions to the timings
of the tap gesture recogniser. In an attempt to reduce the number of involuntary
inputs, the tap recogniser was given minimum and maximum durations for the
Adaptive interfaces. The default tap gesture recognisers to not use these parameters.
Using the SUM gesture recognisers P9 was able to notice the benefits during the
second session when she tested the recogniser with a tap preceded with an echo of
the tap (approximate to the common interaction challenge she faces as a result of her
hand tremors). However, the SUM tap gesture recogniser was able to identify the

original tap, and disregard the second tap completely.
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Figure 5.6 Durations of tap gestures for participants across both study sessions.

Both the Target Practice and TV Guide apps required only a single tap input to
interact with the interface elements. The TV Guide app makes use of scrollable
panels to present more content within a single page, such as a list of all programmes.
These scrollable panels caused a great deal of confusion for P12 when trying to
locate TV programmes positioned further down the grid off-screen. Since she had
never used a smart phone until taking part in this study, her working knowledge of
grids and lists came from her computer experience. To look for content not on-
screen, P12 looked for scroll bars as well as previous and next page buttons. When
asked by the researcher if she was able to find The Inbetweeners TV programme
within the page, P12 stated that 9t wasn’t on the page’. The researcher then
prompted the participant that there was more content below, and she was then able to

perform the required scroll gesture to complete the tasks.
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The iPod touch is capable of two types of scrolling. One, free scroll with
acceleration, will move faster or slower depending on the swipe input speed and will
keep scrolling until it decelerates and stops. The second type of scrolling uses a
paging effect so that regardless of the swipe input speed, the panel will only scroll
one page. Both types of scrolling were incorporated in the TV Guide app: free scroll
for the ‘all programmes grid’ and page scroll for the ‘all channels’ grid and
‘programme detail’ pages. PS5, P6 and P12 shared similar problems when using the
free scroll. Their comments included “When you do it [scroll], it just keeps going

and I can’t read it,” “I can’t see it quick enough” and “I don’t like it moving past”.

The researcher also observed changes in grip style when participants were required
to scroll rather than tap. When scrolling, the device was repositioned and given a
firmer grip to ensure that it wasn’t dropped when performing the necessary swipe
gesture. For some participants this resulted in unusual behaviour of the device
caused by their unintentional touches when tightening their grip. While the iPods
have a bezel edge on all four sides of the screen, this was much too small for a
number of our participants to hold without creating involuntary touch input. A small
bezel appears to be a design trend for touchscreen technologies, as it maximises
screen size but minimises device dimensions. This trend may make the devices more

challenging for users with diverse needs.

The SUS questionnaire is designed to produce measures of usability. We
hypothesised more positive usability ratings for the Adaptive interfaces than for the
Static interface. Recall that in the Adaptive condition the interfaces were designed

for meeting individual needs for touch, visual display and text-to-speech preferences.
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In total, there were 12 SUS scores for the Adaptive interfaces (six for both the Indoor
Navigation and TV Guide app), and 12 SUS scores for the Static interfaces, but each
participant rated different apps in the adaptive and static conditions. There was only
a small and statistically non-significant (p>.05) difference in the SUS scores in these
two conditions (the mean usability rating for the Adaptive interfaces was 3.33
(SD=0.27), compared with the mean usability rating of 3.10 (SD=0.71) for Static
interfaces). There were likely various reasons contributing to the small difference
and the fact that users, overall, did not give high ratings to the adaptive interfaces.
Primarily, participants’ use of the apps was limited. Not only did participants have
limited time with the apps tested, it is important to note that they only viewed the
apps in one experimental condition. Thus, they did not directly compare the apps
under both the Adaptive and Static conditions, the apps were new to the participants
and, regardless of testing condition, they had to learn how to use the new app.
Consequently, their comfort with the apps, regardless of interface, was likely to be
limited. Establishing more extended testing with the apps and in multiple interface
conditions should help to better understand the extent to which the SUM Framework

adaptations are perceived.

5.3 Conclusion

This chapter reported on a laboratory-based user study that investigated mobile
touchscreen interactions. The evaluation explored the use of the SUM framework as
a method of collecting natural application interactions for the user modelling of
individual abilities, and for providing interface adaptations between distinct

applications, in order to improve the accessibility and usability of the devices. Two
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interface conditions were evaluated, static - representing the existing design
guidelines and best practises; and adaptive — applying interface adaptations based on
the individual’s preferences and interaction abilities. The results of this user study
not only demonstrated that participants produced fewer target selection errors when
using the personalised (adaptive) interface, but also showed that the timing
interaction behaviours were statistically significantly different between participants.
Interface adaptations were provided by leveraging individual’s previous interactions
(within other applications) and their interface preferences, to adapt layouts and
interaction parameters before they used the application. These results support the
proposed approach to measure individual’s abilities from application interactions,
and build user models that can be shared between applications for interface

adaptations to improve access and usability
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Chapter 6. Revising the SUM Framework

This chapter details the revisions made to the design and implementation of the SUM
framework in light of the laboratory user evaluations (Chapter 5). The chapter begins
by outlining the technical limitations associated with the earlier version of the SUM
framework in relation to the practical evaluation. Maintaining a consistent structure
to the earlier technical outline of SUM (Chapter 4), this chapter then describes the
individual revisions carried out to address prior limitations and extend the
capabilities of the framework. The chapter covers the modifications to the overall
structure and internal changes to both the SUMClient and SUMServer. Finally, the
chapter demonstrates the revised methods of embedding the SUM framework into
third party applications and the adaptation methods applied to create interactions

tailored to individual user’s needs and abilities.

6.1 Earlier Limitations

The laboratory user evaluations with SUM (Chapter 5) highlighted a number of
limitations of the SUM framework as a solution for modelling individuals with
variable abilities. While the previous discussion of these limitations was in relation
to the controlled laboratory environment with limited windows for data collection
and the large periods of time between user interaction sessions, this section will
discuss the technical limitations of the SUM framework version one and the

constraints they imposed on the evaluation.

Measurement accuracy: The largest limitations of SUM framework version one

stemmed from the approach to data collection and local storage. In the interest of
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reducing the local storage requirements and minimising network usage, SUMClient
would process the raw sensor values from touchscreen interactions and only store the
resulting parameters of the overall gesture. For instance, the fotal duration would be
stored instead of the individual durations between the touch begin, touch move and
touch end states of the touch gesture. As a result of this design choice, the possible
features to describe the touch interactions were limited to a gestural level i.e.
measurements between taps rather than understanding the user behaviours between
touch begin and touch move states. As a result it was not possible to investigate the

sub-gesture movements and accelerations.

Performance: directly related to the aforementioned touch sensor processing, the
SUM framework injected additional method calls within the process pipeline of the
touch sensing. The added steps to process the raw sensor data into a complete touch
gesture and store it periodically caused the application interfaces to lock with the
result that the participants in the evaluation study experienced a lagging effect

between their touches and the resulting actions.

Similarly, the SUM framework was constantly accessing the device sensors and
network connection, which was a massive drain on the device’s battery power
supply. This behaviour had little effect on the hour-long user evaluation within the
laboratory, where the researcher could connect and charge the device at the end of
each session. If the same framework were to be used within a study in the wild, then
participants would need to regularly charge the devices throughout the day as a result
of SUM additional drain on the battery. This would clearly be unacceptable from a

user standpoint.



103

6.2 Revisions to SUM

This section details the technical changes made the SUM framework based on the
outcomes of the laboratory user evaluation. These changes included revisions to the
overall structure of the framework, altering the core functionality of both the
SUMClient and SUMServer. The goal of these revisions is to enable the SUM

Framework to support longitudinal evaluations in the wild.

6.2.1 Structure

While the high level architecture of SUM was not changed from what was described
previously (Chapter 4), the roles and functions of the SUMClient and SUMServer
were adjusted to improve both performance and accuracy of SUM. The user
feedback and observations collected within the laboratory user evaluation with SUM
(Chapter 5) identified interface response lag as a result of the additional function
calls of SUM within the touch event pipeline. Similarly, pre-processing the touch
gestures on the device before storing them resulted in a loss of detail for finer grain
analysis of the touch gesture features. To address these limitations and extend the
SUM framework’s capabilities a number of developmental changes were made to the

core structure of SUM.
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6.2.2 SUMClient
Figure 6.1 details the updated SUMClient’s internal architecture of the core
components. There are three fundamental revisions between this version and the

previous:

1. Sensor measurements are no longer coupled with user interface components.

2. Local data storage has been extended to support longer usage by
automatically clustering user interactions into sessions.

3. Data synchronisation and management has been overhauled to automate the

process in support of remote user evaluations.

SUM Server

SUMClient

Network Controller |«»| Synchronisation

t v t v

Session Controller :

Ly l il

Device Controller Model Controller | .| Gesture Controller

Device Hardware |q  p Application

Figure 6.1 SUMClient revised version software architecture showing the communication
between internal components and third party applications.
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Touch Sensing: previously, the SUMClient provided applications with overwritten
user interface components to be substituted for the device’s default interface
components. These SUM interface components accessed user interactions via the
touch begin, touch move and touch end events within each interface component. This
technique required developers to change every instance of UlControls within their
application interface in order to allow SUM to capture the user’s touch events
throughout the application. Since the development of the original SUM framework
the iOS (and Android) operating system have introduced GestureRecognisers,
altering the methods of creating interface controls that respond to user interaction.
Developers can easily create their own customised user interface components, then
define a GestureRecogniser object to handle user interactions, including any touch
and motion gestures. This new approach allows developers to define a single
GestureRecogniser object, and use it to handle the same type of gesture for
completely different interface components. Leveraging the GestureRecogniser
functionality, SUMClient now contains an overwritten GestureRecogniser class with
all the necessary measurement code. Furthermore the GestureRecognisers provide
straightforward mechanisms for adjusting the parameters that define a successful

interaction which is beneficial for interface adaptations (Section 6.3).

Motion Sensing: SUMClient’s Device Controller captures measurements of device
motion, using the available motion sensors, i.e. Accelerometer or Gyroscope. Sensor
fusion (J. Lee & Ha, 1999) methods, combining the sensor readings from
accelerometers and gyroscopes to produce more accurate measurements of motion,
have also been included within the device operating systems since the original SUM

framework. SUMClient was updated to use these new techniques and so capture
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device motion with higher accuracy. The process for storing this data has remained
the same. However, where the earlier version of the SUMClient would activate
device logging and capture motion events at 100Hz with no consideration for the
impact on battery life, or the actual motion happening; the framework has been
updated to observe the sensor readings. If the device motion falls below the threshold
value for 10 seconds then the framework stops capturing the values and reduces the
sensor rate to 2Hz. Once the device motion crosses the threshold again the rate is
increased and the framework continues to capture the data, as used in (Pham, Plétz,
& Olivier, 2010). By reducing the sensor refresh rate during inactive — motion
periods, SUM can lower the performance footprint and effects on battery life.
Similarly, through stopping the logging of motion data during these periods and only
storing the motion data that represents active device motion SUM is able to reduce
the amount of data storage required. Both are important factors when considering in-

situation deployment within longitudinal evaluations.

6.2.2.1 Longer Usage and Data Storage

In relation to the changes made in the data collection methods, the storage structure
has been revised to reflect the distinction and decoupling of application interface
components from user gesture interactions and storing the raw unprocessed values
from the various sensors. The other major change to the structure of SUMClient’s
data storage is the newly included Session object, which relates to the need for
longer collection periods to understand long-term usage behaviours. Figure 6.2

presents the revised table structure of SUMClient’s local storage.
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Session
User Device Gesture Application Log Model
Sensor Ul Element User Log Attribute
Touch Motion Ambient
Light Noise

Figure 6.2 UML diagram of the revised SUM database structure used for capturing user
interaction in relation to the current session.

Session: to allow SUM to gain an understanding of the variances or similarities of
user interaction characteristics across and within usage periods, user interactions are
automatically collected and structured into sessions. By defining the usage periods
into sessions, SUM enables these interaction periods to be compared and classified
to identify the longer-term changes and behaviours. Session measurements will be

discussed further within usage behaviours (Section 6.2.3).

Ul Element: SUMClient now supports the use of GestureRecognisers to collect
measurements of user interaction rather than overwriting the interface components
themselves. Where previously the SUM framework would have a complete
understanding of the interface component being interacted with, using this new
approach allows developers to define interface components of which SUM has no

prior knowledge. This allows a richer analysis of user interactions in relation to the
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specific interface elements, for example: In measuring touch durations within List
objects only. SUM needs to capture more details from the application interfaces.
When a touch gesture event is ‘fired’, the framework receives the object relating to
the touch properties and the associated interface object. SUM collects the same
details as the earlier Target object, with the addition of the interface component type,

and tag name.

Sensor: within the current version of the SUMClient, sensor objects all inherit the
abstract sensor object, enabling gestures to be generically applied to sensor readings
from any of the available sensors. The sensor object contains only an id and
timestamp. Other sensors can inherit and extend this object to include the parameters
required to capture their own measurements, for example the Ambient Light and
Noise objects also include an additional field for level of light or noise. Sensor
objects are intended to represent the lowest level of measurement for a single
instance or state of the sensor. To conform with this new structure the Touch objects

have also been revised in this version.

Touch: previously touches were stored as the complete touch gesture, i.e. a single
tap, providing only a single x,y location, farget, and overall duration. However, the
revised version of this object means that the same single tap is now captured in the

following way, as three table entries:

Touch{id:1,x:30,y:43,state:begin,target:5,duration:0,timestamp:13704
14769},

Touch{id:2,x:32,y:42,state:move,target:5,duration:.02,timestamp:1370
414769},
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Touch{id:3,x:32,y:42,state:end,target:5,duration:.11,timestamp:13704
14769}

The additional state field allows the single tap gesture to be split into the individual
touch event states, providing a higher level of detail for a deep analysis of the touch

characteristics than was previously possible.

Gesture: the gesture object is used to define a series of sensor readings that when
combined represent the user’s interaction, for example the single tap gesture
presented above consists of: fouch begin,; touch move; and touch end objects. Each
one defines the possible states of a touch gesture. Combined they represent the
complete sequence of events that define a single tap gesture. Gestures are described
as having start and end times, and a #ype. The type field allows the low level sensor
reading to be associated with a high level gesture name, for instance horizontal
swipe. By defining these types SUM is able to select the appropriate gesture
parameters that are of importance to the successful recognition and distinction of the

gesture from other similar gestures.

6.2.2.2 Data Synchronisation

Formerly, the synchronisation of user data was performed manually on the device
through the built in configurations screens of SUMClient. To support the long-term
use and real world application of the SUM framework this process needed to be
automated and invisible to the user. Data synchronisation should not disrupt the
natural flow and interactions of the user with the device and its applications.
However, the conceptual design of SUM requires that application data be pooled

within the SUMServer to enable the sharing of interaction data for modelling.
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The revised solution to SUM data synchronisation applies a time limit threshold.
Figure 6.3 demonstrates the SUM workflow to maintain regular synchronisation of
user data. The default threshold was set to 30 minutes, meaning that at the
application launch if the last sync time was greater than this threshold then
SUMClient would attempt a background sync with SUMServer. An active network
connection is required in order for SUM to sync, therefore in periods of no network
access SUM will neither sync nor request an updated user model. If the device has an
active connection and the SUMServer is reachable, the process will begin. No
feedback or alert is presented to the user other than the device’s notification of
network activity. Not all mobile operating systems support background processing
once an application is closed, therefore the SUM synchronisation process could be
interrupted if a user were to close the application before it completes. To avoid any
loss of valuable user data, SUMClient recognises the application state, and in the
event of an application being closed SUMClient pauses the sync and continues again

once the application is reopened.
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Figure 6.3 Communication workflow between SUMClient and SUMServer for data
synchronisation and user model request.

Within the previous laboratory evaluation of SUM (Chapter 5) the researcher
encountered syncing problems as a result of the shared server hardware, which had a
concomitant effect on the SUMClient synchronisation. The earlier version of
SUMClient used synchronous communication calls, which resulted in large periods
of time waiting for SUMServer responses thus increasing the overall time to sync up.
To address these issues, the revised version makes asynchronous communication
calls to the SUMServer alleviating the delays. Furthermore the method for
transferring large amounts of device motion data has been refined. Where previously
the motion data was sent and stored in real time, accounting for much of the
communication bottlenecking, the SUMClient now transfers an entire session’s
motion data as a single CSV file which the SUMServer processes post-

synchronisation.
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6.2.3 SUMServer

On the face of things the high level architecture of the SUMServer remains
unchanged from the earlier version (Figure 4.4). However, due to the significant
changes made to the SUMClient (Section 6.2.2) the internal functionality of the
SUMServer has also changed. Where previously the SUMServer would receive the
pre-processed gesture data from the SUMClient, this is no longer the case. To allow
deeper analysis of the low level behaviours within user interactions, the framework
requires SUMClient to collect the sensor measurements in their raw state, and relays
the raw data to the SUMServer for processing and analysis. In order to support the
increase in the amount of data being captured and transferred by the SUMClient, the
web services within SUMServer have been overhauled to streamline and optimise
performance as previously mentioned within the SUMClient data synchronisation

(Section 6.2.2).

In addition, the SUMServer has also been revised to support remote evaluations
spanning longer periods of time in the light of findings from the laboratory user
evaluations (Chapter 5). Revisions have been made throughout the SUMServer, both
to support the long-term use of the devices and the resources specifically
needed/required to assist in the remote evaluation process. This section will now
present the processing techniques applied to the interaction data to extract
measurement features, followed by a discussion of the provisioned methods for

monitoring usage behaviours and long-term remote use.

Formerly the SUM framework modelled the user interactions using the overall touch

duration and touch down target offset. While these individual models provided a
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significant improvement on the device’s default behaviours (Chapter 5), they
neglected to consider the finer levels of the user interactions, for instance,
movement, speed and acceleration between touch states. Previous works with mouse
cursor input have demonstrated that these features could be used to identify
individuals with additional motor ability needs (Hurst, Hudson, Mankoff, & Trewin,
2008a). Hurst et al. (2008a) used three sets of features: task specific features; click

specific features; movement related features.

Mouse and touchscreen sensors have nearly identical measurement attributes, and
both share similar gestures, for instance the mouse click and a touchscreen tap

gesture.

Click({

Mouse{id:1,x:30,y:43,state:down,target:5,duration:0,timestamp:137041
4769},

Mouse{id:2,x:32,y:42,state:move,target:5,duration:.02,timestamp:1370
414769},

Mouse{id:3,x:32,y:42,state:up,target:5,duration:.11,timestamp:137041
4769}

Tap{

Touch{id:1,x:30,y:43,state:begin,target:5,duration:0,timestamp:13704
14769},

Touch{id:2,x:32,y:42,state:move,target:5,duration:.02,timestamp:1370
414769},

Touch{id:3,x:32,y:42,state:end,target:5,duration:.11,timestamp:13704
14769}
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Recognising these similarities between the two inputs, SUM proposes the following
features to describe touchscreen interactions adopted from the mouse features used
by (Hurst, Hudson, Mankoff, & Trewin, 2008a). Figure 6.4 illustrates a touch sensor
measurement and details the various states of the touch gesture and the

corresponding features that have been defined from them.

Touch t1 {Begin, Moveo, Move1, Move2, End}

Features

-Total Duration (B.E)

-Travelled Distance (B.Mo.M1.M2.E)
-Relative Distance (B.E)

-Direction Changes (B.Mo.M1.M2.E)
-Movement Variability (B.Mo.M1.M2.E)
-Speed (B.Mo)(MoM1)(M1.M2)(M2.E)
-Acceleration (B.Mo.M1)(Mo.M1.Mz2)(M1.M2.E)

\

Figure 6.4 SUM touch sensor feature set

The initial user evaluations with SUM (Chapter 5) lasted only one hour at a time,
with a period spanning several days or weeks between the two sessions. The
researcher observations from that study suggested there could potentially be a high
variance in the user’s abilities between application usage. That work suggested that
measurements with longer collection periods are required to understand the true
extent of the variability of an individual’s abilities. From participant interviews, it
was learned that factors influencing their interactions with devices included
underlying symptoms of medical conditions, effects of medications, fatigue and
situational or environmental conditions. By grouping user interactions into distinct

sessions, SUM is able to extract specific features to describe each session, thereby
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allowing the classification and analysis of usage patterns. For example, an
individual with Parkinson's disease may experience large amounts of unintentional
hand movements in the morning before taking medication, but these symptoms may
be greatly reduced by the afternoon. The complete feature set and analysis

techniques applied by SUM are presented in Chapter 8.

6.3 Building with SUM

One objective of the SUM framework is to reduce the effort required by developers
to create applications that take advantage of the user modelling abilities of SUM.
Therefore, much of the functionality of the SUM framework has been automated to
enable developers to use SUM without altering their current workflows. Similarly,
the SUM framework has been designed such that developers need not be experts of
user modelling, accessibility and interface adaptation to benefit from it. To achieve
these objectives and ensure that the process of embedding the SUM framework is
intuitive and efficient to the development workflow, the method of capturing and
responding to user interactions has been updated to leverage the gesture recogniser

system now common amongst the mobile operating systems.

6.3.1 Gesture Recognisers

Version one of the SUM framework used overwritten user interface components to
capture measurements of user interactions, requiring developers to substitute the OS
UlControls for the SUMControls. When using the default UlControls this
substitution was straightforward. However, if developers were creating completely
customised interface components that didn’t inherit the abstract UIControl class set,

then there would be no guarantee that the SUMControls would use the interaction
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logic as the developer intended. Version one required the developer to redevelop the
controls and include the SUMControl class before the controls would work with the

SUM framework.

Since the original development of the SUM framework, many of the mobile
touchscreen devices’ operating systems have been revised to include inferface
listeners solely responsible for the recognition of user interactions, known as
GestureRecognisers. Developers are encouraged to use GestureRecognisers with
their interactive interface components rather than implementing the interaction
handling code into the interface component itself. GestureRecognisers are supported
across interface components, meaning that the same recogniser could be used on a
button and an interaction image. Figure 6.5 provides an example of the native i0S
code required to create two tap GestureRecognisers, one for a single tap and the
other for a two-finger tap. The GestureRecognisers are then assigned to a button
interface component. Similarly, Figure 6.6 demonstrates the code required to
perform the same task using the SUMClient. There is no alteration to the task

workflow since the final syntax of SUM mimics that of the iOS API.
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(openURL) 1 ;
[singleTap

(editURL)1;

[singleTap
[twofinger

tom UIButtor
*button = [
[button 4
ngleTap

[button . :twofinger,singleTap,nilll;

Figure 6.5 Sample code for creating two iOS TapGestureRecognisers for a single tap, and two
finger tap, then creating a custom button that responds to those gestures.

SUMTapGestureRecognizer *singleTap = [SUMGestures tapWithTarget: action: (openURL)1;
[singleTap setNumberOfTapsRequired:1];

SUMTapGestureRecognizer xtwofinger = [SUMGestures tapWithTarget: action: (editURL)]1;
[twofinger setNumberOfTapsRequired:1];
[twofinger setNumberOfTouchesRequired:2];

*button = [

[button

[button g :twofinger,singleTap,nilll;

Figure 6.6 Sample code for creating two SUMTapGestureRecognisers for a single tap, and two
finger tap, then creating a custom button that responds to those gestures.

The SUMGestureRecogniser provides all of the functionality and control available
within the OS default gesture recogniser, behaving no differently than the stock API
versions. Typically when a developer defines a GestureRecogniser and releases the
application, the recogniser behaviours remain static and software updates are

required to alter their behaviours.

However, using SUM, once the development is complete and users are interacting

with the applications, SUMGestureRecognisers begin to mould themselves to the
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abilities and behaviours of the user. Figure 6.7 details the process applied by the
SUMClient to provide interface adaptations to GestureRecognisers in order to create
ability-based interactions. SUM allows the software developer to design gesture
interactions for an “average user”, and then provide individuals with a personalised

interaction matching their needs, abilities and interaction style.

Developer GestureRecogniser SUMClient

Define tap gesture,
requires two fingers

\

Build time
Loads user model from
SUMServer
Applies user specific
parameters for tap gesture
with two fingers
Usage time

Relays interaction data from
successful and failed two
finger taps

Stores low level gesture
interactions for future user
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Figure 6.7 Adaptation of gesture recognisers by the SUMClient at usage time within the
application

6.4 Conclusions

This chapter has detailed the revised design of the SUM framework to address
limitations of version 1 (Chapter 4), and extend the functionality to achieve more
granular measurements of user interactions with mobile touchscreen devices than
version 1, and support longer user evaluation periods. The chapter discussed the
motivation and rationale for the redesign of the framework, detailing the benefits for
the accuracy of the interaction data collection. The chapter detailed the methods for

collecting usage behaviour and supporting long-term user evaluations, as well as the
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statistical modelling approach used by SUM. The chapter then presented the updated
procedure for embedding the SUMClIlient within applications, highlighting the

simplicity of the revised API versus the more complex earlier version.
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Chapter 7. In-Situ User Study with SUM

This chapter describes an in-situ user study of three mobile applications in which the
revised SUM framework is embedded (Chapter 6). The study involved 12
participants with visual and motor impairments, and spanned a four-week period.
The primary objective of this evaluation was to capture measurements of user
touchscreen performance within a real-world context to expose the usage behaviours
and fluctuations of user performance and ability. Secondly, this evaluation aimed to
explore the potential of the SUM framework as a method of capturing and measuring
user touchscreen performance from the wild. Therefore, no interface adaptation were
applied during this user study, instead the SUM framework was used to simply
collect the user interactions throughout the four-week period. The chapter begins by
discussing the challenges and benefits of conducting user studies outside of the
controlled laboratory environment. Next the chapter will present the user study
design consisting of: a description of the participants taking part in the study; an
overview of the study apparatus and experimental applications, together with an
outline of the procedure applied, including the measurements resulting from the
evaluation. These results are reviewed in relation to the collective and individual
usage and interaction behaviours of the participants, and are followed up with a
discussion of the individual differences in abilities and needs of the twelve

participants.

7.1 From the Laboratory to the Real World
The laboratory based evaluation of the SUM Framework (Chapter 5) represented a

proof of concept, and served as a pivotal assessment of both the modelling and
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adaptation techniques of SUM to support the needs of a diverse group of users. As
previously stated in Chapter 5, the laboratory based user studies were divided into
two sessions of one hour, users tested the three applications across both sessions.
The user evaluations included external assessments conducted by the researcher to
acquire additional information for the user models, and models were also refined
based on the observations made within the evaluations. Expanding on the knowledge
gained from this initial laboratory study (Chapter 5), revisions were outlined to
further develop the SUM Framework to reduce the reliance on observed
measurements, and address the limitations of the first version of the framework.

These revisions were covered in detail previously within this thesis (Chapter 6).

The objectives of this in-situ study were primarily to address the three key

limitations of the laboratory study:

Snapshot measurements: Participants reported on a snapshot effect when
measuring their abilities through the short laboratory studies. Many participants
discussed the noticeable differences in their abilities resulting from medication
cycles, which were not captured during these evaluation sessions. Short evaluation
sessions of approximately one hour separated by longer time intervals will produce
snapshots of a user’s interaction behaviours and abilities, and create user models that

are susceptible to extreme skewing.

Unnatural Behaviours: Laboratory based evaluations do not reflect users’ real-
world interaction behaviours. The user is placed in an unfamiliar and potentially
intimidating environment, then requested to perform very specific tasks under the

premise they are being observed and monitored. While the stimulus and interaction
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constraints within the laboratory study were designed to reflect typical mobile
applications and their use, the user behaviours did not necessarily represent the
user’s real-world actions. For example, P7 used a magnifying glass at home to view
small printed text on his mobile phone; this was not possible within the laboratory

environment.

Loss of Detail: The raw interaction data was processed within the SUMClient to
produce recordings of individual gestures e.g. single tap, vertical swipe. This
allowed the SUMClient to retain an overview of each individual interaction, while
reducing the required storage capacity and network usage by not retaining each
internal state of the gesture e.g. touch begin, touch move, touch end. However, this
resulted in the loss of detail and granularity of touchscreen interaction
characteristics. The SUMServer was unable to explore the individual state that made
up the gestures, thus limiting the potential analysis and modelling features post-

study.

While the laboratory user evaluations provided accurate measurements of
individuals’ interaction abilities at that instance in time, it was important to define a
study design that could obtain continuous measurements of the users across longer
periods of time to understand how their interaction abilities fluctuated. Similarly, to
address the unnatural behaviours within the laboratory setting, the study design
needed to remove the necessity for laboratory sessions and allow users to freely
interact with the technologies in real-world settings. Finally to guarantee that this
evaluation captured user interactions at a high enough level of detail, revisions were

made to the SUM framework (Chapter 6), ensuring that the raw touchscreen
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interactions are captured with finer granularity than previously used in the laboratory

study (Chapter 5).

Given the new requirements for longer collection periods outside the controlled
laboratory, two possible approaches were considered to further evaluate the SUM

framework’s ability to model user touchscreen performance and needs.

* A controlled study with a longer collection period to capture repeated

measures from a concentrated population.

* Large-scale marketplace study with a much wider population.

The latter option could have been achieved by leveraging the popularity of mobile
app-stores to reach larger participation numbers, similar to the approach of (Henze et
al., 2011). However, while the (Henze et al., 2011) study was able to attract 91,731
installations, contributing to over 120 million touch events (touch begin, move and
end is one event in this case) the authors had no control over the characteristics of
the participants. In fact, regardless of complex individual characteristics, the authors
had no method of tracking a single user within the study; instead the independent
measures were based on the installations. However, since a user could have had
multiple installations, or multiple users could have played a single installation, the
measurements do not reflect the individual measurements of a single user.
Furthermore, Henze et al. (2011) reported an average of 1315 touches per
installation; applying their logic of “one touch event per second” this equates to an
average collection period of 22 minutes per installation. Using this approach within

the SUM study would have resulted in similar limitations to the laboratory SUM
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evaluation, with lack of interaction evidence per user over a longer period of time.
The approach of (Henze et al., 2011) produces a more focused high volume
understanding of the device behaviours and less of an understanding of individual

user abilities.

For these reasons the app-store approach was rejected in favour of the controlled
study spanning four weeks, with a much smaller sample size of just 12 participants.
This design allowed the researcher to control the participant recruitment process thus
helping to remove one of the many uncertainties when conducting in-situ
evaluations. Pre- and post-study informal discussions with each participant were also
used to aid the analysis of the evaluation data, which would not have been feasible

using the app-store approach.
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7.2 User Study

This section presents the design of the in-situ user evaluation using the revised SUM
framework (Chapter 6), involving 12 individuals with diverse levels of visual and

motor abilities.

7.2.1 Participants

Twelve participants, seven females and five males, took part in the user study. They
ranged in age from 21-75 (M=55, SD=20) years old. All participants exhibited
abilities that qualified them as having a motor and/or a visual impairment. In
addition, all participants were required to own and use a mobile phone (although not
necessarily a smartphone) and to have a home WiFi connection to the Internet in
order to ensure that the study devices could regularly communicate with the remote
server. Table 7.1 provides information about the participating individuals and their

characteristics.

Once invited into the study, participants were informed that they would be allowed
to keep the mobile device upon completing the study. The researchers hoped this
would encourage the participants to explore the devices, and integrate their
functionality within their daily lives. See appendix 3 for information sheet and

consent forms.
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Touchscreen . Current
b Age  Gender Experience Group Impairment Accommodations
Self-service Motor Parkinson’s Disease, Regular medication to
P1 55 Female . .
machines Control slight hand tremors suppress symptoms
Tried iPod Motor Spinal injury, muscle Regular medication to
P2 59 Male touch befor, Control spasms, hand tremors, SUDDIEsS Symptoms
ouch betore. Lontro Sensitive to light PPIess symp
Self-service Motor Parkinson’s disease, hand Regular medication to
P3 57 Male .
machines Control tremors suppress symptoms
Lo Retinal detachment, Guide dog, magnifying
Tried iPod . .
P4 67 Female Blind macular degeneration, glasses, screen reader
touch before. . .
diplopia software on PC
Myalgic
Tried iPod Motor Encephalgmyehtls. Med.1§at10n to suppress
P5 73 Female Muscle twitches and mobility symptoms, not
touch before.  Control . o
spasms in arms and cognitive
hands..
Has an iPod Motor Hyp.erm.o ]?lhty syndrome, Wheelchair, medication
P6 22 Female locking joints and tremors
Touch Control . to suppress symptoms
in hands
P7 63 Male None Motor Parkinson’s disease, hand Regular medication to
Control tremors suppress symptoms
P8 21 Female Tried iPod Motor Essential tremor Medlcatlop when
touch before. ~ Control symptoms increase
Originally medications.
L During the study
P9 65 Female Tried iPod Motor Parkinson’s disease underwent Deep Brain
touch before. ~ Control X .
Stimulation (DBS)
surgery
L. Registered blind, issues Monpculgr, sereen
Tried iPod . P . magnification on PC,
P10 24 Male Blind adjusting to changes in . .
touch before. i mobile with large
ight levels
buttons.
Has an iPod Motor Parkinson’s disease, hand Medication when
P11 75 Male .
Touch Control tremors Ssymptoms increase
P12 74 Female Tried iPod Motor Essential tremor Regular medication to
touch before. ~ Control suppress symptoms

Table 7.1 Participant profile; dominant hand used when interacting with the device;
stereotypical disability grouping associated with participant; specific impairment and current
accommodations to deal with symptoms.
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7.2.2 Apparatus

The purpose of this evaluation was to capture the real-world interactions of the
participant when using the mobile touchscreen devices, in order to better understand
how an individual’s abilities and interaction characteristics vary, thus allowing us to
refine the processes needed to model these changes. The high-level structure of the
apparatus mirrors that of the laboratory evaluation (Chapter 5), whereby the user was
provided with a touchscreen device preloaded with the stimulus applications. These
experimental applications were designed to capture the user’s interactions, and relay
the data back to the centralised SUMServer through the participant’s home WiFi
network. The SUMClient was embedded into each application, and is responsible for

handling the data synchronisation process, as discussed previously (Chapter 4).

Participants were each provided with iPod touch devices, as used within the
laboratory study. However, in the laboratory study the second Generation devices
were used, in this study these were exchanged for the fourth Generation device,
running the i0OS 6.1, rather than i0OS 3.0 as used in the previous study. The fourth
generation devices have an almost identical external look and feel as the second
generation device, although they possess additional sensors and hardware upgrades.
Table 7.2 provides an overview of the significant changes between the second and

fourth generation iPod touch devices.



128

Generation 2nd 4th
RAM 128MB 256MB
CPU 533MHz 800MHz
Camera N/A Front & Back
Battery 739 mA-h 930 mA-h
Weight 115 g 101 g
Microphone Yes Yes
Accelerometer 3-Axis 3-Axis
Gyroscope N/A 3-Axis
Vibration Motor N/A N/A
Screen Resolution 320x480 640x960
Pixels per inch 163 326
Screen Dimensions 74 mm (H) 74 mm (H)
49 mm (W) 49 mm (W)
Device Dimensions 110 mm (H) 110 mm (H)
61.8 mm (W) 58 mm (W)
8.5 mm (D) 7.1 mm (D)
Operating System i0S 3.0 i0S 6.1

Table 7.2 iPod touch comparison table of second and fourth generation devices (Wikipedia,
n.d.).

While the screen resolution has been doubled on the fourth generation device, the
physical dimensions of the screen remain unchanged and this increase in pixels
results in a sharper screen definition. Likewise, from the programming perspective
developers define the interface elements’ dimensions with the original pixel sizes,
and the dimensions will be automatically doubled at runtime to accommodate the
new screen resolutions. For example, a button with the screen location and bounding
dimensions of (10,10,300,60) would be mapped to (20,20,600,120) within the new
screen resolution. Throughout this thesis the sizes are discussed using the original

pixel resolutions for consistency with the previous chapters.

The server hardware configuration remained unchanged from the laboratory

evaluation. However, the server was updated with the revised version of the
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SUMServer framework (Chapter 6). In addition to the changes described within the
revised framework chapter, further tools were developed to support the researchers

with the running of the in-situ user study:

Over-the-air-updates: All of the experimental apps were embedded with
TestFlight’ , a commercial beta testing system for mobile application development.
A key feature of the TestFlight framework is the ability to update application
versions remotely, allowing the researchers to provide over-the-air-updates to
participants should issues arise regarding the applications being used. One of the
challenges of putting new devices out in the field is the unpredictable nature of the
interactions resulting from users exploring a new device. The design of the i0OS
system is such that third party applications cannot be /ocked or secured to restrict the
removal of the application. As a result of this lack of functionality it meant that
participants were free to remove the three experimental applications during the
study. Participants P// and P2 were exploring the devices and accidentally
removed the Sudoku application, along with any unsynchronised interaction data
from the application. The TestFlight system was able to support the reinstallation of
the Sudoku application on both devices, allowing the participants to continue with

the study that afternoon.

Status and Usage Tracker: The researchers were able to log in to secure web pages
and retrieve feedback on the status of the SUMServer to verify its functionality and

network connectivity. This enabled the researchers to promptly identify and respond

3 https://testflightapp.com/
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to technical issues within the SUMServer from anywhere at any time. Similarly
secure web pages were defined to display each participant’s usage information,
giving the researcher an overview of the last time a participant accessed an
application and for how long from the SUM synchronisation data, notifying the
researcher to participants’ activity or inactivity with the applications. The researcher
could then contact the participant to offer support, answer queries and resolve any
potential technical issues with the devices, or encourage him/her to engage with the
applications more often. The devices required an active WiFi network to access the
internet and sync with the SUMServer. Some participants were using the
applications but were unaware that they were not connected to their home WiFi. The
researcher interpreted this as inactivity and was able to resolve the problem with the

user.

7.2.2.1 Experimental Apps

The purpose of this study was to capture touchscreen interactions of the participants
when naturally using touchscreen devices in the real-world; therefore the
applications performed no interface adaptations or personalisation. Each application
used the SUMGestureRecognisers to capture and interpret the user’s touchscreen
interactions. However, no touch models were applied to the applications thus the
SUMGestureRecognisers behaved as the default iOS UlGestureRecognisers would
have e.g. UlTapGestureRecogniser for single taps and UISwipeGestureRecogniser
for scroll and swipe gestures. The gesture classifications provided by these gesture
recognisers were used to define the classification of the touch interaction data. In the
event that a user’s touch interactions were not recognised, the touch data was

captured and classified as an ‘Unrecognised’ gesture.
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Due to the limitations of the developer API access and sandboxed design of the i10S
platform, it was not possible to simply embed a background service to capture all
user touch interactions from any installed application. In order to collect the users’
touch interactions in relation to the applications and interface components it was

necessary to develop experimental applications to be installed on the device.

As part of a previous laboratory evaluation (Chapter 5), participants were asked to
think of any daily tasks or activities they might like to carry out using a touchscreen
device. The top suggestions included medication reminders, notes and lists for
shopping, checking emails, playing games, TV listings, and browsing the web. From
these suggestions three applications were identified — Memo, Sudoku, and TV
Guide. This selection was also based on considerations of coverage of potential

interface gestures and probability, frequency, and temporal distribution of use.

The feature sets and interface designs for the three applications were based on
similar applications within the App Store* to ensure their relevance and to reduce
potential design bias by the researchers. The applications make use of a number of

the traditional touchscreen interface components including:

Table views

Date Pickers

Switches

Buttons

4 http://itunes.apple.com/gb/genre/ios/
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e Number pad

e Text views

e Navigation bars

7.2.2.2 Memo

The Memo application represents a combination of the requests by participants for a
method to receive medication reminders and create notes or lists for shopping.
Participants added new reminders using the Add memo interface as illustrated in
Figure 7.1. Participants could give an item a title and additional details using the
standard iOS onscreen keyboard, with the option of setting a due date and reminder
alert. Once added, the new items appear within the four tabbed views Today, Week,
All, and Complete. The memos can be edited or marked as complete by tapping the
list item, presenting the user with an interface similar to the Add Memo screen.
Alternatively participants could quickly mark a memo as checked or unchecked by

performing a horizontal swipe from left to right on the item.

The Memo application enabled participants to set reminders for items, and receive
device notifications at the scheduled date and times, which was useful for reminders
relating to medication times, or appointments. It was expected that participants’
interactions with the Memo application would be relatively short, either adding a
new item or simply responding to a reminder notification. Likewise, it was believed
that these interactions could take place at various times throughout the day and night,

spanning the four-week long period.



133

Prepare Slides

Take Medication

Details Tell mum you arrived safely

Due Date
October 23, 2012, 3:00 PM

Reminder

Today  Week All Complete

Figure 7.1 Memo application for iOS devices. Add memo screen (A) and Memo list showing this
week (B).

7.2.2.3 Sudoku

Many of the participants mentioned their enjoyment of crosswords and Sudoku
puzzles in their newspaper. Either of these would have made a suitable game
application for this study, as they both require participants to select squares from a
board grid and enter values. Sudoku was selected, as relatively straightforward
algorithms could be used to generate new puzzles on request, and the board design
could fill the entire space of the screen. In comparison, crossword puzzles would
have had to be manually created in advance and additional space would need to have
been provided for the crossword clues (something better suited to a larger tablet
device). The basic functionality of the Sudoku application allowed participants to
select a New Game, and then select a game difficulty level of easy, medium or hard.
This would then generate a new Sudoku puzzle at the selected level (based on the

number of empty squares the puzzle starts with). Figure 7.2 shows the Sudoku board
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presented to a participant upon starting a new game. The board allowed participants
to select a target square by tapping it, causing the number pad to appear as illustrated
in Figure 7.2. Values could be entered through tapping on the required number from
the number pad. The number pad also contained a Clear button to remove a
previously entered value, and a Hide button to remove the onscreen number pad and
reveal the entire board again. The Sudoku board would also respond to a two-finger

pinch gesture, allowing the participant to zoom in and out on the Sudoku board.

The Sudoku application included provided participants with a description of Sudoku
and detailed how to play, which could all be accessed through the ‘about’ section of
the application. Finally, the application included a Task List option, which contained
a list of 14 predefined Sudoku puzzles of varying difficulty. The reasons for

including the Task List of predefined puzzles are discussed in Section 7.2.3

It was predicted that participants would have longer interaction sessions with the
Sudoku application than with the Memo and TV Guide applications. Sudoku was
also predicted to provide the highest volume of touch interactions, with each game
consisting of between 40 and 70 interactions, depending on difficulty level. The
application encouraged participants to make bursts of accurate target selections over
an extended period. Again, it was hoped that participants would enjoy playing a
short Sudoku puzzle at various times during the day, helping to provide good

coverage of the participants’ varying abilities over time.
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7:07 AM arrier 7 7:07 AM

Sudoku Sudoku

Figure 7.2 Sudoku application for iOS devices. Gameplay screens showing the Sudoku board
(A) and board with open keyboard (B).

7.2.2.4 TV Guide (version 2.0)

The earlier laboratory study (Chapter 5) included a TV Guide application with a
preloaded set of programme listings, used during the tasks designed to simulate TV
listing search and browsing. Based on the observations and participant feedback
from this study, the TV Guide application seemed to be a welcome alternative to the
traditional paper-based and TV-based electronic programming guides. The
application made use of the software platform’s table views to present the TV and

radio programmes using a list-based navigation method.

Extending the functionality from the first version of the application, the revised TV

Guide app downloaded daily TV and Radio listings from online sources’ and stored

5 http://bleb.org/tv/data/listings/
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them locally. Participants could navigate the content by TV Channel, Radio Station,
or by Programme title; a sub-navigation then allowed participants to view lists for
today, tomorrow or A-Z (over both days). An example of the Today listings’ screen
is shown in Figure 7.3. The application would only display programmes that were
currently airing, or scheduled to air soon (within a 48 hour period). Typically the
current programme would appear at the top of the list, with the exception of shows

being viewed using the A-Z option.

Participants using the TV Guide application could navigate by performing a vertical
swipe gesture to scroll through the listings, then use a single tap gesture on the
desired item to select it; an interaction style found in similar table view interfaces.
Once a programme had been selected, the application would display the full
description for that item (Figure 7.3), providing the user with the programme title;
episode information; description; channel number; access formats (if the show
contains subtitles, audio description or sign language); and finally, an option to set a
reminder alert for that programme. By tapping the “Set Reminder” button,
participants could schedule a notification alert for five minutes before the

programme was scheduled to air.
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Carrier 7

Today  Shaun the Sheep

Breakfast
Showing Now

Shaun the Sheep

Freeview: 1, Sky: 101, Virgin:

Helicopter Heroes
Tue, 23, Oct 09:15 - 10:00 AM

Homes Under the Hammer
Tue, 23, Oct 10:00 - 11:00 AM

Claimed and Shamed
Tue, 23, Oct 11:00 - 11:30 AM

CBBC. Draw the Line: Children's
animation set on a remote rural
farm. The flock hijacks a road-line-
painting machine and cause chaos
while creating giant works of art in
the field. Also in HD.

Set Reminder

Cash in the Attic
Tue, 23, 0ct 11:30 - 12:15 PM

Bargain Hunt
Tue, 23, Oct 12:15 - 01:00 PM

BBC News at One

Tue, 23, Oct 01:00 - 01:30 PN

Figure 7.3 TV Guide application version 2 for iOS devices. List of today’s programmes on
BBC1 (A) and details view for “Shaun the Sheep” TV programme (B).

The interface style of the TV Guide application was similar to that of other
information retrieval applications such as email, blog or news feed readers and used
user interface controls similar to those used in the built-in iOS applications such as
Contacts and Settings. The researchers expected that participants would only access
this application at particular points within the day, prior to and during TV viewing

periods.

7.2.3 Procedure

The evaluation consisted of three stages: an initial training session and informal
discussion with the researcher; the four week application use in the wild; and a post-
study discussion with the researcher. Participants were provided with additional
application example sheets (Appendices 4, 5, 6), demonstrating the typical

interaction scenarios of each application. These included sample memo entries, TV
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guide queries and Sudoku solutions to support the participants throughout the
evaluation. Upon completion of the study participants were gifted the touchscreen
devices as a thank you for their participation within the evaluation study. This

section discusses the three stages of the evaluation:

7.2.3.1 Training Session

The principal researcher met with each of the participants at the beginning of the
four-week evaluation for a 30 to 40 minute session to introduce the purpose of the
research and demonstrate each of the three applications. Most participants were able
to visit the University of Dundee to complete this training session, however, the
researcher did visit three of the participants at home. Participants P1, P3, P9 and P12
had never used smartphone devices before, and were provided further training on the
basic device functionality and controls within this session. Once the participant felt
confident enough to operate the device and the three applications, the researcher
entered the unique login details for that participant and activated the SUMClient

logging capabilities.

Participants were provided with information to assist in connecting the devices to
their home WiFi network in order to ensure that the TV Guide application could
download new content and captured interaction content could be synchronised with
the SUMServer. Printed copies of the application example sheets were given to each
participant. While the participants were aware of the three applications prior to
agreeing to take part in the study, it was understood that they might not find the
opportunity to engage with the applications every day. The example sheets were

designed to encourage and support the participants when using the applications,
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providing suggested entries for the memo application, or possible TV channels and
programmes to look up. The Sudoku example sheet was slightly different, in
recognition of the fact that not everyone is familiar with the game, or is skilled
enough to play Sudoku comfortably. Therefore the participants were provided with
14 complete solutions to the 14 preloaded puzzles within the ‘Task List’ section of
the application. These were designed to support the participants through a game of

Sudoku until they were confident enough to play a game without help.

Finally, participants were informed that they would be gifted the mobile device upon
completion of the study. All participants were encouraged to explore the other
applications and device functions, but reminded that the only applications that would
capture data were the study applications placed along the bottom row of the app

launcher screen.

7.2.3.2 Into the Wild

The three applications would automatically synchronise new session data in the
background when applications were reopened and connected to the Internet. The
synchronisation process involved transmitting any unsent touch gestures, motion
data, application logs and session attributes as raw data through the SUMServer web
services. Local data was then marked as sent but not deleted, serving as a backup for
the aggregated data collection within the server, in case of network connection errors
or other failures. Due to the limitations of the iOS operating system, application data
could only be transferred during periods of application activity. Therefore
communication would be broken when participants exited the applications during the

SUM synchronisation.
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Because participants were not in regular contact with the researcher throughout the
evaluation, it was crucial that the applications were able to notify the researcher of
any communication problems or application errors; this was achieved using the
status and usage tracker tool which allowed the researcher to view a complete study
synchronisation overview for each participant and each application, providing the
researcher with the participant id, application, and last accessed time. This allowed
the researcher to quickly identify potential application issues, or to contact

participants if long periods of inactivity occurred.

Finally, participants were asked to keep a brief diary of their experience during the
time of the study. This was aimed at supporting the interpretation of the interactions,
in particular providing a better understanding of extreme outliers. Since the system
automatically recorded timestamps for all interactions, the participants did not need
to keep daily logs of all device use. Instead they were encouraged to take note of the
unusual or out of the ordinary situations and behaviours such as feeling very poorly,
experiencing extreme symptoms, or travelling somewhere with the device. The
applications were embedded with facilities to capture user feedback; however
participants opted not to use these, and instead provided paper or emailed diaries

following the study.

7.2.3.3 Post-Study Feedback

At the beginning of the study, participants scheduled dates roughly four weeks later
to meet with the researchers for 30-minute informal discussion and debriefing. Due
to unforeseen circumstances, five of the meetings had to be rescheduled, resulting in

longer collection periods for some participants. The dicussions were recorded and
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later transcribed by the researchers, allowing the participants to speak naturally about

their experiences of the study without interruption or pauses.

7.3 Results

The primary objective of this study was to capture measurements of real-world
touchscreen interactions by individuals with visual and motor impairments from the
wild. This study explored the use of three mobile applications embedded with the
SUM framework: to obtain detailed measurements of touchscreen interactions,
identify and understand natural device usage behaviours and interactions. The results
presented were fourfold: qualitative behaviours and usage, quantitative interaction
measurements, general interaction behaviours and individual interaction

measurements.

7.3.1 Qualitative
Qualitative measures were captured through informal dicussions, and provide
support and context for the performance measures and behaviours recorded through

the application interactions.

7.3.1.1 Applications vs. Tasks

The fundamental goal of this research has been to develop techniques whereby
performance measurements could be collected with little or no disruption to users’
natural daily lives. Our experimental applications grew from an analysis of what
constituted appealing uses of mobile devices for our target population. As a result,
the applications were not viewed as tasks or exercises but rather useful tools and fun
diversions. During the post-study discussion, participants were asked to “describe

your experience of taking part within this user evaluation”. All but P10 responded by
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commenting on how fun it was to play the game, how handy the TV reminders were,
or how useful the memo application was. P10 explained “none of them [applications]
were really things that I would do in my normal day. So in terms of that I had to
make an effort to use them”. There were however variations in the application usage
patterns of the 12 participants, for example, P1 avoided the memo application, so the
applications on offer were not desired by everyone. On the other hand, upon
completing the evaluations, participants P4 and P5 requested copies of the Sudoku
application to continue playing beyond the study, expressing their rekindled
enjoyment for Sudoku puzzles since participating in the evaluation. All but P10
remained extremely positive regarding the study activities, and did not associate their
device interactions as being measures of performance or evaluation exercises, rather
viewed the experience as just “playing with the device” and saw the study as an
opportunity to play with a new technology. P8 commented that “the implications for
the real world when people are actually using them will be really helpful, because
people won’t be using [applications] because they have to, but because they want to

[use the applications]”.

7.3.1.2 External Constraints and Factors

The design of the study was for participants to complete a four-week, in-situ
evaluation with the mobile device. However, as a result of unforeseen medical
conditions, three participants were taken into hospital, and were unable to meet with
researchers as originally scheduled and therefore opted to extend their participation.
Fortunately all of the participants were fit and able to continue the evaluation once
released from hospital care. P6 took the device into hospital for the duration of her

stay, and was able to use the Sudoku and Memo applications (since they did not
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require WiFi connections). As a result of the design of the SUM framework, all of
the interactions made during this extended offline period of use were captured

locally and synchronised once connected to an active internet connection.

Two weeks into the study participants P11 and P12 encountered issues with the
general operation of the iPod touch devices. P12 accidentally removed the
experimental applications from both his device and his wife’s (P11) device, when
attempting to synchronise their own music collection with the device. Although the
SUM framework maintains a local database of interaction data, the stored location of
this database is constrained by the platform. iOS forces a highly sandboxed structure
on third party applications with all application resources, including databases, being
stored within the application package. Therefore, when the applications were
removed from P11 and P12’s devices so was all of the local data that was yet to be
transferred back to the server, resulting in substantial data loss. While this storage
restriction exists for i0S, other platforms such as the Android platform allow
databases to exist externally to the application package, even within external SD card

directories, a design much more fit for this type of purpose.

7.3.1.3 Holding Configurations

Although laboratory based studies have investigated the use of device motion
sensors to measure tremor peak movement frequencies and magnitudes from
participants with motor impairments (Nicolau & Jorge, 2012b), participant feedback
from this in-situ evaluation suggests that this approach may not be reliable within
real world contexts. Participants were asked to reflect on their holding configurations

within the post-study discussion; P8’s response reflected the feelings of some of the
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other participants with the comment that: “I’d probably, I’d usually, put it down on
the table or on my lap, because obviously you've got the added: ‘if this hand has got
a tremor and this hand has got a tremor, and you’re holding it’ [gestures with her
hands moving in opposing motions] But if you put it down on a hard surface you've

got more [stability].”

7.3.2 Quantitative

All of the interaction data was collected using the SUM framework. This provided a
low-level user interaction log, but no high-level domain knowledge or understanding
of the applications. However, using the SUM framework the researcher was
provided with application logs containing timestamps, and navigation actions such as
page loads along with the page titles. Similarly these logs captured application
specific interactions e.g. “Cell cleared” from the Sudoku application. The application

logs were used to support the analysis of the low-level interaction data.

7.3.2.1 Interaction Behaviours

One of the biggest challenges of analysing performance measurements from
individuals with visual and motor impairments is the highly variable nature of their
abilities. (Hurst, Mankoff, & Hudson, 2008b) reported large variances both between
and within subjects across all performance measures of mouse pointing performance
over multiple login sessions. Kruskal-Wallis tests were run to determine if there are
differences in touch interaction characteristics between participants. Touch
interaction characteristics included the touch x and y offsets, duration and touch
movements of tap gestures. Touch interaction characteristics were statistically

significantly different between participants, x offset x*(11)=1483.59, p<.001,



145

illustrated in Figure 7.4; y offset *(11)=1995.81, p<.001, illustrated in Figure 7.5;

duration, Xz(l 1)=2142.09, p<.001, illustrated in Figure 7.6; movement,
y*(11)=110.948, p<.001, illustrated in Figure 7.7.
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Figure 7.4 Boxplot showing the overall mean x-offsets of tap gestures, per participant. Where
values < Opx are offsets left of the target centre, and values > Opx are right of the target centre.
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Figure 7.5 Boxplot showing the overall mean y-offsets of tap gestures, per participant. Where
values < Opx are offsets above the target centre, and values > Opx are below the target centre.
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Figure 7.6 Boxplot showing the overall mean tap duration of tap gestures, per participant
throughout the in-situ study.
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Figure 7.7 Boxplot showing the overall mean tap movement of tap gestures, per participant
throughout the in-situ study.

Kruskal-Wallis tests were run to determine if there are differences in touch
interaction characteristics between a participant’s interaction sessions. All touch

interaction characteristics were statistically significantly different between
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interaction sessions for participants P2, P3, P4, P5 and P9, (p<.001). No significant
differences were observed in touch movement of tap gestures for participants P/, P7
and P11 between sessionsP/, P7 and P11 between sessions, (p>.05). However, the
remaining touch interaction characteristics (touch x and y offsets) were statistically
significantly different between sessions, (p<.001). Statistical differences in tap
duration and movement only were observed between sessions for participants PS,
P10 and P12 (p<.001). Finally, no statistically significant differences were observed
in touch interaction characteristics between sessions for participant P6 (p>.05).
Figure 7.8, Figure 7.9, Figure 7.10 and Figure 7.1lillustrate the individual
participant’s daily average x-offset, y-offset, duration and movement behaviours
when performing tap gestures. It is clear from these figures that for most participants
these interaction characteristics vary dramatically between daily interactions, making
it unrealistic to predict from previous sessions. Furthermore, these figures show that
while participant’s interaction characteristics were significantly different overall,
there are sessions whereby two or more participants share similar interaction

behaviours and abilities.
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Figure 7.8 Line graph showing the daily average x-offset of each participant’s tap gesture
behaviours. Values <Opx are left of the target centre, values >0px are right of the target centre.
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Figure 7.9 Line graph showing the daily average y-offset of each participant’s tap gesture
behaviours. Values <Opx are above the target centre, values >0px are below the target centre
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Figure 7.10 Line graph showing the daily average duration (milliseconds) of each participant’s
tap gesture throughout the in-situ study.
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Figure 7.11 Line graph showing the daily average movement (pixels) within a tap gesture for
each participant throughout the in-situ study.

7.3.2.2 Usage Behaviours
These results suggest that not only are the interaction behaviours significantly

different between participants, but in most cases they are also significantly different
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between sessions for the same user. Specifically, this suggests that interfaces need to

be able to respond and adjust to changes between interaction sessions for each user.

The flexible schedule design of the current study meant that participants were free to
completely immerse themselves in the device for hours on end, or forgo using the
devices for a number of days at a time and completely avoid interactions with an
application, which was observed for P1, who had very few sessions with the memo
application throughout the study. At the same time, participant P4 showed almost
obsessive interactions behaviour, playing games of Sudoku for long periods of time,
late at night and into the early hours of the morning. Figure 7.12 illustrates the
number of gesture instances collected by each application for the participants

throughout the evaluation.
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Figure 7.12 Number of gesture instances captured from each participant per application

The decision to give participants the power to dictate their own interaction schedules

came from a desire to understand the natural usage patterns and interaction habits of
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the participants in their everyday lives. This decision has yielded valuable insights
into the highly variable usage behaviours within and between participants, and these
were tested for homogeneity of variance, unequal variances were observed as
(p<.001). Specifically, these results suggest that usage of the devices did not follow a
particular schedule or pattern, but rather the participants interacted with the devices
in an informal, unstructured manner. Furthermore, the usage behaviours between
participants were significantly different. Figure 7.13 illustrates the individual

participants’ usage share for each application throughout the evaluation.
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Figure 7.13 Application usage share for each participant.



152

7.3.3 General Interaction Behaviour

While participants displayed very personal and diverse usage patterns and
behaviours, the study also uncovered more generic shared behaviours across the
participants. This next section will discuss the shared interaction behaviours in

relation to gestures both dependent on and independent of interface components.

7.3.3.1 Unique Features between Components

The data collection process supported by the SUM framework relates touch
interactions to iOS interface components such as UlTableView’s (i.e. Figure 7.1 and
Figure 7.2) and UlButton’s (i.e. Figure 7.1, Figure 7.2 and Figure 7.3), allowing the
data to be analysed and presented in relation to these interface components, rather
than the individual applications or pages. Table 7.3 provides an overview of the Ul

component classifications applied for this analysis.

UI Component Group Classification Gesture Recognisers

Table view

List .
Date Picker Tap & Swipe

Button (width < 50%,
and height <20% of
the screen)

Button Tap

Number Pad
Switch
Button (width greater
0,

than 50% of screen) Wide Button Tap

Text views
Navigation Bar Non Interactive None

Table 7.3 UI component classification into lists, buttons, wide buttons and non interactive.

All of the experimental applications made use of the iOS UlTableView controls to
create lists of menu items and application content (e.g. TV programme listings

Figure 7.3, or Today’s Memo list Figure 7.1). TableViews or lists are highly
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common application interface components within both the stock and third party

mobile applications for all of the major mobile OS platforms (including i10S).

The default configuration of the TableView control creates a large interface
component typically spanning the full width and height of the mobile display,
responding to both vertical swipe and single tap gestures. The lists are commonly
populated with left-aligned headers, long text descriptions, and/or images. Each row
is separated with horizontal borders on the top and bottom. All of the lists used
within the experimental applications contained either header text only, or header text

with subtext details (Figure 7.14), all of which were text aligned to the left.

Breakfast
Showing Now

Helicopter Heroes
Tue, 23, Oct 09:15 - 10:00 AM

Homes Under the Hammer
Tue, 23, Oct 10:00 - 11:00 AM

Nt i D el Ao 2

Figure 7.14 TV Guide today list, showing the item header (A) and subtext detail (B).

A Kruskal-Wallis test was run to determine if there were differences in the
horizontal location of taps when interacting with list control elements, as illustrated
in Figure 7.14. Statistically significant differences were identified between the
numbers of taps across the horizontal locations, ¥*(9)=35.362, p<.001. Similarly, a
Kruskal-Wallis test was run on the vertical location of taps within list control
elements which revealed a statistically significant difference across the vertical

locations, y*(14)=171.713, p<.001. While the configuration of the lists allowed users
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to select items by performing a one-finger single tap gesture anywhere along the
horizontal space of the list item, the analysis of tap gestures with list items suggests
that participants performed the tap gestures within the left side of the display as
shown in the touch heat map in Figure 7.15. Likewise, a greater number of tap

gestures occurred in the upper vertical screen locations and the lower locations.

Number of touches
B>7[]> | o

e lole]s]ofr]olofo 2o oo fofr]ofofn
Ll |

Figure 7.15. Heat map of tap gesture selections (A) and the origin of swipe gestures (B) within
onscreen targets spanning the full width of the screen.

These results echo a similar behaviour that was observed in the laboratory study
(Chapter 5) with other applications using list controls, that participants were
wrapping their left-hand fingers around the device, with their thumb on the left and

their fingers on the right when performing a vertical swipe gesture. When asked
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about this behaviour, the participants reported this placement was an attempt to
provide additional support when performing the swipe gestures. However, as a result
of this gripping technique the participants created a number of unintentional item

selections.

While the heat map swipe gesture locations may appear to be located around an
anchored thumb pivoting around the bottom right of the device, all of the
participants within the in-situ study reported either resting the device on a flat
surface or holding it in their left hand and interacting with the device using their
right hand. This suggests that the tendency to interact with the left-hand side of the
lists is a conscious decision, opposed to the limited reach of their thumb or finger.
One possible reason for this behaviour is the alignment and position of the text
content along the left side within the list items, providing the users with a clear

visual target to interact with.

A Kruskal-Wallis test was run to determine if there were differences in tap duration
between the horizontal and vertical locations of list control elements. Tap duration
was statistically significantly different between the horizontal locations (as labelled
in Figure 7.15), x%(9)=70.031, p<.001. Post-hoc analysis revealed statistically
significant differences in tap duration (in seconds) between horizontal locations 1
(Mdn=.19) and 2 (Mdn=.15) when compared with locations 3
(Mdn=.14)(p=.002)(p=.004), 4 (Mdn=.13)(p<.001), 5 (Mdn=.13)(p<.001) and 6
(Mdn=.12)(p=.003)(p=.011). Specifically, these results suggest that tap durations are
significantly shorter when interacting with list elements in horizontal screen

locations further away from the edges of the screen. However, no statistically
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significant differences were identified in tap duration between the vertical locations,

v’(14)=22.322, p=.051.

Figure 7.5 also illustrates the origin of swipe gestures with list controls within the
experimental applications. Kruskal-Wallis tests were run to determine if there were
differences in the horizontal and vertical origin locations of swipe gestures within
list control elements. Statistically significant differences were observed between the
vertical screen locations for the origins of swipe gestures, x*(13)= 34.987, p=.001.
No statistically significant differences were observed between the horizontal screen
locations for the origins of swipe gestures, x*(9)= 8.991, p=.438. However, this data
included vertical and horizontal swipe gestures, a Kruskal-Wallis test was run on the
vertical swipe gestures only to determine if there were differences in the horizontal
locations. When only looking at vertical swipe gestures, statistically significant
differences were observed between the horizontal screen locations and the origins of
swipe gestures, y°(9)= 18.513, p=.03. Specifically, the results suggest that when
users interact with list control elements, swipe gestures are more likely to originate
from the bottom right hand side of the screen as illustrated in Figure 7.15. This
location would provide the most optimal start point to vertically scroll through the
maximum number of items, while also allowing the participants to view and read the

left-aligned textual content of the lists.

Kruskal-Wallis tests were run to determine if there were differences in the duration
of swipe gestures between the horizontal and vertical origin locations. No
statistically significant differences in swipe duration were observed between the

horizontal, ¥*(9)= 7.545, p=.581 or vertical origin locations, y*(13)= 14.506, p=.270.
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These results suggest that the timing behaviours of a user’s swipe interactions are
independent of the spatial location that the swipe originates from. Similarly, no
statistically significant differences in the swipe distance were observed between the
horizontal, ¥*(9)= 7.444, p=.591 or vertical origin locations, y*(13)= 20.108, p=.065.
Therefore, these results suggest that the distance lengths of swipe gestures are

independent of the spatial location that the swipe originates from.

A Wilcoxon Signed-Rank test was run to determine if there were differences in the
duration of tap gestures vs. swipe gestures. There was a statistically significant
increase in the duration when users performed swipe gestures (Mdn=.475) compared
to tap gestures (Mdn=.207), z =4.339, p<.001. Specifically, these results suggest that
the duration feature could be used to aid in the distinction between tap and swipe
gestures within list control elements. This is particularly useful in cases where a
user’s tap gestures contains unintentional movement data, thus causing confusion

between the intent of a tap or swipe gesture.

7.3.3.2 Interaction with Buttons

Within this analysis only interactions made with button components as defined
within Table 7.3 were included. The target also had to respond to a one-finger tap
gesture, but not exclusively the one-finger tap gesture if components outwith the
button classification were excluded from the analysis of horizontal touch offsets,
since the users could successfully interact with the components anywhere along the
horizontal axis. The analysis of tap interactions made with buttons revealed
participants’ target offset behaviours reflected those collected in similar studies

investigating touchscreen performance measurements (Henze et al., 2011; S. Lee &
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Zhai, 2009; Y. S. Park & Han, 2010). The device screen was divided up into a 10x14
grid as shown in the heat maps of Figure 7.5, and buttons were grouped into these
locations based on their origin point. A Chi-square test for association was
conducted between the horizontal touch offset and vertical screen location. There
was a statistically significant association between horizontal offset and vertical
screen location, ¥*(26)=1906.54, p<.001. Table 7.4 summarises the observed results

of the horizontal offsets by vertical screen locations.

Vertical Horizontal Offset Location
Screen
Location Left Origin Right Total
1 0.0% 0.0% 0.0% 0.0%
2 0.0% 0.0% 0.0% 0.0%
3 0.3% 0.0% 1.6% 2.0%
4 3.8% 0.2% 3.0% 6.9%
5 3.6% 0.3% 5.4% 9.2%
6 4.3% 0.3% 8.9% 13.4%
7 4.0% 0.3% 8.0% 12.3%
8 2.4% 0.2% 6.7% 9.3%
9 1.9% 0.1% 2.1% 4.1%
10 5.1% 0.2% 0.7% 6.0%
11 5.5% 0.3% 1.2% 7.0%
12 7.6% 0.3% 1.1% 9.0%
13 4.8% 0.3% 0.8% 6.0%
14 4.2% 0.1% 0.5% 4.8%
15 8.4% 0.3% 1.3% 10.0%
Total 55.8% 2.8% 41.4%

Table 7.4 Summary of horizontal touch offset locations across the vertical screen locations. 1 =
top edge, 15= bottom edge.

A Chi-square test for association was conducted between the horizontal touch offset

and horizontal screen location. There was a statistically significant association
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between horizontal offset and horizontal screen location, y°(18)=827.31, p<.001.
Table 7.5 summarises the observed results of the horizontal offsets by horizontal
screen locations. Specifically, these results suggest that horizontal touch offsets are

influenced by both the vertical and horizontal screen locations of the interaction.

Horizontal Horizontal Offset Location
Screen Location Left Origin Right Total
1 4.6% 0.2% 2.3% 7.1%
2 5.9% 0.5% 3.6% 10.0%
3 3.2% 0.3% 3.8% 7.3%
4 2.5% 0.2% 2.4% 5.1%
5 7.8% 0.2% 3.0% 11.0%
6 2.2% 0.3% 52% 7.8%
7 3.9% 0.2% 4.9% 9.0%
8 15.2% 0.3% 4.5% 20.0%
9 9.0% 0.6% 5.9% 15.5%
10 1.6% 0.0% 5.6% 7.2%
Total 55.8% 2.8% 41.4%

Table 7.5 Summary of horizontal touch offset locations across the horizontal screen locations. 1
= left edge, 10 = right edge

7.4 Discussion

The primary objective of this user evaluation was to obtain accurate measurements
of touchscreen interactions from participants within a real-world context to
understand how user performance and interaction behaviours fluctuate over a four-
week period. Furthermore, the objective was also to evaluate the refinements to the
SUM framework, and assess the potential of the SUM framework as a tool to

accurately measure user performance from remote real-world interactions.
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7.4.1 SUM Framework and Data Collection

Firstly, while the SUM framework successfully captured and returned the user
interactions for all 12 participants, for two of the participants substantial amounts of
interaction data were lost. Although this loss of data was attributed to human error
and a limitation of the device platform, it did expose a large vulnerability within the
SUM framework data storage. Updated versions of the SUM framework have
however address these issued by storing all captured interactions locally and external
from the applications. Therefore, in the event of a participant accidentally removing

the experimental application, no further interaction data would be lost.

Secondly, the SUM framework was passively recording user interactions from the
three experimental applications. Therefore, it was able to capture information
relating to the usage behaviours of the users with the applications, for example only
using the memo application on a Monday afternoon. Although these usage patterns
were of interest and exposed void periods of no interactions and data collection, the
result of this passive approach meant that some participants were much less engaged
with the technology. Thus, fewer sessions and interactions were captured for those
participants. Future evaluations might consider augmenting the participant driven
usage patterns with periodical prompts to engage with the applications, this could be

achieved through the notification services that exist on mobile platforms.

7.4.2 Real-World Interaction Behaviour
The experimental applications for this study were selected to represent the real-world
uses of mobile touchscreen devices. One participant stated that the applications were

not of interest or use within his/her daily life. However the remaining participants
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described their experience within the evaluation as simply playing with the device
without feeling as though they were being observed or forced to perform tasks.
Therefore, the interactions captured within this user evaluation represent the real-
world behaviours of the participants. As such, this study has demonstrated that
existing approaches to obtain measurements of tremors from device accelerometer
motion is not supported by the holding behaviours of participants with hand tremors
in a real-world context. Thus, alternative methods leveraging the resulting onscreen

interactions need to be explored.

Furthermore, analysis of the touchscreen interaction characteristics identified that
participants behaved significantly differently to one another regardless of sharing a
stereotypical disability classification, suggesting that interface adaptations should be
defined based on an individual’s abilities and not their disability. However, it was
also observed that an individual’s interaction characteristics fluctuated significantly
between application sessions. Therefore, it is not enough to use an individual’s data
to train the device’s input gesture recognisers, adaptations need to be made based on
the individual’s current abilities and behaviours. Thus, it is essential for interface
adaptations to factor interaction context, and they should be applied on a per session

basis.

7.5 Conclusions

This chapter reported on a four week in-situ user evaluation that investigated the
real-world interaction characteristics and usage behaviours of users with visual and
motor impairments. The evaluation explored the use of the revised SUM framework

(Chapter 6) as a method of collecting measurements of individuals’ interaction
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abilities from real-world interactions with the three experimental applications:
Memo; TV Guide and Sudoku, across a four week period. Analysis of participants’
interactions demonstrated that interaction characteristics differ significantly both
between participants and between sessions of the same participant. However, the
current input gesture recognisers of mobile touchscreen devices require that
participants be able to perform gestural actions consistently with the device’s or
application’s predefined recogniser parameters. Based on these results it would be
concluded that individuals with fluctuating abilities could benefit from input gesture
recognisers that can accommodate these variances in performance to improve the

recognition accuracy.



163

Chapter 8. Applying Context to SUM

After conducting a in-situ user study to capture the real-world interactions of mobile
touchscreen users (Chapter 7), this chapter now explores the effect of training user
models from this data, and using the resulting models to perform interface

adaptations on the touch gesture recognisers.

8.1 The Need for Contextual Measurements

Previous works have proposed interface solutions targeted to a particular user group
(Guerreiro, Nicolau, Jorge, & Gongalves, 2010a; Hurst, Hudson, Mankoff, &
Trewin, 2008a; Nicolau & Jorge, 2012b; Trewin et al., 2006; Wacharamanotham et
al., 2011) while others have applied adaptations to create personalised interfaces for
a specific user (Findlater & Wobbrock, 2012; Flatla & Gutwin, 2011; Gajos et al.,
2007; Heron et al., 2013; Trewin, 2004). However, the analysis of the user
interactions from the in-situ evaluation demonstrated the significant variances in user
behaviours and performance between participants (regardless of belonging to the
same stereotypical user group) and between sessions from the same participant.
Therefore, the user models need not only to be specific to the individual, but must
also adjust to the context or situation for which the interactions take place. Thus, it
was concluded that simply training user models based on a user’s data would not be
enough to address the fluctuations in performance. To mitigate the between session
differences of user performance, a novel approach leveraging -contextual
measurements of interactions to predict session behaviours and needs has been
proposed. Contextual measurements were used to refine the training data selection

when building shared user models.
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8.2 Extracting Features and Intent

In order to create and evaluate the user models, the interaction features needed to be
extracted to define the parameters of the new SUM gesture recognisers. The dataset
was collected within the in-situ user evaluation, whereby all data was captured from
three real-world mobile applications. As a result of using real-world interactions, the
user’s actions and intentions were unknown for each interaction. Therefore, methods
to obtain values for the user’s intent for each action needed to be defined to evaluate

the accuracy of the models.

8.2.1 Touch Features
This sub-section describes the touch features extracted from the touch gestures

captured by the SUM framework.

Touch Location (X, Y): Represents the horizontal and vertical location of the user’s
finger when it was lifted from the screen. These locations are absolute values

measured in relation to the physical screen dimensions.

Touch Offset (X, Y): captures the user’s x or y offset between the touch begin

(finger down) and end (lifting the finger off) states.

Touch Duration: captures the time duration between the first and final state of a

touch gesture.

Absolute Touch Movement: measures the total Euclidean distance between all of

the touch states of a gesture.

Straight-line Touch Movement: measures the Euclidean distance between the first

and last touch states of a gesture, the combined touch x and y offset.
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Relative Touch Movement: calculated as the ratio of straight-line movement to
absolute movement to measure the amount of additional or unintentional movement

within the gesture.

Movement Direction Changes (X, Y Axes): measures the number of direction
changes within the chosen axis or the combined horizontal and vertical, collected

from the touch movement states.

Target Offset (X, Y): captures the user’s x or y offsets from the centroid location of

the target interacted with during the touch gesture.

8.2.2 Extracting Touch Intent

Within controlled laboratory user evaluations it is relatively straightforward to
establish a user’s intended actions, typically the design of the study is such that users
have a clear goal, thus error identification is easy. For example, their brief would be
to tap the onscreen targets as quickly as they can with their dominant hand. The
resulting dataset would contain user touch information where the intended gesture
and target are known. However, when conducting in-situ user studies it is
unreasonable to assume that the each user interaction carries intent, or that the device
correctly interpreted the user’s intent. Therefore it is important to apply methods to
discriminate between actions with and without intent. Recently, Gajos et al. (2012)
conducted in-situ observations of user performance with computer pointing devices,
combining both task specific observations and natural computer interactions. The
goal of the research was to develop techniques to discriminate between interactions
made with focus and intent, from those made while the users were distracted. Gajos

et al. applied Fitts’ law models to the user data collected during the pointing tasks to
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correlate features of intentional pointing movements, and develop classifiers to
identify intentional pointing actions within the natural user interactions. The in-situ
evaluation design (Chapter 7) mirrors the approach of Gajos et al. (2012), providing
participants with a task for each application to enable the collection of interaction
data with intent, while also collecting the natural interactions of the users outwith the
application specific tasks. The tasks for each application relate to the example sheets
provided to the participants during in-situ study training session (Chapter 7). It was
possible to automatically discriminate the Sudoku task data from the normal
gameplay data using the unique page identifiers generated when starting a new task
game, vs. those from the normal gameplay. Using these unique page identifiers it
was then possible to cluster any interactions that were associated with the user
performing the tasks with the example sheets. This was not possible from the
datasets collected by the TV Guide and Memo applications, as no specific task pages
existed within the applications themselves. However, sessions where participants
completed tasks within these applications could be identified using the session
timestamps and comparing the user’s task sheets, which served as an interaction

diary.

8.2.2.1 Fitts Modelling

In order to apply the procedures outlined by Gajos et al. (2012) for obtaining in-situ
measurements of intent, Fitts models were constructed from the participants’ touch
data collected during the tasks. Previous attempts to apply Fitts models to
touchscreen interactions in the wild demonstrated that the models were not an
accurate fit of the interaction data (Henze & Boll, 2011). Using linear regression to

determine the intercept and slope of the regression line as required in the Shannon
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formulation (MacKenzie, 1992). The line intercepted (a) at .05 with a slope (b) of
1.67 with a resulting correlation of r=.169. Specifically, the low correlation between
the touch interactions and the Fitts’ models suggests that this approach did not work
for the dataset. Therefore, this method was not utilised to classify the user intent of
the natural interaction behaviours of the participants, instead methods leveraging the

application domain and strategies were investigated.

8.2.2.2 Sudoku Game Modelling

Participants were provided with puzzle solutions for each of the Sudoku tasks within
the application, and asked to periodically complete tasks from the list by copying
over the puzzle solution values from the sheets into the game. The participants were
not required to solve the puzzles but instead perform a data entry task, thus removing
the cognitive problem solving factors that would influence their interaction
behaviour. Therefore, any deviation from the required task-input was classified as
an unintentional interaction. The Sudoku Task Model was defined to apply the
Sudoku game logic and puzzle solution to identify user intent for interactions. By
leveraging the Sudoku game strategy and puzzle solutions, it was possible to predict
user intent for interactions and refine the recognised touch gestures to reflect the user
intent. Figure 8.1 illustrates a possible scenario, where a user selects the Sudoku cell;
the Task Model predicts the user’s next move to be entering the number 6; the user
successfully taps the number 6 button thus allowing intention estimations to be

confirmed for the initial cell selection and the entered value.
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Figure 8.1 Sudoku game modelling interaction predictions with correct targets. (A) Starting
board view, (B) user selected cell, predicted next move as number pad button ‘6’°, (C) user
enters ‘6’ and next predicted moves are adjacent cell or hide button.

Alternatively, the Sudoku Task Model can be used to refine tap gestures with the
wrong target as shown in Figure 8.2. The scenario is the same as illustrated within
Figure 8.1, however the user taps the number 5 rather than the predicted number 6
button; the user’s tap gesture is updated to shown the intended target to be the
predicted input. Similarly, had the gesture been unrecognised due to exceeding the
timing or movement thresholds of a tap gesture, the Sudoku Task Model allows the

gesture intent to be refined and reclassified as a successful tap gesture.
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Figure 8.2 Sudoku game modelling interaction predictions with incorrect targets. (A) Starting
board view, (B) user selected cell, predicted next move as number pad button ‘6’°, (C) user
enters ‘5’ the target intent is updated to the number ‘6’ button and the next moves are
predicted as ‘6’ or the clear button.

During the in-situ user evaluation participants only completed 46 Sudoku tasks, but
played a further 266 games of Sudoku. Despite there being no differences between
the Sudoku task and game interfaces, the Sudoku Task Model could not be applied to
the captured games of Sudoku as it assumed the user knew the correct solution and
would not enter incorrect values intentionally. However, this is not always the case
when participants are playing games of Sudoku rather than performing the task
puzzles, within the Sudoku games participants were required to solve the puzzle
themselves, thus, were free to make mistakes and guess cell values that could in fact
be the incorrect values. For example, the scenario outlined within Figure 8.2 assumes
the user was aiming for the number 6, and tapped the number 5 in error. In a game
situation the user could have guessed the number 5 was the correct answer for that
cell and therefore touched that target with intent. To prevent the Sudoku 7ask Model
from refining the gesture target to being the predicted value of the number 6 an

alternative model was defined, the Sudoku Game Model.
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The Game Model did not leverage the puzzle solution to predict the participants next
move, it only relied on the Sudoku game logic. Therefore, wouldn’t correct gestures
where the interactions were intended but simply the wrong values as a result of the
user guessing or not knowing the correct answers. The Game Model could still refine
intent for gestures where the user selected the wrong targets, and where the gesture
itself was not recognised due to performance deviation. These scenarios are detailed

below.

Wrong Target. One possible scenario for intent correction is when the participant
taps a target that does not respond to the tap gesture, implying that a nearby target

would have been the intended target.

The Game Model captures such scenarios in the following way, illustrated in Figure
8.3. The participant taps the cell containing the number ‘4’, which is not an
interactive object and therefore no interaction feedback is provided. However, SUM
records the tap gesture marking this object as the target. The participant next taps a
nearby empty cell target that is interactive. Potentially this was the intended target
for the previous interaction, however there is still uncertainty. The next probable
moves are either tapping the ‘hide’ button to remove the number pad, signifying that
the user is happy with their number selection. Alternatively they may tap a new cell
and enter the next number. If either of these possible interactions occurs then the

b

game model marks the cell (B) as complete and the number ‘6’ as committed. At
which point the intended target for the original tap gesture (A) is refined to the

empty cell above (B), moreover the other tap gestures are confirmed as intended tap

gestures and targets.
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Figure 8.3 Game model refining the target intent for a wrong target error.

Unrecognised gesture. Another common interaction error occurs when the
participant performs a gesture that is unrecognised by the device. Possible reasons
for gestures being unrecognised is due to timing or movement values outside of the
acceptable parameters for the gesture. The following example details how the
Sudoku game modeller handles unrecognised gesture errors, to obtain refined

estimations of intent, illustrated in Figure 8.4.

The participant attempts to perform a tap gesture in the empty cell (A), but the tap
duration exceeds the maximum duration parameter of the gesture recogniser. No
interaction feedback is provided to the participant, but the gesture is captured and
recorded by the SUM framework as an unrecognised gesture. Next the participant
repeats the gesture, this time it is recognised by the device and the cell receives the
tap gesture. The scenario then plays out as detailed above for the Wrong Target .
The Sudoku modeller can then refine the gesture type of the original interaction (A)

from being an unrecognised gesture to being an intended tap gesture.
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Figure 8.4 Game model refining the gesture type for an unrecognised gesture error.

Unrecognised gesture and wrong target. As the name suggests this error occurs
when the participant performs a gesture that is unrecognised and with a target that is
not interactive. While it would be possible to use the steps detailed above to attempt
to refine and correct the intent for these interactions, it was decided not to infer

intend for these interactions due to the compound errors.

Within Sudoku task sessions (46) 82.6% of tap gestures were classified as intentional
user interactions using the Task Model, compared with 84.2% (kappa=89.6%) using
the Game Model, the results of the models were statistically similar z =-1.524,
p=.127. Kappas greater than 75% show an excellent agreement (Fleiss, Levin, &
Paik, 2013), therefore the Kappa score between the Task and Game models
demonstrates that the models share an excellent agreement on the classification of
gesture intent. Due to this statistical similarity and agreement between the 7ask and
Game Models, the Game Model classifier was applied to the dataset of 33658 (63%
of the full dataset) touch gestures collected from the Sudoku application, and
obtained refined intent classifications for 26,563 (79%) of the Sudoku interactions.

The classifier made no attempted to infer intent from those user interactions that
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occur within the application menu system, as the Sudoku game logic could not be

applied. These interactions were excluded from the dataset.

Similar attempts to refine the intent classifications of the Memo and TV Guide
applications using the participant task sheets were made. However, satisfactory
classification rules could not be defined for the interaction behaviours, as it was not
possible to identify the goals of interaction from the real-world use of the
applications. Thus, accurate discrimination between intentional and unintentional
interactions for these applications could not be obtained. Consequently, both Memo

and TV Guide were excluded from the testing of model simulations.

8.2.3 Dataset Summary

Using the three experimental applications combined with the SUM framework, a
dataset containing over 931 interaction sessions, consisting of 52,650 touchscreen
gesture interactions (taps, swipes and unrecognised gestures) was collected from 12
participants throughout the four week in-situ user study (Chapter 7). Table 8.1
summarises the breakdown of the recorded touch gestures during the user evaluation.
26,563 (50.4% of dataset, taps only) of the tap gestures were assigned user intent and
target classifications using the Sudoku game model. These classified instances will

be used to test the classification accuracy of the shared user models.
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Participant Taps Swipes Unrecognised
Pl 4434 56 1767
P2 3455 114 1324
P3 1263 34 526
P4 12352 261 1983
P5 4708 46 352
P6 545 17 94
P7 4102 32 201
P8 996 25 76
P9 4135 45 704

P10 1911 19 311

P11 1577 40 335

P12 3770 283 757
Total 43248 972 8430

Table 8.1 Summary of participant gestures captured during in-situ user evaluation.

Table 8.2 summarises the 26,563 Sudoku gestures with intent measurements,
showing the number of gestures that were recognised or unrecognised, and where or
not they were associated with the correct target. This summary shows that 1051
(39.9%) of all 2633 unrecognised gestures were in fact intended tap gestures on the
correct target. Furthermore, 3276 (13.7%) of successful tap gestures were recognised

with the wrong target.

Unrecognised Recognised
Correct 1051 20654 21705
Incorrect 1582 3276 4858
2633 23930

Table 8.2 Breakdown of device recognised gestures and the resulting intent measurements.
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8.3 Statistical Touch Models

Currently within mobile touchscreen interactions the common method of classifying
tap gestures is the use of the x, y location (either touch begin, or touch end); and
fixed movement threshold (movement between the touch begin and end states).
However, the proposed gesture recognisers are not defined by fixed parameter
boundaries. Instead, the recognisers use statistical probability models to account for
the variations in gesture performance between instances. The gesture recognisers
used in this evaluation applied Gaussian functions to define the attributes for gesture
classification, as illustrated in Figure 8.5. Gaussian functions allow the gesture
recognisers to perform classifications based on probability of an action given a series
of parameters, as opposed to relying on definitive parameters. For example, Gaussian
functions are capable of resolving common touch offset errors whereby the touch
occludes two or more possible targets. The target with the highest probability is
suggested as the intended target. Similarly, they can account for variances within
user performance, such as timing, rather than using a fixed maximum value to
threshold all touches above this. A Gaussian function would simply return a lower
probability, if the probability of the interaction were greater than it being an
unintended touch then the gesture would be recognised. However, the traditional

fixed maximum model would not be recognised.

The shared user models defined the parameters of the tap gesture recogniser using
the training data to obtain the mean (p) and standard deviation (o) values required by
the probability density functions. The SUM recognisers were able to apply the

classification features as already used by mainstream tap gesture recognisers. The
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features included were: x, y location, duration and movement. In addition the models
also parameterised the x, y offset. Typically the x, y offset is handled by touch offset
models defined on a per device nature, shifting the user’s touch input location by a
fixed Euclidean vector. However, previous researchers (Buschek, Rogers, & Murray-
Smith, 2013; Henze et al., 2012; Holz & Baudisch, 2011; Rogers, Williamson,
Stewart, & Murray-Smith, 2011; Weir, Rogers, Murray-Smith, & Lochtefeld, 2012)
have proposed wuser specific touch offsets models, reporting significant
improvements in the precision of touch input. The statistical touch models within
this evaluation used a threshold of 3¢ of each parameter to define success criteria as
used previously within the laboratory evaluation (Chapter 5). This threshold was
used to aid the distinction between intentional and unintentional touch interactions,

whilst allowing for performance variations within gestures.

0.77

0.4 1 / %

Probability

-

X Offset

Figure 8.5 Probability density function of tap gesture XOffset



177

8.4 Refining SUM through Contextual Modelling

Context models are used to define the contributing factors of the user’s interactions
with the system. Typically these would include the human factors of the user
coupled with those imposed by the device and the environment. Previous works have
explored systems capable of generating user interfaces based on all of these factors
(Macik, 2012). Macik (2012) evaluated the effects of providing interface adaptations
that were sympathetic to not only the user model but the model of the device and
environment. These adaptations included scaling the font and target sizes, element
spacing and line width of the user interface. However, while the approach proposed
by Macik (2012) applied visual adaptations based on the context models, the
methods used to obtain this information relied on the users manually configuring
preferences within a single environment and evaluation instance. As was
demonstrated previously within the in-situ user evaluation (Chapter 7), users’
abilities fluctuate from session to session. While these users all qualified as having a
visual or motor impairment, able-bodied users can equally experience interaction
challenges as a results of situationally-induced impairments and disabilities (Sears &
Young, 2002). Therefore, manual methods of defining contextual factors and user
abilities are undesirable. Furthermore, this approach distinguishes the user factors
from the device and environment factors, failing to consider that there might be
overlap between the resulting interaction characteristics of a user with hand tremors
and an able-bodied user riding a bus. Therefore, the approach proposed by this
dissertation was not to use these individual context factors for classification, but

rather to work backwards from the interaction characteristics to train models that
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respond to these behaviours independent of context factors (user, device or

environment model).

There were two key components required to support contextual searching based on
interaction characteristics; a method for classifying interaction data independent of
the context factors, and techniques to obtain contextual measurements of the user’s
current interaction characteristics. Furthermore the outstanding questions pertaining

to applying contextual measurements to shared user models were:

1. What sample size needs to be measured to obtain accurate contextual
features?

2. How much training data is required to build a contextual shared user model?

To answer these questions an independent evaluation of the contextual
measurements was conducted. Firstly, this section details the contextual session
features used to classify user interactions based on the individual sessions. Secondly,
the contextual measurements and distance function used for searching the dataset are
described. Then the section reports the evaluation and results. Finally, a short

discussion of the findings is presented.

8.4.1 Contextual Session Features

Session features based on the touch features (Section 8.4.1) were selected to
represent the session, in order to measure the variances of user interaction across
sessions and applications and cluster the individual sessions. To ensure the sessions
were clustered independent of any stereotypical groups or applications, the features

were selected based on the low-level touch interactions. This decision is key to the
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sharing of data not only between applications but also between users. The session
features represent the average instance and variation of the touch features within the
complete session. Each session feature captures both the mean and standard
deviation of the corresponding fouch feature. Similarly the session features are
grouped in relation to the gesture type they represent, for example. Tap or Swipe.

Each gesture follows a similar structure of features:

Gesture Duration: measured as the mean and standard deviation duration of all

successfully recognised gestures of this type (e.g. tap gestures).

Gesture Offset (X, Y): each axis is measured independently as the mean and

standard deviation of the fouch offset for all the recognised gestures of this type.

Gesture Movement (Absolute, Straight line and Relative): each movement value
is measured independently based on the absolute touch movement, straight-line

touch movement and relative touch movement.

Gesture Target Offset (X, Y): each axis is measured independently as the mean

and standard deviation of the target offset for all the recognised gestures of this type.

The contextual session features were then normalised using the standard score
formula to aid the distance measurement process. Within this evaluation no new
interaction sessions were added. Therefore, the population size was known ahead of
time, allowing the mean and standard deviation values to be calculated based on the
entire dataset. However, in a real world setting, new sessions would continually be
added to the dataset. Thus, these values would need to be estimated using random

samples.
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Equation 8.1 Standard score formula, used to normalise the session features within the dataset.

8.4.2 Contextual Measurements

This section discusses the technical approach used to obtain the contextual
measurements from the session interactions, firstly, exploring sampling techniques to
capture contextual measurements using a subset of the session’s interactions to
predict the complete session features. Secondly, this section describes the distance

method used to compute the similarity of sessions based on the session features.

8.4.2.1 Sampling Windows

In order to train the user models using data that match the current contextual
measurements the system must sample the current session’s interactions and find
similar instances based on the session features. To evaluate the accuracy of
measuring the current context of interaction, two types of sampling window were
selected: time based, using the duration of the session; and instance based, using the
number of recorded touch interactions. As well as analysing these two windowing
methods the window sizes were increased to evaluate the performance of each

combination.

The accuracy of the windowing method and size were calculated based on the

similarity of the windowed session features against the features of the complete

Fy,

session. Feature similarity was measured using Equation 8.2 below, where
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represents the feature measurement for window size n, and Fs represents the feature

measurement of the complete session.

I,

f(wn,) = T:

Equation 8.2 Feature similarity measurement — w,, window of size n; Fs, feature measurement
of the complete session; Fw,, feature measurement for window size n.

Due to the variable nature of both the length of sessions and number of gestural
instances within each session, the window sizes were not defined as absolute values.
Instead the window sizes used were percentage shares of the complete session length

and number of gestures (i.e. 5,10,15,20...95%).

8.4.2.2 Time and Instance-Based Windows

The sessions were sampled using time measurements (7ime-based) and gesture
instances (/nstance-based) to create a series of window sizes. Due to the flexible
nature of the user interactions, application sessions could span any length of time
and consist of highly variable numbers of gesture instances. Therefore, the window
sizes were calculated relative to the size of the complete session (duration and
gesture count) and sample sizes were defined as the proportion of the complete
session. There was a statistically significant increase in measurement accuracy when
using Instance-Based (Mdn = 90.8%) compared to the Time-Based windows (Mdn =
83.5%), z =-61.11, p < .001. These results suggest that the type of window sampling
has an effect on the contextual measurements of user sessions. Specifically, the

results imply that Instance-Based window samples improve the accuracy of the
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contextual measurements, as illustrated in Figure 8.6. The accuracy measurements of
the Instance-Based windows were compared, and a statistically significant difference
between the Instance-Based window sizes was found, ¥*(8) = 8197.96,p < .001.
Post-hoc analysis revealed statistically significant differences in contextual
measurement accuracy between each of the window sizes, excluding their immediate
neighbours i.e. no significant differences between sizes .10 and .05 or .15, however
significant differences between .10 and windows sizes greater than .15 (p<.001).
Specifically, these results suggest that larger sampling windows will produce more
accurate measurement predictions. Therefore, the recommended window size should
be as large as possible. Window sizes with a share of .20 or more achieved

contextual measurement accuracies greater than 70% as illustrated in Figure 8.6.

Window Type
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Figure 8.6 Contextual measurement accuracy for Time and Instance-Based window samples.
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8.4.2.3 Distance Measurements
The session distances are calculated as the sum of the Euclidean distances of each
normalised session feature weighted by the confidence of the session measurements.

The distances calculation is shown in Equation 8.3.

n

d = (1—a)Z\Ff—F§]

1=0

Equation 8.3 Session distance formula; where FX i, represents the feature value of the current
session, and FSi is the feature value of the compression session.

Where o represents the confidence of the session measurements for session S, given
by Equation 8.4.
W o

Oé:
W=

Equation 8.4 Confidence of session measurements, calculated as the window size of session x
divided by the optimal window size.

8.4.2.4 Contextual Training Data

A Kruskal-Wallis test was run to determine if there were differences in the gesture
recogniser accuracy between the training data sizes of the contextual models. The
normalised gesture recogniser accuracy increased by n=50 (Mdn=8%), n=100
(Mdn=13%), n=200 (Mdn=13%), n=300 (Mdn=17%) then levelled off until n=900
(Mdn=18%), n=1000 (Mdn=16%), as illustrated in Figure 8.7. No statistically
significant differences were observed between the contextual model training data

sizes, x*(10) = 10.265, p = .418. Specifically, these results suggest that a contextual
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model could be trained using n=50 instances and obtain a statistically similar

accuracy to a model with n=1000 training instances.
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Figure 8.7 Gesture recogniser accuracy improvements with Contextual Models

8.4.3 Contextual Model Summary

This section has proposed and evaluated a novel approach using contextual
measurements to source training data specific to the interaction needs and abilities of
individual sessions. Following this evaluation is it now possible to answer the related

research questions:
1. What sample size needs to be measured to obtain accurate contextual features?

Firstly, the evaluation investigated the use of two types of sampling methods, and
demonstrated that /nstance-based windows performed significantly better than Time-
based sample windows. The Time-based windows produced highly variable accuracy
measurements as a result of the variable number of instances available at the time of

the samples. For example, with a sample size of 5% (of the total session duration) in
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one session there were 10 touch instances, while another had only two. However,
when using the Instance-based window method the accuracy of the measurements
was more consistent. Statistically significant differences were found between the
window sizes of the Instance-based sampling method, the results demonstrated that
the longer the sample window the more accurate the contextual measurement
predictions were. Although no optimal size exists, it would be recommended that the
minimum sample size be 20% to achieve contextual measurement accuracies of 70%

and greater.

2. How much training data is required to build a contextual shared user model?

No statistically significant differences were identified in the normalised gesture
recogniser accuracy between the training data sizes tested within the evaluation of
the contextual models between sizes n=50 (recogniser accuracy improvement of 8%)
to n=1000 (16%). Therefore, the contextual shared user models could be trained with
n=50 instances of the gesture. Although no significant differences were identified,
n=300 (17%) produced a local maximum and its accuracy was not exceeded until
n=900 (18%). Therefore, n=300 provides the greatest return and is the recommended

training data size.

8.5 Evaluation of Shared User Models

The purpose of this evaluation is to simulate the effects of using the shared user
models to tailor the tap gesture recognisers of the Sudoku gameplay. Using the
interaction data collected within the in-situ user study as the training and testing data
for the shared user models, it is possible to simulate the behaviour of the tap gesture

recogniser and measure the classification accuracy against the extracted user
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intention values. The simulation will explore the effect of using data from a single
user, his/her stereotypical user group and a canonical user model. Furthermore,
simulations of models using data from the Sudoku application only, and sharing data
between the three applications will also be conducted. The goals of this evaluation
were to identify whether the shared user models provide an accurate representation
of the individual’s needs and abilities; to explore the effects of training models with
data from other users, and applications; and finally, measure the effects of applying

contextual measurements to refine the shared user models.

8.5.1 Research Questions

This evaluation aims to answer the following research questions:

1. Can shared user models improve touch recognition accuracy over the default

gesture recognisers of the devices?

2. Can we use data from other people (within, and outwith the same stereotypical
group) to build shared user models that are more accurate than using an

individual’s own data?

3. Can we use data from other applications to build shared user models that are

more accurate than using an application’s own data?

4. Can contextual models improve the accuracy of the shared user models over the

Unweighted models?
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8.5.2 Procedure

This section describes the contributing factors of the user models, and outlines the
procedure applied to evaluate the performance of each model combination. The three
components that define the models are subject of dataset, domain of dataset and
selection method. Figure 8.8 illustrates the 12 component combinations used to

create the user models evaluated within this chapter.

G .
onere Application Unweighted
Stereotypical Group
h
Individual Shared Contextual

Figure 8.8 Overview of model structures within this evaluation. The three specific components
include subject and domain of training data and the data selection method

8.5.2.1 Subject of Dataset
To investigate the effect of creating user models from other participants’ interactions

the following three Subject conditions were defined:

Generic: the touch models were trained using everyone else’s interactions, i.e. the

current user’s data is excluded from the training dataset.

Stereotypical Group: Touch models were trained using interactions from other users
that belong to the same group, excluding the current user’s data. Participants self-

classified during the initial interview stage of the in-situ user evaluation (Chapter 7).
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Individual: touch models were trained using only data collected from the participant
being tested. Interaction data being tested was excluded from the available training

data, and cross-validation with 30-folds was used for each evaluation.

8.5.2.2 Domain of Dataset
To evaluate the effect of creating user models using data from other application

interactions the following two Domain conditions were defined:

Shared: touch models were trained using data captured within any of the three
experimental applications: creating device touch models that are application

independent.

Application: touch models were trained using only data captured within the specific
application being tested. In a similar way to the individual condition from the
Subject of dataset, this condition ensured training data was not used for testing
through cross-validation with 30-folds. This condition represented individual models

for each application, whilst maintaining the use of abstract interaction data.

8.5.2.3 Selection Method
To investigate the effect of creating situation-specific models the following two data

selection conditions were defined:

Unweighted: which performed a simple randomisation on the available dataset and
selected the required number of training instances. Each gesture is treated as an
individual instance; therefore there is no guarantee that the training data will come

from the same interaction session.
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Contextual: which sampled the current interaction session to capture measurements
of the user’s interaction behaviour. These same measurements were applied to the
complete dataset of user sessions, allowing distances to be computed between the
current session and each session available within the dataset. The sessions were
weighted by their distance from the current interactions, data with the lowest
distance most closely matched the current context of interaction. Therefore, this data
was selected to train the user models. The distance measurements applied are

presented in Section 8.4.2.

8.5.2.4 Training and Testing Data
To perform the simulation and evaluations of the user model combinations, the

following dataset conditions were defined:

Testing Data: each simulation required 200 tap gesture instances with intent
measurements. These tap gestures were sourced from the user’s touchscreen
interactions within the Sudoku application. Tap gestures were selected randomly any
of the user’s Sudoku sessions whereby the gestures had an associated intent

measurement.

Training Data: depending on the selection method of the current user model
condition, training data was defined as 300 tap gesture instances selected at random
from all available sessions (in the case of Unweighted selection), or from a subset of
sessions with similar interaction behaviours (in the case of Contextual selection). To
ensure that the training data used to build the touch models was also not being used
to evaluate the model’s accuracy, the 200 testing instances were excluded from the

available dataset for training data.
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8.5.2.5 Validation of User Models

The goal of this evaluation was to measure the effects of applying user and situation-
specific touch models to touchscreen input gesture recognisers, Figure 8.9 illustrates
the evaluation process. Baseline performance scores were obtained for the device
default configuration by measuring the number of recognised user interactions that
match the previously extracted touch intent values. Each model was then scored
against these baseline measurements, values greater than zero determined that user
models correctly recognised more instances of user intent. In order to reduce the
variability of the user model performance measurements, 30-fold cross-validation
was applied to each model evaluation, the simulation process is illustrated within
Figure 8.11. Sessions were excluded if fewer than 10 touchscreen interactions were
captured. Likewise, any model dataset that did not meet the required number of
training (n=300) and testing (n=200) instances was excluded from the evaluation,
Figure 8.10 illustrates the processes applied to obtain the necessary training and
testing data for the simulations. As a result, data from participant P6 was not
included in the evaluations due to a lack of testable data with measurements of intent
since the test dataset only contained refined classifications of intent for the Sudoku
game. Therefore, both the TV Guide and Memo data were excluded from the test
data, as no classifications of user intent could be extracted for those interactions. The
result of these exclusions produced a dataset containing over 287 interaction
sessions, consisting of 33,643 touchscreen gestures available for training models, of

which 26,563 gestures contained user intent classifications for testing.
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Figure 8.9 Flow chart of the overall evaluation process applied to each user model simulation
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Figure 8.10 Flow charts illustrating the process applied to obtain testing data for the
simulations (left) and training data to build the user models and tap gesture recognisers (right).
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Figure 8.11 Flow chart illustrating the simulation process used to measure the accuracy of the
user model conditions and tap gesture recognisers with the testing data.
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8.6 Results

This evaluation examined the effects of the subject, domain and selection method
conditions. The observed values in all dependent variables were tested using the
Shapiro-Wilk normality test. However, the data did not show a normal distribution.
Therefore, non-parametric tests (Friedman, Kruskal-Wallis and Wilcoxon) were
selected and Bonferroni corrections for post-hoc tests were used. Alpha levels were

set as p <.05 for significance.

8.6.1 Training and Testing Data

A Kruskal-Wallis test was run to determine if there were significant differences in
the accuracy of the Contextual models between the training data sizes; no significant
differences were found. However, when testing the Unweighted user models the
accuracy was statistically significantly different between the training data sizes,
v*(10)=20.75, p<.023. Pairwise comparisons were performed with a Bonferroni
correction (p <.00076) for multiple comparisons. Post-hoc analysis revealed no
statistically significant difference between user models with a training data size of
1000 and 300 (p =.735). Specifically, these results support the decision to train the
models using n=300 gesture instances. Therefore, each user model was trained using
n=300 gesture instances based on these results and the earlier evaluations of the

Contextual models.

Each measurement required n=200 testable gesture instances with valid intent
classifications. Therefore, the test data was restricted to interactions from the Sudoku
application where user intent could be extracted. A single test consisted of 200

gesture interactions from the specific user; the data was selected at random from all
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available test data for that user. 30-fold cross-validation was used to ensure validity
of reported measurements; test data was excluded from the training data for each

iteration.

8.6.2 User Model Accuracy

The contextual search relied on accurate measurement and prediction of the user’s
current situation and behaviour. Any inaccuracies or errors in the prediction would
have an effect on the accuracy measurements of the user models. Therefore, to
ensure that the evaluation of the Contextual models only tested the resulting models
and not the ability to predict the context of interaction, each model measurement in
the Contextual models used the complete test data (n=200) to obtain the contextual
measurement values and perform the training data search. This approach ensured the
accuracy measurements reflected the performance of the Contextual models,

independent of the original measurements to predict the session behaviour.

A Friedman test was run to determine if there were differences in gesture recogniser
accuracy between the subject, domain and selection method of the user models.
Pairwise comparisons were performed with a Bonferroni correction ( p <.00064) for
multiple comparisons. Gesture recogniser accuracy was statistically significantly
different between the user model conditions, y*(11) = 32.279, p =.001. Post hoc
analysis revealed statistically significant differences in gesture recognisers accuracy
from Generic Shared Contextual (Mdn=98%) models to Individual Application
Unweighted (Mdn=81.1%) (p<.0005) and Group Application Unweighted
(Mdn=59%) (p<.0005). Figure 8.12 illustrates the gesture recogniser accuracy for

each of the model subject, domain and selection method conditions.
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Figure 8.12 Classification accuracy of the gesture recognisers for each of the subject (group,
individual, generic); domain (application, shared); and selection method (unweighted,
contextual) touch model conditions.

A Kruskal-Wallis test was used to determine whether there were differences in the
accuracy of the gesture recognisers between the Default, Unweighted, and
Contextual touch model conditions. Pairwise comparisons were performed with a
Bonferroni correction (p<.0167) for multiple comparisons. Gesture recogniser
accuracy showed a statistically significant difference between the touch models,
v*(2) = 39.78, p <.001. Post-hoc analysis revealed statistically significant differences
in gesture recogniser accuracy between the Contextual (Mdn = 96.2%) and Default
(Mdn = 82%) (p<.001), and Contextual and Unweighted (Mdn =85.5%) (p<.001)
touch model conditions, but not between the Default and Unweighted (p = .920).
These results suggest that the Contextual models have an effect on the performance
of the gesture recognisers. Specifically, these results demonstrate that situation-

specific user models can improve the touch recognition accuracy of touchscreen
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devices for individuals with motor and visual impairments, as illustrated in Figure

8.13.

Error Bars: 95% ClI
100%
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80%

70%: T T
Default Unweighted Contextual
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Figure 8.13 Classification accuracy of gesture recognisers for touch model conditions.

8.6.3 Subject of Models

A Kruskal-Wallis test was run to determine whether there were differences in gesture
recogniser classification accuracy between the Subject conditions. The differences in
classification accuracy were not statistically significant within the Unweighted, y*(2)
= 1.649, p= .439 or Contextual, ¥*(2) = 1.005, p= .605 models. These results
suggest that the subject of the dataset does not affect the accuracy of our touch
models, therefore permitting the creation of touch models from the interactions of
other users, not specifically from the same stereotypical user group. We have found
that when applying the contextual measurements it is actually more beneficial to
share data between users, with the results increasing from the individual (Mdn=93%)
to group (Mdn=96.5%) and generic (Mdn=98%) conditions. This shows, as more
data is made available, that the contextual models are able to locate data that closely

mimics the user’s current behaviours
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Figure 8.14 Classification accuracy of gesture recognisers for touch models by subject condition

8.6.4 Domain of Models

An Independent-Samples Mann-Whitney U test was used to determine whether there
were differences in gesture recogniser classification accuracy between the
Application and Shared Domain conditions. The classification accuracy was
significantly higher for the Shared (Mdn=92%) than Application (Mdn=75.1%) or
Unweighted models, U=719, z =3.066, p=.002. These results suggest that the domain
of the dataset does affect the classification accuracy of our Unweighted models.
However, related-samples Wilcoxon tests revealed statistically significant
differences between the Default recogniser and the Shared, z =-2.740, p=.006, but no
significant differences between the Default and Application, z =-1.607, p=.108.,
therefore supporting the training of models using interaction data shared between

applications.

No statistical differences in classification accuracy were found within the Contextual

models between Shared (Mdn=97.8%) and Application (Mdn=95%), U=592, z =
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1.081, p=280. Related-samples Wilcoxon tests revealed statistically significant
differences between the Default recogniser and the Shared, z =-4.601, p<.001 and
Application, z =-3.352, p=.001 and Contextual models. This suggests that the domain
condition does not affect the accuracy of our Contextual models. This outcome could
be the result of the refined selection of training data by the Contextual model,
minimising the effect of the model domain. Specifically, these results suggest that
the contextual models can be trained using either Application only, or Shared data.

Figure 8.15 graphically illustrates the classification accuracy of the domain models.

Error Bars: 95% ClI
100%4

S0%

B0%

Mean Accuracy

7 0%

Application Shared

Domain of Model
P Unweighted [ Contextual

Figure 8.15 Classification accuracy of gesture recognisers for touch models by domain condition

8.6.5 Contextual Measurement Delay

The simulation of the Contextual model accuracy was conducted independent of the
initial measurements to predict the interaction behaviours and contextual search
parameters. However, in a real-world evaluation this method would not have been
possible, as the contextual measurements would require time to obtain the

appropriate number of gesture instances. Therefore, to compute the effects of the
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contextual measurement sample window a delay was applied to the contextual model
simulations. The simulation applied the baseline device gesture recogniser to any
touches occurring within the delay window. Beyond this point the Contextual models
were used to classify the interactions. Recogniser accuracy decreased from a delay
n=10 (Mdn = 93.5%), to n=50 (Mdn = 89%) but the differences were not statistically

significant, y*(8) = 8.417, p = .394.

94%m
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9251

0%

Classification Accuracy (Median)
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B8% T T T T T T T T T
10 15 20 25 30 35 40 45 50

Contextual Measurement Delay (Instances)

Figure 8.16 Median classification accuracy by contextual measurement delay

8.7 Discussion
Following the simulation and evaluation of the user models the research questions

proposed at the beginning of this evaluation can now be answered.

1. Can shared user models improve touch recognition accuracy over the default

gesture recognisers of the devices?
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Results showed touch gesture recognisers using personalised user models could
outperform the classification accuracy of the device default gesture recognisers.
However, the Unweighted models relied on random selection of training data
producing highly variable results that would not consistently improve touch
recognition accuracy. Using the Contextual models to create personalised gesture
recognisers resulted in more consistent performance, with significantly better

recognition accuracy.

2. Can we use data from other people (within, and outwith the same stereotypical
group) to build shared user models that are more accurate than using an

individual’s own data?

Results showed that the subject of the training data had no significant effect on the
recogniser accuracy. This result was true for both Unweighted and Contextual
models. Moreover, the Contextual models achieved higher levels of accuracy with

the stereotypical group and generic subject conditions than the individual’s own data.

3. Can we use data from other applications to build shared user models that are

more accurate than using an application’s own data?

Results showed that user models trained with the combined data from all three
applications performed significantly better than models trained with data from the
Sudoku application only within the Unweighted selection method. However, no
significant effect was measured between domain conditions when using the
Contextual models. The Shared user models performed significantly better than the

device’s default recognisers. This result was true for both Unweighted and
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Contextual models, suggesting that using data from other applications can improve

the accuracy of user models.

4. Can contextual models improve the accuracy of the shared user models over the

Unweighted models?

The simulation results demonstrated that gesture recognisers trained with
Unweighted user models, relying on random selection of training data (regardless of
subject, or domain conditions) were not significantly more accurate than the device’s
Default recogniser. However, the Contextual models were significantly better than
the Default and Unweighted conditions, supporting the hypothesis that the

application of contextual measurements does improve accuracy.

The evaluation computed user models for training size of 50 and sizes 100-1000 in
intervals of 100 instances and found no measureable differences between user
models trained with greater than 300 instances. However, when Wilcoxon related
samples tests were conducted between Contextual models and the default recogniser,
the models were significantly more accurate using n=50, z =-3.330, p=.001, n=100,
z =-4.493, p<.001, and n=200, z =-5.173, p<.001 training instances. Specifically,
these results suggest that Contextual models could be trained with fewer instances
and still provide significant improvements to the baseline gesture recogniser
accuracy. Finally, the effects of the contextual measurement delay window were
evaluated, revealing a diminishing returns problem with Contextual modelling.

Larger window sizes are needed to obtain more accurate measurements and
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predictions of the session behaviours. However, shorter measurement windows are

required to gain the maximum returns of applying the user model.

8.8 Conclusions

The work presented in this chapter investigated the effects of adapting touch gesture
recognisers with personalised user models trained from participants’ real-world
interactions with device applications. In particular, the objectives of this
investigation were to evaluate the effects of training user models with data shared
between applications, and between users. Moreover, the analysis explored the use of
contextual sampling and measurements to source training data harmonious with the
present interaction session to create situation-specific user models. Results showed
that unconsidered selection of real-world training data, regardless of the originating
application or user does not produce significant improvements to the recognition
accuracy of touchscreen interactions. However, conducting contextual measurements
of the current session to curate the selection of the real-world data resulted in user
models and gesture recognisers that performed significantly better than the device’s
default configurations. Simulations of users’ performance with the Contextual
models produced an average of 10% improvement in accuracy of the gesture
recogniser classification. The solution is particularly responsive to the short-term

variances within user performance of touchscreen gestures.
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Chapter 9. Conclusions

This chapter will conclude the dissertation by presenting the closing discussion of
the major contributions and results, the implications and limitations of the approach.
Next, the chapter suggests avenues of future research looking to expand on the work
within this dissertation. Finally, the chapter presents the researcher’s critical

reflections on the work.

9.1 Discussion

This research set out to explore the concept of creating user models from real-world
data that were responsive to short-term changes, to produce touchscreen interactions
that were supportive of individuals’ abilities and variances. By leveraging the
abstract nature of low-level touchscreen interactions, the research investigated
techniques to share and aggregate interactions across applications and users to
produce models that provide a holistic representation of user interactions and
abilities. Motivated by the need for better touchscreen interactions, this research
maintained a realistic approach to investigate solutions based on the functionality
within mainstream technologies today, whereby the concepts presented in this

dissertation could be implemented tomorrow.

To fulfil the goals of this research, a series of user studies was conducted to examine
the characteristics and behaviours when performing touchscreen interactions with
mobile devices. The initial exploratory user study combined measurements and
observations of touchscreen interactions to identify the characteristics that were

common and how they varied amongst users. The findings of the preliminary study,
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combined with the previous work within the field, motivated the development of a
novel data collection framework, and further laboratory studies to measure and
observe the characteristics of individuals with motor and visual impairments. Based
on the findings, refinements to the collection framework were made to support the
capture of lab quality data from real-world device usage within an in-situ user study.
The resulting dataset was used to propose and evaluate novel models that shared data
between applications, and users.The simulations demonstrated that user models
could leverage contextual measurements of individual situations to improve touch

performance.

This section will discuss the major contributions of the research, and the associated

implications and limitations of the dissertation.

9.1.1 Contributions and Major results

The objectives of the preliminary user study were to understand the similarities and
differences between individuals when naturally interacting with touchscreen mobile
devices. Participants were tasked to perform a series of way-finding tasks with the
aid of the indoor navigation touchscreen application, enabling the collection and
observation of touchscreen interactions free of the restrictive laboratory constraints.
Results revealed the diverse range of interaction behaviours between participants,
uncovering touch characteristics affecting the success of interactions beyond the task
of target acquisition. Moreover, this study exposed the impact of the environment on
the success of mobile interactions. Allowing participants to configure interface
settings in one space prior to carrying out the navigation tasks in another revealed the

importance of short-term changes, and the impact they could have on mobile
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interactions. These results motivated the development of the data collection
framework to capture user interactions from real-world applications, leading to the
proposal of novel gesture recognisers capable of adapting their recognition
parameters at use time to meet the abilities and interaction characteristics of the user

within the particular context.

Next, laboratory user studies with motor and visually impaired participants were
conducted to evaluate the proposed adaptation methods, designed to compensate for
variances between user performance of touchscreen interactions and abilities.
Similarly, the user studies aimed to understand whether interaction characteristics
were shared within stereotypical disability groups. The results demonstrated that the
adaptive interfaces significantly improved touchscreen accuracy, and that the models
need to be individual as the duration features are user-dependent. Moreover, for
some participants the duration features varied between study sessions. Participants
reported the impact of medications and fatigue on their performance of similar tasks

to touchscreen interaction.

Based on the participant comments and findings of the laboratory evaluations, the
research focus was to understand the variable nature of individuals’ interaction
characteristics. Seeking to capture a continuous representation of a user’s abilities, a
four-week in-situ user study was proposed to address the limited collection window
of the laboratory studies. The objective of the in-situ study was to collect real-world
interactions with enough detail to support the laboratory quality analysis of
touchscreen performance. Regarding user abilities, the findings demonstrated that

interaction behaviours fluctuate between users and between sessions for the same
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user. Therefore, it was not enough to build models from an individual’s data, user
models need to update and respond to the contextual factors and fluctuating abilities

of individuals on a per session basis.

In response to the findings of the in-situ evaluation, a novel approach was proposed.
This involved leveraging contextual measurements of interaction sessions to refine
the data selection used to train the shared user models. Firstly, the method of
obtaining the contextual measurements and predicting the users’ abilities was
evaluated to identify how long to sample user interactions for, and how much
training data is required to build accurate models. Next, this chapter explored the
effects of training user models from other users’ data, and data from other
applications. The accuracy of these models was evaluated using simulations from the
real-world interaction data collected from the in-situ user study. The shared user
models trained using the contextual measurements performed significantly better
than the baseline device models and the shared user models without contextual
measurements. Furthermore, the simulations demonstrated that there were no
significant effects on the accuracy of the gesture recognisers when the contextual
shared user models were trained using an individual’s data, or using the canonical
user data. Therefore, the approach using contextual measurements with shared user

models can provide adaptations specific to an individual’s abilities and situation.

Although the contextual user models were never evaluated with real users, based on
the results from the simulations (Chapter 8) the following process for how SUM
adaptations would occur, has been proposed. Figure 9.1 illustrates the proposed

interaction workflow of an application using the SUM framework. When the user
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opens the application the device default parameters of the gesture recognisers are
applied. The SUMClient begins capturing the users interactions, once the framework
obtains the required number of gesture interactions (i.e. 10 single taps) it makes a
request to the SUMServer for a new user model. The SUMServer uses the received
interactions to measure the current interaction behaviours of the user by defining the
session features are describe in Chapter 8. These features are then used to perform a
search for interaction sessions with contextually similar interaction behaviours. The
resulting dataset is used to define the gesture recognisers parameters and returned to
the application in the form of a user model. The SUMClient applies the user model
to the tap gesture recognisers with no visual interruption or visible change to the user
interface of the application. For longer interaction sessions it might be beneficial to
repeat this process using the larger dataset of captured interactions for the current

session.
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Figure 9.1 Sequence diagram showing the proposed workflow of a user receiving personalised
gesture recognisers through the SUM framework.

9.1.2 Benefits

Previous approaches to create user models have relied on the use of semantically
meaningless calibration activities to capture measurements of performance, either to
select the appropriate stereotypical model to apply, or generate a personalised model
for the individual. User modelling with reliance for performance elicitation tasks
results in user models naive to the variable nature of individual abilities, thus

producing models with a limited shelf life. Furthermore, existing approaches fail to
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consider the effects of dynamic environmental factors that do not exist during the
measurement process. The work presented within this dissertation has made
important steps towards user models representative of the current abilities and
situation of an individual. The major benefit in taking this approach is that SUM uses
low-level touchscreen interactions from real-world applications to measure user
performance, thus removing the need for continuous calibration exercises. Using
contextual measurements of the user’s current interaction behaviour enables SUM to
identify interaction data that closely matches the interaction abilities of the user at
that instant; SUM enables accurate user models to be trained using data from other

users and applications.

9.1.3 Limitations
Although the approach described within this dissertation was able to accurately
model individual users’ abilities and situations, it does have some limitations to be

explored in future work.

In order to capture the device interactions made by the participants the data
collection framework (Chapter 4 and Chapter 6) need to be embedded into each of
the experimental applications. Due to the architecture of the mobile device operating
systems it was not possible to obtain the low-level sensor interactions and
application interface structures on a device level, thus restricting the data collection
to the experimental applications only. Therefore, any device interactions participants
made with the device outside of these applications were unrecorded. Similarly,

should future research projects seek to perform user evaluations of the simulated
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touch models (Chapter 8) this implementation method would restrict the effects of

the adaptations to interactions made within the experimental applications.

Another related limitation of this approach is the collection of interaction data itself.
The method relies on capturing user interactions within real-world applications, such
as web browsers; video games; music players and social networking applications.
Therefore, any user interactions that occur within these applications would be
logged, along with the interface objects being interacted with. This level of detail is
required to produce the user models but could similarly be used to gain access to
sensitive information about the user. For example, using the keystrokes from the
keyboard it would be possible to obtain a user’s login credentials, or personal email
correspondence. Therefore, the collection of real-world data for user modelling
would violate the app store publishing terms and conditions of the mobile operating

systems, limiting the mainstream distribution of this approach.

An important limitation regarding the use of real-world data from ‘in the wild’
installations relates to the measurements of user intent. Chapter 8 discussed the
process of leveraging the Sudoku game logic to obtain refined estimations of the user
intent behind real-world touch interactions; this same process could not be applied to
all real-world applications as they don’t all follow a logical interaction pattern.
While the refined measurements of intent were not required for the creation of the
user models, they were essential for the simulation and evaluation of performance.
Providing participants with a mechanism to report unintentional actions as they
occur, or methods to refine their input when the system is uncertain of the intent can

mitigate this limitation.
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Finally, when evaluating the performance of interaction adaptations it is beneficial to
perform evaluations with actual users. Evaluations with user studies would have
provided an understanding of how the adjustments to the interface were perceived
and affected the interaction experience. However, the use of simulations to test the
user models provided performance scores for classification accuracy with no insights

into the interaction experience implications of situation specific touch models.

9.2 Future Work

User Evaluations of Contextual Models. While the simulated evaluations
demonstrated that the contextual models could improve touchscreen recogniser
accuracy, it would be beneficial to conduct user studies where the models are being
applied in the real-world interactions. This investigation would seek to provide an
understanding of how best to adjust user models to ensure consistent user
interactions. User feedback would provide useful insights into the acceptance of
situation-specific gesture recognisers,;interfaces to control adaptations, and evidence

to refine the touch model classifiers.

Contextual Search. The finite size of the dataset for the user model evaluations
meant that the contextual search method could effectively compute distances
between the current situation of the interaction session and all other existing sessions
without large delays. However, if this approach was applied to user studies with
larger participant populations or longer collection periods, the number of
comparisons required would increase significantly. Therefore, techniques to reduce

this search space while maintaining accurate selection of appropriate interaction
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sessions would need to be defined in order to provide real-time contextual

measurements and searches to support these models.

Beyond Applications. One limitation of the approach was the need to be embedded
within the application rather than existing at the operating system level. A direct
consequence is the restriction of data collection and interface adaptation to the
experimental applications only. Therefore, the device behaviours outside of these
applications would default back to the standard gesture recognisers. Moreover,
should the user choose not to interact with the experimental applications then no
interactions can be collected. Thus, future research should seek to extend this
approach and produce methods to capture all interactions made with the device on a
system level, while maintaining the detailed access to the interface components that
make up the application interfaces. While this was not possible at the time of this
work, recent updates to the mobile operating systems suggest it could be viable in
the near future. These changes would be crucial to the success of user evaluations
with contextual models to ensure the same interaction experience throughout all

aspects of device usage.

Refining User Intent. A major challenge of working with real-world data is
obtaining accurate measurements of user intent for an action. The evaluations within
this dissertation relied on the game logic of the Sudoku application to perform intent
classification. However, this method is restricted to applications where user
interactions can be modelled and predicted, and thus is limited. Future works should
endeavour to support methods of allowing participants to refine or confirm intent for

interactions whereby the system is uncertain, rather than always assuming the most
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probable action. Another possible method to attain more accurate estimations of user
intent would be to model application behaviours, using interaction patterns sourced
from large populations. For instance, weighting interface components or gestures
based on the common usage amongst all users. This approach would allow a generic
set of rules to be defined as opposed to relying on specific classifiers for single

applications.

Modelling the Masses. The scope of this research focused on individuals with low
levels of vision and motor impairments pertaining to dexterity or unintentional
tremor movements. Nevertheless, the approach does not infer or apply any
stereotypical context; instead models are constructed based on abilities relating to the
interactions. Therefore, it is feasible to suggest that this approach could translate into
other domains with alternative sets of abilities. Furthermore, by opening up the
approach to wider populations and situations there is the potential to collect a more

diverse dataset of interaction eventualities.

9.3 Final Remarks

This dissertation proposed the following thesis:

Sharing data between users and applications can produce models that usefully

represent the dynamic needs and abilities of individuals.

Contextual Models produced situation-specific touch models that significantly
improved the recognition accuracy of touchscreen interactions. Moreover, models
trained from other users’ data provided further improvements to the recognition

performance. Contextual measurements and weighting of training data has been
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shown to produce user models that accurately reflect the current interaction

behaviours and abilities of users, therefore, demonstrating that the thesis holds.

Future interaction designers and researchers should aspire to produce solutions that
are flexible and accommodating to the individual variances of interaction abilities
between both users and situations. Interfaces that are responsive to short-term
changes in user performance and interaction behaviour inevitably provide greater

accessibility.
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Appendices

1.

Preliminary User Study - Information Sheet and Consent Form

Accessible Navigation Aids — Information Sheet

FOR QUESTIONS ABOUT THE STUDY, CONTACT: Kyle Montague by email:
kylemontague@computing.dundee.ac.uk

DESCRIPTION: You are invited to participate in a study looking at the needs for
accessible navigation aids. This will involve taking part in a short exercise either
giving navigation directions to and from one location to another within the Queen
Mother Building (QMB), or following multimedia directions to navigate from one
location to another within the QMB. This will follow with a short questionnaire on
your experiences and difficulties throughout the study. The entire study should take
no longer than 30minutes.

RISKS: The risks associated with this are minimal. It is not anticipated that you will
experience any unusual amount of stress or discomfort as a result of participating in
this.

PARTICIPANT'S RIGHTS: If you have read this form and have decided to
participate, please understand your participation is voluntary and you have the right to
withdraw your consent or discontinue participation at any time without penalty. You
have the right to refuse to answer particular questions. Your individual privacy will be
maintained in all published and written data resulting from the study. Only key
researchers will be able to access all the data collected, including personal details.
Other researchers may be able to view anonymous parts of your data.

If you have questions about your rights as a study participant, or are dissatisfied at
any time with any aspect of this study, you may contact - anonymously, if you wish —
Kyle at kylemontague@computing.dundee.ac.uk
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Accessible Navigation Aids — Consent Form

Dear Participant
I would first like to thank you for agreeing to take part in this user exercise.

During the workshop today a camera and Dictaphone may be used for data collection.
This is only to allow for notes to be made after the session. All the information that
you give us, and the recordings (that is all data), will be stored safely and kept
separate from information about your identity. Access to your data is limited to the
people involved in this research. If information about you is used in publications or
presentations, we will ensure no reference is made to your identity. If a photograph or
video-clip is used for presentation, your name will be changed. If you do not wish
your likeness to be used in any of the material, your image can be blanked from view.

If you have questions about your rights as a study participant, or are dissatisfied at
any time with any aspect of this study, you may contact - anonymously, if you wish —
by email: kylemontague@computing.dundee.ac.uk

Thank You
Kyle Montague

I am over 18 years old and have read the foregoing and fully understand the contents

thereof. YES/NO
[ agree to take part in this user exercise and I understand that I can withdraw from this
at any time. YES/NO
I understand that I am not being judged or assessed YES/NO

I understand that I can leave any questions that I do not wish to answer ~ YES/NO

I agree for my likeness to be used (i.e. on Video Camera, Audio Recording)
YES/NO

Print Name

Signed Date

2. Laboratory User Evaluation - Information Sheet and Consent Form
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INFORMATION SHEET

We would like to invite you to take part in the SUM research study. Before you decide, we would like
you to understand why the research is being carried out and what it would involve for you.

What is the SUM research study?

Our current study is to evaluate the SUM (Shared User Modelling) system for personalising mobile
devices to meet individual users access needs. SUM logs interaction data about how you use the
mobile touch-screen device. By analysing this data our system is able to make customisations to the
software and attempts to improve the usability of the applications running on the mobile device.

Am | being evaluated?

No, we are not testing your abilities to use the technology. The purpose of this study is only to
evaluate the effectiveness and accuracy of the customisations made by SUM. So if you encounter any
issues or problems please don't hesitate to mention these to the researchers.

Can | choose not to take part?

Yes, it is completely your decision to join the study. If you choose to take part in the study we will then
ask you to sign a consent form.We will provide you with copies of the forms to keep.

Can | withdraw from the study?

You are free to withdraw from the study at any time, without giving a reason. Likewise you do not
have to answer any questions you do not wish too.

What will | have to do?

You will be asked to take part in two evaluations, which will be carried out within the Queen Mother
Building at the University of Dundee.We will provide you with an Apple iPod touch screen device,
with a number of applications pre-loaded. These will include the following;

- Target Practice game,

- Alternative television guide

- Indoor Navigation tool

As well as using the iPod touch device we would also like to ask about your experiences, collect your
feedback and answer any outstanding questions regarding the study.

Again this is not an evaluation of your abilities, but rather to improve the accuracy and design of the
SUM system.

What are the possible disadvantages and risks of taking part?

We see no risks associated with this study and hope that it will be an enjoyable and rewarding
experience.
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What if there is a problem?

If you have a concern about any aspect of the study, you should ask to speak to one of the
researchers, Mr Kyle Montague, who will do their best to answer your questions [phone: 01382
388237 or email: kylemontague@computing.dundee.ac.uk]. You can also speak with the project
investigator Professor Vicki Hanson [phone: 01382 386510 or email: vih@computing.dundee.ac.uk]. IF

you are unhappy and wish to formally complain, you can do this by speaking to Professor Janet
Hughes, Dean and Head of School
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Shared User Modelling — Consent Form

Dear Participant
I would first like to thank you for agreeing to take part in this user exercise.

During the workshop today a camera and Dictaphone may be used for data collection.
This is only to allow for notes to be made after the session. All the information that
you give us, and the recordings (that is all data), will be stored safely and kept
separate from information about your identity. Access to your data is limited to the
people involved in this research. If information about you is used in publications or
presentations, we will ensure no reference is made to your identity. If a photograph or
video-clip is used for presentation, your name will be changed. If you do not wish
your likeness to be used in any of the material, your image can be blanked from view.

If you have questions about your rights as a study participant, or are dissatisfied at
any time with any aspect of this study, you may contact - anonymously, if you wish —
by email: kylemontague@computing.dundee.ac.uk

Thank You
Kyle Montague

I am over 18 years old and have read the foregoing and fully understand the contents

thereof. YES/NO
[ agree to take part in this user exercise and I understand that I can withdraw from this
at any time. YES/NO
I understand that I am not being judged or assessed YES/NO

I understand that I can leave any questions that I do not wish to answer ~ YES/NO

I agree for my likeness to be used (i.e. on Video Camera, Audio Recording)
YES/NO

Print Name

Signed Date

Witness of researcher Date
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In-Situ User Evaluation - Information Sheet and Consent Form

INFORMATION SHEET

We would like to invite you to take part in the SUM research study.
Before you decide, we would like you to understand why the research
is being carried out and what it would involve for you.

What is the SUM research study?

Our current study is to evaluate the SUM (Shared User Modelling)
system for personalising mobile devices to meet individual users access
needs. SUM logs interaction data about how you use the mobile touch-
screen device. By analysing this data our system is able to make
customisations to the software and attempts to improve the usability of
the applications running on the mobile device.

The more data the system is able to collect the greater prospective
customisations that can be made to suit you on an individual basis. This
is why the study will run for 6-8 weeks.We hope to collect data during
various times of the day and potentially within a number of
environments e.g. At home, on the move, in a cafe etc.

Am | being evaluated?

No, we are not testing your abilities to use the technology. The purpose
of this study is only to evaluate the effectiveness and accuracy of the
customisations made by SUM. So if you encounter any issues or
problems please don't hesitate to mention these to the researchers.

Can | choose not to take part?

Yes, it is completely your decision to join the study. If you choose to take
part in the study we will then ask you to sign a consent form.We will
provide you with copies of the forms to keep.

Can | withdraw from the study?

You are free to withdraw from the study at any time, without giving a
reason. Likewise you do not have to answer any questions you do not
wish too.
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What will | have to do?

You will be asked to take part in a 4-6 week evaluation, which will be
carried out remotely. We will provide you with an Apple iPod or Archos
tablet touch screen device, with a number of applications pre-loaded.
These will include the following;

- Target Practice game,

- Alternative television guide
-Sudoku game

-ToDo app

The device will intermittently prompt you to open the applications and
use them for a brief period of time. However if it is not convenient or
safe to do so simply reject or ignore this request. Along with these
preloaded applications you will be allow to install additional applications,
music or video clips and we would encourage you to explore and use
any other features of the device.

As well as using the iPod touch and Archos tablet devices we would
also like to meet informally throughout the 6-8 week study. A
researcher will come out to you either at home or an alternative
convenient location to ask about your experiences and address any
questions or issues you may have.

Finally after the 6-8 week remote study is complete we would ask you
to meet for | hour to collect your feedback and answer any outstanding
questions regarding the study.

Again this is not an evaluation of your abilities, but rather to improve
the accuracy and design of the SUM system.

What are the possible disadvantages and risks of taking part?

We see no risks associated with this study and hope that it will be an
enjoyable and rewarding experience.
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The only disadvantage of this study would be the time commitment. We
understand that 6-8 weeks is a long time, however you would only
need to use the device for short periods of time throughout.

What happens at the end of the study?

The analysis of the data will be completed by December 2012.The
results will then be published in a PhD thesis as well as academic
journals and conferences. If you would like to know the outcome of the
study, | will send you a copy of the study report and details of any
related publications.

What if there is a problem?

If you have a concern about any aspect of the study, you should ask to
speak to one of the researchers, Mr Kyle Montague, who will do their
best to answer your questions [phone: 01382 388237 or email:
kylemontague@computing.dundee.ac.uk]. You can also speak with the
project investigator Professor Vicki Hanson [phone: 01382 386510 or
email: vih@computing.dundee.ac.uk]. IF you are unhappy and wish to
formally complain, you can do this by speaking to Professor Janet
Hughes, Dean and Head of School [phone: 01382 385195 or email:
jhughes@computing.dundee.ac.uk].

What will happen with my information?

All data and information collected during the studies will be stored
securely and anonymised. Personal information will only be available to
the research team, and will not be kept together with any data, images,
audio or video recordings from the study. If your data is used for
publications or presentations, no reference to your identity will be
made. If any material is suitable for presentation or teaching purposes,
we will discuss this with you and ask for your consent.

Contact Details

If you have any other questions relating to your involvement or the the
research itself please contact a member of the SiDE research group at
the University of Dundee.
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Kyle Montague ProfessorVicki Hanson

PhD Student Principle Investigator

Email: Email:
kylemontague@computing.dun vih@computing.dundee.ac.uk
dee.ac.uk Telephone: 01382 386510

Telephone: 01382 388237

Thank You

Thank you for taking the time to read this information sheet and
considering taking path within this study.
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4. Sudoku Task Sheet (tasks 1 and 2)
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Memo Task Sheet
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