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Abstract 

Touchscreens are ever-present in technologies today. The large featureless sensors 

are rapidly replacing the physical keys and buttons on a wide array of digital 

technologies; the most common is the mobile device. Gaining popularity across all 

demographics and endorsed for superior interface flexibility of soft designs and rich 

gestural interactions, the touchscreen currently plays a pivotal role in digital 

technologies. However, just as the touchscreen has enabled many to engage with 

digital technologies, its barriers to access are excluding many others with visual and 

motor impairments. The contemporary techniques to address the accessibility issues 

fail to consider the variable nature of abilities between people, and the ever-changing 

characteristics of an individual’s impairment. User models for personalisation are 

often constructed from stereotypical generalisations of the similarities of people with 

disabilities, neglecting to recognise the unique characteristics of the individuals 

themselves. Existing strategies for measuring abilities and performance require users 

to complete exhaustive training exercises that are disruptive from the intended 

interactions, and result in the creation of descriptions of a user’s performance for that 

particular instance. 

This research aimed to develop novel techniques to support the continuous 

measurement of individual user’s needs and abilities through natural touchscreen 

device interactions. The goal was to create detailed interaction models for individual 

users, in order to understand the short and long-term variances of their abilities and 

characteristics, resulting in the development of interface adaptations that better 

support interaction needs of people with visual and motor impairments. 



xxii 

 

This thesis describes the development and evaluation of the Shared User Model 

(SUM) Framework, developed to help improve the access and usability of 

touchscreen devices by people with visual and motor-impairments. The framework is 

intended to be embedded by application developers to create interaction models 

autonomously and provide suitable interface adaptations to better support individual 

users with visual and motor-impairments. The SUM Framework captures the user’s 

natural application interactions in the form of low-level touch and device 

movements, and then starts to model their individual interaction characteristics to 

refine the gesture recognisers and tailor these interactions to the needs of the user. 

The outcomes of this research stem from three foundational user studies. The first 

study represented the initial requirements gathering and problem scoping stage of 

this research, helping to better define the barriers and challenges to touchscreen 

technologies. Findings from this study formed the basis for the SUM Framework, 

targeting the interaction challenges faced by people with visual and motor-

impairments when using mobile touchscreens. The second study was devised to 

evaluate the principle low-level interaction modelling approach of the SUM 

framework, and gain further insight of the variances between users within 

stereotypical groupings. While this study was pivotal to the development of the SUM 

framework methodologies, the entire evaluation took place within a controlled 

laboratory environment. The research concluded with a much longer four week in-

situ evaluation to address the limitations of the short timescale laboratory study, and 

investigate the potential of SUM as a long-term solution for modelling users with 

highly volatile abilities.  



xxiii 

 

This research presents the potential benefits of the SUM Framework to create more 

accessible touchscreen interactions, supported by rigorous user evaluations from the 

laboratory and in the wild. Finally, the thesis outlines a number of directions and 

areas for future research expanding on the concepts developed within this work. 
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Chapter 1. Introduction 

This work has been motivated by two fundamental challenges. Firstly the need for 

better user models, more representative of individuals’ current needs and abilities. 

User models need to be capable of responding to the continuously fluctuating 

abilities of individuals, this is particularly important for individuals with disabilities. 

Secondly, there is a need for better touchscreen accessibility. Regardless of the 

mainstream popularity of touchscreen devices they still pose challenges and barriers 

to access for many disabled and able-bodied users alike. The primary objective of 

this research is to develop techniques that allow user models to capture and respond 

to individual abilities seamlessly, in turn improving the accessibility and usability of 

touchscreen technologies. 

1.1 The Need for Better User Models 

User models are primarily used to personalise or tailor application content and 

interface designs to better meet the needs of the end user. Typically a user model 

would consist of information relating to the preferences, knowledge or abilities of 

the end user that was otherwise unavailable during the design stages of the 

application. Therefore, systems can be designed to adapt and respond to contextual 

information to improve the interaction experience for the user. However, this 

approach to designing relies on the premise that the information within the user 

model accurately represents the current interaction propensities and requirements of 

the user.  
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1.1.1 Representing Real-World Users 

User Diversity. Within industry it is uncommon for companies to involve disabled 

users in the design and development of new products and technologies. The adopted 

strategies are to select individuals who are representative of much wider populations 

to take part in design investigations and evaluations. While user centred design is 

encouraged more and more in industry, the levels of involvement and diversity of 

users is inadequate for the purpose of designing technologies that work for disabled 

users. Interfaces are, at best, designed to meet the needs of generic abstractions of a 

disability, neglecting full consideration of the range and daily fluctuation of 

symptoms and characteristics. The task of creating an interface that accommodates 

for all these factors quickly becomes more complex and costly. 

Mobile Conditions. In addition to the human behaviours, there are external factors 

that will influence interactions (e.g. lighting conditions, travel conditions); for 

mobile technologies the number and variety of environments makes it impossible to 

predict and design for all eventualities. Thus there is an increasing need for 

interfaces that are able to adapt and respond on a more dynamic and individual basis. 

This can only be achieved through systems that respond rapidly to changes in 

conditions.  

Continuous Calibration. User models are commonly used to tailor application 

content and presentation at use time, applying contexts that were not present during 

the design phase of applications, in order to provide a better user experience. There 

are many different types of data a system might want to model; an individual’s 

preference for one interface layout over another, the current task workflow, domain 
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specific knowledge in e-learning environments, measurements of the user’s typing 

performance with a QWERTY keyboard, and so on. The type of model data 

inevitably defines the scope and style of customisation possible. Likewise there are a 

number of methods to capture the user model data; explicitly asking the user or 

providing configuration features, including code to recognise domain specific 

workflow sequences, requesting that the user complete a calibration task, or 

implicitly capturing performance measurements from application activities. The 

method for capturing user model data has tremendous implications for the user 

model’s ability to respond promptly and in line with the needs of the user. Offering 

user configuration options or initial calibration phases are among the most common 

technique for capturing user data. Traditionally occurring within the first launch of a 

device or application, these enable the user to explicitly define settings and provide 

the system with a baseline measurement which is often never to be revisited. While 

this initial configuration or calibration might have been sufficient for desktop 

interactions of able-bodied users, this one time setup is insufficient for representing 

users with variable abilities such as people with motor impairments. It also neglects 

to consider the impact of the user’s current situation, which can be particularly 

variable when considering mobile technologies. However, the current approaches to 

user modelling would require the user to recalibrate or reconfigure the device in each 

specific situation.  

1.1.2 Why Touchscreens? 

Although the motivation for improvements to user models is independent of any 

single technology, this research focuses on mobile touchscreen devices due to their 

mainstream appeal and increasingly ubiquitous nature. More than 500 million 
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touchscreen units shipped in 2012, with mobile devices accounting for 34% of all 

units, and numbers are predicted to reach 660 million by 2015 (Cellular-News, 

2008). Smartphone devices represented 60.1% of the smart connected devices 

shipped in 2012, with tablet devices, portable PCs and desktop PCs representing 

10.7%, 16.8% and 12.4% of the market share respectively. The worldwide market 

share of smartphones increased by 53.1% from 2011 to 2012 (IDC, 2013). In 2011 

the UK alone was reported to have 25.4 million smartphone users, a penetration rate 

of 51.3%, which rose to 64% in 2012 (comscore, 2012a; 2013). The trends suggest 

that users are moving away from traditional mouse and keyboard PC interfaces for 

accessing content and towards mobile touchscreen interactions (comscore, 2012b).  

Touchscreens have great appeal due to their ability to support new forms of human 

interaction, including the interpretation of rich gestural inputs and the rendering of 

novel user interfaces. However, the technology creates new challenges and barriers 

for users with limited levels of vision and motor control due to its lack of tactile 

cues. Furthermore, it relies on the user’s ability to accurately and consistently 

perform the rich gestural inputs in alignment with the predefined parameters of the 

gesture recogniser; for some users this is not always possible. Although there are 

alternative devices and specially augmented hardware solutions to improve the 

accessibility of touchscreen interaction (such as screen overlays), they result in 

further exclusion from mainstream technologies, and threaten to stigmatise those 

who use them. 
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1.2 Approach 

This dissertation explores techniques to produce user models that are representative 

of the diverse interaction abilities of individuals, continuously responsive to the 

short-term variances affecting user performance, and present minimal interruption to 

real-world interactions, with the goal of addressing the existing challenges with 

touchscreen technologies by individuals with visual and motor impairments. 

1.2.1 Sharing Data 

To mitigate the risk of user models becoming out of date and requiring user 

interruption to recalibrate, the proposed methods aim to reuse and share interaction 

data between applications and users where possible. Rather than defining user 

models that are specific to each application and reliant on domain knowledge to 

function, this approach leverages the interaction behaviours that are common 

amongst applications by decomposing their interfaces and interactions into the low-

level components and gestures such as buttons and taps, allowing an application-

independent user model to be created. Similarly, the component measurements can 

be leveraged to permit the sharing of data between users, independent of their 

stereotypical groups. The major challenge of sharing data between applications and 

users is insuring that the data is useful and is going to help define the interaction 

abilities of the current user. It is not enough to simply select all examples of button 

taps and train the user model. By including users’ data where the interaction 

behaviours are significantly different from the current user’s abilities, the resulting 

user models could produce further recognition problems and failed interactions. 

Therefore, techniques to select the appropriate training data are required. 
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1.2.2 Contextual Modelling 

In order to support the sharing of user data between applications and users, a novel 

method for selecting training data that matched the current interaction context was 

proposed. The approach uses a small sampling window to measure the interaction 

behaviours for each session. Features are extracted from these measurements and 

used to identify previous sessions with similar interaction behaviours, thus selecting 

relevant data to train the user models on. This method is independent of user and 

application and therefore allows user models to be trained from other users’ data. 

Furthermore, it increases the availability of interaction data for training and enabling 

the development of user models specific to individual situations.  

1.2.3 The SUM Framework 

The Shared User Modelling (SUM) framework captures measurements of an 

individual’s interaction performance through real-world application interactions, 

allowing continuous measurements of users’ needs and abilities. For example, SUM 

framework measures the duration of an individual’s onscreen taps to identify the 

range of durations that define an intentional tap gesture for that individual, and 

adapts the parameters of the tap gesture recognisers to meet the individual’s 

interaction behaviours. Interaction measurements are domain independent, thus SUM 

models can easily be shared between applications. The SUM Framework also 

contains the necessary methods to apply user models and tailor application 

interactions, removing the need for designers to have any knowledge of user 

modelling or interface adaptation. SUM allows disabled users to interact with the 

same technologies as able-bodied users, providing touchscreen interactions that are 
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more sympathetic to individual abilities using off the shelf mainstream technologies, 

thus reducing the risk of exclusion or stigmatisation of disabled users. 

At an abstract level, SUM is a technique combining domain independent user models 

and adaptive interfaces to personalise touchscreen interactions. SUMs are built 

through background processing of real-world application interactions, as opposed to 

subjecting users to semantically meaningless calibration exercises to elicit 

performance measurements. This dissertation demonstrates the application of SUM 

to improve the access of touchscreen devices for people with low levels of vision and 

motor ability. While there is a long history of interface adaptations for disabled 

users, such efforts have focussed largely on adaptations for a specific disability or 

device. SUM parameterises user interactions to define individual models of input 

behaviours rather than relying on stereotypical user group characterisations and 

impairment assumptions. Although this work focuses on touchscreen interactions by 

users with visual and motor impairments, it aims to demonstrate the wider 

application of this technique within other technologies involving users with different 

interaction challenges. However, in its current state SUM is presently limited to 

physical abilities.  

The contribution of the present work is the proposal and evaluation of the novel 

Shared User Modelling (SUM) approach as well as the design and development of 

the SUM framework that implements novel user modelling and interface adaptation 

methods. The SUM framework provides adaptations based an individual’s current 

and fluctuating needs. SUM enables the measurement of user abilities and interaction 

characteristics without the need for separate calibration exercises or explicit user 
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configuration settings. Shared user models can be built using interaction data across 

multiple applications using input data captured from other users. The research 

reported here focuses on a mobile touchscreen device, reflecting the growing 

prevalence of such devices and the user interaction challenges they pose for many. 

1.2.4 Research Approach 

This research has adopted an iterative user centred design approach to define and 

refine the SUM framework. Incremental versions of the SUM framework were 

evaluated through user observations, laboratory studies and concluded with a four 

week in-situ study involving users with visual and motor impairments. Interaction 

logs were captured using the SUM framework; these were combined with pre- and 

post-evaluation discussions, gathering additional user information and interaction 

feedback. Refinements were made based on both quantitative device data and 

qualitative user data, ensuring design changes were based on supportive data 

evidence. The structure of this dissertation outlines the user evaluations and resulting 

changes to the SUM framework. 

1.3 Thesis Aims 

The main objective of this thesis work is to explore and develop techniques to 

improve the accuracy of user models to increase access and usability of mobile 

touchscreen interactions by people with visual and motor impairments. Applying a 

user centred and iterative design process, the research resulted in the creation of the 

SUM framework. The SUM framework serves as a self-contained user modelling 

and interface adaptation tool, designed specifically to model real-world application 

interactions and tailor the interface to meet the current abilities and needs of 
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individual users. The SUM approach shares interaction data between users and 

applications to train new user models based on the contextual measurements of the 

current interaction abilities of users.  

Thus, the thesis proposed in this dissertation is: 

Sharing data between users and applications can produce models that usefully 

represent the dynamic needs and abilities of individuals. 

1.3.1 Key Research Questions 

To investigate the proposed thesis the following research questions were defined: 

• What are the common touch interaction characteristics and individual 

variances of users with visual and motor impairments, and how can 

affordances for individual abilities be made to improve touchscreen 

interactions? 

• Can user abilities be accurately captured and modelled through natural 

interactions within mobile touchscreen applications? 

• How can user models respond to short-term changes and fluctuations of user 

abilities and needs, without the need for continuous calibration exercises? 

•  Can measurements of users’ abilities be applied to improve the accessibility 

of touchscreen interfaces? 

1.4 Contribution to Knowledge 

The research presented in this dissertation provides a comprehensive review of the 

current accessibility state of mobile touchscreen technologies with respect to visual 
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and motor impairments, as well as a critical reflection on the application of current 

user modelling and adaptive interface techniques. Furthermore the methodologies 

and evaluations conducted within this work impart new insights into the benefits, 

and challenges faced, when conducting user studies outside of the controlled 

laboratory environment. The work also presents a tangible proof of the utility of the 

SUM Framework, a system developed to capture and monitor user interactions for 

modelling and adaptation purposes. 

 

The contributions to the field of accessible human computer interaction (HCI) of this 

thesis are: 

• The exploration of interaction monitoring and modelling techniques to 

support the creation of user models built from real-world application 

interactions, leveraging the otherwise discarded low-level touch behaviours 

within the gesture recognisers to develop a rich understanding of a user’s 

abilities and interaction characteristics, thus removing the reliance for 

calibration activities to train and update user models. 

• The development of a domain-independent structure for user models to 

support the sharing of user information between applications and touchscreen 

devices, and a software framework to utilise the user modelling and 

adaptation capabilities of the model structure.  

• The rigorous evaluation of interaction modelling without the need for 

measurement elicitation tasks, on touchscreen devices by people with visual 
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and motor impairments, both within a controlled laboratory environment and 

a real-world setting through a four week in-situ user study. These studies 

provide a rich understanding of how users’ interaction behaviours and 

abilities fluctuate both in short-term and long-term device usage. 

• A detailed provisioning of procedures and tools to aid the transition from 

laboratory to in-situ user evaluations of mobile touchscreen devices. 

• The proposal and evaluation of a novel approach using contextual 

measurements of user interactions to create user models specific to individual 

sessions. The contextual models allow the creation of user models from other 

users’ data, therefore are independent of stereotypical disabilities.  

1.5 Thesis Structure 

Chapter Two describes prior work in the field and its relation to SUM. The chapter 

also aims to provide the reader with a snapshot of the current state of mobile 

touchscreen technologies, exposing the challenges and barriers to access. It 

highlights the contemporary methods to address the accessibility issues, from both 

an industrial and academic perspective. Finally, the chapter outlines and discusses 

the characteristics and abilities associated with the user population involved 

throughout this research, to give the reader an understanding of the breadth and 

variability of these characteristics and challenges to technology access, discussing 

the contemporary approaches to designing for these populations and drawing the 

reader’s attention to the impact of poorly considered designs. 
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Chapter Three details a preliminary study carried out with older adults acting as 

further requirements gathering beyond the knowledge gained from the literature 

review. The preliminary study helped to scope the interaction challenges presented 

by touchscreen interactions, and refine the background user modelling process.  

Chapter Four leads on from the background modelling techniques discussed within 

Chapter Three, and provides a complete technical overview of the devised SUM 

Framework for modelling users’ interactions through natural interactions. This 

chapter goes on to detail the development of the domain-independent model 

structure supporting the sharing of user models between applications, and concludes 

by scrutinising the limitations and other considerations of such user modelling 

techniques. 

Chapter Five discusses a laboratory-based study carried out with visual and motor 

impaired users, to evaluate the use of the SUM Framework to develop adaptive 

interfaces tailored to individuals (published in Montague, Hanson, & Cobley, 2012). 

It concludes with a critical reflection of the laboratory-based study, discussing the 

limitations of such studies and barriers to transitioning SUM user evaluations into 

the wild outlining the necessary provisions to support in-situ evaluations of SUM. 

Chapter Six outlines the development changes made to the SUM framework, 

addressing the limitations identified from the laboratory user evaluation discussed in 

Chapter Five. The chapter details the new provisions made to the SUM Framework 

to support application in the wild.  
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Chapter Seven discusses the design and execution of an in-situ user study with visual 

and motor impaired users to explore the real-world behaviours and fluctuations of 

individuals’ abilities. 

Chapter Eight introduces a novel user modelling approach, leveraging the interaction 

behaviours from individual sessions to produce user models that are specific to the 

current interactions of the user. The chapter evaluates the proposed models using 

simulations from the user data from the in-situ study of Chapter Seven.  

Chapter Nine concludes the thesis and discusses the conducted research with relation 

to the research objectives and hypotheses outlined above. It presents a critical 

reflection of the findings and limitations; and details provisions for future research. 
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Chapter 2. Related Work 

This chapter aims to express the importance and need for accurate user modelling 

methods in the on-going struggle for accessible technologies, with the focus of this 

thesis being on touchscreen interactions. Concentrating on key works within the field 

of accessible digital technologies and user modelling, this chapter provides a  review 

of relevant research. The chapter begins by discussing the larger philosophical 

approach of this thesis, presenting the existing challenges within this area of HCI. 

Next the chapter presents a critical review of current user modelling strategies and 

systems. The chapter then outlines on-going work within the field of touchscreen 

accessibility. Finally the chapter discusses each of these three areas in relation to the 

work within this thesis.  

2.1 Ability-Based Design 

The concept of ability-based design has only recently been proposed by Wobbrock et 

al. (2011) however, its core principles have been alluded to by other movements 

such as Harper’s (2007) design-for-one. Harper (2007) examined the feasibility of 

design-for-all as a real-world solution to creating accessible technologies, stressing 

that the universal approach contradicts itself. The design-for-all approach argues that 

we should design with everyone and every situation in mind, but we know that 

human abilities and interaction situations are too diverse and broad to deal with in 

this way (Vanderheiden, 2000). In contrast, the principle underlying of design-for-

one and ability-based design is simple: technologies should be designed in alignment 

with what the user can actually do. With ability-based design, the disability 

group/medical diagnosis of a person does not define his/her actual interface needs.  
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People are individuals, each with unique needs and abilities. Our interfaces, 

therefore, should reflect this.  

 

Figure 2.1 Seven Principles of Ability-Based Design extracted from (Wobbrock et al., 2011). 

Wobbrock et al. (2011) describe the basic tenets of ability-based design in relation to 

other design approaches.  They outline seven basic principles of ability-based design, 

shown in Figure 2.1. These principles outline the basic position of the approach, and 

suggest methods of interface and system design. This approach removes the barriers 

that define a user as being able-bodied or disabled, and instead invites designers to 

consider individuals’ abilities, more specifically: What can he/she do?  

2.1.1 Challenges in Ability-Based Design 

Wobbrock et al. (2011) defined the following ability-based design challenges that 

closely relate to the research objectives of this thesis work. Firstly, the success of 

ability-based design relies on the system’s ability to accurately detect an individual’s 

abilities. There is a need for these abilities to be periodically measured with low cost 
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or disruption to the user’s intended workflow. In relation to this, another challenge is 

to consider the user’s current situation. It is important for applications to understand 

the wider context beyond the device. Successful ability-based design systems need to 

factor in the environmental factors that influence an individual’s abilities. However, 

to truly achieve contextually-aware systems we must first develop methods to 

measure performance abilities away from the controlled laboratory setting, and 

traditional semantically meaningless calibration tasks. This presents what could be 

considered the greatest challenge, inferring an individual’s intention within free-form 

tasks. Finally, once the aforementioned challenges have been addressed, it is crucial 

that the systems understand how best to behave in response to these measurements. 

These challenges constitute the rational and motivation for the research within this 

dissertation. 

2.1.2 Measuring Abilities 

Regardless of the task or application, arguably the most important stage of ability-

based design is capturing accurate measurements of user abilities. The research 

presented within this section demonstrates techniques and strategies applicable to the 

accurate measurement of users. 

Trewin and Pain (1997) presented a technique whereby an individual’s typing 

behaviour and performance could be monitored in order to identify any keyboard 

difficulties such as long key pressing and bounce errors. Trewin extended this work 

and proposed novel filtering techniques to mitigate these types of errors, through 

techniques known as the Dynamic Keyboard (Trewin, 2002). This program provided 

optimal keyboard configurations for an individual’s varying needs in roughly real 
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time. Targeted at individuals with motor impairments, the system was designed to 

cope with highly variable user abilities, requiring regular assessments of typing 

performance. The Dynamic Keyboard captured measurements by monitoring 

keyboard behaviour during users’ natural interactions with the computer. This 

technique enabled the system to periodically assess the user’s abilities without the 

need for any user interruption. Building on the original Dynamic Keyboard work 

Trewin (Trewin, 2004) demonstrated the adaptation capabilities of the system within 

a real world context. Using these measurements the system was then able to make 

modifications to the keyboard configurations helping to reduce typing errors such as 

key repeats from pressing delays, and bounce errors from unintentionally tapping 

keys multiple times.  

Keates and Trewin (2005) recognised a similar need to support users with mouse 

clicking, reporting the most common types of errors as slipping when clicking, and 

unintentional or accidental clicks. Trewin et al. (2006) proposed a novel solution, 

Steady Clicks, which was able to significantly reduce these errors using filtering 

techniques to ignore mouse movements during clicks and accidental target 

selections. Hurst et al. (2008a) later developed methods to automatically capture and 

measure individual’s mouse performance, and assess if there was a need for 

adaptation. Using Fitts’ law-style pointing and clicking tasks the system collected 

movement and click behaviours and extracted features to classify participants as 

having motor problems, or no motor problems with a 92.7% accuracy. Furthermore 

they were able to predict with 94.4% accuracy whether Steady Click adaptations 

would be of benefit to the individual.  



18 

 

The SUPPLE++ system used a similar Fitts’ law-style calibration task approach to 

elicit the abilities of individuals, requiring the user to move a computer pointer to 

select various onscreen targets (Gajos, Weld, & Wobbrock, 2010; Gajos, Wobbrock, 

& Weld, 2008). These models of user performance were then used to automatically 

create interfaces that provided the most optimal interactions for the user as shown in 

Figure 2.2. SUPPLE++ provided adaptations such as scaling the size of controls and 

substituting checkbox controls for lists or buttons, all such changes being based on 

the performance abilities of the individual user. Gajos et al. (2008) tested the 

interface adaptation system with motor-impaired users producing significantly fewer 

errors and shorter completion times. 

 

Figure 2.2 Baseline dialog interface and two interface versions automatically generated by 
SUPPLE++ extracted from (Gajos et al., 2008). 

The major limitation of the method of determining adaptations used by Gajos et al. 

(Gajos, Wobbrock, & Weld, 2007), and one often used by others (Trewin S., 2004), 

is the need for users to complete a calibration task to inform the system of their 

current abilities. The very nature of some impairments is their highly variable 

behaviours.  Thus, the individuals’ abilities often have large variations. Using the 

proposed calibration technique to leverage user abilities may result in the need for 

users to undergo the task before each system use, and ultimately, fails to capture user 

needs that can change even within a session. Similarly abilities can be impacted by 
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the situation of use (Sears & Young, 2002), meaning that the application of this 

strategy in mobile technologies could inevitably result in users completing the 

calibration tasks with each use due to the impact of environmental factors alone. 

2.1.3 Sensing and Adjusting to Current Situations 

Sometimes the impact of the user’s current situation can be overlooked as a factor 

when designing technologies. People do not pick up their desktop computer tower, 

keyboard, mouse and monitor then take it on a train ride.  However, it is entirely 

plausible to take your laptop computer, tablet device or mobile smartphone into this 

situation. Moving away from the comfort of the living room or office exposes users 

to potentially harsh extremes of lighting, stability, ambient noise and distractions. 

Early efforts to capture environmental factors impacting on user interactions, such as 

light levels, resulted in the need for users to be heavily equipped with numerous 

sensors monitoring movements and locations using accelerometers, gyroscopes, 

cameras, light sensors and GPS chips (Roto et al., 2004). However, in recent years 

many of these sensors have become embedded in mainstream mobile technologies 

allowing the previously body worn sensors to be replaced with a single smartphone. 

In relation to this widespread availability of portable situation sensing devices there 

has been an increase in the development of context aware systems. A number of 

efforts have all investigated the effects of situational impairments (Sears, Lin, Jacko, 

& Xiao, 2013) on user interactions. 
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Figure 2.3 Walking User Interface for music application, extracted from (Kane, Wobbrock, & 
Smith, 2008). 

Walking User Interfaces, shown in Figure 2.3, was the name given to mobile 

interfaces that adapted their form in relation to the users’ movement (Kane et al., 

2008). Using the device’s built-in accelerometer sensor, the application interface 

increased the size of text and widgets as device movements increased. While 

producing larger widgets simplified the target selection task, it also caused fewer 

items to be visible at once on the screen.  This forced users to perform a greater 

number of scrolling operations, resulting in longer task times when using the 

adaptive layout.  

More recently, Nicolau and Jorge (2012a) investigated the effects of grip posture and 

movement on mobile touchscreen text entry. They used the built-in accelerometer to 

measure device movement and stability during repeated text entry tasks within single 

handed portrait orientation, two handed portrait orientation and two handed 

landscape conditions. Interestingly the authors reported that while two handed text 

entry increased the input rates, it provided no additional device stability or 
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improvement to accuracy of text-entry. Nicolau and Jorge (2012a) suggest that future 

techniques should focus on dealing with poor aiming.  

 

Figure 2.4 Original bar graph (left) and recoloured bar graph based on individual’s colour 
vision abilities, generated using SSMRecolor (right) extracted from (Flatla & Gutwin, 2012). 

While the aforementioned systems investigated mobile technologies and the 

situational impact of movement on interactions, other types of adaptations are 

possible. For example, Flatla and Gutwin (2011) investigated the effects of situation 

on colour differentiation with desktop interactions. The situation-specific models 

were constructed using a short calibration task that accounted for environmental 

factors such as lighting as well as the individual’s own colour vision deficiencies. 

They later presented SSMRecolor, where the system used the situation-specific 

models to recolour interfaces tailored to an individual’s colour vision abilities and 

current situation of use (Flatla and Gutwin., 2012). Figure 2.4 shows an example of 

bar chart recolouring. Using the situation specific models, participants were 

significantly more accurate at identifying differences between colours when 

compared against other colour correction methods. This work demonstrated the 
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nontrivial impact of environmental factors on the perception of visual interfaces, 

specifically colour discrimination.  

2.1.4 Measuring in the Real World 

Laboratory-based evaluations allow researchers to control for external factors that 

can influence participant interaction performance. Typically, these studies tailor 

situations to remove distraction and interruption thus ensuring a user’s attention on 

the task and relative precision in interaction accuracy. While highly controlled 

laboratory experiments provide clean measurements with minimal errors, Chapuis et 

al. (2007) have demonstrated that interaction behaviours captured within natural 

settings differ from those captured within the laboratory. Additionally, laboratory-

based evaluations impose time restrictions on user studies. Characteristically lasting 

no more than an hour at a time, they restrict the potential for capturing the 

performance changes that naturally occur throughout daily usage. During the 

Dynamic Keyboard evaluations, Trewin (2004) asked participants to provide typing 

samples at various points throughout the day to begin to understand these changes. 

Hurst et al. (2008b) conducted “in the wild” user evaluations to investigate the 

pointing performance of individuals with motor impairments in natural usage 

conditions. The initial phase of the evaluation required participants to complete 

baseline calibrations using the IDA (Koester, LoPresti, & Simpson, 2005) software 

suite, based on Fitts’ Law clicking tasks. Beyond this initial phase, participants were 

free to login to the system and play games, or use other applications such as word 

processing. Using application interaction models, the authors were able to infer user 

intent from the mouse input, allowing measurements of overlapping button clicks, 
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slips, accidental clicks, direction changes and excess distance travelled similar to the 

type of measurements possible within the controlled laboratory setting (Hurst, 

Hudson, Mankoff, & Trewin, 2008a). Hurst et al. (2008b) reported that participant 

performance was highly variable both between and within sessions, further 

supporting Trewin’s early findings that individuals’ performance can fluctuate due to 

medication, progression of a disease, or as a symptom of impairment (Trewin et al., 

2006). Hurst et al. (2008b) argue that user evaluations with less control and 

constraints can help to reduce the risk of fatigue and stress by allowing participants 

to dictate their own break and interaction schedules.  

More recently, Gajos et al. (2012) also explored real world user evaluations to 

develop techniques for collecting accurate measurements of pointing performance 

using unobtrusive methods, proposing that deliberate mouse pointing interactions 

could be distinguished from the “noisy” unintentional ones by extracting trajectories, 

speed, acceleration and jerk features of the mouse movements.  Using online 

calibration tasks combined with natural data collection through a web browser 

plugin, the authors were able to develop filters and techniques to identify mouse 

interactions that occurred during periods of distraction allowing the collection of 

laboratory-quality data for mouse pointer measurements as used within the earlier 

SUPPLE (Gajos & Weld, 2004) evaluations. 

2.1.5 Towards Accessible Interfaces 

The use of suitable interactions is fundamental to the success of ability-based 

systems. Research described so far in this chapter has all explored interface and 

interaction techniques that maximise user accessibility or performance. However, not 
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all interaction techniques are beneficial to everyone; most interaction adaptations are 

defined for particular groups of people or disabilities. Although these interfaces are 

not optimal for everyone, they offer valuable insights into the correlation of interface 

adaptations and user abilities. Attention is now turned to the contrast between  

subject dependent studies (Guerreiro, Nicolau, Jorge, & Gonçalves, 2010a), which 

investigate interfaces targeted to improve access for a specific user population, and 

subject independent studies (Findlater & Wobbrock, 2012; Goel, Findlater, & 

Wobbrock, 2012), that expore interfaces as a response to parameterised 

measurements and abilities – typically adaptive systems. 

Guerreiro et al. (2010a) examined the interaction challenges faced by tetraplegic 

people when using mobile touchscreen devices. Recognising that existing touch key 

models (Parhi et al., 2006, S. Lee & Zhai, 2009 and Y. S. Park et al., 2008) did not 

work for this user population, the authors conducted in-depth laboratory evaluations 

to explore various touch interaction methods: tapping, crossing (drawing a line 

through targets), exiting (as crossing with targets on the edges of the device), 

directional gesturing (on blank screen with no targets, participants draw a line in the 

desired direction). Guerreiro et al. (2010a) used evaluation methods and analysis 

reminiscent of Y. S. Park et al. (2008) however they reported optimal target sizes of 

at least 12mm as opposed to the 9.6mm recommended by others such as (S. Lee & 

Zhai, 2009; Parhi et al., 2006; Y. S. Park et al., 2008).  

While Guerreiro et al. (2010b) found that their participants preferred tapping 

interactions, the results showed that crossing, exiting and directional gestures were 

all suitable for motor-impaired users. They also noted that some directional gestures 
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produced poorer performance than others.  They suggested that interfaces should 

favour vertical and horizontal over diagonal directions for this particular user group. 

These findings echo the earlier work by Froehlich et al. (2007) and Wobbrock et al. 

(2003) who found that the edges  provide added stability for target acquisition with 

stylus touch input by users with motor impairments.  

The Walking User Interfaces proposed by Kane et al. (2008) adopted a widget 

scaling technique similar to (Guerreiro, Nicolau, Jorge, & Gonçalves, 2010a) to 

improve touchscreen device interactions made by able-bodied users while walking 

(Figure 2.3), highlighting this relationship between user abilities and situational 

impairments, as subsequently demonstrated by Nicolau (2013). 

Henze et al. (2012) investigated both visual and non-visual adaptations to 

touchscreen interfaces to address target acquisition tasks. Applying touch offset 

models based on individuals’ touch behaviours, the authors evaluated the effects of 

providing users with the visual feedback of a red dot showing the offset 

interpretation of their touch, and non-visual methods which simply applied the touch 

offset model to typing behaviour. The visual feedback interface is shown in Figure 

2.5. Hezne et al. (2012) reported that with no scaling of targets, using only the touch 

offset models and visual feedback of touch location they were able to reduce typing 

error rates by 18.3%. 
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Figure 2.5 Keyboard providing visual feedback of users’ touch location when typing the letter 
“f”, extracted from (Henze et al., 2012). 

Personalised input (Findlater & Wobbrock, 2012), used similar techniques to Henze 

et al. (2012), creating touch models of users’ interactions with keyboard input on 

large touchscreen devices. Using visual and non-visual techniques the personalised 

input tailored keyboard layouts to match the typing behaviours of the individual, 

shown in Figure 2.6. However, Findlater and Wobbrock (2012) found that while the 

non-visual adaptations improved typing speeds when compared with the 

conventional keyboard, the visual adaptations provided no improvement. 

Furthermore, as shown in the subjective measures, participants preferred the non-

visual adaptations. Findlater and Wobbrock (2012) observed the typing speeds 

decreasing when participants began using the visual adaptive interface condition.  

They hypothesised this could be the result of an increased cognitive load due to the 

frequently changing interface.  

 

Figure 2.6 Personalized Input keyboard layouts generated for two users, extracted from 
(Findlater & Wobbrock, 2012). 

An important challenge relating to adaptive interfaces is the need for control.  While 

the aforementioned works have applied interface adaptations specific to each 

application or task, the Dynamic Keyboard (Trewin, 2004) and ACCESS framework 

(Heron, Hanson, & Ricketts, 2013) performed adaptations to system wide 
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configurations. The Dynamic Keyboard continuously monitored typing behaviour 

and adjusted the keyboard filters for all user interactions with the computer.. 

Similarly, the ACCESS framework would continually monitored users’ interactions 

to assess if their needs were not being met with the current configuration settings of 

the system’s input and output, at which point the framework would notify the user 

and present possible configuration changes. Both Dynamic Keyboard and ACCESS 

make adjustments to the configurations within the operating system settings panels 

and are therefore, present and for all interactions and applications. Furthermore, by 

altering the OS configuration settings that can be accessed independent of the 

adaptation systems, they allow users to veto or revert any adaptations and changes 

made on their behalf and thus, provide the end user with greater control over their 

interaction experience. Furthermore, because the Dynamic Keyboard and ACCESS 

framework examine low-level events beneath the application layer, they are able to 

continuously monitor and measure user performance without the need for calibration 

exercises. 

 

2.2 Discussion of Challenges 

This section presents a review and discussion of several projects working with the 

ability-based design area, providing a comparison of these works on the following 

criteria: measurement method, scope of method, research environment, adaptability 

and measurement subject. The section will explain and discuss each comparison 

criteria in detail. A complete overview of the compared works is presented in Table 

2.1 below. 
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2.2.1 Measurement Method 

Measurement method refers to the technique used to capture accurate measurements 

of the user’s interaction abilities. There are a number of methods to acquire user 

related measurements including: user preferences captured through configuration 

panels or system prompts, a somewhat out-dated approach less applicable to ability-

based solutions; calibration tasks the most commonly adopted measurement method 

(Table 2.1), requiring users to undergo a series of tests performing actions such as 

mouse clicks or onscreen taps to collect clean representations of actions for 

modelling; and finally natural interaction, considerably less common than 

calibration tasks as it is much more complex to work with and extract clean models 

of interactions. Natural interaction techniques capture user measurements in 

unobtrusive background methods allowing users to engage with the technologies in 

an unaffected way, while the calibration task approach subjects the users to periodic 

interruptions to acquire updated measurements of their abilities.  

The Dynamic Keyboard (Trewin, 2004) is an example of the natural interaction 

measurement method, leveraging the interaction patterns between keyboard and 

mouse usage to identify periods of intended keyboard typing, then monitoring users’ 

keystrokes to recognise possible typing difficulties and user abilities. The difficulty 

for such systems is identifying intent: Did the user really mean to do that? Gajos et 

al. (2012) investigated this challenge with mouse pointer interactions, using 

calibration tasks to capture baseline measurements of user performance and classify 

interactions that occurred during periods of distraction to distinguish them from 

intended user interactions.  
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Natural interaction measurement methods are to be strongly preferred, particularly 

when considering users with abilities that are prone to large fluctuations and change 

(Hurst, Mankoff, & Hudson, 2008b).  

2.2.2 Scope of Method 

Scope of Method relates to the analysis technique applied to the measured data, 

whether it is specific to a particular task application or whether it is generic enough 

to apply to measurement data in multiple contexts. In most cases the analysis of data 

must leverage task knowledge to infer intent of user interactions and improve 

accuracy of user measurements (Table 2.1). Typically the method will involve the 

user interacting with either a single or highlighted element, allowing the authors to 

automatically infer that the user’s intention was to perform that action, such as 

clicking (Gajos et al., 2012; 2007; Hurst, Hudson, Mankoff, & Trewin, 2008a; Hurst, 

Mankoff, & Hudson, 2008b; Trewin et al., 2006) or tapping onscreen targets 

(Findlater & Wobbrock, 2012; Guerreiro, Nicolau, Jorge, & Gonçalves, 2010a; Y. S. 

Park & Han, 2010). As a result of this, such systems require the inclusion of a 

calibration task to elicit the user performance measurements. 

Hurst et al. (2010) presented a method using computer vision techniques to locate 

and identify targets. The common interaction behaviour across most applications 

when responding to mouse clicks is to change the state of the button or target with 

some form of highlight or selection visualisation. Collecting boxed grabs comprising 

the 300x300 pixel area around the cursor before and after a mouse click event, Hurst 

et al. (2010) were able to extract features from the screen shots to identify the 

interface element the user clicked, as well as properties relating to the dimensions of 
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the target, and the relative distances between the click location and target. This 

approach provided data that could be analysed using the traditional mouse pointer 

measurements for offsets, movements, target crossing and unintentional clicks.  

Leveraging these common interaction behaviours (visual state changes of button 

clicks) was key to the success of the method applied within (Hurst et al., 2010), and 

provides the basic principles to build upon in order to strengthen this technique. 

2.2.3 Research Environment 

Research Environment describes the context for which the user measurements are 

captured. Typically speaking, there are two categories of research environment: 

laboratory and real world (Table 2.1).  However research may also synthesise real 

world conditions (Kane et al., 2008) to maintain a level of control that is not possible 

in the real world. The inclusion of real world evaluation and user measurements are 

vital for the consideration of situational impairments and variable health conditions 

(Nicolau, 2013). 

Controlled, task-specific laboratory studies are often adopted within the field of HCI 

due to the high levels of control they offer. However this control comes at the price 

of limiting the understanding of how users interact with systems in a real world 

setting, over time, and while being unobserved. In-situ user evaluations can 

illuminate real world behaviours and expose challenges and barriers that would have 

never otherwise been identified. Again the force inhibiting the widespread adoption 

of real world evaluations and measurements is understanding user intent.  As a result 

many researchers (Gajos et al., 2012; Goel et al., 2012; Henze, Rukzio, & Boll, 

2011; Hurst, Mankoff, & Hudson, 2008b) have opted for the use of the semantically 
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meaningless calibration tasks to obtain user measurements. However, Trewin (2004) 

and Hurst et al. (2010) have demonstrated that it is possible to conduct these 

evaluations outside of the controlled laboratory, capturing natural interactions.  

2.2.4 Adaptability 

Adaptability refers to the system’s ability and approach to adaptation: none, in which 

the system provides users with a static interface and the work concentrates on 

collecting measurements of performance; self-adaptive, in which the adaptation 

process is entirely based on measurements and does not allow for user control; or 

user-adaptive, in which adaptations are based on the measurements but can be 

altered by users.  

2.2.5 Measurement Subject 

Measurement Subject is used to describe the basis for a system’s measurements or 

interface adaptations, split into two categories: group and individual. Works 

applying group level measurements or interface adaptations are not fully consistent 

with the ability-based design ethos. However, their discoveries and methods are 

fundamental to the development of design solutions that do consider the individual 

nature of abilities and situations. 
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Related Work Measurement 
method 

Scope of 
Method 

Research 
Environment 

Measurement 
Subject Adaptability 

SUPPLE (Gajos et 
al., 2007; 2008) Calibration task Task Laboratory Individual Self-

Adaptive 

Steady Clicks 
(Trewin et al., 2006) Calibration task Task Laboratory Group None 

ICD-2 (Flatla & 
Gutwin, 2011) Calibration task Task Laboratory Individual Self-

Adaptive 

Automatic Mouse 
Performance 

Detection (Hurst, 
Hudson, Mankoff, & 

Trewin, 2008a) 

Calibration task Task Laboratory Group None 

ACCESS Framework 
(Heron et al., 2013) Calibration task Task Laboratory Individual User-

Adaptive 

Touch Input for 
Tetraplegics 

(Guerreiro, Nicolau, 
Jorge, & Gonçalves, 

2010a) 

Calibration task Task Laboratory Group None 

Design for 
Touchscreen Target 
Selection (Y. S. Park 

& Han, 2010) 

Calibration task Task Laboratory Group None 

Understanding 
Pointing problems 
(Hurst, Mankoff, & 

Hudson, 2008b) 
Calibration task Task Real World Individual None 

Identifying Target 
Intent (Hurst et al., 

2010) 
Natural 

Interactions System Real World Group None 

In Situ Pointing 
Performance (Gajos 

et al., 2012) 
Calibration task System Real World Individual None 

Personalized Input 
(Findlater & 

Wobbrock, 2012) 
Calibration task Task Laboratory Individual Self-

Adaptive 

Dynamic Keyboard 
(Trewin, 2004; 

Trewin & Pain, 1997) 
Natural 

Interactions System Real World Individual User-
Adaptive 

Table 2.1 Overview of reviewed papers compared within the related work discussion section 
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2.3 Physical and Visual Access Problems of Touchscreens 

Based on the related works, the major challenges and barriers to access of 

touchscreen devices by people with visual and or motor impairments relate to the 

input methods of the technology. Specifically these access problems are around 

target acquisition, the proposed solutions include tailored interface layouts (Gajos et 

al., 2007; 2008); target scaling (Guerreiro, Nicolau, Jorge, & Gonçalves, 2010a; Y. 

S. Park & Han, 2010) and personalized touch offset models (Henze et al., 2011; 

Findlater & Wobbrock, 2012) and gesture recognisers (Trewin, S., Swart, C., & 

Pettick, D., 2013). However, many of the previously proposed solutions target a 

specific disability or stereotypical user group, failing to address the diverse range of 

motor and visual abilities within these populations.  

2.4 Summary 

Table 2.1 provides an overview of papers discussed in this chapter, describing the 

work in the context of the discussed key parameters for adaptation. This chapter has 

described the influential related works that have helped to shape the journey and 

outcomes of this thesis. It began with a discussion of ability-based design, the 

conceptual method selected by this research for its realistic goals and logical 

approach to developing accessible technologies. The chapter presented the existing 

barriers and challenges to achieving ability-based systems, discussing approaches to 

adaptation that inspired the work carried out within this thesis. 
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Chapter 3. Preliminary Research 

The objective of this thesis is to investigate the barriers to touchscreen technologies 

experienced by individuals with a diverse range of motor and visual abilities. 

Primarily, the focus of the research is to improve the accuracy of user models for 

people with fluctuating abilities.  

Chapter Two framed the conceptual underpinnings of this thesis in terms of adaptive 

technologies, then presented a review of the related work and a discussion of the 

widely adopted approaches employed to address barriers to access of technologies. 

This chapter begins with a review of work on touch screen interactions.  It then 

reports on the initial phase of the research, which aims to substantiate an 

understanding of the range of user interaction behaviours with mobile touchscreen 

devices through observations. The purpose of this initial study was also to inform the 

technological approach of the research and to establish methods of capturing user 

data using both the individual’s preferences and interaction characteristics.  

 Presented is an evaluation conducted with older adult participants using a mobile 

touchscreen device in a way-finding context. The rationale for this study was to 

observe the initial impressions and interaction behaviours of the users to identify the 

challenges and barriers to use. 

3.5 Understanding Touchscreen Interactions 

Target acquisition with mobile touchscreens is a common obstacle for all users due 

to finger occlusion or the “fat finger” problem (Vogel & Baudisch, 2007). With most 

mobile devices, phones and tablets being scaled to fit comfortably into a handbag or 
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trouser pocket, the current screen sizes rarely exceed 13cm (phones) and 26cm 

(tablets). The impact of these sizes is that they force constraints on the maximum 

dimensions an individual target can occupy. To compound the problem, the size of 

the human index finger (ranging from 15.5mm to 18.2mm) in addition to its rounded 

shape, makes it less than optimal for selecting small targets. This imposes constraints 

on the minimum dimensions of interface elements intended for interaction. Parhi et 

al., (2006) conducted user evaluations investigating the effect of target sizes with 

respect to discrete (menu selections) and serial (entering text on a keypad) target 

acquisitions made by young able-bodied users. Participants, in a standing position, 

held the device in one hand while hitting targets with the thumb of the same hand. 

The researchers controlled the size of the targets, and reported optimal target sizes of 

9.2mm and 9.6mm for discrete and serial interactions. (S. Lee & Zhai, 2009) and (Y. 

S. Park & Han, 2010) later confirmed these minimum size recommendations of 

(~10mm) when using similar study designs measuring serial touch behaviours. 

Where (Parhi et al., 2006) used targets with equal proportion, Lee et al. (2009) 

further explored the effects of the target size in both portrait (4.9x8.3mm, narrow) 

and landscape (7.5x6.5mm, wide) keyboards of the iPhone, which showed reduced 

input speed and increased targeting errors for the narrow input condition. However, 

the nature of the targeting errors is not discussed with regard to the targeting offsets, 

due to the limitations of the study apparatus. Lee et al. (2009) used the device default 

“off the shelf” keypad for the user evaluation, and performed keystroke analysis 

based on the recorded observations. In contrast, the apparatus and study design used 

by Park and Han (2010) allowed these types of errors to be captured by the device 

and reported. Through programmatically recording the users’ touch input locations 
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in relation to the 5x5 grid of 4mm, 7mm and 10mm targets, Park and Han used 

similar methods to (Parhi et al., 2006), but adopted a seated position using one-

handed thumb touch input to hit the on-screen targets. (Y. S. Park & Han, 2010) 

provided a more rigorous analysis of the touch inputs, exploring the distribution of 

touch errors, success rates and touch convenience using the 5x5 regions, as opposed 

to the 3x3 adopted in (Parhi et al., 2006). Park and Han’s (2010) inspection of the 

touch behaviours using the 5x5 regions uncovered touch error offsets in both the x 

and y axes. Moreover, they proposed corrective offset values of the device-sensed 

touch locations for both axes and were able to significantly improve the success rates 

of target acquisitions. Park and Han (2010) proposed touch offset shifts of -2,-3 

pixels in the x, y axis (making a shift of 1.4mm in the real world) for their user 

population. 

3.5.1 Motor Impairments and Touch 

All of the above user studies were carried out with young able-bodied participants, 

some of who regularly used mobile touchscreen devices. However, Guerreiro et al., 

(2010a) conducted a comparable evaluation to Parhi et al. (2006), Lee et al. (2009) 

and Park and Han (2010), investigating touch inputs by participants with motor-

impairments. The evaluation went beyond target acquisition with tapping 

interactions and explored the ability of tetraplegic users to perform tapping, crossing 

(drawing a line through targets), exiting (as crossing with targets on the edges of the 

device), and directional gesturing (blank screen with no targets, participants draw a 

line in the desired direction). Applying an equivalent analysis to that in (Y. S. Park 

& Han, 2010), the tapping results identify a need for larger targets of at least 12mm 

for users with motor-impairments. Furthermore, while the success rate distributions 
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across the 5x5 grids share agreement for more accurate target acquisitions in the 

centres of the screens, the regions around the edges of the device show extremely 

conflicting views. It could be argued that these variations in the distributions are the 

result of the differences within the study design. As opposed to adopting a seating 

position (Y. S. Park & Han, 2010), participants were encouraged to place the device 

in a comfortable position (including placing them on tables or armrests) and use any 

part of their hand to interact with the device. This allowed them to behave more 

naturally with the device. 

3.5.2 Target Perception and Touch 

Holz & Baudisch (2010) have carried out extensive investigations to identify the 

inaccuracies in touch precision that may be attributed to the discrepancies in the 

perception of human touch locations and the device interpretations from the contact 

areas. They conducted a series of user studies to explore the rationale behind users’ 

targeting procedures through participant interviews and trials using low fidelity 

paper targets, digital track-pads and cameras to capture participants’ targeting efforts 

across multiple finger orientations and postures. The work evaluated new touch 

models based on users’ perceived input, and six finger feature specific models 

designed to correct for the targeting offsets, all of which produced lower error rates 

than traditional contact models. The greatest results were achieved when using the 

model built from the user’s projected centre point of the fingernail.  In this 

condition, targeting offsets were reduced to 1.6mm (40% of the magnitude used with 

traditional contact models). This suggests that this is the targeting procedure applied 

when users interact with touchscreens. However these models rely on knowledge of 

finger features including the base, tip and the sides of finger nails; information that 
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cannot currently be acquired through capacitive sensing technologies used within 

mobile devices. 

Collectively all of these studies are limited by the same weakness in that they failed 

to consider that their constrained one-handed thumb interaction method might not be 

the most natural or optimal configuration for all of their participants. Furthermore, 

they all take place within a restrictive laboratory setting, far from the environment 

usually associated with mobile devices. Through learning from the limitations of 

these studies proceeding, this current user study aims to contribute to addressing a 

gap in knowledge as it investigates the natural usage behaviours of touchscreens by 

users within real-world tasks. 

3.6 User Study 

This section presents an exploratory study carried out with four older adults. The 

objective of this evaluation was to identify the characteristics and behaviours of 

users when interacting with mobile touchscreens, to identify the similarities and 

differences between users and to better define and scope the challenges with 

touchscreen interactions. Gregor and Newell (2001) discussed the dynamic nature of 

the human species, calling attention to the various stages of change in a lifetime. In 

particular they highlighted the decline in cognitive, physical and sensory abilities 

over time. Therefore, the older adult population embody a diverse set of 

characteristics and capabilities, many of which overlap with people with visual and 

motor impairments.  Furthermore, this study aims to inform the research direction 

and data collection methods of this work.  
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3.6.1 Participants 

Four older adults were approached and recruited through the School of Computing’s 

User Centre, which is a computer drop-in centre for older adults to learn about 

technologies. The inclusion / exclusion criteria for this study required that the older 

adults had low visual or, and motor abilities to participate, each participate self-

reported as meeting these requirements. The group consisted of two female and two 

male participants aged between 60 and 86 years (M= 72, SD= 12.11) (Table 3.1). All 

participants owned and regularly used a mobile phone, none of which were 

smartphones. None of the participants had used a mobile touchscreen before but each 

participant reported using the self-serve touchscreens at supermarkets. See appendix 

1 for information sheet and consent forms. 

Participant Age Gender Impairment Accommodation 

P1 60 Female None N/a 

P2 86 Female Macular Degeneration (left eye), Loss of 
hearing (left ear) 

Wears varifocal 
glasses, hearing aid 

P3 64 Male None N/a 

P4 78 Male Loss of vision Wears reading 
glasses 

Table 3.1 Overview of participant information: age, gender, impairment and accommodations. 
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3.6.2 Apparatus 

The mobile device selected for this study was the second generation Apple iPod 

Touch (Figure 3.1) running iOS 3.0, full technical specifications are detailed in 

Table 3.2. 

 iPod Touch 

RAM 128MB 

CPU 533MHz 

Network Wifi / Bluetooth 

Camera N/A 

Battery 739 mA-h 

Weight 115 g 

Microphone Yes 

Accelerometer 3-Axis 

Vibration Motor N/A 

Screen Resolution 320x480 

Pixels per inch 163 

Screen Dimensions 
74 mm (H) 
49 mm (W) 

Device Dimensions 
110 mm (H) 
61.8 mm (W) 
8.5 mm (D) 

Operating System iOS 3.0 

Table 3.2 Summary of second generation iPod Touch hardware specifications (Wikipedia, n.d.) 

A prototype indoor navigation application was produced using JavaServer Pages 

(JSP) and MySQL database. This database contained a graph representation of the 

School of Computing building, and supported navigation queries in the form of an 

origin and destination location and optional route parameters. Each room or 

passageway was defined and stored as a node within the graph, and vertices were 

used to represent the connections between rooms and passageways within the 

physical space. In addition to storing the connected locations, nodes could also have 
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supplementary media items such as images. The indoor navigation prototype 

application could request way-finding instructions between two locations and specify 

additional constraint parameters for the route, for example, to provide a route that 

avoids stairs. Origin and destination locations could be selected from a list of all 

available rooms or people within the building, while route constraints needed to be 

defined within the settings panel of the application. Once the origin and destination 

locations were selected, the indoor navigation application would traverse the graph 

to identify an appropriate route for the request, and return the user a series of 

navigational instructions that included textual directions and media elements where 

available, as shown in Figure 3.1. All the computation was performed server-side 

and an HTML page was returned to the user’s mobile device. Whilst the HTML 

prototype was highly portable, the loading times of the pages were very inconsistent. 

To resolve this issue, web service access was added and the prototype was embedded 

with a Simple Object Access Protocol (SOAP) client to retrieve the navigation 

results. Code was added to the indoor navigation application to log user interactions, 

tracking button selections and page loads. The interaction logs were collected via the 

JSP web services, requiring the application to be in constant connection with an 

active WiFi network.  

The indoor navigation application was designed in accordance with the iOS design 

guidelines (Apple, 2009), ensuring the correct interface elements and layouts were 

used and minimum target sizes all conformed with the iOS guidelines. Each button 

was built using the standard UIButton interface element (with additional styles 

applied) and therefore, responded as any other application available on iOS would be 

expected to respond. 
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The navigation interface presented to the user is detailed in Figure 3.1. The 

participant could navigate between the way-finding instructions using the previous 

and next buttons (F and H in Figure 3.1). When the previous or next buttons were 

selected the application would send a SOAP request for the corresponding content, 

loading the related image and text into the interface. Due to the device’s lack of 

vibration motor, no tactile feedback was provided to participants.  However, the 

application did emit a beep when a tap gesture was recognised to inform the 

participant of a successful action. The second generation iPod was never embedded 

with the Apple VoiceOver screen reader software.  Thus, in order to provide 

participants with text-to-speech transcriptions the application was embedded with 

code to communicate with the Google Translate1 service. When participants pressed 

the audio button (G) the application would beep then make a request to the Google 

Translate service, which would then return an .mp3 file of the spoken text. Finally, 

participants could hide and show the text instruction overlay by tapping the 

show/hide button (C). This allowed participants to view the full image, particularly 

useful when the instructions spanned multiple lines and occluded much of the image. 

The interface components would only respond to a single finger tap gesture. 

                                                
1 http://translate.google.com 
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Figure 3.1 The 2nd generation iPod Touch running the Indoor Navigation app. 

3.6.3 Procedure  

Participants were informed that the rationale for the study was to investigate the 

indoor navigation tool, and the personalised navigation interfaces. The study also 

aimed to investigate the broader interaction behaviours of the users when using a 

touchscreen mobile device in situational context. The study consisted of a single 

session lasting 30-45 minutes, composed of three elements:  an initial interview with 

the researcher, two way-finding tasks using the mobile app, and a final discussion for 

debriefing and feedback. 

3.6.3.1 Initial interview 

The initial interview collected data about each participant’s mobile phone usage and 

touchscreen experience. The researcher provided the participants with a short tutorial 

demonstration of the iPod touch, explaining that to interact with the onscreen targets 
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the user must touch the item to select it. A conscious decision was made not to 

explain the touch sensing mechanisms thus allowing participants to explore the 

interactions naturally: What makes a touch? Is it timing, pressure?  Is my finger too 

big, too small?  

Within this initial interview participants also provided preferences (Figure 3.2) for 

how they received the navigation information.  They selected one or a combination 

of interface modalities: text, images, audio transcriptions, and their preferences for 

the navigation route itself.  Their preference for navigation included, for example, 

whether they needed to avoid stairs when moving between floors. 

 

Figure 3.2 iPod Touch showing the Indoor Navigation preference settings screen. 

3.6.3.2 Way-finding TasksUsing the Mobile App. 

All of the participants regularly visited the User Centre within the department.  

However, none of them had ever explored the building beyond the ground floor. For 
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this reason each of the way-finding tasks required participants to navigate from the 

entrance of the building and locate offices in the upper levels of the building. Each 

participant was asked to complete two way-finding tasks using only the navigation 

instructions provided by the indoor navigation app. The application presented the 

user with a single instruction using text, image and audio modalities depending on 

individual preferences set previously, shown in Figure 3.1. No indoor localisation 

was provided by the application, users were required to match the descriptions or 

images to their current location and respond to the instructions accordingly. The 

researcher walked with the participants during the way-finding tasks to make 

observations, but provided no assistance with regards to touchscreen usage or the 

way-finding tasks.  

3.6.3.3 Final Discussion 

Once both indoor way-finding tasks were completed, each participant returned to the 

laboratory with the researcher for a study debrief and informal discussion about their 

experience. During this discussion participants were free to comment on the study, 

application or touchscreen technology, while also allowing the researcher to ask 

questions relating to specific behaviours or instances within the tasks to help 

understand the participant’s intentions.  

3.7 Results 

The primary goal of this user evaluation was to observe the touchscreen interactions, 

to identify the behaviours that are common and unique across users. Secondly, this 

study aimed to determine the barriers and challenges of touchscreen interactions by 

users with lower levels of motor and visual ability. Finally, the objective was to 
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inform the direction and technological approach of this dissertation to define 

methods of capturing performance measurements. The results are discussed in 

relation to the user implications and technical requirements of the approach. 

3.7.1 User Implications 

First, the study has implications for users’ ability to specify initial configurations for 

software.  Configuration screens are commonly presented to users upon the initial 

launch of a device or an application as a quick way to establish some baseline user 

preferences. As noted by Trewin (2000), in order to use these screens accurately, 

users must understand the best settings for use. The current evaluation suggested that 

the user may not always be able to provide this information due to his/her lack of 

knowledge or experience with the very application he/she is attempting to configure. 

For example, while users may be aware of their own limitations, they may be unable 

to translate this knowledge to appropriately configure software.  As a case in point, 

one of the participants in this study understood a vision limitation, “I need my 

glasses for reading only” (P4). However, when asked “Would you like audio 

transcriptions of the navigation instructions?” he replied “I’m not sure; how big is 

the text going to be?” 

Similarly, P2 commented on the screen contrast as being “Ok sitting here, but I 

couldn’t always make out the instructions on the screen”. This statement highlights 

the differences between the environment within the laboratory where the preferences 

were set, and the conditions the participants were exposed to during the way-finding 

task. It is important to note that these were indoor way-finding tasks only, greater 
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extremes might have been identified had participants also been asked to explore 

outdoor environments with the device. 

A second implication of this study was in terms of defining touch. Participants were 

intentionally not informed of the parameters that defined a successful touch in order 

for the researcher to better understand their perceived requirements and individual 

touch behaviours. While none of the participants had ever used mobile touchscreen 

devices before, they all had prior experience with touchscreen self-service kiosks, 

which used resistive touch sensing. Resistive touchscreens require a reasonable 

amount of pressure to allow the two layers within the monitor to contact and initiate 

the touch. Since the participants were familiar with these kiosks, they made the 

assumption that the mobile touchscreen behaved in the same way, requiring the 

appropriate amount of pressure to action a touch. When they were asked to discuss 

their experience with the mobile application, two of them commented on the device 

not responding “so I pushed it again harder for longer and it seemed to work fine” 

(P2). P4 used a similar strategy, “You have to press it really hard to hit the buttons”. 

While participants P2 and P4 were applying increase amounts of pressure, P1 

recognised that the device did not require additional force and that a light touch was 

sufficient to make selections “It is much quicker (more responsive) than the ones 

(touchscreens) at the shops”. The experimental apparatus did not capture 

unsuccessful touches as they did not generate application actions such as new page 

views. However, the participants all applied a similar strategy in the event of an 

unrecognised tap of pushing the same target again. While P2 and P4 also talked 

about applying more pressure, all of the participants suggested trying again and 

holding the button for longer. Potentially this strategy could be applied to identify 



48 

 

instances were the device fails to recognise an intentional input, helping to refine the 

parameters of the recognisers.  

Thirdly, this initial work can help define touches in terms of duration.  Previous 

studies investigated users’ abilities to successfully select touchscreen targets of 

various sizes (S. Lee & Zhai, 2009; Parhi et al., 2006; Y. S. Park & Han, 2010) and 

using different interaction methods (Guerreiro, Nicolau, Jorge, & Gonçalves, 2010a). 

However, they did not comment on the timings and durations of these interactions. 

While the indoor navigation application was not logging the durations of the users’ 

touches, it was both observed during the study and reported by the participants that 

timings were a factor of touches. P2 and P4 opted for the longer firm touch method, 

P1 and P3 used touches that appeared to only just make contact with the screen for 

an instant.  

3.7.2 Technical Requirements 

The indoor navigation application used within this study requires connectivity to an 

active WiFi network at all times in order to receive navigation instructions and store 

user interactions back to the web services. The WiFi network canvased the entire 

building, although signal strengths varied throughout and in some cases the 

connection was lost completely. Because the application relied on an active network, 

connection to retrieve instructions or request audio transcriptions, the participants 

occasionally experienced delays during the evaluation causing them to misinterpret 

the instructions. For example, P3 was walking along the corridor while waiting on 

the instructions loading, and received the message “walk down the corridor; take the 

first door on the right”. However, by the time P3 received this instruction he had 
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already walked beyond the first door on the right and therefore took the second door 

and deviated from the route.  At that point he was unable to re-orientate himself, and 

did not complete the task. Similar disruptions were caused by the data logging 

mechanisms. Since all data was logged directly to the remote server via web 

services, any delays within these calls or responses affected the user interface and 

their experience.  

Also in relation to the connectivity issues, interface feedback was affected in other 

ways. The application suffered from variable loading times where some instructions 

would load instantly, while others would take several seconds. The participants 

perceived these issues not as a problem of the device, but rather an issue with their 

own level of touch, and as a result would alter their technique and select the button 

again. When the participants touched down on a button, a highlighted state was 

activated and this was deactivated on touch up. Upon a successful tap the device 

played a beep sound to confirm this interaction. However, the device volume was set 

again during the initial preference setting interview in the quiet laboratory. Once the 

participants began the way-finding task they were exposed to real world ambient 

noises and fluctuations, with the result that P2 and P3 reported not being able to 

clearly hear any beeps or the audio transcriptions from the device during the way-

finding tasks.  

Finally, the experimental application recorded interactions at button level, meaning 

that the log files detailed the buttons that were selected and the corresponding 

actions such as page loads, or playing audio transcriptions. These log files allowed 

the researcher to understand how the device responded to the behaviours observed 



50 

 

during the study, but they did not provide enough detail to accurately describe the 

individual differences within users’ touch interactions. All data were captured 

through the overwritten methods within the UIButton controls.  These components 

have access to finer grain details than recorded within this evaluation. However, 

there is a need for local storage and periodical synchronisation of user data to reduce 

the impact on network demands and device response behaviours.  

3.8 Summary 

Previous investigations of touchscreen behaviours enforced restrictive environmental 

and interaction constraints, presenting participants with abstract calibration tasks far 

from the real world applications and usage situations associated with these 

technologies. This preliminary evaluation explored the individual characteristics of 

touch interactions set within the context of a real world application. Using a stimulus 

application developed in alignment with the current design guidelines and best 

practices, the study allowed the researcher to identify the differences and similarities 

of an individual’s interaction perceptions, strategies and behaviours.  

As a result of the relaxed interaction constraints, this evaluation uncovered new 

touchscreen interaction characteristics beyond the target acquisition challenges, 

demonstrating the various differences of touchscreen interactions. While the 

limitations of the experimental apparatus did not allow quantitative exploration of 

these characteristics, the research observations were supported with participant 

feedback suggesting the need for touchscreens capable of responding to differences 

in gesture timings. Furthermore, this study identified the strategies applied by 

participants to resolve unsuccessful tap gestures.  Leveraging these behaviours 
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would allow the recognition of failed intentional gestures to refine and personalise 

the parameters that define the gesture’s success criteria.  

User preferences were collected during an initial interview and applied to the 

interface prior to the participants beginning the way-finding tasks. All participants 

found the process of configuring settings difficult given that they had not yet used 

the application. Participants were also making configuration choices within the 

controlled laboratory space, where the environmental conditions did not always 

match those of the building in which they carried out their way-finding tasks. 

Interactions were affected by lighting conditions and ambient noise that were not 

present during the initial configuration stage. Therefore, this study has highlighted 

the need for greater consideration of contextual factors to support the configuration 

of user interfaces. 

Finally, the data logging techniques applied within this study did not provide enough 

detail for an accurate analysis of the touch characteristics. There is a need for the 

user input to be collected at a much higher degree of granularity to measure the 

timing and duration of touch interactions.  

3.9 Conclusion 

This chapter introduced the exploratory investigation of touchscreen interactions 

within the context of a real-world application, and was designed to serve as an 

introductory description of the research conducted within this dissertation. The 

chapter presented a preliminary user study that aimed to understand the variances in 

abilities and behaviours of users when interacting with touchscreen devices. User 

needs and requirements as well as technical implications were identified as a result 
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of this evaluation, and influenced the focus and approach adopted throughout the 

remainder of the research work. 
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Chapter 4.  Development of the SUM Framework  

The previous chapter described the preliminary study involving four older adults 

using the indoor navigation touchscreen application. The application was embedded 

with an interaction data collection layer to log the application interactions during the 

study session and these were also combined with the researcher’s observations. The 

resulting analysis of these logs and observations helped to identify and define a set 

of touch interaction characteristics and behaviours to be further investigated.  

This chapter describes the design of the first iteration of the Shared User Modelling 

(SUM) framework, which will be referred to as version one throughout this thesis. 

The chapter begins with a discussion of the challenges of and motivation for using 

SUM. Following this is an overview of the software architecture for SUM version 

one. This overview includes details of and the rationale for the data types recorded 

and the storage structures used. The chapter concludes by considering the intended 

method for embedding SUM framework into third party applications.  

4.1 The Scope of SUM 

Shared User Modelling (SUM) framework has been designed to support the user 

modelling approach of this dissertation. The primary goal of the framework was to 

provide the necessary methods to capture accurate measurements of user abilities 

and performance from real-world interactions. Secondly, the framework needed to 

enable user modelling of the recorded interactions. Finally, SUM had to provide 

mechanisms to apply user models back into the applications. It was crucial to define 
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the user modelling structure that would ensure the framework could support the 

overall approach of this dissertation.  

4.1.1 User Models 

User-adaptive systems, more recently known as adaptive systems, have been a 

popular area of research for decades, making use of the extensive user modelling 

work pioneered by researchers such as Allen, Finin and Rich (Allen, 1990; Finin & 

Drager, 1986; Rich, 1979). Rich (1979) proposed three fundamental considerations 

for classification of user models: Are they models of a canonical (typical) user or are 

they models of individual users? Are they constructed explicitly by the user himself 

or are they abstracted by the system on the basis of the user's behaviour? Do they 

contain short-term, highly specific information or longer-term, more general 

information? Rich believed that the major differences along these dimensions 

corresponded to the resulting forms of adaptive systems. Canonical models of users 

assume a static state, therefore can be defined and embedded directly into the 

application. Alternatively, modelling individual users requires data gathering 

mechanisms to support the creation of the user models at the application usage time. 

Similarly, when considering the selected methods of capturing the user data, the slow 

to change or static aspects of interaction can be acquired through explicit definitions 

whereas the quick to change dynamic aspects are better suited to implicit collection 

methods by the system.  

4.1.1.1 Stereotypes and Individual Representation 

Models built from stereotypes of users can be agreed and defined during the design 

stages of an application. By clustering users into groups based on their similarities, 
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stereotypical profiles can then be used to tailor a system’s behaviour in alignment 

with the profile characteristics. At use time, the actions and behaviours of users are 

captured and classified into one or more of the stereotypical groups. The conceptual 

approach of stereotypical user modelling supports the objectives and processes of the 

universal design movement (Mace, Hardie, & Place, 1991.) encouraging designers to 

think of specific user abilities and needs ahead of time and defining rules or 

behaviours to match these user profiles at use time. 

In contrast, user models that represent an individual must be constructed at use time, 

collecting explicit preferences and user information or implicitly inferring attributes 

and properties regarding the individual from his/her system behaviours. The 

evidence collected at use time is associated with particular attributes stored within 

the user model, allowing the adaptive systems to respond to properties and 

characteristics on an individual basis. These types of user models are supportive of 

the ability-based design (Wobbrock et al., 2011) approach, and the direction of user 

models that will be constructed within this body of research.  

4.1.1.2 Explicit and Implicit Modelling 

Having users explicitly defining their own models provides clean data with a high 

degree of certainty for the user intent. However, issues can arise with this method as 

the user can misunderstand configuration options and may not provide the correct 

information due to a lack of understanding of the resulting configurations, as was 

observed and reported within the preliminary user studies (Chapter 3).  Richards and 

Hanson (2004) proposed an adaptation solution for web browsing, which provided 

users with a simple preference dialog to tailor the presentation of web content 
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complete with a live preview of the modifications. This solution was able to address 

the challenges surrounding the users’ lack of knowledge over defining their interface 

preferences. Nevertheless, having users define and configure their own preferences is 

not suited to short-term models, “if users specified short-term models, they would 

have time for little else” (Rich, 1983), and is therefore ill suited to users with 

variable needs and abilities. Explicit definitions would require exhaustive input from 

the user in order to continually accommodate changing needs and abilities.  

User models constructed from implicit data collection rely on the system’s ability to 

infer new knowledge with a reasonable degree of certainty in the user’s actions or 

intentions. More often than not, the implicit information is captured using methods 

that are tightly coupled with specific tasks.  For example, a workflow within a word 

processing application might be to format the document. From this task the system 

might implicitly infer a user’s preferences for font typefaces, sizes and contrasts. 

Similar to the issues of users misinterpreting the system when explicitly providing 

information, the system can misinterpret user actions and infer false truths. For 

example, the user might have been formatting the text document for someone else, in 

which case those properties inferred are not associated with the user. 

There is scope for hybrid systems that are capable of leveraging both explicit and 

implicit data collection methods, implicitly measuring attributes and properties 

specific to the user then having the user explicitly confirm or deny the resulting 

inferences.  
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4.1.1.3 Short-term and Long-term Information 

Rich (1979) distinguishes between short-term and long-term models based on the 

application of the model information: is it specific to the current task or can the 

information be applied in a more general form, such as defining an individual’s 

domain knowledge? (Rich, 1983). The approach of SUM is to model the current 

needs and abilities of the user, then provide interface adaptations to better support 

the interactions at that point. Therefore, SUM uses short-term models to respond 

quickly to an individual’s needs rather than modelling his/her overall understanding 

or domain knowledge of a particular application.  

4.2 Design of SUM 

The SUM framework is a software architecture designed to address the fundamental 

challenges of designing accessible touchscreen interfaces. SUM is intended to be 

embedded into applications to capture accurate measurements of a user’s current 

abilities and needs, then adapt application interfaces to meet those needs and 

abilities. The framework is domain and platform independent, and is designed to 

support custom accessibility/usability adaptations to provide the most suitable 

interaction experience for a person based on his/her specific needs at that point in 

time. 

In order to reduce the complexities of ability-based interface design, the SUM 

framework extends and complements the existing application programming interface 

(API) protocols supplied to developers by the mobile device operating systems (OS). 

This architecture allows developers to embed the framework with little programming 

overhead, disruption to design patterns or impact on application performance rates. 
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SUM provides developers with a lightweight client framework, responsible for 

capturing the user’s interactions via the various device sensors, then storing this data 

within a local database. The framework is responsible for synchronisation of user 

data with the remote SUMServer, and contains the necessary methods for handling 

the resulting user models. This makes the process of creating personalised interface 

adaptations automatic from the perspective of the developer, and invisible to the 

users. 

4.2.1 Features of SUM 

The preliminary user study detailed in Chapter 3 helped to identify the interaction 

preferences and challenges faced by users with low levels of visual and motor 

abilities, when using mobile touchscreen devices. To address these challenges the 

following features were defined for SUM user models and interface adaptations. 

Duration, represents the time interval from the instance the user’s finger touches the 

surface (Touch Begin) until it is then removed (Touch Ended). The user models will 

allow the minimum and maximum duration parameters of the tap gesture recognisers 

to be adapted.  

Target bounds, contains both the width and height parameters of the interface 

elements, and is expressed in pixel units as used by the devices. The user models will 

contain a minimum target bounds for optimal visual representation. 

Touch Offsets, capture the interaction offset behaviours of the user when touching 

the screen. The user models will capture both the horizontal (X) and vertical (Y) 
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touch offsets in pixel units, allowing the user’s touch inputs to be shifted and 

corrected for.  

Font Size, contains the minimum font size that the user can confidently read from the 

screen. This property can be used to set the text sizes of interface elements. If the 

font size results in a larger bounds than defined by the minimum target bounds, then 

the interface element will use the bounding size required by the font size and text 

label.  

Modality Preferences, represents the user’s preference for textual, audio, and visual 

modalities of interface components. The user models contain scalar values 0.0-1.0, 

where 0 is a low preference and 1 is a high preference for the particular modality.  

4.2.2 Structure 

Figure 4.1 shows the high level architecture of SUM, demonstrating the way that the 

SUM framework supports the reuse of user models between applications using a 

centralised user model structure. Once the SUMClient (Section 4.2.3) libraries have 

been embedded into the application, user interactions can be captured and stored 

locally within the client database (Figure 4.7). Using HTTP requests with the 

SUMServer (Section 4.2.4), the SUMClient can transfer new user data to be 

synchronised with the user’s SUM model. Similarly, the SUMClient can request 

specific model attributes to support the interface adaptations.  
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Figure 4.1 UML diagram of the SUM Framework (all versions), illustrating applications 
accessing the shared user model via RESTful requests with the SUM Web Services 

4.2.3 Domain and Platform Independence 

The SUM framework has been developed from the ground up, to fully support the 

exchange of user information between applications and devices. By maintaining a 

consistent capturing of data, and structure of data storage, between the local 

application models and the remote server aggregated models, SUM ensures that any 

and all user data can be mapped from one domain to another. Since the SUMClient 

framework handles all of the sensor monitoring and storage, user interactions are 

captured in an identical manner for each application using the framework. As a 

result, unlike other conventional domain-independent modelling techniques, no 

model mappings need to be generated for SUM application mappings within the 

same device platform.  
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However, due to the many varieties of mobile touchscreen devices, and the various 

software OS available on the devices, there can be ambiguities in the sensor 

recordings between the device platforms. These inconsistencies can be the direct 

result of different hardware properties or sensors, or indirectly due to the individual 

design of OS software. The result of the variances between device platforms means 

that SUM is required to use model mapping techniques to ensure that user 

information is interchangeable across device platforms. However, SUM maintains a 

hardware profile for each device and OS pairing, providing the required information 

to map sensor information between platforms. For example, the device D1 has the 

following attributes (pixelWidth:320; pixelHeight:480; mmWidth:76.2; 

mmHeight:81.28), device model D2 similarly had the attributes (pixelWidth: 1024; 

pixelHeight: 768; mmWidth: 177.8; mmHeight: 101.6). These attributes allow the 

touch data and target information to be normalised and expressed using relative 

positioning and sizing. 

The user models are normalised using the device properties when the data is 

aggregated in the SUMServer, with the server model representing a canonical model 

as shown in Figure 4.2 below. 
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Figure 4.2 Direct model mapping (left) and SUM canonical model mapping (right). 

This approach was selected as opposed to the alternative of direct mapping between 

devices for two reasons. Firstly, the canonical model simplifies the processing 

structure of the SUM framework – the methods need only be coded to deal with this 

one type of model. Second, the SUM framework scales for future devices. Using the 

canonical model structure, adding a new device results in a single bidirectional 

mapping from device Dx to SUM.  In contrast, using a direct mapping approach 

adding a single new device would require bidirectional mapping from Dx to all other 

previously mapped devices. Figure 4.3 illustrates the effects of adding new devices 

within both mapping approaches.  
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Figure 4.3 Adding a new device, direct mapping (left) and SUM canonical model mapping 
(right). 

The adopted canonical mapping technique also serves as a safeguard to the 

development of a standard user model structure in the future. Using the model 

mapping technique previously discussed, the SUM canonical model could be 

mapped to other user model structures. The process would require an expert to 

manually define the attribute mappings between SUM and the new model structure 

just once, which would then allow the interoperability for any previously connected 

platforms through SUM to the new model structure. 

4.2.4 SUMClient 

The SUMClient manages interaction data capturing and synchronisation, meaning 

that developers need only exchange their existing user interface controls with the 

ones provided through the SUMClient application programming interface (API) to 

pass interaction data to the framework. This is a simple substitution of the iOS 

UIControl class with the SUMControl overwritten version, which is coupled with the 

user model data. These new interface controls will log interaction data and refine the 
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associated gesture characteristics such as touch duration, target offsets match the 

abilities of the user. 

 

Figure 4.4 SUMClient software architecture showing the communication between internal 
components 

The overwritten UIControls provided through the SUMClient framework 

automatically add the additional code required to capture and store any touch 

interactions made with that UIControl. These interface controls respond to the three 

touch states: touch begin, touch move and touch end. Since each control is embedded 

with the code, the framework is able to directly map the user’s touch interactions 

with the specific interface control. Figure 4.5 demonstrates this association, where 

touch T1 occurs within interface control UI4. The resulting interaction log would be:  

Touch:{id:1, x:178, y:245, timestamp:1370414769, duration:0.921, 

target:{id:4, x:165, y:210, width:140, height:60} } 
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Figure 4.5 Diagram showing the touch recording concept applied by the SUM Framework to an 
interface. 

Measuring the touch interactions at this level of detail allows measurements of touch 

offsets, durations and time between touches to be made in relation to target locations 

and sizes. Touch offsets are calculated as the distance of the user’s touch to the 

centroid of the target. Duration represents the length of time from the instant the 

touch-begin event is received, to the time of the touch-end event. SUMClient uses 

millisecond accuracy of touch durations to identify small variations in timings.  

SUMClient uses a mobile device’s built-in motion sensors to capture the raw device 

motion values. To ensure high definition of motion events, data is logged at 100Hz. 

No processing is performed within the SUMClient on the motion data; it simply 

measures and stores the magnitude values from the sensor. At the time of 

development, the sensors output the combined user motion and device orientation 

within the same value. The iPod touch used within the preliminary research (Chapter 
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3) contained a tri-axis accelerometer capable of providing measurements of the 

device movements as shown in Figure 4.6. The raw acceleration values were 

processed within the SUMServer, applying filters to isolate motion data specific to 

user movements, and device orientations.  

 

Figure 4.6 Mobile device accelerometer axis relative to the device orientation. 

Figure 4.7 shows the high-level table structure of the local database within the 

SUMClient framework. SUM framework focuses on the accurate measurement and 

modelling of user interaction abilities and the local database has been designed to 

support these objectives. The database was developed using SQLite2, a lightweight 

SQL database engine that is compatible across the OS of most mobile devices. 

                                                
2 http://www.sqlite.org/ 
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Figure 4.7 UML diagram of the SUM database structure (Version 1) used for capturing user 
interaction. 

User: For authentication purposes users must set up a username and password, at 

which point they are allocated a unique user identification number. All user 

measurements and constructed models can then be associated to an individual user 

and not the device, thus allowing multiple users to share a single device and its 

applications. 

Application: Before an application can access the SUM framework to collect user 

data and retrieve user models it must first be registered with the SUMServer. Once 

registered, applications receive a unique application key (appKey) which is 

associated with any data collected through that application. Creating this association 

allows for closer inspection of user data in relation to the origins of its collection. 

Furthermore, this is a fundamental component for the implementation of security 

protocols to allow end users control over the data that can be captured or accessed by 

a particular application. While these issues are outside the scope of this thesis, it is 

recognised as an important component to the success of such user modelling 

systems.  
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Device: The SUM Framework has been designed as both domain and platform 

independent. To support this functionality the system needs specific knowledge of 

the device properties and sensors in order to create the required data mappings from 

the device values to the normalised SUM model. The device profiles included the 

following: maximum touches; screen width; screen height; wifi enabled; internet 

enabled; has accelerometer; has gyroscope; has microphone; has camera and has 

audio output. 

Touch and Target: SUMClient captures touch measurements in relation to the user 

interface elements that were being interacted with (Figure 4.5). A single tap gesture 

recorded through SUM would contain the following: unique id; timestamp; x and y 

screen locations; duration of gesture; target x and y locations and target width and 

height values. Capturing the interactions at this level of detail allows SUM to 

perform similar measurements and analysis techniques as the contemporary projects 

previously discussed within the scope of SUM (Section 4.1.1). 

Motion: Device motion is captured through the built-in accelerometer or gyroscope 

sensors; SUMClient captures the raw sensor output from each sensor update storing 

the x, y, z magnitudes, and the timestamp. The motion magnitudes contain both the 

device orientation and the user movement data, therefore filters would need to be 

applied to isolate the specific information of interest. For example, applying a low 

pass filter can reveal the effects of gravity on the devices accelerometer sensor and 

applying the accelerometer axis overlays (Figure 4.6) to the motion data provides the 

device’s orientation.  
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Model and Attribute: SUM has been designed to respond to short-term changes in 

user behaviour. Consequently, the user does not have a single user model; instead 

new user models can be generated upon request, pulling newly available interaction 

evidence to produce a user model that is fitting for the user’s current needs and 

abilities. Each model has a unique identification number linked with the model 

instance stored within the SUMServer and a timestamp for when the model was 

created. Then, within the Attribute table the model data is stored using the highly 

flexible key-value pair structure, to allow SUM models to handle future attributes 

beyond the current defined set of properties of interest. 

Log: This attribute does not have a direct relationship to user measurements or 

models. However, the log allows for checkpoints to be placed within the application 

for debugging. Each log contains a text description and a timestamp. Within the 

context of this research the log functions were used to gain a finer grain 

understanding of the specific pages and actions associated with a particular touch. 

For example, Page loaded: Contact details - John Smith therefore any touch 

interactions after this timestamp took place within the Contact details page for John 

Smith. 

SUMClient does not perform any data modelling; it is responsible for collecting 

measurements of touchscreen interactions and relaying this data to the SUMServer. 

To retrieve a new user model the SUMClient sends an HTTP request to the 

SUMServer to generate a new user model. SUMServer will then return a JSON 

string containing the new model for the current user. For example,  
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model:{id:123, timestamp:1370414769, attributes:{ 

 attribute:{key:Tap_MinDuration,value:.021}, 

 attribute:{key:Tap_MaxDuration,value:.928}, 

 attribute:{key:Tap_MinTargetWidth,value:40}, 

 attribute:{key:Tap_MinTargetHeight,value:32}, 

 …}} 

The model is then stored locally and can be accessed via SUMClient API calls to 

retrieve specific model variables. While the SUM models would allow for any key-

value pair to exist, the SUMClient provides a standard set of functions to support 

interface adaptations and queries consistently across applications avoiding domain 

specific terms. The initial set of model attributes was selected based on the 

characteristics identified within the preliminary study (Chapter 3) and related work 

(Chapter 2). The SUMClient provides accessor methods for the features of SUM 

(section 4.2.1): 

• Minimum and Maximum Duration  

• Minimum Target Width and Height 

• Target Offsets 

• Minimum Font Size 

• Preferences for Text, Audio and Images 
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4.2.5 SUMServer 

The SUMServer consists of the SUM modeller, user model database and front facing 

web services that manage application access, data synchronisation and user model 

requests (Figure 4.9). To ensure data consistency, only applications embedded with 

the SUMClient may access the web services.  This restriction guarantees that any 

data provided to the SUM Framework has been collected and maintained in a 

consistent manner. The design is also supportive of the security and authentication 

methods (Section 4.3.2). SUMServer has been developed using JSP and MySQL, 

both of which are supported on most Apache server installations.  

 

 

Figure 4.8 SUMServer software architecture showing the communication between internal 
components. 

SUMServer uses a REST architecture, enabling lightweight mechanisms for 

synchronising user data and requesting user models. The web services conform to 

the best practices of REST allowing the SUMClient to take advantage of the device’s 
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native REST API if available thereby helping to minimise code duplication and 

reduce performance impact of the client functions.  

Date synchronisation is manually performed through the settings panel embedded 

within the application using the SUMClient. The researcher can request that the 

application transfer all local data or make a request for an up to date model for the 

current user. 

A new synchronisation request will create a new session entry associated with the 

user and return the session’s unique identification number. Once the SUMClient 

receives the session id, it can then parse all of the new user data making the 

necessary POST requests to add the data with the session id. For example, adding the 

touch event illustrated in Figure 4.5. 

URI: jsp.computing.dundee.ac.uk/SUM/touch 

Method: POST 

Parameters:{session_id:(ID from SUMServer), x:178, y:245, 

timestamp:1370414769, duration:0.921, target:{id:4, x:165, y:210, 

width:140, height:60} } 

The SUM modeller does not use any machine learning techniques at present. Due to 

the lack of detailed interaction measurements from the preliminary study (Chapter 

3), the SUM framework uses simple statistical methods to define optimal parameters 

from the user’s previous interactions. SUM modeller creates a Gaussian distribution 

of the attribute’s values then defines bounding parameters using the lower and upper 

5th percentiles to identify the range of possible values within the given attribute. 

Figure 4.9 illustrates the Gaussian distribution for the duration of a tap gesture, 

successful timings occur within the inner bounds of the distribution. 
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Figure 4.9 Gaussian distribution of touch durations: the highlighted areas represent the 5th and 
95th percentile cut off points for the model. 

4.3 Building with the SUM Framework 

Although the primary goal of this work is to investigate the potential of the SUM 

approach to user modelling, it was also important to define realistic methods to 

achieve such models. Therefore, the SUM framework has been designed to match 

the current mobile development workflows and present a minimal impact on device 

performance and network activity. Similarly, much of the functionality such as 

authentication and interface adaptation has been automated to remove the burden for 

the developers. 

4.3.1 Library and API 

Designed to minimise disruption of mobile application development workflow, the 

SUMClient is packaged into a single self-contained static library file for iOS 

development. Developers can import the static library through the standard 

development process, and then include the framework within the project by adding 

#import SUM/SUMCore.h to the project’s AppName-Prefix.pch file. This will then 
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allow the developer to make calls to the SUMClient framework within any class file 

in the project.  

4.3.2 Authentication  

Before an application can utilise the SUM framework’s features, it must first 

authenticate with the SUMServer to ensure that access has been granted. After 

registering with the SUM framework developers would be provided with their 

unique application authentication key to be added in the application launch method 

(Figure 4.10). This key is used to verify the application with each launch to ensure 

access is granted. In the event of no active Internet connection, the application will 

proceed to operate as normal using the local data without access to any SUMServer 

features i.e. model requests, or data aggregation.  

Upon the first launch of the SUM enabled application, if no user credentials are 

identified, the framework will automatically prompt the user to login with his/her 

username and password. Successful login details are then stored for future sessions 

and can be removed via the application settings panel within the SUM 

configurations. Once logged in, SUM will activate the logging procedures and begin 

capturing user interactions.  

 

Figure 4.10 Code required for SUMClient initialisation and application authentication 
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4.3.3 Interface Adaptation 

The SUM framework (version 1) is not an autonomous interface generating system 

like the SUPPLE (Gajos et al., 2007) system, which creates interfaces optimised for 

user abilities and removes the interface designer’s control and input. Instead, SUM 

has been designed to supply an application with the optimal parameters for a user’s 

current needs and abilities; allowing developers to receive this information and 

decide on the appropriate actions to respond with. For example, the WalkType 

system (Goel et al., 2012)) contains multiple interface layouts: one for small targets 

with more on the screen and another with larger targets spanning the full width of the 

screen, with fewer items visible at once. Using SUM, the system could have 

requested the optimal target size for the user’s current abilities then selected the 

appropriate interface that supported those requirements. 

4.4 Conclusions 

The design and development of SUM Framework were presented in this chapter.  

SUM is a user modelling framework designed to collect measurements of touch 

performance and adapt interfaces to match each user’s abilities. Background and 

related work to support the need for the development of SUM were presented in this 

chapter, along with some refinement of the scope and direction of this current 

research. The core concepts of SUM were outlined and the technical design and 

architecture of the framework were described. This was followed by a discussion of 

the intended workflow of building applications using the SUM framework. 
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Chapter 5. Laboratory Evaluation with SUM 

This chapter presents the laboratory user evaluations conducted with 12 participants 

having visual and motor impairments.  The evaluation uses three applications in 

which the SUM framework is embedded (Chapter 4). The primary objective of this 

study was to evaluate the application of the SUM framework as a method for 

capturing user measurements and providing individual interface adaptations to 

touchscreen devices. Secondly, this study aimed to further explore the characteristics 

and behaviours of users when interacting with mobile touchscreen devices by 

capturing detailed measurements of their onscreen interactions. The user study 

details the process of embedding the SUM framework into touchscreen applications, 

and outlines the analysis techniques used to retrieve accurate measurements of user 

performance from SUM interactions.  

5.1 User Study 

This section presents the laboratory study carried out with 12 individuals with 

various levels of visual and motor abilities. The objectives of this investigation were: 

firstly, to evaluate the application of the SUM framework as a method of measuring 

individual needs and abilities; secondly, the study explored adaptation techniques 

designed to improve touchscreen accessibility and better support the users’ 

individual abilities and needs. Finally, this study aimed to review the use of shared 

user models between applications to support accurate modelling of user abilities. To 

understand the effects of the SUM adaptions, the following two-interface conditions 

were defined: 
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Static: The static interface condition represents the default interface designs and 

interaction behaviours. Participants within the static interface group would receive 

applications using the manufacturers default touch gesture recognisers, and interface 

elements used the guideline (Apple, 2009) target properties (i.e. font sizes and target 

bounds). 

Adaptive: The adaptive interface condition represents the interfaces made possible by 

the SUM framework. Participants within the adaptive interface group would receive 

applications using the SUM adapted touch gesture recognisers (i.e. personalised 

touch durations and offsets), and interface elements (i.e. target bounds would be 

adjusted to the individual, and interface modalities would adjust based on 

preferences). These adaptions were performed to the Indoor navigation and TV 

Guide applications before the participants used them, and adaptions occurred 

continuously during the Target Practice tasks. 

5.1.1 Participants 

As reviewed in previous chapters, persons with low vision and motor impairments 

experience challenges when interacting with mobile touchscreen technologies. The 

preliminary user evaluation involved older adults who exhibited characteristics of 

low levels of vision and motor control, helping to expose the challenges and identify 

strategies to mitigate these barriers. This laboratory evaluation aimed to examine the 

utility of shared user modelling for individuals with visual and motor impairments, 

providing adaptations that matched their individual abilities and not the stereotypical 

characteristics of disabilities. Furthermore, the research intended to investigate the 

feasibility of a model that would allow interaction features to be tailored to an 
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individual. For these reasons, users with a variety of abilities were recruited to 

evaluate the performance of the models across a diverse range of users. A total of 

three male and nine female adults were recruited. They ranged in age from 21-71 

(M=54, SD=20) and all possessed characteristics that would qualify them as low 

vision and/or motor impaired. To ensure this evaluation exposed challenges 

pertaining to the physical interactions of mobile touchscreens and not the barriers 

relating to using digital technologies, all participants were required to own and use a 

mobile phone (although not necessarily a smart phone) and have a computer. Table 

5.1 provides information about the participating individuals and their characteristics. 

See appendix 2 for information sheet and consent forms. 
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ID Age Gender Method Touchscreen 
Experience Group Impairment Current 

Accommodations 

P1 67 Female Static None VM Tremors in hands, 
short-sighted 

Medication to 
suppress symptoms 

P2 58 Male Static Self-service 
machines VM 

Spinal injury, 
muscle spasms, 
sensitive to light 

Medication to 
suppress symptoms, 
powered wheelchair. 

P3 57 Female Static None M 
Dopa-responsive 
dystonia, muscle 

cramps, tremors in 
hands 

Reduced sensitivity 
of keyboard and 

mouse to minimise 
errors. 

P4 66 Male Static Self-service 
machines M Spinal injury, hand 

and wrist pains  

P5 66 Female Adaptive None V 
Retinal detachment, 

macular 
degeneration, 

diplopia 

Guide dog, 
magnifying glasses, 

screen reader 
software on PC 

P6 65 Female Adaptive None VM 
Macular 

degeneration in left 
eye, tremors in 

hands 

Powered wheelchair, 
full-time carers, 

mobile with large 
buttons 

P7 67 Female Adaptive None V 
No binocular vision, 

reduced vision in 
left eye. 

Magnifying glasses 

P8 21 Female Adaptive 
Has a 

touchscreen 
phone (single 

touch) 

M 
Hypermobility 

syndrome, locking 
joints and tremors in 

hands 

Wheelchair, 
medication to 

suppress symptoms 

P9 71 Female Adaptive None M 

Myalgic 
encephalomyelitis, 

muscle twitches and 
spasms in arms and 

hands 

Medication to 
suppress mobility 

symptoms not 
cognitive 

P10 64 Female Static None V Reduced vision in 
left eye 

 
 

P11 23 Male Adaptive 
Has used ipod 
touch before, 
self-service 
machines 

V 
Registered blind, 

issues adjusting to 
changes in light 

levels 

Monocular, screen 
magnification on PC, 

mobile with large 
buttons 

P12 22 Female Static None VM 

Ataxia with 
oculomotor apraxia, 

reduced levels of 
vision, muscle 

twitches in hands 
and difficulties with 
fine motor control 

Powered wheelchair, 
full-time carers, 

mobile with large 
buttons 

Table 5.1 Overview of participant information 
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5.1.2 Apparatus 

The mobile device selected for this study was the second generation Apple iPod 

touch (Figure 3.1) running iOS 3.0 as used within the preliminary research (Chapter 

3). While this version of the OS shipped with a suite of accessibility features 

including VoiceOver text to speech, these features were not available to the second 

generation devices used within this study.  

5.1.2.1 Experimental Apps 

The three iPod Touch apps specifically developed for this study were: Target 

Practice, Indoor Navigation and a TV Guide. Each application required the 

participant to interact with on-screen controls using a single touch, known as a tap 

gesture. Within the Target Practice and Indoor Navigation applications the device 

responded only to a tap gesture. Whilst the primary input for the TV Guide was a 

single tap, it also required the users to swipe vertically to scroll through the TV 

listings. The interface adaptations created in the apps for visually impaired users also 

provided for scaling of text sizes and provided a text-to-speech option. Those 

adaptations, however, were largely based on user preferences as input, rather than 

abilities input. For the purpose of the current SUM Framework investigation, these 

adaptations will not be analysed in detail, although the user satisfaction ratings (to be 

described later) will be reflective of the fact that adaptations were made for the 

visually impaired participants.  

Each of the three experimental apps was designed and built to conform with the iOS 

interface guidelines (Apple, 2009). For all three, interface elements were given 

minimum bounds of 10mm (60 pixels on this device) identified in previous research 
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to be the optimal target size for daily users of these devices (S. Lee & Zhai, 2009; 

Parhi et al., 2006; Y. S. Park et al., 2008). The SUMClient framework was 

embedded into all the apps for device monitoring and communication with the 

SUMServer for user modelling.  

The apps shared user models by synchronising with the SUMServer after each 

application task was complete. Similarly, at the beginning of each application task 

the researcher would request the latest user model from the SUMServer for the 

participant. Adaptations were applied specifically to users receiving the adaptive 

interface condition (Table 5.1) before the participant used the application; default 

values were employed for the static interfaces. However, all participants used the 

Target Practice application in both interface conditions. Furthermore, the Target 

Practice application performed interface adaptations in real-time (i.e. the targets 

would scale up and down, likewise the minimum and maximum tap durations would 

adjust). Complete details of the adaptations are outline in section 5.1.3.1.  

5.1.2.2 Target Practice 

The Target Practice app (Figure 5.1), was designed to capture baseline data about 

participants’ abilities at the time of test. As users with disabilities can often 

experience fluctuations in ability, this baseline data was essential. The app generated 

200 pairs of targets within the screen. Users were asked to tap the ‘green targets 

only’ (none of the participants indicated that they were colour-blind). If the 

participant does not tap the target within 10 seconds of it appearing on the screen 

then the application moves onto the next target pair, and generates two new targets. 

Likewise if the participant touches the wrong target, or an empty location on the 
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screen, the application will accept the input and move onto the next target pair until 

the game is complete. The target positions were pseudo-random as constraints were 

applied to the position generator to ensure good distribution of the targets. 

Specifically, the screen was divided into three sections vertically and horizontally, 

with the centre section twice the size of the other two for the vertical divisions 

(1:2:1) and three times the size of the other two for the horizontal divisions (1:3:1). 

 

Figure 5.1 Target Practice gameplay screens: static interface (A) and adaptive interface (B) 
conditions. 

5.1.2.3 Indoor Navigation 

In the Indoor Navigation app shown in Figure 5.2, the user interactions and 

appearance of this application remained unchanged from the version used with the 

exploratory evaluations (Chapter 3). However, the technical design of the application 

was refined based on the limitations identified from the previous evaluation. The 

updated application preloaded all instruction content and media elements prior to the 
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user undergoing the way-finding task. This change ensured that all instructions were 

successfully loaded and maintained a consistent user experience regardless of WiFi 

network strength or connectivity. The indoor navigation application was designed to 

provide users with individually tailored way-finding instructions; it made adaptations 

to the interface delivered to the user such as scaling visual interface elements. Way-

finding routes were kept consistent for each participant. 

Participants were asked to complete two indoor way-finding tasks within the 

University’s School of Computing building (an unfamiliar environment for them), 

using only the instructions provided by the Indoor Navigation app. This navigation 

was accomplished via stored location information and the user’s ability to match 

descriptions or images to their current location (Montague, 2010). The navigation 

tasks required that the participant physically navigate from one location to another. 

Each participant performed both routes, however the order in which the participants 

carried out the tasks was counterbalanced. 

Instructions were provided as text way-finding directions and accompanying images, 

with the option to have text read aloud using the audio button. 
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Figure 5.2 Indoor Navigation application instruction screen, static interface (A) and example of 
a low vision  interface of the adaptive interface (B) 

5.1.2.4 TV Guide 

The TV Guide app (Figure 5.3), provided users with fixed TV listings for seven 

channels and 28 programmes. Users were asked to find specific TV programmes. To 

do this, they needed to browse through lists and grids of channels and programmes. 

Upon finding the programme they were asked to name the TV channel it airs on; 

transmission date and time; read aloud the description text and then state any 

available access formats (such as Audio Description being available). 
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Figure 5.3 TV Guide application, programme list view for static condition (A) and example of a 
low vision interface of the adaptive condition (B); programme details view for the static 

condition (C). 

5.1.3 Procedure  

The evaluations were split between two sessions to ensure participants would not 

experience exhaustion or fatigue during the study. Each session consisted of testing 

two of the experimental apps, administration of a paper and pencil questionnaire and 

a informal discussion with the researcher. The total session time for this first session 

was between 45 and 70 minutes, with most participants completing in one hour. 

They were gifted vouchers (worth £10) for their participation in each session. The 

tasks were structured in two sessions, as follows: 

5.1.3.1 Session 1 

Experimental sessions were conducted in a university environment and began with 

participants being given an overview of the research and each of them reading and 
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signing the Informed Consent form prior to the start of the study. All participants 

then completed the following steps, in order: 

Interview: This background interview collected data about participants’ mobile 

phone use, computer experience, handedness, and experience with touchscreen 

devices. Of the 12 participants, all of them used a mobile phone on a daily basis. 

Only three owned touch-enabled smart phones and they were the only participants to 

have previously used a touchscreen mobile device. The researcher also discussed 

participants’ abilities, asking questions about the use of glasses and assistive 

technology devices.  

Target practice tasks: Each participant did the target practice task twice – once 

with the Adaptive interface and once with the Static interface. Participants’ touches 

were analysed throughout the target practice task to produce the interaction changes 

for the Adaptive condition. These changes were uniform scaling of target sizes and 

adjustments to touch duration bounds. Target scaling factors were calculated based 

on a participant’s offset distance (x) from target centroid when tapping targets.  

 

Equation 5.1 Target scaling factor, where k is the scaling factor and x-bar is the mean offset 
distance from the target centroid. 

To eliminate outlier values, the minimum (10th percentile for individual user) and 

maximum (90th percentile per individual users) target offsets were removed 

(Chapter 4).  

Static interfaces had consistent target bounds of 60x60 pixels and no minimum or 

maximum touch duration. The order of these two conditions was counterbalanced 

k = x̄

2
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between participants such that half received the Static interface first. While using the 

target practice app, participants were asked to relax in an armchair (or their own 

wheelchair). Each test with the target practice task lasted about four to five minutes 

(Static, M = 291 seconds, SD = 278.2 and Adaptive, M = 213 seconds, SD = 111.5).  

Setting Preferences: Following the target practice task, the user inputs were 

synchronised with the SUMServer. In addition, participants were asked about their 

preferences in terms of audio and text presentation and their preferred volume level 

was set. These preferences were entered into the user model by the researcher.  

Indoor Navigation app: Participants were then given the Indoor Navigation app 

with the interface condition matching the method for their allocated group. The 

interface method allocation of each participant is shown in Table 5.1.  

For the Adaptive method, two types of changes were made. The first applied the 

scaling factor and touch duration bounds from the target practice task to the Indoor 

Navigation interface elements. In addition, the individual’s preferences for text, 

audio and images were applied, thus altering the modalities present in the interface. 

For the Static method, the interface was shown with no accessibility adaptations, as 

with the target practice app. Participants averaged about four minutes to complete 

each of the two Indoor Navigation tasks. Participants were able to complete all of the 

tasks with one exception in the Indoor Navigation study. This inability to complete 

one task was due to a technical disruption caused by a loss of Wi-Fi connectivity. 

Questionnaire for Indoor Navigation app: The Simple Usability Scale (SUS) 

questionnaire (Brooke, 1996) was administered. This questionnaire consists of 10 
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questions about usability, with participants being asked to respond on a five point 

Likert scale. Although this questionnaire was initially designed to be a paper and 

pencil test, it became clear with the first few participants that it was difficult for them 

to read even the 14- point text and/or mark their answers. The researcher therefore 

adopted the procedure of reading the statements aloud to participants and asking 

them to verbally indicate their responses (“Strongly agree” “Agree” “Neutral” 

“Disagree” or “Strongly disagree”).  

Informal Discussion: Each session ended with the experimenter asking the 

participant for feedback on her/his experience. This was augmented with the 

researcher’s recorded observations.  

  

5.1.3.2 Session 2 

The structure of this second session was similar to that of session one. The total 

duration of this second session was about one hour, ranging between 50 and 90 

minutes for the 12 participants. The time between the two sessions varied with the 

second session taking place from one week to three months after the first session, 

depending on participant availability. 

Interview: The experimenter began by asking participants about any known changes 

in their abilities since the previous session. This proved to be useful, particularly in 

one case, in which the participant had had a change of medication and was more 

comfortable with the touchscreen than in the first session. The experimenter asked 

questions about their TV viewing habits, whether they used subtitles (captioning), 
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on-screen TV guides, on-demand services, recording systems, and how they planned 

their TV viewing.  

Target practice tasks: Participants repeated both target practice tasks, using the 

Static and Adaptive interfaces in the same order they had used them in Session 1.  

Vision test: Participants were given a Snellen eye test for both distance and reading. 

The results of this reading test were added to the individual’s user model to identify 

a font size for optimal viewing. iOS uses a variation of Helvetica by default, and its 

pixel size is 16px for normal text. The assumption was that this text would be the 

minimum size anyone should be given. Thus, 20/20 vision was allocated 16px, the 

rest of the font sizes were calculated based on this value; for example, for 20/50 

vision, 50/20*16px (our default size for this font) therefore the size was set at 40px.  

TV Guide app: Each participant then performed the tasks for the TV Guide app. 

Participants were tested with either the Static or Adaptive interface depending on 

their assigned Method as shown in Table 5.1. For the Adaptive interface, elements 

were adjusted to be consistent with the methods used in the Indoor Navigation 

version, with the addition of the Snellen results being used to scale the text size. The 

static interface again had no adaptations and participants received default text sizes 

and touch properties for the device. The tasks for the TV Guide app took, on 

average, 20 minutes to complete. 

Questionnaire for TV Guide app: Participants were verbally asked the questions 

from the SUS questionnaire, with respect to their experience with this second 

sessions’ experimental app.  
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Informal Discussion: Participants were given the opportunity to comment on any 

features of the apps they wished to. The experimenter also followed up on any 

observations made during each of the participants’ sessions (Figure 5.4).  

 

 

Figure 5.4 Informal discussion and a participant sharing her experience of the laboratory study 
and using the applications on the touchscreen device. 

5.2 Results 

The objectives of this study were to evaluate the use of the SUM framework to both 

accurately measure user performance and provide appropriate interface adaptations. 

Interface adaptations were made based on the user’s previous interaction data with 

the experimental applications, for example, using the interactions within the target 

practice game to perform adaptations to the interface of the Indoor Navigation 

application. This approach allowed the interfaces to be tailored to the user’s abilities 

and needs before he/she ever used it (these adaptations excluded the first application, 
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since no prior data existed). The study also aimed to further explore the 

characteristics and behaviours of touchscreen interactions, building on the 

investigation within the preliminary research (Chapter 3). 

5.2.1 Qualitative 

Qualitative measures were captured through researcher observations and informal 

discussions after participants completed the application tasks.  

5.2.1.1 Applications vs. Tasks 

Previous works relied on explicit calibration exercises to obtain accurate 

measurements of users’ performance (Gajos et al., 2007; Trewin et al., 2006), the 

goal of SUM was to remove the need for ability elicitation tasks by capturing 

measurements of user interactions in the background of real applications. Therefore, 

this study involved participants using applications that would either be found already 

in the mobile marketplaces (Target practice and TV Guide) or served a real world 

purpose (Indoor Navigation).  

Whilst SUM aims to address the challenges of background user modelling, it was 

also important that the participants believed the applications served a purpose 

beyond measuring their performance. Did the participant believe they were using a 

real world application, or did it still feel like a calibration task? Participants were 

asked to discuss their experience of using each application, and comment on their 

desire to use such an application again outwith the evaluation. All participants 

agreed that the TV Guide application would be very useful, and it was easier to find 

shows than using the printed Radio Times TV guide. Likewise, most participants 

(excluding P11) believed the Indoor Navigation application would be extremely 
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useful in their lives. P5 commented “It would be great for the visits to Ninewells 

[hospital] for my checkups and appointments, sometimes it’s like a maze”. However, 

none of the participants particularly enjoyed using the Target Practice game, “It 

seemed very tedious and boring…I would not play this at home” expressed P8. Of 

the three applications, Target Practice most resembled a calibration task. Participants 

were guided to select an onscreen target with no rationale for why they must perform 

this task, nor an incentive to continue to interact with the application.  

Participants were asked to suggest possible uses or applications that would be 

beneficial to have on such a mobile touchscreen device. Again, all participants 

suggested the TV Guide application would be desirable, but with the additional 

functionality to set reminders for TV Shows or remotely record them. Other 

suggestions included accessing emails, video calling with family and general web 

browsing, medication and appointment reminders, playing games and using social 

networks. All of the ideas are currently possible and exist as applications on these 

touchscreen devices. Furthermore, the interaction methods of the suggested 

applications closely resemble those of the applications within this user study. Thus, 

future evaluations should seek to incorporate these more desirable and appealing 

applications to gain self-motivated interactions, as opposed to forcing participants to 

engage with content that they have little to no interest in. 

In conclusion, two of the experimental applications successfully resembled real 

world applications, and convinced the participants that they were not simply 

performing an ability elicitation task. Nevertheless, all participants felt that the 



93 

 

Target Practice game was more of a task than an enjoyable application, suggesting 

that more engaging applications would have been better. 

5.2.2 Quantitative 

With regards to touch errors, it was hypothesised that the SUM adaptive interfaces 

would result in fewer errors than the static interface. To test this, the touches within 

the Target Practice app were examined. For this task, it was clear if an error was 

made. If the participant hit the wrong target or touched outside of the target this was 

counted as an error. 

Overall, there were 3,997 touches (3,603 within Target Practice app) with the Static 

interface for the three apps, and 3,259 (2,989 within Target Practice app) for the 

adaptive interfaces. 

In the target practice task, participants were asked to touch all the green targets. Even 

though there was a green target in each pair of target stimuli, in some instances 

participants made no attempt to tap the target. This was due to the fact that some 

believed the dark green target to be a shade of brown or black, not green. Therefore, 

touch error rate was based only on the attempted targets within this task. 

As hypothesised, the SUM Adaptive interfaces produced fewer touch errors than did 

the Static interface t(11) = 1.977, p < .05, one tailed (d = .632). The mean number of 

touch errors per target practice interface was 18.83 (SD=19.41) and 27.67 

(SD=26.36) for the Adaptive and Static interfaces. The touch data for target practice 

taps was segmented into the 1:2:1, 1:3:1 sections used to distribute the touch targets 

to investigate the spread of the errors. Figure 5.5 presents the error rate heat maps for 
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the Adaptive and Static interface conditions. Whilst the Adaptive interface has lower 

error rates, both interfaces have a similar pattern with lower error rates in the bottom 

(vertically) and right-hand side (horizontally). The researcher had expected to see 

smaller numbers of errors in the bottom of the screen as the distance from the arm 

support increases (Guerreiro, Nicolau, Jorge, & Gonçalves, 2010a). Although our 

participants were not asked to hold the device in a particular manner, the researcher 

observed similarities between their hold and touch configurations. For example, 

participants grasped the device in the left hand and used one finger or a combination 

of thumb, index and middle fingers from their right hand. As the device is thus 

positioned closer to the origin of the participant’s right hand (used for interactions), 

the distance to the target is lower in these areas. This could explain the lower error 

rates along the right-hand side. 

 

Figure 5.5 Error rates within the Target Practice game for each of the screen location segments, 
(A) adaptive interface (B) static interface condition. 
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As well as identifying error rates within specific screen locations, our data also 

revealed the touch locations relative to the centre of the targets. Tables 5.2 and 5.3 

summarise the finger locations relative to all targets hit or missed during the target 

practice exercise. The term origin refers to hitting the target’s centroid x or y 

coordinate exactly (dependent on the screen locations, vertical or horizontal). Of 

these, statistical analyses showed significant differences in the error locations for the 

vertical-vertical errors (Table 5.2), χ2(4) = 29.84, p<.001. Specifically, within the 

vertical locations there was a relatively even distribution between participant touches 

above and below the origin, but for the horizontal touch locations the participants 

selected the right of targets the majority of the time. 

Vertical 
Screen 

Location 

Vertical Offset Location 

Above Origin Below 

Top 45.6% 3.0% 51.5% 

Centre 39.4% 2.7% 57.9% 

Bottom 46.3% 2.0% 51.7% 

Table 5.2 Summary of vertical touch locations relative to the target centroid within vertical 
screen locations. 

 

Horizontal 
Screen 

Location 

Horizontal Offset Location 

Left Origin Right 

Left 30.2% 1.5% 68.3% 

Centre 29.5% 2.2% 68.3% 

Right 31.9% 1.3% 66.8% 

Table 5.3 Summary of horizontal touch locations relative to the target centroid within 
horizontal screen locations. 

The capacitive touchscreens found in the iPod devices are highly sensitive and able 

to detect touch input with next to zero finger pressure, often seen as one of the 

advantages of the technology. For some individuals, however, this highly sensitive 



96 

 

screen is challenging. Three of our participants experience intermittent hand tremors, 

and consequently found themselves making unintentional taps. P1 and P9 both own 

iOS devices. However, P9 chooses not to use her iPod touch because of these issues. 

Instead she uses an LG touchscreen phone because “it has a much lower sensitivity 

than the iPod”. 

Figure 5.6 illustrates the tap durations of each user collected from interactions within 

the mobile apps. Tap durations were statistically significantly different between the 

participants, Welch’s F(11, 1245.43)=905.5, p<.001. Post-hoc analysis revealed 

significant differences at the level (p<.00064 using Bonferroni correction), between 

each participant pair with the exception of P1 (.044) and P8 (.038) (p=.357); P3 

(.177) and P11 (p=.948); P5 (.335) and P6 (.415) (p=.075); P5 and P12 (.264) 

(p=.096). These results suggest that there could not be a minimum and maximum 

duration that would be optimal for everyone. The SUM Framework used the duration 

data and adjusted the level of sensitivity by applying more restrictions to the timings 

of the tap gesture recogniser. In an attempt to reduce the number of involuntary 

inputs, the tap recogniser was given minimum and maximum durations for the 

Adaptive interfaces. The default tap gesture recognisers to not use these parameters. 

Using the SUM gesture recognisers P9 was able to notice the benefits during the 

second session when she tested the recogniser with a tap preceded with an echo of 

the tap (approximate to the common interaction challenge she faces as a result of her 

hand tremors). However, the SUM tap gesture recogniser was able to identify the 

original tap, and disregard the second tap completely.  
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Figure 5.6 Durations of tap gestures for participants across both study sessions. 

Both the Target Practice and TV Guide apps required only a single tap input to 

interact with the interface elements. The TV Guide app makes use of scrollable 

panels to present more content within a single page, such as a list of all programmes. 

These scrollable panels caused a great deal of confusion for P12 when trying to 

locate TV programmes positioned further down the grid off-screen. Since she had 

never used a smart phone until taking part in this study, her working knowledge of 

grids and lists came from her computer experience. To look for content not on-

screen, P12 looked for scroll bars as well as previous and next page buttons. When 

asked by the researcher if she was able to find The Inbetweeners TV programme 

within the page, P12 stated that ‘it wasn’t on the page’. The researcher then 

prompted the participant that there was more content below, and she was then able to 

perform the required scroll gesture to complete the tasks. 
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The iPod touch is capable of two types of scrolling. One, free scroll with 

acceleration, will move faster or slower depending on the swipe input speed and will 

keep scrolling until it decelerates and stops. The second type of scrolling uses a 

paging effect so that regardless of the swipe input speed, the panel will only scroll 

one page. Both types of scrolling were incorporated in the TV Guide app: free scroll 

for the ‘all programmes grid’ and page scroll for the ‘all channels’ grid and 

‘programme detail’ pages. P5, P6 and P12 shared similar problems when using the 

free scroll. Their comments included “When you do it [scroll], it just keeps going 

and I can’t read it,” “I can’t see it quick enough” and “I don’t like it moving past”. 

The researcher also observed changes in grip style when participants were required 

to scroll rather than tap. When scrolling, the device was repositioned and given a 

firmer grip to ensure that it wasn’t dropped when performing the necessary swipe 

gesture. For some participants this resulted in unusual behaviour of the device 

caused by their unintentional touches when tightening their grip. While the iPods 

have a bezel edge on all four sides of the screen, this was much too small for a 

number of our participants to hold without creating involuntary touch input. A small 

bezel appears to be a design trend for touchscreen technologies, as it maximises 

screen size but minimises device dimensions. This trend may make the devices more 

challenging for users with diverse needs. 

The SUS questionnaire is designed to produce measures of usability. We 

hypothesised more positive usability ratings for the Adaptive interfaces than for the 

Static interface. Recall that in the Adaptive condition the interfaces were designed 

for meeting individual needs for touch, visual display and text-to-speech preferences. 
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In total, there were 12 SUS scores for the Adaptive interfaces (six for both the Indoor 

Navigation and TV Guide app), and 12 SUS scores for the Static interfaces, but each 

participant rated different apps in the adaptive and static conditions. There was only 

a small and statistically non-significant (p>.05) difference in the SUS scores in these 

two conditions (the mean usability rating for the Adaptive interfaces was 3.33 

(SD=0.27), compared with the mean usability rating of 3.10 (SD=0.71) for Static 

interfaces). There were likely various reasons contributing to the small difference 

and the fact that users, overall, did not give high ratings to the adaptive interfaces. 

Primarily, participants’ use of the apps was limited. Not only did participants have 

limited time with the apps tested, it is important to note that they only viewed the 

apps in one experimental condition. Thus, they did not directly compare the apps 

under both the Adaptive and Static conditions, the apps were new to the participants 

and, regardless of testing condition, they had to learn how to use the new app. 

Consequently, their comfort with the apps, regardless of interface, was likely to be 

limited. Establishing more extended testing with the apps and in multiple interface 

conditions should help to better understand the extent to which the SUM Framework 

adaptations are perceived. 

5.3 Conclusion 

This chapter reported on a laboratory-based user study that investigated mobile 

touchscreen interactions. The evaluation explored the use of the SUM framework as 

a method of collecting natural application interactions for the user modelling of 

individual abilities, and for providing interface adaptations between distinct 

applications, in order to improve the accessibility and usability of the devices. Two 
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interface conditions were evaluated, static - representing the existing design 

guidelines and best practises; and adaptive – applying interface adaptations based on 

the individual’s preferences and interaction abilities. The results of this user study 

not only demonstrated that participants produced fewer target selection errors when 

using the personalised (adaptive) interface, but also showed that the timing 

interaction behaviours were statistically significantly different between participants. 

Interface adaptations were provided by leveraging individual’s previous interactions 

(within other applications) and their interface preferences, to adapt layouts and 

interaction parameters before they used the application. These results support the 

proposed approach to measure individual’s abilities from application interactions, 

and build user models that can be shared between applications for interface 

adaptations to improve access and usability  
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Chapter 6. Revising the SUM Framework 

This chapter details the revisions made to the design and implementation of the SUM 

framework in light of the laboratory user evaluations (Chapter 5). The chapter begins 

by outlining the technical limitations associated with the earlier version of the SUM 

framework in relation to the practical evaluation. Maintaining a consistent structure 

to the earlier technical outline of SUM (Chapter 4), this chapter then describes the 

individual revisions carried out to address prior limitations and extend the 

capabilities of the framework. The chapter covers the modifications to the overall 

structure and internal changes to both the SUMClient and SUMServer. Finally, the 

chapter demonstrates the revised methods of embedding the SUM framework into 

third party applications and the adaptation methods applied to create interactions 

tailored to individual user’s needs and abilities.  

6.1 Earlier Limitations 

The laboratory user evaluations with SUM (Chapter 5) highlighted a number of 

limitations of the SUM framework as a solution for modelling individuals with 

variable abilities. While the previous discussion of these limitations was in relation 

to the controlled laboratory environment with limited windows for data collection 

and the large periods of time between user interaction sessions, this section will 

discuss the technical limitations of the SUM framework version one and the 

constraints they imposed on the evaluation.  

Measurement accuracy: The largest limitations of SUM framework version one 

stemmed from the approach to data collection and local storage. In the interest of 
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reducing the local storage requirements and minimising network usage, SUMClient 

would process the raw sensor values from touchscreen interactions and only store the 

resulting parameters of the overall gesture.  For instance, the total duration would be 

stored instead of the individual durations between the touch begin, touch move and 

touch end states of the touch gesture. As a result of this design choice, the possible 

features to describe the touch interactions were limited to a gestural level i.e. 

measurements between taps rather than understanding the user behaviours between 

touch begin and touch move states. As a result it was not possible to investigate the 

sub-gesture movements and accelerations.  

Performance: directly related to the aforementioned touch sensor processing, the 

SUM framework injected additional method calls within the process pipeline of the 

touch sensing. The added steps to process the raw sensor data into a complete touch 

gesture and store it periodically caused the application interfaces to lock with the 

result that the participants in the evaluation study experienced a lagging effect 

between their touches and the resulting actions.  

Similarly, the SUM framework was constantly accessing the device sensors and 

network connection, which was a massive drain on the device’s battery power 

supply. This behaviour had little effect on the hour-long user evaluation within the 

laboratory, where the researcher could connect and charge the device at the end of 

each session. If the same framework were to be used within a study in the wild, then 

participants would need to regularly charge the devices throughout the day as a result 

of SUM additional drain on the battery.  This would clearly be  unacceptable from a 

user standpoint. 
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6.2 Revisions to SUM 

This section details the technical changes made the SUM framework based on the 

outcomes of the laboratory user evaluation. These changes included revisions to the 

overall structure of the framework, altering the core functionality of both the 

SUMClient and SUMServer. The goal of these revisions is to enable the SUM 

Framework to support longitudinal evaluations in the wild.  

6.2.1 Structure 

While the high level architecture of SUM was not changed from what was described 

previously (Chapter 4), the roles and functions of the SUMClient and SUMServer 

were adjusted to improve both performance and accuracy of SUM. The user 

feedback and observations collected within the laboratory user evaluation with SUM 

(Chapter 5) identified interface response lag as a result of the additional function 

calls of SUM within the touch event pipeline. Similarly, pre-processing the touch 

gestures on the device before storing them resulted in a loss of detail for finer grain 

analysis of the touch gesture features. To address these limitations and extend the 

SUM framework’s capabilities a number of developmental changes were made to the 

core structure of SUM.  
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6.2.2 SUMClient 

Figure 6.1 details the updated SUMClient’s internal architecture of the core 

components. There are three fundamental revisions between this version and the 

previous:  

1. Sensor measurements are no longer coupled with user interface components. 

2. Local data storage has been extended to support longer usage by 

automatically clustering user interactions into sessions. 

3. Data synchronisation and management has been overhauled to automate the 

process in support of remote user evaluations. 

 

Figure 6.1 SUMClient revised version software architecture showing the communication 
between internal components and third party applications. 
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Touch Sensing: previously, the SUMClient provided applications with overwritten 

user interface components to be substituted for the device’s default interface 

components. These SUM interface components accessed user interactions via the 

touch begin, touch move and touch end events within each interface component. This 

technique required developers to change every instance of UIControls within their 

application interface in order to allow SUM to capture the user’s touch events 

throughout the application. Since the development of the original SUM framework 

the iOS (and Android) operating system have introduced GestureRecognisers, 

altering the methods of creating interface controls that respond to user interaction. 

Developers can easily create their own customised user interface components, then 

define a GestureRecogniser object to handle user interactions, including any touch 

and motion gestures. This new approach allows developers to define a single 

GestureRecogniser object, and use it to handle the same type of gesture for 

completely different interface components. Leveraging the GestureRecogniser 

functionality, SUMClient now contains an overwritten GestureRecogniser class with 

all the necessary measurement code. Furthermore the GestureRecognisers provide 

straightforward mechanisms for adjusting the parameters that define a successful 

interaction which is beneficial for interface adaptations (Section 6.3). 

Motion Sensing: SUMClient’s Device Controller captures measurements of device 

motion, using the available motion sensors, i.e. Accelerometer or Gyroscope. Sensor 

fusion (J. Lee & Ha, 1999) methods, combining the sensor readings from 

accelerometers and gyroscopes to produce more accurate measurements of motion, 

have also been included within the device operating systems since the original SUM 

framework. SUMClient was updated to use these new techniques and so capture 
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device motion with higher accuracy. The process for storing this data has remained 

the same. However, where the earlier version of the SUMClient would activate 

device logging and capture motion events at 100Hz with no consideration for the 

impact on battery life, or the actual motion happening; the framework has been 

updated to observe the sensor readings. If the device motion falls below the threshold 

value for 10 seconds then the framework stops capturing the values and reduces the 

sensor rate to 2Hz. Once the device motion crosses the threshold again the rate is 

increased and the framework continues to capture the data, as used in (Pham, Plötz, 

& Olivier, 2010). By reducing the sensor refresh rate during inactive – motion 

periods, SUM can lower the performance footprint and effects on battery life. 

Similarly, through stopping the logging of motion data during these periods and only 

storing the motion data that represents active device motion SUM is able to reduce 

the amount of data storage required. Both are important factors when considering in-

situation deployment within longitudinal evaluations. 

6.2.2.1 Longer Usage and Data Storage 

In relation to the changes made in the data collection methods, the storage structure 

has been revised to reflect the distinction and decoupling of application interface 

components from user gesture interactions and storing the raw unprocessed values 

from the various sensors. The other major change to the structure of SUMClient’s 

data storage is the newly included Session object, which relates to the need for 

longer collection periods to understand long-term usage behaviours. Figure 6.2 

presents the revised table structure of SUMClient’s local storage.  
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Figure 6.2 UML diagram of the revised SUM database structure used for capturing user 
interaction in relation to the current session. 

Session: to allow SUM to gain an understanding of the variances or similarities of 

user interaction characteristics across and within usage periods, user interactions are 

automatically collected and structured into sessions. By defining the usage periods 

into sessions, SUM enables these interaction periods to be compared and classified 

to identify the longer-term changes and behaviours. Session measurements will be 

discussed further within usage behaviours (Section 6.2.3).  

UI Element: SUMClient now supports the use of GestureRecognisers to collect 

measurements of user interaction rather than overwriting the interface components 

themselves. Where previously the SUM framework would have a complete 

understanding of the interface component being interacted with, using this new 

approach allows developers to define interface components of which SUM has no 

prior knowledge. This allows a richer analysis of user interactions in relation to the 
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specific interface elements, for example: In measuring touch durations within List 

objects only. SUM needs to capture more details from the application interfaces. 

When a touch gesture event is ‘fired’, the framework receives the object relating to 

the touch properties and the associated interface object. SUM collects the same 

details as the earlier Target object, with the addition of the interface component type, 

and tag name.  

Sensor: within the current version of the SUMClient, sensor objects all inherit the 

abstract sensor object, enabling gestures to be generically applied to sensor readings 

from any of the available sensors. The sensor object contains only an id and 

timestamp. Other sensors can inherit and extend this object to include the parameters 

required to capture their own measurements, for example the Ambient Light and 

Noise objects also include an additional field for level of light or noise. Sensor 

objects are intended to represent the lowest level of measurement for a single 

instance or state of the sensor. To conform with this new structure the Touch objects 

have also been revised in this version.  

Touch: previously touches were stored as the complete touch gesture, i.e. a single 

tap, providing only a single x,y location, target, and overall duration. However, the 

revised version of this object means that the same single tap is now captured in the 

following way, as three table entries: 

Touch{id:1,x:30,y:43,state:begin,target:5,duration:0,timestamp:13704

14769},  

Touch{id:2,x:32,y:42,state:move,target:5,duration:.02,timestamp:1370

414769},  
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Touch{id:3,x:32,y:42,state:end,target:5,duration:.11,timestamp:13704

14769}  

The additional state field allows the single tap gesture to be split into the individual 

touch event states, providing a higher level of detail for a deep analysis of the touch 

characteristics than was previously possible.  

Gesture: the gesture object is used to define a series of sensor readings that when 

combined represent the user’s interaction, for example the single tap gesture 

presented above consists of: touch begin; touch move; and touch end objects. Each 

one defines the possible states of a touch gesture. Combined they represent the 

complete sequence of events that define a single tap gesture. Gestures are described 

as having start and end times, and a type. The type field allows the low level sensor 

reading to be associated with a high level gesture name, for instance horizontal 

swipe. By defining these types SUM is able to select the appropriate gesture 

parameters that are of importance to the successful recognition and distinction of the 

gesture from other similar gestures.  

6.2.2.2 Data Synchronisation 

Formerly, the synchronisation of user data was performed manually on the device 

through the built in configurations screens of SUMClient. To support the long-term 

use and real world application of the SUM framework this process needed to be 

automated and invisible to the user. Data synchronisation should not disrupt the 

natural flow and interactions of the user with the device and its applications. 

However, the conceptual design of SUM requires that application data be pooled 

within the SUMServer to enable the sharing of interaction data for modelling.  
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The revised solution to SUM data synchronisation applies a time limit threshold. 

Figure 6.3 demonstrates the SUM workflow to maintain regular synchronisation of 

user data. The default threshold was set to 30 minutes, meaning that at the 

application launch if the last sync time was greater than this threshold then 

SUMClient would attempt a background sync with SUMServer. An active network 

connection is required in order for SUM to sync, therefore in periods of no network 

access SUM will neither sync nor request an updated user model. If the device has an 

active connection and the SUMServer is reachable, the process will begin. No 

feedback or alert is presented to the user other than the device’s notification of 

network activity. Not all mobile operating systems support background processing 

once an application is closed, therefore the SUM synchronisation process could be 

interrupted if a user were to close the application before it completes. To avoid any 

loss of valuable user data, SUMClient recognises the application state, and in the 

event of an application being closed SUMClient pauses the sync and continues again 

once the application is reopened.  
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Figure 6.3 Communication workflow between SUMClient and SUMServer for data 
synchronisation and user model request. 

Within the previous laboratory evaluation of SUM (Chapter 5) the researcher 

encountered syncing problems as a result of the shared server hardware, which had a 

concomitant effect on the SUMClient synchronisation. The earlier version of 

SUMClient used synchronous communication calls, which resulted in large periods 

of time waiting for SUMServer responses thus increasing the overall time to sync up. 

To address these issues, the revised version makes asynchronous communication 

calls to the SUMServer alleviating the delays. Furthermore the method for 

transferring large amounts of device motion data has been refined. Where previously 

the motion data was sent and stored in real time, accounting for much of the 

communication bottlenecking, the SUMClient now transfers an entire session’s 

motion data as a single CSV file which the SUMServer processes post-

synchronisation. 
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6.2.3 SUMServer 

On the face of things the high level architecture of the SUMServer remains 

unchanged from the earlier version (Figure 4.4). However, due to the significant 

changes made to the SUMClient (Section 6.2.2) the internal functionality of the 

SUMServer has also changed. Where previously the SUMServer would receive the 

pre-processed gesture data from the SUMClient, this is no longer the case. To allow 

deeper analysis of the low level behaviours within user interactions, the framework 

requires SUMClient to collect the sensor measurements in their raw state, and relays 

the raw data to the SUMServer for processing and analysis. In order to support the 

increase in the amount of data being captured and transferred by the SUMClient, the 

web services within SUMServer have been overhauled to streamline and optimise 

performance as previously mentioned within the SUMClient data synchronisation 

(Section 6.2.2). 

In addition, the SUMServer has also been revised to support remote evaluations 

spanning longer periods of time in the light of findings from the laboratory user 

evaluations (Chapter 5). Revisions have been made throughout the SUMServer, both 

to support the long-term use of the devices and the resources specifically 

needed/required to assist in the remote evaluation process. This section will now 

present the processing techniques applied to the interaction data to extract 

measurement features, followed by a discussion of the provisioned methods for 

monitoring usage behaviours and long-term remote use. 

Formerly the SUM framework modelled the user interactions using the overall touch 

duration and touch down target offset. While these individual models provided a 
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significant improvement on the device’s default behaviours (Chapter 5), they 

neglected to consider the finer levels of the user interactions, for instance, 

movement, speed and acceleration between touch states. Previous works with mouse 

cursor input have demonstrated that these features could be used to identify 

individuals with additional motor ability needs (Hurst, Hudson, Mankoff, & Trewin, 

2008a). Hurst et al. (2008a) used three sets of features: task specific features; click 

specific features; movement related features. 

Mouse and touchscreen sensors have nearly identical measurement attributes, and 

both share similar gestures, for instance the mouse click and a touchscreen tap 

gesture.  

Click{ 

Mouse{id:1,x:30,y:43,state:down,target:5,duration:0,timestamp:137041

4769},  

Mouse{id:2,x:32,y:42,state:move,target:5,duration:.02,timestamp:1370

414769},  

Mouse{id:3,x:32,y:42,state:up,target:5,duration:.11,timestamp:137041

4769} 

} 

 

Tap{ 

Touch{id:1,x:30,y:43,state:begin,target:5,duration:0,timestamp:13704

14769},  

Touch{id:2,x:32,y:42,state:move,target:5,duration:.02,timestamp:1370

414769},  

Touch{id:3,x:32,y:42,state:end,target:5,duration:.11,timestamp:13704

14769} 
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} 

Recognising these similarities between the two inputs, SUM proposes the following 

features to describe touchscreen interactions adopted from the mouse features used 

by (Hurst, Hudson, Mankoff, & Trewin, 2008a). Figure 6.4 illustrates a touch sensor 

measurement and details the various states of the touch gesture and the 

corresponding features that have been defined from them. 

 

Figure 6.4 SUM touch sensor feature set 

The initial user evaluations with SUM (Chapter 5) lasted only one hour at a time, 

with a period spanning several days or weeks between the two sessions. The 

researcher observations from that study suggested there could potentially be a high 

variance in the user’s abilities between application usage. That work suggested that 

measurements with longer collection periods are required to understand the true 

extent of the variability of an individual’s abilities. From participant interviews, it 

was learned that factors influencing their interactions with devices included 

underlying symptoms of medical conditions, effects of medications, fatigue and 

situational or environmental conditions. By grouping user interactions into distinct 

sessions, SUM is able to extract specific features to describe each session, thereby 
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allowing the classification and analysis of usage patterns.  For example, an 

individual with Parkinson's disease may experience large amounts of unintentional 

hand movements in the morning  before taking medication, but these symptoms may 

be greatly reduced by the afternoon. The complete feature set and analysis 

techniques applied by SUM are presented in Chapter 8.  

6.3 Building with SUM 

One objective of the SUM framework is to reduce the effort required by developers 

to create applications that take advantage of the user modelling abilities of SUM. 

Therefore, much of the functionality of the SUM framework has been automated to 

enable developers to use SUM without altering their current workflows. Similarly, 

the SUM framework has been designed such that developers need not be experts of 

user modelling, accessibility and interface adaptation to benefit from it. To achieve 

these objectives and ensure that the process of embedding the SUM framework is 

intuitive and efficient to the development workflow, the method of capturing and 

responding to user interactions has been updated to leverage the gesture recogniser 

system now common amongst the mobile operating systems. 

6.3.1 Gesture Recognisers 

Version one of the SUM framework used overwritten user interface components to 

capture measurements of user interactions, requiring developers to substitute the OS 

UIControls for the SUMControls. When using the default UIControls this 

substitution was straightforward. However, if developers were creating completely 

customised interface components that didn’t inherit the abstract UIControl class set, 

then there would be no guarantee that the SUMControls would use the interaction 
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logic as the developer intended. Version one required the developer to redevelop the 

controls and include the SUMControl class before the controls would work with the 

SUM framework.  

Since the original development of the SUM framework, many of the mobile 

touchscreen devices’ operating systems have been revised to include interface 

listeners solely responsible for the recognition of user interactions, known as 

GestureRecognisers. Developers are encouraged to use GestureRecognisers with 

their interactive interface components rather than implementing the interaction 

handling code into the interface component itself. GestureRecognisers are supported 

across interface components, meaning that the same recogniser could be used on a 

button and an interaction image. Figure 6.5 provides an example of the native iOS 

code required to create two tap GestureRecognisers, one for a single tap and the 

other for a two-finger tap. The GestureRecognisers are then assigned to a button 

interface component. Similarly, Figure 6.6 demonstrates the code required to 

perform the same task using the SUMClient. There is no alteration to the task 

workflow since the final syntax of SUM mimics that of the iOS API.  



117 

 

 

Figure 6.5 Sample code for creating two iOS TapGestureRecognisers for a single tap, and two 
finger tap, then creating a custom button that responds to those gestures. 

 

 

Figure 6.6 Sample code for creating two SUMTapGestureRecognisers for a single tap, and two 
finger tap, then creating a custom button that responds to those gestures. 

The SUMGestureRecogniser provides all of the functionality and control available 

within the OS default gesture recogniser, behaving no differently than the stock API 

versions. Typically when a developer defines a GestureRecogniser and releases the 

application, the recogniser behaviours remain static and software updates are 

required to alter their behaviours. 

However, using SUM, once the development is complete and users are interacting 

with the applications, SUMGestureRecognisers begin to mould themselves to the 
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abilities and behaviours of the user. Figure 6.7 details the process applied by the 

SUMClient to provide interface adaptations to GestureRecognisers in order to create 

ability-based interactions. SUM allows the software developer to design gesture 

interactions for an “average user”, and then provide individuals with a personalised 

interaction matching their needs, abilities and interaction style.  

 

Figure 6.7 Adaptation of gesture recognisers by the SUMClient at usage time within the 
application 

6.4 Conclusions 

This chapter has detailed the revised design of the SUM framework to address 

limitations of version 1 (Chapter 4), and extend the functionality to achieve more 

granular measurements of user interactions with mobile touchscreen devices than 

version 1, and support longer user evaluation periods. The chapter discussed the 

motivation and rationale for the redesign of the framework, detailing the benefits for 

the accuracy of the interaction data collection. The chapter detailed the methods for 

collecting usage behaviour and supporting long-term user evaluations, as well as the 

Developer GestureRecogniser SUMClient

Define tap gesture, 
requires two fingers 

Build time

Usage time

Loads user model from 
SUMServer

Applies user specific 
parameters for tap gesture 

with two fingers

Relays interaction data from 
successful and failed two 

finger taps

Stores low level gesture 
interactions for future user 

modelling
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statistical modelling approach used by SUM. The chapter then presented the updated 

procedure for embedding the SUMClient within applications, highlighting the 

simplicity of the revised API versus the more complex earlier version.   
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Chapter 7. In-Situ User Study with SUM 

This chapter describes an in-situ user study of three mobile applications in which the 

revised SUM framework is embedded (Chapter 6). The study involved 12 

participants with visual and motor impairments, and spanned a four-week period. 

The primary objective of this evaluation was to capture measurements of user 

touchscreen performance within a real-world context to expose the usage behaviours 

and fluctuations of user performance and ability. Secondly, this evaluation aimed to 

explore the potential of the SUM framework as a method of capturing and measuring 

user touchscreen performance from the wild. Therefore, no interface adaptation were 

applied during this user study, instead the SUM framework was used to simply 

collect the user interactions throughout the four-week period. The chapter begins by 

discussing the challenges and benefits of conducting user studies outside of the 

controlled laboratory environment. Next the chapter will present the user study 

design consisting of:  a description of the participants taking part in the study; an 

overview of the study apparatus and experimental applications, together with an 

outline of the procedure applied, including the measurements resulting from the 

evaluation. These results are reviewed in relation to the collective and individual 

usage and interaction behaviours of the participants, and are followed up with a 

discussion of the individual differences in abilities and needs of the twelve 

participants. 

7.1 From the Laboratory to the Real World 

The laboratory based evaluation of the SUM Framework (Chapter 5) represented a 

proof of concept, and served as a pivotal assessment of both the modelling and 
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adaptation techniques of SUM to support the needs of a diverse group of users. As 

previously stated in Chapter 5, the laboratory based user studies were divided into 

two sessions of one hour, users tested the three applications across both sessions. 

The user evaluations included external assessments conducted by the researcher to 

acquire additional information for the user models, and models were also refined 

based on the observations made within the evaluations. Expanding on the knowledge 

gained from this initial laboratory study (Chapter 5), revisions were outlined to 

further develop the SUM Framework to reduce the reliance on observed 

measurements, and address the limitations of the first version of the framework. 

These revisions were covered in detail previously within this thesis (Chapter 6).  

The objectives of this in-situ study were primarily to address the three key 

limitations of the laboratory study: 

Snapshot measurements: Participants reported on a snapshot effect when 

measuring their abilities through the short laboratory studies. Many participants 

discussed the noticeable differences in their abilities resulting from medication 

cycles, which were not captured during these evaluation sessions. Short evaluation 

sessions of approximately one hour separated by longer time intervals will produce 

snapshots of a user’s interaction behaviours and abilities, and create user models that 

are susceptible to extreme skewing. 

Unnatural Behaviours: Laboratory based evaluations do not reflect users’ real-

world interaction behaviours. The user is placed in an unfamiliar and potentially 

intimidating environment, then requested to perform very specific tasks under the 

premise they are being observed and monitored. While the stimulus and interaction 
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constraints within the laboratory study were designed to reflect typical mobile 

applications and their use, the user behaviours did not necessarily represent the 

user’s real-world actions. For example, P7 used a magnifying glass at home to view 

small printed text on his mobile phone; this was not possible within the laboratory 

environment. 

Loss of Detail: The raw interaction data was processed within the SUMClient to 

produce recordings of individual gestures e.g. single tap, vertical swipe. This 

allowed the SUMClient to retain an overview of each individual interaction, while 

reducing the required storage capacity and network usage by not retaining each 

internal state of the gesture e.g. touch begin, touch move, touch end. However, this 

resulted in the loss of detail and granularity of touchscreen interaction 

characteristics. The SUMServer was unable to explore the individual state that made 

up the gestures, thus limiting the potential analysis and modelling features post-

study.  

While the laboratory user evaluations provided accurate measurements of 

individuals’ interaction abilities at that instance in time, it was important to define a 

study design that could obtain continuous measurements of the users across longer 

periods of time to understand how their interaction abilities fluctuated. Similarly, to 

address the unnatural behaviours within the laboratory setting, the study design 

needed to remove the necessity for laboratory sessions and allow users to freely 

interact with the technologies in real-world settings. Finally to guarantee that this 

evaluation captured user interactions at a high enough level of detail, revisions were 

made to the SUM framework (Chapter 6), ensuring that the raw touchscreen 
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interactions are captured with finer granularity than previously used in the laboratory 

study (Chapter 5).  

Given the new requirements for longer collection periods outside the controlled 

laboratory, two possible approaches were considered to further evaluate the SUM 

framework’s ability to model user touchscreen performance and needs. 

• A controlled study with a longer collection period to capture repeated 

measures from a concentrated population. 

• Large-scale marketplace study with a much wider population. 

The latter option could have been achieved by leveraging the popularity of mobile 

app-stores to reach larger participation numbers, similar to the approach of (Henze et 

al., 2011). However, while the (Henze et al., 2011) study was able to attract 91,731 

installations, contributing to over 120 million touch events (touch begin, move and 

end is one event in this case) the authors had no control over the characteristics of 

the participants. In fact, regardless of complex individual characteristics, the authors 

had no method of tracking a single user within the study; instead the independent 

measures were based on the installations. However, since a user could have had 

multiple installations, or multiple users could have played a single installation, the 

measurements do not reflect the individual measurements of a single user. 

Furthermore, Henze et al. (2011) reported an average of 1315 touches per 

installation; applying their logic of “one touch event per second” this equates to an 

average collection period of 22 minutes per installation. Using this approach within 

the SUM study would have resulted in similar limitations to the laboratory SUM 
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evaluation, with lack of interaction evidence per user over a longer period of time. 

The approach of (Henze et al., 2011) produces a more focused high volume 

understanding of the device behaviours and less of an understanding of individual 

user abilities.  

For these reasons the app-store approach was rejected in favour of the controlled 

study spanning four weeks, with a much smaller sample size of just 12 participants. 

This design allowed the researcher to control the participant recruitment process thus 

helping to remove one of the many uncertainties when conducting in-situ 

evaluations. Pre- and post-study informal discussions with each participant were also 

used to aid the analysis of the evaluation data, which would not have been feasible 

using the app-store approach.  
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7.2 User Study 

This section presents the design of the in-situ user evaluation using the revised SUM 

framework (Chapter 6), involving 12 individuals with diverse levels of visual and 

motor abilities.  

7.2.1 Participants 

Twelve participants, seven females and five males, took part in the user study. They 

ranged in age from 21-75 (M=55, SD=20) years old. All participants exhibited 

abilities that qualified them as having a motor and/or a visual impairment. In 

addition, all participants were required to own and use a mobile phone (although not 

necessarily a smartphone) and to have a home WiFi connection to the Internet in 

order to ensure that the study devices could regularly communicate with the remote 

server. Table 7.1 provides information about the participating individuals and their 

characteristics.  

Once invited into the study, participants were informed that they would be allowed 

to keep the mobile device upon completing the study. The researchers hoped this 

would encourage the participants to explore the devices, and integrate their 

functionality within their daily lives. See appendix 3 for information sheet and 

consent forms. 
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ID Age Gender Touchscreen 
Experience Group Impairment Current 

Accommodations 

P1 55 Female Self-service 
machines 

Motor 
Control 

Parkinson’s Disease, 
slight hand tremors 

Regular medication to 
suppress symptoms 

P2 59 Male Tried iPod 
touch before. 

Motor 
Control 

Spinal injury, muscle 
spasms, hand tremors, 

Sensitive to light 

Regular medication to 
suppress symptoms 

P3 57 Male Self-service 
machines 

Motor 
Control 

Parkinson’s disease, hand 
tremors 

Regular medication to 
suppress symptoms 

P4 67 Female Tried iPod 
touch before. Blind 

Retinal detachment, 
macular degeneration, 

diplopia 

Guide dog, magnifying 
glasses, screen reader 

software on PC 

P5 73 Female Tried iPod 
touch before. 

Motor 
Control 

Myalgic 
Encephalomyelitis. 

Muscle twitches and 
spasms in arms and 

hands.. 

Medication to suppress 
mobility symptoms, not 

cognitive 

P6 22 Female Has an iPod 
Touch 

Motor 
Control 

Hypermobility syndrome, 
locking joints and tremors 

in hands 

Wheelchair, medication 
to suppress symptoms 

P7 63 Male None Motor 
Control 

Parkinson’s disease, hand 
tremors 

Regular medication to 
suppress symptoms 

P8 21 Female Tried iPod 
touch before. 

Motor 
Control Essential tremor Medication when 

symptoms increase 

P9 65 Female Tried iPod 
touch before. 

Motor 
Control Parkinson’s disease 

Originally medications. 
During the study 

underwent Deep Brain 
Stimulation (DBS) 

surgery 

P10 24 Male Tried iPod 
touch before. Blind 

Registered blind, issues 
adjusting to changes in 

light levels 

Monocular, screen 
magnification on PC, 

mobile with large 
buttons. 

P11 75 Male Has an iPod 
Touch 

Motor 
Control 

Parkinson’s disease, hand 
tremors 

Medication when 
symptoms increase 

P12 74 Female Tried iPod 
touch before. 

Motor 
Control Essential tremor Regular medication to 

suppress symptoms 

Table 7.1 Participant profile; dominant hand used when interacting with the device; 
stereotypical disability grouping associated with participant; specific impairment and current 

accommodations to deal with symptoms. 
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7.2.2 Apparatus 

The purpose of this evaluation was to capture the real-world interactions of the 

participant when using the mobile touchscreen devices, in order to better understand 

how an individual’s abilities and interaction characteristics vary, thus allowing us to 

refine the processes needed to model these changes. The high-level structure of the 

apparatus mirrors that of the laboratory evaluation (Chapter 5), whereby the user was 

provided with a touchscreen device preloaded with the stimulus applications. These 

experimental applications were designed to capture the user’s interactions, and relay 

the data back to the centralised SUMServer through the participant’s home WiFi 

network. The SUMClient was embedded into each application, and is responsible for 

handling the data synchronisation process, as discussed previously (Chapter 4).  

Participants were each provided with iPod touch devices, as used within the 

laboratory study. However, in the laboratory study the second Generation devices 

were used, in this study these were exchanged for the fourth Generation device, 

running the iOS 6.1, rather than iOS 3.0 as used in the previous study. The fourth 

generation devices have an almost identical external look and feel as the second 

generation device, although they possess additional sensors and hardware upgrades. 

Table 7.2 provides an overview of the significant changes between the second and 

fourth generation iPod touch devices.  
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Generation 2nd 4th 

RAM 128MB 256MB 

CPU 533MHz 800MHz 

Camera N/A Front & Back 

Battery 739 mA-h 930 mA-h 

Weight 115 g 101 g 

Microphone Yes Yes 

 Accelerometer 3-Axis 3-Axis 

Gyroscope N/A 3-Axis 

Vibration Motor N/A N/A 

Screen Resolution 320x480 640x960 

Pixels per inch 163 326 

Screen Dimensions 74 mm (H) 
49 mm (W) 

74 mm (H) 
49 mm (W) 

Device Dimensions 110 mm (H) 
61.8 mm (W) 
8.5 mm (D) 

110 mm (H) 
58 mm (W) 
7.1 mm (D) 

Operating System iOS 3.0 iOS 6.1 

Table 7.2 iPod touch comparison table of second and fourth generation devices (Wikipedia, 
n.d.). 

While the screen resolution has been doubled on the fourth generation device, the 

physical dimensions of the screen remain unchanged and this increase in pixels 

results in a sharper screen definition. Likewise, from the programming perspective 

developers define the interface elements’ dimensions with the original pixel sizes, 

and the dimensions will be automatically doubled at runtime to accommodate the 

new screen resolutions. For example, a button with the screen location and bounding 

dimensions of (10,10,300,60) would be mapped to (20,20,600,120) within the new 

screen resolution. Throughout this thesis the sizes are discussed using the original 

pixel resolutions for consistency with the previous chapters.  

The server hardware configuration remained unchanged from the laboratory 

evaluation. However, the server was updated with the revised version of the 
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SUMServer framework (Chapter 6). In addition to the changes described within the 

revised framework chapter, further tools were developed to support the researchers 

with the running of the in-situ user study: 

Over-the-air-updates: All of the experimental apps were embedded with 

TestFlight3 , a commercial beta testing system for mobile application development. 

A key feature of the TestFlight framework is the ability to update application 

versions remotely, allowing the researchers to provide over-the-air-updates to 

participants should issues arise regarding the applications being used. One of the 

challenges of putting new devices out in the field is the unpredictable nature of the 

interactions resulting from users exploring a new device. The design of the iOS 

system is such that third party applications cannot be locked or secured to restrict the 

removal of the application. As a result of this lack of functionality it meant that 

participants were free to remove the three experimental applications during the 

study. Participants P11 and P12 were exploring the devices and accidentally 

removed the Sudoku application, along with any unsynchronised interaction data 

from the application. The TestFlight system was able to support the reinstallation of 

the Sudoku application on both devices, allowing the participants to continue with 

the study that afternoon.  

Status and Usage Tracker: The researchers were able to log in to secure web pages 

and retrieve feedback on the status of the SUMServer to verify its functionality and 

network connectivity. This enabled the researchers to promptly identify and respond 

                                                
3 https://testflightapp.com/ 
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to technical issues within the SUMServer from anywhere at any time. Similarly 

secure web pages were defined to display each participant’s usage information, 

giving the researcher an overview of the last time a participant accessed an 

application and for how long from the SUM synchronisation data, notifying the 

researcher to participants’ activity or inactivity with the applications. The researcher 

could then contact the participant to offer support, answer queries and  resolve any 

potential technical issues with the devices, or encourage him/her to engage with the 

applications more often. The devices required an active WiFi network to access the 

internet and sync with the SUMServer. Some participants were using the 

applications but were unaware that they were not connected to their home WiFi. The 

researcher interpreted this as inactivity and was able to resolve the problem with the 

user.   

7.2.2.1 Experimental Apps 

The purpose of this study was to capture touchscreen interactions of the participants 

when naturally using touchscreen devices in the real-world; therefore the 

applications performed no interface adaptations or personalisation. Each application 

used the SUMGestureRecognisers to capture and interpret the user’s touchscreen 

interactions. However, no touch models were applied to the applications thus the 

SUMGestureRecognisers behaved as the default iOS UIGestureRecognisers would 

have e.g. UITapGestureRecogniser for single taps and UISwipeGestureRecogniser 

for scroll and swipe gestures. The gesture classifications provided by these gesture 

recognisers were used to define the classification of the touch interaction data. In the 

event that a user’s touch interactions were not recognised, the touch data was 

captured and classified as an ‘Unrecognised’ gesture. 
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Due to the limitations of the developer API access and sandboxed design of the iOS 

platform, it was not possible to simply embed a background service to capture all 

user touch interactions from any installed application. In order to collect the users’ 

touch interactions in relation to the applications and interface components it was 

necessary to develop experimental applications to be installed on the device. 

As part of a previous laboratory evaluation (Chapter 5), participants were asked to 

think of any daily tasks or activities they might like to carry out using a touchscreen 

device. The top suggestions included medication reminders, notes and lists for 

shopping, checking emails, playing games, TV listings, and browsing the web. From 

these suggestions three applications were identified – Memo, Sudoku, and TV 

Guide. This selection was also based on considerations of coverage of potential 

interface gestures and probability, frequency, and temporal distribution of use.  

The feature sets and interface designs for the three applications were based on 

similar applications within the App Store4 to ensure their relevance and to reduce 

potential design bias by the researchers. The applications make use of a number of 

the traditional touchscreen interface components including: 

• Table views 

• Date Pickers 

• Switches 

• Buttons 

                                                
4 http://itunes.apple.com/gb/genre/ios/ 
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• Number pad 

• Text views 

• Navigation bars 

7.2.2.2 Memo 

The Memo application represents a combination of the requests by participants for a 

method to receive medication reminders and create notes or lists for shopping. 

Participants added new reminders using the Add memo interface as illustrated in 

Figure 7.1. Participants could give an item a title and additional details using the 

standard iOS onscreen keyboard, with the option of setting a due date and reminder 

alert. Once added, the new items appear within the four tabbed views Today, Week, 

All, and Complete. The memos can be edited or marked as complete by tapping the 

list item, presenting the user with an interface similar to the Add Memo screen. 

Alternatively participants could quickly mark a memo as checked or unchecked by 

performing a horizontal swipe from left to right on the item. 

The Memo application enabled participants to set reminders for items, and receive 

device notifications at the scheduled date and times, which was useful for reminders 

relating to medication times, or appointments. It was expected that participants’ 

interactions with the Memo application would be relatively short, either adding a 

new item or simply responding to a reminder notification. Likewise, it was believed 

that these interactions could take place at various times throughout the day and night, 

spanning the four-week long period.  
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Figure 7.1 Memo application for iOS devices. Add memo screen (A) and Memo list showing this 
week (B). 

7.2.2.3 Sudoku 

Many of the participants mentioned their enjoyment of crosswords and Sudoku 

puzzles in their newspaper. Either of these would have made a suitable game 

application for this study, as they both require participants to select squares from a 

board grid and enter values. Sudoku was selected, as relatively straightforward 

algorithms could be used to generate new puzzles on request, and the board design 

could fill the entire space of the screen. In comparison, crossword puzzles would 

have had to be manually created in advance and additional space would need to have 

been provided for the crossword clues (something better suited to a larger tablet 

device). The basic functionality of the Sudoku application allowed participants to 

select a New Game, and then select a game difficulty level of easy, medium or hard. 

This would then generate a new Sudoku puzzle at the selected level (based on the 

number of empty squares the puzzle starts with). Figure 7.2 shows the Sudoku board 
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presented to a participant upon starting a new game. The board allowed participants 

to select a target square by tapping it, causing the number pad to appear as illustrated 

in Figure 7.2. Values could be entered through tapping on the required number from 

the number pad. The number pad also contained a Clear button to remove a 

previously entered value, and a Hide button to remove the onscreen number pad and 

reveal the entire board again. The Sudoku board would also respond to a two-finger 

pinch gesture, allowing the participant to zoom in and out on the Sudoku board.  

The Sudoku application included provided participants with a description of Sudoku 

and detailed how to play, which could all be accessed through the ‘about’ section of 

the application. Finally, the application included a Task List option, which contained 

a list of 14 predefined Sudoku puzzles of varying difficulty. The reasons for 

including the Task List of predefined puzzles are discussed in Section 7.2.3 

It was predicted that participants would have longer interaction sessions with the 

Sudoku application than with the Memo and TV Guide applications. Sudoku was 

also predicted to provide the highest volume of touch interactions, with each game 

consisting of between 40 and 70 interactions, depending on difficulty level. The 

application encouraged participants to make bursts of accurate target selections over 

an extended period. Again, it was hoped that participants would enjoy playing a 

short Sudoku puzzle at various times during the day, helping to provide good 

coverage of the participants’ varying abilities over time. 
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Figure 7.2 Sudoku application for iOS devices. Gameplay screens showing the Sudoku board 
(A) and board with open keyboard (B). 

7.2.2.4 TV Guide (version 2.0) 

The earlier laboratory study (Chapter 5) included a TV Guide application with a 

preloaded set of programme listings, used during the tasks designed to simulate TV 

listing search and browsing. Based on the observations and participant feedback 

from this study, the TV Guide application seemed to be a welcome alternative to the 

traditional paper-based and TV-based electronic programming guides. The 

application made use of the software platform’s table views to present the TV and 

radio programmes using a list-based navigation method.  

Extending the functionality from the first version of the application, the revised TV 

Guide app downloaded daily TV and Radio listings from online sources5 and stored 

                                                
5 http://bleb.org/tv/data/listings/ 
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them locally. Participants could navigate the content by TV Channel, Radio Station, 

or by Programme title; a sub-navigation then allowed participants to view lists for 

today, tomorrow or A-Z (over both days). An example of the Today listings’ screen 

is shown in Figure 7.3. The application would only display programmes that were 

currently airing, or scheduled to air soon (within a 48 hour period). Typically the 

current programme would appear at the top of the list, with the exception of shows 

being viewed using the A-Z option.  

Participants using the TV Guide application could navigate by performing a vertical 

swipe gesture to scroll through the listings, then use a single tap gesture on the 

desired item to select it; an interaction style found in similar table view interfaces. 

Once a programme had been selected, the application would display the full 

description for that item (Figure 7.3), providing the user with the programme title; 

episode information; description; channel number; access formats (if the show 

contains subtitles, audio description or sign language); and finally, an option to set a 

reminder alert for that programme. By tapping the “Set Reminder” button, 

participants could schedule a notification alert for five minutes before the 

programme was scheduled to air. 
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Figure 7.3 TV Guide application version 2 for iOS devices. List of today’s programmes on 
BBC1 (A) and details view for “Shaun the Sheep” TV programme (B). 

The interface style of the TV Guide application was similar to that of other 

information retrieval applications such as email, blog or news feed readers and used 

user interface controls similar to those used in the built-in iOS applications such as 

Contacts and Settings. The researchers expected that participants would only access 

this application at particular points within the day, prior to and during TV viewing 

periods. 

7.2.3 Procedure 

The evaluation consisted of three stages: an initial training session and informal 

discussion with the researcher; the four week application use in the wild; and a post-

study discussion with the researcher. Participants were provided with additional 

application example sheets (Appendices 4, 5, 6), demonstrating the typical 

interaction scenarios of each application. These included sample memo entries, TV 
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guide queries and Sudoku solutions to support the participants throughout the 

evaluation. Upon completion of the study participants were gifted the touchscreen 

devices as a thank you for their participation within the evaluation study. This 

section discusses the three stages of the evaluation: 

7.2.3.1 Training Session 

The principal researcher met with each of the participants at the beginning of the 

four-week evaluation for a 30 to 40 minute session to introduce the purpose of the 

research and demonstrate each of the three applications. Most participants were able 

to visit the University of Dundee to complete this training session, however, the 

researcher did visit three of the participants at home. Participants P1, P3, P9 and P12 

had never used smartphone devices before, and were provided further training on the 

basic device functionality and controls within this session. Once the participant felt 

confident enough to operate the device and the three applications, the researcher 

entered the unique login details for that participant and activated the SUMClient 

logging capabilities.  

Participants were provided with information to assist in connecting the devices to 

their home WiFi network in order to ensure that the TV Guide application could 

download new content and captured interaction content could be synchronised with 

the SUMServer. Printed copies of the application example sheets were given to each 

participant. While the participants were aware of the three applications prior to 

agreeing to take part in the study, it was understood that they might not find the 

opportunity to engage with the applications every day. The example sheets were 

designed to encourage and support the participants when using the applications, 
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providing suggested entries for the memo application, or possible TV channels and 

programmes to look up. The Sudoku example sheet was slightly different, in 

recognition of the fact that not everyone is familiar with the game, or is skilled 

enough to play Sudoku comfortably. Therefore the participants were provided with 

14 complete solutions to the 14 preloaded puzzles within the ‘Task List’ section of 

the application. These were designed to support the participants through a game of 

Sudoku until they were confident enough to play a game without help. 

Finally, participants were informed that they would be gifted the mobile device upon 

completion of the study. All participants were encouraged to explore the other 

applications and device functions, but reminded that the only applications that would 

capture data were the study applications placed along the bottom row of the app 

launcher screen. 

7.2.3.2 Into the Wild 

The three applications would automatically synchronise new session data in the 

background when applications were reopened and connected to the Internet. The 

synchronisation process involved transmitting any unsent touch gestures, motion 

data, application logs and session attributes as raw data through the SUMServer web 

services. Local data was then marked as sent but not deleted, serving as a backup for 

the aggregated data collection within the server, in case of network connection errors 

or other failures. Due to the limitations of the iOS operating system, application data 

could only be transferred during periods of application activity. Therefore 

communication would be broken when participants exited the applications during the 

SUM synchronisation. 
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Because participants were not in regular contact with the researcher throughout the 

evaluation, it was crucial that the applications were able to notify the researcher of 

any communication problems or application errors; this was achieved using the 

status and usage tracker tool which allowed the researcher to view a complete study 

synchronisation overview for each participant and each application, providing the 

researcher with the participant id, application, and last accessed time. This allowed 

the researcher to quickly identify potential application issues, or to contact 

participants if long periods of inactivity occurred.  

Finally, participants were asked to keep a brief diary of their experience during the 

time of the study. This was aimed at supporting the interpretation of the interactions, 

in particular providing a better understanding of extreme outliers. Since the system 

automatically recorded timestamps for all interactions, the participants did not need 

to keep daily logs of all device use. Instead they were encouraged to take note of the 

unusual or out of the ordinary situations and behaviours such as feeling very poorly, 

experiencing extreme symptoms, or travelling somewhere with the device. The 

applications were embedded with facilities to capture user feedback; however 

participants opted not to use these, and instead provided paper or emailed diaries 

following the study. 

7.2.3.3 Post-Study Feedback 

At the beginning of the study, participants scheduled dates roughly four weeks later 

to meet with the researchers for 30-minute informal discussion and debriefing. Due 

to unforeseen circumstances, five of the meetings had to be rescheduled, resulting in 

longer collection periods for some participants. The dicussions were recorded and 
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later transcribed by the researchers, allowing the participants to speak naturally about 

their experiences of the study without interruption or pauses. 

7.3 Results 

The primary objective of this study was to capture measurements of real-world 

touchscreen interactions by individuals with visual and motor impairments from the 

wild. This study explored the use of three mobile applications embedded with the 

SUM framework: to obtain detailed measurements of touchscreen interactions, 

identify and understand natural device usage behaviours and interactions. The results 

presented were fourfold: qualitative behaviours and usage, quantitative interaction 

measurements, general interaction behaviours and individual interaction 

measurements.  

7.3.1 Qualitative 

Qualitative measures were captured through informal dicussions, and provide 

support and context for the performance measures and behaviours recorded through 

the application interactions.  

7.3.1.1 Applications vs. Tasks 

The fundamental goal of this research has been to develop techniques whereby 

performance measurements could be collected with little or no disruption to users’ 

natural daily lives. Our experimental applications grew from an analysis of what 

constituted appealing uses of mobile devices for our target population. As a result, 

the applications were not viewed as tasks or exercises but rather useful tools and fun 

diversions. During the post-study discussion, participants were asked to “describe 

your experience of taking part within this user evaluation”. All but P10 responded by 
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commenting on how fun it was to play the game, how handy the TV reminders were, 

or how useful the memo application was. P10 explained “none of them [applications] 

were really things that I would do in my normal day. So in terms of that I had to 

make an effort to use them”. There were however variations in the application usage 

patterns of the 12 participants, for example, P1 avoided the memo application, so the 

applications on offer were not desired by everyone. On the other hand, upon 

completing the evaluations, participants P4 and P5 requested copies of the Sudoku 

application to continue playing beyond the study, expressing their rekindled 

enjoyment for Sudoku puzzles since participating in the evaluation. All but P10 

remained extremely positive regarding the study activities, and did not associate their 

device interactions as being measures of performance or evaluation exercises, rather 

viewed the experience as just “playing with the device” and saw the study as an 

opportunity to play with a new technology. P8 commented that  “the implications for 

the real world when people are actually using them will be really helpful, because 

people won’t be using [applications] because they have to, but because they want to 

[use the applications]”.  

7.3.1.2 External Constraints and Factors 

The design of the study was for participants to complete a four-week, in-situ 

evaluation with the mobile device. However, as a result of unforeseen medical 

conditions, three participants were taken into hospital, and were unable to meet with 

researchers as originally scheduled and therefore opted to extend their participation. 

Fortunately all of the participants were fit and able to continue the evaluation once 

released from hospital care. P6 took the device into hospital for the duration of her 

stay, and was able to use the Sudoku and Memo applications (since they did not 
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require WiFi connections). As a result of the design of the SUM framework, all of 

the interactions made during this extended offline period of use were captured 

locally and synchronised once connected to an active internet connection. 

Two weeks into the study participants P11 and P12 encountered issues with the 

general operation of the iPod touch devices. P12 accidentally removed the 

experimental applications from both his device and his wife’s (P11) device, when 

attempting to synchronise their own music collection with the device. Although the 

SUM framework maintains a local database of interaction data, the stored location of 

this database is constrained by the platform. iOS forces a highly sandboxed structure 

on third party applications with all application resources, including databases, being 

stored within the application package. Therefore, when the applications were 

removed from P11 and P12’s devices so was all of the local data that was yet to be 

transferred back to the server, resulting in substantial data loss. While this storage 

restriction exists for iOS, other platforms such as the Android platform allow 

databases to exist externally to the application package, even within external SD card 

directories, a design much more fit for this type of purpose. 

7.3.1.3 Holding Configurations 

Although laboratory based studies have investigated the use of device motion 

sensors to measure tremor peak movement frequencies and magnitudes from 

participants with motor impairments (Nicolau & Jorge, 2012b), participant feedback 

from this in-situ evaluation suggests that this approach may not be reliable within 

real world contexts. Participants were asked to reflect on their holding configurations 

within the post-study discussion; P8’s response reflected the feelings of some of the 



144 

 

other participants with the comment that: “I’d probably, I’d usually, put it down on 

the table or on my lap, because obviously you've got the added: ‘if this hand has got 

a tremor and this hand has got a tremor, and you’re holding it’ [gestures with her 

hands moving in opposing motions] But if you put it down on a hard surface you've 

got more [stability].” 

7.3.2 Quantitative 

All of the interaction data was collected using the SUM framework. This provided a 

low-level user interaction log, but no high-level domain knowledge or understanding 

of the applications. However, using the SUM framework the researcher was 

provided with application logs containing timestamps, and navigation actions such as 

page loads along with the page titles. Similarly these logs captured application 

specific interactions e.g. “Cell cleared” from the Sudoku application. The application 

logs were used to support the analysis of the low-level interaction data. 

7.3.2.1 Interaction Behaviours 

One of the biggest challenges of analysing performance measurements from 

individuals with visual and motor impairments is the highly variable nature of their 

abilities. (Hurst, Mankoff, & Hudson, 2008b) reported large variances both between 

and within subjects across all performance measures of mouse pointing performance 

over multiple login sessions. Kruskal-Wallis tests were run to determine if there are 

differences in touch interaction characteristics between participants. Touch 

interaction characteristics included the touch x and y offsets, duration and touch 

movements of tap gestures. Touch interaction characteristics were statistically 

significantly different between participants, x offset χ2(11)=1483.59, p<.001, 
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illustrated in Figure 7.4; y offset χ2(11)=1995.81, p<.001, illustrated in Figure 7.5; 

duration, χ2(11)=2142.09, p<.001, illustrated in Figure 7.6; movement, 

χ2(11)=110.948, p<.001, illustrated in Figure 7.7. 

 

Figure 7.4 Boxplot showing the overall mean x-offsets of tap gestures, per participant. Where 
values < 0px are offsets left of the target centre, and values > 0px are right of the target centre. 

 

 

Figure 7.5 Boxplot showing the overall mean y-offsets of tap gestures, per participant. Where 
values < 0px are offsets above the target centre, and values > 0px are below the target centre. 
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Figure 7.6 Boxplot showing the overall mean tap duration of tap gestures, per participant 
throughout the in-situ study. 

 

 

Figure 7.7 Boxplot showing the overall mean tap movement of tap gestures, per participant 
throughout the in-situ study. 

 

Kruskal-Wallis tests were run to determine if there are differences in touch 

interaction characteristics between a participant’s interaction sessions. All touch 

interaction characteristics were statistically significantly different between 
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interaction sessions for participants P2, P3, P4, P5 and P9, (p<.001). No significant 

differences were observed in touch movement of tap gestures for participants P1, P7 

and P11 between sessionsP1, P7 and P11 between sessions, (p>.05). However, the 

remaining touch interaction characteristics (touch x and y offsets) were statistically 

significantly different between sessions, (p<.001). Statistical differences in tap 

duration and movement only were observed between sessions for participants P8, 

P10 and P12 (p<.001). Finally, no statistically significant differences were observed 

in touch interaction characteristics between sessions for participant P6 (p>.05). 

Figure 7.8, Figure 7.9, Figure 7.10 and Figure 7.11illustrate the individual 

participant’s daily average x-offset, y-offset, duration and movement behaviours 

when performing tap gestures. It is clear from these figures that for most participants 

these interaction characteristics vary dramatically between daily interactions, making 

it unrealistic to predict from previous sessions. Furthermore, these figures show that 

while participant’s interaction characteristics were significantly different overall, 

there are sessions whereby two or more participants share similar interaction 

behaviours and abilities.  
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Figure 7.8 Line graph showing the daily average x-offset of each participant’s tap gesture 
behaviours. Values <0px are left of the target centre, values >0px are right of the target centre. 

 

 

Figure 7.9 Line graph showing the daily average y-offset of each participant’s tap gesture 
behaviours. Values <0px are above the target centre, values >0px are below the target centre 
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Figure 7.10 Line graph showing the daily average duration (milliseconds) of each participant’s 
tap gesture throughout the in-situ study.  

 

 

Figure 7.11 Line graph showing the daily average movement (pixels) within a tap gesture for 
each participant throughout the in-situ study. 

7.3.2.2 Usage Behaviours 

These results suggest that not only are the interaction behaviours significantly 

different between participants, but in most cases they are also significantly different 
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between sessions for the same user. Specifically, this suggests that interfaces need to 

be able to respond and adjust to changes between interaction sessions for each user. 

The flexible schedule design of the current study meant that participants were free to 

completely immerse themselves in the device for hours on end, or forgo using the 

devices for a number of days at a time and completely avoid interactions with an 

application, which was observed for P1, who had very few sessions with the memo 

application throughout the study. At the same time, participant P4 showed almost 

obsessive interactions behaviour, playing games of Sudoku for long periods of time, 

late at night and into the early hours of the morning. Figure 7.12 illustrates the 

number of gesture instances collected by each application for the participants 

throughout the evaluation.  

 

Figure 7.12 Number of gesture instances captured from each participant per application 

 

The decision to give participants the power to dictate their own interaction schedules 

came from a desire to understand the natural usage patterns and interaction habits of 



151 

 

the participants in their everyday lives. This decision has yielded valuable insights 

into the highly variable usage behaviours within and between participants, and these 

were tested for homogeneity of variance, unequal variances were observed as 

(p<.001). Specifically, these results suggest that usage of the devices did not follow a 

particular schedule or pattern, but rather the participants interacted with the devices 

in an informal, unstructured manner. Furthermore, the usage behaviours between 

participants were significantly different. Figure 7.13 illustrates the individual 

participants’ usage share for each application throughout the evaluation.  

 

Figure 7.13 Application usage share for each participant. 
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7.3.3 General Interaction Behaviour 

While participants displayed very personal and diverse usage patterns and 

behaviours, the study also uncovered more generic shared behaviours across the 

participants. This next section will discuss the shared interaction behaviours in 

relation to gestures both dependent on and independent of interface components.  

7.3.3.1 Unique Features between Components 

The data collection process supported by the SUM framework relates touch 

interactions to iOS interface components such as UITableView’s (i.e. Figure 7.1 and 

Figure 7.2) and UIButton’s (i.e. Figure 7.1, Figure 7.2 and Figure 7.3), allowing the 

data to be analysed and presented in relation to these interface components, rather 

than the individual applications or pages. Table 7.3 provides an overview of the UI 

component classifications applied for this analysis. 

UI Component Group Classification Gesture Recognisers 

Table view 
List 

 
Tap & Swipe Date Picker 

Button (width < 50%, 
and height < 20% of 

the screen) 
Button Tap 

Number Pad 

Switch 

Button (width greater 
than 50% of screen) Wide Button Tap 

Text views 

Navigation Bar Non Interactive None 

Table 7.3 UI component classification into lists, buttons, wide buttons and non interactive. 

All of the experimental applications made use of the iOS UITableView controls to 

create lists of menu items and application content (e.g. TV programme listings 

Figure 7.3, or Today’s Memo list Figure 7.1). TableViews or lists are highly 
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common application interface components within both the stock and third party 

mobile applications for all of the major mobile OS platforms (including iOS).  

The default configuration of the TableView control creates a large interface 

component typically spanning the full width and height of the mobile display, 

responding to both vertical swipe and single tap gestures. The lists are commonly 

populated with left-aligned headers, long text descriptions, and/or images. Each row 

is separated with horizontal borders on the top and bottom. All of the lists used 

within the experimental applications contained either header text only, or header text 

with subtext details (Figure 7.14), all of which were text aligned to the left. 

 

Figure 7.14 TV Guide today list, showing the item header (A) and subtext detail (B). 

A Kruskal-Wallis test was run to determine if there were differences in the 

horizontal location of taps when interacting with list control elements, as illustrated 

in Figure 7.14. Statistically significant differences were identified between the 

numbers of taps across the horizontal locations, χ2(9)=35.362, p<.001. Similarly, a 

Kruskal-Wallis test was run on the vertical location of taps within list control 

elements which revealed a statistically significant difference across the vertical 

locations, χ2(14)=171.713, p<.001. While the configuration of the lists allowed users 

A

B
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to select items by performing a one-finger single tap gesture anywhere along the 

horizontal space of the list item, the analysis of tap gestures with list items suggests 

that participants performed the tap gestures within the left side of the display as 

shown in the touch heat map in Figure 7.15. Likewise, a greater number of tap 

gestures occurred in the upper vertical screen locations and the lower locations. 

  

Figure 7.15. Heat map of tap gesture selections (A) and the origin of swipe gestures (B) within 
onscreen targets spanning the full width of the screen. 

 

These results echo a similar behaviour that was observed in the laboratory study 

(Chapter 5) with other applications using list controls, that participants were 

wrapping their left-hand fingers around the device, with their thumb on the left and 

their fingers on the right when performing a vertical swipe gesture. When asked 
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about this behaviour, the participants reported this placement was an attempt to 

provide additional support when performing the swipe gestures. However, as a result 

of this gripping technique the participants created a number of unintentional item 

selections.  

While the heat map swipe gesture locations may appear to be located around an 

anchored thumb pivoting around the bottom right of the device, all of the 

participants within the in-situ study reported either resting the device on a flat 

surface or holding it in their left hand and interacting with the device using their 

right hand. This suggests that the tendency to interact with the left-hand side of the 

lists is a conscious decision, opposed to the limited reach of their thumb or finger. 

One possible reason for this behaviour is the alignment and position of the text 

content along the left side within the list items, providing the users with a clear 

visual target to interact with. 

A Kruskal-Wallis test was run to determine if there were differences in tap duration 

between the horizontal and vertical locations of list control elements. Tap duration 

was statistically significantly different between the horizontal locations (as labelled 

in Figure 7.15), χ2(9)=70.031, p<.001. Post-hoc analysis revealed statistically 

significant differences in tap duration (in seconds) between horizontal locations 1 

(Mdn=.19) and 2 (Mdn=.15) when compared with locations 3 

(Mdn=.14)(p=.002)(p=.004), 4 (Mdn=.13)(p<.001), 5 (Mdn=.13)(p<.001) and 6 

(Mdn=.12)(p=.003)(p=.011). Specifically, these results suggest that tap durations are 

significantly shorter when interacting with list elements in horizontal screen 

locations further away from the edges of the screen. However, no statistically 
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significant differences were identified in tap duration between the vertical locations, 

χ2(14)=22.322, p=.051. 

Figure 7.5 also illustrates the origin of swipe gestures with list controls within the 

experimental applications. Kruskal-Wallis tests were run to determine if there were 

differences in the horizontal and vertical origin locations of swipe gestures within 

list control elements. Statistically significant differences were observed between the 

vertical screen locations for the origins of swipe gestures, χ2(13)= 34.987, p=.001. 

No statistically significant differences were observed between the horizontal screen 

locations for the origins of swipe gestures, χ2(9)= 8.991, p=.438. However, this data 

included vertical and horizontal swipe gestures, a Kruskal-Wallis test was run on the 

vertical swipe gestures only to determine if there were differences in the horizontal 

locations. When only looking at vertical swipe gestures, statistically significant 

differences were observed between the horizontal screen locations and the origins of 

swipe gestures, χ2(9)= 18.513, p=.03. Specifically, the results suggest that when 

users interact with list control elements, swipe gestures are more likely to originate 

from the bottom right hand side of the screen as illustrated in Figure 7.15. This 

location would provide the most optimal start point to vertically scroll through the 

maximum number of items, while also allowing the participants to view and read the 

left-aligned textual content of the lists.  

Kruskal-Wallis tests were run to determine if there were differences in the duration 

of swipe gestures between the horizontal and vertical origin locations. No 

statistically significant differences in swipe duration were observed between the 

horizontal, χ2(9)= 7.545, p=.581 or vertical origin locations, χ2(13)= 14.506, p=.270. 
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These results suggest that the timing behaviours of a user’s swipe interactions are 

independent of the spatial location that the swipe originates from. Similarly, no 

statistically significant differences in the swipe distance were observed between the 

horizontal, χ2(9)= 7.444, p=.591 or vertical origin locations, χ2(13)= 20.108, p=.065. 

Therefore, these results suggest that the distance lengths of swipe gestures are 

independent of the spatial location that the swipe originates from. 

A Wilcoxon Signed-Rank test was run to determine if there were differences in the 

duration of tap gestures vs. swipe gestures. There was a statistically significant 

increase in the duration when users performed swipe gestures (Mdn=.475) compared 

to tap gestures (Mdn=.207), z =4.339, p<.001. Specifically, these results suggest that 

the duration feature could be used to aid in the distinction between tap and swipe 

gestures within list control elements. This is particularly useful in cases where a 

user’s tap gestures contains unintentional movement data, thus causing confusion 

between the intent of a tap or swipe gesture.  

7.3.3.2 Interaction with Buttons 

Within this analysis only interactions made with button components as defined 

within Table 7.3 were included. The target also had to respond to a one-finger tap 

gesture, but not exclusively the one-finger tap gesture if components outwith the 

button classification were excluded from the analysis of horizontal touch offsets, 

since the users could successfully interact with the components anywhere along the 

horizontal axis. The analysis of tap interactions made with buttons revealed 

participants’ target offset behaviours reflected those collected in similar studies 

investigating touchscreen performance measurements (Henze et al., 2011; S. Lee & 
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Zhai, 2009; Y. S. Park & Han, 2010). The device screen was divided up into a 10x14 

grid as shown in the heat maps of Figure 7.5, and buttons were grouped into these 

locations based on their origin point. A Chi-square test for association was 

conducted between the horizontal touch offset and vertical screen location. There 

was a statistically significant association between horizontal offset and vertical 

screen location, χ2(26)=1906.54, p<.001. Table 7.4 summarises the observed results 

of the horizontal offsets by vertical screen locations.  

Vertical 
Screen 

Location 

Horizontal Offset Location 

Total Left Origin Right 

1 0.0% 0.0% 0.0% 0.0% 

2 0.0% 0.0% 0.0% 0.0% 

3 0.3% 0.0% 1.6% 2.0% 

4 3.8% 0.2% 3.0% 6.9% 

5 3.6% 0.3% 5.4% 9.2% 

6 4.3% 0.3% 8.9% 13.4% 

7 4.0% 0.3% 8.0% 12.3% 

8 2.4% 0.2% 6.7% 9.3% 

9 1.9% 0.1% 2.1% 4.1% 

10 5.1% 0.2% 0.7% 6.0% 

11 5.5% 0.3% 1.2% 7.0% 

12 7.6% 0.3% 1.1% 9.0% 

13 4.8% 0.3% 0.8% 6.0% 

14 4.2% 0.1% 0.5% 4.8% 

15 8.4% 0.3% 1.3% 10.0% 

Total 55.8% 2.8% 41.4%  

Table 7.4 Summary of horizontal touch offset locations across the vertical screen locations. 1 = 
top edge, 15= bottom edge. 

 

A Chi-square test for association was conducted between the horizontal touch offset 

and horizontal screen location. There was a statistically significant association 
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between horizontal offset and horizontal screen location, χ2(18)=827.31, p<.001. 

Table 7.5 summarises the observed results of the horizontal offsets by horizontal 

screen locations. Specifically, these results suggest that horizontal touch offsets are 

influenced by both the vertical and horizontal screen locations of the interaction.  

 

Horizontal 
Screen Location 

Horizontal Offset Location 

Total Left Origin Right 

1 4.6% 0.2% 2.3% 7.1% 

2 5.9% 0.5% 3.6% 10.0% 

3 3.2% 0.3% 3.8% 7.3% 

4 2.5% 0.2% 2.4% 5.1% 

5 7.8% 0.2% 3.0% 11.0% 

6 2.2% 0.3% 5.2% 7.8% 

7 3.9% 0.2% 4.9% 9.0% 

8 15.2% 0.3% 4.5% 20.0% 

9 9.0% 0.6% 5.9% 15.5% 

10 1.6% 0.0% 5.6% 7.2% 

Total 55.8% 2.8% 41.4%  

Table 7.5 Summary of horizontal touch offset locations across the horizontal screen locations. 1 
= left edge, 10 = right edge 

7.4 Discussion 

The primary objective of this user evaluation was to obtain accurate measurements 

of touchscreen interactions from participants within a real-world context to 

understand how user performance and interaction behaviours fluctuate over a four-

week period. Furthermore, the objective was also to evaluate the refinements to the 

SUM framework, and assess the potential of the SUM framework as a tool to 

accurately measure user performance from remote real-world interactions. 
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7.4.1 SUM Framework and Data Collection 

Firstly, while the SUM framework successfully captured and returned the user 

interactions for all 12 participants, for two of the participants substantial amounts of 

interaction data were lost. Although this loss of data was attributed to human error 

and a limitation of the device platform, it did expose a large vulnerability within the 

SUM framework data storage. Updated versions of the SUM framework have 

however address these issued by storing all captured interactions locally and external 

from the applications. Therefore, in the event of a participant accidentally removing 

the experimental application, no further interaction data would be lost.  

Secondly, the SUM framework was passively recording user interactions from the 

three experimental applications. Therefore, it was able to capture information 

relating to the usage behaviours of the users with the applications, for example only 

using the memo application on a Monday afternoon. Although these usage patterns 

were of interest and exposed void periods of no interactions and data collection, the 

result of this passive approach meant that some participants were much less engaged 

with the technology. Thus, fewer sessions and interactions were captured for those 

participants. Future evaluations might consider augmenting the participant driven 

usage patterns with periodical prompts to engage with the applications, this could be 

achieved through the notification services that exist on mobile platforms.  

7.4.2 Real-World Interaction Behaviour 

The experimental applications for this study were selected to represent the real-world 

uses of mobile touchscreen devices. One participant stated that the applications were 

not of interest or use within his/her daily life. However the remaining participants 
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described their experience within the evaluation as simply playing with the device 

without feeling as though they were being observed or forced to perform tasks. 

Therefore, the interactions captured within this user evaluation represent the real-

world behaviours of the participants. As such, this study has demonstrated that 

existing approaches to obtain measurements of tremors from device accelerometer 

motion is not supported by the holding behaviours of participants with hand tremors 

in a real-world context. Thus, alternative methods leveraging the resulting onscreen 

interactions need to be explored.  

Furthermore, analysis of the touchscreen interaction characteristics identified that 

participants behaved significantly differently to one another regardless of sharing a 

stereotypical disability classification, suggesting that interface adaptations should be 

defined based on an individual’s abilities and not their disability. However, it was 

also observed that an individual’s interaction characteristics fluctuated significantly 

between application sessions. Therefore, it is not enough to use an individual’s data 

to train the device’s input gesture recognisers, adaptations need to be made based on 

the individual’s current abilities and behaviours. Thus, it is essential for interface 

adaptations to factor interaction context, and they should be applied on a per session 

basis. 

7.5 Conclusions 

This chapter reported on a four week in-situ user evaluation that investigated the 

real-world interaction characteristics and usage behaviours of users with visual and 

motor impairments. The evaluation explored the use of the revised SUM framework 

(Chapter 6) as a method of collecting measurements of individuals’ interaction 
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abilities from real-world interactions with the three experimental applications: 

Memo; TV Guide and Sudoku, across a four week period. Analysis of participants’ 

interactions demonstrated that interaction characteristics differ significantly both 

between participants and between sessions of the same participant. However, the 

current input gesture recognisers of mobile touchscreen devices require that 

participants be able to perform gestural actions consistently with the device’s or 

application’s predefined recogniser parameters. Based on these results it would be 

concluded that individuals with fluctuating abilities could benefit from input gesture 

recognisers that can accommodate these variances in performance to improve the 

recognition accuracy.  
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Chapter 8. Applying Context to SUM 

After conducting a in-situ user study to capture the real-world interactions of mobile 

touchscreen users (Chapter 7), this chapter now explores the effect of training user 

models from this data, and using the resulting models to perform interface 

adaptations on the touch gesture recognisers.  

8.1 The Need for Contextual Measurements 

Previous works have proposed interface solutions targeted to a particular user group 

(Guerreiro, Nicolau, Jorge, & Gonçalves, 2010a; Hurst, Hudson, Mankoff, & 

Trewin, 2008a; Nicolau & Jorge, 2012b; Trewin et al., 2006; Wacharamanotham et 

al., 2011) while others have applied adaptations to create personalised interfaces for 

a specific user (Findlater & Wobbrock, 2012; Flatla & Gutwin, 2011; Gajos et al., 

2007; Heron et al., 2013; Trewin, 2004). However, the analysis of the user 

interactions from the in-situ evaluation demonstrated the significant variances in user 

behaviours and performance between participants (regardless of belonging to the 

same stereotypical user group) and between sessions from the same participant. 

Therefore, the user models need not only to be specific to the individual, but must 

also adjust to the context or situation for which the interactions take place. Thus, it 

was concluded that simply training user models based on a user’s data would not be 

enough to address the fluctuations in performance. To mitigate the between session 

differences of user performance, a novel approach leveraging contextual 

measurements of interactions to predict session behaviours and needs has been 

proposed. Contextual measurements were used to refine the training data selection 

when building shared user models. 
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8.2 Extracting Features and Intent 

In order to create and evaluate the user models, the interaction features needed to be 

extracted to define the parameters of the new SUM gesture recognisers. The dataset 

was collected within the in-situ user evaluation, whereby all data was captured from 

three real-world mobile applications. As a result of using real-world interactions, the 

user’s actions and intentions were unknown for each interaction. Therefore, methods 

to obtain values for the user’s intent for each action needed to be defined to evaluate 

the accuracy of the models. 

8.2.1 Touch Features 

This sub-section describes the touch features extracted from the touch gestures 

captured by the SUM framework.  

Touch Location (X, Y): Represents the horizontal and vertical location of the user’s 

finger when it was lifted from the screen. These locations are absolute values 

measured in relation to the physical screen dimensions.  

Touch Offset (X, Y): captures the user’s x or y offset between the touch begin 

(finger down) and end (lifting the finger off) states. 

Touch Duration: captures the time duration between the first and final state of a 

touch gesture. 

Absolute Touch Movement: measures the total Euclidean distance between all of 

the touch states of a gesture. 

Straight-line Touch Movement: measures the Euclidean distance between the first 

and last touch states of a gesture, the combined touch x and y offset. 
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Relative Touch Movement: calculated as the ratio of straight-line movement to 

absolute movement to measure the amount of additional or unintentional movement 

within the gesture. 

Movement Direction Changes (X, Y Axes): measures the number of direction 

changes within the chosen axis or the combined horizontal and vertical, collected 

from the touch movement states.  

Target Offset (X, Y): captures the user’s x or y offsets from the centroid location of 

the target interacted with during the touch gesture.  

8.2.2 Extracting Touch Intent 

Within controlled laboratory user evaluations it is relatively straightforward to 

establish a user’s intended actions, typically the design of the study is such that users 

have a clear goal, thus error identification is easy. For example, their brief would be 

to tap the onscreen targets as quickly as they can with their dominant hand. The 

resulting dataset would contain user touch information where the intended gesture 

and target are known. However, when conducting in-situ user studies it is 

unreasonable to assume that the each user interaction carries intent, or that the device 

correctly interpreted the user’s intent. Therefore it is important to apply methods to 

discriminate between actions with and without intent. Recently, Gajos et al. (2012) 

conducted in-situ observations of user performance with computer pointing devices, 

combining both task specific observations and natural computer interactions. The 

goal of the research was to develop techniques to discriminate between interactions 

made with focus and intent, from those made while the users were distracted. Gajos 

et al. applied Fitts’ law models to the user data collected during the pointing tasks to 
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correlate features of intentional pointing movements, and develop classifiers to 

identify intentional pointing actions within the natural user interactions. The in-situ 

evaluation design (Chapter 7) mirrors the approach of Gajos et al. (2012), providing 

participants with a task for each application to enable the collection of interaction 

data with intent, while also collecting the natural interactions of the users outwith the 

application specific tasks. The tasks for each application relate to the example sheets 

provided to the participants during in-situ study training session (Chapter 7). It was 

possible to automatically discriminate the Sudoku task data from the normal 

gameplay data using the unique page identifiers generated when starting a new task 

game, vs. those from the normal gameplay. Using these unique page identifiers it 

was then possible to cluster any interactions that were associated with the user 

performing the tasks with the example sheets. This was not possible from the 

datasets collected by the TV Guide and Memo applications, as no specific task pages 

existed within the applications themselves. However, sessions where participants 

completed tasks within these applications could be identified using the session 

timestamps and comparing the user’s task sheets, which served as an interaction 

diary. 

8.2.2.1 Fitts Modelling 

In order to apply the procedures outlined by Gajos et al. (2012) for obtaining in-situ 

measurements of intent, Fitts models were constructed from the participants’ touch 

data collected during the tasks. Previous attempts to apply Fitts models to 

touchscreen interactions in the wild demonstrated that the models were not an 

accurate fit of the interaction data (Henze & Boll, 2011). Using linear regression to 

determine the intercept and slope of the regression line as required in the Shannon 
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formulation (MacKenzie, 1992). The line intercepted (a) at .05 with a slope (b) of 

1.67 with a resulting correlation of r=.169. Specifically, the low correlation between 

the touch interactions and the Fitts’ models suggests that this approach did not work 

for the dataset. Therefore, this method was not utilised to classify the user intent of 

the natural interaction behaviours of the participants, instead methods leveraging the 

application domain and strategies were investigated. 

8.2.2.2 Sudoku Game Modelling 

Participants were provided with puzzle solutions for each of the Sudoku tasks within 

the application, and asked to periodically complete tasks from the list by copying 

over the puzzle solution values from the sheets into the game. The participants were 

not required to solve the puzzles but instead perform a data entry task, thus removing 

the cognitive problem solving factors that would influence their interaction 

behaviour.  Therefore, any deviation from the required task-input was classified as 

an unintentional interaction. The Sudoku Task Model was defined to apply the 

Sudoku game logic and puzzle solution to identify user intent for interactions. By 

leveraging the Sudoku game strategy and puzzle solutions, it was possible to predict 

user intent for interactions and refine the recognised touch gestures to reflect the user 

intent. Figure 8.1 illustrates a possible scenario, where a user selects the Sudoku cell; 

the Task Model predicts the user’s next move to be entering the number 6; the user 

successfully taps the number 6 button thus allowing intention estimations to be 

confirmed for the initial cell selection and the entered value. 
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Figure 8.1 Sudoku game modelling interaction predictions with correct targets. (A) Starting 
board view, (B) user selected cell, predicted next move as number pad button ‘6’, (C) user 

enters ‘6’ and next predicted moves are adjacent cell or hide button. 

Alternatively, the Sudoku Task Model can be used to refine tap gestures with the 

wrong target as shown in Figure 8.2. The scenario is the same as illustrated within 

Figure 8.1, however the user taps the number 5 rather than the predicted number 6 

button; the user’s tap gesture is updated to shown the intended target to be the 

predicted input. Similarly, had the gesture been unrecognised due to exceeding the 

timing or movement thresholds of a tap gesture, the Sudoku Task Model allows the 

gesture intent to be refined and reclassified as a successful tap gesture.  

A B C
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Figure 8.2 Sudoku game modelling interaction predictions with incorrect targets. (A) Starting 
board view, (B) user selected cell, predicted next move as number pad button ‘6’, (C) user 

enters ‘5’ the target intent is updated to the number ‘6’ button and the next moves are 
predicted as  ‘6’ or the clear button. 

During the in-situ user evaluation participants only completed 46 Sudoku tasks, but 

played a further 266 games of Sudoku. Despite there being no differences between 

the Sudoku task and game interfaces, the Sudoku Task Model could not be applied to 

the captured games of Sudoku as it assumed the user knew the correct solution and 

would not enter incorrect values intentionally. However, this is not always the case 

when participants are playing games of Sudoku rather than performing the task 

puzzles, within the Sudoku games participants were required to solve the puzzle 

themselves, thus, were free to make mistakes and guess cell values that could in fact 

be the incorrect values. For example, the scenario outlined within Figure 8.2 assumes 

the user was aiming for the number 6, and tapped the number 5 in error. In a game 

situation the user could have guessed the number 5 was the correct answer for that 

cell and therefore touched that target with intent. To prevent the Sudoku Task Model 

from refining the gesture target to being the predicted value of the number 6 an 

alternative model was defined, the Sudoku Game Model.  

A B C
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The Game Model did not leverage the puzzle solution to predict the participants next 

move, it only relied on the Sudoku game logic. Therefore, wouldn’t correct gestures 

where the interactions were intended but simply the wrong values as a result of the 

user guessing or not knowing the correct answers. The Game Model could still refine 

intent for gestures where the user selected the wrong targets, and where the gesture 

itself was not recognised due to performance deviation. These scenarios are detailed 

below. 

Wrong Target. One possible scenario for intent correction is when the participant 

taps a target that does not respond to the tap gesture, implying that a nearby target 

would have been the intended target.  

The Game Model captures such scenarios in the following way, illustrated in Figure 

8.3. The participant taps the cell containing the number ‘4’, which is not an 

interactive object and therefore no interaction feedback is provided. However, SUM 

records the tap gesture marking this object as the target. The participant next taps a 

nearby empty cell target that is interactive. Potentially this was the intended target 

for the previous interaction, however there is still uncertainty. The next probable 

moves are either tapping the ‘hide’ button to remove the number pad, signifying that 

the user is happy with their number selection. Alternatively they may tap a new cell 

and enter the next number. If either of these possible interactions occurs then the 

game model marks the cell (B) as complete and the number ‘6’ as committed. At 

which point the intended target for the original tap gesture (A) is refined to the 

empty cell above (B), moreover the other tap gestures are confirmed as intended tap 

gestures and targets.  
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Figure 8.3 Game model refining the target intent for a wrong target error. 

Unrecognised gesture. Another common interaction error occurs when the 

participant performs a gesture that is unrecognised by the device. Possible reasons 

for gestures being unrecognised is due to timing or movement values outside of the 

acceptable parameters for the gesture. The following example details how the 

Sudoku game modeller handles unrecognised gesture errors, to obtain refined 

estimations of intent, illustrated in Figure 8.4.  

The participant attempts to perform a tap gesture in the empty cell (A), but the tap 

duration exceeds the maximum duration parameter of the gesture recogniser. No 

interaction feedback is provided to the participant, but the gesture is captured and 

recorded by the SUM framework as an unrecognised gesture. Next the participant 

repeats the gesture, this time it is recognised by the device and the cell receives the 

tap gesture. The scenario then plays out as detailed above for the _Wrong Target_. 

The Sudoku modeller can then refine the gesture type of the original interaction (A) 

from being an unrecognised gesture to being an intended tap gesture. 

?
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Figure 8.4 Game model refining the gesture type for an unrecognised gesture error. 

Unrecognised gesture and wrong target. As the name suggests this error occurs 

when the participant performs a gesture that is unrecognised and with a target that is 

not interactive. While it would be possible to use the steps detailed above to attempt 

to refine and correct the intent for these interactions, it was decided not to infer 

intend for these interactions due to the compound errors.   

 

Within Sudoku task sessions (46) 82.6% of tap gestures were classified as intentional 

user interactions using the Task Model, compared with 84.2% (kappa=89.6%) using 

the Game Model, the results of the models were statistically similar z =-1.524, 

p=.127. Kappas greater than 75% show an excellent agreement (Fleiss, Levin, & 

Paik, 2013), therefore the Kappa score between the Task and Game models 

demonstrates that the models share an excellent agreement on the classification of 

gesture intent. Due to this statistical similarity and agreement between the Task and 

Game Models, the Game Model classifier was applied to the dataset of 33658 (63% 

of the full dataset) touch gestures collected from the Sudoku application, and 

obtained refined intent classifications for 26,563 (79%) of the Sudoku interactions. 

The classifier made no attempted to infer intent from those user interactions that 
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occur within the application menu system, as the Sudoku game logic could not be 

applied. These interactions were excluded from the dataset.  

Similar attempts to refine the intent classifications of the Memo and TV Guide 

applications using the participant task sheets were made. However, satisfactory 

classification rules could not be defined for the interaction behaviours, as it was not 

possible to identify the goals of interaction from the real-world use of the 

applications. Thus, accurate discrimination between intentional and unintentional 

interactions for these applications could not be obtained. Consequently, both Memo 

and TV Guide were excluded from the testing of model simulations. 

8.2.3 Dataset Summary 

Using the three experimental applications combined with the SUM framework, a 

dataset containing over 931 interaction sessions, consisting of 52,650 touchscreen 

gesture interactions (taps, swipes and unrecognised gestures) was collected from 12 

participants throughout the four week in-situ user study (Chapter 7). Table 8.1 

summarises the breakdown of the recorded touch gestures during the user evaluation. 

26,563 (50.4% of dataset, taps only) of the tap gestures were assigned user intent and 

target classifications using the Sudoku game model. These classified instances will 

be used to test the classification accuracy of the shared user models. 
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Participant Taps Swipes Unrecognised 

P1 4434 56 1767 

P2 3455 114 1324 

P3 1263 34 526 

P4 12352 261 1983 

P5 4708 46 352 

P6 545 17 94 

P7 4102 32 201 

P8 996 25 76 

P9 4135 45 704 

P10 1911 19 311 

P11 1577 40 335 

P12 3770 283 757 

Total 43248 972 8430 

Table 8.1 Summary of participant gestures captured during in-situ user evaluation. 

Table 8.2 summarises the 26,563 Sudoku gestures with intent measurements, 

showing the number of gestures that were recognised or unrecognised, and where or 

not they were associated with the correct target. This summary shows that 1051 

(39.9%) of all 2633 unrecognised gestures were in fact intended tap gestures on the 

correct target. Furthermore, 3276 (13.7%) of successful tap gestures were recognised 

with the wrong target. 

 Unrecognised Recognised  

Correct 1051 20654 21705 

Incorrect 1582 3276 4858 

 2633 23930  

Table 8.2 Breakdown of device recognised gestures and the resulting intent measurements. 
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8.3 Statistical Touch Models 

Currently within mobile touchscreen interactions the common method of classifying 

tap gestures is the use of the x, y location (either touch begin, or touch end); and 

fixed movement threshold (movement between the touch begin and end states). 

However, the proposed gesture recognisers are not defined by fixed parameter 

boundaries. Instead, the recognisers use statistical probability models to account for 

the variations in gesture performance between instances. The gesture recognisers 

used in this evaluation applied Gaussian functions to define the attributes for gesture 

classification, as illustrated in Figure 8.5. Gaussian functions allow the gesture 

recognisers to perform classifications based on probability of an action given a series 

of parameters, as opposed to relying on definitive parameters. For example, Gaussian 

functions are capable of resolving common touch offset errors whereby the touch 

occludes two or more possible targets. The target with the highest probability is 

suggested as the intended target. Similarly, they can account for variances within 

user performance, such as timing, rather than using a fixed maximum value to 

threshold all touches above this. A Gaussian function would simply return a lower 

probability, if the probability of the interaction were greater than it being an 

unintended touch then the gesture would be recognised. However, the traditional 

fixed maximum model would not be recognised.  

The shared user models defined the parameters of the tap gesture recogniser using 

the training data to obtain the mean (µ) and standard deviation (σ) values required by 

the probability density functions. The SUM recognisers were able to apply the 

classification features as already used by mainstream tap gesture recognisers. The 
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features included were: x, y location, duration and movement. In addition the models 

also parameterised the x, y offset. Typically the x, y offset is handled by touch offset 

models defined on a per device nature, shifting the user’s touch input location by a 

fixed Euclidean vector. However, previous researchers (Buschek, Rogers, & Murray-

Smith, 2013; Henze et al., 2012; Holz & Baudisch, 2011; Rogers, Williamson, 

Stewart, & Murray-Smith, 2011; Weir, Rogers, Murray-Smith, & Löchtefeld, 2012) 

have proposed user specific touch offsets models, reporting significant 

improvements in the precision of touch input. The statistical touch models within 

this evaluation used a threshold of 3σ of each parameter to define success criteria as 

used previously within the laboratory evaluation (Chapter 5). This threshold was 

used to aid the distinction between intentional and unintentional touch interactions, 

whilst allowing for performance variations within gestures. 

 

Figure 8.5 Probability density function of tap gesture XOffset 
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8.4 Refining SUM through Contextual Modelling 

Context models are used to define the contributing factors of the user’s interactions 

with the system. Typically these would include the human factors of the user 

coupled with those imposed by the device and the environment. Previous works have 

explored systems capable of generating user interfaces based on all of these factors 

(Macik, 2012). Macik (2012) evaluated the effects of providing interface adaptations 

that were sympathetic to not only the user model but the model of the device and 

environment. These adaptations included scaling the font and target sizes, element 

spacing and line width of the user interface. However, while the approach proposed 

by Macik (2012) applied visual adaptations based on the context models, the 

methods used to obtain this information relied on the users manually configuring 

preferences within a single environment and evaluation instance. As was 

demonstrated previously within the in-situ user evaluation (Chapter 7), users’ 

abilities fluctuate from session to session. While these users all qualified as having a 

visual or motor impairment, able-bodied users can equally experience interaction 

challenges as a results of situationally-induced impairments and disabilities (Sears & 

Young, 2002). Therefore, manual methods of defining contextual factors and user 

abilities are undesirable. Furthermore, this approach distinguishes the user factors 

from the device and environment factors, failing to consider that there might be 

overlap between the resulting interaction characteristics of a user with hand tremors 

and an able-bodied user riding a bus. Therefore, the approach proposed by this 

dissertation was not to use these individual context factors for classification, but 

rather to work backwards from the interaction characteristics to train models that 
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respond to these behaviours independent of context factors (user, device or 

environment model).  

There were two key components required to support contextual searching based on 

interaction characteristics; a method for classifying interaction data independent of 

the context factors, and techniques to obtain contextual measurements of the user’s 

current interaction characteristics. Furthermore the outstanding questions pertaining 

to applying contextual measurements to shared user models were: 

1. What sample size needs to be measured to obtain accurate contextual 

features? 

2. How much training data is required to build a contextual shared user model? 

To answer these questions an independent evaluation of the contextual 

measurements was conducted. Firstly, this section details the contextual session 

features used to classify user interactions based on the individual sessions. Secondly, 

the contextual measurements and distance function used for searching the dataset are 

described. Then the section reports the evaluation and results. Finally, a short 

discussion of the findings is presented. 

8.4.1 Contextual Session Features 

Session features based on the touch features (Section 8.4.1) were selected to 

represent the session, in order to measure the variances of user interaction across 

sessions and applications and cluster the individual sessions. To ensure the sessions 

were clustered independent of any stereotypical groups or applications, the features 

were selected based on the low-level touch interactions. This decision is key to the 
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sharing of data not only between applications but also between users. The session 

features represent the average instance and variation of the touch features within the 

complete session. Each session feature captures both the mean and standard 

deviation of the corresponding touch feature. Similarly the session features are 

grouped in relation to the gesture type they represent, for example. Tap or Swipe. 

Each gesture follows a similar structure of features: 

Gesture Duration: measured as the mean and standard deviation duration of all 

successfully recognised gestures of this type (e.g. tap gestures).  

Gesture Offset (X, Y): each axis is measured independently as the mean and 

standard deviation of the touch offset for all the recognised gestures of this type. 

Gesture Movement (Absolute, Straight line and Relative): each movement value 

is measured independently based on the absolute touch movement, straight-line 

touch movement and relative touch movement. 

 Gesture Target Offset (X, Y): each axis is measured independently as the mean 

and standard deviation of the target offset for all the recognised gestures of this type. 

The contextual session features were then normalised using the standard score 

formula to aid the distance measurement process. Within this evaluation no new 

interaction sessions were added. Therefore, the population size was known ahead of 

time, allowing the mean and standard deviation values to be calculated based on the 

entire dataset. However, in a real world setting, new sessions would continually be 

added to the dataset. Thus, these values would need to be estimated using random 

samples. 
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Equation 8.1 Standard score formula, used to normalise the session features within the dataset. 

 

8.4.2 Contextual Measurements 

This section discusses the technical approach used to obtain the contextual 

measurements from the session interactions, firstly, exploring sampling techniques to 

capture contextual measurements using a subset of the session’s interactions to 

predict the complete session features. Secondly, this section describes the distance 

method used to compute the similarity of sessions based on the session features.  

8.4.2.1 Sampling Windows 

In order to train the user models using data that match the current contextual 

measurements the system must sample the current session’s interactions and find 

similar instances based on the session features. To evaluate the accuracy of 

measuring the current context of interaction, two types of sampling window were 

selected: time based, using the duration of the session; and instance based, using the 

number of recorded touch interactions. As well as analysing these two windowing 

methods the window sizes were increased to evaluate the performance of each 

combination.  

The accuracy of the windowing method and size were calculated based on the 

similarity of the windowed session features against the features of the complete 

session. Feature similarity was measured using Equation 8.2 below, where  

z = x�µ

�

Fwn
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represents the feature measurement for window size n, and  represents the feature 

measurement of the complete session.  

 

Equation 8.2 Feature similarity measurement – wn, window of size n; Fs, feature measurement 
of the complete session; Fwn, feature measurement for window size n. 

Due to the variable nature of both the length of sessions and number of gestural 

instances within each session, the window sizes were not defined as absolute values. 

Instead the window sizes used were percentage shares of the complete session length 

and number of gestures (i.e. 5,10,15,20...95%). 

8.4.2.2 Time and Instance-Based Windows 

The sessions were sampled using time measurements (Time-based) and gesture 

instances (Instance-based) to create a series of window sizes. Due to the flexible 

nature of the user interactions, application sessions could span any length of time 

and consist of highly variable numbers of gesture instances. Therefore, the window 

sizes were calculated relative to the size of the complete session (duration and 

gesture count) and sample sizes were defined as the proportion of the complete 

session. There was a statistically significant increase in measurement accuracy when 

using Instance-Based  (Mdn = 90.8%) compared to the Time-Based windows (Mdn = 

83.5%), z =-61.11, p < .001. These results suggest that the type of window sampling 

has an effect on the contextual measurements of user sessions. Specifically, the 

results imply that Instance-Based window samples improve the accuracy of the 

Fs

f(wn) =
Fwn

Fs
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contextual measurements, as illustrated in Figure 8.6. The accuracy measurements of 

the Instance-Based windows were compared, and a statistically significant difference 

between the Instance-Based window sizes was found, χ2(8) = 8197.96, p < .001. 

Post-hoc analysis revealed statistically significant differences in contextual 

measurement accuracy between each of the window sizes, excluding their immediate 

neighbours i.e. no significant differences between sizes .10 and .05 or .15, however 

significant differences between .10 and windows sizes greater than .15 (p<.001). 

Specifically, these results suggest that larger sampling windows will produce more 

accurate measurement predictions. Therefore, the recommended window size should 

be as large as possible. Window sizes with a share of .20 or more achieved 

contextual measurement accuracies greater than 70% as illustrated in Figure 8.6. 

 

Figure 8.6 Contextual measurement accuracy for Time and Instance-Based window samples. 
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8.4.2.3 Distance Measurements 

The session distances are calculated as the sum of the Euclidean distances of each 

normalised session feature weighted by the confidence of the session measurements. 

The distances calculation is shown in Equation 8.3. 

 

Equation 8.3 Session distance formula; where FX
i , represents the feature value of the current 

session, and FS
i is the feature value of the compression session. 

Where α represents the confidence of the session measurements for session S, given 

by Equation 8.4.  

 

Equation 8.4 Confidence of session measurements, calculated as the window size of session x 
divided by the optimal window size.  

8.4.2.4 Contextual Training Data 

A Kruskal-Wallis test was run to determine if there were differences in the gesture 

recogniser accuracy between the training data sizes of the contextual models. The 

normalised gesture recogniser accuracy increased by n=50 (Mdn=8%), n=100 

(Mdn=13%), n=200 (Mdn=13%), n=300 (Mdn=17%) then levelled off until n=900 

(Mdn=18%), n=1000 (Mdn=16%), as illustrated in Figure 8.7. No statistically 

significant differences were observed between the contextual model training data 

sizes, χ2(10) = 10.265, p = .418. Specifically, these results suggest that a contextual 
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model could be trained using n=50 instances and obtain a statistically similar 

accuracy to a model with n=1000 training instances. 

 

Figure 8.7 Gesture recogniser accuracy improvements with Contextual Models 

 

8.4.3 Contextual Model Summary 

This section has proposed and evaluated a novel approach using contextual 

measurements to source training data specific to the interaction needs and abilities of 

individual sessions. Following this evaluation is it now possible to answer the related 

research questions: 

1. What sample size needs to be measured to obtain accurate contextual features? 

Firstly, the evaluation investigated the use of two types of sampling methods, and 

demonstrated that Instance-based windows performed significantly better than Time-

based sample windows. The Time-based windows produced highly variable accuracy 

measurements as a result of the variable number of instances available at the time of 

the samples. For example, with a sample size of 5% (of the total session duration) in 
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one session there were 10 touch instances, while another had only two. However, 

when using the Instance-based window method the accuracy of the measurements 

was more consistent. Statistically significant differences were found between the 

window sizes of the Instance-based sampling method, the results demonstrated that 

the longer the sample window the more accurate the contextual measurement 

predictions were. Although no optimal size exists, it would be recommended that the 

minimum sample size be 20% to achieve contextual measurement accuracies of 70% 

and greater. 

2. How much training data is required to build a contextual shared user model? 

No statistically significant differences were identified in the normalised gesture 

recogniser accuracy between the training data sizes tested within the evaluation of 

the contextual models between sizes n=50 (recogniser accuracy improvement of 8%) 

to n=1000 (16%). Therefore, the contextual shared user models could be trained with 

n=50 instances of the gesture. Although no significant differences were identified, 

n=300 (17%) produced a local maximum and its accuracy was not exceeded until 

n=900 (18%). Therefore, n=300 provides the greatest return and is the recommended 

training data size. 

8.5 Evaluation of Shared User Models 

The purpose of this evaluation is to simulate the effects of using the shared user 

models to tailor the tap gesture recognisers of the Sudoku gameplay. Using the 

interaction data collected within the in-situ user study as the training and testing data 

for the shared user models, it is possible to simulate the behaviour of the tap gesture 

recogniser and measure the classification accuracy against the extracted user 
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intention values. The simulation will explore the effect of using data from a single 

user, his/her stereotypical user group and a canonical user model. Furthermore, 

simulations of models using data from the Sudoku application only, and sharing data 

between the three applications will also be conducted. The goals of this evaluation 

were to identify whether the shared user models provide an accurate representation 

of the individual’s needs and abilities; to explore the effects of training models with 

data from other users, and applications; and finally, measure the effects of applying 

contextual measurements to refine the shared user models.  

 

8.5.1 Research Questions 

This evaluation aims to answer the following research questions: 

1. Can shared user models improve touch recognition accuracy over the default 

gesture recognisers of the devices? 

2. Can we use data from other people (within, and outwith the same stereotypical 

group) to build shared user models that are more accurate than using an 

individual’s own data? 

3. Can we use data from other applications to build shared user models that are 

more accurate than using an application’s own data? 

4. Can contextual models improve the accuracy of the shared user models over the 

Unweighted models? 
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8.5.2 Procedure 

This section describes the contributing factors of the user models, and outlines the 

procedure applied to evaluate the performance of each model combination. The three 

components that define the models are subject of dataset, domain of dataset and 

selection method. Figure 8.8 illustrates the 12 component combinations used to 

create the user models evaluated within this chapter. 

 

Figure 8.8 Overview of model structures within this evaluation. The three specific components 
include subject and domain of training data and the data selection method 

8.5.2.1 Subject of Dataset 

To investigate the effect of creating user models from other participants’ interactions 

the following three Subject conditions were defined: 

Generic: the touch models were trained using everyone else’s interactions, i.e. the 

current user’s data is excluded from the training dataset. 

Stereotypical Group: Touch models were trained using interactions from other users 

that belong to the same group, excluding the current user’s data. Participants self-

classified during the initial interview stage of the in-situ user evaluation (Chapter 7).  

Generic

Stereotypical Group

Individual

Application

Shared

DomainSubject
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Individual: touch models were trained using only data collected from the participant 

being tested. Interaction data being tested was excluded from the available training 

data, and cross-validation with 30-folds was used for each evaluation.  

8.5.2.2 Domain of Dataset 

To evaluate the effect of creating user models using data from other application 

interactions the following two Domain conditions were defined: 

Shared: touch models were trained using data captured within any of the three 

experimental applications: creating device touch models that are application 

independent.  

Application: touch models were trained using only data captured within the specific 

application being tested. In a similar way to the individual condition from the 

Subject of dataset, this condition ensured training data was not used for testing 

through cross-validation with 30-folds. This condition represented individual models 

for each application, whilst maintaining the use of abstract interaction data.  

8.5.2.3 Selection Method 

To investigate the effect of creating situation-specific models the following two data 

selection conditions were defined: 

Unweighted: which performed a simple randomisation on the available dataset and 

selected the required number of training instances. Each gesture is treated as an 

individual instance; therefore there is no guarantee that the training data will come 

from the same interaction session.  
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Contextual: which sampled the current interaction session to capture measurements 

of the user’s interaction behaviour. These same measurements were applied to the 

complete dataset of user sessions, allowing distances to be computed between the 

current session and each session available within the dataset. The sessions were 

weighted by their distance from the current interactions, data with the lowest 

distance most closely matched the current context of interaction. Therefore, this data 

was selected to train the user models. The distance measurements applied are 

presented in Section 8.4.2. 

8.5.2.4 Training and Testing Data 

To perform the simulation and evaluations of the user model combinations, the 

following dataset conditions were defined: 

Testing Data: each simulation required 200 tap gesture instances with intent 

measurements. These tap gestures were sourced from the user’s touchscreen 

interactions within the Sudoku application. Tap gestures were selected randomly any 

of the user’s Sudoku sessions whereby the gestures had an associated intent 

measurement.  

Training Data: depending on the selection method of the current user model 

condition, training data was defined as 300 tap gesture instances selected at random 

from all available sessions (in the case of Unweighted selection), or from a subset of 

sessions with similar interaction behaviours (in the case of Contextual selection). To 

ensure that the training data used to build the touch models was also not being used 

to evaluate the model’s accuracy, the 200 testing instances were excluded from the 

available dataset for training data.  
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8.5.2.5 Validation of User Models 

The goal of this evaluation was to measure the effects of applying user and situation-

specific touch models to touchscreen input gesture recognisers, Figure 8.9 illustrates 

the evaluation process. Baseline performance scores were obtained for the device 

default configuration by measuring the number of recognised user interactions that 

match the previously extracted touch intent values. Each model was then scored 

against these baseline measurements, values greater than zero determined that user 

models correctly recognised more instances of user intent. In order to reduce the 

variability of the user model performance measurements, 30-fold cross-validation 

was applied to each model evaluation, the simulation process is illustrated within 

Figure 8.11. Sessions were excluded if fewer than 10 touchscreen interactions were 

captured. Likewise, any model dataset that did not meet the required number of 

training (n=300) and testing (n=200) instances was excluded from the evaluation, 

Figure 8.10 illustrates the processes applied to obtain the necessary training and 

testing data for the simulations. As a result, data from participant P6 was not 

included in the evaluations due to a lack of testable data with measurements of intent 

since the test dataset only contained refined classifications of intent for the Sudoku 

game. Therefore, both the TV Guide and Memo data were excluded from the test 

data, as no classifications of user intent could be extracted for those interactions. The 

result of these exclusions produced a dataset containing over 287 interaction 

sessions, consisting of 33,643 touchscreen gestures available for training models, of 

which 26,563 gestures contained user intent classifications for testing.  
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Figure 8.9 Flow chart of the overall evaluation process applied to each user model simulation 
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Figure 8.10 Flow charts illustrating the process applied to obtain testing data for the 
simulations (left) and training data to build the user models and tap gesture recognisers (right). 
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Figure 8.11 Flow chart illustrating the simulation process used to measure the accuracy of the 
user model conditions and tap gesture recognisers with the testing data. 

Start

set X = 0, correct = 0;

Stop

Yes

No

X < testing data 
length

classify tap gesture 
using the 

TapGestureRecogniser

Does the 
classification match 

the tap gesture intent 
values?

Yes

No

Get next tap gesture from 
the testing data

Increment correct by 1

Increment X by 1

Calculate accuracy as 
Correct / Size of testing data

Return accuracy of 
TapGestureRecogniser



194 

 

8.6 Results 

This evaluation examined the effects of the subject, domain and selection method 

conditions. The observed values in all dependent variables were tested using the 

Shapiro-Wilk normality test. However, the data did not show a normal distribution.  

Therefore, non-parametric tests (Friedman, Kruskal-Wallis and Wilcoxon) were 

selected and Bonferroni corrections for post-hoc tests were used. Alpha levels were 

set as p <.05 for significance. 

8.6.1 Training and Testing Data 

A Kruskal-Wallis test was run to determine if there were significant differences in 

the accuracy of the Contextual models between the training data sizes; no significant 

differences were found. However, when testing the Unweighted user models the 

accuracy was statistically significantly different between the training data sizes, 

χ2(10)=20.75, p<.023. Pairwise comparisons were performed with a Bonferroni 

correction (p <.00076) for multiple comparisons. Post-hoc analysis revealed no 

statistically significant difference between user models with a training data size of 

1000 and 300 (p =.735). Specifically, these results support the decision to train the 

models using n=300 gesture instances. Therefore, each user model was trained using 

n=300 gesture instances based on these results and the earlier evaluations of the 

Contextual models.  

Each measurement required n=200 testable gesture instances with valid intent 

classifications. Therefore, the test data was restricted to interactions from the Sudoku 

application where user intent could be extracted. A single test consisted of 200 

gesture interactions from the specific user; the data was selected at random from all 
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available test data for that user. 30-fold cross-validation was used to ensure validity 

of reported measurements; test data was excluded from the training data for each 

iteration.  

8.6.2 User Model Accuracy 

The contextual search relied on accurate measurement and prediction of the user’s 

current situation and behaviour. Any inaccuracies or errors in the prediction would 

have an effect on the accuracy measurements of the user models. Therefore, to 

ensure that the evaluation of the Contextual models only tested the resulting models 

and not the ability to predict the context of interaction, each model measurement in 

the Contextual models used the complete test data (n=200) to obtain the contextual 

measurement values and perform the training data search. This approach ensured the 

accuracy measurements reflected the performance of the Contextual models, 

independent of the original measurements to predict the session behaviour. 

A Friedman test was run to determine if there were differences in gesture recogniser 

accuracy between the subject, domain and selection method of the user models. 

Pairwise comparisons were performed with a Bonferroni correction ( p <.00064) for 

multiple comparisons. Gesture recogniser accuracy was statistically significantly 

different between the user model conditions, χ2(11) = 32.279, p =.001. Post hoc 

analysis revealed statistically significant differences in gesture recognisers accuracy 

from Generic Shared Contextual (Mdn=98%) models to Individual Application 

Unweighted (Mdn=81.1%) (p<.0005) and Group Application Unweighted 

(Mdn=59%) (p<.0005). Figure 8.12 illustrates the gesture recogniser accuracy for 

each of the model subject, domain and selection method conditions. 



196 

 

 

Figure 8.12 Classification accuracy of the gesture recognisers for each of the subject (group, 
individual, generic); domain (application, shared); and selection method (unweighted, 

contextual) touch model conditions.  

 

A Kruskal-Wallis test was used to determine whether there were differences in the 

accuracy of the gesture recognisers between the Default, Unweighted, and 

Contextual touch model conditions. Pairwise comparisons were performed with a 

Bonferroni correction (p<.0167) for multiple comparisons. Gesture recogniser 

accuracy showed a statistically significant difference between the touch models, 

χ2(2) = 39.78, p <.001. Post-hoc analysis revealed statistically significant differences 

in gesture recogniser accuracy between the Contextual (Mdn = 96.2%) and Default 

(Mdn = 82%) (p<.001), and Contextual and Unweighted (Mdn =85.5%) (p<.001) 

touch model conditions, but not between the Default and Unweighted (p = .920). 

These results suggest that the Contextual models have an effect on the performance 

of the gesture recognisers. Specifically, these results demonstrate that situation-

specific user models can improve the touch recognition accuracy of touchscreen 
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devices for individuals with motor and visual impairments, as illustrated in Figure 

8.13. 

 

Figure 8.13 Classification accuracy of gesture recognisers for touch model conditions. 

8.6.3 Subject of Models 

A Kruskal-Wallis test was run to determine whether there were differences in gesture 

recogniser classification accuracy between the Subject conditions. The differences in 

classification accuracy were not statistically significant within the Unweighted, χ2(2) 

= 1.649, p = .439 or Contextual, χ2(2) = 1.005, p = .605 models. These results 

suggest that the subject of the dataset does not affect the accuracy of our touch 

models, therefore permitting the creation of touch models from the interactions of 

other users, not specifically from the same stereotypical user group. We have found 

that when applying the contextual measurements it is actually more beneficial to 

share data between users, with the results increasing from the individual (Mdn=93%) 

to group (Mdn=96.5%) and generic (Mdn=98%) conditions. This shows, as more 

data is made available, that the contextual models are able to locate data that closely 

mimics the user’s current behaviours 
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Figure 8.14 Classification accuracy of gesture recognisers for touch models by subject condition 

8.6.4 Domain of Models 

An Independent-Samples Mann-Whitney U test was used to determine whether there 

were differences in gesture recogniser classification accuracy between the 

Application and Shared Domain conditions. The classification accuracy was 

significantly higher for the Shared (Mdn=92%) than Application (Mdn=75.1%) or 

Unweighted models, U=719, z =3.066, p=.002. These results suggest that the domain 

of the dataset does affect the classification accuracy of our Unweighted models. 

However, related-samples Wilcoxon tests revealed statistically significant 

differences between the Default recogniser and the Shared, z =-2.740, p=.006, but no 

significant differences between the Default and Application, z =-1.607, p=.108., 

therefore supporting the training of models using interaction data shared between 

applications. 

No statistical differences in classification accuracy were found within the Contextual 

models between Shared (Mdn=97.8%) and Application (Mdn=95%), U=592, z = 



199 

 

1.081, p=.280. Related-samples Wilcoxon tests revealed statistically significant 

differences between the Default recogniser and the Shared, z =-4.601, p<.001 and 

Application, z =-3.352, p=.001 and Contextual models. This suggests that the domain 

condition does not affect the accuracy of our Contextual models. This outcome could 

be the result of the refined selection of training data by the Contextual model, 

minimising the effect of the model domain. Specifically, these results suggest that 

the contextual models can be trained using either Application only, or Shared data. 

Figure 8.15 graphically illustrates the classification accuracy of the domain models.  

 

Figure 8.15 Classification accuracy of gesture recognisers for touch models by domain condition 

8.6.5 Contextual Measurement Delay 

The simulation of the Contextual model accuracy was conducted independent of the 

initial measurements to predict the interaction behaviours and contextual search 

parameters. However, in a real-world evaluation this method would not have been 

possible, as the contextual measurements would require time to obtain the 

appropriate number of gesture instances. Therefore, to compute the effects of the 
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contextual measurement sample window a delay was applied to the contextual model 

simulations. The simulation applied the baseline device gesture recogniser to any 

touches occurring within the delay window. Beyond this point the Contextual models 

were used to classify the interactions. Recogniser accuracy decreased from a delay 

n=10 (Mdn = 93.5%), to n=50 (Mdn = 89%) but the differences were not statistically 

significant, χ2(8) = 8.417, p = .394. 

 

Figure 8.16 Median classification accuracy by contextual measurement delay 

 

8.7 Discussion 

Following the simulation and evaluation of the user models the research questions 

proposed at the beginning of this evaluation can now be answered. 

 

1. Can shared user models improve touch recognition accuracy over the default 

gesture recognisers of the devices? 
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Results showed touch gesture recognisers using personalised user models could 

outperform the classification accuracy of the device default gesture recognisers. 

However, the Unweighted models relied on random selection of training data 

producing highly variable results that would not consistently improve touch 

recognition accuracy. Using the Contextual models to create personalised gesture 

recognisers resulted in more consistent performance, with significantly better 

recognition accuracy. 

2. Can we use data from other people (within, and outwith the same stereotypical 

group) to build shared user models that are more accurate than using an 

individual’s own data? 

Results showed that the subject of the training data had no significant effect on the 

recogniser accuracy. This result was true for both Unweighted and Contextual 

models. Moreover, the Contextual models achieved higher levels of accuracy with 

the stereotypical group and generic subject conditions than the individual’s own data.  

3. Can we use data from other applications to build shared user models that are 

more accurate than using an application’s own data? 

Results showed that user models trained with the combined data from all three 

applications performed significantly better than models trained with data from the 

Sudoku application only within the Unweighted selection method. However, no 

significant effect was measured between domain conditions when using the 

Contextual models. The Shared user models performed significantly better than the 

device’s default recognisers. This result was true for both Unweighted and 
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Contextual models, suggesting that using data from other applications can improve 

the accuracy of user models. 

4. Can contextual models improve the accuracy of the shared user models over the 

Unweighted models? 

The simulation results demonstrated that gesture recognisers trained with 

Unweighted user models, relying on random selection of training data (regardless of 

subject, or domain conditions) were not significantly more accurate than the device’s 

Default recogniser. However, the Contextual models were significantly better than 

the Default and Unweighted conditions, supporting the hypothesis that the 

application of contextual measurements does improve accuracy. 

 

The evaluation computed user models for training size of 50 and sizes 100-1000 in 

intervals of 100 instances and found no measureable differences between user 

models trained with greater than 300 instances. However, when Wilcoxon related 

samples tests were conducted between Contextual models and the default recogniser, 

the models were significantly more accurate using n=50, z =-3.330, p=.001, n=100, 

z =-4.493, p<.001, and n=200, z =-5.173, p<.001 training instances. Specifically, 

these results suggest that Contextual models could be trained with fewer instances 

and still provide significant improvements to the baseline gesture recogniser 

accuracy. Finally, the effects of the contextual measurement delay window were 

evaluated, revealing a diminishing returns problem with Contextual modelling. 

Larger window sizes are needed to obtain more accurate measurements and 
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predictions of the session behaviours. However, shorter measurement windows are 

required to gain the maximum returns of applying the user model. 

8.8 Conclusions 

The work presented in this chapter investigated the effects of adapting touch gesture 

recognisers with personalised user models trained from participants’ real-world 

interactions with device applications. In particular, the objectives of this 

investigation were to evaluate the effects of training user models with data shared 

between applications, and between users. Moreover, the analysis explored the use of 

contextual sampling and measurements to source training data harmonious with the 

present interaction session to create situation-specific user models. Results showed 

that unconsidered selection of real-world training data, regardless of the originating 

application or user does not produce significant improvements to the recognition 

accuracy of touchscreen interactions. However, conducting contextual measurements 

of the current session to curate the selection of the real-world data resulted in user 

models and gesture recognisers that performed significantly better than the device’s 

default configurations. Simulations of users’ performance with the Contextual 

models produced an average of 10% improvement in accuracy of the gesture 

recogniser classification. The solution is particularly responsive to the short-term 

variances within user performance of touchscreen gestures.  
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Chapter 9. Conclusions 

This chapter will conclude the dissertation by presenting the closing discussion of 

the major contributions and results, the implications and limitations of the approach. 

Next, the chapter suggests avenues of future research looking to expand on the work 

within this dissertation. Finally, the chapter presents the researcher’s critical 

reflections on the work.  

9.1 Discussion 

This research set out to explore the concept of creating user models from real-world 

data that were responsive to short-term changes, to produce touchscreen interactions 

that were supportive of individuals’ abilities and variances. By leveraging the 

abstract nature of low-level touchscreen interactions, the research investigated 

techniques to share and aggregate interactions across applications and users to 

produce models that provide a holistic representation of user interactions and 

abilities. Motivated by the need for better touchscreen interactions, this research 

maintained a realistic approach to investigate solutions based on the functionality 

within mainstream technologies today, whereby the concepts presented in this 

dissertation could be implemented tomorrow. 

To fulfil the goals of this research, a series of user studies was conducted to examine 

the characteristics and behaviours when performing touchscreen interactions with 

mobile devices. The initial exploratory user study combined measurements and 

observations of touchscreen interactions to identify the characteristics that were 

common and how they varied amongst users. The findings of the preliminary study, 
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combined with the previous work within the field, motivated the development of a 

novel data collection framework, and further laboratory studies to measure and 

observe the characteristics of individuals with motor and visual impairments. Based 

on the findings, refinements to the collection framework were made to support the 

capture of lab quality data from real-world device usage within an in-situ user study. 

The resulting dataset was used to propose and evaluate novel models that shared data 

between applications, and users.The simulations demonstrated that user models 

could leverage contextual measurements of individual situations to improve touch 

performance.  

This section will discuss the major contributions of the research, and the associated 

implications and limitations of the dissertation. 

9.1.1 Contributions and Major results 

The objectives of the preliminary user study were to understand the similarities and 

differences between individuals when naturally interacting with touchscreen mobile 

devices. Participants were tasked to perform a series of way-finding tasks with the 

aid of the indoor navigation touchscreen application, enabling the collection and 

observation of touchscreen interactions free of the restrictive laboratory constraints. 

Results revealed the diverse range of interaction behaviours between participants, 

uncovering touch characteristics affecting the success of interactions beyond the task 

of target acquisition. Moreover, this study exposed the impact of the environment on 

the success of mobile interactions. Allowing participants to configure interface 

settings in one space prior to carrying out the navigation tasks in another revealed the 

importance of short-term changes, and the impact they could have on mobile 
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interactions. These results motivated the development of the data collection 

framework to capture user interactions from real-world applications, leading to the 

proposal of novel gesture recognisers capable of adapting their recognition 

parameters at use time to meet the abilities and interaction characteristics of the user 

within the particular context. 

Next, laboratory user studies with motor and visually impaired participants were 

conducted to evaluate the proposed adaptation methods, designed to compensate for 

variances between user performance of touchscreen interactions and abilities. 

Similarly, the user studies aimed to understand whether interaction characteristics 

were shared within stereotypical disability groups. The results demonstrated that the 

adaptive interfaces significantly improved touchscreen accuracy, and that the models 

need to be individual as the duration features are user-dependent. Moreover, for 

some participants the duration features varied between study sessions. Participants 

reported the impact of medications and fatigue on their performance of similar tasks 

to touchscreen interaction.  

Based on the participant comments and findings of the laboratory evaluations, the 

research focus was to understand the variable nature of individuals’ interaction 

characteristics. Seeking to capture a continuous representation of a user’s abilities, a 

four-week in-situ user study was proposed to address the limited collection window 

of the laboratory studies. The objective of the in-situ study was to collect real-world 

interactions with enough detail to support the laboratory quality analysis of 

touchscreen performance. Regarding user abilities, the findings demonstrated that 

interaction behaviours fluctuate between users and between sessions for the same 
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user. Therefore, it was not enough to build models from an individual’s data, user 

models need to update and respond to the contextual factors and fluctuating abilities 

of individuals on a per session basis.  

In response to the findings of the in-situ evaluation, a novel approach was proposed. 

This involved leveraging contextual measurements of interaction sessions to refine 

the data selection used to train the shared user models. Firstly, the method of 

obtaining the contextual measurements and predicting the users’ abilities was 

evaluated to identify how long to sample user interactions for, and how much 

training data is required to build accurate models. Next, this chapter explored the 

effects of training user models from other users’ data, and data from other 

applications. The accuracy of these models was evaluated using simulations from the 

real-world interaction data collected from the in-situ user study. The shared user 

models trained using the contextual measurements performed significantly better 

than the baseline device models and the shared user models without contextual 

measurements. Furthermore, the simulations demonstrated that there were no 

significant effects on the accuracy of the gesture recognisers when the contextual 

shared user models were trained using an individual’s data, or using the canonical 

user data. Therefore, the approach using contextual measurements with shared user 

models can provide adaptations specific to an individual’s abilities and situation. 

Although the contextual user models were never evaluated with real users, based on 

the results from the simulations (Chapter 8) the following process for how SUM 

adaptations would occur, has been proposed. Figure 9.1 illustrates the proposed 

interaction workflow of an application using the SUM framework. When the user 
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opens the application the device default parameters of the gesture recognisers are 

applied. The SUMClient begins capturing the users interactions, once the framework 

obtains the required number of gesture interactions (i.e. 10 single taps) it makes a 

request to the SUMServer for a new user model. The SUMServer uses the received 

interactions to measure the current interaction behaviours of the user by defining the 

session features are describe in Chapter 8. These features are then used to perform a 

search for interaction sessions with contextually similar interaction behaviours. The 

resulting dataset is used to define the gesture recognisers parameters and returned to 

the application in the form of a user model. The SUMClient applies the user model 

to the tap gesture recognisers with no visual interruption or visible change to the user 

interface of the application. For longer interaction sessions it might be beneficial to 

repeat this process using the larger dataset of captured interactions for the current 

session. 



209 

 

 

Figure 9.1 Sequence diagram showing the proposed workflow of a user receiving personalised 
gesture recognisers through the SUM framework. 

 

9.1.2 Benefits 

Previous approaches to create user models have relied on the use of semantically 

meaningless calibration activities to capture measurements of performance, either to 

select the appropriate stereotypical model to apply, or generate a personalised model 

for the individual. User modelling with reliance for performance elicitation tasks 

results in user models naive to the variable nature of individual abilities, thus 

producing models with a limited shelf life. Furthermore, existing approaches fail to 
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consider the effects of dynamic environmental factors that do not exist during the 

measurement process. The work presented within this dissertation has made 

important steps towards user models representative of the current abilities and 

situation of an individual. The major benefit in taking this approach is that SUM uses 

low-level touchscreen interactions from real-world applications to measure user 

performance, thus removing the need for continuous calibration exercises. Using 

contextual measurements of the user’s current interaction behaviour enables SUM to 

identify interaction data that closely matches the interaction abilities of the user at 

that instant; SUM enables accurate user models to be trained using data from other 

users and applications. 

9.1.3 Limitations 

Although the approach described within this dissertation was able to accurately 

model individual users’ abilities and situations, it does have some limitations to be 

explored in future work.  

In order to capture the device interactions made by the participants the data 

collection framework (Chapter 4 and Chapter 6) need to be embedded into each of 

the experimental applications. Due to the architecture of the mobile device operating 

systems it was not possible to obtain the low-level sensor interactions and 

application interface structures on a device level, thus restricting the data collection 

to the experimental applications only. Therefore, any device interactions participants 

made with the device outside of these applications were unrecorded. Similarly, 

should future research projects seek to perform user evaluations of the simulated 
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touch models (Chapter 8) this implementation method would restrict the effects of 

the adaptations to interactions made within the experimental applications. 

Another related limitation of this approach is the collection of interaction data itself. 

The method relies on capturing user interactions within real-world applications, such 

as web browsers; video games; music players and social networking applications. 

Therefore, any user interactions that occur within these applications would be 

logged, along with the interface objects being interacted with. This level of detail is 

required to produce the user models but could similarly be used to gain access to 

sensitive information about the user. For example, using the keystrokes from the 

keyboard it would be possible to obtain a user’s login credentials, or personal email 

correspondence. Therefore, the collection of real-world data for user modelling 

would violate the app store publishing terms and conditions of the mobile operating 

systems, limiting the mainstream distribution of this approach.  

An important limitation regarding the use of real-world data from ‘in the wild’ 

installations relates to the measurements of user intent. Chapter 8 discussed the 

process of leveraging the Sudoku game logic to obtain refined estimations of the user 

intent behind real-world touch interactions; this same process could not be applied to 

all real-world applications as they don’t all follow a logical interaction pattern. 

While the refined measurements of intent were not required for the creation of the 

user models, they were essential for the simulation and evaluation of performance. 

Providing participants with a mechanism to report unintentional actions as they 

occur, or methods to refine their input when the system is uncertain of the intent can 

mitigate this limitation.  
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Finally, when evaluating the performance of interaction adaptations it is beneficial to 

perform evaluations with actual users. Evaluations with user studies would have 

provided an understanding of how the adjustments to the interface were perceived 

and affected the interaction experience. However, the use of simulations to test the 

user models provided performance scores for classification accuracy with no insights 

into the interaction experience implications of situation specific touch models. 

 

9.2 Future Work 

User Evaluations of Contextual Models. While the simulated evaluations 

demonstrated that the contextual models could improve touchscreen recogniser 

accuracy, it would be beneficial to conduct user studies where the models are being 

applied in the real-world interactions. This investigation would seek to provide an 

understanding of how best to adjust user models to ensure consistent user 

interactions. User feedback would provide useful insights into the acceptance of 

situation-specific gesture recognisers,;interfaces to control adaptations, and evidence 

to refine the touch model classifiers.  

Contextual Search. The finite size of the dataset for the user model evaluations 

meant that the contextual search method could effectively compute distances 

between the current situation of the interaction session and all other existing sessions 

without large delays. However, if this approach was applied to user studies with 

larger participant populations or longer collection periods, the number of 

comparisons required would increase significantly. Therefore, techniques to reduce 

this search space while maintaining accurate selection of appropriate interaction 
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sessions would need to be defined in order to provide real-time contextual 

measurements and searches to support these models.  

Beyond Applications. One limitation of the approach was the need to be embedded 

within the application rather than existing at the operating system level. A direct 

consequence is the restriction of data collection and interface adaptation to the 

experimental applications only. Therefore, the device behaviours outside of these 

applications would default back to the standard gesture recognisers. Moreover, 

should the user choose not to interact with the experimental applications then no 

interactions can be collected. Thus, future research should seek to extend this 

approach and produce methods to capture all interactions made with the device on a 

system level, while maintaining the detailed access to the interface components that 

make up the application interfaces. While this was not possible at the time of this 

work, recent updates to the mobile operating systems suggest it could be viable in 

the near future. These changes would be crucial to the success of user evaluations 

with contextual models to ensure the same interaction experience throughout all 

aspects of device usage.  

Refining User Intent. A major challenge of working with real-world data is 

obtaining accurate measurements of user intent for an action. The evaluations within 

this dissertation relied on the game logic of the Sudoku application to perform intent 

classification. However, this method is restricted to applications where user 

interactions can be modelled and predicted, and thus is limited. Future works should 

endeavour to support methods of allowing participants to refine or confirm intent for 

interactions whereby the system is uncertain, rather than always assuming the most 
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probable action. Another possible method to attain more accurate estimations of user 

intent would be to model application behaviours, using interaction patterns sourced 

from large populations. For instance, weighting interface components or gestures 

based on the common usage amongst all users. This approach would allow a generic 

set of rules to be defined as opposed to relying on specific classifiers for single 

applications.  

Modelling the Masses. The scope of this research focused on individuals with low 

levels of vision and motor impairments pertaining to dexterity or unintentional 

tremor movements. Nevertheless, the approach does not infer or apply any 

stereotypical context; instead models are constructed based on abilities relating to the 

interactions. Therefore, it is feasible to suggest that this approach could translate into 

other domains with alternative sets of abilities. Furthermore, by opening up the 

approach to wider populations and situations there is the potential to collect a more 

diverse dataset of interaction eventualities.  

9.3 Final Remarks 

This dissertation proposed the following thesis: 

Sharing data between users and applications can produce models that usefully 

represent the dynamic needs and abilities of individuals. 

Contextual Models produced situation-specific touch models that significantly 

improved the recognition accuracy of touchscreen interactions. Moreover, models 

trained from other users’ data provided further improvements to the recognition 

performance. Contextual measurements and weighting of training data has been 
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shown to produce user models that accurately reflect the current interaction 

behaviours and abilities of users, therefore, demonstrating that the thesis holds.  

Future interaction designers and researchers should aspire to produce solutions that 

are flexible and accommodating to the individual variances of interaction abilities 

between both users and situations. Interfaces that are responsive to short-term 

changes in user performance and interaction behaviour inevitably provide greater 

accessibility.  
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3. In-Situ User Evaluation - Information Sheet and Consent Form 
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4. Sudoku Task Sheet (tasks 1 and 2) 

 



238 

 

5. Memo Task Sheet 
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