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ABSTRACT 

Demand for both food and water are projected to increase substantially in the next 

four decades. Water scarcity is also projected to increase in scale and complexity. 

Climate change is projected to increase temperatures, spatio-temporal variability in 

rainfall, frequency and severity of droughts and soil water stresses to crops. Due to the 

crucial role of water in crop growth and yield formation, prolonged or severe soil water 

deficits in crop producing areas can result in substantial yield penalties.  The potential of 

food trade to help address food insecurity as a result of insufficient water availability for 

crop production has been rationalized in the virtual water concept. The aim of this thesis 

was to improve the evidence base for understanding and evaluating the relationships 

between future water availability for crop production and food trade (or virtual water 

flows), and the utility of the virtual water concept to inform policy and management 

decisions on water-food security.  

The UK and barley were used as a model country and crop, respectively. Three 

crop growth simulation models (AquaCrop, CropWat and WaSim) were evaluated for 

their abilities to estimate the water use of 10 barley genotypes. Subsequently, the effect of 

projected climate change on UK barley yields in the 2030s, 2040s and 2050s was 

simulated using the high, medium and low emission scenarios data from the UK Climate 

Projections 2009 (UKCP09). Projections of total UK feed barley supply and demand 

were performed to quantify potential virtual water flows and to analyze the implications 

for food security and policy.   



xiv 

The results show that the predicted water use of barley differed between the 

models but not among the genotypes. Predicted seasonal water use of the barley 

genotypes ranged from 241.4 to 319.2 mm. Based on the root mean square error (RMSE) 

and the index of agreement (D-Stat) values, CropWat performed poorly while AquaCrop 

and WaSim performed excellently. Barley yields under projected climate change 

increased substantially over baseline yields in all UK regions. Projected mean barley 

yields for the UK ranged from 6.04 tons ha-1 (2030s) to 7.77 tons ha-1 (2050s). In spite of 

the projected increase in yields, the UK faces the risk of large deficits in feed barley and 

meat supply from the 2030s to the 2050s due to a combination of population growth, 

increased per capita meat demand and reductions in land area allocated to barley 

production. Finally, current water scarcity concepts were found to be incompatible with 

water availability and consumption in crop producing areas, a situation that diminishes 

the usefulness of the virtual water concept for policy. To address this deficiency, a 

framework for making water scarcity compatible with crop production was proposed.  

In conclusion, the poor performance of CropWat has implications for its wider 

use in quantifying global virtual water flows associated with crop trade. Eventhough UK 

barley yields are projected to increase under projected climate change, the projected 

deficits in feed barley and meat supply threatens to destabilize future UK food security. 

The UK can rely on import to offset the large deficits in feed barley and meat supply but 

can use the proposed framework to reduce the effect of its imports on water scarcity in 

the exporting countries. The proposed framework improves understanding and evaluation 

of the role and usefulness of the virtual water concept in water-food security policy and 

management decisions.  



 

 

CHAPTER 1 
 

INTRODUCTION 

Water is an essential resource for crop production, ecosystem services and socio-

economic development. Apart from its direct consumption for domestic and health 

purposes, water is crucial to the systems that drive life and economy such as industrial 

production, energy production, transportation, food production, environmental control, 

and sustenance of ecosystem services and values. While access to both water and food is a 

fundamental human right (Dubreuille, 2006; UN, 1948), the production of food is directly 

and intricately locked up with sufficient water availability. This thesis explores the 

relationships between future water availability for crop production and the role of food 

trade in ensuring food security in a changing climate. This Chapter introduces the general 

background and context, the aims and objectives, and the structure of the thesis.  

1.1 Background and Context 

1.1.1 Critical Role of Water in Food Production 

For crops, water plays a crucial role in photosynthesis, translocation of assimilates, 

acquisition and utilization of mineral nutrients, hydration and turgidity of cells (Pinheiro 

& Chaves, 2011; Barnabàs et al., 2008; Passioura, 2006; 2002; Gardner & Gardner, 1983; 

Boyer, 1982). Water and carbon dioxide (CO2) are the two main raw materials used in 
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photosynthesis, the key process by which biomass is produced by crops. For 

photosynthesis to occur, stomata must open to conduct CO2 from the atmosphere to the 

chloroplasts while water is transpired along the same route both to deliver solutes to the 

shoot and to cool the leaves. Transpiration accounts for 99% of water abstracted from soil 

by crop roots while the remaining 1% is used in metabolic activities (Hess, 2010; Shahin, 

2003). The formation and realization of yield potential in crops are regulated by the 

interaction of light, nutrient and water availabilities (Rajala et al., 2011). In cereals, for 

example, water is often the primary regulator of yield formation (Rajala et al., 2011; 

Barnabàs et al., 2008; Araus et al., 2002).  The availability of sufficient water in the root 

zone is therefore crucially important to drive photosynthesis, biomass production and 

yield formation (Rajala et al., 2011; Barnabàs et al., 2008; Boyer & Westgate, 2004; 

Rockström, 2003; Araus et al., 2002).  

Globally, agriculture has the largest share of land use (Foley et al., 2011), with 

rain-fed agriculture covering about 80% of cultivated land and contributing about 60% of 

yield (Foley et al., 2011; De Fraiture & Wichelns, 2010; Thenkabail et al., 2010; 

Rockström, 2003). Seasonal or intra-seasonal water stress is the most frequent abiotic 

stress that limits crop yields in most rain-fed agro-ecosystems (Rajala et al., 2011; 

Barnabàs et al., 2008; Boyer & Westgate, 2004; Araus et al., 2002; Boyer, 1982). The 

duration and timing of water stress, especially at critical growth stages, such as anthesis 

and grain-filling in cereals, can have a profound effect on yield. Prolonged periods of soil 

water deficit can lead to premature senescence of crops and substantial yield penalties 

(Anjum et al., 2011a; Rajala et al., 2011; Barnabàs et al., 2008). This suggests that the 

production of food depends on the timely availability of water in sufficient quantities.  
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1.1.2 Water Is Becoming Scarce 

It is now widely acknowledged that water is becoming scarce due to 

overexploitation, pollution, inefficient management and increasing demand and 

competition among water use sectors (Vörösmarty et al., 2010; Chapagain & Orr, 2009; 

Rijsberman, 2006). Water scarcity will remain a major challenge to human security and 

development in general through the 21st century (WRI, 2003). Available evidence suggests 

that water scarcity is expanding geographically and is very likely to increase in severity 

and complexity in the future if current abstraction and management practices continue (De 

Fraiture & Wichelns, 2010; Kummu et al., 2010; Vörösmarty et al., 2010; Falkenmark et 

al., 2009; Falkenmark & Molden, 2008; Molden, 2007; Yang & Zehnder, 2007; Islam et 

al., 2006; Arnell, 2004;  Falkenmark, 1997). In Europe, approximately 113 million people 

live in water-stressed areas and water scarcity is increasing steadily, especially in the 

southern, Mediterranean region (EEA, 2010). It has been projected that, by 2050, a third 

of the global population will live in water-scarce countries (Falkenmark et al., 2009; Yang 

& Zehnder, 2007).  

Projections indicate that climate change, population growth, urbanization, 

economic development and certain legislative instruments (e.g. EU Water Framework 

Directive, WFD 2000) will interact in complex ways and across multiple scales to 

complicate or exacerbate future water scarcity (Foresight, 2011; Hanjra & Qureshi, 2010; 

Hughes et al., 2010; Strzepek & Boehlert, 2010; Bates et al., 2008; Marcotullio et al., 

2008; IPCC, 2007). In particular, climate change will increase temperature and variability 

in precipitation, with adverse implications for water availability and requirement for crop 

production (IPCC, 2007). Irrigation is the main response to crop-water deficit. If irrigation 
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is properly applied, yields of irrigated crops can far exceed those of rain-fed production 

(Hanjra & Qureshi, 2010; Ali & Talukder, 2008). Irrigation already accounts for 70% of 

global water withdrawal (or over 80% in semi-arid and arid agro-ecosystems), making 

crop production the most water intensive human activity (De Fraiture & Wichelns, 2010; 

Faramarzi et al.,  2010a; Liu et al., 2009; Molden, 2007; Rockström, 2003). Irrigation, 

however, can put agriculture and crop production in direct competition with other water-

use sectors, particularly when water is in short supply. The complexity and spatio-

temporal dynamics of water scarcity suggest a need for studies on the risk and extent of 

water stresses in predominantly rain-fed crop producing areas under future climates. 

1.1.3 Water Scarcity Undermines Food Security 

Food security can be defined from several perspectives depending on the purpose, 

context or scale of application (Gorton et al., 2009; Pinstrup-Andersen, 2009; Rocha, 

2007). The most widely used definition of food security is: “food security exists when all 

people, at all times, have physical and economic access to sufficient, safe and nutritious 

food that meets their dietary needs and food preferences for an active and healthy life” 

(FAO, 2006a). The dimensions of food security are availability, access, utilization and 

stability of the first three dimensions (FAO, 2006a). In this thesis, food security is defined 

as the “the risk of adequate food not being available” (Chakraborty & Newton, 2011; 

Newton et al., 2011). 

The inexorable dependence of food production on water availability implies that 

water scarcity constitutes a direct threat to food security. The global population is 
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projected to increase from 7.2 billion at the end of 2013 to 9.2 billion in 2050 and increase 

by a further 0.2 billion between 2050 and 2100 (UNDP, 2006). Thus, demand for food and 

water will increase sharply up to 2050 (Spring, 2009). Projections suggest that global food 

production needs to increase by 50-70% over 2005/07 levels to meet the projected demand 

in 2050, with cereal and meat production needing to increase by nearly 1 billion and 200 

million tons respectively (Alexandratos & Bruinsma, 2012; Spring, 2009; FAO, 2009). 

The implications of these projections are that agricultural water demand will increase 

substantially. Water stress in rain-fed agro-ecosystems is projected to become widespread, 

more frequent, and increase in severity due to climate change (Dai, 2011). However, as 

water scarcity increases, it is likely that water will be treated as a commodity and the 

principle of efficient allocation of resources will likely shift water away from primary 

sectors (such as agriculture) that have low return on investment to more economically 

productive sectors such as industry (Dinar & Moigne, 1997). Given this context, the hard 

question remains how to ensure food production in sufficient quantities in a manner that is 

ecologically and economically efficient, sustainable, and does not disturb supplies to other 

water-use sectors. There is, therefore, a need to assess the viability of current rain-fed crop 

production systems under future climatic conditions. 

1.2 The Role of Virtual Water in Ensuring Water-Food Security 

There is an urgent need to find options for maintaining both water and food 

security simultaneously under possible future water-scarce conditions. Two key 

qualifications of such options should be the ability to illuminate understanding of the 
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inevitable tradeoffs required in the nexus of water and food security, and the ability to 

effectively link the agro-ecological and socio-economic conditions that underpin the food 

system to policy and management decisions. Virtual water is one of such options. Virtual 

water refers to the volume of water used in producing a unit food commodity that is traded 

(Allan, 2003; 2001; 1999; 1997). The strength of virtual water as a potential policy tool 

derives from the proposition that water-scarce regions can maintain food security by 

importing water-intensive food commodities from water-abundant regions and thereby 

save water that can be allocated to alternative uses (Allan, 2003; 2001). In contrast to 

engineered solutions that only move water to people, the virtual water proposition is an 

agro-economic solution that highlights the potential of food trade to move food and 

‘hidden water’ to people at the same time (Allan, 2003; 1997). In this connection, virtual 

water also highlights the neglected fact that the entire food system is a ‘business’ that 

subsists on economic rationality and, therefore, food trade should be seen as part of the 

solution.  

The virtual water proposition is a useful adaptive option because water scarcity is a 

localized phenomenon due to differences in the spatio-temporal distribution of 

precipitation and management of local interventions in the hydrological cycle (Yang et al., 

2006; Allan, 2003; Yang & Zehnder, 2002).  The impacts of climate change on water 

availability and crop production will also be spatially and temporally uneven (Bates et al., 

2008; IPCC, 2007). Thus, disregarding the uncertainties in projections of future 

precipitation patterns (IPCC, 2007), there are, and there will be, regions of relative water 

abundance (such as temperate Europe) or relative water scarcity (such as Middle East and 

North Africa or Mediterranean Europe). All things being equal, the interlocked 
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relationship between water availability and food production implies that water-scarce 

regions are most vulnerable to food insecurity, which has potentially far-reaching 

consequences for socio-political stability and security across multiple scales. It has been 

shown that effective use of virtual water can augment food security significantly and result 

in water savings in water-scarce regions (Chapagain & Orr 2009; El-Sadek, 2009; 

Chapagain et al., 2006; Allan, 2001; 1997).  

Food trade has played a key role in the circulation of food across the globe and the 

development of other key resources, such as land and water, and contributed substantially 

to socio-economic development and political stability (Defra, 2008; de Fraiture et al., 

2007). In monetary terms, global food exports have increased from US$ 224,000 million 

to US$ 913,000 million between 1980 and 2007 (WTO, 2009). Projections of future food 

demand and supply show that food trade will increase substantially and play an increasing 

role in food security in the next few decades, but competition for food on the global 

market is also likely to intensify (Aldaya et al., 2010a; Parry, 2007; Parry et al., 2004). 

For example, Hongyun & Liange (2007) estimated that a 3% increase in China’s food 

imports will correspond with a 10% reduction in food availability on the global market.  

Virtual water offers an opportunity for national and global analysis of food 

security situations in the context of climate change and water scarcity to inform adaptive 

food production and trade decisions and policies. As observed by Brichieri-Colombi 

(2004), “water resources planning and management should have as its primary object the 

maximization of some human welfare function in the face of constraints related to 

resource scarcity and a commitment to minimizing negative social, ecological and 

economic impacts”. Thus, in the context of potential future water scarcity and the need to 
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increase food production substantially to satisfy demand, food trade or virtual water flows 

should be integral to the suite of options for addressing future water and food security 

issues across varying spatio-temporal scales (Brown et al., 2009; Dabrowski et al., 2009a; 

Roth & Warner, 2007). There is therefore a need to understand the future drivers and 

directions of virtual water flows for specific crops and countries.  There is also the need 

for more studies to improve understanding of the advantages and disadvantages of 

integrating virtual water in water-food security policy and how this can be achieved in 

different contexts of ecological, political, socio-economic and water availability that 

underpin food production, trade and consumption (Wichelns, 2010a; 2010b; Neubert & 

Horlemann, 2008; Brown et al., 2009; Allan, 2003). Specifically, there is the need for 

empirical studies to improve the evidence base of quantifying virtual water flows and 

demonstrating the utility of virtual water for policy. 

1.3 Rationale, Scope, Aims and Objectives 

1.3.1 Rationale and Scope 

Climate change projections raise the need for countries to assess their future food 

production and trade situations. According to Huang et al. (2011), the effects of climate 

change on agricultural production and trade patterns remains unclear. However, the 

projected increase in variability in precipitation resulting from climate change is likely to 

cause spatio-temporal shifts in water availability and, consequently, crop production and 

yields (IPCC, 2007) particularly of cereals, which are the dominant staple food crops, 

largely grown in rain-fed agricultural systems, and are sensitive to water stresses at critical 
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growth stages (Anjum et al., 2011a; De Fraiture & Wichelns, 2010). These changes are 

likely to affect the direction and volumes of trade flows of particularly grains and 

livestock products (Huang et al., 2010; 2011). In the UK, apart from the significant 

longitudinal and latitudinal variability in rainfall, climate change is projected to cause 

drier summers and wetter winters (Jenkins et al., 2009; Murphy et al., 2009), with adverse 

implications for both winter- and spring-grown crops and challenging water management 

especially in England and Wales where water scarcity issues are prominent (Charlton & 

Arnell, 2011). Policies addressing climate change mitigation and adaptation, energy, land 

use and agricultural water use will also affect future cost of production and trade flows of 

food commodities. Market forces and economic incentives will also influence farmers’ 

decisions on what crops to produce, technologies to adopt, the quantity of production and, 

ultimately, food security (Huang et al., 2011).  

Cereals (mainly wheat and barley) account for 50% of UK land use for arable crop 

production (Defra, 2011). In terms of area and quantity harvested, barley is the most 

important arable crop in Scotland and second only to wheat in the UK (Defra, 2011). 

Barley plays significant socio-economic roles in the malting industry and animal feed 

production (Defra, 2011). It is therefore important in UK’s food security. There is little 

information on the effect of climate change on the future production of barley, the 

associated virtual water flows and the consequences for food security. Currently, the UK 

is self-sufficient and a net exporter of barley grains (Defra, 2011; FAOSTAT, 2009). 

Given the importance of barley to the UK, it is important to assess how climate change 

will affect future UK barley production, self-sufficiency, trade flows and consequences for 

the production of animal food products. This thesis focuses on the effect of climate change 
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on the viability of barley as a rain-fed crop across the UK, from the 2030s to 2050s, as a 

basis for exploring the role of virtual water in water-food security and policy. This thesis 

is, therefore, different from previous studies of virtual water flows or the water footprint 

of the UK (e.g. Feng et al., 2010; Yu et al., 2010; Chapagain & Orr, 2008). 

In the context of virtual water, the focus on UK is appropriate as it has 

characteristics amenable to exploring different aspects of the virtual water concept. The 

UK is a relatively wet country with a high agricultural capability (Knox et al., 2010; 

Weatherhead, 2008; 2006). Its cereal production is entirely rain-fed (Knox et al., 2010; 

Weatherhead, 2008; 2006). In addition, the UK is a strong trading nation which has relied 

extensively on food import to satisfy its food needs since its industrial revolution (Defra, 

2008). Even though exigencies after the two world wars boosted domestic production to 

increase self-sufficiency, the restoration of global peace and stability, coupled with 

economic motivations, gradually shifted the UK towards increasing food imports (Defra, 

2008). Currently, two-thirds of the UK water footprint is external (Chapagain & Orr, 

2008) and imported food could constitute over 50% of its total food supply by 2030 

(Foresight, 2011). Even during the food crisis of 2008 (due to low global grain supply and 

high prices), the values of UK’s food import and export were US$ 54 billion and US$23 

billion respectively (WTO, 2009).  This made the UK the world’s 5th largest food trading 

country by monetary value, with a large import to export ratio. Moreover, the UK has 

expressed security concerns over both domestic and international water scarcity. In 2006, 

British Defence Secretary, John Reid, indicated that British armed forces should be 

combat-ready for anticipated water wars in the coming years (The Independent, 2006). In 

business circles, both PepsiCo and Unilever recognized the adverse implications of 



11 

growing water scarcity for business in their 2010 reports and committed themselves to 

reducing the impact of applied water of their farmers operating in water-stressed areas 

(PepsiCo, 2010; BBC News, 2010). The Water Act (2003) also aims to increase water 

allocation to domestic use, and reduce agricultural water abstraction. These characteristics 

make the UK a suitable model country for exploring the relevance of the virtual water 

concept for water-food security under future conditions.  

By focusing on a single crop and a single country, this thesis seeks to contribute to 

the development of the evidence base for quantifying and evaluating virtual water for 

water-food security. The conflation of several crops and countries in a single study, which 

has been the convention in most virtual water studies, masks important inter-crop, inter-

national and intra-national differences regarding water use, food use and the role of virtual 

water in food security. To understand the role of virtual water in a country’s water-food 

security better, a detailed study based on a single (or few) important crops to  that country 

from production to distribution to end uses, vis-à-vis relevant sectoral policies and 

structural issues, is necessary. It is by this approach that the link between domestic 

production and international trade, as well as the factors that underpin this link, can be 

understood.  

In order to ease tracking or quantification of different stocks and flows, the main 

sources of water used in crop production has been classified into green and blue (Hoff et 

al., 2010; Chapagain & Orr, 2009; Rockström, 2003; 2001). Green water refers to the 

fraction of precipitation that is stored in the unsaturated zone of soil and is used by crops 

in evapotranspiration, while blue water refers to surface and groundwater that is available 

to crops only through irrigation (Hoff et al., 2010; Chapagain and Orr, 2009). Green water 



12 

constitutes 80% of water use in global crop production and virtual water flows and it is 

expected to play a major role in future food production, virtual water flows and water-food 

security (Chapagain & Hoekstra, 2011; Hoff et al., 2010; Rockström et al., 2009; 

Chapagain et al., 2006; Rockström, 2003; 2001). Yet, water use of rain-fed crops, and 

green water consumption in general, is rarely measured (Hess, 2010) as it is considered 

economically unimportant due to its low opportunity cost (Yang et al. 2006). This thesis 

focuses on future availability of green water for barley production in the UK. Because 

barley is currently a rain-fed crop in the UK, this thesis does not consider irrigation. The 

focus on green water also enables analysis of the limitations of current water scarcity 

concepts for crop production.   

Finally, the thesis contributes to addressing the deficiencies of virtual water for 

policy use that arise from certain conceptual and analytical weaknesses (Wichelns 2010a; 

2010b). A substantial part of the virtual water literature has been devoted to coarse 

quantifications of virtual water flows and water savings based on several crops and 

countries at the same time (e.g. El-Sadek, 2011;  Zeitoun et al., 2010; Dabrowski et al., 

2009b; Yang & Zehnder, 2007; Chapagain et al., 2006; Yang et al., 2006; Hoekstra & 

Hung, 2002). Progress in the virtual water and water footprint literature can be 

summarized as (a) efforts to improve estimates of virtual water flows and savings by 

employing sophisticated methods and increasing the number of crops and or countries, (b) 

methodological expansion to quantify the scale of water pollution in exporting countries, 

and (c) raising awareness about the hidden effects and dependence of consumers in 

importing countries on the resources in exporting countries (Wichelns, 2010a). Similarly, 

the key debate on the relevance of virtual water for policy has revolved and stagnated 
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around answering the question whether relative water endowments dictate the structure 

and pattern of food trade, and whether estimated water savings are accurate and useful 

(Wichelns, 2010a; 2010b; Neubert & Horlemann, 2008). Consequently, trade theories or 

economic principles have been applied or promoted as a means to explain the structure 

and direction of virtual water flows  (Wichelns, 2010a; 2010b; Novo et al., 2009 Neubert 

& Horlemann, 2008; Roth & Warner, 2007; Ramirez-Vallejo & Rogers, 2004; Wichelns, 

2004; 2001; Allan, 2003; Lant, 2003; Earle, 2001). Such efforts have yielded mostly 

unsatisfactory results, making some authors suggest that the virtual water concept is 

inaccurate and irrelevant for policy use (e.g. Ansink, 2010; Ramirez-vallejo & Rogers, 

2010). Conceptual and policy issues regarding accuracy and usefulness of estimated water 

savings have been discussed by Wichelns (2010a; 2010b). The application of trade 

theories is beyond the scope of this thesis. However, this thesis aims to advance the debate 

and improve understanding and evaluation of the role of virtual water in water-food 

security and policy by clarifying the conceptual relationships among the basic components 

(water scarcity, food trade and food security) of the virtual water proposition. This thesis 

therefore seeks to strengthen the conceptual linkages amongst the components of virtual 

water as a basis for understanding and evaluating the relevance of virtual water flows for 

water-food security and policy.  

1.3.2 Aims and Objectives 

The overall purpose of this thesis is to improve the evidence base for 

understanding and evaluating the relationships in the continuum of future crop-water 



14 

availability, crop production and crop commodity trade (virtual water), and evaluating the 

utility of virtual water for water-food security and policy. Specifically, the thesis aims to 

use the UK as a model country and barley as a model crop to improve understanding of 

the role of green water availability and the feedback relationships among water scarcity, 

virtual water and food security in the context of projected changes in climate, land use and 

population. The information from this research will contribute to scientific opinion that 

will feed into UK’s food security policy and resilience to climate change. Even though the 

UK and barley are used as a model country and crop respectively, the findings and issues 

identified will have much wider applications. The specific objectives of the thesis are: 

• To evaluate and select appropriate water-driven crop-growth simulation 

model for estimating the water use and effect of water stresses on barley 

yield in a northern temperate environment. 

• To assess the effect of temporal availability of green water under projected 

climate change on UK regional barley yields in the 2030s, 2040s and 

2050s. 

• To quantify future UK national barley demand and supply balances, trade 

position and potential virtual water flows associated with barley trade. 

• To use the findings as a basis to explore and evaluate the utility of virtual 

water for water-food security and policy.  
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1.4 Thesis Structure 

The current Chapter has presented the context, rationale, aims and objectives of the 

thesis. Chapter 2 is a literature review on the relevant themes of this thesis: water scarcity 

and food security relationships, climate change, and options for ensuring food security 

under water scarce conditions. The methods and results of the thesis are presented in 

Chapters 3 to 6, each focusing respectively on evaluation of crop-growth simulation 

models, climate change effects on barley yields, future barley demand and supply 

balances, and evaluating the utility of virtual water in water-food security and policy. 

Chapter 7 presents a synthesis of the results and conclusions of the thesis.  
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CHAPTER 2 
 

LITERATURE REVIEW 

This Chapter is organized around the three main themes relevant to the thesis. The 

first theme presents the interlocked relationship between water and food production, the 

scale of water requirement for future food production, and the risk of global water 

scarcity. The limitations of current water scarcity concepts for crop production and the 

complications of climate change on water availability for food security (as defined in 

Section 1.1.3) are also presented. The second theme explores the opportunities and 

challenges of key options for adapting food security to water scarcity. The third theme 

presents virtual water as a potential complementary tool for ensuring food security under 

water-scarce conditions, reviews work on virtual water, and explores the issues that 

potentially need to be addressed to make virtual water an acceptable policy tool.  

2.1 Crop Production Depends on Water Availability  

Water is crucial for photosynthesis and nutrient uptake by crops. Crops invest 

about 99% of water they take up into satisfying evapotranspiration (ET) requirements and 

the remaining 1% into metabolic activities (Hess, 2010; Shahin, 2003). Water constitutes 

about 70-90% of the fresh weight of actively growing plants (Gardner & Gardner, 1983). 

The formation and realization of yield potential in crops are regulated by the interaction of 

light, nutrient and water availability (Rajala et al., 2011).  In cereals, for example, water is 

the primary regulator of yield formation (Rajala et al., 2011; Barnabàs et al., 2008; Araus 

et al., 2002) . Hence, achieving yield potential depends on the availability of water in the 
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root zone. Water-deficit stress occurs in all agro-ecosystems and is the key limiting factor 

for crop productivity in most agro-ecosystems, (Barnabàs et al., 2008; Araus et al., 2002; 

Gardner & Gardner, 1983; Boyer, 1982), especially in semi-arid and arid environments 

where the evaporative demand of the atmosphere exceeds the water available for crop 

evapotranspiration (Hoff et al., 2010; Faramarzi et al.,  2010a; Rockström et al., 2010; 

Allen et al., 2006). Water stress in crops refers to a condition in which the water potential 

and turgor are decreased sufficiently, due to insufficient supply of water, such that normal 

physiological functions are inhibited (Dai, 2011; Barnabàs et al., 2008; Boyer, 1982). 

Owing to the role of water in plant physiology and biomass production, crops 

respond morphologically, physiologically and biochemically to water stress (Anjum et al., 

2011a; Barnabàs et al., 2008; Araus et  al., 2002). When plants are exposed to water 

stress, stand establishment, plant height, leaf area index, and number of leaves are reduced 

and leaf senescence is accelerated (Khan et al., 2001). These eventually restrict biomass 

accumulation and yield as radiation and nutrient capture are impaired (Anjum et al., 

2011a; Kamara et al., 2003). Physiologically, water stress triggers root to shoot signals 

that induce stomatal closure, which minimizes further water loss (Kamara et al., 2003; 

Araus et al., 2002; Khan et al., 2001). Abscisic acid (ABA) is the primary signal or cause 

of stomata closure although other factors can also contribute (Anjum et al., 2011a; 

Pinheiro & Chaves, 2011; Araus et al., 2002; Boyer 1982). Stomatal closure, together with 

leaf senescence, limits photosynthetic capacity and can reduce yield dramatically if 

prolonged (Anjum et al., 2011a; Kamara et al., 2003; Khan et al., 2001). Anjum et al. 

(2011b) studied physiological response of maize to water stress and reported reductions in 

net photosynthesis (33.22%), transpiration rate (37.84%), stomatal conductance (25.54%), 
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water use efficiency (50.87%) and intercellular CO2 (5.86%) relative to a well-watered 

control. Biochemically, water stress increases production of reactive oxygen species 

(ROS) which cause oxidative damage to lipids, proteins, DNA and ultimately cause 

cellular death (Anjum et al., 2011a; Farooq et al., 2009). The timing, duration and 

intensity of water stress can reduce overall crop performance and yield even though the 

extent might vary with species or genotypes, stage of development, and the type of organs 

or cells affected (Barnabàs et al., 2008).  

The dependence of crop production on the timely availability of sufficient water in 

the root zone makes food security vulnerable to the risk of water scarcity. Due to 

uncertainties in adaptive responses to anticipated global change, it is not easy to answer 

the question how much water will be required to maintain food security at any point in 

future? This is further complicated by the fact that future water requirement for food 

security will not be dictated only by hydro-climates and agronomic management practices, 

but also by dietary composition and lifestyles (Hanjra & Qureshi, 2010).  

2.2 Water Availability for Future Food Security 

2.2.1 Water Requirement for Future Food Security 

Based on current estimates of water used to satisfy the dietary requirement per 

person, it is possible to estimate future food requirement and consequently water 

requirement for food security (Rockström et al., 1999). Normally, a daily dietary energy 

intake of 2700 kcal of food is considered sufficient for a moderately active person (FAO, 

2009; Molden, 2007). Rockström et al. (1999) estimated a global average of 1200 m3 cap-1 
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year-1 water was required to produce an adequate diet in the mid-90s. In 2050, however, 

1300 m3 cap-1 year-1 water will be required to produce a projected average diet of 3000 

kcal cap-1 d-1 in developing countries (assuming 20% meat content), while 1600 m3 cap-1 

year-1 will be needed to produce a diet of 3300 kcal cap-1 d-1 (assuming no change in 

current food consumption levels, with 30% meat content) in industrialized countries 

(Falkenmark & Rockström, 2004; Rockström, 2003). This gives a global average of 1340 

m3 cap-1 year-1 to produce adequate diets in 2050. The estimated global water required to 

produce an adequate diet  increases crop water requirement from the current 6800 km3 

year-1 (with irrigation accounting for 1800 km3 year-1) to a staggering 12,600 km3 year-1  

by 2050 (Rockström, 2003). The additional 5800 km3 year-1 that will be required is more 

than threefold the volume of water currently used in irrigation (Rockström, 2003). 

Similarly, using a value of 3000 kcal cap-1 d-1, de Fraiture et al. (2007) estimated that 

additional 5600 km3 year-1 of water will be required in 2050, with irrigation accounting for 

800 km3 year-1. They estimated that there will be a potential water supply gap of about 

3300 km3 year-1, with devastating consequences for stability of food security.  

Additionally, to achieve a doubling of food production by 2050 (FAO, 2009), 

current global irrigated area will have to increase by almost twofold (Tilman et al., 2001) 

and irrigation water supply by about 35% (Spring, 2009). Rockström et al. (2009) estimate 

that, at current irrigation efficiencies, about 8,500-11,000 km3 water will be required 

annually to achieve the required doubling of food production by 2050. It is noteworthy 

that the full extent of potential dietary shift to ‘western diets’ (rich in meat and dairy 

products) in developing countries, due to economic improvements, is not known 

accurately (Hanjra & Qureshi, 2010). This shift, as already observed in China, for 



20 

example, will have substantial effect on the overall water requirement for food production 

in the coming years (Hanjra & Qureshi, 2010). Production of meat and other animal food 

products makes significantly higher demands on water resources than the production of 

food-crop products (Chapagain & Hoekstra, 2008; Chapagain et al., 2006; Beckett & 

Oltjen, 1993). The question therefore remains whether there will be sufficient water to 

satisfy this huge water requirement across the world, and whether this volume of water 

can be made available for food security without disturbing the tenuous balance of water 

supply to people, industry and ecosystem services.  

2.2.2 Risk of Global Water Scarcity  

Several definitions of water scarcity exist that reflect differences in the context and 

scale of application. According to Rijsberman (2006), an individual who is unable to 

access safe and affordable water to meet such personal basic requirements as drinking, 

washing, livelihood, hygiene, etc. is said to be water insecure; and an area is water scarce 

when a significant proportion of the population become water insecure for a prolonged 

period of time. Rockström et al. (2009) distinguish between water stress or water shortage 

(a temporary condition in which access to water is constrained) and water scarcity (a long-

term condition in which supply lags behind demand). Other authors have used the term 

‘water poverty’, defined as a situation where a nation or region cannot afford the cost of 

supplying clean water to all people at all times (Feitelson & Chenoweth, 2002). The 

European Environment Agency (EEA, 2010) defines water scarcity as the incidence of 

insufficient water resources to satisfy long-term average requirements. That is, long term 
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water imbalances, combining low water availability with a level of water demand 

exceeding the supply capacity of the natural system. This definition is adopted in this 

thesis. Water scarcity is already a global problem and could become acute in the next few 

decades (WRI, 2003). 

Presently, 1.2 billion people in developing countries alone lack access to safe 

drinking water and about 2.6 billion people lack adequate water for basic sanitation 

(Vörösmarty et al., 2010; Bartram, 2008; UNDP, 2006). Inadequate access to safe 

drinking water and sanitation accounts for 2.18 million deaths annually on a global scale, 

out of which 75% are children under five years old (Pruss et al., 2002). It is also estimated 

that about 1.7 billion people depend on water-scarce catchments where water supply is 

less than 1000 m3 cap-1 (WRI, 2003). At the end of the 20th century, global water 

withdrawal was more than twice the rate of population growth, resulting in several 

countries experiencing water stresses (see Figure 2-1). It is likely that the pattern of water 

stress in Figure 2-1 will continue into the future due to rising demand for water from all 

water use sectors, with adverse implications for food security. 
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Global change factors such as population growth, urbanization and socio-economic 

development are likely to accelerate and amplify water scarcity through intensive 

competition among water use sectors. Reports on future water demand based on 

population projections alone indicate that, by 2025, about 3.5 billion people (48% of the 

world population) will likely live in overexploited river basins and 2.4 billion people 

under severe water-scarce conditions (WRI, 2003). By 2050 a third of the global 

population could live in water-scarce countries (Falkenmark et al., 2009; Yang & 

Zehnder, 2007). The number of urban dwellers is projected to increase rapidly for the next 

four decades, accounting for two-thirds of the global population in 2050, with the greatest 

changes occurring in developing countries (Marcotullio et al., 2008; UNDP, 2006). As a 

result, municipal water use could rise from 257 in 2000 to 536 billion m3 in 2050   for 

non-OECD countries (>100% increase), compared to an increase from 162 to 178 billion 

m3 (10%) in OECD countries (Hughes et al., 2010). The pattern of increase in industrial 

 
Figure 2-1:  Global water stress indicated by the withdrawal to availability ratio (or the        

criticality ratio) for 1995, modelled using the WaterGap 2.0 model. Figure taken from Alcamo et 
al. (2000). 
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water allocation is projected to be similar to municipal water use for OECD and non-

OECD countries (Strzepek & Boehlert, 2010). In Europe, the share of the energy sector is 

likely to be substantial. For example, as of 2010, the energy sector accounted for 45% of 

water allocation across Europe, having overtaken irrigation water use which has reduced 

to 22% of the total (EEA, 2010). Increases in the volume of water required for 

environmental flows (i.e. minimum volume of water required to sustain the normal 

functioning of the aquatic ecosystem) through legislative instruments (e.g. the EU Water 

Framework Directive) can substantially limit water withdrawals. Environmental flows can 

be as high as 30-50% of baseflows in some aquatic ecosystems (Revenga & Smakhtin, 

2003). Indeed, some river basins and countries considered as not suffering water scarcity 

become water-scarce candidates when environmental flow requirements are considered 

(De Fraiture et al., 2008; Revenga & Smakhtin, 2003). It has been reported that, even 

without climate change, increases in environmental flow requirements could have reduced 

water availability for agriculture by 9.7% of global mean agricultural water withdrawal in 

2000 (Strzepek & Boehlert, 2010). Thus, there is considerable risk of increasing water 

scarcity in the next few decades, with a potential to reduce water allocation to food 

production (Ohlsson, 2000).  

2.2.3 Limitations of Water Scarcity Perspectives to Food Security 

2.2.3.1 Water Scarcity Perspectives 

As reflected by the various definitions of water scarcity, perspectives on water 

scarcity differ depending on the context and the spatio-temporal scale considered. These 
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differences are captured by the conceptions of the causes or types of water scarcity and the 

attendant indicators. Molle and Mollinga (2003) distinguish between natural and induced 

water scarcity, where natural water scarcity is due to nature or biophysical factors limiting 

water availability as can be found in desert or arid areas, while induced water scarcity 

occurs from human activities that reduce availability or constrain access to water. 

Vörösmarty et al. (2005) used the same distinction when they referred to climate- and 

human-induced water scarcity. Ohlsson (2000) distinguishes three types of water scarcity: 

demand-induced, supply-induced and structurally-induced water scarcity. They defined 

demand-induced water scarcity as a situation where demand exceeds supply or natural 

renewal capacity of the system due to, for example, increase in population or requirement 

of other water use sectors. Supply-induced water scarcity occurs where water supply falls 

below a threshold or a long-term average requirement due to drought, lowering of water 

table, water depletion and deterioration of water quality. Structural water scarcity is where 

access to water is constrained by low economic capacity or other social, political, 

institutional and technical factors.  Rijsberman (2006) suggested two main types of water 

scarcity: economic and physical water scarcity. Physical water scarcity refers to a situation 

in which there is higher water demand to supply ratio. Economic scarcity or social water 

scarcity relates to constrained access to sufficiently available water as a result of 

inadequate infrastructure and low investment potential in water resources development. 

Thus, economic water scarcity reflects a limited economic capacity to mobilize available 

water. In all, water scarcity is caused by natural or biophysical factors that limit 

availability (e.g. precipitation and reservoir characteristics) and human factors (e.g. poor 

water infrastructure, flow control, costs, institutional constraints, high demand, etc.) that 
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constrain ability to mobilize or access sufficient water  (Rockström et al., 2009; 

Rijsberman, 2006).  

There are three common threads running through these perspectives. First, water 

scarcity denotes a condition in which available water is insufficient to meet average 

requirement or demand. Second, water scarcity is limited to water available for human use 

and, third, social access to water is the main concern. Hence, water scarcity is indicated in 

three main ways: (1) The withdrawal to availability ratio indicator, which compares total 

water withdrawal with the renewal capacity or total available water of the system and an 

area is normally considered water-scarce if it has a ratio of 0.4 (or 40%) and above (Oki & 

Kanae, 2006; Vörösmarty et al., 2005; 2000; Alcamo et al., 2003; 1997; Raskin et al., 

1997). (2) The per capita water availability indicator, which is the ratio of available water 

resources to a given population that depend on the water resource under consideration. 

This indicator therefore measures the amount of water potentially available to an 

individual in a given population. Here, water scarcity exists if per capita water availability 

is 1000 m3 year-1 or less compared to the sufficient amount of 1,700 m3 cap-1 year-1 

(Rockström, et al., 2009; Rockström, 2003; Salameh, 2000; Shiklomanov, 1998; 

Falkenmark et al., 1989). This indicator is widely used because it is intuitive and easy to 

measure. (3)  A hybrid indicator combining the strengths and minimizing the weaknesses 

inherent in the previous indicators. Here, the physical available water is combined with a 

form of social adaptive capacity (society’s capacity to optimally develop, exploit and 

manage water resources) to generate an index of water scarcity. Examples include the 

social water scarcity index (Ohlsson, 2000), water poverty index (Sullivan et al., 2003; 
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Feitelson & Chenoweth, 2002), and the watershed sustainability index (Chaves & Alipaz, 

2007).  

2.2.3.2 Limitations of Current Water Scarcity Perspectives for Food Security 

Current definitions and related indicators of water scarcity are focused on water 

availability for human populations and the socio-economics of water supply. They do not 

reflect an interest in integrating the hydrological cycle and water use in all sectors in the 

context of a unified sustainable water management framework (Brichieri-Colombi, 2004). 

The question therefore remains whether existing water scarcity perspectives adequately 

capture water availability and use in agro-ecosystems. 

Water for crop production originates from two main sources: precipitation and 

irrigation. The fraction of precipitation that is retained in the unsaturated root zone for 

crop use has been classified as ‘green water’, while water introduced to the root zone 

through irrigation, using surface and groundwater, has been classified as ‘blue water’ 

(Hoff et al., 2010; Chapagain & Orr, 2009; Rockström et al., 2009; Rockström, 2003; 

2001). These definitions arguably omit or mask the use of water harvested from rainfall by 

direct interception or by collecting runoff for crop production (Wisser et al., 2010). 

Globally, two-thirds of precipitation recharges the green water pool while the remaining 

third recharges the blue water pool (Hoff et al., 2010). A number of studies indicate that 

green water use in global crop production is about four- to five-fold greater than blue 

water use (e.g. Aldaya et al., 2010a; Hanasaki et al., 2010; Hoff et al., 2010; Liu & Yang, 
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2010; Liu et al., 2009; Rockström et al., 2009). Unfortunately, green water use in agro-

ecosystems is rarely measured (Hess, 2010). 

Current water scarcity perspectives have limited use for crop production as they 

pay more attention to blue water supply and are, thus, only relevant for food security in 

the context of irrigation where competition among water use sectors is escalated. Current 

water scarcity perspectives neglect the role and value of green water in food production 

(Aldaya et al., 2010a; Hoff et al., 2010). Perhaps, this is because green water is of little 

value for direct human use (Yang et al., 2006) but it is certainly critical for understanding 

the effect of water scarcity on food security, ecosystem services and blue water dynamics 

across varying scales (Rockström et al., 2009; 2007). Accounting for green water 

availability in agro-ecosystems substantially modifies the perceived threat of water 

scarcity to food security and shows the importance of improving green water productivity 

to increase the resilience of current and future global food security (Hoff et al., 2010; 

Rockström et al., 2009; Falkenmark, 1997). It is therefore important to expand the current 

conception of water scarcity to include green water and to take an ecosystem-wide view in 

relation to the hydrological cycle. This is important to direct attention to the imperative to 

incorporate green water into water resources management frameworks in the context of 

adaptation planning to climate change and future food security needs (Brichieri-Colombi, 

2004). Moreover, with respect to crops, water scarcity would not be limited to the mere 

physical presence of water in the root zone, but also the ability of crops to abstract the 

water. Thus, in terms of the water scarcity and food security relationship, there is the need 

to expand the concept of water scarcity from the perspective of meteorological drought to 

agricultural or physiological drought (Dai, 2011) which is more relevant to the seasonal 
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and intra-seasonal water availability and use by crops (Barnabàs et al., 2008). Hence, in 

order to be relevant for food security, concepts of water scarcity should incorporate the 

soil-water-crop continuum over space and time.  

2.3 Climate Change Complicates Water Availability for Food Security 

Climate is the long-term pattern of weather of a place and is normally described by 

the average seasonal occurrence of temperature and precipitation over a 30-year period. 

Fluctuations in the average weather pattern over short time scales constitute climate 

variability. Climate change is a change in the state of the climate that can be identified 

(e.g. using statistical tests) by changes in the mean and/or the variability of its properties, 

and that persists for an extended period, typically decades or longer (IPCC, 2007). 

According to the UNFCCC (1994), “adverse effects of climate change” refers to harmful 

impacts of climate change on ecosystems, socio-economic systems and human and animal 

welfare. According to the 4th and 5th Assessment Reports (IPCC, 2007; 2013), warming of 

the climate system is “unequivocal” and is largely due to human activities. Since 1850, 11 

out of the 12 warmest years occurred between 1995 and 2006 (IPCC, 2007). The IPCC 

(2007; 2013) has explained the scientific basis and presented evidence of global climate.  

2.3.1 Projected Changes in Temperature and Precipitation 

Projections suggest that the global temperature will rise between 1.8 and 4.0 ºC 

(under the low, B1, and the high, A1FI emissions scenarios, respectively) by the end of 

this century (IPCC, 2007). Generally, warmer temperatures are projected and the greatest 
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increases in temperatures will occur over land and at higher latitudes in the Northern 

hemisphere and least over the Southern Ocean near Antarctica (Miraglia et al., 2009; 

Meehl et al., 2007). Outputs from the Special Report Emission Scenario (SRES) indicate 

that the climate will continue warming by 0.2 ºC per decade for the next two decades or 

0.1 ºC per decade even if radiative forcing remains constant at the 2000 level; and 

projections of warming up to 2050 are not affected by different SRES scenarios (Meehl et 

al., 2007). Moreover, warming in the first half of the century is irreversible due to prior 

emissions and will not be affected by mitigation policies (Solomon et al., 2007). In the 

mid and high latitudes, frequent hot days and nights and heat waves are projected. Frost 

days are also expected to decrease. Europe will experience increases in annual mean 

temperature greater than the global mean. Summer and winter warming will be highest in 

the Mediterranean and northern Europe respectively while maximum summer 

temperatures in southern and central Europe are likely to go up (Christensen et al., 2007).  

Regarding precipitation, high latitudes and moist or humid tropical areas are very 

likely to experience increases in mean precipitation, while precipitation in the subtropics 

and mid-latitudes are likely to decrease by up to 20% by the end of the century (Solomon 

et al., 2007). The frequency of heavy precipitation events will increase and create 

problems of flush flooding (IPCC, 2007). In the subtropics and mid-latitudes, there will be 

higher variability in precipitation events and significant potential for drought during 

summer. It is very likely that mean annual precipitation will decrease in southern Europe 

(especially in the Mediterranean region) and increase in northern Europe (Bates et al., 

2008). However, central Europe is likely to experience higher winter but lower summer 

mean precipitation (Christensen et al., 2007), with greater variability and a high potential 
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for summer drought risk in central to southern Europe (Christensen et al., 2007; EEA, 

2005). 

2.3.2 Implications of Projected Climate Change for Water Availability  

The projected changes in precipitation and temperature will alter the long-term 

mean water supply and demand (Strzepek & Boehlert, 2010; Bates et al., 2008; Solomon 

et al., 2007). Spatio-temporal shifts and quantitative changes in precipitation, together 

with intense and more frequent extreme events will affect the quantity and quality of water 

available.  Runoff is the major avenue to renewing a region’s freshwater supplies. Runoff 

is likely to increase in regions where increased precipitation is projected (e.g. high 

latitudes and the moist tropics) but will be impaired in mid-latitudes and some areas of the 

dry tropics (Bates et al., 2008). Figure 2-2 shows a projected effect of climate change on 

water availability.  

 

Figure 2-2: Projected change (%) in global water availability in 2050 from that of the 
baseline period (1961-1990) under the IPCC A1 emission scenario. Figure taken from UNEP 
GRID-A Vital Water Graphics 2, www.grida.no/publications/vg/water2/page/3294.aspx  
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Warmer temperatures will increase evapotranspiration (ET), dry up soils and 

reduce runoff. Simulations of the effects of climate change on European summer soil 

water content and ET between 2070 and 2080 show a sharp north-south gradient (Figure 

2-3). Apart from northern Europe which is projected to have up to 2% increase in soil 

water content by 2080, a larger area of Europe is projected to have decreases of up to 7%, 

with the highest being in Mediterranean areas. Projected ET shows a similar pattern, with 

positive changes of 0.1-0.5 mm d-1 in northern Europe and negative changes of the order 

of 0.5 mm d-1 in southern Europe (Calanca et al., 2006). Soil water content is projected to 

decrease in the UK but ET is projected to increase in the south-east of England and 

decrease slightly in western Scotland and Northern Ireland. 

  

  

Figure 2-3: Projected changes in European summer mean soil water content (%) in the 2080s 
(upper right) relative to that of the baseline period (1961-1990, upper left) and projected changes in 
European summer mean ET (mm d-1) in the 2080s (lower right) relative to that of the baseline period (lower 
left). Figure taken from Calanca et al. (2006). 



32 

 

Shifts in precipitation patterns can have adverse effects on crop production 

especially when peak water availability does not coincide with peak water demand by 

crops (Bates et al., 2008). Agro-ecosystems are sensitive to changes in seasonal 

precipitation and its distribution, soil water storage, ET and runoff. Higher ET requirement 

and reduced precipitation can potentially increase net irrigation requirement. It is 

projected that climate change can increase global net irrigation requirements by as much 

as 45% by 2080 at current irrigation efficiency and by 20% with significantly improved 

irrigation efficiency (Fischer et al., 2007). Warmer climate will also increase crop water 

demand per unit area and, therefore, irrigation water requirement substantially (Olesen & 

Bindi, 2002). Frequent and prolonged drought can increase physical water scarcity and 

irrigation requirement, while frequent flooding events can lower water quality, and 

severely overwhelm water management systems (Dai, 2011; Bates et al., 2008), or reduce 

crop yields through waterlogging which can cause anoxia in plant roots and mineral 

toxicities by altering the redox state of the soil solution. Increased variability in 

precipitation will also raise the imperative for irrigation in rain-fed cropping systems. 

Finally, warmer temperatures can also increase competition for water by increasing 

demand in most water use sectors, particularly the domestic and energy sectors (Strzepek 

& Boehlert, 2010). 

Apart from altering water balances, climate change will also affect crop yields, 

both directly and indirectly. Projected increases in atmospheric CO2 concentration could 

stimulate increased stomatal conductance in C3 crops and thereby increase yields, 

particularly in mid- and high-latitude regions where temperatures approach optimum for 
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crop growth (DaMatta et al., 2010). However, this potential gain can be offset by other 

climate change effects such as warming and high water stress. The relatively higher 

capacity of C4 crops to concentrate CO2 and limit photorespiration makes them more 

productive than C3 crops (DaMatta et al., 2010; Easterling et al., 2007). Because higher 

photorespiration tends to restrict CO2 assimilation and gains from photosynthesis, there is 

a caveat that warmer temperatures can potentially increase photorespiration and offset 

gains from elevated atmospheric CO2 concentration (Easterling et al., 2007). Further, 

higher CO2 uptake is invariably associated with higher transpiration (Kimball & 

Bernacchi, 2006). Under warmer conditions and decreased water supply, stomatal closure 

induced by water stress can potentially elevate leaf and canopy temperature and thereby 

reduce photosynthesis (Hanjra & Qureshi, 2010; Kimball & Bernacchi, 2006). Further, 

DaMatta et al. (2010) argue that since the effects of elevated atmospheric CO2 

concentration and warmer temperature are not known to be additive, it is probable that 

warmer temperatures can neutralize the potential gains from elevated atmospheric CO2 

concentration.  

The source-sink relationship is an important determinant of dry matter production 

in crops (Dingkuhn et al., 2007; Venkateswarlu & Visperas, 1987). The source refers to 

the potential capacity of the crop to synthesize food (or the organs or sites where food 

materials are synthesized), while the sink refers to its capacity to use or store 

photosynthetic products (Dingkuhn et al., 2007; Venkateswarlu & Visperas, 1987). 

Ainsworth & Rogers (2007) have suggested that the relatively weak sink capacity of C3 

crops can cause carbohydrates saturation in source organs which will ultimately constrain 

further CO2 assimilation and photosynthesis. In all, there are uncertainties regarding 
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estimates of cost and benefit of elevated atmospheric CO2 for increased crop yields as the 

mechanisms of plant respiratory responses to CO2 enrichment vis-à-vis warmer and water 

stress conditions remain unresolved (Hanjra & Qureshi, 2010).   

Finally, under warmer temperatures, heat-stress can shorten crop phenology and 

reduce radiation capture, upset net carbon balance, reduce seed set and pollen viability, 

cause grain sterility and yield losses (DaMatta et al., 2010; Porter & Semenov, 2005). 

Crops can senesce earlier and quicker than normal under warmer and water deficit 

conditions, with adverse effects on yield (Barnabàs et al., 2008). Photosynthetic capacity 

is also sensitive to warmer temperatures due to the heat lability of Rubisco and the 

limitation of electron transport in chloroplasts (Ainsworth & Rogers, 2007). Ainsworth & 

Rogers (2007) report that, at 35 ºC and above, photorespiration increases over 

photosynthesis resulting in lower net carbon gain. It is reported that a combination of 

warmer temperatures and reduced precipitation can decrease South Asian wheat 

production by 50% by 2050, which is equivalent to 7% of global crop production (De 

Fraiture et al., 2008). Cline (2007) suggests that developing countries can potentially 

suffer a 10-25% overall decline in agricultural production due to climate change. 

However, with sufficient water supply, warmer temperatures could be beneficial to crop 

production. For example, it is projected that an increase in temperature between 1 and 3 ºC 

could increase crop yields in high latitudes and moist tropical areas (Solomon et al., 

2007).  
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2.4 Maintaining Food Security under Water-Scarce Conditions: Key Options  

Traditional options for maintaining food security include expanding croplands, 

using croplands more intensively, and bridging existing yield gaps (Gerbens-Leenes & 

Nonhebel, 2004). These depend on there being sufficient water availability to support crop 

production. In the context of future food security under water scarcity conditions, 

however, two key options can be considered. The first involves mechanisms to improve 

crop water use efficiency (WUE) or water productivity (WP) without incurring high yield 

penalties (Passioura, 2006).  The second option involves measures to use available food 

efficiently in order to improve water use efficiency along the chain from post-harvest to 

food consumption. This goal can be achieved through effort to reduce food waste or losses 

from farm-to-fork (Smith, 2012; Gerbens-Leenes et al., 2010). According to Smith (2012), 

measures to reduce food waste or losses should be complemented with efforts to manage 

food demand and reduce diversion of food from direct consumption to non-food uses such 

as raw material for biofuel, animal feed and other industrial and medicinal products. An 

important option that has not hitherto received the attention it deserves is virtual water 

which can be used as a complementary tool to reduce the effect of water scarcity on food 

security. 

2.4.1 Improving Water Use Efficiency and Drought Tolerance 

The imperative to increase crop WUE not only arises from increasing water 

scarcity but also the fact that over a third of the land in the world is located in semi-arid 

and arid hydro-climatic environments (Ali & Talukder, 2008). According to Morisson et 
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al. (2008), however, all agro-ecosystems are physiologically and physically ‘water-

limited’ for plant growth to some extent. Hence, it is not helpful to make a distinction 

between ‘wet’ and ‘water-limited’ environments when thinking about addressing the 

urgent question of improving crop WUE or WP. It is therefore important, in the face of 

projected water scarcity, to take a global view of WUE improvement to assure food 

security (Zwart et al., 2010). 

Crop WUE has different meanings in different contexts and scales (Ali & 

Talukder, 2008; Parry et al., 2005). For example, in an economic application, WUE can be 

equated to the ratio of the monetary value of crop yield to the volume of water input. To 

the crop physiologist, WUE might refer to the ratio of CO2 gain per unit water transpired 

(i.e. leaf-scale efficiency, the so-called instantaneous WUE, WUEinst) or net CO2 

assimilation relative to stomatal conductance (the so-called intrinsic WUE, WUEint) (Ali & 

Talukder, 2008; Morisson et al., 2008; Tambussi et al., 2007). However, in the context of 

water scarcity and food security, WUE has been captured by the phrase ‘more crop per 

drop’, which is a call to produce more food with the same or reducedwater input. This 

coincides with the agronomic or whole crop-level (yield-related) WUE. Consequently, 

WUE in this context refers to the ratio of the yield of harvested product to the volume or 

depth of water applied in irrigation or lost in evapotranspiration (Ali & Talukder, 2008; 

Morisson et al., 2008; Tambussi et al., 2007; Zwart & Bastiaanssen, 2004).   

The need to improve crop WUE is already a topical issue in agriculture and  

substantial research effort has been devoted to the subject ( Ali & Talukder, 2008; Condon 

et al., 2004; Rockström, 2003; Araus et al., 2002). Increasing WUE requires favourable 

manipulation of environmental, physiological and genetic factors that moderate crop water 



37 

consumption without decreasing yield. The employment of these manipulations to 

improve crop WUE can be regarded as successful if three main interlinked goals are 

achieved (Morisson et al., 2008; Passioura 2006; Condon et al. 2004):  (i) increased water 

availability for transpiration over unproductive water losses, (ii) increased effectiveness of 

CO2 assimilation and biomass production per unit transpiration (i.e. increased 

transpiration efficiency) and (iii) high partitioning of biomass towards the harvested 

product (i.e. greater harvest index).  

 Studies on WUE of crops support the widely held belief that there is scope and 

opportunity for improving it, especially in tropical or developing countries where the 

interactions of high atmospheric evaporative demand, variability in rainfall and low 

external inputs increase crop water requirement or reduce yields (Tambussi et al., 2007; 

Condon et al., 2004). Cereals are the most water-intensive and widely cultivated crops. 

The WUE of well-managed cereal crops, free from disease and pests and without nutrient 

or water stress, is approximately 2 kg grain m-3 water (Passioura, 2006). Globally, the 

range of published WUE values from field experiments are large for wheat (0.6 – 1.7 kg 

grain m-3), rice (0.6 – 1.6 kg grain  m-3) and maize (1.1 – 2.7 kg grain m-3), with averages 

of 1.09, 1.09 and 1.80 kg grain m-3, respectively (Zwart & Bastiaanssen, 2004). Zwart et 

al. (2010) used remote sensing and modeling approach to determine WUE of wheat on a 

global scale. They reported an average of 0.86 kg grain m-3, with a maximum value of 

1.80 kg grain m-3 under irrigated conditions. The highest WUE values of rain-fed wheat 

(kg grain m-3) were found in temperate Europe in countries such as Ireland (1.45), France 

(1.42), UK (1.36) and Germany (1.35). Using more recent data, however, Liu et al., 

(2007a) made similar observations but reported WUE values of wheat (kg grain m-3) as 
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1.89 (Ireland), 1.80 (UK), 1.47 (Germany) and 1.45 (France). The WUE of wheat in a 

number of major producing countries is below 1 kg grain m-3 (Figure 2-4). The WUE of 

cereals in developing countries are lower compared to those in developed countries (Ali & 

Talukder, 2008). The large range of WUE values indicates a potential for improvement, 

particularly in agro-ecosystems where other stresses such as limited nutrients supply 

exacerbate the effect of water deficits on yield (Ali & Talukder, 2008). However, vapour 

pressure deficit is inversely related to WUE but decreases with latitude (Zwart et al., 

2004). It is therefore expected that crop production located in higher latitudes will have 

higher WUE and is highly favourable to increasing crop WUE in the future (Zwart et al., 

2004; Araus et al., 2002).  

 

Figure 2-4: Water productivity (WP) of wheat in ten major producing countries, simulated  
with the WATPRO model and GEPIC model. WATPRO data taken from Zwart et al.  
(2010) and GEPIC data from Liu et al. (2007a). 
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2.4.1.1 Measures, Opportunities and Challenges to Improving Crop WUE 

2.4.1.1.1 Agronomic Options  

Agronomic practices are aimed at managing crop environments to optimize 

resource capture and use and, ultimately, to achieve high yields. All things being equal, 

improved agronomic practices could have substantial positive effect on improving crop 

WUE in future (Passioura, 2006). Several agronomic practices  can be employed to shift 

evaporative losses to transpiration, save water, and retain more available water in the root 

zone for crop consumption (Rockström et al., 2007; Passioura, 2006; Parry et al., 2005). 

Examples include the employment of precision irrigation, quality seed, seed priming, 

timeliness and appropriate depth of sowing, as well as appropriate plant population 

density. These measures substantially influence seedling emergence, establishment, 

canopy development and competitiveness against weeds in resource capture (Passioura, 

2006; Parry et al., 2005). Sustainable intensification is now being promoted, in both 

research and policy arenas, as a potentially effective route to increasing food production 

(Smith, 2012; Firbank et al., 2008); and this also raises the question of land use efficiency. 

However, the efficacy of sustainable intensification in increasing productivity and its full 

implications for water resources, biodiversity, ecosystem services and overall 

environmental sustainability remain to be identified (Smith, 2012; Firbank et al., 2008; 

Matson et al., 1997).  

Soil and water conservation practices, combined with soil fertility and organic 

matter management will improve water availability and WUE by improving soil structure, 

infiltration and water retention in the root zone, as well as reducing erosion and 
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evaporation by modifying surface energy (Hatfield et al., 2001). A review by Hatfield et 

al. (2001) clarifies the soil management practices and the extent to which they contribute 

to WUE. Examples of such practices include mulching, appropriate tillage, organic matter 

management and soil fertility management. As Hatfield et al. (2001) indicate, there is 

huge scope for improvement in soil management with the view to improving crop WUE. 

For example, conservation tillage holds much promise for WUE and yield improvement in 

Europe, but more work remains to be done to strengthen the evidence for wider adoption 

(Holland, 2004). Equally important is the management of irrigation scheduling, the 

volume of water applied and technical efficiency to improve irrigation effectiveness (Ali 

& Talukder, 2008). Deficit irrigation (application of water below the amount required to 

satisfy a crop’s maximum ET needs) and water harvesting are gaining practical and 

research attention (Wisser et al., 2010; Fereres & Soriano, 2007). This is because of their 

demonstrated superior ability to save water and improve WUE over conventional full 

irrigation (Wisser et al., 2010; Fereres & Soriano, 2007). However, to reduce uncertainties 

and risks (such as yield penalties) associated with deficit irrigation, it has been suggested 

that thresholds of yield response to deficit irrigation by different crops in different agro-

ecosystems need to be established (Fereres & Soriano, 2007; Tambussi et al., 2007). This 

might also highlight the need to revise traditional guidelines on irrigation in response to 

changing soil water availability (Ali & Talukder, 2008). Access to non-conventional water 

(such as desalinated seawater and highly brackish surface and groundwater) and marginal 

quality water resources (such as domestic, municipal and industrial wastewater and 

agricultural drainage) will help increase water availability for crop production (Qadir et 

al., 2007).  
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As observed by Passioura (2006), soil-crop-water management is a primary lever 

for improving soil water availability for crop use and crop WUE under future water 

scarcity conditions. For example, Rockström et al. (2007) show that by shifting 

evaporative losses to transpiration in developing countries, cereal yields can be increased 

from the current 1.5 – 2 t ha-1 to 3.5 – 4 t ha-1 by 2030 – 2050, with corresponding 

reductions in water requirement for food production by 28% (1,150 km3 year-1) in 2030 

and 45% (2,300 km3 year-1) in 2050. Thus, not only will such measures, if adopted, lead to 

improvement in WUE but also significantly bridge the yield gap in under-performing 

agro-ecosystems  (Falkenmark et al., 2009; Rockström et al., 2007; 1999).  

2.4.1.1.2 Physiological and Breeding Options 

Selecting for traits or manipulating physiological processes that influence crop 

water consumption, biomass production and yield presents both opportunities and 

challenges for improving crop WUE and yield simultaneously (Araus et al., 2002). The 

WUE at the leaf-scale (WUEint) can be improved by either increasing photosynthetic 

capacity or lowering transpiration (and for that matter, stomatal conductance) or both 

simultaneously (Morisson et al., 2008). Due to the relationship between photosynthesis 

and stomatal conductance (see explanation under Figure 2-5), achieving higher 

photosynthetic capacity and WUE remains a huge breeding challenge (Tambussi et al., 

2007; Parry et al., 2005; Araus et al., 2002). To achieve genotype 4 (G4, Figure 2-5), 

more work is required to improve understanding of the genetic basis for the required 

anatomical and physiological alterations (Morisson et al., 2008; Tambussi et al., 2007).  
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Figure 2-5: A generalized relationship between photosynthesis and stomatal conductance. 
Converting a genotype G1 into G2 will increase photosynthesis but decrease WUE. Conversely, 
converting a genotype G1 into G3 will increase WUE but decrease photosynthesis. Achieving 
higher photosynthesis and WUE requires shifting curve A towards curve B. This can only be 
achieved through (a) CO2 concentrating mechanisms, (b) increased mesophyll conductance to CO2 
or (c) increased Rubisco specificity factor. Figure taken from Parry et al. (2005). 

 

Results on the effect of the relationship between transpiration efficiency, stomata 

conductance and growth rate are mixed (Tambussi et al., 2007; Parry et al., 2005). 

Nevertheless, it has been reported that increase in transpiration efficiency correlates with 

reductions in stomatal conductance, leading to reduced growth rate and potential yield 

reductions (Parry et al., 2005). This indicates (as observed also in Figure 2-5) that 

selecting or breeding for high leaf-level WUE could be counterproductive due to potential 

yield penalties and, thus, a scope for further work to translate improved relationships to 

increased yield (Parry et al., 2005). There is the need, therefore, to determine an 

acceptable tradeoff between WUE and yield penalty. Passioura (2006) warns that breeding 

for high yields under water-scarce conditions could be risky due to the high input 
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requirement for fertilizer and water. Where severe drought is frequent, yields can also be 

reduced substantially, or there might even be total crop failure, regardless of gains made 

through breeding.  

Moreover, leaf-level WUE (WUEinst) does not translate to whole crop-level or 

yield-level WUE (WUEyield) and this connection should be explored further (Morisson et 

al., 2008). For example, carbon isotope discrimination (∆13C) has been shown to be a key 

potential breeding target to be manipulated for increasing transpiration efficiency. Low -

∆
13C is associated with high CO2 assimilation and transpiration ratio (Morisson et al., 

2008; Condon et al., 2004; Araus et al., 2002). Unfortunately, this relationship observed 

in leaves or individual plants in pot studies does not translate into field-scale or yield 

WUE (Condon et al., 2004). Reasons that have been advanced for the variable relationship 

between ∆13C and yield include differences in flowering dates, plant height and, most 

importantly, that the low ∆13C-high transpiration efficiency relationship is a conservative 

trait in cereals  in terms of water use and, possibly, growth rate (Condon et al., 2004). To 

improve yield-level WUE, breeding for early vigour to reduce surface evaporation is a 

better target for Mediterranean type of environments where seasonal rainfall distribution is 

skewed to early growth stage (Condon et al., 2004). On the other hand, breeding for high 

transpiration efficiency is appropriate for environments where good rainfall events 

coincide with the reproductive phase (Tambussi et al., 2007; Condon et al., 2004). 

Overall, matching cultivars and crop phenology (especially flowering time) to ecological 

and water supply conditions will have huge impact on crop WUE and attaining acceptable 

yields (Ali & Talukder, 2008; Morisson et al., 2008; Passioura, 2006). In all, there is 
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always a trade a tradeoff between crop WUE and productivity due to the stomata being the 

gateway for atmospheric CO2 conductance and transpiration. 

Furthermore, the discovery that the gene called ERECTA plays a role in both 

transpiration and photosynthesis constitutes a huge opportunity for exploring molecular 

tools to improve WUE and photosynthesis simultaneously (Masle et al., 2005). Advances 

in genetic and genomics tools (e.g., quantitative trait loci [QTL] mapping, microarray 

techniques for genotyping and transcriptional analyses and the generation of transgenic 

crops) will be of enormous help in screening large numbers of breeding lines for relevant 

traits (Fleury et al.,  2010). From a breeding perspective, increase in harvest index, quicker 

development and improved canopy structure, as well as early flowering have been linked 

to improved WUEyield in modern cultivars (Morisson et al., 2008; Tambussi et al., 2007). 

Further improvements in cultivars are required in the future to modify crop morphological 

and physiological characteristics that allow dehydration avoidance or tolerance in the 

context of climate change (Barnabàs et al., 2008). Particularly, early vigour, optimal 

flowering time, transpiration efficiency and high harvest index will be worth considering 

in tandem, taking into account local ecological and climatic conditions. This requires a 

multi-disciplinary approach. It remains unclear, however, if cultivar improvements in 

WUE and dehydration avoidance or tolerance will substantially reduce the need for 

irrigation without incurring yield penalties under projected warmer climates with higher 

variability in precipitation.  
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2.4.2 Reducing Food Waste and Losses 

“Food waste is composed of raw or cooked food materials and includes food loss 

before, during or after meal preparation in the household, as well as food discarded in the 

process of manufacturing, distribution, retail and food service activities. It comprises 

materials such as vegetable peelings, meat trimmings, and spoiled or excess ingredients 

or prepared food as well as bones, carcasses and organs” (European Commission, 2010). 

Food loss, on the other hand, is the qualitative or quantitative decrease in edible food mass 

in the supply chain preceding the retail and consumer levels (i.e. from farm to processing 

stages) (Parfitt et al., 2010). Thus, food waste occurs at the retail and consumer levels 

(Gustavsson et al., 2011; Parfitt et al., 2010). Globally, the magnitude of food loss and 

waste from farm to fork is staggering (Figure 2-6). 

 

Figure 2-6: Schematic representation of global per capita food production, conversions 
and losses along the chain from farm to fork. Figure taken from Lundqvist et al. (2008). 
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Although post-harvest losses are high, food waste at the retail and household levels 

are higher, and losses to animal feed are highest (Figure 2-6). At the global scale, food 

waste and losses can account for as much as 30-40% (Godfray et al., 2010) or 50% of total 

food produced (Lundqvist et al., 2008). Even neglecting ‘planned’ allocation to non-food 

uses, Gustavsson et al. (2011) suggests annual food losses and waste amount to as much 

as 1.3 billion tons of total food produced. In low income countries, food losses are greater 

than food waste. The reverse is true for high income countries, such as USA and the UK 

(Gustavsson et al., 2011; Godfray et al., 2010). On average, 95 – 115 kg cap-1 year-1 of 

food is wasted in industrialized countries, contrasted with 6 – 11 kg cap-1 year-1 in low 

income countries (Gustavsson et al., 2011). For example, about 7.2 million tonnes of food 

are wasted annually in the UK, with 4.4 million tonnes classified as ‘avoidable’ food 

waste  (WRAP, 2011). Regionally, total food losses and waste are greatest in North 

America and Europe and lowest in South and South-East Asia (Buzby & Hyman, 2012; 

Nahman et al.,  2012; FAO, 2011; Gustavsson et al., 2011; WRI, 1999). For example, in 

the EU-27, over 89 million tonnes of food is wasted annually (European Commission, 

2010). 

Food loss or waste represents a waste of money and scarce resources invested in 

producing, transforming and transporting food along the supply chain to consumer level. 

Food waste also raises the moral or ethical questions of over-consumption, negative 

attitudes, such as undervaluing food, and diversion of food to non-food uses such as 

biofuel and animal feed (Parfitt et al., 2010; Lundqvist et al., 2008; FAO, 2006b). It has 

been suggested that shifting food losses and waste to poor households can reduce global 

food insecurity and greenhouse gas emissions significantly (Buzby & Hyman, 2012; 
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Nahman et al., 2012; WRAP, 2012; European Commission, 2010; Parfitt et al., 2010; 

Lundqvist et al., 2008). Thus, in the context of anticipated water scarcity, food demand 

and pressures on food production, reducing food losses and waste represents a huge 

opportunity for reducing future food insecurity.   

2.5 Virtual Water: The Missing Piece 

An equally important option worthy of consideration in the discourse on paths to 

food security under future water-scarce conditions is the virtual water concept. Introduced 

by Allan (1999; 1997), virtual water refers to the volume of water used in producing a unit 

food commodity that is traded. This definition implies that for virtual water to exist, trade 

must bridge food production and consumption between two spatially distinct economies 

(e.g. national or regional). Earlier, Allan had used the term “embedded water” (Allan, 

2003), derived from a suggestion by an Israeli economist in the 80s that it was not 

‘economically sensible’ for arid Israel to export scarce water embedded in oranges and 

avocados. In his own words (Allan, 2003), the term “embedded water was under-

whelming in its impact”, but the response of the water policy community to the ‘virtual 

water metaphor’ was overwhelming.  

The role of virtual water in ensuring food security under water-scarce conditions 

derives from the proposition that through the importation of water-intensive crop 

commodities from a water-rich country, a water-scarce economy can save water and offset 

food insecurity (Dalin et al., 2012; El-Sadek, 2011; Aldaya et al., 2010b; Hoekstra, 2010; 

Chapagain & Hoekstra, 2008; Chapagain et al., 2006; Yang et al., 2006; Hoekstra & 
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Hung, 2005; 2002; Allan, 2003; 2001; 1997). It has been shown that virtual water is a 

useful tool for arid and semi-arid regions (El-Sadek, 2011; Faramarzi et al., 2010b; Allan, 

2001) or Mediterranean countries (Yang & Zehnder, 2002) to save water and maintain 

food security.  

Food trade is an old practice. Trade in food commodities has played a crucial role 

in ensuring global food security by increasing economic, physical, nutritional and socio-

cultural access to a wide range of foods (Defra, 2009; 2008). Food trade can contribute to 

efficient use of global resources such as land, water, energy and technology by distributing 

surplus food from producing countries to countries that have deficits (Chapagain & Orr, 

2009; Defra, 2009; 2008; Chapagain et al., 2006). While water scarcity might not be a 

new phenomenon (Kummu et al., 2010), the projected increase in its scale and complexity 

suggests a need for new responses. Therefore, in the context of projected climate change 

or anticipated water scarcity, it is important to improve understanding on the potential 

usefulness of the virtual water concept, as a complementary tool, in informing policy and 

management decisions on water and food security in the future. 

2.5.1 Virtual Water Content, Flows and Savings  

2.5.1.1 Estimating Virtual Water Content of Crops  

For primary crop commodities, virtual water content (VWC) is the ratio of total 

crop evapotranspiration (ETc) to yield. The VWC has been referred to variously as the 

specific water demand (SWD) (Hoekstra & Hung, 2005; 2002), water use intensity 

(Hoekstra, 1998), virtual water value (Zimmer & Renault, 2003) and unit water 
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requirement (Oki et al., 2003). However, the calculation procedure is the same. In the 

virtual water literature, the VWC (m3 ton-1) of a given crop c is calculated as (Chapagain 

& Orr, 2009; Yang et al., 2006; Hoekstra & Hung, 2002): 

VWCc  = 
Yc

ETc
n

i
∑

=1        Equation 2- 1 

where Y denotes yield (tons ha-1); ETc denotes crop evapotranspiration (mm day-1) 

under specified conditions; and n denotes the number of days in the growing period. But: 

��� = ���(��)        Equation 2- 2 

where ETo denotes reference evapotranspiration; and Kc denotes a crop-specific 

coefficient (Shahin, 2003; Allen et al., 1998). 

This means VWC of crops excludes the minute amount of water retained in the 

plant cells during growth or in the harvested product (Hess, 2010), water used in 

background processes such as dissolution of chemical amendments applied to soil or 

plants (Berger & Finkbeiner, 2010; Ridoutt & Pfister, 2010), and water used in farm 

operations such as cleaning implements, washing produce or used by workers (Hess, 

2010). 

Reference evapotranspiration (ETo) refers to the ET from a hypothetical, short, 

well-watered, uniformly growing reference crop (e.g. alfalfa or grass) that is disease-free 

and growing in a large field with non-limiting soil fertility and reaching full production 

potential (Shahin, 2003; Allen et al., 1998; Doorenbos & Pruitt, 1977). It represents the 

evaporative demand of the atmosphere at a given location and time, independent of crop 

type or management (Sumner & Jacobs, 2005; Shahin, 2003; Allen et al., 1998). The crop-

specific coefficient (Kc) relates to the crop’s soil water depletion potential (Allen et al., 



50 

1998). Allen et al. (1998) provide a procedure for estimating ETo and Kc as well as give 

Kc values for a number of crops. 

Thus, the energy balance approach is widely used to quantify crop VWC which is 

justified by the fact that direct measurement of actual crop water use (ETc) can be 

laborious, expensive and difficult to scale up and is therefore rarely done (Hess, 2010; Ali 

& Talukder, 2008). In the energy balance approach, weather or climate data is used to 

compute ETo, which is then used together with Kc to estimate the ETc of a given crop-

type at a particular place and time and under specific conditions of production (which may 

not be optimal). Commonly used energy balance methods are grouped into temperature-

based methods, radiation-based methods and combination methods (Shahin, 2003). Most 

popular and commonly used temperature-based methods include the Blaney-Criddle, 

Hargreaves and Thornthwaite equations (Yawson et al., 2011; Shahin, 2003; Doorenbos & 

Pruitt, 1977). The Blaney-Criddle equation is still useful for estimating ETo particularly 

where there is limited meteorological data (Yawson et al., 2011). Even though a number 

of radiation-based methods have been developed, they are not commonly used as it is 

cumbersome to meet their data and computational requirements and they tend to 

overestimate ETo (Shahin, 2003). A popular radiation-based method is the Jensen-Haise 

method (Shahin, 2003). The combination methods basically combine energy and 

aerodynamic terms and are mostly modifications of equations that were originally 

developed to estimate evaporation from free water surface. Popular examples include the 

Priestley-Taylor equation, FAO-Penman and the FAO Penman-Monteith (FAO P-M) 

methods (Tabari et al., 2011; Sumner & Jacobs, 2005; Shahin, 2003; Allen et al., 2006; 

1998). The Penman-Monteith method is the standard, most popular and widely used 
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method for estimating ETo due to its excellent performance against other methods (Tabari 

et al., 2011; Hess, 2010; Sumner & Jacobs, 2005; Shahin, 2003; Allen et al., 2006; 1998). 

It is expressed as (Allen et al., 1998):  

[ ] [ ])34.01()/()(900)(408.0 220 uTeeuGRET kasn ++∆÷−+−∆= γγ      Equation 2- 3 

where ∆ is the slope of the saturation vapour pressure curve at a given temperature 

T (kPa ºC-1); Rn and G are respectively net radiation and soil heat flux density (MJ m-2 

day-1); γ denotes the psychrometric constant (kPa ºC-1); 2u  denotes wind speed at 2 m 

height (m s-1); es and ea are respectively saturation and actual vapour pressure (kPa); es – 

ea is the saturation vapour pressure deficit (kPa); Tk denotes absolute temperature in 

degrees Kelvin.  

Alternatively, ETc can be estimated by the water balance approach which is 

laborious and difficult to scale up over large spatial scales. Here, ETc is estimated as 

(Shahin, 2003): 

)()()( GWrSMDRPeIETc ±∆±+−+=     Equation 2- 4 

where I and Pe denote irrigation and effective precipitation respectively; R and D 

denote surface runoff and drainage respectively; ∆SM denotes change in soil water content 

and GWr denotes groundwater recharge. When I and R are reduced to zero, the water 

balance equation becomes: 

)(GWrDSMPeETc ±−∆+=      Equation 2- 5 

In this special case equation, Pe represents effective rainfall plus irrigation. This 

equation is applicable under conditions where the water-table is very low and far below 

the root zone and soil moisture content is determined gravimetrically or volumetrically at 
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specific time intervals before and after water input. Alternatively, ETc can be estimated as 

the depth (D, mm) of soil water depleted from the root zone (Israelsen, 1956): 

∑
−

=
100

)( h
D srfc ρθθ

        Equation 2- 6 

where θfc denotes water content at field capacity (%); θr is the measured soil water 

content (%); ρs is the apparent specific gravity of soil; and h is the thickness of soil layer 

(mm). Due to differences in agronomic practices, crop cultivars, method used to estimate 

ETo, and spatio-temporal variations in environmental conditions, the VWC of the same 

crop can vary considerably over space and time.  

2.5.1.2 Virtual Water Flows and Balances in Food Trade 

Between any two economies, the virtual water flow for a particular food 

commodity is calculated as (Chapagain & Hoekstra, 2011; 2008; Chapagain & Orr, 2009; 

Yang et al., 2006; Hoekstra & Hung, 2005): 

VWF [e, i, c, t] = Qc[e, i, c, t] x VWCc[e, c, t]      Equation 2- 7 

where VWF denotes virtual water flow (m3 year-1) from an exporting country e to 

an importing country i in year t due to the quantity Qc (tons year-1) of trade and virtual 

water content VWCc of commodity c in the exporting country. The net virtual water flow 

(NVWF), or virtual water balance, is the difference between the total virtual water import 

and export for any given commodity and time period. The water saved by an importing 

nation is conceptually equivalent to the volume of water that would have been used 

domestically to produce the quantity of the food commodity imported (Chapagain & 

Hoekstra, 2011; 2008). This has been referred to as theoretical virtual water (Hoekstra, 
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2003) or virtual water savings (e.g. Chapagain & Hoekstra, 2008; Chapagain et al., 2006; 

Yang et al., 2006) or exogenous water (Haddadin, 2003). Yang et al. (2006) suggest that 

virtual water savings should be considered to exist when NVWF is positive and the water 

productivity or availability of the importing region(s) for the same commodity is lower 

than that of the exporting region(s). Otherwise, water losses occur.  

Hoekstra & Hung (2002) estimated global virtual water flows associated with food 

commodity trade in 2000 to be 1031 Gm3 year-1, with crops accounting for 695 Gm3 year-1 

while trade in livestock and livestock products accounted for 336 Gm3 year-1. Hoekstra & 

Hung (2005) estimated the total global virtual water flows for 33 crops for the period 

1995-1999 to be 694 Gm3 year-1, with the top ten crops (Figure 2-7) accounting for 

92.12%. Wheat and soybean were the largest contributors to the global virtual water 

flows, accounting for 30% and 17%, respectively. Regarding water savings, Chapagain et 

al. (2006) estimated that trade in cereals for the period 1999-2001 resulted in global water 

savings of 222 km3 year-1 (Figure 2-8). Subsequent to these pioneering works, there have 

been several estimates of virtual water flows and savings at different spatio-temporal 

scales for different commodities, reflecting diverse methodological efforts to improve 

spatio-temporal resolution, water use accounting or to capture impacts on water resources 

(e.g. Dalin et al., 2012; El-Sadek, 2011; Faramarzi et al., 2010b; Mekonnen & Hoekstra, 

2010a; 2010b; Siebert & Döll, 2010; Dabrowski et al., 2009a; 2009b; Dietzenbacher & 

Velázquez, 2007; Yang et al., 2006). All the global scale studies indicate that the 

proportion of green water far exceeds blue water in global virtual water flows, indicating 

that global trade in primary food crops could help offset blue water scarcity.  
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For the UK, Yu et al. (2010) studied the regional and total water footprints of 28 

sectors in South-East, North-East England and the UK. Agriculture was found to be the 

most water-intensive sector, consuming approximately 2104, 2131 and 2116 m3 water per 

£1000 of output for the whole UK, the South-East region and the North-East region, 

respectively. They reported that 55% of UK national water footprint was external. In a 

 

 
Figure 2-7: Contributions of top 10 crops to global virtual water flows (Gm3) for the  
period 1995 – 1999. Data taken from Hoekstra & Hung (2005).  

 

 

 
Figure 2- 8: Global average water savings (km3 year-1) from cereal trade (1999-2001).  
Data taken from Chapagain et al. (2006). 
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similar study for 28 sectors, Feng et al. (2010) observed that agriculture was the most 

water-intensive sector, with a total production water footprint of 86 Gm3 year-1, of which 

77 Gm3 year-1 was internal. Approximately 74% of UK’s total water footprint (86 Gm3 

year-1) was external. It was found that the food products sector is the largest consumer of 

external water and 55% of its water consumption originates from non-OECD countries 

while 28% comes from EU-OECD countries. These few studies show that the UK depends 

heavily on external virtual water and there is scope for more research to understand the 

role of virtual water in UK food security, especially in the context of   climate change and 

anticipated increase in global water scarcity.      

2.5.2 Incorporating Virtual Water into Policy: Opportunities and Challenges 

A debate on the usefulness of virtual water for policy is still ongoing. Neubert & 

Horlemann (2008) have discussed the key arguments, assumptions and requirements of 

the opposing sides of the debate. The pro-virtual water argument is that importation of 

water-intensive food commodities is motivated by water deficit and that water savings 

resulting from food import helps mitigate the effects of water scarcity (e.g. Chapagain et 

al., 2006; Yang et al., 2006; Hoekstra & Hung, 2005; Allan, 2003; 1999; 1997). Some 

studies using the Middle East and North Africa (MENA) region or Mediterranean 

countries (e.g. Novo et al., 2009; Yang et al., 2003; Haddadin, 2003; Hakimian, 2003; 

Yang & Zehnder, 2002) have been used to support this argument. Hence, given the 

projected changes in climate, demographics, food demand and supply, virtual water will 

play an important role in food trade strategies of water deficit countries in the future.  
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Here, strategies based on virtual water will be insurance against water and food insecurity 

due to occasional and progressive drought or worsening aridity in a manner that is 

effective, politically silent and economically invisible (Allan, 2003; 2001; 1999; 1997). 

Hence, adjustments in international trade and resource governance, as well as national 

water resources management are necessary to minimize disruptions, unfair competition 

and risks (Hoekstra, 2009; 2006). It is also argued that virtual water reveals 

interdependencies between nations and consumers and natural resources such as water and 

thereby promotes ethical consumption, diplomacy and peace (Chapagain et al., 2006; 

Hoekstra, 2006).  

 The opposing argument is that virtual water has analytical value but not sufficient 

instrumental value for policy due to certain conceptual or theoretical limitations and that 

policy proposals based on virtual water can even be potentially dangerous (Wichelns, 

2010a; 2010b; Frontier Economics, 2008). This argument is based on claims that the 

virtual water concept is inconsistent with the structure and pattern of virtual water flows, 

the supposed water savings are inaccurate and irrelevant for reducing water deficits, 

virtual water estimates are not linked to any environmental target to guide policy or 

management decisions, lack of consideration of policy failures and opportunities to 

improve water resources development and productivity, as well as socio-economic and 

political impacts on importing nations  (Ansink, 2010; Ridoutt & Pfister, 2010; Wichelns, 

2010a; 2010b; Frontier Economics, 2008). There are arguments that the relevance of 

virtual water for policy can be enhanced by considering comparative advantage or 

opportunity cost of water in food production (Wichelns, 2010a; 2010b; 2004; 2001; Lant, 

2003; Earle, 2001), or by considering other environmental, socio-economic and political 
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factors (Aldaya et al., 2010b; Wichelns, 2010a; 2010b; Kumar & Singh, 2005; Lant, 2003; 

Earle, 2001). As suggested by Frontier Economics (2008), research in this direction, 

instead of estimates of virtual water flows, can improve the utility of virtual water for 

policy.  

The idea that international commodity trade is an indirect trade of factors of 

production and that relative endowments in such factors dictate the structure and pattern of 

trade is rooted in the Heckscher-Ohlin theorem of trade which builds on classical 

Ricardian comparative advantage (Hakimian, 2003). Because the virtual water concept 

seems to be about differences in water resource endowments and indirect trading of a 

productive resource (water) between trading nations, it is believed that the structure and 

pattern of virtual water flows can be explained with the Heckscher-Ohlin theory (Ansink, 

2010; Wichelns, 2010a; 2010b; Hakimian, 2003; Allan, 1999). The two central 

assumptions of the Heckscher-Ohlin theory are that (i) countries differ in their relative 

abundance of productive resources (e.g. water, land, labour and capital) which determines 

factor prices and comparative advantages; and (ii) different proportions of these input 

factors are used to produce goods (Krugman & Obstfeld, 1991). Countries are therefore 

expected to import goods which require intensive use of their scarce resources to produce 

and vice versa (Ansink, 2010; Hakimian, 2003).  

Classical applications of the Heckscher-Ohlin theory to trade in industrial 

commodities have often revealed the opposite, a situation called the ‘Leontief Paradox’ 

(Hakimian, 2003; Krugman & Obstfeld, 1991). Similarly, in the virtual water literature, 

the application of comparative advantage (based on relative water resources endowment) 

has largely exhibited the Leontief Paradox where water-rich nations import water-
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intensive food commodities even from water-deficit countries, or where no relation was 

found between water deficit and food import (e.g. Seekell et al., 2011; Ansink, 2010; 

Ramirez-vallejo & Rogers, 2010; Verma et al., 2009; Kumar & Singh, 2005; Lant, 2003; 

Earle, 2001). These studies attributed the structure of virtual water flows largely to factors 

other than water endowment, such as arable land, labour, and trade liberalization policies. 

These findings are not surprising. From the calculations of virtual water flows, it is natural 

that large food importers and exporters will have large virtual water imports and export 

respectively and trade structure is not dictated entirely by water resources but also by 

political, economic and socio-cultural considerations (Youkhana & Laube, 2009; Neubert 

& Horlemann, 2008; Roth & Warner, 2007; Kumar & Singh, 2005; Hakimian,  2003; 

Warner, 2003). Crop productivity differences among trading nations might also contribute 

as observed in certain studies (Dabrowski et al., 2009b; Neubert & Horlemann, 2008; 

Yang & Zehnder, 2007).  

It has also been argued that the global water savings and distribution of water 

scarcity associated with virtual water are questionable and irrelevant as global virtual 

water flows is a fraction of the total water used in crop production and there is no 

guarantee that the supposed water saved will be applied to agriculture (Wichelns, 2010a; 

Frontier Economics, 2008). What is important to note, though, is that water endowment 

alone cannot explain the structure of food trade but can contribute to understanding the 

patterns in certain jurisdictions (Hakimian, 2003). Hakimian (2003) reported that his 

results, while supporting the virtual water hypothesis, were sensitive to the definition and 

measurement of water used in the analysis. He reported that using ‘total annual water 

withdrawal’ yielded a result consistent with the virtual water proposition, whereas using 
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‘internal renewable water resources’ or ‘annual agricultural withdrawals’ gave poor 

results. This raises the need for (1) better assessment of water endowment and (2) 

compatibility between the definition of water scarcity and crop water use.  

The need to study the implications of adopting virtual water as a policy 

prescription for national security, economic growth, employment, institutional adjustments 

and poverty reduction in different countries has been suggested (Wichelns, 2010b; 2003; 

2001). There are even arguments evoking the political risk of losing sovereignty through 

high reliance on food import (Wichelns, 2010a; Verma et al., 2009; Kumar & Singh, 

2005; Lant, 2003; Earle, 2001). These are genuine concerns worthy of consideration for 

optimal water management and food security decisions. The food crisis (2007-2009) 

revealed the volatility of the global food market and the dangers inherent in a widely 

connected global food system (Essex, 2010). The crisis re-ignited the old debate about 

self-sufficiency, food security and food dependency through trade. Joachim von Braun 

(Director General, IFPRI) stated that “a world confronted with more scarcity of food needs 

to trade more – not less – to spread opportunities fairly” (von Braun, 2008). In the UK, 

while there were calls for a return to the self-sufficiency paradigm, Peter Kendall 

(President of National Farmers Union) suggested that “food security cannot be uniquely 

tackled at the national level, but that should not preclude British farming from playing a 

crucial part in addressing this global issue” (Defra, 2008). On the contrary, Russia 

banned grains export in 2009 due to severe drought, suggesting that countries can reduce 

food export during periods of domestic low production or food scarcity. 

There are important elements missing in the debate on the utility of virtual water 

for policy. The question is ‘what policy?’ Is it water policy, food security policy or water-
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food security policy? A shift in focus might help the debate. Food is imported primarily to 

augment domestic food capacity to achieve food security. Hence, food import will be 

more consistent with food security goals. Moreover, water is only one of the factors of 

crop production and the true economic cost of both water and food is not transferred to the 

consumer (Allan, 2003) and thus distort the food market and trade (Hakimian, 2003). 

Hence, a hydrocentric view is not sufficient for water and food security policy (Brichieri-

Colombi, 2004). Virtual water links water consumption in crop production, on the 

agronomy side, to food trade and consumption, on the economy side (Neubert & 

Horlemann, 2008; Allan, 2003; Yang & Zehnder, 2002). The role of virtual water in food 

security can therefore be better assessed through a combined analysis of the agricultural 

and economic structure, resource endowment and food security needs of a country 

(Aldaya et al., 2010b). Food production serves multiple purposes, including cultural, 

political, and socio-economic purposes (Neubert & Horlemann, 2008). Each country will 

therefore strive to produce as much food as these purposes and resources will allow; 

hence, food production and trade might not always make sense in only one domain. 

Consequently, caution should be exercised when giving prescriptions on food production 

and consumption based on water endowment or virtual water analysis alone as this might 

easily lead to a theoretical overstretch.  

As noted by Roth & Warner (2007), for nations faced with acute food insecurity 

induced by water scarcity, virtual water is a key component of a wider palette of policy 

choices. No policy prescription, however, will be effective if it is based on a single 

strategy such as virtual water (Aldaya et al., 2010b; Roth & Warner, 2007). Therefore, the 

extent to which a policy directed at water and food security should directly incorporate 
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virtual water ‘trade’ is a matter of national circumstances. An informed answer would 

consider a range of factors, including dynamics of water availability and uses, agricultural 

capacity and structure, asymmetries in power and international commodity trade, political 

and economic structure, market signals and risks, maturity of food supply chains and 

environmental costs. There is the need, therefore, for more studies on the role and 

usefulness of the virtual water concept in ensuring water-food security in different 

jurisdictions. 
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CHAPTER 3 
 

EVALUATION OF MODELS FOR ESTIMATING WATER USE OF 
BARLEY 

3.1 Introduction  

Estimates of crop water use are central to quantifying virtual water flows through 

crop commodity trade. In-field monitoring or direct measurement of daily crop water 

consumption over the crop growing season and over large spatio-temporal scales is 

extremely difficult. As a result, dynamic models for simulating crop growth have become 

a preferred tool for indirectly and rapidly estimating crop water use as they are also 

scalable over space and time (Todorovic et al., 2009). Such models are also useful in 

assessing the occurrence and effects of intra-seasonal water stress on crop growth and 

yield to support irrigation and agronomic management decisions (Brouwer & van 

Ittersum, 2010; Hess, 2010). Compared to irrigated crops, however, the water use of crops 

under rain-fed conditions (green water use, Chapagain & Orr, 2009) is only occasionally 

measured (Hess, 2010) and normally for academic purposes. Estimating crop water use 

under rain-fed conditions is important not only because green water dominates global crop 

production and virtual water flows (Aldaya et al., 2010a; Hanasaki et al., 2010; Hoff et 

al., 2010; Liu & Yang, 2010; Rockström et al., 2009; Chapagain et al., 2006; Yang et al., 

2006) but also because green water use of crops affects potential groundwater recharge 

(Holman et al., 2011; 2009).  

Several models are available for simulating the dynamics of crop growth and/or 

soil water content, as well as the effects of climate change on these parameters (Hunink et 
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al., 2011; Rivington & Koo, 2011; UNFCCC, 2008; Steduto, 2003; van Ittersum et al., 

2003). These models differ in their complexities and data requirements depending chiefly 

on whether their core crop growth sub-model is mainly driven by carbon, radiation or 

water (Hunink et al., 2011; Steduto, 2003; van Ittersum et al., 2003; De Wit et al., 1970). 

Carbon-driven models (e.g. WOFOST, SWACROP and CROPGRO) are the most 

complex and have the most extensive data requirements. Crop growth in these models is 

mainly driven by photosynthetic assimilation of carbon from the atmosphere. Radiation-

oriented models (e.g. CERES, CropSyst and EPIC) are next in complexity and in these 

models crop growth is driven by intercepted solar radiation and radiation use efficiency of 

the crop. By contrast, water-driven models or agrohydrological models (e.g. AquaCrop 

and CropWat) present a far less complex architecture and fewer data requirements. In 

these models, crop growth is largely driven or limited by soil water balance (SWB) which 

is linked to transpiration through a water productivity function that can be normalized for 

different climates (Steduto et al., 2009; Todorovic et al., 2009). Because of their 

simplicity, and because they are based on soil water dynamics, water-driven models are 

the most widely used models in studies of crop water use and the effects of water stress on 

yields (van Ittersum et al., 2003). While radiation or carbon-driven models can be better 

for simulating crop yields due to the canopy-atmosphere interaction in yield formation, 

van Ittersum et al. (2003) suggested that water-driven models perform better and are more 

suitable for irrigation and water-use assessments than carbon- and radiation-driven 

models.  

In the virtual water literature, CropWat is commonly used to estimate crop virtual 

water content and consequently virtual water flows even at a global scale (Hess, 2010; 
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Chapagain & Orr, 2009; Chapagain et al., 2006). For a model to be applicable to several 

crops under different management and environmental conditions, its ability to predict a 

target parameter accurately should be proven through multi-site and multi-year testing 

(Raes et al., 2009; Todorovic et al., 2009; Steduto, 2003). Some studies have shown that, 

compared to other models, CropWat performs poorly in predicting crop water use in 

certain environments. For example, Hess (2010) reported that WaSim is better than 

CropWat for estimating pasture water use under English conditions. George et al. (2000) 

reported that, compared to the Irrigation Scheduling Model, CropWat slightly 

underestimated the ETc of beans in Davis, California (USA). Kang et al. (2009) reported 

that CropWat, just like CERES-Wheat and MODWht, predicted daily ETc of winter wheat 

in China and USA poorly. Therefore, in the interest of improving the accuracy of the 

estimates of crop virtual water content and flows, there is the need to compare the abilities 

of CropWat and other water-driven models for predicting crop water use and the effects of 

soil water stress on yields. Previously, CropWat has been compared with WaSim (Hess, 

2010) and AquaCrop has been compared with other models such as CropSyst and 

WOFOST (Todorovic et al., 2009). No study, however, has yet compared the abilities of 

AquaCrop, CropWat and WaSim for simulating crop water use. AquaCrop is the latest 

FAO crop water productivity model, with capacity for climate change simulations (Raes et 

al., 2009). It has been used to simulate the growth, yield and response to soil water 

dynamics of different crops and in different locations, including West and South Africa, 

Near East and Asia, with satisfactory results (Steduto et al., 2011). WaSim has been 

shown to be suitable for English environmental conditions (Hess, 2010) and, therefore, the 

UK. The objective of this chapter is to compare the abilities of AquaCrop, CropWat and 
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WaSim to predict the water use and effect of water stress on yields of 10 barley genotypes 

grown in the field in Scotland.  

3.2 Description of the Models 

3.2.1 AquaCrop 

AquaCrop, released in 2009, is a crop water productivity model for simulating 

biomass and yield response to soil water dynamics (Raes et al., 2009; Steduto et al., 

2009). The model is targeted at a broad range of users at varying scales. It can be used as a 

planning tool or to assist in management decisions. It incorporates current knowledge of 

crop physiological responses to predict attainable yield of a crop based on water 

availability. It is designed to offer a balance between accuracy, simplicity and robustness. 

The architecture and algorithms of AquaCrop have been reported by Raes et al. (2009) 

while the conceptual framework, underlying principles, and distinctive components and 

features have been reported by Steduto et al. (2009).  

The soil sub-model is designed as a dispersed system permitting the user to define 

up to five layers of varying textures and depths in the soil profile. This sub-model contains 

default values of hydraulic properties (e.g. saturated hydraulic conductivity, saturated 

water content, field capacity and wilting point), generated using a pedotransfer function, 

for all the soil textural classes defined in the USDA soil texture triangle. However, user-

defined soil type and or values of hydraulic characteristics are also permitted. The 

available soil water in the root zone is tracked from water input by performing a daily 

water balance that includes the processes of runoff, infiltration, redistribution, deep 
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percolation, capillary rise, uptake, evaporation and transpiration. In performing soil water 

balance, AquaCrop separates soil evaporation from crop transpiration. 

The crop-growth sub-model relies on the conservative behavior of water 

productivity. Thus, biomass production in AquaCrop is a function of water productivity 

and crop transpiration relative to the extent of canopy cover. The canopy cover (expressed 

as a fraction of green canopy ground cover) is crucial as it determines the scale of 

transpiration and biomass production through its expansion, ageing, stomatal conductance 

and senescence. Under unstressed conditions, canopy expansion from emergence to full 

cover follows an exponential growth function while the phase from full canopy to 

senescence follows a decay function. Subsequent to full canopy cover, the canopy can 

have a variable duration period prior to senescence. Intermediary processes of biomass 

accumulation are not simulated but synthetically incorporated into a single coefficient 

defined as biomass water productivity (WP), which is normalized for reference ET (ETo) 

and CO2 concentration of the bulk atmosphere. This normalization makes the model 

applicable to varied locations and seasons, including climate change scenarios. Even 

though the final yield is a product of biomass and harvest index (HI), AquaCrop separates 

final yield into biomass and HI and, thus, allows a distinction of environmental effects on 

biomass production and harvest index (Raes et al., 2009; Geerts et al., 2009). The crop-

growth sub-model has five main components and related dynamic responses to 

environmental conditions (phenology, canopy cover, rooting depth, biomass production 

and harvest index). Crop responses to water stress occur through three main conservative, 

plant-based parameters: reduced rate of canopy expansion, stomatal control of 

transpiration, and accelerated canopy senescence (Andarzian et al., 2011; Raes et al., 
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2009). Through these pathways, the WP and HI are adjusted. Other water stresses (e.g. 

waterlogging) can also affect the WP and HI. The stress functions of the crop responses 

are considered conservative with respect to management or geographical location, but the 

onset and intensity of stresses are strongly dependent on management, time, climate and 

soil conditions (Raes et al., 2009). Simulations can be run in either growing degree days 

or calendar days depending on data availability and user preference. A recent literature 

review on the performance of AquaCrop shows that AquaCrop is able to simulate crop 

water use, biomass production and yield and crop responses to soil water deficits 

satisfactorily (Steduto et al., 2011).  

3.2.2 CropWat 

The FAO CropWat model (Smith, 1992) was developed as a simple tool for 

estimating crop water requirement (CWR), generating irrigation schedules and water 

supply schemes for different agronomic management scenarios (Stancalie et al., 2010). 

CWR is simulated as the product of ETo and crop coefficient (Kc) relative to effective 

rainfall over four crop development stages: initial, development, mid- and late-seasons 

(Doorenbos & Pruitt, 1977). The initial period is between sowing to 10% canopy cover 

and the development stage is the period from 10% canopy cover to maximum canopy 

cover (normally initiation of flowering). Mid-season covers the period from maximum 

canopy cover to start of maturity (beginning of ageing, yellowing or senescence). The late 

season is marked by the start of maturity to harvest. Different Kc input values are required 

for the different growth stages. However, within a given growth stage, the daily Kc values 
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applied can be a proportion of the input value in response to the extent of soil wetness or 

dryness. Maximum Kc is assumed to be reached at the end of mid-season (Doorenbos & 

Pruitt, 1977). CropWat has been used in various studies on CWR and irrigation 

optimization with varied results (e.g. Kang et al., 2009; Mimi & Jamous, 2010; Smith & 

Kivumbi, 2002; George et al., 2000). The common use of CropWat in the virtual water 

literature might be due to the availability of generic Kc values and length of development 

stages of several crops, the accompanying climate data generation software (Climwat), the 

minimal data and calibration requirements and the relative ease of use (Smith & Kivumbi, 

2002).  

3.2.3 WaSim 

WaSim is a one-dimensional soil water balance simulation model developed by 

HR Wallingford and Cranfield University (UK). A general description of WaSim is given 

by Hess & Counsell (2000) and details of the model structure, sub-models and algorithms 

are published in the technical manual (Hess et al., 2012). WaSim is designed to simulate 

daily soil water balance in response to agronomic management practices and 

environmental conditions, such as weather, soil and crop growth (Hess & Counsell, 2000). 

In WaSim, soil water is stored between an upper boundary (the soil surface) and a lower 

boundary (the impermeable layer) divided into five compartments. The first two 

compartments (0-0.15 m and 0.15 m - root depth) constitute plant available soil water. Soil 

water depletion through ET occurs mainly in the top layer and subsoil water abstraction 

occurs when water in the topsoil is depleted. ET is modelled separately for crop cover, 
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bare soil and mulch. Crop cover fraction is linearly interpolated between the dates of 

emergence, 20% canopy cover, maximum cover, maturity and harvest, while senescence is 

captured as a linear reduction in canopy cover between maximum cover and zero cover at 

maturity (Hess & Counsell, 2000). Even though WaSim was originally designed for 

educational training in drainage, irrigation and salinity management (Hess & Counsell, 

2000), it has been used in simulating subsurface drainage system performance (Hirekhan, 

2007), water use of pasture (Hess, 2010), total volumetric irrigation water requirements 

(Knox et al., 1997), catchment runoff (Hess et al., 2010) and groundwater recharge 

(Holman et al., 2009) with satisfactory results. 

3.3 Materials and Methods 

3.3.1 Site Description and Crop Husbandry 

A field experiment was conducted at The James Hutton Institute (Dundee, 56.27N, 

3.40W) in 2011. The soil of the site belongs to the Balrownie series, a Stagnic Cambisol 

in the FAO classification, with a sandy loam texture derived from red sandstone sediments 

(Bell and Hipkin, 1988; McKenzie et al., 2009). The soil is freely drained, with saturated 

water content of 45.8%, field capacity of 23%, permanent wilting point of 9.5% and total 

available soil moisture of 135 mm/m. The pH (CaCl2) ranges from 5.1 in the surface to 5.6 

in the subsoil.  

The soil was ploughed and harrowed to a depth of 0.4 m. The field was divided 

into 10 plots (each 6 m long, 10 m wide), with a distance of 2 m between plots. Each plot 

was divided into five rows, each row measuring 6 m long and 1.2 m wide with a distance 
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of 1 m between rows. Each row was further divided into 6 subplots of 1 m length for 

different root restriction treatments. Ten spring barley genotypes (B83-12/21/5, Bowman, 

Derkado, Golden Promise, Morex, NJSS106, Optic, Triumph, Westminster, and Zephyr) 

were assigned randomly to the rows of a plot. These genotypes were selected because 

seeds were available at The James Hutton Institute and they were on the list of spring 

barley genotypes recommended by the Home Grown Cereals Authority (HGCA). Seed 

was sown on 8th April 2011 in the 6 m long rows to a target density of 365 plants m-2. A 

single fertilizer application was made at sowing at a rate of 110 kg ha-1 N, 20 kg ha-1 P2O5 

and 70 kg ha-1 K2O. Weeds were controlled chemically. Harvesting took place on 15th 

September 2011. The data collected for this study were from the control subplots.  

3.3.2 Data Collection 

3.3.2.1 Weather Data 

Weather data (daily maximum and minimum temperature, sunshine hours, 

humidity, rainfall and wind speed) were collected from an onsite meteorological station 

(UK Station No. 339299) located 50 m from the experiment plot at an altitude of 30 m 

above sea level. The weather data were used to compute daily reference 

evapotranspiration (ETo), using the FAO Penman-Monteith equation (Allen et al., 1998) 

in the FAO ETo Calculator software (Raes, 2009). The computed ETo data were exported 

as a text file and converted to compatible formats for the crop models. 
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3.3.2.2 Canopy Cover and Canopy Temperature 

The growth stages and durations of developmental stages of the crops were 

monitored in the field using the Zadoks Scale and the HGCA Barley Growth Guide 

(HGCA, 2006). Canopy cover was calculated from digital true colour images taken with 

an 8.2 megapixels SONY CYBERSHOT digital camera (SONY™, TOKYO), operating in 

the visible region of the electromagnetic spectrum. For each genotype, three subplots were 

selected for imaging at a 3-day interval except when weather conditions did not permit. 

For each subplot, two images were taken each time. The images were taken by pointing 

the lens of the camera perpendicularly to the canopy surface of a subplot. The images 

were always taken when the sun was overhead to ensure that canopy shadows were 

visible. The edges of a subplot were marked out with four bamboo sticks fixed at the 

corners of the subplot but are sometimes visible in the image. The images were imported 

in FIJI ImageJ software, cropped to cut out edge-effect and then converted to binary 

format (using Process>Binary>Make Binary), with a pixel inclusion probability threshold 

of 55%. A histogram of the binary image was saved (Figure 3-1a, b) in order to obtain the 

count of pixels representing the background soil (pixel value of 0) and the vegetation 

fraction (pixel value of 255). Per cent canopy cover (% CC) was calculated as: 

 %	�� =	 �� 	�	���       Equation 3-1 

where Vg is the total count of pixels representing vegetation and T is the total number of 

pixels.  
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The calculated canopy cover values were used in the simulations using AquaCrop 

and WaSim. Results of canopy cover calculated using this method do not differ 

significantly from those obtained by other methods such as the ocular estimation, digital 

 
Figure 3-1a: Sample colour image of barley in the field for canopy cover calculation. 

 

 
Figure 3-1b: Corresponding binary image of Figure 3-1a. 
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square grid and polygon methods (Avsar and Ayyildiz, 2010), or the USDA point 

sampling method (Crawley, 2011). Also, Campillo et al. (2008) reported that canopy 

cover calculated using this method in ImageJ showed a linear relationship with light 

interception measured with line quantum sensor at solar noon.  

Canopy temperature was retrieved from thermal images of the canopy captured 

with a ThermaCAM™ P25 thermal camera (FLIR SYSTEMS, Sweden), with the 

following settings: emissivity (0.97), humidity (60%), ambient temperature (20 ºC), 

distance (1.6 m), Trefl (28), Tatm. (20) and FOV (23). The camera was used in autofocus 

mode but each image was frozen first before saving. Images were captured every other 

day. On each day, unless the weather conditions did not permit, two imaging events were 

undertaken, one in the late morning (between 10:00 and 11:00 a.m.) and the second in the 

afternoon (between 13:30 and 14:30 p.m.). The procedure and number of subplots are 

similar to those described for canopy cover imaging. Thermal imaging was done from 1st 

June to 15th August, 2011. 

The thermal images were imported into ThermaCAM Researcher Pro 2.8 software 

(FLIR SYSTEMS, Sweden) to generate canopy temperature values. Temperature statistics 

of each image were derived by drawing a rectangular box of fixed size over the centre of 

the image. No major processing or image enhancement was applied. However, when high 

soil temperature pixels were present at the edge of an image, they were considered as 

artefacts (or noise) and therefore removed. This was normally due to the effects of 

uncovered soil surface between subplots. When such pixels exist across the image or 

cover a substantial part of the image, they were included in the analysis because they were 

due to openings in the canopy.  
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3.3.2.3 Soil Water Content 

Volumetric soil water content (θv, m3 m-3) was measured at 4-hour intervals from 

24th April to 9th August 2011, using ML2X Theta-Probes connected to DL6 dataloggers 

(Delta-T Ltd., Cambridge, UK) placed at a depth (d) of 30 cm. The average of each 24-

hour volumetric soil water content measurement was converted to an equivalent depth of 

water (D, mm) using equation 3-2 (White, 2006):  

�	 = 	����(���)        Equation 3-2 

3.3.3 Simulation and Validation of Water Use of Barley Genotypes 

3.3.3.1 Simulation of Water Use of Barley Genotypes 

Water use of the 10 barley genotypes was simulated using AquaCrop (version 

3.1+), CropWat (version 8.0) and WaSim (version 1.8.17). Robust calibration and 

parameterization of crop models require multi-year and multi-site studies for greater 

accuracy. However, conservative parameters from such calibration studies can be applied 

in other simulation studies, with minimal local calibration, to assess the performance and 

applicability of the model under different environmental conditions (Steduto et al., 2011). 

In all the simulations, maximum rooting depth was assumed to be reached at the same 

time as maximum canopy cover (Allen et al., 1998) and a value of 0.70 m was used. Initial 

soil water content was set to field capacity as soil water content was not measured at 

sowing. Surface runoff was assumed to be insignificant as the plot has an almost flat 

surface. Default drainage characteristic values generated by the models, based on input 
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values of key soil hydraulic properties values (i.e. saturated water content, field capacity, 

permanent wilting point), were used.  

With simulations using AquaCrop, the choice of conservative parameter values 

(Table 3-1) was based on reported barley calibration information (Araya et al., 2010a; 

Raes et al., 2011), with minimal adjustments based on personal communications with 

scientists at The James Hutton Institute. Because CropWat and WaSim simulations are in 

calendar mode, AquaCrop parameters reported here are in calendar days to ease 

comparison with the other models. Information on growing degree days for key 

parameters is reported in Chapter 4. 

Table 3-1: Conservative parameter values adopted in simulations using AquaCrop. 

Symbol Parameter Description Value 
1. Crop Phenology 
1.1 Development of green canopy cover (CC) 
CCo Initial canopy cover (%) 3.6 
 Time from sowing to emergence (days) 15 
CGC Canopy growth coefficient (fraction per day, % day-1) 10 
CCx Maximum canopy cover (%) 85 
CDC Canopy decline coefficient (fraction per day, % day-1) 8 
1.2 Development of root zone 
Zn Minimum effective rooting depth (m) 0.30 
Zx Maximum effective rooting depth (m) 0.70 
 Shape factor describing root zone expansion 1.5 
2. Crop Transpiration 
KcTr,x Crop coefficient at maximum CC 1.15 
 Decline of crop coefficient (% day-1) due to ageing 0.15 
 Effect of canopy shelter on surface evaporation in late 

season stage (%) 
50 

3. Biomass production and yield formation 
3.1 Crop water productivity 
WP* Water productivity normalized for ETo and CO2 (g m-2) 15 
 Water productivity normalized for ETo and CO2 during 

yield formation (as % WP* before yield formation) 
100 

3.2 Harvest index 
HIo Reference harvest index 0.49 
 Upper threshold for water stress during flowering on HI 0.82 
 Possible increase (%) of HI due to water stress before 

flowering 
12 (strong) 

 Coefficient describing positive effect of restricted 
vegetative growth during yield formation on HI 

Moderate  

 Coefficient describing negative effect of stomatal Moderate  
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With simulations using CropWat, the default FAO values for barley for Kc, 

rooting depth, depletion and yield response fractions were used (Allen et al. 1998; Smith 

1992). Values for Kc were 0.30, 1.15 and 0.25 for initial , mid and late season, 

respectively. For rooting depth, the values were 0.30 and 0.70 m for initial  and mid-

closure during yield formation on HI 
 Excess of potential fruits  Moderate 
 Allowable maximum increase (%) of specified HI 15 
4. Stresses 
4.1 Soil water stress 
Pexp,lower Lower threshold of water stress for triggering inhibited 

canopy expansion 
0.60  

Pexp,upper Upper threshold for canopy expansion (canopy 
expansion seizes) 

0.27 

 Shape factor for water stress coefficient for canopy 
expansion 

3.5 

Psto Upper threshold for stomata closure 0.60 
 Shape factor for water stress coefficient for stomatal 

control 
3.0 

Psen Upper threshold for early senescence due to water stress 0.60 
 Shape factor for water stress coefficient for canopy 

senescence 
3.5 

Ppol Upper threshold of soil water depletion for failure of 
pollination 

0.80 

 Vol.% at anaerobiotic point (with reference to 
saturation) 

15 

 

 

Table 3-2: Duration (in days) of crop developmental stages for simulations using AquaCrop. Data 
from crop monitoring in 2011. 

Genotype Sowing 
to max. 
canopy 
cover 

Sowing to 
start of 
canopy 

senescence 

Sowing to 
start of 

flowering 

Harvest 
index 

build-up 

Flowering 
period 

B83-12/21/5 71 115 83 44 12 
Bowman 56 90 68 34 12 
Derkado 68 120 79 52 11 

G. Promise 68 102 78 34 10 
Morex 62 120 72 58 10 

NJSS106 58 115 69 57 11 
Optic 69 120 79 51 10 

Triumph 68 115 81 47 13 
Westminster 68 115 80 47 12 

Zephyr 68 122 80 54 12 
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seasons, respectively. For depletion fraction, the values were 0.55, 0.55 and 0.65 for 

initial , mid and late season, respectively, and for yield response factor the values were 

0.20, 0.60, 0.50, 0.40 and 1.00 for initial , development, mid, late seasons and total yield 

response factor, respectively. The durations of crop developmental stages are presented in 

Table 3-3. 

WaSim has not been calibrated for any particular crop. Therefore, conservative 

crop parameters used here (e.g. maximum Kc) were based on values used for simulations 

using CropWat. A value of 1.15 for maximum Kc, a value of 0.5 for p-fraction (equivalent 

to the depletion fraction) and a value of 1 for yield response factor were used. Durations of 

crop developmental stages for simulations using WaSim are presented in Table 3-4.  

 

 

 

 

 

Table 3-3: Duration (in days) of crop developmental stages for simulations using CropWat. Data 
from crop monitoring in 2011. 

Genotype  Initial  Development  Mid-season Late season 
B83-12/21/5 31 40 44 45 
Bowman 23 33 34 70 
Derkado 31 37 52 40 
G. Promise 25 43 34 58 
Morex  31 31 58 40 
NJSS106 31 27 57 45 
Optic 30 39 51 40 
Triumph 28 40 47 45 
Westminster 30 38 47 45 
Zephyr 28 40 54 38 
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3.3.3.2 Validation of Simulated Water Use of Barley Genotypes 

To validate the simulations, the measured soil water content (SWC) was compared 

with the predicted soil water balance (SWB) in the top-soil for AquaCrop and WaSim or 

the difference between available water and depletion in the root zone for CropWat. This is 

reasonable as the crops would be expected to exploit sub-soil water only when the top-soil 

water is depleted and, therefore, evapotranspiration can be restricted to the top-soil under 

adequate soil water supply conditions (Passioura, 2006). Furthermore, McKenzie et al. 

(2009) showed that the barley genotypes studied did not require sub-soil water, provided 

rainfall was adequate. AquaCrop allows the user to define depth of soil layers but these 

are predetermined as 0 – 15 cm, 15 – 30 cm and >30 cm in WaSim. Thus, depth of 0-30 

cm and 30-60 cm for first two soil layers were defined for simulations using AquaCrop. In 

CropWat, however, the SWB is simulated only in relation to root depth and the soil is not 

layered. Hence, for CropWat, the measured soil water content was compared with the 

difference between available soil water and depletion in the root zone. In addition, yields 

Table 3-4: Duration (in days) of crop developmental stages for simulations using WaSim. Data 
from crop monitoring in 2011. 

Genotype  20% Cover Full Cover Maturity 
B83-12/21/5 53 71 110 
Bowman  36 56 85 
Derkado  30 68 115 
G. Promise 40 68 97 
Morex 53 62 115 
NJSS106 53 58 110 
Optic  50 69 115 
Triumph  46 68 110 
Westminster  50 68 110 
Zephyr  46 68 117 
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predicted by AquaCrop were compared with observed yields for the years 2009, 2010 and 

2011. Yields from 2009 and 2010 were obtained from previous experiments. 

The performances of AquaCrop, CropWat and WaSim were assessed using the 

normalized root mean square error (RMSE; Loague & Green, 1991) and D-Statistic (D-

Stat), also known as index of agreement (Wilmot, 1982). 

����	(%) = 	∑ �����	��)� ! �"� 	�	 ���#       Equation 3-3 

�− �%&% = � − ∑ (�����)� �'�
∑ (|���#|	)	|���#|)� �'�

       Equation 3-4 

where Pi is the predicted value, Oi is the observed (measured) value, and m is the mean of 

the observed variable.  

The RMSE indicates the overall model uncertainty and model performance 

improves as the RMSE approaches the lower limit of zero (Loague & Green, 1991). The 

D-Stat is a descriptive value, bounded between 0 and 1, which indicates the extent of 

agreement between the observed and predicted values. A value of 1 indicates excellent 

agreement (Wilmot, 1982).  

3.4 Results 

3.4.1 Weather 

Total and mean daily rainfall over the season (8th April – 15th September, 2011) 

was 418.9 and 17.5 mm, respectively, with a range from 0.0 to 36.1 mm and standard 

deviation of 5.98. There was no rain on the days of sowing and harvesting and it was 

relatively dry during the first few days after sowing (DAS, Figure 3-2a). There was 
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relatively less rainfall during crop establishment and canopy expansion (from sowing to 

mid-June) than during anthesis, grain filling and the late stage or canopy senescence of the 

crop (from mid-June to mid-August). However, in-between the peaks, several minor 

rainfall events probably helped sustained the crops. 

Daily maximum temperatures over the growing season ranged from 12.3 to 23.6 

ºC, with a mean of 16.9 ºC and a standard deviation of 2.33 ºC. Temperature did not vary 

substantially during the growing season (Figure 3-2b). The highest daily maximum 

temperatures recorded were observed around sowing and early June, as well as in the early 

part of July. Daily reference evapotranspiration (ETo) over the crop growing season 

ranged from 1.0 to 4.2 mm, with a mean of 2.16 mm and a standard deviation of 0.68 mm. 

Just as with temperature, daily ETo was higher between early June and early July 

compared to other times (Figure 3-2b). Daily ETo increased gradually from 5 DAS to late 

July but decreased thereafter until harvest. Apart from the few peaks in early June and 

 

 
Figure 3-2a: Daily rainfall at the study site from sowing to the date of harvest (8th April –  
15th September 2011). 
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July, due to higher temperatures, daily ETo did not vary substantially over the growing 

season.   

3.4.2 Daily and Seasonal Crop Water Use 

 The daily crop evapotranspiration (ETc) of the barley genotypes simulated using 

AquaCrop ranged between 0.4 and 4.1 mm. The genotypes showed no substantial 

differences in their daily water use (Figure 3-3a). Daily ETc increased slightly from mid-

May to late July and declined thereafter, indicating the periods of canopy development 

and senescence respectively. However, during the late stage (from late July through 

August) the decline in daily ETc of Bowman was steeper than that of the other genotypes, 

followed by Golden Promise (G. Promise). Apart from this, only slight differences in daily 

ETc were observed among the genotypes during canopy senescence stage in the season. 

 

 
Figure 3-2b: Mean daily maximum and minimum temperatures and ETo at the study site  
from sowing to the date of harvest. 
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Figure 3-3a: Daily crop evapotranspiration (ETc) of barley genotypes simulated using  
AquaCrop. 

 
Figure 3-3b: Daily ETc (averaged over 10-day period) of barley genotypes simulated using  
CropWat.  
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For simulations using CropWat, the output of daily ETc was given as averages of 

10-day periods from sowing to harvesting (Figure 3-3b). The genotypes did not show 

substantial differences in daily ETc during the initial period (up to 40 DAS) and mid-

season (between 90 and 120 DAS). However, slight differences between genotypes were 

observable during the development phase (50 to 90 DAS) and part of the late season (120 

to 150 DAS), with Bowman showing the highest increase and decrease in daily ETc at 

these periods respectively. Daily ETc ranged between 0.62 and 2.71 mm. Similarly, the 

genotypes did not show substantial differences in their daily water use simulated using 

WaSim (Figure 3-3c). Only slight differences in daily water use between the genotypes 

were observed from mid-May to mid-June, with Bowman showing the greatest difference 

due to its rapid vegetative growth, which was also observed in the field. At this stage, 

B83-12/21/5 had the least daily ETc. Daily ETc for all the genotypes, simulated using 

WaSim, ranged from 0.65 to 4.06 mm. 

 
Figure 3-3c: Daily ETc of barley genotypes simulated using WaSim. 



84 

Figure 3-4 shows the seasonal (cumulative) ETc of the barley genotypes from the 

simulations using all the three models. For simulations using AquaCrop, Optic had the 

highest seasonal ETc of 303.1 mm, followed by Zephyr (302.9 mm), with Bowman 

having the least value of 283.3 mm. The ETc of Bowman was substantially lower than that 

of the other genotypes. With simulations using CropWat, the seasonal ETc values ranged 

from 241.5 to 249.8 mm for Zephyr and Bowman respectively. The ETc of Zephyr was 

substantially lower than that of the other genotypes. For simulations using WaSim, 

Derkado had the highest seasonal ETc (319.2 mm), followed by Bowman, with B83-

12/21/5 having the lowest value of 307.4 mm. Generally, seasonal ETc of the genotypes 

simulated using WaSim are slightly higher than those from simulations using AquaCrop 

which are in turn higher than those simulated using CropWat. In all, the barley genotypes 

do not vary substantially in their daily or seasonal ETc simulated using AquaCrop, 

CropWat or WaSim. 

 
Figure 3-4: Comparison of the seasonal ETc of the genotypes from the three models. 
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Average canopy temperatures of the barley genotypes also did not show substantial 

variations (Figure 3-5), partly confirming the similarity in pattern of water use. Even 

though the high temperatures in early June were largely reflected by the canopy 

temperatures, there was also high soil background noise in those images. Canopy 

temperatures also did not vary substantially over time (Figure 3-5). However, no 

relationship was found between canopy temperature and any of the weather variables or 

ETc.  

The genotypes did not show substantial differences in canopy cover (from sowing 

to maximum cover) simulated using AquaCrop (Figure 3-6a). Differences were observable 

between the genotypes from maximum canopy cover to harvest, indicating that these 

differences (and for that matter ETc) depends on the extent of maximum canopy cover, its 

duration and rate at which the canopy declined after maximum development was reached. 

For simulations using WaSim, however, the canopy rose steeply from emergence to 20% 

 
Figure 3-5: Average canopy temperatures of barley genotypes measured from 1st June to 15th  
August, 2011. 
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cover and then even more steeper from 20% cover to maximum canopy cover (Figure 3-

6b). Between maximum cover and maturity, the canopy cover of the genotypes neither 

varied nor showed differences between the genotypes. After maturity, the canopy declined 

linearly until harvest. 

 

 
Figure 3-6a: Canopy cover of ten barley genotypes simulated using AquaCrop. 

 

 
Figure 3-6b: Canopy cover of ten barley genotypes simulated using WaSim. 
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Spearman’s rank correlation (r) was used to assess the agreement between the 

models on the order of the genotypes in terms of their simulated water use. Negative but 

significant rank correlation was found between AquaCrop and CropWat (r = -0.73, at 5% 

significance level) and between CropWat and WaSim (r = -0.76, at 5% significance level). 

However, a positive but weak relationship (r = 0.43) was found between AquaCrop and 

WaSim. 

3.4.3 Performance Assessment of Models 

Generally, for simulations using each of the three models, both the RMSE and D-

Stat of the genotypes did not vary substantially but the general performance of the models 

to predict SWB followed the order WaSim > AquaCrop > CropWat (Table 3-5). For 

simulations using AquaCrop, the RMSE and D-Stat for all genotypes were approximately 

8.1% and 0.65, respectively. The D-Stat value could be improved to approximately 0.80 if 

predicted SWB values higher than100 mm (7 out of 107 data points, Figure 3-6a) were 

replaced with the average of all predicted values. For simulations using CropWat, the 

RMSE values ranged from 19.56% (Morex) to 24.56% (G. Promise), while D-Stat ranged 

from 0.14 (Bowman) to 0.25 (Morex). For simulations using WaSim, the RMSE and D-

Stat values for all genotypes (except Bowmn) were approximately 5.6% and 0.81 

respectively (Table 3-5). The RMSE and D-Stat for Bowman were 2.96% and 0.94 

respectively (Table 3-5). 
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The agreement between the measured soil water content and that predicted by 

AquaCrop, CropWat and WaSim can be graphically illustrated with reference to Bowman 

(Figures 3-7a, 3-7b and 3-7c). As indicated by the RMSE and D-Stat (Table 3-5), 

generally, WaSim predicted SWC better than AquaCrop, which in turn predicted SWC 

better than CropWat (Figure 3-7). It can be seen that the measured soil water content did 

not vary substantially over time.  

Table 3-5: The RMSE and D-Stat as indicators of the ability of AquaCrop, CropWat and WaSim 
to predict soil water content under ten barley genotypes. 

Genotypes AquaCrop WaSim CropWat 
RMSE 
(%) 

D-STAT RMSE 
(%) 

D-STAT RMSE 
(%) 

D-STAT 

B83-12/21/5 8.1046 0.6497 5.641 0.8079 22.5086 0.1933 

Bowman 8.1097 0.6500 2.960 0.9355 24.0293 0.1429 

Derkado 8.1019 0.6491 5.616 0.8091 23.2603 0.1930 

G. Promise 8.0966 0.6491 5.6496 0.8076 24.5646 0.1875 

Morex 8.1183 0.6512 5.6366 0.8079 19.5649 0.2494 

NJSS106 8.1410 0.6496 5.6372 0.8079 23.8474 0.1836 

Optic 8.1021 0.6490 5.6359 0.8081 22.4917 0.2245 

Triumph 8.1784 0.6449 5.6328 0.8083 22.4487 0.2003 

Westminster 8.1030 0.6489 5.6383 0.8080 20.8910 0.2008 

Zephyr 8.1022 0.6491 5.6286 0.8084 23.3488 0.2087 
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Figure 3-7: Graphical illustration of the agreement between the measured soil water  
content (– – –) and the soil water content predicted by (A) AquaCrop, (B) CropWat and  
(C) WaSim (–––––) for Bowman during the period 25th April to 8th August 2011. 



90 

AquaCrop generally predicted temporal variations in SWC accurately, although it 

occasionally predicted far higher SWCs than were actually observed (Figure 3-7a). The 

greatest deviations can be observed in early May and July. CropWat showed the greatest 

deviation from the measured SWC. CropWat consistently overestimated the SWC and 

also occasionally predicted far higher SWCs than were measured (Figure 3-7b). 

Predictions using WaSim showed the closest agreement with the measured SWC, although 

it often slightly underestimated the SWC (Figure 3-7c). 

3.4.4 Comparison of Actual and Predicted Yields 

The ability of AquaCrop was further tested by comparing yields predicted by 

AquaCrop with observed yields for barley genotypes grown in 2009, 2010 and 2011 

(Table 3-6). The yields predicted by AquaCrop in 2009 and 2010 were generally lower 

than the observed yields. The observed yields in 2009 ranged from 4.71 (NJSS106) to 

11.39 t ha-1 (Derkado) while the predicted yields ranged from 5.15 to 8.94 t ha-1, with 

differences between observed and predicted yields for individual genotypes ranging from -

0.44 to 2.4 tons ha-1. Only three genotypes, out of the ten studied, recorded yield 

differences over 1.0 t ha-1. In 2010, the observed yields ranged from 4.75 (NJSS106) to 

8.60 t ha-1 (Westminster) and the predicted values ranged from 5.01 to 7.69 t ha-1. The 

differences between observed and predicted yields for individual genotypes ranged from -

0.95 to 0.91 t ha-1. Bowman had the lowest observed yield (3.47 t ha-1) while Derkado had 

the highest yield (6.76 t ha-1) in 2011, with the predicted yields ranging from 4.07 to 6.50 t 

ha-1. The differences between observed and predicted yields for individual genotypes 
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ranged from -1.61 to 0.47 t ha-1. Only Bowman had absolute yield difference over 1.0 ton 

ha-1. Thus, with the exception of B83-12/21/5, Derkado and Westminster in 2009 and 

Bowman in 2011, the absolute differences between yields predicted by AquaCrop and the 

observed yields were less than 1.0 ton ha-1. Derkado and Westminster showed the highest 

yields while NJSS106 was the lowest yielding genotype. In general, yields in 2009 were 

highest and 2011 had the lowest yields. Spearman’s rank correlation (r) was used to assess 

the agreement between the order of observed and predicted yields for each of 2009, 2010 

and 2011. A strong, positive rank correlation was found for the year 2009 (r = 0.90 at 1% 

significance level) but negative relationships were found for the years 2010 (r = -0.61) and 

2011 (r = -0.56). 

Table 3-6: Differences (∆Y, tons ha-1) between observed yields (Yo, tons ha-1) and yields predicted 
by AquaCrop (Yp, tons ha-1) of ten barley genotypes grown in 2009, 2010 and 2011. 

 2009 2010 2011 

Genotype Yo Yp ∆∆∆∆Y Yo Yp ∆∆∆∆Y Yo Yp ∆∆∆∆Y 

B83-12/21/5 8.29 7.00 1.29 6.65 6.65 0.00 6.47 6.08 0.39 
Bowman - - - 6.62 5.95 0.67 3.47 5.08 -1.61 
Derkado 11.39 8.90 2.4 6.84 6.75 0.09 6.76 6.36 0.40 
G. Promise 7.80 6.87 0.93 6.81 6.00 0.81 6.44 5.97 0.47 
Morex 8.00 7.22 0.78 5.55 6.50 -0.95 4.76 5.25 -0.49 
NJSS106 4.71 5.15 -0.44 4.75 5.01 -0.26 3.52 4.07 -0.55 
Optic 7.52 7.15 0.37 6.00 6.51 -0.51 6.00 6.50 -0.50 
Triumph 8.78 7.90 0.88 6.78 6.63 0.15 5.58 6.05 -0.47 
Westminster 10.67 8.94 1.73 8.60 7.69 0.91 6.64 6.50 0.14 
Zephyr 6.56 6.24 0.32 6.86 6.78 0.08 5.31 6.11 -0.8 
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3.5 Discussion 

3.5.1 Water Availability and Crop Growth 

Three water-driven crop simulation models were used to simulate the growth of 10 

barley genotypes grown in 2011. In water-driven crop growth simulation models, soil 

water deficit is the main cause of reduction in biomass production and yield (Raes et al., 

2009; Todorovic et al., 2009). However, in the current study, no symptoms of water stress 

were observed in barley growing in the field in 2011, and none of the simulation models 

used indicated any yield reduction due to water stress. This suggests that soil water 

content was sufficient for crop growth throughout the 2011 growing season. Indeed, 2011 

was the wettest year recorded for Scotland (Centre for Ecology and Hydrology, 2012).  

The relatively dry conditions 1-14 DAS could be responsible for the slight delay in 

emergence (Figure 3-2a) but the observations of Gonzàlez and Ayerbe (2011) suggest that 

even though short-term water deficit slows coleoptile growth in barley, the coleoptile is 

able to recover and resume rapid growth when water supply is restored. They reported 

further that the ability of barley coleoptile to grow, in spite of water deficit, corresponded 

with a greater capacity for osmotic adjustment even in the later stage of development, a 

trait that can be explored in breeding for drought tolerance. It is probable that residual soil 

water content between sowing and emergence sustained coleoptile growth. The ability of 

barley to recover quickly from temporary water-stress has been observed previously 

(González, et al., 1999; Shone & Flood, 1983). However, water stress during early crop 

establishment can affect yield adversely when tillering is limited, as barley has a low 

ability to compensate for poor tillering at later stage (HGCA, 2006; González, et al., 
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1999). In the experiment reported here, sufficient rainfall after the first two weeks of 

sowing enabled the crops to grow rapidly and become established. Even though warmer 

temperatures and high ETo occurred in late May to early June (Figure 3-2b), the 

distribution of rainfall suggests that soil water content would be sufficient during anthesis 

and grain-filling which are the most sensitive periods to water stress (Alderfasi, 2009). 

However, high water potential in the root zone of barley can potentially increase the 

vegetative growth period and delay the reproductive phase (if nutrients are not limiting) 

due to excessive uptake and translocation of water and nutrients to shoots (Alderfasi, 

2009; Shone & Flood, 1983). This might account for the low yields observed in 2011 

compared to 2009 and 2010. 

3.5.2 Crop Water Use 

There are very few estimates (empirical or simulated) of barley water use under 

rain-fed conditions (Rötter et al. 2012). In the current study, the simulated seasonal ETc 

using the three models for all barley genotypes ranged from 241.5 to 319.2 mm season-1 

(Figure 3-4). These values are lower than those reported for Alberta, Canada (390-430 mm 

season-1, Government of Alberta, 2008), south-east England (490 mm season-1, Chatterton 

et al., 2010), northern Ethiopia (375 mm season-1, Araya and Fantahun, 2010), and FAO 

generic values (450-650 mm season-1, FAO, 1986). This can be attributed to differences in 

the method of estimation or climate and weather conditions which influence ETo and 

consequently ETc. For example, Araya and Fantahun (2010) used lysimeters to measure 

ETc which is indirectly estimated in the current study. The peculiar wet conditions 
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experienced in 2011 might also partly account for the lower ETc observed in the current 

study as rainfall is likely to increase the moisture content of the air surrounding the canopy 

and reduce irradiance. Obviously, the period of canopy expansion up to maximum canopy 

cover when ETc is expected to rise steadily coincided with frequent rainfall (Figure 3-2a) 

and low ETo (Figure 3-2b), resulting in reduced and less variable daily ETc (Figure 3-3).  

Results from the simulations using each of the models show that neither the daily 

nor the seasonal ETc varied substantially among the genotypes studied. Similarly, canopy 

temperatures of the genotypes did not vary substantially (Figure 3-5) and canopy 

temperature is known to be directly related to ETc (Leinonen & Jones, 2004). The 

observed similarity in water use of the barley genotypes can be attributed to adequate soil 

water availability throughout the growing season. This finding is in agreement with 

Alderfasi (2009) who reported that two barley genotypes (Jesto and Sahrawe) did not 

differ in their water use when soil water supply was adequate. Normally, differences in 

water use among crop genotypes are often observed under conditions of soil water deficit 

(González & Ayerbe, 2011). This suggests that small differences in the timing of 

phenological stages between the genotypes did not affect overall crop water use. This 

observation is in agreement with Alderfasi (2009). Thus, to capture or examine differences 

in water use among the genotypes, experiments under both water-stressed and unstressed 

conditions are necessary. 

Moreover, the observed similarity in water use among the different genotypes can 

also be due to similarities in their ability to acquire water from the soil. A root restriction 

experiment was performed by McKenzie et al. (2009) at the site where the current study 

was conducted to examine the abilities of B83-12/21/5, Derkado, G. Promise, Morex and 
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Optic to acquire water from the subsoil. They found that, even though the genotypes 

differed in some above-ground parameters (such as plant height, tiller number and 

normalized difference vegetation index), they did not differ in their ability to acquire 

water from the topsoil or to exploit pores in a restrictive mesh to acquire water from the 

subsoil. Similar observations have been made by Alderfasi (2009). It is likely that the use 

of the same root length value for all the genotypes in the simulations for the current study 

might have also contributed to the similarity in ETc. Nonetheless, this finding in the 

current study suggests that barley genotypes grown in temperate northern Europe might 

not differ substantially in their water use if there is adequate soil water supply. Under such 

condition, differences in yield become the only criterion for selecting water-efficient 

barley genotypes.  

3.5.3 Statistical Performance of the Models 

The direct relationship between SWB and ETc (Kirnak et al., 2002) makes SWB a 

good route for directly estimating ETc. In this study, ETc was estimated indirectly and 

validated through a comparison of simulated SWB and empirically measured soil water 

content. The hypothesis is that a model that is able to simulate SWB with acceptable 

accuracy will likely simulate ETc with good accuracy. Technically, a Theta Probe 

measures the water content of a smaller volume of soil compared to neutron probe or even 

gravimetric measurement (Campi et al., 2008; Schmutz, 2007). However, assuming that 

the ratio of soil:water volume is constant in the layer under consideration (i.e. assuming 

conditions of uniform distribution of water in a homogenous layer of soil), then it could be 
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argued that the volume of soil measured for water content by the Theta Probe is 

inconsequential. Moreover, the study by Schmutz (2007) showed that the sensitivity of 

Theta Probe to variations in soil moisture content weakened when the length of the sensor 

rod was reduced but the accuracy of Theta Probe in measuring moisture content was not 

affected by sediment size. Campi et al. (2008) reported that Theta Probe sensor gave 

accurate measurements of surface soil water content in a Mediterranean environment. 

Seasonal ETc predicted by WaSim were slightly higher than the predictions by 

AquaCrop but both were substantially higher than the seasonal ETc predicted by CropWat 

(Figure 3-4). These differences can result from differences in (a) the assumptions 

underlying the partitioning of water input between ET, drainage, surface runoff and soil 

storage (b) the relationships among sub-models and crop growth parameters, or (c) 

contrasting sensitivities to crop development stages (Rötter et al. 2012; Raes et al., 2009; 

Todorovic et al., 2009). It can be deduced from Figure 3-3 that AquaCrop is more 

sensitive to the onset of senescence when water use declines sharply. This might explain 

why Bowman and G. Promise had relatively lower water use as they showed aggressive 

vegetative growth in the field but were also the first to senesce and therefore had a longer 

period of senescence (Figure 3-6a). CropWat is more sensitive to the lengths of the 

development and late stages (Figure 3-3b). Compared to AquaCrop and WaSim, the low 

ETc estimated by CropWat can be attributed to the fact that CropWat uses a fixed rate of 

change in crop coefficient (Kc) with time even though ETc actually varies over short time 

scales with weather, canopy cover and wetting and drying of the soil surface (Hess, 2010; 

Shahin, 2003). WaSim can be said to be more sensitive to the transition from development 

to mid-stages (i.e. between 20% canopy cover to full cover) but only slightly sensitive to 
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the senescence stage (Figure 3-4a, 3-6b) so that Bowman which had rapid canopy 

development could have higher ETc. The faster canopy expansion and slightly higher 

maximum canopy covers estimated by WaSim could account for the higher ETc predicted 

by WaSim than AquaCrop. Thus, WaSim largely uses Kc in a way similar to CropWat 

(Figure 3-6b), except that WaSim applies different Kc values to different phenophases 

using linear interpolation and in relation to canopy cover. These sensitivities might be 

worth exploring in future studies but, in all, AquaCrop simulates canopy expansion more 

realistically than the other models.  

According to Jamieson et al. (1991) the performance of a model is considered 

excellent when normalized RMSE is <10%, good if it is between 10 and 20%, fair if it is 

between 20 and 30% and poor if it is > 30%. Therefore, the performance of WaSim and 

AquaCrop can be considered excellent compared to CropWat which was fair (Table 3-5). 

However, when considering D-Stat, CropWat predicted SWB poorly and disagrees 

substantially with the observed SWC.  

In AquaCrop, the pattern of soil water depletion by crops is more realistic and 

largely agrees with current knowledge (Raes et al., 2009). Hence, depending on root 

growth, soil water depletion can occur simultaneously in both upper and lower layers. This 

can result in overestimation of the SWB of the upper layer as observed in the current 

study, especially when barley is capable of restricting water acquisition to the upper layer 

under conditions of sufficient water supply (McKenzie et al., 2009). A tendency of 

AquaCrop to overestimate the water balance of surface soil has been reported previously 

(Farahani et al., 2009), even though in this study there were instances of over- and under-

estimation. Moreover, there have been instances in which AquaCrop has been reported to 
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perform better with non-water stressed conditions than with irrigated conditions in which 

water stress is imposed (e.g. Stricevic et al., 2011; Hussein et al., 2011; Patel et al., 2011; 

Heng et al., 2009; Farahani et al., 2009; Salemi et al., 2011). Thus, the better performance 

of AquaCrop in this study could be partly due to the absence of water stress. Few studies 

have validated SWB or used it as a proxy for validating ETc in simulation studies. The 

better performance of AquaCrop is in agreement with the findings of Hussein et al. 

(2011), Araya et al. (2010a; 2010b), Farahani et al. (2009) and Geerts et al. (2009) 

although the performance values in the current study are lower compared to these previous 

studies. In addition to simulating ETc and SWB, AquaCrop also provides information on 

biomass production and yield. Yields predicted by AquaCrop did not deviate greatly from 

the observed yields for the years 2009, 2010 and 2011 for most of the genotypes studied 

(Table 3-6), although it often underestimated the yield. AquaCrop seems conservative in 

estimating yields, that is, it estimates extreme yields poorly (overestimate low yields and 

underestimate high yields, Table 3-6). However, the range of deviations of predicted 

yields from actual yields of barley in this study compares well with the range of deviations 

of predicted yields from actual yields of barley reported for Ethiopia (Araya et al., 2010a). 

The experiment in 2009 was conducted under relatively drier conditions (McKenzie et al., 

2009) compared to 2010 and 2011, and this might account for the relatively higher yields 

observed in 2009. This suggests that wet conditions can substantially reduce barley yields 

and influence inter-annual variations in yields.  

The relatively poor performance of CropWat compared to AquaCrop and WaSim 

can be attributed to limitations associated with the use of the effective rainfall method and 

its inability to separate water depletion at different depths in the soil (Hess, 2010). 
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CropWat uses a single soil layer and water deficit is balanced when it rains. In the event of 

rainfall, it is likely that topsoil will be filled first (even to field capacity) whereas the 

subsoil might remain unsaturated or even dry. Since CropWat precludes this possibility 

due to its use of a single soil layer, soil water depletion pattern will likely be inconsistent 

with measured SWB of the topsoil. Because WaSim is a one-dimensional model and water 

in an upper soil layer is depleted before water in a sub-layer is used, rapid depletion of 

water from the upper layer could result in relatively higher ETc and lowered SWB. This 

might explain why WaSim predicted higher ETc and often underestimated SWB in the 

upper soil layer. The better performance of WaSim in terms of predicting SWB might also 

be due to the fact that it was designed basically for water balance studies while AquaCrop 

is focused around crop sensitivity to water stress and realistic pattern of water depletion by 

crops. Moreover, the difference could also arise from the use of default drainage 

characteristic values of the models. A few studies have investigated the ability of WaSim 

to simulate crop water use, with good agreement between simulated and observed data 

(Hess, 2010; Fasinmirin et al., 2008; Abbot et al., 2001). They all concluded that WaSim 

has potential for ET and water balance studies. In general, some crop parameters used 

(such as Kc) were adapted from other sources which can give rise to model uncertainties 

as these parameters have not been calibrated for Scottish conditions. However, 

considering the possibility of such uncertainties in relation to the performance of the 

models, it can therefore be concluded that both AquaCrop and WaSim have potential for 

simulating barley growth and water use under the environmental conditions prevalent in 

temperate northern Europe. 
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In general, the findings are also in agreement with similar studies in other 

environments. Todorovic et al. (2009) reported that AquaCrop, CropSyst and WOFOST 

all predicted final biomass, yield and ET of sunflower in Southern Italy satisfactorily, 

although AquaCrop was slightly better than the other two models. Hess (2010) compared 

WaSim and CropWat in simulating the water use of pasture in England and reported that 

WaSim performed better than CropWat and that CropWat’s effective rainfall method, 

commonly used in the virtual water literature, underestimated pasture water use and might 

not be suitable for English conditions. George et al. (2000) simulated soil water content 

with CropWat and Irrigation Scheduling Model and showed that even though the models 

gave comparable results, CropWat slightly underestimated ETc of beans. By contrast, 

Kang et al. (2009) reported that neither CropWat nor CERES-Wheat nor MODWht 

predicted daily ETc of winter wheat in Zenghou (China) or Bushland (Texas, USA) 

satisfactorily.  

3.6 Conclusions 

1. Simulations using AquaCrop, CropWat and WaSim indicated that the 10 barley 

genotypes studied did not differ substantially in either their daily or seasonal ETc. 

2. The seasonal ETc simulated using WaSim was greater than that of AquaCrop, 

which was greater than that of CropWat. 

3. Differences in the sensitivities of the models to water use at different crop 

development stages might account for the observed differences in seasonal ETc predicted 

by each model for each genotype. 
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4. Model performance evaluated with normalised RMSE and D-Statistic values 

indicated that AquaCrop and WaSim performed excellently, while CropWat’s 

performance was fair. 

5. AquaCrop and WaSim are better for estimating barley water use in Scotland 

than CropWat. 

6. The yields predicted by AquaCrop compared satisfactorily with the observed 

yields. 

7. The results show that local level studies of multi-model comparisons can 

improve the accuracy of quantifying crop water use or virtual water content. 
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CHAPTER 4 
 

EFFECT OF CLIMATE CHANGE ON UK BARLEY YIELDS  

4.1 Introduction  

Generally, precipitation in the UK decreases from west to east and north to south 

while the reverse is true for temperature (Figure 4-1a, 4-1b). Long-term trends show that 

Scotland is becoming wetter while England and Wales are experiencing drier summers 

and wetter winters (Jenkins et al., 2009; 2008). The UK Climate Projections 2009 

(UKCP09; http://ukclimateprojections.defra.gov.uk) presents the most current and widely 

used evidence and projections of climate change for the UK (Jenkins et al., 2009; Murphy 

et al., 2009). By the 2050s and under the high emission scenario (HES), projected changes 

in summer mean precipitation of the baseline period (1961-1990) for all UK regions 

(Figure 4-1a) ranges from -45% to +9% (Table 4-1a). A wider range of uncertainty 

(defined as the range from the lowest to highest value of change for all three emissions 

scenarios and all three probability levels – 10, 50 and 90%, – Murphy et al., 2009) is from 

-45% to +16%. Projected changes in summer mean precipitation under the medium 

emissions scenario (MES) and the HES are not substantially different (Table 4-1a). Winter 

precipitation is projected to increase in all UK regions (Jenkins et al., 2009; Murphy et al., 

2009). Projected changes in precipitation exhibit greater uncertainty than temperature 

(Hawkins & Sutton, 2011; 2009; Murphy et al., 2009). 
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Table 4-1a: Projected changes (%) in summer mean precipitation of UK regions in the 2050s 
relative to the climate of the baseline period (1961-1990). Data taken from UKCP09. 

 Probability Levels (HES) Probability Levels (MES) Probability Levels (LES)  
Region 10% 50% 90% 10% 50% 90% 10% 50% 90% WR 

EE -40 -18 +8 -38 -17 +6 -34 -13 +14 -40 
+14 

EM -38 -17 +7 -36 -16 +6 -33 -12 +13 -38 
+13 

NI -28 -12 +4 -27 -13 +3 -24 -9 +8 -28 
+8 

NEE -31 -15 +2 -30 -15 +1 -28 -12 +7 -31 
+7 

NES -28 -13 +2 -27 -13 +1 -26 -11 +6 -28 
+6 

NWE -37 -18 +2 -36 -18 +1 -34 -14 +8 -37 
+8 

NWS -24 -10 +3 -24 -11 +2 -21 -8 +6 -24 
+6 

SEE -43 -19 +9 -41 -19 +7 -37 -14 +9 -43 
+16 

SES -28 -13 +2 -27 -13 +1 -26 -11 +6 -28 
+6 

SWE -45 -20 +8 -42 -20 +7 -39 -14 +16 -45 
+16 

SWS -28 -13 +2 -27 -13 +1 -25 -10 +6 -28 
+6 

WA -38 -17 +7 -36 -17 +6 -33 -12 +13 -38 
+13 

WM -39 -17 +7 -37 -17 +6` -33 -12 +14 -39 
+14 

YH -38 -18 +3 -36 -19 +1 -34 -15 +9 -38 
+9 

Key: HES, MES, and LES are High, Medium and Low Emissions Scenarios respectively. 
WR denotes Wider Range; EE denotes East of England; EM denotes East Midlands; NI denotes 
Northern Ireland; NEE denotes North East England; NES denotes North East Scotland; NWE
denotes North West England; NWS denotes North West Scotland; SEE denotes South East 
England; SES denotes South East Scotland; SWE denotes South West England; SWS denotes 
South West Scotland; WA denotes Wales; WM denotes West Midlands; YH denotes Yorkshire 
and Humber. Probability refers to the extent to which a projected climatic variable is supported 
by currently available evidence (Murphy et al., 2009). 
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By the 2050s, the projected changes in summer mean temperatures for all UK 

regions, relative to the climate of the baseline period (Figure 4-1b), range from 0.8 ºC to 

5.2 ºC (Table 4-1b). Correspondingly, projected changes in winter mean temperatures 

range from 0.6 ºC to 3.8 ºC (Murphy et al., 2009). Generally, warmer and wetter winters, 

hotter and drier summers with frequent hot spells are projected (Jenkins et al., 2009; 

Murphy et al., 2009). Central estimates under the medium emission scenario (MES) show 

that the number of days with heavy rain events (rainfall greater than 25 mm) will increase 

by a factor of between 2 and 3.5 in winter, and 1 to 2 in summer over most of the lowland 

UK in the 2080s (Jenkins et al., 2009; Murphy et al., 2009). More information on climate 

change projections for the UK regions can be found in Murphy et al. (2009).  

 

Table 4-1b: Projected changes (ºC) in summer mean temperature of UK regions in the 2050s 
relative to the climate of the baseline period (1961-1990). Data taken from UKCP09. 

 Probability Levels 
(HES) 

Probability Levels 
(MES) 

Probability Levels 
(LES) 

 

Region 10% 50% 90% 10% 50% 90% 10% 50% 90% WR 
EE 1.3 2.9 4.8 1.2 2.5 4.3 1.0 2.4 4.0 1.0-4.8 
EM 1.3 2.8 4.7 1.2 2.5 4.2 1.0 2.3 3.9 1.1-4.7 
NI 1.1 2.4 4.0 1.0 2.2 3.5 0.8 1.9 3.2 0.8-4.0 

NEE 1.4 2.9 4.7 1.2 2.5 4.1 1.1 2.4 3.8 1.1-4.7 
NES 1.3 2.7 4.5 1.1 2.3 3.9 1.0 2.2 3.6 1.0-4.5 
NWE 1.5 3.0 4.7 1.2 2.6 4.1 1.1 2.4 3.8 1.1-4.7 
NWS 1.1 2.4 3.9 0.9 2.0 3.4 0.9 1.9 3.1 0.9-3.9 
SEE 1.4 3.1 5.2 1.3 2.8 4.6 1.4 2.6 4.3 1.1-5.2 
SES 1.3 2.7 4.5 1.1 2.3 3.9 1.0 2.2 3.6 1.0-4.5 
SWE 1.4 3.1 5.1 1.3 2.7 4.6 1.1 2.5 4.1 1.1-5.1 
SWS 1.3 2.8 4.4 1.1 2.4 3.8 1.0 2.2 3.6 1.0-4.4 
WA 1.3 2.8 4.6 1.2 2.5 4.1 1.0 2.2 3.7 1.0-4.6 
WM 1.4 2.9 4.8 1.2 2.6 4.4 1.0 2.3 3.9 1.0-4.8 
YH 1.2 2.6 4.4 1.1 2.3 3.9 0.9 2.2 3.6 0.9-4.4 
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Figure 4-1a: Summer mean (left) and annual (right) precipitation in the UK for the  
baseline period (1961-1990). Figure taken from Jenkins et al. (2008). 

 

 
Figure 4-1b: Summer mean (left) and maximum (right) temperatures in the UK for the  
baseline period (1961-1990). Figure taken from Jenkins et al. (2008). 
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Globally, barley (Hordeum vulgare L.) is the 4th most important cereal crop (in 

terms of quantity of grain produced) with a wide spatial distribution due to its tolerance of 

a wide range of growing conditions (Newton et al. 2011). About 53% of barley grains 

produced globally is used as feed for animals; the remainder goes into malting and, to a 

lesser extent, food for human consumption (Newton et al., 2011). The straw is also used as 

animal bedding and feed. In the UK, where cereals cover 50% of cultivated land, barley is 

the second most important arable crop after wheat and the number one crop in Scotland in 

terms of area cultivated and quantity produced (Defra, 2011). In 2011, barley production 

occupied 970,000 ha of cultivated land in the UK, with a national production of 5.5 

million tonnes at a value of £860 million, excluding contributions from the barley-based 

industrial and commercial sectors (Defra, 2011). Current UK average yield (2000–2010) is 

approximately 5.3 tons ha-1. Over 60% of barley produced in the UK is used as animal 

feed while a little over 30% is used in the malting industry (Defra, 2011). Premium 

whiskey and malt barley production confers a cultural significance to barley in the UK. 

Thus, barley production is economically, politically and socio-culturally important to the 

UK.  

Projected climate change presents both opportunities and threats to barley 

production in all countries where it is grown. In northern temperate environments such as 

the UK, elevated atmospheric CO2, together with moderate warming and adequate soil 

water supply, is likely to be beneficial to C3 cereal crops such as barley (Rötter et al., 

2011; DaMatta et al., 2010; Richter & Semenov, 2005; Fuhrer, 2003). Such conditions 

could increase photosynthetic capacity through radiation and water use efficiency and 

thereby increase biomass production and harvest index of barley (Claesson & Nycander 
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2013; Clausen et al., 2011; Robredo et al., 2011; 2007; Wall et al. 2011; Manderscheid et 

al., 2009; Barnabàs et al., 2008; Richter & Semenov, 2005; Holden et al., 2003; 

Fangmeier et al., 2000; Sæbø & Mortensen, 1996). Conversely, projected climate change 

also threatens to escalate abiotic stresses in barley production. Barley, like all cereals, is 

particularly sensitive to soil water dynamics and temperature around establishment, 

anthesis and grain filling (Anjum et al., 2011a; Semenov & Shewry, 2011).  Barley is 

widely known as being moderately tolerant to soil water deficits due to its capacity for 

osmotic adjustment and recovery from short-term water stress (González & Ayerbe, 2011; 

González et al., 1999; Shone & Flood 1983). However, it is also sensitive to anoxic 

conditions (caused by waterlogging) and heat stress, and compensates poorly for reduced 

tillering at early stages. Projected warming and frequent heat waves, in combination with 

reductions and greater spatio-temporal variability in precipitation can potentially increase 

the evaporative demand of the atmosphere, rapidly dry soils and cause heat stress in 

barley, resulting in reduced biomass production and grain yield (Rötter et al., 2011; 

Semenov & Shewry, 2011; Richter & Semenov, 2005). Holden et al. (2003) reported that 

even though barley production will remain viable in Ireland, water deficits within the 

growing season in some years in the 2050s could cause reductions in grain yield of up to 

4.5 t ha-1. Warmer conditions can also significantly hasten phenophases and senescence of 

barley and thereby reduce harvest index (Semenov & Shewry, 2011; Ainsworth & Rogers, 

2007).  Clearly, regardless of the magnitude, the projected climate change has implications 

for barley production in the UK. Yet, in spite of the importance of barley to the UK 

economy, there is scant information on the possible effects of projected climate change on 

barley yields in the UK and much less at a more detailed scale of administrative regions. 
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Such information is relevant for planning adaptation through breeding, agronomic 

adjustments, policy design and management decisions. Therefore, the objective of this 

chapter is to simulate (using the AquaCrop model) the effect of projected climate change 

on barley yields across 14 UK administrative regions in the 2030s, 2040s and 2050s. 

4.2 Materials and Methods   

4.2.1 Data Sources 

4.2.1.1 Climate Data 

Two main approaches are used to obtain a numerical description of future climatic 

variables required to model the effect of climate change on crop yields (Roudier et al. 

2011). In the first approach, assumptions about uniform increase or decrease (e.g., 2 % 

decrease and 1 ºC increase in precipitation and temperature respectively) are applied to the 

baseline climate data to obtain the climate variables of a given future time slice. While this 

is easy to compute, the main disadvantage is that the fundamental physical relationships 

among the future climate variables are not preserved (Roudier et al. 2011). The second 

approach employs radiative forcing (based on scenarios of greenhouse gas emissions) 

using an ensemble of Global Climate Models (GCMs) to generate future climate variables. 

This is now the most widely used approach in climate change studies (Roudier et al. 

2011). To enable consistency in the use of this approach, the Intergovernmental Panel on 

Climate Change (IPCC) has defined four main families of emission scenarios that, as 

captured in the Special Report on Emission Scenarios (SRES), are narratives of potential 
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trajectories of greenhouse gas (GHG) emissions as a result of certain assumptions on 

different socio-economic conditions and development pathways over the course of the 

21st century (Nakićenović & Swart, 2000). The four main emission scenario families are 

termed A1, A2, B1 and B2. Each emission scenario narrative, however, has subdivisions. 

Future climate variables generated from GCMs can be downscaled to regional levels using 

Regional Climate Models (RCMs). The main advantage of this approach is that it is 

physically-based and therefore the sets of future climate variables generated are physically 

consistent (Hawkins & Sutton, 2011; 2009; Roudier et al., 2011; Holden et al., 2003).  

The UKCP09 is a publicly accessible online database that provides data on 

projected climate change (relative to a baseline period of 1961-1990) over the UK 

(Murphy et al., 2009). The UKCP09 is based on the radiative forcing of GCMs to generate 

future climate variables. The UKCP09 incorporates three SRES emission scenarios (A1FI, 

A1B, and B1; otherwise known as high, medium and low emission scenarios, 

respectively). Generally, the A1 narrative represents a future world characterized by very 

rapid economic growth, rapid availability of new and efficient technologies, fast decline in 

regional economic disparities and with global population peaking at 8.7 billion in 2050 

and declining thereafter to 7.1 billion by the end of this century. The three subdivisions in 

the A1 narrative represent intensive use of fossil fuels (A1FI), intensive use of non-fossil 

energy sources (A1T) and an intermediate situation (A1B). On the other hand, the B1 

narrative portrays a future world inclined towards global equity and sustainable solutions 

to economic, social and environmental challenges. It also assumes rapid structural shifts 

towards service and information oriented economies, as well as clean and efficient 
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technologies with less intensive material use. The B1 narrative has the same population 

scenario as the A1 narrative (Nakićenović & Swart, 2000).  

The projected climate change data in the UKCP09 has a grid resolution of 25 km 

and are averaged over seven overlapping 30-year time periods or time slices (Murphy et 

al., 2009). Probabilities (indicative of the extent to which each climate outcome is backed 

by current evidence) are attached to the different levels of the UKCP09 projections to 

minimize uncertainties. It is noteworthy that probabilities cannot be assigned to emission 

scenarios themselves (Murphy et al., 2009). In this study, future climate variables for the 

three emission scenarios and three time slices (30-year means centered on the 2030s, 

2040s and 2050s) were obtained from the UKCP09 database for each of the 14 UK 

regions (see Appendix 1). The time slices ended at 2050 because global population is 

projected to reach a peak by mid-century and decline thereafter (UN, 2004), meaning 

increase in demand for food and other resources will be highest in the first half of the 

century. The uncertainties associated with climate change projections and their impacts 

are much higher beyond 2050 (Murphy et al., 2009; IPCC, 2007; Corfee-Morlot & Höhne, 

2003). Prior commitment of  GHGs and current trends in emissions to the atmosphere 

suggest that the full effects of mitigation (stabilization) measures might not be realized 

before the 2050s due to transient climate change before an equilibrium climate is attained 

(IPCC, 2007; Corfee-Morlot & Höhne, 2003). These, together with the high cost of 

adaptation, render adaptation measures less motivating beyond 2050 (World Bank, 2010; 

Adger et al., 2007). The current study did not consider a ‘future without climate change’ 

scenario. This is because it is difficult to imagine a future without climate change 

considering, as stated earlier, the medium-term warming effect of GHGs already emitted 
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to the atmosphere, the current rate of GHG emissions, and the observed climate change 

due to anthropogenic activities (IPCC, 2007; 2013; Alexandratos & Bruinsma, 2012; 

Corfee-Morlot & Höhne, 2003). 

The Weather Generator (WG, version 2, Jones et al., 2009) embedded in the 

UKCP09 was used to generate future daily climate variables for the simulations. The WG 

randomly samples a specified number of model variants from the probabilistic projections 

and uses a stochastic process to generate statistically credible future climate variables at 5 

km grid resolution at daily or hourly scales (Jones et al., 2009).The WG preserves the 

internal consistency among the variables and inherits the statistical properties of the 

underlying probabilistic projections (Jones et al., 2009). For each emissions scenario, time 

slice and region, daily data on weather variables were generated by submitting a new 

request for standard WG variables at the UKCP09 user interface 

(http://ukclimateprojections-ui.defra.gov.uk/ui/start/start.php). For each request, 40 

contiguous cells (maximum allowed) were selected in the region of interest based on the 

arable areas in the UK land cover map (LCM2007, Centre for Ecology and Hydrology). 

Since cereals (mainly wheat and barley) account for 50% of cultivated land and are the 

most widely distributed arable crops in the UK, it was assumed that selection of cells of 

arable areas is likely to coincide with an area of cereal production. The duration of each 

WG run was 30 years and 100 random samples were requested from the 10,000 randomly 

sampled model variants. The result was 100 climate data files generated for each request, 

each file containing a variant of the future climate data. The weather data required for the 

simulations (minimum and maximum temperature, precipitation and reference 

evapotranspiration) were extracted from the downloaded WG data into separate text files 
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using a Python code (programming language). This resulted in 300 files per time slice, 

emission scenario and region. These files were then formatted to make them readable or 

usable for the simulations.  

The use of the WG was necessitated by practical considerations. First, simulations 

of crop yield response to climate change are sensitive to the temporal changes of weather 

variables which fluctuate greatly and rapidly within hours and days (Brouwer & van 

Ittersum, 2010; Raes et al., 2009; Todorovic et al., 2009). Hence, data at a finer spatio-

temporal resolution minimizes errors in predicted yields. While the UKCP09 probabilistic 

projections are averaged over monthly, seasonal and annual scales, the WG uses a 

stochastic process to generate statistically credible future climate variables at spatial and 

temporal resolutions appropriate for crop growth simulations (Jones et al., 2009). Second, 

the probabilistic projections are suitable when assessing an impact of interest that is 

triggered in a given system when a particular climatic threshold is exceeded (Jones et al., 

2009; Murphy et al., 2009). Hence, the probabilistic projections were not compatible with 

the objective of this study as the study is not aimed at assessing climate change effect on 

yields when specific climatic thresholds are exceeded or not exceeded. Moreover, using 

the probabilistic projections would have resulted in complicated analysis, more work and 

uncertainties to deal with than time and resources would permit. The structure of the 

UKCP09 WG, how it works and its advantages and limitations are presented by Jones et 

al. (2009). Similar studies used weather generators to obtain synthetic future daily weather 

variables (e.g. Meza et al. 2008; Abraha and Savage, 2006; Richter & Semenov 2005; 

Holden et al. 2003; Guereña et al. 2001). 
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The projected atmospheric CO2 concentrations files for the medium (A1B), low 

(B1), A2 and B2 emission scenarios were available in AquaCrop (Raes et al., 2009). The 

projected atmospheric CO2 concentration file for the high (A1FI) emission scenario was 

created using data from the IPCC data distribution centre (http://www.ipcc-

data.org/ancilliary/tar-isam.txt) (see Figure 4-2).  

4.2.1.2 Soil Data 

Detailed soil data for the UK (1:250,000 HOST data) were available but not free. 

The fact that Scotland uses a different soil classification system (described as 

“typological”) from England and Wales (which are “hierarchical”) also complicate soil 

data integration. Hence, soil hydraulic data was obtained from the Crop Growth 

 

 
Figure 4-2: Atmospheric CO2 concentrations observed at Mauna Loa from 1958-2008  
(black dashed line) and projected under 6 SRES scenarios from 2008 to 2100. Two  
carbon cycle models are used for each scenario: BERN (solid lines) and ISAM (dashed  
lines). Figure taken from IPCC Data Distribution Centre, http://www.ipcc- 
data.org/ddc_co2.html (accessed February 10, 2013). 
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Monitoring System (CGMS) database in the new Soil Information System (SINFO), 

which is part of the Monitoring Agriculture with Remote Sensing (MARS) Crop Yield 

Forecasting System (MCYFS) for the European Union (Baruth et al., 2006). It is worth 

mentioning that, for mapping purposes, soil classification relies on spatially coherent, 

homogenous soil groups that are recognizable within the landscape. Since soils show 

continuous variation, the scale of mapping profoundly influences the classification scheme 

used to produce a soil map (Nussbaum et al., 2011). At a coarse resolution, therefore, each 

map unit (i.e. polygon on the final map) will normally contain more than one type of soil 

that might have different properties.  

The SINFO database has a scale of 1:1,000,000. In this database, Europe is divided 

into Soil Mapping Unit (SMU) polygons. Each SMU is made up of several Soil 

Typological Units (STUs) with attributes describing the properties of the soils. Soil 

texture and bulk density are the key physical properties used in determining the water 

retention properties of the soils. The potential rooting depth and soil water retention 

properties are mainly used to define the hydraulic properties of the soil groups used in 

crop modeling in the CGMS. For each soil physical group, available water capacity 

(AWC, a static soil characteristic which indicates the amount of water that can be held 

between field capacity and wilting point per unit rooting depth) is defined (Baruth et al., 

2006). The product of AWC and rooting depth gives the maximum available water a soil 

can supply to a plant. 

The SINFO data was imported in ArcGIS version 9.1 (ESRI™, USA) for further 

processing. The UK was clipped from the map. The attribute tables in the CGMS database 

were joined based on common fields. The soil polygon attribute table was joined to the 



115 

soil typological unit (STU) table via the common field ‘smu no.’ The resulting table was 

in turn joined to the soil physical group table via the common field ‘soil group no.’ to 

build one attribute table that contains all the attributes for the soil polygons. This map, 

together with its attribute table, was exported to represent the UK soils. The UK had 5 soil 

texture classes out of the 8 main classes in the CGMS, with the dominant textural class 

being ‘medium’.  

The UK soils map was then intersected with the UK regions map to obtain the 

distribution of soil in each region. Because soil hydraulic properties in the CGMS were 

derived mainly from texture and bulk density, the selection of dominant soil in arable 

areas was also based on the soil texture. For each region, the most widely spatially 

distributed soil was taken as the dominant soil and the weighted averages of the attributes 

of the dominant soil polygons were taken as representative hydraulic properties of the soil 

for that region (Table 4-2). Where peat was dominant, the next dominant soil was used. 

Table 4-2: Soil hydraulic properties from the SINFO database used in the simulations.  
Data taken from the SINFO database (Baruth et al., 2006).   

Admin. 
Sub-region 

Dominant 
Soil  

θsat θpwp θfc Rooting Depth 
(m)  

θasw  
(mm/m)  

EE Medium 0.42 0.18 0.33 7 150 
EM Fine 0.49 0.29 0.43 6.8 140 
NI Medium 0.41 0.16 0.31 6.6 150 

NEE  Medium 0.42 0.18 0.34 6.6 160 
NES  Medium 0.41 0.15 0.30 6.1 150 
NWE  Medium  0.43 0.19 0.34 6.4 150 
NWS  Medium 0.40 0.15 0.29 7.0 140 
SEE  Medium fine 0.55 0.14 0.49 5.9 350 
SES  Medium  0.41 0.15 0.32 6.2 170 
SWE Medium fine 0.58 0.15 0.50 4.4 350 
SWS Medium  0.41 0.15 0.31 6.4 160 
WA Medium  0.45 0.22 0.37 6.9 150 
WM Medium  0.45 0.22 0.37 6.7 150 
YH Medium  0.43 0.19 0.35 6.5 160 

Key: θsat is saturated water content; θpwp is water content at permanent wilting point;  
θfc is water content at field capacity; θasw is total available soil water. 
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The soil data was used to create the required soil files in AquaCrop. AquaCrop-

generated values for drainage characteristics such as drainage coefficient (tau), saturated 

hydraulic conductivity and curve number for surface runoff using the input values of 

saturated water content, field capacity and permanent wilting point, were used. It is 

recognized that saturated hydraulic conductivity is highly variable in space and time. 

However, due to lack of data, these AquaCrop-generated drainage characteristic values 

were used in the simulations to estimate water losses to drainage or potential groundwater 

recharge. 

4.2.1.3 Crop Data  

The crop file was created using information for the genotype ‘Westminster’. The 

HGCA Recommended List shows that the genotype ‘Westminster’ is widely grown in the 

UK both as spring and winter barley crop, feed and malt barley and is high-yielding.  The 

model parameters were based mainly on the calibration reported previously (see Chapter 

3) and information from Raes et al. (2012), and personal communications with scientists 

at The James Hutton Institute, Dundee. Thermal time information not available in the crop 

parameters in Chapter 3 are reported here (Table 4-3). 
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Average barley yields for the baseline period (1961-1990) were obtained from the 

respective National Agricultural Statistics Departments. In some cases, yields were 

reported as 100 weight acre-1 (cwt acre-1) and these were converted to tons ha-1. For 

England, the regional yield data were available for the period 1999 to 2010.  However, 

UK national average yield data for the baseline period (1961-1990) were available. 

Therefore, regression equations (4th order polynomial) were developed using the sub-

regional and UK yields as dependent and independent variables respectively for 1999 to 

2010. While good R2 values were obtained, these equations could not satisfactorily predict 

the regional yields for the baseline period. Consequently, averages of the differences 

between the UK and each English regional yield (1999-2010) were computed.  The 

averages were then subtracted from the UK baseline yield for each year to obtain the 

baseline yields for English regions. Northern Ireland had two blocks of missing data in the 

Table 4-3: Crop parameters in growing degree days (GDD). 

Symbol Description Value 
Threshold air temperatures  

Tbase Base temperature (ºC) 0 
Tupper Upper temperature (ºC) 18 

Development of green canopy cover  
 Time from sowing to emergence (GDD) 135 

CGC Canopy growth coefficient (fraction per GDD) 0.813 
 Time from sowing to start senescence (GDD) 1315 

CDC Canopy decline coefficient (fraction per GDD) 0.602 
 Time from sowing to maturity 1675 

Flowering  
 Time from sowing to flowering (GDD) 950 
 Length of flowering stage (GDD) 215 

Air temperature stress  
 Minimum air temperature below which 

pollination starts to fail (cold stress,  ºC)  
5 

 Maximum air temperature above which 
pollination starts to fail (heat stress,  ºC) 

30 

 Minimum growing degrees required for  full 
biomass production ( ºC - day) 

15 
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baseline yield data (from 1961 to 1966 and from 1974 to 1980). The missing data were 

filled using the same approach as for the English regions. 

The search for an appropriate sowing date for each UK region was restricted to the 

range of optimum sowing period (±1 week) recommended by the (HGCA) 

(http://www.hgca.com/publications/documents/cropresearch/spring_barley.pdf). The 

HGCA indicates that the optimum sowing dates for spring barley ranges from late January 

to end February in the south and east of England and from late February to the end of 

March in Scotland. The HGCA warns that sowing outside the optimum period can result 

in grain quality impairment and yield losses of up to 30-50 kg ha-1 day-1.  

To obtain the sowing date for each region, the AquaCrop model was forced to the 

1990 regional yields by changing only the sowing date until the simulated yield 

approximated the observed yield. The first date that gave the closest match between the 

simulated and observed yields was selected as the sowing date for that particular region. It 

is noteworthy that the sowing date so obtained could differ substantially in practice as the 

phenology of the crop is assumed to be the same for all the regions. However, it is 

assumed that, during the simulations, differences in phenology will largely depend on the 

respective weather conditions and the speed with which the required total thermal time is 

accumulated. To compensate for yield increase due to, for example, genetic improvement, 

the reference harvest index (HIo) was reduced to 0.46 when the model was being forced to 

the 1990 baseline. This is because using a HIo of 0.49 gave yields substantially higher 

than the actual yields. The HIo was restored to 0.49 for the climate change simulations. To 

test or validate the goodness of the sowing dates and the model setup, the prediction error 

of the model was assessed by comparing simulated and observed yields for the baseline 
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period (1980-1989) using the root mean square error (RMSE).  It is noteworthy that the 

regional average yields are a mix of different genotypes under different management 

practices and it was not always clear if they represented only spring barley yields or both 

winter and spring barley yields. This is a likely confounding factor to the simulated yields.  

4.2.1.4 Simulations Using AquaCrop  

Once the sowing dates had been established, simulations of future yields were 

performed. All simulations were made for rain-fed conditions (i.e. irrigation was not 

considered), using AquaCrop version 4.0. For all simulations, no field management was 

specified, fertility stress was not considered and the initial soil water content was set to 

field capacity. Multiple run project (.PRM) files were created in AquaCrop for each 

region, time slice and emission scenario with the relevant climate, soil, and crop files. 

Thus, for each region, time slice and emission scenario, 100 multiple run project files were 

created, representing the 100 climate model variants. The multiple run project files (100 at 

a time) were transferred to the AquaCrop plug-in program version 3.1+ (Raes et al. 2009) 

in which the simulations were executed. 

4.2.2 Data Analysis 

The output text files of the simulations for each of the 100 model variants for each 

region, time slice and emission scenario were imported singly to separate worksheets in a 

Microsoft Excel 2010 workbook. Mean values of the model output variables were then 

generated for each of the 30 years in a given time slice, emission scenario and region. 
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Descriptive statistics and percentiles were then generated for that particular time slice, 

using the Data Analysis tool. Descriptive statistics and percentiles were also generated for 

the baseline yield. Differences between the baseline yields and the simulated yields were 

calculated for time slices and emission scenarios.  

Relationships between simulated yields and rainfall and CO2 were explored using 

scatterplots fitted with linear regression trend-lines. Where necessary, points that were 

clearly isolated from the dense cluster of the data points were treated as outliers and 

removed if doing this improved the explanatory power (R2) of the relationship 

substantially. In all such cases, not more than four points (out of 30) were removed. Thus, 

if there were more than four isolated points, they were not removed regardless of the 

magnitude of improvement in the R2. In most cases, however, a maximum of three points 

were removed.  

The projected virtual water content (VWC, m3 ton-1) of simulated UK barley grains 

was calculated as: 

�*� = ��. ���,�-.�         Equation 4-1 

Where ETc is the total crop water use (mm); and 10 is a scalar to ensure consistent 

units (Chatterton et al., 2010). The averages of simulated water use and yields of barley 

for the 14 UK regions were calculated for the high, medium and low emissions scenarios 

(HES, MES and LES, respectively) and for the 2030s, 2040s and 2050s. 
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4.3 Results 

4.3.1 Sowing Dates and Descriptive Statistics of Baseline Yield 

Sowing dates ranged from 13th February (Eastern England, EE) to 24th March 

(North West Scotland, NWS) (Table 4-4) which was within the HGCA recommended 

window (see Appendix 1 for a map of the 14 UK regions). The observed and simulated 

yields for 1990 ranged from 4.52 to 5.72 and 4.00 to 5.51 respectively. The differences 

between the observed and simulated yields ranged between ± 0.14 and 0.59 tons ha-1. In 

absolute terms, South East England (SEE) showed the least difference between the 

observed and simulated yields. The RMSE values for the baseline period 1980-1989 

(Table 4-4) ranged from 0.44 (EE) to 1.15 tons ha-1 (WA) and 0.35 tons ha-1 for the UK. 

Thus, except for WA, the RMSE values for all regions were under 1 ton ha-1.  

Table 4-4: Sowing dates, differences between observed and simulated yields for 1990 (∆Y, tons 
ha-1), and root mean square error (RMSE, tons ha-1) for simulated and observed yields for 
baseline period (1980-1989). 

Region  Sowing Date Observed 
Yield (1990) 

Simulated 
Yield (1990) 

∆Y  
 

RMSE  

EE 13th February 5.32 4.73 0.59 0.44 
EM 27th February 5.32 5.22 0.10 0.79  
NI 8th March 4.53 4.23 0.30 0.66  

NEE 7th March 5.02 5.16 -0.14 0.68  
NES  9th March 5.30 5.51 -0.21 0.74 
NWE 19th February  4.52 4.00 0.52 0.74 

NWS  24th March 5.03 4.56 0.47 0.81 
SEE 24th February 5.42 5.38 0.04 0.55 
SES 9th March 5.72 5.18 0.54 0.55 
SWE 17th February 4.92 4.44 0.48 0.65 
SWS 13th March 4.87 5.17 -0.30 0.73 
WA 19th February 5.10 4.72 0.38 1.15 
WM 27th February 4.92 5.18 -0.26 0.73 
YH 27th February  5.32 4.90 0.42 0.78 
UK - 5.22 4.88 0.34 0.35 
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Mean yields for the baseline period (1961-1990) ranged from 3.66 (NI) to 4.57 

(SES) tons ha-1, with a UK average of 4.24 tons ha-1 (Table 4-5). Six regions had mean 

yields higher than the UK mean yield. Only NI, NWE, SWE and WM had mean yields 

just under 4.0 tons ha-1. The SEE and SES show the highest 90th percentiles (5.24 tons ha-

1) while NWE shows the lowest 10th percentile (2.88 tons ha-1). The mean yields

generally show a marginal increase from west to east and from south to north. Overall, 

the baseline yields are not widely dispersed from their respective mean values and the 

differences between regional yields are not substantial (Table 4-5). For all the regions, 

except SWS, the yields are positively skewed but the low skewness values indicate that 

few yield values exceed their respective mean yield values. There is low temporal 

variation in the baseline yields for all regions and the UK, suggesting yield stability over 

time (Figure 4-3). The baseline yields also tend to show an increasing trend over time.  

Table 4-5: Descriptive statistics of observed yields for the baseline period (1961-1990). 

Statistic Mean Max. 
90th 
Perc. Median 

10th 
Perc. Min. 

Std. 
Error  

Std. 
Dev. Skewness 

EE 4.34 5.69 5.14 4.20 3.68 3.45 0.11 0.60 0.54 
EM 4.34 5.69 5.14 4.20 3.68 3.45 0.11 0.60 0.54 
NI 3.66 4.80 4.53 3.51 3.20 2.91 0.09 0.51 0.75 

NEE 4.04 5.39 4.84 3.90 3.38 3.15 0.11 0.60 0.54 
NES 4.19 5.43 5.04 4.15 3.40 3.10 0.12 0.64 0.17 
NWE 3.54 4.89 4.34 3.40 2.88 2.65 0.11 0.60 0.54 
NWS 4.28 5.70 5.01 4.27 3.50 3.00 0.11 0.60 0.06 
SEE 4.44 5.79 5.24 4.30 3.78 3.55 0.11 0.60 0.54 
SES 4.57 5.72 5.24 4.62 4.00 3.60 0.10 0.56 0.18 

SWE 3.94 5.29 4.74 3.80 3.28 3.05 0.11 0.60 0.54 
SWS 4.03 4.99 4.86 4.14 3.22 2.70 0.11 0.62 -0.35 
WAL 4.00 5.20 4.90 3.95 3.40 3.10 0.10 0.58 0.51 
WM 3.94 5.29 4.74 3.80 3.28 3.05 0.11 0.60 0.54 
YH 4.34 5.69 5.14 4.20 3.68 3.45 0.11 0.60 0.54 
UK  4.24 5.59 5.04 4.10 3.58 3.35 0.11 0.60 0.54 

Note: Max., Min. are maximum and minimum respectively; Perc. is percentile; Std. is standard. 
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4.3.2 Simulated Cumulative Seasonal Rainfall and Drainage 

Under the low emission scenario (LES), simulated mean cumulative seasonal 

rainfall increased slightly from the 2030s to 2050s for EE, EM, and NEE but the 

difference was clearer between the 2050s and the other time slices (Figure 4-4A). Only 

NWE experienced a decrease in rainfall from the 2030s to 2050s. For the rest of the 

regions, there was no clear pattern but in the majority of cases, rainfall in the 2030s tended 

to be highest while rainfall in the 2040s was lowest. Overall, EE, EM, SEE, WM and YH 

had the lowest mean seasonal rainfall values across all time slices. The NWS had 

 

 

 
 

 
Figure 4-3: Temporal profile of observed yields for the baseline period (1961-1990). The  
trend-line is based on UK average. 
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extremely high seasonal rainfall values in the 2030s and 2040s compared to the other 

regions, probably due to an error from the GCMs or RCMs during the downscaling 

process in the UKCP09. For the UK, mean seasonal rainfall decreased from the 2030s to 

2050s. Mean total rainfall ranged from approximately 229.7 mm year-1 (EM) to 607.8 mm 

year-1 (NWS) for the 2030s, 232.4 (EM) to 704.1 mm year-1 (NWS) for the 2040s and 

243.6 (EE) to 443.0 mm year-1 (SWS) for the 2050s.  

With the medium emission scenario (MES), there was a tendency towards 

decreasing rainfall from the 2030s to 2050s for some regions (EE, EM, NEE, NES, NI and 

SWS; Figure 4-4B). Generally, there was no substantial variation in mean seasonal rainfall 

across the time slices for the regions except that in few cases rainfall in the 2040s tended 

to be higher. Mean seasonal rainfall ranged from 240.1 (EE) to 429.4 mm year-1 (SWS) 

for the 2030s, 243.7 (EE) to 429.7 mm year-1 (SWS) for the 2040s and 234.3 (EE) to 

416.3 mm year-1 (SWS) for the 2050s.  
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Figure 4-4: Simulated total seasonal rainfall for UK regions under (A) Low Emission  
Scenario, (B) Medium Emission Scenario and (C) High Emission Scenario. Error  
bars are standard errors.  
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For the high emission scenario (HES), there was no clear pattern across the time 

slices (Figure 4-4C). Except for NWE which had very low seasonal rainfall in 2040 

(again, probably due to an error from the GCMs or RCMs during the downscaling process 

in the UKCP09), there was little variation in the seasonal rainfall across the time slices for 

the regions. Just as in the other emission scenarios, highest mean seasonal rainfall values 

occured in Scottish regions, NI, NWE, SWE and WA. Mean seasonal rainfall ranged from 

243.2 (EE) to 434.5 mm year-1 (SWS) for 2030s, 156.8 (NWE) to 442.8 mm year-1 (WA) 

for the 2040s and 241.4 (EE) to 453.1 mm year-1 (SWS) in the 2050s.  

Thus, apart from the extremely high values in the 2030s and 2040s for NWS 

(Figure 4-4A) and extremely low value for NWE in 2040 (Figure 4-4C), changes in mean 

seasonal rainfall between emission scenarios or time slices were not substantial. However, 

there were obviously substantial variations in regional seasonal rainfall, with higher values 

generally in the western half of the UK.  For the LES, cumulative seasonal rainfall showed 

little temporal variation across the time slices, but variability increased slightly in the 

2050s (Appendix 2A). This pattern of slightly increased variability across time was 

observed in all the time slices for the MES (Appendix 2B) and the HES (Appendix 2C). 

However, intra-seasonal variations in rainfall could be high. 
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Figure 4-5:  Simulated seasonal drainage losses for UK sub-regions in the 2030s, 2040s   
and the 2050s. 
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The pattern of seasonal water losses to drainage was similar to the seasonal rainfall 

across the regions, emission scenarios and time slices. Drainage losses were highest under 

the LES across all time slices with few exceptions (Figure 4-5). For the UK, however, 

drainage losses decreased slightly from the LES to the HES and from 2030s to 2050s. For 

the 2030s, seasonal drainage ranged from approximately 48 (EE) to 320 mm year-1 (NWS) 

for the LES, 41 (EE) to 192 mm year-1 (SWS) for the MES, and 41 (EE) to 194 mm year-1 

(SWS) for the HES respectively. In the 2040s, seasonal drainage ranges between 

approximately 49 (EE) and 383 mm year-1 (NWS) for the LES, 42 (EE) to 192 mm year-1 

(SWS) for MES, and 39 (EE) to 196 mm year-1 (SWS) for the HES. In the 2050s, drainage 

ranges from 42 (EE) to 207 mm year-1 (SWS) for the LES, 38 (EE) to 182 mm year-1 

(SWS) for the MES and 42 (EE) to 208 mm year-1 (SWS) for the HES. The regions with 

lowest drainage for all time slices and emission scenarios were EE, EM, SEE, WM and 

YH. The extremely high cumulative drainage for NWS in the 2030s and 2040s arises from 

the high seasonal rainfall observed under LES in those time slices (Figure 4-4A). 

4.3.3 Simulated Barley Yields 

In the 2030s, projected regional mean yield values for the LES ranged from 5.87 

(EM) to 6.20 tons ha-1 (SWE) and 6.04 tons ha-1 for UK (Figure 4-6). Only EE, EM and 

YH had mean yields under 6.0 tons ha-1. Projected median yields ranged between 5.88 to 

6.16 tons -1 (Table 4-6). The 90th and 10th percentile yield values ranged from 6.16 to 6.57 

tons ha-1 and 5.61 to 5.93 tons ha-1 respectively. The 90th and 10th percentiles of yield for 

the UK were 6.45 and 5.71 tons ha-1 respectively. Projected mean yields of nine regions 
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and the UK were positively skewed. Under the MES, projected mean yields ranged 

between 5.94 (NWE) and 6.96 tons ha-1 (SEE), and 6.46 tons ha-1 for the UK. Only EE, 

NWE and WA had mean yields just under 6.0 tons ha-1. The projected median yields 

ranged from 6.34 to 6.96 tons ha-1, while the 90th and 10th percentile of yields ranged from 

7.15 to 7.59 tons ha-1 and 3.01 to 6.40 tons ha-1 respectively. For the UK, the 90th and 10th 

percentile were respectively 7.39 and 6.74 tons ha-1. Under the HES, projected mean 

yields ranged from 5.36 (WA) to 7.10 tons ha-1 (SEE), with a 6.53 tons ha-1 for the UK. 

Only SEE had mean yield over 7.00 tons ha-1 (Figure 4-6). The projected median yield 

values ranged from 5.94 to 6.99 tons ha-1 (Table 4-6). The 90th and 10th percentile yield 

values ranged from 6.90 to 7.83 tons ha-1 and 2.81 to 6.61 tons ha-1. Unlike the LES, the 

yield values under the MES and HES for all regions (except for NWS under the HES) 

were negatively skewed. As indicated by the standard error and deviation values, there 

was little variability in yields within model variants and across the regions.  

 

 
Figure 4-6: Simulated yields of UK regions in the 2030s under the LES, MES and  
HES. Error bars are standard errors. 
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In the 2040s, projected mean yield values under the LES for all regions ranged 

from 6.08 (EM) to 6.41 tons ha-1 (SWE), with 6.24 tons ha-1 for the UK (Figure 4-7). The 

projected median yield values ranged from 6.08 to 6.34 tons ha-1 (Table 4-7). The 90th and 

10th percentile yield values ranged from 6.28 to 6.74 tons ha-1 and 5.77 to 6.17 tons ha-1 

respectively. The yields for EE, EM, NES, NWS and WM were negatively skewed while 

Table 4-6: Descriptive statistics of simulated barley yields in the 2030s under the LES, MES and 
HES. 

 
Key: 90th and 10th are 90th and 10th percentiles respectively. 

EE EM NEE NES NI NWE NWS SEE SES SWE SWS WA WM YH UK
Statistic
Mean 5.92 5.87 6.01 6.04 6.12 6.03 6.13 6.11 6.00 6.20 6.05 6.11 6.01 5.99 6.04

Std. Error 0.04 0.04 0.06 0.06 0.06 0.06 0.06 0.05 0.07 0.04 0.07 0.04 0.04 0.05 0.05

Std. Dev. 0.21 0.23 0.31 0.33 0.32 0.32 0.32 0.25 0.36 0.23 0.37 0.24 0.23 0.26 0.27

Median 5.91 5.88 5.96 6.00 6.04 6.01 6.16 6.07 6.00 6.16 6.05 6.07 5.98 5.96 6.01

90th 6.16 6.16 6.49 6.54 6.57 6.48 6.54 6.45 6.52 6.49 6.57 6.50 6.32 6.35 6.45

10th 5.76 5.68 5.66 5.70 5.74 5.67 5.76 5.80 5.61 5.93 5.65 5.86 5.77 5.69 5.71

Skewness -0.83 -1.15 0.09 -0.03 0.26 0.31 -0.12 0.23 0.06 0.23 0.12 0.51 -0.03 0.19 0.22

Minimum 5.25 5.08 5.44 5.37 5.60 5.58 5.43 5.74 5.30 5.80 5.41 5.68 5.49 5.50 5.60

Maximum 6.32 6.23 6.57 6.62 6.73 6.67 6.75 6.61 6.65 6.71 6.71 6.65 6.44 6.51 6.56

Mean 5.96 6.64 6.38 6.13 6.66 5.94 6.88 6.96 6.61 6.33 6.65 5.99 6.73 6.65 6.46

Std. Error 0.24 0.12 0.24 0.29 0.17 0.26 0.07 0.10 0.18 0.23 0.23 0.25 0.13 0.13 0.19

Std. Dev 1.33 0.68 1.29 1.61 0.94 1.42 0.41 0.57 0.97 1.29 1.23 1.37 0.70 0.74 1.04

Median 6.34 6.75 6.74 6.75 6.90 6.55 6.88 6.96 6.88 6.76 6.92 6.50 6.81 6.64 6.74
90th 7.21 7.33 7.44 7.48 7.49 7.15 7.36 7.59 7.45 7.35 7.54 7.28 7.42 7.40 7.39
10th 4.30 5.88 4.73 3.01 5.37 4.01 6.40 6.40 4.89 4.79 6.32 4.02 5.97 5.98 5.15
Skewness -1.38 -1.71 -1.63 -1.32 -1.55 -1.37 -0.35 -0.89 -1.41 -2.17 -2.78 -1.33 -1.44 -1.41 -1.48
Minimum 1.93 4.16 2.66 2.58 3.79 1.86 5.90 5.46 4.33 1.54 2.29 2.05 4.39 4.24 3.37
Maximum 7.46 7.52 7.69 7.59 7.71 7.59 7.60 7.78 7.70 7.61 7.77 7.45 7.57 7.60 7.62

Mean 6.17 6.76 6.50 6.45 6.72 6.09 6.97 7.10 6.68 6.49 6.66 5.36 6.79 6.75 6.53
Std. Error 0.23 0.12 0.23 0.25 0.19 0.26 0.09 0.11 0.19 0.23 0.25 0.30 0.13 0.15 0.13
Std. Dev. 1.28 0.66 1.29 1.37 1.04 1.41 0.49 0.59 1.02 1.24 1.38 1.65 0.72 0.84 0.71
Median 6.50 6.78 6.70 6.74 6.89 6.59 6.98 6.99 6.82 6.79 6.91 5.94 6.84 6.75 6.58
90th 7.35 7.48 7.62 7.72 7.74 7.49 7.56 7.83 7.70 7.64 7.72 6.90 7.63 7.68 7.41
10th 4.36 6.06 4.93 3.78 5.22 4.29 6.40 6.61 5.03 5.14 6.14 2.81 6.08 5.89 5.79
Skewness -1.41 -1.11 -1.51 -1.28 -1.38 -1.35 0.01 -0.24 -1.19 -2.11 -2.52 -0.87 -1.41 -1.11 -0.77
Minimum 2.19 4.56 2.72 3.44 3.66 2.00 6.08 5.80 4.25 1.84 1.93 1.55 4.28 4.15 4.55
Maximum 7.68 7.76 7.91 7.94 7.96 7.79 7.93 8.07 7.92 7.96 8.01 7.62 7.76 7.91 7.56

MES

LES

HES
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the rest were positively skewed. Under the MES, projected mean yields ranged from 5.38 

(WA) to 7.21 tons ha-1 (NWS) and 6.70 tons ha-1 for the UK. Five regions (EM, NI, NWS, 

WM and YH) had mean yields just over 7.0 tons ha-1. The projected median, 90th and 10th 

percentile yield values ranged from 5.69 to 7.24 tons ha-1, 7.53 to 7.88 tons ha-1, and 2.90 

to 6.72 tons ha-1 respectively. Under the HES, projected mean yields for the regions 

ranged from 5.89 (WA) to 7.59 tons ha-1 (SEE), with a UK average yield of 7.14 tons ha-1 

(Figure 4-7). Only EE, NWE, and WA had mean yields lower than 7 tons ha-1. Projected 

median yields ranged from 6.46 to 7.57 tons ha-1, while the 90th and 10th percentile yields 

ranged from 7.45 to 8.34 tons ha-1 and 3.48 to 7.09 tons ha-1 respectively (Table 4-7). The 

90th and 10th percentiles for the UK were 7.88 and 6.44 tons ha-1 respectively. The yield 

values for all regions under both the MES and HES were negatively skewed. 

 

 
Figure 4-7: Simulated yields of UK regions in the 2040s under the LES, MES and  
HES. Error bars are standard errors. 
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In the 2050s, projected yields increase over previous time slices for all emission 

scenarios. Under the LES, mean yields for the regions ranged from 6.03 (EE) to 6.63 tons 

ha-1 (SEE), with 6.44 tons ha-1 for UK (Figure 4-8, Table 4-8). Projected median yields 

ranged from 6.24 to 6.66 tons ha-1 (Table 4-8).  The 90th and 10th percentile yield values 

ranged from 6.62 to 6.86 tons ha-1 and 4.47 and 6.44 tons ha-1, respectively. For the UK, 

 

 

Table 4-7: Descriptive statistics of simulated yields in the 2040s under the LES, MES and HES. 

 
 

EE EM NEE NES NI NWE NWS SEE SES SWE SWS WA WM YH UK
Statistic
Mean 6.12 6.08 6.21 6.24 6.32 6.24 6.35 6.35 6.19 6.41 6.21 6.31 6.20 6.19 6.24
Std. Error 0.04 0.04 0.06 0.06 0.06 0.05 0.06 0.04 0.07 0.04 0.06 0.04 0.04 0.04 0.04
Std. Dev. 0.20 0.21 0.31 0.31 0.31 0.29 0.31 0.21 0.36 0.21 0.35 0.22 0.19 0.25 0.25
Median 6.11 6.08 6.21 6.23 6.30 6.23 6.34 6.33 6.13 6.38 6.19 6.28 6.23 6.18 6.21
90th 6.35 6.28 6.66 6.70 6.74 6.61 6.74 6.60 6.70 6.65 6.70 6.60 6.44 6.51 6.58
10th 5.91 5.89 5.84 5.86 5.94 5.87 5.97 6.09 5.77 6.17 5.80 6.08 5.96 5.88 5.92
Skewness -1.12 -1.25 0.09 -0.09 0.18 0.17 -0.17 0.10 0.04 0.17 0.16 0.02 -0.31 0.03 0.13
Minimum 5.45 5.34 5.67 5.64 5.83 5.83 5.69 5.97 5.54 6.04 5.64 5.82 5.73 5.74 5.83
Maximum 6.43 6.45 6.75 6.78 6.87 6.76 6.91 6.74 6.80 6.84 6.82 6.72 6.52 6.64 6.69

Mean 6.49 7.10 6.72 6.45 7.07 6.44 7.21 6.24 6.90 6.65 6.95 5.38 7.19 7.05 6.70
Std. Error 0.23 0.09 0.23 0.29 0.15 0.25 0.07 0.25 0.19 0.25 0.24 0.32 0.09 0.12 0.20
Std. Dev. 1.25 0.47 1.24 1.60 0.81 1.36 0.38 1.38 1.03 1.38 1.30 1.73 0.48 0.65 1.08
Median 6.89 7.13 7.12 7.09 7.24 7.08 7.24 6.76 7.23 7.15 7.22 5.69 7.17 7.09 7.01
90th 7.55 7.69 7.80 7.68 7.79 7.53 7.75 7.64 7.76 7.65 7.88 7.18 7.73 7.81 7.67
10th 4.93 6.48 5.34 3.46 6.02 4.23 6.72 4.07 5.07 5.09 6.59 2.90 6.65 6.02 5.25
Skewness -1.73 -0.48 -1.62 -1.31 -1.46 -1.66 -0.19 -0.91 -1.34 -2.22 -2.72 -0.86 -0.72 -0.75 -1.28
Minimum 2.12 5.90 3.14 2.95 4.52 2.24 6.48 2.76 4.57 1.47 2.42 1.49 5.92 5.45 3.67
Maximum 7.82 7.86 7.97 7.90 8.02 7.76 7.82 8.02 8.00 7.97 8.03 7.77 7.85 7.93 7.91

Mean 6.94 7.49 7.07 7.09 7.42 6.64 7.45 7.59 7.33 7.12 7.19 5.89 7.33 7.34 7.14
Std. Error 0.23 0.09 0.24 0.24 0.17 0.25 0.09 0.11 0.15 0.21 0.24 0.30 0.11 0.12 0.12
Std. Dev. 1.24 0.50 1.32 1.33 0.91 1.36 0.51 0.62 0.80 1.14 1.30 1.64 0.60 0.68 0.64
Median 7.25 7.57 7.35 7.45 7.54 7.06 7.48 7.44 7.31 7.37 7.36 6.47 7.21 7.29 7.13
90th 7.99 8.10 8.17 8.23 8.25 7.88 8.11 8.34 8.20 8.02 8.26 7.45 8.09 8.18 7.88
10th 5.39 6.89 5.70 4.56 6.25 4.50 6.81 7.09 6.43 5.76 6.65 3.48 6.74 6.49 6.44
Skewness -1.88 -0.44 -1.54 -1.25 -1.31 -1.53 -0.04 -0.32 -0.86 -2.13 -2.46 -1.03 -0.18 -0.21 -0.70
Minimum 2.41 6.25 3.31 4.23 4.68 2.37 6.59 6.13 5.43 2.80 2.66 1.94 5.83 5.95 5.30
Maximum 8.30 8.29 8.43 8.44 8.47 8.12 8.32 8.58 8.44 8.51 8.53 8.16 8.22 8.37 8.11

LES

MES

HES
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the 90th and 10th percentiles were 6.75 and 6.10 tons ha-1 respectively. Under the MES, 

projected yields ranged from 6.44 (WA) to 7.70 tons ha-1 (SEE), with 7.24 tons ha-1 for the 

UK. Only EE, NES, NWE and WA registered mean yields slightly lower than 7 tons ha-1. 

Projected median yields ranged from 7.19 to 7.71 tons ha-1. The 90th and 10th percentile 

yields ranged from 7.68 to 8.19 tons ha-1 and 4.05 to 7.28 tons ha-1 respectively. Few 

regions (EE, EM, NWS, and WA) had 90th percentile yield values lower than 8 tons ha-1. 

Under the HES, the projected mean yields ranged from 7.49 (EE) to 8.18 tons ha-1 (SEE), 

and 7.77 tons ha-1 for the UK (Figure 4-8). Except for SEE, all regions had mean yield 

values lower than 8 tons ha-1. Projected median yields ranged from 7.75 to 8.19 tons ha-1 

(Table 4-8). The 90th percentile of the yield values ranged from 8.24 to 8.60 tons ha-1, 

while the 10th percentile ranged from 5.55 to 7.84 tons ha-1. For the UK, the 90th and 10th 

percentiles were 8.27 and 7.33 tons ha-1, respectively. For all regions and the UK, the 

yield values were negatively skewed under all emission scenarios. 

 

 
Figure 4-8:   Simulated yields of UK regions in the 2050s. 
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4.3.4 Projected Changes in Yields  

Differences in projected barley yields, relative to the yields of the baseline period 

(1961-1990), increased from the 2030s to the 2050s for all emission scenarios and regions 

except NWE in the 2030s and WA in the 2030s and 2040s (Figure 4-9).  The pattern and 

magnitude of the differences represent the trend in yields in the future time slices and 

Table 4-8: Descriptive statistics of simulated yields in the 2050s under LES, MES and HES. 

 

EE EM NEE NES NI NWE NWS SEE SES SWE SWS WA WM YH UK
Statistic
Mean 6.03 6.59 6.29 6.23 6.59 6.42 6.57 6.63 6.48 6.60 6.56 6.08 6.52 6.55 6.44
Std. Error 0.18 0.04 0.13 0.12 0.06 0.05 0.04 0.04 0.06 0.04 0.04 0.11 0.06 0.04 0.05
St .Dev. 0.97 0.21 0.69 0.67 0.31 0.30 0.20 0.20 0.34 0.22 0.22 0.60 0.32 0.22 0.26
Median 6.34 6.58 6.50 6.44 6.66 6.43 6.59 6.64 6.54 6.59 6.58 6.24 6.57 6.55 6.46
90th 6.62 6.81 6.71 6.62 6.81 6.77 6.80 6.86 6.76 6.86 6.82 6.73 6.82 6.82 6.75
10th 4.47 6.44 6.08 5.96 6.38 6.21 6.30 6.40 6.16 6.43 6.27 5.38 6.10 6.31 6.10
Skewness -2.13 -1.43 -3.75 -2.95 -3.31 -1.51 -0.38 -1.14 -2.55 -1.43 -0.54 -0.94 -2.17 -1.35 -0.77
Minimum 2.84 5.89 3.12 3.61 5.21 5.37 6.07 5.99 5.11 5.88 6.03 4.57 5.28 5.79 5.81
Maximum 6.82 6.86 6.80 6.76 6.90 6.82 6.89 6.89 6.84 6.88 6.90 6.78 6.86 6.85 6.82

Mean 6.95 7.36 7.23 6.97 7.47 6.98 7.49 7.70 7.34 7.27 7.32 6.44 7.44 7.45 7.24
Std. Error 0.21 0.09 0.19 0.26 0.13 0.23 0.08 0.08 0.15 0.21 0.22 0.28 0.11 0.10 0.17
Std. Dev. 1.15 0.50 1.02 1.41 0.72 1.24 0.41 0.44 0.83 1.14 1.18 1.51 0.60 0.57 0.91
Median 7.19 7.45 7.50 7.51 7.64 7.45 7.50 7.71 7.59 7.59 7.60 7.11 7.52 7.52 7.49
90th 7.80 7.92 8.00 8.07 8.12 8.01 7.97 8.19 8.10 8.08 8.13 7.68 8.03 8.00 8.01
10th 5.61 6.92 6.26 4.05 6.68 5.69 6.98 7.28 6.12 5.93 7.08 4.30 6.93 6.95 6.20
Skewness -2.27 -1.98 -2.09 -1.48 -1.90 -1.99 -0.88 -0.82 -1.50 -2.76 -2.98 -1.33 -1.98 -1.73 -1.83
Maximum 8.11 8.11 8.20 8.19 8.25 8.20 8.12 8.32 8.26 8.32 8.22 8.04 8.11 8.11 8.18
Minimum 2.57 5.40 3.87 3.85 4.98 2.66 6.22 6.50 5.23 2.57 2.94 2.15 5.15 5.42 4.25

Mean 7.49 7.85 7.72 7.67 7.89 7.50 7.93 8.18 7.89 7.85 7.72 7.19 7.96 7.91 7.77
Std. Error 0.20 0.08 0.17 0.17 0.13 0.22 0.06 0.07 0.12 0.17 0.22 0.24 0.09 0.10 0.09
Std. Dev. 1.11 0.43 0.94 0.95 0.74 1.19 0.33 0.39 0.63 0.92 1.20 1.31 0.47 0.53 0.49
Median 7.79 7.92 7.99 7.96 8.07 7.93 7.94 8.19 8.04 8.11 7.99 7.75 8.01 8.00 7.87
90th 8.25 8.35 8.41 8.49 8.53 8.38 8.37 8.60 8.49 8.51 8.57 8.24 8.38 8.44 8.27
10th 6.38 7.40 7.02 6.03 7.01 6.50 7.44 7.84 7.06 7.09 7.42 5.55 7.52 7.48 7.33
Skewness -2.60 -1.61 -2.42 -1.51 -2.00 -2.47 -0.38 -1.22 -1.34 -3.06 -2.91 -1.69 -2.15 -1.96 -1.53
Maximum 8.53 8.50 8.54 8.62 8.68 8.59 8.43 8.73 8.67 8.71 8.70 8.48 8.51 8.47 8.37
Minimum 3.02 6.30 4.43 5.33 5.24 2.92 7.26 6.95 6.16 3.88 3.32 3.08 6.10 5.93 6.09

LES

MES

HES
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emission scenarios. Thus, yield increased for all regions from the 2030s to 2050s and 

across the emission scenarios with very few exceptions. In the 2030s, yield differences 

relative to the baseline ranged from 1.43 (SES) to 2.49 tons ha-1 (NWE) under the LES, 

1.62 (EE) to 2.79 tons ha-1 (WM) under the MES, and 1.36 (WA) to 2.86 tons ha-1 (WM) 

under the HES. For WA, however, the difference between the projected and baseline 

yields decreased from the LES to the HES. Only EE and WA had yield increases lower 

than 2 tons ha-1 for the MES and HES. For the UK, the differences between the projected 

yields in the 2030s and the baseline yields were 1.80, 2.22 and 2.29 tons ha-1 for the LES, 

MES and HES respectively.  

 

 
Figure 4-9: Increase in projected yields (tons ha-1) over baseline yields. 
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In the 2040s, differences between projected and baseline yields ranged from 1.62 

(SES) to 2.70 tons ha-1 (NWE) for the LES, 1.37 (WA) to 3.25 tons ha-1 (WM) for the 

MES, and 1.89 (WA) to 3.41 tons ha-1 (NI) for the HES, respectively. Only NI had a yield 

increase over 3 tons ha-1 while SEE and WA had yield increases lower than 2 tons ha-1 

under the MES. For the HES, only EE, SES and WA had yield increases under 3 tons ha-1. 

The average increases in yield for the UK were 2.00, 2.46 and 2.90 tons ha-1 respectively 

for the LES, MES and HES. By the 2050s, projected yield increases over the baseline 

ranged from 1.69 (EE) to 2.88 tons ha-1 (NWE) for the LES, 2.43 (WA) to 3.57 tons ha-1 

(NI) for the MES, and 3.15 (EE) to 4.05 tons ha-1 (NI) for the HES, respectively. The 

corresponding values for the UK were 2.20, 3.00 and 3.53 tons ha-1 for the LES, MES and 

HES, respectively. Only EE and SES had yield increases lower than 2 tons ha-1 for the 

LES while only NI and WM had yield increases over 4 tons ha-1 for the HES.  

For all emission scenarios and time slices (except for WA in the 2030s and 2040s), 

projected absolute increases in yields over the baseline were generally higher in the 

western half than in the eastern half of the UK, but marginally from south to north. 

However, for each emission scenario, changes in yields between time slices were not 

substantial under the LES, but were greater under the MES and HES. The difference 

between the MES and HES was not substantial and less obvious in the 2030s but became 

greater and clearer from the 2040s to 2050s.  

Temporal variations in yield for each time slice and emission scenario give 

impressions of uncertainties associated with climate change effects on yield. Compared to 

the baseline which showed yield stability, only the temporal profiles of the LES showed 

high yield stability in the 2030s and 2040s (Appendix 3A). In the 2050s, however, the 
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consistency of higher yields was disrupted by dips in yield, with some dips being deep 

(e.g. EE, NEE and NES). Under the MES, yield dips became deeper, wider or more 

frequent and affected more regions in all the time slices (Appendix 3B).  Although the 

pattern of yield dips were similar for all the time slices, the depth and width were greater 

in the 2040s compared to the other time slices. For the temporal profiles of yields under 

the HES, the pattern of yield dips within the time slices were similar to that observed for 

the MES, but the dips under the HES were comparatively greater in their depth and width 

(Appendix 3C). The depth of the yield dips was lowest in the 2050s for the HES. In all, 

the projected yields showed an increasing trend for all time slices and emissions scenarios 

(Appendix 3A – 2C). Regions that showed deep and frequent yield dips for all time slices 

were EE, NEE, NES and WA while EM, SEE, WM, and YH exhibited consistency or 

stability in yield (except that SEE became variable in the 2050s under the HES).  

4.3.5 Projected Virtual Water Content of UK Barley Grains 

The virtual water content (VWC) of future UK barley grains (average of the 14 

regions) ranged from 390 m3 ton-1 (HES) to 460 m3 ton-1 (LES) in 2050 (Figure 4-10). The 

VWC decreased from the LES to the HES and from 2030 to 2050 (due to improvement in 

crop water productivity), except for the LES where the VWC for 2030 is greater than that 

of 2040.  
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Figure 4-10: Projected virtual water content of UK barley grains 

4.3.6 Yield Relationships with Atmospheric CO2 Concentrations 

Poor relationships were found between projected yields and cumulative seasonal 

rainfall for all time slices and emission scenarios. However, in most cases, positive and 

negative relationships were observed for the eastern and western regions, respectively. 

Projected yields showed positive linear relationships with increasing atmospheric CO2 

concentration ([CO2]atm) for all time slices and emission scenarios for most regions (Table 

4-9). Projected yields in three regions (EM, WM and YH) showed a linear relationship 

with [CO2]atm for all emission scenarios and time slices. The projected yields in EE and 

WA showed a relationship with [CO2]atm only under the LES, while projected yields of 

NWE showed no relationship at all with [CO2]atm.  
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Table 4-9: Relationships between simulated yields and atmospheric CO2 concentrations. 
NB: only relationships with R2 value of 0.3 or above (p < 0.05) are reported. 

 Regression Equation Parameters R2 
2030 2040 2050 2030 2040 2050 

EE 0.007x + 2.7656a 
 

0.0054x+3.6172a 
 

- 0.552a 0.560a  

EM 0.0073x+2.5966 a 
0.0094x+2.3559b 

0.0091x+2.4642c 

0.0065x+3.0043a 

0.0084x+2.9456b 

0.0072x+3.5632c 

0.0074x+2.9537a 

0.0057x+4.2782b 

0.0055x+4.6102c 
 

0.487a 

0.542b 

0.586c 

0.434a 

0.726b 

0.584c 

0.716a 

0.350b 

0.417c 

NEE 0.0135x+0.4505b 0.0109x+1.6565b 0.0084x+2.2665a 

0.0088x+2.7064b 
0.346b 0.398b 0.399a 

0.383b 
NES 0.0119x+1.2499b 0.0104x+1.9 b 0.0061x+3.3748a 

0.0084x+3.0375b 
0.456b 0.498 b 0.373a 

0.536b 
NI 0.0113x+1.6059b 

0.0113x+1.5965c 
0.0088x+2.8598b 

0.0078x+3.3263c 
0.0066x+3.3767a 

0.0063x+4.2388b 
0.392b 

0.474c 
0.478b 

0.395c 
0.577a 

0.469b 
NWE - - - - - - 
NWS 0.096x+2.35007b 

0.0094x+2.4317c 
0.0085x+2.8652b 

0.009x+2.4824c 
0.0062x+3.4863a 

0.0064x+4.0147b 
0.596b 

0.713c 
0.621b 

0.710c 
0.411a 

0.433b 
SEE 0.0082x+2.4591a 

0.0097x+2.5139 b 

0.0097x+2.5289c 

0.007x+3.038a 

0.0083x+3.239c 
 

0.0073x+3.0614a 
0.0069x+4.0405b 

 

0.491a 

0.560b 

0.777c 

0.483a 

0.817c 
0.805a 

0.633b 

SES - 
0.0076x+3.4379 b 

- 
0.0081x+3.2625b 

0.0065x+3.9997c 

0.0067x+3.1861a 
0.0054x+4.6848b 

- 
0.477b 

- 
0.613b 

0.431c 

0.341a 

0.354b 

SWE 0.0081x+2.5758 a 

- 
0.0072x+3.0316a 

- 
0.0084x+2.8955c 

0.0074x+2.9536a 

0.0057x+4.5698b 
 

0.572 a 

- 
0.507a 

-   
0.432c 

0.589a

0.350b 

SWS - 
0.0094x+2.5674b 

0.0099x+2.2612c 

- 
0.0087x+2.9099b 

0.0083x+3.0875c 

0.0066x+3.3124a 

0.0066x+4.0012b 

0.0056x+4.7156c 

- 
0.612b 

0.736c 

- 
0.609b 

0.760c 

0.487a 

0.524b 

0.355c 
WA 0.0067x+3.0863a 

 
- - 0.390a - - 

WM  0.0073x+2.7521a 
0.0095x+2.4432b 

0.0085x+2.84 c 
 

0.006x+3.3809 a 

0.0081x+3.161b 

0.0077x+3.2612c 

0.0079x+2.6445a 

0.0071x+3.7067b 

0.0054x+4.7711c 

0.471a 

0.518b 

0.583c 

0.415 a 

0.678b 

0.606c 

0.398a 

0.543b 

0.392c 

YH 0.0069x+2.9015a 

0.0096x+2.3284b 

0.0096x+2.3611c 

0.0065x+3.1317a 

0.0086x+2.8559b 

0.0085x+2.9482c 

0.0078x+2.707a 

0.0074x+3.5562b 

0.0056x+4.6312c 

0.352a 

0.495b 

0.608c 

0.312a 

0.494b 

0.752c 

0.703a 

0.665b 

0.407c 
UK 0.0067x+3.0251 a 

0.008x+2.8622b 

0.0082x+2.74c 

0.0065x+3.1937a 

0.0067x+3.4941b 

0.007x+3.4378c 

0.0075x+2.7572a 

0.0055x+4.3859b 

0.005x+4.9272c 

0.323a 

0.349b 

0.496c 

0.303a 

0.356b 

0.532c 

0.465a 

0.316b 

0.423c 
 

Key: a, b, and c represent low, medium and high emission scenarios respectively.  
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Under the LES, variation in projected yield accounted for by increasing [CO2]atm 

for all the time slices ranged from ca. 31% (YH, 2040s) to 81% (SEE, 2050s). In most 

cases, [CO2]atm accounted for yield variations in the range of over 30% to over 50%. 

Under the MES, [CO2]atm accounted for ca. 35% to 73% of the yield variations. For the 

HES, [CO2]atm explained 36% (SWS, 2050s) to 82% (SEE, 2040s) of the variation in 

yield. For the UK, [CO2]atm explained ca. 30% to 53% of the yield variations for all 

emission scenarios and time slices, with highest values occurring under the HES. In all, 

positive relationships between projected yield and increasing [CO2]atm were observed for 

one or more time slices in 12, 11 and 8 regions under the LES, MES and HES, 

respectively.  

4.4 Discussion 

4.4.1 Sowing Dates and Model Uncertainties in Baseline Yields  

In simulating the effect of climate change on crop yields, uncertainties in the 

projected yields can arise from three main sources (Yao et al., 2011; Niu et al., 2009; 

Murphy et al., 2004; Corfee-Morlot & Höhne, 2003): (i) the projected climate data due to 

uncertainties in the emission scenarios, gaps or limitations in knowledge of the climate 

system, and uncertainty in the structure and parameters of the climate model; (ii) the  crop 

growth simulation model used due to uncertainty in the structure and parameterization of 

the simulation model, calibration and validation and crop response to climate change; and 

(iii) soil and crop input data such as soil fertility, influence of biotic stresses, crop 

genotype and sowing date. Tracking and quantifying the aggregate effect of these 
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uncertainties on simulated yields are difficult and require complex mathematical 

procedures (Yao et al., 2011). It is important, however, that model users are aware of the 

potential effect of these uncertainties on their predictions and, where possible, take 

measures to minimize it (Yao et al., 2011; Niu et al., 2009). The UKCP09 probabilistic 

projections are meant to minimize uncertainties (Murphy et al., 2009; 2008).  

Sowing date is a sensitive parameter as it affects crop phenology and therefore 

biomass production, abiotic stresses and yields (Rötter et al. 2012; 2011; Biernath et al., 

2011; Guereña et al., 2001). Sowing dates are highly variable over time and space (Rötter 

et al. 2012; 2011; Biernath et al., 2011; Holden et al., 2003). Therefore, use of actual 

sowing date is crucially important for minimizing uncertainties in simulated yields under 

climate change. However, it is difficult to accurately predict sowing dates under future 

climates. Hence, climate change studies rely on current sowing dates and adjustments are 

explored as adaptation options for future climates (Matthews et al. 2013; Rötter et al., 

2011; Wilby et al. 2010; Holden et al. 2003). Indicative sowing dates, therefore, become 

useful when data are lacking.  

In this thesis, the indicative sowing dates used were within the HGCA 

recommended sowing window (Table 4-4). For the 1990 baseline, the simulated yields 

were mostly lower than the actual yields (Table 4-4). This could be due to the reduction in 

the HIo in the simulations to compensate for the current high yields resulting from genetic 

improvement. However, for the baseline period 1980-1989, simulated yields were slightly 

higher than the observed yields in most cases. Moreover, the actual regional yields 

represent averages of yields of several genotypes, sites and management practices. Even 

though the average evens out spatio-temporal and genetic variations in regional yields, the 
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actual yield can still differ greatly from the simulated yield which is obtained at a plot-

scale. Notwithstanding, the baseline calibration and validation using indicative sowing 

dates showed acceptable error margins for the simulated yields (Table 4-4). 

Rötter et al. (2012) compared the performance of nine crop models for predicting 

the yields of spring barley grown over 44 crop seasons at 7 sites in Northern and Central 

Europe, using average sowing dates derived from experimental reports. They reported that 

the best three performing models (HERMES, MONICA and WOFOST) gave lowest 

RMSE values of 1.124, 1.128 and 1.325 tons ha-1 respectively, which are greater than the 

RMSE values reported in the current chapter (Table 4-4).  Richter & Semenov (2005) used 

the model Sirius to assess the effect of climate change on wheat yield in England and 

Wales. They reported overall RMSE of 1.14 tons ha-1. Mainuddin et al. (2011) also used 

AquaCrop to simulate climate change effects on rice yields in the Lower Mekong Basin 

using a calibration approach for sowing dates similar to the approach in the current study. 

They reported RMSE values for rain-fed rice ranging from 0.04 to 0.45 tons ha-1 (for a 

yield range of 0-7.14 tons ha-1), which are lower than but not substantially different from 

the RMSE values obtained in the current study. It is not always guaranteed that use of 

actual sowing dates for calibration always gives accurate predictions as uncertainties in 

other input data can equally generate uncertainties in simulated yields (Guereña et al., 

2001). Model structure also contributes to uncertainties in simulated yields and this is 

probably the source of uncertainty most difficult to quantify (Rötter et al. 2012). Hence, it 

is concluded that the model setup and the indicative sowing dates gave acceptable 

prediction of yields in the baseline period. 
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4.4.2 Changes in Yields under Climate Change 

The baseline yields show an increasing trend (Figure 4-3) with 90th percentile of 

yields around 5 tons ha-1 (Table 4-5) which could be attributed to genetic improvement 

and increasing potential evapotranspiration resulting in higher biomass accumulation. 

Current mean yields (2000 – 2010) range from 4.60 to 5.50 tons ha-1, but mean yields as 

low as 3 tons ha-1 can still be observed occasionally in certain years. Yields as high as 6 – 

10 tons ha-1 have been recorded from experiments with genotype Westminster in SES 

from 2009 to 2011 (see Chapter 3, Table 3-6; also McKenzie et al., 2009), indicating that 

the simulated future yields are possible. The longitudinal and latitudinal variations in 

baseline yields could be attributed to the observed pattern of relative wet and dry 

conditions from west to east and south to north in the UK.  

Generally, there was no limitation to the establishment and grain yield of simulated 

barley growth under the baseline or future climates for all emission scenarios and time 

slices. Seasonal rainfall will not likely vary substantially in the UK across emission 

scenarios and time slices and the geographical distribution is likely to remain unchanged 

with wetter conditions to the west. While seasonal rainfall can be said to be reasonably 

stable, slight variations are observable for all time slices under the MES and HES and in 

the 2050s for the LES (Figure 4-4). Summer rainfall is projected to decrease over Europe 

(Semenov & Shewry 2011; Bates et al., 2008; Christensen et al., 2007) and the UK 

(Murphy et al., 2009), which has the potential to decrease cereal yields. However, based 

on the mean grain yields for the emission scenarios and time slices in this study, seasonal 

rainfall is predicted to be sufficient to maintain the viability of barley production under the 

future climates. Drainage losses (and for that matter contribution to groundwater recharge) 
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followed a pattern similar to rainfall. However, for the UK, there is a slight decrease in 

drainage from the LES to the HES and from the 2030s to the 2050s. This requires further 

investigation in studies on groundwater recharge and water pollution from arable land uses 

under future climates.  

There are very few simulation studies for barley crops under current conditions in 

northern temperate environments and fewer under future climates (Rötter et al. 2012; 

2011) The simulations in the current study predict that grain yields of barley will increase 

over baseline yields from the 2030s to the 2050s for all emission scenarios in all UK 

regions (Figure 4-9). The magnitude of increase in yield relative to the baseline is 

predicted to be greater under the HES, followed by the MES. Thus, yields are predicted to 

increase markedly under the HES from the 2030s to the 2050s. For example, under the 

HES, 90th percentiles of yields in the 2050s are projected to exceed 8 tons ha-1 (Table 4-8), 

with greatest absolute increases in yield occurring in SEE. However, geographically, the 

greatest projected increases in yield relative to the baseline are predicted to occur in the 

western regions (except WA in some cases) even though the east-west yield gradient 

observed in the baseline period will remain unchanged. Moreover, the low skew values 

indicate high certainty in yields (Richter & Semenov, 2005). Little variability in regional 

yields might be due to the use of same phenology and crop parameters (apart from sowing 

dates) in the context of sufficient rainfall. However, little variability in yield across 

emission scenarios might be due to insubstantial differences in rainfall and atmospheric 

CO2 concentrations up to the 2050s. These variables, including temperature, become 

substantially different for  different emission scenarios after the 2050s (Wilby et al. 2010; 

Murphy et al., 2009). Hence, unless there is a substantial reduction in rainfall, or increase 
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in temperature, for a given region, the difference in yields between emission scenarios for 

a given time slice will likely be insubstantial in this study.  

The projected increases in barley yields are consistent with the results of previous 

studies. Holden et al. (2003) predicted barley grain yields would increase substantially 

across Ireland, under elevated [CO2]atm, exceeding 8 tons ha-1 in 2055 and be even greater 

in 2075. They also predicted that absolute increase in yield relative to baseline yields was 

higher in the western half of Ireland though the current spatial distribution of yield 

potential will remain the same. Rivington et al. (not dated, 

http://www.adaptationscotland.org.uk/Upload/Documents/MLURI_webversion.pdf) used 

climate data generated with the UKCP09 weather generator and the CropSyst model to 

simulate barley yields in Scotland. They predicted that the mode of Scottish barley yields 

would be over 7 tons ha-1 in the 2040s under the HES, with maximum yields approaching 

10 tons ha-1. Richter & Semenov (2005) suggested that, despite projected decrease in 

summer rains, wheat yields in England and Wales are likely to increase by up to 2 tons ha-

1 in the 2050s over baseline yields due to elevated [CO2]atm, with greatest increase in East 

Anglia and the south-east. Studies in other temperate European environments have also 

predicted increases in barley biomass and grain yields under elevated CO2 concentrations 

(Clausen et al., 2011; Manderscheid et al., 2009; Sæbø & Mortensen, 1996). Even in 

China, average yields of rain-fed wheat are projected to increase, under the A2 emissions 

scenario, by approximately 10 to 20% (from the 2020s to 2080s) over baseline yields 

under elevated [CO2]atm (Erda et al., 2005). Without CO2 fertilization, yields decrease 

from 10 to 36% (Erda et al., 2005). The projected ranges of increase and decrease in 
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yields under the B2 emissions scenario were 4 – 13% and 10 – 13% respectively from the 

2020s to 2080s (Erda et al., 2005). 

The observed variations in yields between the time slices for the regions in the 

current study can be attributed to elevated atmospheric CO2 combining with the small 

increase in temperature and changes in rainfall to proportionately increase biomass and 

grain yield of barley so that grain:biomass ratio remains unchanged (Holden et al., 2003). 

This favourable effect of climate change might also explain the observed greater absolute 

increase in yield over baseline yields in the western regions where wet conditions around 

anthesis might be suppressing yields (Robredo et al., 2011). Generally, it is believed that 

when water is not limiting, elevated atmospheric CO2 and moderate warming might 

benefit C3 crops in northern temperate environments substantially (Rötter et al., 2011; 

DaMatta et al., 2010; Richter & Semenov, 2005; Fuhrer, 2003). In such environments, 

projected changes in temperature, together with elevated [CO2]atm, increase radiation use 

efficiency, water use efficiency and photosynthesis assuming there is no severe water 

stress and nitrogen is not limiting (Robredo et al. 2011; 2007; Manderscheid et al., 2009). 

The positive effect of elevated [CO2]atm on barley grain yield has been found to result 

mostly from higher biomass production and grain number (Clausen et al., 2011; 

Manderscheid et al., 2009, Fangmeier et al., 2000; Sæbø & Mortensen, 1996) and, to a 

lesser extent, from increased grain weight due to varied effects of CO2-temperature-water 

interactions on the duration and effectiveness of grain filling and canopy senescence 

(Fangmeier et al., 2000).  

In the current study, positive relationships were found between projected yields 

and [CO2]atm but poor relationships were found between projected yields and seasonal 



147 

rainfall and temperature. The [CO2]atm explained between 30 and 82% of the variations in 

projected yields for all emission scenarios and time slices and 30% to 53% of the 

variations in projected UK yields. This suggests that elevated [CO2]atm will benefit barley 

yields and barley production in the UK substantially, all other things being equal. The 

observed increase in projected yields over the baseline yields across the emissions 

scenarios and time slices suggests that current climatic conditions limit yield potential. 

This is in agreement with some previous studies. According to Richter & Semenov 

(2005), [CO2]atm accounts for yield increases in wheat and the compensating effect of 

rising CO2 will be stronger than the effect of drought on wheat yields in England and 

Wales in the future. On the contrary, they found that the effect of [CO2]atm on wheat yields 

was highest in the 2020s but decreases subsequently up to the 2050s. Rötter et al. (2011) 

observed that warmer temperatures only decreased the length of the season but did not 

affect yield variability, whereas low temperatures rather increased both yield and yield 

variability of barley in Finland. They also reported that elevated [CO2]atm increases yield 

even under elevated temperatures when the duration of water stress was short. Barley is 

well-known for its ability to recover from short-term water stress (González 2011; 

González et al., 1999; Shone & Flood, 1983). Studies show that elevated [CO2]atm in the 

future will likely increase drought tolerance and yield in barley through adjustments in 

stomatal conductance, osmotic potential and improved nitrogen metabolism (Burkart et al. 

2011; Robredo et al. 2011; 2007). Holden et al. (2003), however, reported that the 

predicted increase in barley yields in the 2050s in Ireland was probably attributable to 

rainfall but [CO2]atm accounted for predicted yield increases in the 2070s. This is probably 

largely due to the differences in the [CO2]atm used in the study by Holden et al. (2003) and 
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the current study. Holden et al. (2003) used [CO2]atm of 581 ppm and 647 ppm 

respectively for the 2050s and 2070s, which are both within the range of the [CO2]atm 

under the HES in the 2050s in the current study. The favourable combination of climatic 

factors also has implications for the incidence and prevalence of diseases and pests which 

were not considered in the current study. 

Soil hydraulic properties will also play a key role in mitigating or amplifying water 

stress and therefore unlocking the full benefit of elevated [CO2]atm for barley yields in the 

future (Calanca et al. 2006). Few studies have incorporated the effect of soil dryness on 

yield of cereals under climate change (Richter & Semenov, 2005). In current study, the 

soil data generally show little differences in the rooting depth and available soil water 

(ASW) content for the regions (Table 4-2). It would generally be expected that the 

relatively drier conditions and shallow soils in Southern England would result in dramatic 

reductions in barley yield. However, the observed high yields in SEE even under the HES 

might partly be due to the high ASW content due to the presence of clay in these soils. 

This is consistent with the findings of Richter & Semenov (2005) who reported highest 

yield increases in wheat in the Southeast of England regardless of reductions in rainfall 

and warmer temperatures under future climates. They reported that the effect of water 

stress on yield was substantial only when ASW content remained very low for a long time. 

Considering the ASW content and stability of seasonal rainfall for the regions in the 

current study, it is likely that the soil water content in the root zone was normally 

sufficient to satisfy the crop water requirements. However, given the coarse scale of the 

soil data in the current study, it is recommended that future studies employ soil data with a 

greater spatial resolution to explore the effects of the interactions between climatic factors 
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and soil hydraulic properties on cereal yields under future climates. This is important as 

excessive soil water content could affect, for example, soil workability and thereby 

influence management decisions and practices.  

4.4.3 Stresses and Risks to Yields  

The potential gain from elevated [CO2]atm can be offset by other parallel climate 

change effects such as heat stress and stresses due to soil water deficit or waterlogging  

(Rötter et al. 2011; Easterling et al., 2007; Ainsworth & Rogers, 2007; Fuhrer 2003). The 

temporal profiles of barley yields show some yield dips within time slices for all emission 

scenarios. Yields under 2 tons ha-1 were observed for WA in the 2040s and 2050s under 

the HES. Stresses related to temperature and water observed in the simulations could 

account for a substantial amount of the observed yield dips.  AquaCrop distinguishes 

between the effects of temperature and water stresses on biomass and yield (Raes et al., 

2009).  Thresholds for the effects of water and temperature stresses on biomass production 

are executed mainly through alterations in three canopy properties: expansion, stomatal 

closure and early senescence. Water and temperature stresses affect yield directly through 

pollination failure and reductions in HIo. Thus, there are situations where biomass 

production could be affected (e.g. when maximum canopy cover is not reached) 

independent of yield formation and in such situations, biomass production should be 

substantially limited in order to reduce yield.  

Water stresses resulting in stomatal closure (as high as 72% stomatal closure was 

observed in a model variant under the HES, see Figure 4-11a) and early canopy 
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senescence were observed, resulting in reductions in biomass production. Stomatal closure 

can potentially elevate leaf and canopy temperature and thereby reduce photosynthesis 

(Hanjra & Qureshi, 2010; Kimball & Bernacchi, 2006). There were occasions when water 

stresses coincided with either anthesis or post-anthesis (illustrated with Figure 4-11b), 

resulting in substantial reductions in both biomass production and harvest index. 

Interestingly, there were also occasions when the soil water content was in excess of field 

capacity around anthesis. There were occasions when soil water content exceeded the 

anaerobiosis point, which results in transpiration suppression and consequent reductions in 

biomass production and yield. Though this was commonly observed, it was predominant 

in WA, SWS and NI where the initial canopy development was negatively affected and 

maximum canopy cover was not reached. This suggests that stresses arising from both soil 

water deficits and surpluses could have adverse effects on future barley production in the 

UK. Therefore, the potential effect of saturated soil conditions on the production of barley 

and cereals in general under future climates should be given due research attention to 

identify agronomic strategies that can be used to mitigate this effect. 
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Figure 4-11a:  A screenshot of AquaCrop output graphic of a climatic variant illustrating 

high effect of water stress  on stomatal closure and early canopy senescence (marked with red 
circle at upper right-hand corner) under the HES in the 2040s. 

 

 
Figure 4-11b:   A screenshot of AquaCrop output graphic of a climatic variant illustrating 

occurrence of water stress before, during and after flowering under the HES in the 2050s. The 
lower box Dr shows soil water depletion, with the blue line indicating field capacity. The green, 
yellow and red squiggly lines represent the 3 water stress thresholds for canopy expansion, 
stomatal closure and early canopy senescence. The middle box CC shows water stress effect on 
canopy cover development. The grey bars show reductions or deviation from the potential canopy 
cover trajectory. The upper box Tr shows the pattern of transpiration, with the grey bars 
representing reductions in transpiration 
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Reductions in biomass production due to temperature stress ranged from 2% to 

53% across emission scenarios and time slices, with highest reductions occurring under 

the HES in EE. In most cases, maximum canopy cover was not reached. This suggests that 

even though barley can be popular for its drought tolerance, heat stress can potentially 

increase photorespiration, limit CO2 assimilation and reduce biomass production 

(Easterling et al., 2007; Fuhrer, 2003) in some UK regions under future climates, 

especially under the HES. Heat-stress can shorten crop phenology and reduce radiation 

capture, upset net carbon balance, reduce seed set and pollen viability, cause grain sterility 

and yield losses (DaMatta et al., 2010; Porter & Semenov, 2005; Fuhrer, 2003). It has 

been suggested that heat  stress, due to climate change, poses a serious threat to wheat 

yields in England and Wales (Richter & Semenov 2005) and in Europe (Semenov & 

Shewry, 2011) or barley production in Finland (Rötter et al. 2011) and Denmark (Clausen 

et al., 2011). The risk is that the years in the time slices do not represent actual future 

years, meaning the observed stresses can occur in any crop season in the future. These 

findings highlight the need for adapting crops to such future climatic conditions.  

However, in all, early maturity due to faster accumulation of total thermal time 

allowed the crop to escape heat or water deficit stresses, which normally occurred around 

mid-summer. Total thermal time required for maturity was accumulated faster, resulting in 

the season being shortened by between 3 and 15 days. On average, harvest dates for most 

southern regions were in late June but overall harvest dates largely occurred in July, with 

very few occurring in late July to early  August. The projected reductions in summer 

precipitation and warmer temperatures are centered on June-July-August (Wilby et al. 

2010; Jenkins et al., 2009; Murphy et al., 2009). Thus, the crop would probably escape the 
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effects of summer water deficits or heat stress, as it will have attained physiological 

maturity at this time, confirming the usefulness of early sowing (Wilby et al. 2010; 

Barnabàs et al., 2008; Richter & Semenov 2005). Thus, in most of such cases, the stresses 

would only be effective in accelerating normal canopy decline. It was, however, not 

always clear what stresses caused reductions in biomass production or yields. Such cases 

might be attributable to model structural errors (Rötter et al. 2012; Brouwer & van 

Ittersum, 2010; Todorovic et al., 2009; Richter & Semenov, 2005; Guereña et al., 2001). 

Therefore, within the limits of the current study, it can be concluded that projected 

seasonal rainfall would likely be sufficient to keep barley production viable from the 

2030s to the 2050s. However, water and heat stresses are likely to pose risks to biomass 

production and yield in some years in the future. In the current study, extreme events and 

their intensities, or the probability of exceeding a certain threshold of climate change 

signal (e.g. temperature increase exceeding 4 ºC) were not assessed. These are important 

for quantifying and better understanding risks and planning adaptation (Fuhrer et al. 

2006). The findings in this study show that such an exercise is necessary for understanding 

the bigger picture of climate change effects on barley yields in the UK. Heat stress in 

particular is obviously a problem that warrants further investigations.  

4.5 Conclusions 

1. Projected barley yields increased over the baseline yields in all UK regions 

for all the time slices and emission scenarios, with greatest increases 
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occurring in the 2050s. The increase in yields for the emission scenarios 

followed the order: HES > MES > LES.  

2. Projected absolute increases in yields over the baseline yields were greater 

in the west than in the eastern half of the UK. 

3. Elevated [CO2]atm would likely benefit UK barley production substantially. 

The [CO2]atm explained between 30 and over 80% of variations in projected 

yields for all UK regions, emission scenarios and time slices, but explained 

30-50% of variation in projected yields for the UK. 

4. Barley will remain a viable rain-fed crop in the UK under the projected 

climate change. However, potential yield dips in some years within all the 

time slices and emissions scenarios (except under the LES in the 2030s and 

2040s) due to water and heat stresses pose risks to high and stable yields.  
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CHAPTER 5 
 

FUTURE BARLEY PRODUCTION, VIRTUAL WATER FLOWS AND 
FOOD SECURITY IMPLICATIONS 

5.1 Introduction 

By 2050, per capita meat consumption will be about 49 kg for the world and 91 kg 

in the advanced countries (Alexandratos & Bruinsma, 2012) due to a projected increase in 

income, population and dietary shifts (Thornton, 2010; de Fraiture et al., 2007). To meet 

projected demand (even if total demand grows more slowly), global meat production must 

increase from 258 million tons (2005/07 average) to 455 million tons in 2050 

(Alexandratos & Bruinsma, 2012). The production of meat and animal products is highly 

dependent on the availability of, and access to, animal feed. Hence, the large increase in 

projected meat demand has implications for use of cereal grains as animal feed in the 

future.  

Currently, about 35% of total grain produced in the world is used for animal feed 

(the bulk of it being coarse grains), 46% is directly consumed as food and 19% is used for 

industrial purposes mainly brewing and distilling (Alexandratos & Bruinsma, 2012; 

Foresight, 2011). It has been projected that world cereal production will have to increase 

from the current 2.1 billion (2005/07 average) to 3 billion tons by 2050 (Alexandratos & 

Bruinsma, 2012) partly due to the substantial increase in demand for animal feed (de 

Fraiture et al., 2007) which is projected to reach 1.1 billion tons, as well as for biofuel 

(Alexandratos & Bruinsma, 2012). About 52% and 54% of grains produced in the UK and 

the EU respectively are used as animal feed (Bruinsma, 2012; Foresight, 2011). Total 
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cereal and meat demand in Europe and Central Asia are projected to be 600 million and 71 

million tons respectively by 2050, with feed use of cereal grains at 35 million tons 

(Bruinsma, 2012). However, the demand for grain (mostly wheat and maize) for biofuel 

production could drive up the prices of grains that can be used for animal feed. It has been 

projected that biofuel demand will likely reduce the proportion of grains allocated to 

animal feed (Alexandratos & Bruinsma, 2012).  

Barley is an important source of animal feed grain and it is the dominant 

component of coarse grains used as animal feed (Newton et al., 2011). Industrially 

advancing countries will account for about 56% of global use of coarse grains as animal 

feed by 2050 and are therefore expected to increase their import of coarse grains 

substantially (Alexandratos & Bruinsma, 2012). Kruse (2011) indicated that, between 

2000 and 2050, world aggregate barley production will have to increase by 54% to meet 

projected demand for food, feed and industrial purposes.  

In the UK, the main end uses of barley grain are animal feed (over 60%) and 

industrial purposes mainly brewing and distilling (a little over 30%), while the remaining 

grain goes into stocks, seed, food and waste (Defra, 2011). The current UK food balance 

sheet (FBS) shows that nearly half the total grain supply for domestic uses (mainly wheat, 

barley and oat) is used as animal feed. Even though the UK is currently self-sufficient in 

barley production, it has high trade deficits in meat and aggregate animal feed (Defra, 

2011). According to Defra (2011), the three major farm inputs that have shown the 

greatest increases in cost recently for the UK are fuel, fertilizer and feed.  The cost of 

animal feed has emerged as the largest item of expenditure on the agricultural production 

and income account (Defra, 2011). Figure 5-1 suggests that total expenditure on animal 
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feed has been rising sharply from 1973 to 1984, leveling off due to policy intervention 

(milk production quota) in 1984 and declining after 1996 mainly due to a slump in 

commodity prices caused by exchange rates and world prices (Defra, 2011).  

From 2005 to 2011, the cost of animal feed in the UK has increased by 80% due to 

rise in cereal prices (Defra, 2011). For example, the total volume of all purchased feed 

decreased by 5.1% from 2010 to 2011 but the total expenditure on all animal feed 

increased by 12% to £4.4 billion due to increased prices of mainly cereals (Defra, 2011). 

Prices of agriculture commodities in the UK (and, for that matter, incentives to UK 

farmers) are currently largely dependent on three main factors: world market prices, levels 

of EU tariffs on import of agricultural commodities and the currency exchange rate 

(Foresight, 2011). Clearly, increased feed barley production in the future is necessary for 

economic and food security reasons as it can contribute to reducing the cost of animal feed 

and thereby enhance food security in the UK. It is also likely, however, that demand for 

malt barley will remain strong and competitive.  

 

 
Figure 5-1: Animal feed expenditure indices. Figure taken from Defra (2011). 
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However, total UK feed barley production and supply in the future will be 

determined, both directly and indirectly, by changes in land use, climate, meat demand, 

malt barley demand, biofuel production and demand, technology, commodity prices and 

availability of substitutes at both national and global scales (Huang et al., 2010). 

Particularly, policies regarding climate change mitigation or adaptation and land use will 

affect future production and trade flows of any crop (Thomson et al., 2013; Foresight, 

2011; Huang et al., 2010; IPCC, 2007) including feed barley. The extent of agricultural 

land use in the UK is known to correspond well with the proportion of the UK’s raw food 

needs sourced from UK farms (Foresight, 2011). Potential land use change, however, has 

not been considered in most climate change and aggregate crop production studies. Market 

forces and economic incentives will also influence farmers’ decisions on what crop to 

produce, technologies to adopt and ultimately the quantity produced (Huang et al., 2010). 

In the virtual water literature, no study has yet assessed the consequences of the combined 

effect of climate change, land use change, and projected demand of a given crop for future 

virtual water flows and food security at any spatio-temporal scale. 

In this thesis, food security is defined as “the risk of adequate food not being 

available” (Chakraborty & Newton, 2011; Newton et al., 2011); ‘food’ here refers to feed 

barley and meat. The question therefore remains whether there will be a sufficient feed 

barley supply domestically to meet future requirements without adversely affecting 

allocation to malting and other uses. This question has received little research attention 

and particularly, barley is subsumed under aggregate feed or cereal demand when such 

studies are conducted. The objective of this chapter is therefore to assess the feedback 

relationship between future feed barley supply on one hand and demand for meat on the 
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other, the possible effects of this relationship on trade flows of feed barley and meat, and 

the implications for UK food security. The central question is: will future UK barley 

production be sufficient to serve its domestic demand and food security needs?  

5.2 Materials and Methods 

The methodological approach adopted is shown in Figure 5-2.  

Current indices related to barley and meat production and consumption were used 

to compute future indices to assess the potential gap for trade and food security. It is 

acknowledged, however, that the future situation will be shaped by policies, commodity 

 

Figure 5-2:  A schematic diagram of the methodology. 
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prices, demand and supply, exchange rates, incomes and lifestyles (Figure 5-2) at both 

national and global levels. 

5.2.1 The Current Situation 

The calculations of current barley and meat indices were based on the food balance 

sheet (FBS) published by the Food and Agriculture Organization (FAO) of the United 

Nations (FAO, 2001). Key sources of data for analysis of patterns of food supply and 

consumption are the FBS, household budget surveys and individual dietary surveys 

(Kearney, 2010). However, at the national or international scales, the FBS is widely used 

as it is readily and cheaply accessible and eases international comparisons (Kearney, 

2010). A FBS gives an overview of the supply and uses of food items in a given country 

during a given reference period (a 3-year average) (FAO, 2001). For a given reference 

period and any food item, total supply is the total quantity of domestic production plus 

imports and adjusted to changes in stocks that might have occurred since the beginning of 

the reference period. On the utilization side, the total supply of the food item is 

decomposed into quantities exported, utilized for animal feed and  seed, processed for 

food and non-food uses, losses during transportation and the proportion available for 

human consumption (FAO, 2001). The proportion of supply available for human 

consumption is divided by the population of the given country to obtain the per cap supply 

of the given food item. Per cap kcal supply is computed by applying appropriate food 

composition factors for supplies of all primary and processed products available for 

human consumption (FAO, 2001).  
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The FBS is useful for estimating overall shortages or surpluses of food, projecting 

future food requirements and providing a basis for policy analysis on food production and 

trade to ensure food security in a country (Kearney, 2010; FAO, 2001). The latest FBS is 

2009 (FAOSTAT, 2009). Barley and meat indices retrieved from the current UK FBS 

(Table 5-1a, 5-1b) were used as the baseline. The percentage domestic use and feed use of 

barley, as well as proportionate feed barley in total feed grain, were considered 

representative for the calculation of future feed barley supply from total production. That 

is, it was assumed that these ratios (Table 5-1a, item numbers 5, 7 and 13) would remain 

unchanged. 

Table 5-1a: Metrics on barley production and use derived from the UK FBS for the baseline 
period. 

Item Number Description Value 
(1) Total domestic production 5,964 thousand tons 
(2) Total export  633 thousand tons 
(3) Total import 115 thousand tons 
(4) Total supplied for domestic use  4,953 thousand tons  
(5) % domestic use (5) = [(4) / (1)] x 100 = 83.0 % 
(6) Total supplied for animal feed 3,037 thousand tons  
(7) % feed use (7) = [(6) / (4)] x 100 = 61.3 % 
(8) Total supplied for brewing and 

distilling (considered 
collectively as ‘malt use’) 

 
1,713 thousand tons 

(9) % malt use (9) = [(8) / (4)] x 100 =  34.6 %  
(10) Self sufficiency (10) = [(1) / (4)] x 100 = 120.4 % 
(11) Per cap barley use (11) = [(4) / total population*]  

= 80 kg year-1 
(12) Per cap feed barley  (12) = [(6) / total population]  

= 49 kg year-1 
(13) Proportion of feed barley in 

total feed grain* 
38.5 % 

(14) Per cap feed grain 153.5 kg year-1 
 

* Total feed grain (sum of all cereal grain used as animal feed) was represented by wheat and 
barley used as animal feed since they contributed 96% of all feed use of grains, with oats 
contributing only 2%. Hence, total feed grain comprised 61.5% wheat and 38.5% barley. 
These values were adjusted to make them consistent with the data in Defra (2011). Total 
UK population on the FBS was 61,887,000 people. Data taken from FAOSTAT (2009). 
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Indices of meat production and supply for consumption were retrieved from the 

current UK FBS (Table 5-1b).Total meat consumption was based on bovine, mutton and 

goat, poultry and pig meat. The consumption of other meats and animal products was not 

considered. To enable the assessment of the effect of future feed barley supply on 

domestic meat production or supply, the current total feed grain was equated to total meat 

production. Hence, feed barley equivalent meat (FBEM) supply, defined as the quantity of 

meat (tons) that can be produced or supplied per unit feed barley supply, was calculated as 

follows: 

/0��	(%� 1) 	= 	 2� . 3       Equation 5-1 

Where y is the quantity of feed barley in total feed grain (tons); x is total feed grain 

(tons) and z is total domestic meat production (tons). To obtain a single value that can be 

used in future calculations, final FBEM (ton meat ton barley-1) was obtained by dividing 

the result of Equation 5-1 with the amount of feed barley supply. This enabled a direct 

relationship to be established between unit feed barley required for unit meat production in 

the future. 

It is recognized that feed barley is used not only for meat production but also in the 

dairy sector, as well as for egg production. In this thesis, however, it is assumed that total 

 

Table 5-1b:   Metrics on meat production and use derived from the UK FBS for the baseline 
period. Data taken from FAOSTAT (2009). 

Item Number Description  Value 
(1) Total domestic production 3.5 million tons 
(2) Total export  695 thousand tons 
(3) Total import 2.4 million tons 
(4) Per cap consumption 84.2 kg year-1 
(5) kcal cap-1 day-1 supplied 457 
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feed barley supply is used for meat production, the proportional demand for different 

types of meat will remain unchanged in the future and the proportional demand for meat 

and dairy produce will also remain unchanged in the future. 

5.2.2 The Future Situation 

5.2.2.1 Future Barley Production 

Land use change will affect the quantity of barley produced in the future 

substantially. Predictions of future agricultural land uses are characterized by great 

uncertainty (Rounsevell & Reay, 2009; Rounsevell et al., 2006).  Nevertheless, such 

predictions are useful in providing general conclusions about trajectories of future land 

use change (Rounsevell & Reay, 2009). There are few studies on agricultural land use 

futures in the UK, but key findings of most studies reviewed by Angus et al. (2009) and 

Rounsevell & Reay (2009) show: (a) a decrease in area of cropland and increase in area of 

land for bioenergy crops and forest, (b) expansion of urban areas with changes in the 

spatial structure of urban growth and infrastructural networks for land-based transport, and 

(c) a loss of land in coastal areas.  

The projected areas of UK croplands in 2030, 2040 and 2050 were taken from 

Thomson et al. (2013). This is a recent report for the Department of Energy and Climate 

Change (DECC) on the effects of changes in land use and land cover on greenhouse gas 

emissions and removals in the UK. The land use, land-use change, forestry (LULUCF) 

sector is divided into six land use categories: forest land, cropland, grassland, wetlands, 

settlements and other land. Changes in these categories are structured to be internally 
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consistent and incorporate UK land use policies and aspirations such as targets on food 

production, reductions in greenhouse gas emissions or achieving a certain percentage of 

forest cover by 2050 (Thomson et al., 2013). Based on the land use policy priorities and 

aspirations, four scenarios of land use futures were developed: business-as-usual (BAU), 

Low, Mid and High scenarios. The BAU scenario represents a continuation of current 

afforestation rate to 2050 but other factors are similar to the Mid scenario. The Low 

scenario emphasizes the production of bio-energy crops and creation of woodland. The 

High scenario prioritizes increase in food production with little emphasis on bio-energy 

crops and forestry. The Mid scenario represents land use change midway between the 

High and Low scenarios (Thomson et al., 2013). These projections are based mainly on 

likely policy goals and directions in the nexus of energy, food and climate change 

mitigation. Policies that will influence future land use changes are also likely to be 

oriented towards multi-functionality and ecosystem services (Winter, 2009). According to 

Foresight (2011), a positive environmental value of about £1.7bn is generated annually 

from UK agriculture as a result of landscape and habitats management and a negative 

environmental value of about £2.57bn is incurred annually mainly from greenhouse gas  

emissions (accounting for £2bn) and the remainder is associated with flooding, water 

pollution and soil degradation. This suggests that effort could be intensified to offset the 

net negative environmental value of agro-ecosystems in the future. Hence, in the context 

of policy, and in conformity to EU commitments, it is likely that overall future changes in 

agricultural land use will be influenced substantially by energy security and mitigation of 

climate change, as well as environmental goals such as water quality, biodiversity 

protection and enhancement of ecosystem services (Foresight, 2011; Angus et al., 2009; 
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Winter, 2009). Projections of future changes in agricultural land use, however, will require 

a balance between policy-driven goals and market forces in relation to food production, as 

well as an evaluation of the impacts on desirable outcomes across sectors (Angus et al., 

2009). The disadvantage of the projections of Thomson et al. (2013) is that the influence 

of market forces and other non-policy factors were not explicitly considered. Changes in 

crop-specific land uses are likely to be driven largely by market forces such as commodity 

prices, input prices, demand and supply and overall profitability (Angus et al., 2009; 

Winter, 2009) on one hand, and technological advancement on the other hand (Burgess & 

Morris, 2009).  

Notwithstanding its limitations, the projected changes in cropland areas described 

by Thomson et al. (2013) were used in this thesis because of its currency and because it is 

difficult to obtain such information at the UK-level and at the relevant time scales. The 

projected changes in the area of croplands under the Mid scenario were used. This is 

because the High scenario is considered unlikely as it significantly increases the area of 

croplands and the UK’s net emissions of greenhouse gases. Studies on possible future 

changes in land use that formed the basis of the Foresight (2011) report showed in most 

cases a reduction in croplands. The Low scenario was also not used because the scale of 

bio-fuel crop production was extremely high and probably unlikely.    

The total areas of cropland and barley production for the period 2000 – 2012 were 

obtained from the UK key crops areas compiled by Defra from the June agricultural 

surveys (Defra, 2012).  The average area of barley production over this period (1,026 

million ha) was taken as the current area of land under barley cultivation and was 

expressed as a percentage of the average of the total area of croplands over the same 
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period.  This proportion (16.36 %) was taken as the representative proportion of the 

projected area of croplands for future barley production. Hence, 16.36 % of the projected 

area of cropland, under the Mid scenario (Thomson et al., 2013), was calculated for each 

of 2030, 2040 and 2050. The projected total areas of croplands under the Mid scenario 

were 5,777, 5,832 and 5,887 thousand ha respectively for 2030, 2040 and 2050.  

However, to incorporate possible crop-specific land use changes, in response to 

market forces and other non-policy factors, a range of changes from ± 5% to ± 20 %, 

relative to the projected area of land for barley, were used. This range was based on the 

calculated range of annual changes in the area of land for barley production over the 

period 2000 – 2012 (Defra, 2012), which was -19.41 % to 14.94 %.  In the analysis 

described in this thesis, the BAU was represented by the current (2000 – 2012) average 

area of land for barley production, which remains unchanged to 2050. To obtain future 

total barley production and to incorporate the effect of climate change, the future area of 

land for barley production was multiplied by each of the projected mean yields of barley 

under the low, medium and high emissions scenarios (LES, MES and HES, respectively, 

see chapter 4) in the 2030s, 2040s and 2050s. 

It is acknowledged that, in the UK, winter barley is predominantly used for animal 

feed whereas spring barley is predominantly used for malting. The simulated future yields 

(see Chapter 4) used in the current chapter was based on spring barley. This is because 

spring barley production is more relevant for studying the effect of water deficit stress on 

yields under climate change compared to winter barley and it would have been time-

consuming to simulate the effect of climate change on yields of both winter and spring 

barley. The use of projected spring barley yields will have implications for the projected 
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total barley production and therefore feed barley supply. Spring barley has a larger land 

area, total production but lower yields compared to winter barley (Figure 5-3). 

 

Figure 5-3: Total land area (top) and total production (bottom) of spring and winter  
barley in the UK. Data taken from Defra (2010).  
 

Records show that UK total winter barley production for the period 1999 – 2009 

was 2,868 thousand tons, with a total land area of 455 thousand ha and average yield of 

6.3 tons ha-1, contrasted with 604 thousand ha, 3,200 thousand tons and 5.3 tons ha-1 for 

spring barley (Defra, 2010). However, the statistics used in this thesis are based on total 
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barley production and allocation to end-uses. Hence, the relevance of the distinction 

between the areas of spring and winter barley is diminished. The error in projected total 

production and allocation to feed barley can therefore arise only from differences between 

yields of spring and winter barley. Thus, about 50% of the projected production levels for 

each scenario might be underestimated by 1 ton ha-1, assuming the ratio of spring and 

winter barley yields remain unchanged. Nonetheless, it can be argued that the effect of this 

yield difference on projected quantity of feed barley supply can be offset by the quantity 

allocated to malting in this thesis. Moreover, proportional allocation of land to winter or 

spring barley will depend on several factors. 

5.2.2.2 Future Feed Barley and Meat Demand Indices 

Projected population data for 2030, 2040 and 2050 were obtained from the UK 

National Population Projections (2010 – 2085) by the Office of National Statistics 

(http://www.ons.gov.uk/ons/interactive/uk-national-population-projections---

dvc3/index.html). In carrying out these projections, four scenarios of population growth 

trajectories were used: high fertility, low fertility, constant fertility and balanced long-term 

migration. The projected population data for these four scenarios and the three time 

periods were obtained. It is acknowledged that population projections show great 

uncertainty.  

Most studies that project world food demand to 2050 have used different and 

separate assumptions about changes in population, income, diets and policy to simulate 

supply, demand, trade and prices of food items (Foresight, 2011; Huang et al., 2010). 
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Examples of such projections published recently include the Comprehensive Assessment 

of Water Management in Agriculture (2007) by the International Water Management 

Institute (IWMI), The Global Harvest Initiative report (Kruse, 2011), Tilman et al. (2011) 

and the updated FAO projections (Alexandratos & Bruinsma, 2012). Regardless of the 

uncertainties and variations in these projections, they provide insights on possible future 

trends in food demand and supply (Foresight, 2011). The FAO projections are widely 

cited and used in global scale studies. However, the FAO projections are a linear 

extrapolation of past changes over a comparable time period. Also, to my knowledge, 

future feed demand from grains is provided explicitly only in the Comprehensive 

Assessment of Water Management in Agriculture (2007), which incorporates a range of 

drivers such as population, incomes, prices of commodities and inputs. Hence, projections 

of meat and feed demand from the Comprehensive Assessment of Water Management in 

Agriculture (2007) were used in the current study. It is acknowledged that different types 

of animals have different grain feed requirements and conversion efficiencies. However, 

total grain feed requirement for total meat production is considered in this thesis. 

From the Comprehensive Assessment of Water Management in Agriculture (2007) 

report, the projected per capita meat and grain feed demand for the OECD (Organization 

for Economic Co-operation and Development) countries was used to represent future UK 

meat and feed grain demand per capita. The values of meat and grain feed demand for 

2025 (96 and 396 kg cap-1 yearr-1 respectively) were used to represent 2030 and the 

averages of the values for 2025 and 2050 were used to represent the values for 2040. 

Consequently, the per capita meat demand was 96, 96.5 and 97 kg per year respectively 

for 2030, 2040 and 2050. The corresponding feed grain demand per person per year was 
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396, 397 and 398 kg respectively for 2030, 2040 and 2050. From the per capita feed grain 

demand, the proportional contribution of feed barley (38.5%) was calculated to represent 

future UK feed barley demand per capita (152, 153 and 153 kg respectively for 2030, 

2040 and 2050). Subsequently, FBEM was calculated, using equation 5-1. Total feed 

barley and meat demand was obtained as the product of projected population and either 

per capita feed barley demand or meat demand. The possible supply of barley for domestic 

uses was calculated as a proportion (83%) of future UK barley production under each land 

use scenario, time slice and climate change emissions scenario. Then, possible feed and 

malt barley supply was calculated as proportions of barley supply for domestic uses for 

each land use scenario, time slice and emissions scenario. Subsequently, the projected 

future feed barley demand was compared with the possible feed barley supply under the 

constant population growth scenario; the difference indicated trade (import or export) 

potential. Similarly, the trade potential for feed barley equivalent meat was calculated.  

5.2.2.3 Virtual Water Flows 

The virtual water content (VWC, m3 ton-1) of future UK barley grains for all time 

slices and emissions scenarios were obtained from the climate change simulations reported 

in Chapter 4 (see Figure 4-10). Total virtual water (TVW, m3) associated with total barley 

production and feed barley supply was, therefore, obtained as: 

��* = �*�. �        Equation 5-2 
  

 Where T is the total tonnage of food item considered (barley in this case). 
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It was assumed that deficits in feed barley supply or feed barley equivalent meat 

supply would be imported. Hence, virtual water flows to the UK associated with imports 

of feed barley and feed barley equivalent meat to balance deficits were also calculated. 

However, the VWC of barley and meat imported were obtained differently. The quantities 

of UK barley and meat imports for the baseline period (2007-2009) were retrieved from 

the FAOSTAT trade database (FAOSTAT, 2010). The top 8 countries (out of 21) that 

accounted for approximately 95% of total UK barley imports (345,712 tons) were Ireland 

(44%), France (16.4%), Germany (12.6%), Ukraine (6.8%), Spain (5.1%), Denmark 

(3.8%), Sweden (3.6%) and Italy (2.6%). Each of the remaining countries accounted for 

less than 2% of the total barley import and they were therefore aggregated as import from 

the rest of the world. It was assumed that these countries would remain the main sources 

of barley import to the UK in the future. The VWC of barley for each country (country 

average) was retrieved from the WaterStat Database of the Water Footprint Network 

(www.waterfootprint.org) (Mekonnen & Hoekstra, 2010a). Total virtual water inflow due 

to feed barley import was calculated using equation 5-2. 

Ten countries accounted for 92% of total meat import by the UK. These were 

Ireland (20.4%), Netherlands (20.9%), Denmark (14.7%), Germany (8.2%), New Zealand 

(8.2%), Belgium (6.1%), France (6.1%), Spain (2.7%), Poland (2.6%) and Brazil (2.1%). 

The remaining 39 countries contributed either a little over or below 1% and were therefore 

represented as the rest of the world. Again, it was assumed that these countries would 

remain the main sources of future imports of meat to the UK. The VWC of meat for each 

country was retrieved from the WaterStat Database of the Water Footprint Network 

(Mekonnen & Hoekstra, 2010b). For each country, the weighted averages of the water 
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footprints of fresh or chilled carcasses of bovine, lamb and goat, pork and poultry were 

retrieved from the database and averaged to represent the VWC of total meat. The 

weighted average of water footprint of products in this database comprises a mix of 

production systems: grazing, mixed, and industrial. The average of the VWC of all meat 

types was calculated for each country. Subsequently, the average (including the world 

average) of the VWC of total meat for all countries was used to calculate the virtual water 

inflows associated with import of feed barley equivalent meat, using equation 5-2. This 

was done separately for blue and green water. Green and blue VWC of meat, in this 

database, was obtained following the conventional water footprint methodology 

(Mekonnen & Hoekstra, 2010b). Because projected warmer temperatures can cause heat 

stress, which can adversely affects productivity in farm animals, and raises the need for 

additional water supply to cool the animals (Flamenbaum & Galon, 2010; Lee, 1993), the 

blue VWC was adjusted upward by 2.5%. In all, it was assumed that future VWC would 

not differ substantially from current VWC as productivity gains of feed crops from climate 

change in northern temperate countries might offset increases elsewhere.  

5.2.2.4 Implications for Food Security 

The implications for food security were explored qualitatively using systems 

dynamics analysis approach. The main tool employed here was a simplified causal loop 

diagram (CLD) analysis (Olsson & Sjöstedt, 2005) to conceptualize food security risks 

induced by possible feed barley deficits (see Figure 5-4). System dynamics deals with 

feedback and delays that affect system behaviour over time (Armah et al., 2010; Olsson & 
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Sjöstedt, 2005). As a tool, systems dynamics analysis helps address a problem by 

providing insight into the structure of a system (that is, the way the essential system 

components are connected and interact) and its consequential behavior in order to 

understand and evaluate outcomes (Olsson & Sjöstedt, 2005). There are two major stages 

in developing a system dynamics model (Olsson & Sjöstedt, 2005). The first stage is to 

construct the CLD, which graphically portrays the cause-effect interrelationships arising 

from the behaviour of the system components or other exogenous factors relevant to the 

system. The second stage is to develop a quantitative model and represent it in terms of 

flow rates, levels and delays. In this Chapter, the focus was only on the first stage (i.e. 

CLD). The CLD (Figure 5-4) and its components are discussed in Section 5.4.4. 

5.3 Results  

5.3.1 Future Barley Production and Supplies for Domestic Uses  

The projected area of land for barley production under the Mid scenario increases 

from 945 thousand ha in 2030 to 963 thousand ha in 2050 (Table 5-2). These areas of land 

are substantially lower than the current (BAU) area of land under barley production (1,026 

thousand ha). The largest area of land for barley production will be about 1.2 million ha 

under the Mid+20% land use change scenario in 2050 whereas the lowest would be 756 

thousand ha under the Mid-20% scenario in 2030. 
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Due to the combined effect of climate change on yield and change in area of land 

for barley production, total future UK barley production ranged between approximately 

4.6 million tons (under the low emission scenario, LES, and Mid-20% scenario in 2030) 

and 9.0 million tons in 2050 under the Mid+20% and the high emissions scenario (HES) 

(Table 5-3). For the BAU, projected total barley production ranged from approximately 

6.2 million tons in 2030 (under the LES) to 8.0 million tons in 2050 under the HES. The 

difference in maximum barley production (HES, 2050) under the BAU and Mid+20% is 

approximately 1.0 million tons. As would be expected, total barley production increases 

from the LES to the HES and from the 2030s to the 2050s for each land use scenario. 

However, using the medium emissions scenario (MES), the difference in total barley 

production between the BAU and Mid scenarios are 523,000 tons (2030), 482,000 tons 

(2040) and 456,000 tons (2050). 

 

 

Table 5-2: Projected area of land for UK barley production. 

Land use scenario Total area for barley 
production (‘000 ha) 

2030 2040 2050 
BAU 1,026 1,026 1,026 
Mid 945 954 963 

Mid+5% 992 1,002 1,011 
Mid+10% 1,040 1,049 1,059 
Mid+15% 1,087 1,097 1,107 
Mid+20% 1,134 1,145 1,156 
Mid-5% 898 906 915 
Mid-10% 851 859 867 
Mid-15% 803 811 819 
Mid -20% 756 763 770 

 

Source: mid land use scenario data taken from Thomson et al. (2013). 
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The pattern of projected barley supply for domestic use is similar to the total 

production as the former is a constant proportion of the latter. The largest quantity of 

barley that would be supplied for domestic uses would be approximately 7.5 million tons 

in 2050 under the HES and Mid+20% scenarios whereas the lowest would be 

approximately 3.8 million tons in 2030 under the LES and Mid-20% scenarios (Table 5-

4). Under the BAU scenario, total barley supply for domestic uses ranged from 

Table 5-3: Projected total UK barley production due to land use and climate change. 

Land 
use 

scenario 

Total barley production (‘000 tons) 
2030 2040 2050 

LES MES HES LES MES HES LES MES HES 
BAU 6,197 6,628 6,700 6,402 6,874 7,326 6,607 7,428 7,972 
Mid 5,708 6,105 6,171 5,953 6,392 6,812 6,202 6,972 7,483 

Mid+5 5,993 6,410 6,479 6,251 6,711 7,152 6,512 7,321 7,857 
Mid+10 6,279 6,715 6,788 6,548 7,031 7,493 6,822 7,669 8,231 
Mid+15 6,564 7,020 7,096 6,846 7,351 7,833 7,132 8,018 8,605 
Mid+20 6,849 7,326 7,405 7,144 7,670 8,174 7,442 8,367 8,979 
Mid-5 5,422 5,799 5,862 5,655 6,072 6,471 5,892 6,624 7,108 
Mid-10 5,137 5,494 5,554 5,358 5,753 6,130 5,582 6,275 6,734 
Mid-15 4,852 5,189 5,245 5,060 5,433 5,790 5,271 5,926 6,360 
Mid -20 4,566 4,884 4,937 4,762 5,113 5,449 4,961 5,578 5,986 

 

 

Table 5-4: Projected UK barley supply from domestic production for domestic uses. 

Land 
use 

scenario 

Total barley supply for domestic uses (‘000 tons) 
2030 2040 2050 

LES MES HES LES MES HES LES MES HES 
BAU 5,144 5,501 5,561 5,314 5,705 6,081 5,484 6,165 6,617 
Mid 4,738 5,067 5,122 4,941 5,305 5,654 5,148 5,787 6,211 

Mid+5 4,974 5,320 5,378 5,188 5,570 5,936 5,405 6,076 6,521 
Mid+10 5,212 5,573 5,634 5,435 5,836 6,219 5,662 6,365 6,832 
Mid+15 5,448 5,827 5,890 5,682 6,101 6,501 5,920 6,655 7,142 
Mid+20 5,685 6,081 6,146 5,930 6,366 6,784 6,177 6,945 7,453 
Mid-5 4,500 4,813 4,865 4,694 5,040 5,371 4,890 5,498 5,900 
Mid-10 4,264 4,560 4,610 4,447 4,775 5,088 4,633 5,208 5,589 
Mid -15 4,027 4,307 4,353 4,200 4,509 4,806 4,375 4,919 5,279 
Mid -20 3,790 4,054 4,098 3,952 4,244 4,523 4,118 4,630 4,968 
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approximately 5.1 million tons under the LES in 2030 to 6.6 million tons in 2050 under 

the HES. 

Projected feed barley supply from domestic production under the BAU ranged 

from approximately 3.2 million tons (under the LES in 2030) to 4.1 million tons in 2050 

under the HES (Table 5-5). Under the Mid scenario, the values ranged from approximately 

2.9 million tons to 3.8 million tons. The maximum feed barley supplies (Mid+20% 

scenario) ranged from approximately 3.5 million tons in 2030 to 4.6 million tons in 2050, 

whereas the minimum supplies (Mid-20%) ranged from approximately 2.3 million tons to 

3.0 million tons. The difference between maximum feed barley supply under the BAU and 

Mid+20% and the HES in 2050 is 512 thousand tons whereas the difference between the 

BAU and Mid-20% is approximately 1.0 million tons. 

Projected malt barley supply ranged from approximately 1.3 million tons in 2030 

(under the LES and Mid-20%) to 2.6 million tons in 2050 under the HES and Mid+20% 

(Table 5-6). Under the BAU scenario, projected malt barley supply ranged from 

approximately 1.8 million tons in 2030 under the LES, to 2.3 million tons in 2050 under 

Table 5-5: Projected UK feed barley supply from domestic production. 

Land 
use 

scenario 

Total feed barley supply (‘000 tons) 
2030 2040 2050 

LES MES HES LES MES HES LES MES HES 
BAU 3,153 3,372 3,409 3,257 3,497 3,727 3,362 3,779 4,056 
Mid  2,904 3,106 3,140 3,029 3,252 3,466 3,156 3,547 3,807 

Mid+5 3,049 3,261 3,296 3,180 3,414 3,639 3,313 3,725 3,998 
Mid+10 3,195 3,417 3,454 3,332 3,577 3,812 3,471 3,902 4,188 
Mid+15 3,340 3,572 3,610 3,483 3,740 3,985 3,629 4,079 4,378 
Mid+20 3,485 3,727 3,768 3,635 3,902 4,159 3,786 4,257 4,568 
Mid-5 2,759 2,950 2,983 2,877 3,089 3,292 2,998 3,370 3,616 
Mid-10 2,614 2,795 2,826 2,726 2,927 3,119 2,840 3,193 3,426 
Mid-15 2,469 2,640 2,669 2,574 2,764 2,946 2,682 3,015 3,236 
Mid-20 2,323 2,485 2,512 2,423 2,601 2,772 2,524 2,838 3,046 
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the HES. The difference in maximum possible supplies of malt barley between the BAU 

and Mid+20% is 570 thousand tons. It is noteworthy that for all barley production and 

supplies and for all scenarios, the value of barley supply under the BAU and the LES in 

2030 is slightly higher than the value under the Mid-20% and HES in 2050. 

5.3.2 Projected Population, Feed Barley and Meat Demand 

For all population projection scenarios, projected UK population ranged between 

69.5 million in 2030 (low fertility scenario) and 82.2 million in 2050 (high fertility 

scenario) (Table 5-7). As a result of population growth, projected total meat demand 

ranged from approximately 6.7 million tons in 2030 to 8.0 million tons in 2050. Similarly, 

total feed grain demand ranged from approximately 27.5 million tons in 2030 (under the 

low fertility scenario) to 32.7 million tons in 2050 under the high fertility scenario. Under 

the constant population growth scenario, total population ranged from 71.9 million in 

2030 to 80.3 million in 2050. Total meat demand for this scenario ranged from 6.9 million 

Table 5-6: Projected UK malt barley supply from domestic production. 

Land 
use 

scenario 

Total malt barley supply (‘000 tons) 
2030 2040 2050 

LES MES HES LES MES HES LES MES HES 
BAU 1,780 1,903 1,924 1,839 1,974 2,104 1,897 2,133 2,289 
Mid 1,639 1,753 1,772 1,710 1,836 1,956 1,781 2,002 2,149 

Mid+5 1,721 1,841 1,861 1,795 1,927 2,054 1,870 2,102 2,256 
Mid+10 1,803 1,928 1,949 1,880 2,019 2,152 1,959 2,202 2,364 
Mid+15 1,885 2,016 2,038 1,966 2,111 2,249 2,048 2,303 2,471 
Mid+20 1,967 2,104 2,127 2,052 2,203 2,347 2,137 2,403 2,579 
Mid-5 1,557 1,665 1,683 1,624 1,744 1,858 1,692 1,902 2,041 
Mid-10 1,475 1,578 1,595 1,539 1,652 1,760 1,603 1,802 1,934 
Mid-15 1,393 1,490 1,506 1,453 1,560 1,663 1,514 1,702 1,826 
Mid-20 1,311 1,403 1,418 1,368 1,468 1,565 1,425 1,602 1,719 
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tons in 2030 to 7.8 million tons in 2050, with total feed grain demand ranging from 28.5 

million tons to 32.0 million tons for the same period. 

Projected feed barley demand (as a proportion of total feed grain demand) for all 

population projections ranged from approximately 10.6 million tons in 2030 to 12.6 

million tons in 2050 (Table 5-8). Comparable values for feed barley equivalent meat 

demand ranged from approximately 2.6 million tons to 3.1 million tons. However, under 

the constant fertility scenario, total feed barley demand ranged from approximately 11.0 

million tons in 2030 to 12.3 million tons in 2050 whereas feed barley equivalent meat 

demand ranged between 2.7 million tons and 3.0 million tons.  

Table 5-7: Projected UK population and total meat and feed grain demand. 

Fertility 
scenario 

Total population 
(million) 

Total meat demand 
(‘000 tons) 

Total feed grain demand 
(‘000 tons) 

2030 2040 2050 2030 2040 2050 2030 2040 2050 
High 72.8 77.3 82.2 6,989 7,459 7,973 28,829 30,688 32,716 

Constant  71.9 76.1 80.3 6,902 7,344 7,789 28,472 30,212 31,959 
Low  69.5 72.0 74.0 6,672 6,948 7,178 27,522 28,584 29,452 

Balanced 
long-term 
migration 

70.3 71.5 71.9 6,749 6,900 6,974 27,839 28,386 28,616 

 

Source: population data (Office of National Statistics); feed and meat data (de Fraiture et al., 2007). 

Table 5-8: Projected UK feed barley demand and feed barley equivalent meat demand. 

Fertility 
Scenario 

Total feed barley demand 
(‘000 tons) 

Feed barley equivalent 
meat demand  

(‘000 tons) 
2030 2040 2050 2030 2040 2050 

High 11,099 11,815 12,596 2,691 2,872 3,070 
Constant  10,962 11,632 12,304 2,657 2,827 2,999 

Low  10,596 11,005 11,339 2,569 2,675 2,764 
Balanced 
long-term 
migration 

10,718 10,928 11,017 2,598 2,656 2,685 
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Projected UK deficits in feed barley supply from domestic production for all land 

use and climate change scenarios and  time slices ranged from approximately 7.2 million 

tons in 2030 (under the HES, Mid+20% scenario) to 9.8 million tons in 2050 under the 

LES and Mid-20% scenario (Table 5-9). However, under the BAU, the deficits in feed 

barley supply ranged from 7.6 million tons in 2030 (under the HES) to 8.9 million tons in 

2050 under the LES. Comparable values for the Mid land use scenario range from 7.8 

million tons in 2030 to 9.1 million tons in 2050. The deficits under the Mid+20% scenario 

ranged from 7.2 million tons in 2030 to 8.5 million tons in 2050, whereas the deficits 

under the Mid-20% ranged from 8.5 million tons in 2030 to 9.8 million tons in 2050. It is 

important to indicate that these are the ranges of deficits under the constant fertility 

scenario of population growth.  

Similarly, deficits in UK total meat supply (due to deficit in feed barley supply) 

ranged from 1.7 million tons in 2030 under the HES and Mid+20% scenario to  2.4 

million tons under the LES and Mid-20% scenario in 2050 (Table 5-10). Under the BAU, 

Table 5-9:  Projected deficits in UK feed barley supply from domestic production using constant 
fertility scenario of population growth. 

Land 
use 

scenario 

Total deficit in feed barley supply (‘000 tons) 
2030 2040 2050 

LES MES HES LES MES HES LES MES HES 
BAU -7,809 -7,590 -7,553 -8,374 -8,134 -7,904 -8,943 -8,525 -8,248 
Mid  -8,058 -7,856 -7,822 -8,603 -8,379 -8,166 -9,149 -8757 -8,497 

Mid+5 -7,913 -7,701 -7,665 -8,451 -8,217 -7,993 -8,991 -8,580 -8,307 
Mid+10 -7,767 -7,545 -7,508 -8,300 -8,054 -7,819 -8,833 -8,402 -8,117 
Mid+15 -7,622 -7,390 -7,352 -8,148 -7,891 -7,646 -8,676 -8,225 -7,926 
Mid+20 -7,477 -7,234 -7,194 -7,997 -7,729 -7,473 -8,518 -8,047 -7,736 
Mid-5 -8,203 -8,011 -7,979 -8,754 -8,542 -8,339 -9,307 -8,934 -8,688 
Mid-10 -8,348 -8,167 -8,136 -8,905 -8,704 -8,513 -9,464 -9,112 -8,878 
Mid-15 -8,493 -8,322 -8,293 -9,057 -8,867 -8,686 -9,623 -9,289 -9,068 
Mid-20 -8,639 -8,477 -8,450 -9,209 -9,030 -8,859 -9,780 -9,466 -9,259 
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the deficits ranged from 1.8 million tons in 2030 to 2.2 million tons in 2050, compared to 

the Mid scenario which had a range of 1.9 million tons in 2030 to 2.2 million tons in 2050. 

However, for the Mid+20% scenario, the range of deficits in feed barley equivalent meat 

supply is 1.7 million tons in 2030 to 2.1 million tons in 2050, whereas the values for the 

Mid-20% scenario are 2.1 million tons in 2030 to 2.4 million tons in 2050.  

5.3.3 Virtual Water Associated With Barley Imports 

The total volume of virtual water associated  with total UK barley production in 

the future ranged from 206 billion m3 (under the LES and Mid-20%) in 2030 to 350 

billion m3 (under Mid+20% and both the medium emissions scenario, MES, and the HES) 

in 2050 (Table 5-11). Under the BAU, the values range from 280 billion in 2030 to 311 

billion m3 in 2050, compared with 258 billion (2030) and 292 billion m3 (2050) for the 

Mid scenario (Table 5-11). Under the Mid+20% scenario, the volume of virtual water 

ranges from 310 billion (2030) to 350 billion m3 in 2050 whereas the values for the Mid-

Table 5-10: Projected deficits in UK supply of feed barley equivalent meat using constant fertility 
scenario of population growth. 

Land 
use 

scenario 

Total deficit in feed barley equivalent meat supply (‘000 tons) 
2030 2040 2050 

LES MES HES LES MES HES LES MES HES 
BAU -1,893 -1,840 -1,831 -2,035 -1,977 -1,921 -2,180 -2,078 -2,010 
Mid -1,953 -1,904 -1,896 -2,091 -2,037 -1,985 -2,230 -2,134 -2,071 

Mid+5 -1,918 -1,866 -1,858 -2,054 -1,997 -1,943 -2,191 -2,091 -2,025 
Mid+10 -1,883 -1,829 -1,820 -2,017 -1,958 -1,900 -2,153 -2,048 -1,978 
Mid+15 -1,848 -1,791 -1,782 -1,980 -1,918 -1,858 -2,115 -2,005 -1,932 
Mid+20 -1,812 -1,754 -1,744 -1,944 -1,879 -1,816 -2,076 -1,961 -1,886 
Mid-5 -1,988 -1,942 -1,934 -2,128 -2,076 -2,027 -2,268 -2,178 -2,118 
Mid-10 -2,023 -1,979 -1,972 -2,164 -2,116 -2,069 -2,307 -2,221 -2,164 
Mid-15 -2,059 -2,017 -2,010 -2,201 -2,155 -2,111 -2,345 -2,264 -2,210 
Mid-20 -2,094 -2,055 -2,048 -2,238 -2,195 -2,153 -2,384 -2,307 -2,257 
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20% scenario range from 206 billion in 2030 to 233 billion m3 in 2050. The total volume 

of virtual water here is entirely green water as the simulations of future barley production 

were done under rain-fed conditions. 

Similarly, the volumes of virtual water associated with projected feed barley 

supply from domestic production ranged from 105 billion m3 in 2030 (under the Mid-20% 

and LES) to 178 billion m3 in 2050 (Table 5-12). However, under the BAU, the volumes 

Table 5-11: Virtual water associated with total barley production in the UK. 

Land 
use 

scenario 

Total virtual water associated with total barley production (‘x106 m3) 
2030 2040 2050 

LES MES HES LES MES HES LES MES HES 
BAU 280 300 302 281 299 302 304 311 311 
Mid 258 276 278 261 278 280 285 292 292 

Mid+5 271 290 292 274 291 294 299 306 306 
Mid+10 284 304 306 288 305 309 314 321 321 
Mid+15 297 317 319 301 319 323 328 336 336 
Mid+20 310 331 333 314 333 337 342 350 350 
Mid -5 245 262 264 248 264 266 271 277 277 
Mid -10 232 248 250 235 250 252 257 263 263 
Mid-15 219 235 236 222 236 238 242 248 248 
Mid-20 206 221 222 209 222 224 228 233 233 

 

 

Table 5-12: Virtual water associated with projected feed barley supply in the UK. 

Land 
use 

scenario 

Total virtual water associated with domestic feed barley supply (x106 m3) 
2030 2040 2050 

LES MES HES LES MES HES LES MES HES 
BAU 143 152 153 143 152 153 155 158 158 
Mid 131 140 141 133 141 143 145 148 148 

Mid+5 138 147 148 140 148 150 152 156 156 
Mid+10 144 154 155 146 155 157 160 163 163 
Mid+15 151 161 163 153 162 164 167 171 171 
Mid+20 158 168 170 160 169 171 174 178 178 
Mid -5 125 133 134 126 134 136 138 141 141 
Mid -10 118 126 127 120 127 128 131 134 134 
Mid -15 112 119 120 113 120 121 123 126 126 
Mid -20 105 112 113 106 113 114 116 119 119 
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of virtual water ranged from 143 billion in 2030 to 158 billion m3 in 2050. For the 

Mid+20% and Mid-20, the values ranged from 158 to 178 billion m3 and 105 billion to 

119 billion m3 respectively from 2030 to 2050. 

Conversely, the total volumes of virtual water inflows to the UK, due to import of 

feed barley to balance the projected deficits in supply, ranged from approximately 5.5 

billion m3 (under the Mid+20% and HES) to 7.4 billion m3 in 2050 under the LES and 

Mid-20% scenario (Table 5-13). The volumes of virtual water inflow under the BAU 

ranged from 5.7 billion m3 in 2030 to 6.8 billion m3 in 2050. Under the Mid scenario, the 

values ranged from 5.9 billion to 6.9 billion m3 from 2030 to 2050 respectively. This range 

decreased to 5.5 billion in 2030 and 6.5 billion m3 in 2050 under the Mid+20% scenario, 

but increased to 6.4 billion in 2030 and 7.4 billion m3 in 2050 under the Mid-20% 

scenario. The mean green and blue VWC of barley was respectively 737 and 21 m3 ton-1. 

If total domestic barley production were used for feed, the deficits in feed barley supply 

would range from 3.3 to 7.3 million tons whereas the volumes of virtual water inflows 

Table 5-13: Virtual water inflows to the UK due to feed barley import to balance deficit.  

Land 
use 

scenario 

Total virtual water inflows from feed barley import  (x 106 m3) 
2030 2040 2050 

LES MES HES LES MES HES LES MES HES 
BAU 5,919 5,753 5,725 6,348 6,166 5,991 6,779 6,462 6,252 
Mid 6,108 5,955 5,929 6,521 6,352 6,190 6,935 6,638 6,441 

Mid+5 5,998 5,837 5,810 6,406 6,228 6,058 6,815 6,503 6,297 
Mid+10 5,888 5,719 5,691 6,291 6,105 5,927 6,696 6,369 6,152 
Mid+15 5,778 5,602 5,572 6,176 5,982 5,796 6,576 6,234 6,008 
Mid+20 5,668 5,484 5,453 6,061 5,859 5,664 6,457 6,100 5,864 
Mid -5 6,218 6,073 6,048 6,636 6,475 6,321 7,054 6,772 6,585 
Mid -10 6,328 6,190 6,167 6,750 6,598 6,453 7,174 6,907 6,730 
Mid-15 6,438 6,308 6,286 6,865 6,721 6,584 7,294 7,041 6,873 
Mid-20 6,548 6,426 6,405 6,980 6,845 6,715 7,413 7,175 7,018 

 

Note: Green water = 97%; blue water = 3% 
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associated with imports would range from 2.6 to 5.6 billion m3 (data not shown). Blue and 

green water constitute 3% and 97% respectively of each total volume of virtual water. 

Finally, the volumes of virtual water inflows to the UK, due to import of feed 

barley equivalent meat to balance deficit, ranged from 7.2 billion m3 in 2030 (under the 

Mid+20% and HES) to 9.9 billion in 2050 (under the Mid-20% and LES) (Table 5-14). 

The pattern of the volumes of virtual water inflow is similar to the inflows associated with 

feed barley imports. The volumes of virtual water inflow under the BAU ranged from 7.6 

billion m3 in 2030 to 9.0 billion m3 in 2050. Under the Mid scenario, the values ranged 

from 7.9 billion to 9.3 billion m3. Under the Mid+20%, the total volumes of virtual water 

ranged from 7.2 billion to 8.6 billion m3, whereas the range for the Mid-20% is 8.5 billion 

to 9.9 billion m3. The average green and blue VWC of total meat were 3,905 and 243 m3 

ton-1 respectively. Assuming total domestic barley production were used as feed barley, 

the feed barley equivalent meat deficits would range from 0.8 million to 1.8 million tons 

and the  associated volumes of virtual water inflows would range from 3.4 to 7.4 billion 

m3 from the 2030s to the 2050s (data not shown).  

Table 5-14: Virtual water inflows to the UK due to import of feed barley equivalent meat to 
balance deficit.  

Land 
use 

scenario 

Total virtual water inflow from feed barley equivalent meat import (x106 tons) 
2030 2040 2050 

LES MES HES LES MES HES LES MES HES 
BAU 7,851 7,631 7,594 8,443 8,200 7,969 9,041 8,619 8,339 
Mid 8,101 7,898 7,864 8,673 8,448 8,232 9,250 8,854 8,591 

Mid+5 7,956 7,742 7,707 8,520 8,284 8,058 9,090 8,674 8,398 
Mid+10 7,809 7,586 7,549 8,368 8,120 7,883 8,931 8,495 8,206 
Mid+15 7,663 7,430 7,391 8,215 7,956 7,709 8,771 8,315 8,014 
Mid+20 7,518 7,274 7,233 8,062 7,792 7,534 8,612 8,136 7,821 
Mid-5 8,248 8,055 8,022 8,826 8,612 8,407 9,409 9,033 8,784 
Mid-10 8,393 8,211 8,180 8,978 8,775 8,582 9,569 9,212 8,976 
Mid-15 8,539 8,367 8,338 9,131 8,940 8,756 9,728 9,392 9,168 
Mid-20 8,686 8,523 8,496 9,284 9,104 8,931 9,888 9,571 9,361 

 

Note: Green water = 94%; blue water = 6%. 
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5.4 Discussion 

Projections are not meant to forecast or predict the future, especially over long-

time periods when uncertainties become greater, but to offer broad overviews of possible 

future states of what is being projected to serve as input for discussions regarding adaptive 

planning, policy, decisions and actions (Foresight, 2011). However, such projections 

should have a sound basis in past or current knowledge and practices in order to be 

credible. This study offers projections of UK barley production, supply and demand of 

feed barley, as well as the implications for meat supply and food security. 

5.4.1 Future Barley Production and Supply  

Domestic production would likely continue to be a major source of future supply 

of feed barley in the UK. Increase in crop yields will be a key determinant for increases in 

total production of crops in the future (Bruinsma, 2012). However, in spite of the 

projected increase in UK barley yields under projected climate change, land use change 

will largely dictate the final quantity of grain produced (all other things being equal). 

Assuming the current ratio of area of land under barley production to total cropland 

remains unchanged to 2050, then it is likely that policy-driven land use change alone (Mid 

scenario) could reduce the area of land for barley production (under the BAU) by as much 

as 81, 72 and 63 thousand ha respectively in 2030, 2040 and 2050 (Table 5-1). The 

corresponding reductions in total UK barley production would be equally substantial 

(Table 5-2).  
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The plausibility of this situation can be deduced from UK commitments and 

aspirations regarding reductions in greenhouse gas emissions and energy security. The 

Climate Change Act (2008) commits the UK to reduce greenhouse gas emissions by 80% 

from the 1990 baseline level by 2050.  The Climate Change Act (2008) provides a basis 

for policy proposals and reporting of projected greenhouse gas emissions to 2050 for 

carbon budgets for the UK government, the European Union (EU) Monitoring Mechanism 

and the United Nations Framework Convention on Climate Change (UNFCCC) (Thomson 

et al., 2013). The EU Renewable Energy Directive (2009) obliges the UK to have 10% 

share of biofuels in its transport fuel mix and 20% of total energy mix from renewable 

sources by 2020. These obligations will substantially affect agricultural land use futures 

adversely through a suite of policy and legal instruments, financial and tax incentives and 

market signals that, for example, encourage domestic production and constrain imports of 

biofuels (Durham et al., 2012). While there is considerable amount of information on the 

link between biofuels and food prices (e.g. Oladosu & Msangi, 2013; Hochman et al., 

2012; Thompson, 2012 and references therein), there is little information on competition 

for land. Rowe et al. (2009) reported that, to meet projected energy targets, between 2.7 

and 7.0 Mha of land would be required for bioenergy production in the UK by 2050. They 

concluded that land availability will constrain the contribution of biofuel to renewable 

energy targets (Rowe et al., 2009). Figures quoted by Howard et al. (2009) fall within the 

range given by Rowe et al. (2009). The medium term cereal market outlook in the EU 

(European Commission, 2011) indicates that while the land area of cereals is likely to 

remain stable, barley would likely lose about 21% of its land area to other biofuel crops by 

2020. Yang et al. (2009) reported that, depending on the type of feedstock, China would 
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have to allocate 5-10% of its total cultivated land to biofuels in order to meet its 2020 

target. Historically, agricultural land use change in the UK has been driven primarily by 

government policy intervention, with other secondary factors being farm incomes, prices 

and land values (Foresight, 2011; Angus et al., 2009). It is likely, therefore, that there will 

be reductions in the area of UK croplands (and possibly for barley) in future due to 

policies regarding climate change and energy (e.g. Angus et al., 2009; Howard et al., 

2009; Rounsevell & Reay, 2009). 

Short term changes in total barley production due to changes in area of land for 

barley production in future could also arise from non-policy factors, mainly market signals 

(demand, supply and prices of inputs and food commodities) (Huang et al., 2010; Angus 

et al., 2009). In the analysis presented in this thesis, assuming positive signals from non-

policy sources cause a 20% increase over the projected area of land for  barley production 

(and under the MES), the increase in total barley production (relative to BAU) would be 

698, 796 and 939 thousand tons respectively in 2030, 2040 and 2050. Conversely, a 20% 

reduction in the area of land under the Mid scenario (and under the MES) would result in 

reductions of 1.7, 1.8 and 1.9 million tons in 2030, 2040 and 2050 respectively. The 

proportions will be the same for supply of total barley for domestic uses and feed barley. 

Thus, all things being equal, changes in the area of land for barley production will be a 

primary determinant of the total barley production in the UK and, for that matter, self-

sufficiency in feed barley supply in the future. 



187 

5.4.2 Deficits in Feed Barley and Feed Barley Equivalent Meat Supply 

Currently, barley grains constitute approximately 39% of total use of grains for 

feed (with wheat being dominant) in the UK (Table 5-1a). The UK has a high self-

sufficiency rate in barley production and almost all its feed barley supply is produced 

domestically (Defra, 2011). All things being equal, increase in meat demand would result 

in a proportionate increase in animal feed demand and, for that matter, demand for feed 

barley. In the analysis presented in this thesis, the ranges of deficits in future feed barley 

supply under all land use change scenarios and the constant population growth scenario 

(Table 5-9) are substantially greater than current total barley production (Table 5-1a). 

Thus, within the limits of the current study, the UK is likely to incur huge deficits in feed 

barley supply from domestic production under all scenarios of population growth even if 

total domestic barley production is used for feed.  

Whereas future growth in incomes is projected to be the principal driver of meat 

demand (and for that matter animal feed) in industrially advancing countries, population 

growth will be the main driver of meat demand in high income countries (Alexandratos & 

Bruinsma, 2012; Thornton, 2010; de Fraiture et al., 2007). In the current study, even 

though the projected per capita meat demand for UK is high, the absolute increase in per 

capita meat demand from baseline is lower than projections for industrially advancing 

countries such as Brazil, Russia, India and China (Alexandratos & Bruinsma, 2012; 

Bruinsma, 2012; de Fraiture et al., 2007). However, even though per capita meat demand 

stagnates between 2030 and 2050, the projected aggregate UK meat demand and 

associated feed barley demand are high due to increase in population. Under the constant 

population growth scenario, differences between future demand and current feed barley 
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use are 8.0, 8.6 and 9.3 million tons respectively in 2030, 2040 and 2050. The estimated 

feed barley equivalent meat demand for each future time slice and population growth 

scenario (Table 5-8) is greater than the current quantity of meat import (Table 5-1b). It 

must be pointed out that grain feed requirements and feed conversion efficiencies differ 

among animals (Pollock, 2011; Thornton, 2010).  For example, for every unit kcal of meat 

produced, beef cattle require about 5 times the dietary energy required by poultry. Hence, 

differences in the proportions of different meat types demanded might alter the total 

quantity of feed barley demanded in the future. For example, it has been observed that the 

consumption of carcass meat (mainly beef and lamb) is on the decline while consumption 

of poultry, pig and processed meats (or non-carcass meat) is either stable or increasing in 

the UK (Defra, 2013; 2011) and the EU (European Commission, 2011). A similar trend 

has been observed in the USA (Andreyeva et al., 2010). This trend, however, should be 

analyzed within the larger matrix of socio-economic conditions as it is believed that it 

might change with improvements in the economy (European Commission, 2011).  

Components of food have different price and income elasticities. A systematic review by 

Andreyeva et al. (2010) showed that carcass meat of beef and lamb has greater price 

elasticity than poultry and processed meats in the USA and changes in food prices and or 

disposable incomes have direct impact on the consumption of carcass meat. In the case of 

the UK, while the average quantity of carcase meat purchased per household is decreasing, 

the average expenditure on carcase meat is increasing (Defra, 2013). Hence, changes in 

prices of meat (for example, during the food crisis) and household disposable incomes (for 

example, during the economic recession), together with health considerations, might cause 

households to trade down some dietary components (Defra, 2013). Again, while per capita 
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consumption of carcass meat could be declining, aggregate consumption might increase 

due to population growth. These changes will have effect on overall future total meat 

demand and, for that matter, feed barley demand. Poultry meat production, for example, is 

more feed-efficient than beef production. It must also be pointed out that the ranges of 

feed barley deficits here are based on the assumption that the current ratio of feed barley 

to malt barley remains unchanged to 2050. Any change in this ratio will alter the quantity 

of feed barley demand and consequently the deficit.  

It is projected that meat import to Europe will increase substantially in future and 

so will animal feed (Bruinsma, 2012; European Commission, 2011). This is probably 

because while the need for feed use of grains will increase, it is likely that the response to 

demand for bioenergy would be disproportionately higher due to initiatives to achieve 

renewable energy targets (Bruinsma, 2012; Durham et al., 2012; European Commission, 

2011). It is projected that, by 2020, barley will lose about 21% of its total area of land in 

the EU to other biofuel cereals (such as soft wheat and maize) (European Commission, 

2011).  Should this happen, it would have a cascading effect on UK’s import of feed 

grains or meat from the EU and intensify competition on the world market. The question 

is: where will all this barley or feed barley equivalent meat import come from? 

5.4.3 Virtual Water Flows 

Faced with deficits, the UK would have the option to import feed barley, increase 

domestic barley production by expanding the land area for barley production or import the 

feed barley equivalent meat demand. Whereas the UK domestic production of barley is 
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totally rain-fed (green water), barley import would result in blue water inflows to the UK. 

The projected virtual water inflows to the UK through the import of feed barley or the 

equivalent meat in the future would be substantial given the scale of deficits in either feed 

barley or equivalent meat demand.  Blue virtual water inflows, due to import of feed 

barley equivalent meat deficit, would range from 440 Mm3 in 2030 to 579 Mm3 in 2050 

(under the constant population growth scenario). Unlike green water, blue water use is 

said to have high environmental and socio-economic impact (Aldaya et al., 2010a; Hoff et 

al., 2010; Chapagain & Orr, 2009; Yang et al., 2006). However, the environmental and 

socio-economic impact of UK’s imports would vary depending on the location of blue 

water withdrawal and the scale of water stress at that location.  For example, the blue 

VWC of both barley and meat from Spain, where water scarcity is likely to intensify in 

future, was the highest among the exporting nations. It is noteworthy that, according to the 

analysis presented in this thesis, the projected virtual water inflows to the UK, regardless 

of the volumes, is due to land constraint and not domestic water scarcity. Because green 

water use occurs only through land occupation, reallocation of green water saved through 

food import can occur only through changes in land use or crop type. Thus, the UK can 

shift land from feed barley production to, say wheat, which is directly consumed by 

humans and can be used in feed and biofuel production. In that case, the UK can focus on 

production of wheat and malt barley and import feed barley if necessary. Therefore, the 

green water saved from such a shift in land allocation will mean a reallocation of the 

saved green water. 

The mean virtual water content of meat (mainly beef and lamb) used in this study 

is lower than the virtual water content reported in the EBLEX study which assessed the 
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water footprint of English beef and lamb (Chatterton et al., 2010). The differences 

emanate from differences in the models and parameter values used in estimating crop 

evapotransiration and assumptions regarding intermediate water uses (Chatterton et al., 

2010; Hess, 2010). The blue VWC of English beef and lamb in the EBLEX report were 

66.7 and 48.6 m3 ton-1 respectively (Chatterton et al., 2010). This means meat production 

in the UK might be more water efficient and have less environmental impact than 

imported meat.  

5.4.4 Implications for Food Security 

Figure 5-4 is a simplified causal loop diagram (CLD) indicating the most relevant 

interconnections underlying the UK future barley production, demand and supply of feed 

barley and meat, and consequences for food security. A positive sign indicates same 

direction, that is, an increase in one variable leads to a corresponding increase or a 

decrease leads to a corresponding decrease in the other variable to which it is linked. 

Conversely, a negative sign indicates opposite direction, that is, a decrease in one variable 

leads to an increase in the other variable to which it is linked and vice versa.  
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There are two reinforcing feedback loops and one balancing loop in the CLD 

(Figure 5-4). In loop R1, an increase in population and economic welfare (exogenous 

factors) increases the demand for meat and animal products. In response, production 

increases to match supply to demand, which ensures food security. However, this also 

leads to increased feed barley demand, which, in turn, necessitates additional land 

requirements for production in order to deliver adequate supply and maintain high level of 

production. Loop R1 can thus be regarded as resource requirement feedback loop in 

barley production. This loop represents an example of positive feedback self-reinforcing 

process. However, the loop would be prevented from increasing the quantity of each factor 

indefinitely because other factors outside the loop such as total production costs actually 

influence the barley price. The price and availability of substitutes (such as soft wheat and 

Figure 5-4: A simplified causal loop diagram showing the feed barley, meat and food  
security relationships. 
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maize) could lower feed barley demand, just as increased demand for malt barley could 

lower feed barley supply. In lieu of adequate feed barley supply, however, use of 

substitutes could increase meat supply but lower food security by diverting grains for 

direct human consumption. Moreover, should those substitutes be used for bioenergy 

production, food security would also be adversely affected.  

Loops B1 and R2 (market signal loops) consider the profitability of the barley 

production. In the case of B1, the higher the barley production, the more the barley 

production cost is incurred, which negatively influences the barley profitability. Lower 

barley profitability decreases investment in barley production, which, in turn, decreases 

barley production. This is an example of a self-balancing loop, where growth is attenuated 

and checked from within the loop. Such a subsystem would tend to be innately stable. On 

the other hand, R2 shows that increasing barley production positively influences the barley 

profitability. Higher profitability acts as an incentive for more barley investment, therefore 

increasing barley production. This is another self-reinforcing loop. Loops B1 and R2 thus 

operate to control the level of barley production and feed barley supply regardless of the 

scale of demand or land available for production in loop R1.  

The UK Government defines food security as ensuring the availability of, and 

access to affordable, safe and nutritious food sufficient for an active lifestyle, for all, at all 

times (Defra, 2009). According to Newton et al. (2011), the food security status of a crop 

such as barley ought to be assessed in terms of its cultural, political, agronomic and 

economic value. For example, barley has certain end uses (such as malt whiskey 

production) which make it different from other cereals (Newton et al., 2011). Meat and 

animal products (mainly dairy) are a rich source of high value protein and essential 
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micronutrients (iron, zinc and vitamin A) and are therefore key to food security (Foresight, 

2011). As an important source of grain for animal feed, barley plays a crucial role in UK’s 

food security as meat contributes a substantial proportion of daily calories. Hence, given 

the definition of food security adopted in this study and by Defra (2009), the projected 

deficits in UK feed barley supply from domestic production (as a result of land use and 

high demand) has direct, adverse implications for food security.  

All things being equal, the projected large deficits in UK feed barley supply and 

reduction in EU-level production in the future could compel the UK to import feed barley 

or reduce domestic meat production and increase meat imports. Imports (and for that 

matter virtual water inflows) of either feed barley or meat could help ease the threat of 

food insecurity. However, this could expose the UK to the dangers inherent in the global 

grains and meat market. Uncertainties regarding global supply, demand, competition and 

prices of coarse grains and meat would have the potential to undermine the stability of 

UK’s future supplies. The cost of animal feed is rising steadily due mainly to increases in 

prices of cereal grains (Defra, 2011). The cost of feed is projected to remain higher above 

long term EU average due to possible diversion of grains to bioenergy production 

(European Commission, 2011). High feed cost would increase the cost of meat production, 

price of meat to consumers and ultimately influence both the availability and access to 

meat.  Already, the increasing preference for pig and poultry meat over beef and lamb 

across the EU is considered to be a matter of affordability (European Commission, 2011). 

Therefore, if measures are not adopted to address the projected deficits in feed barley 

supply, the availability and economic access to meat could be negatively affected.  
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5.5 Conclusions 

1. Policies regarding food security, climate change and energy are likely to 

be key drivers of agricultural land use futures in the UK. Projected 

maximum area of land for barley production ranged from approximately 

1,134 thousand ha in the 2030s to 1,156 thousand ha in the 2050s.  

2. Total area of land allocated to barley production in the future, together 

with changes in population and per capita meat demand, will be the key 

determinants of UK’s future self-sufficiency in feed barley supply. The 

highest projected total barley production was approximately 9 million 

tons in the 2050s with a corresponding feed barley supply of 4.6 million 

tons. 

3. Within the limits of this thesis, the UK is projected to face substantial 

deficits in feed barley supply (ranging from approximately 7.5 to 9.3 

million tons) from domestic production from 2030 to 2050.  

4.  The projected deficits in feed barley supply indicate possible risks to 

UK’s future food security due to potentially large deficits in feed barley 

equivalent meat supply. 

5. Imports of feed barley or feed barley equivalent meat supply to offset 

food security risks would lead to substantial volumes of virtual water 

inflows to the UK, including blue water. Blue virtual water inflows could 

have high socio-economic and environmental impacts in exporting 

countries depending on the location of withdrawal and the extent of 

water stress at that location. 
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CHAPTER 6 

 
‘AGRI-COMPATIBILITY’: A FRAMEWORK FOR EVALUATING TH E 
ROLE OF VIRTUAL WATER IN WATER-FOOD SECURITY POLICY  

This chapter is based on the paper: Yawson, DO, Mulholland B, Ball T, Mohan S, 

White P (2013). Food security in a water-scarce world: making virtual water compatible 

with crop water use and food trade. Scientific Papers Series “Management, Economic 

Engineering in Agriculture and Rural Development”, 13(2), 431 – 443. E-ISSN 2285-

3952. See Appendix 4 for the full paper. 

6.1 Introduction 

Since its introduction, the term ‘virtual water’ and its associated hypothesis, that 

water-intensive food commodities can be imported from water-rich areas to offset local 

water scarcity in the importing country(Allan, 1998a; 1998b; 2003; Yang et al., 2006; Liu 

et al., 2007b; Aldaya, 2010a), have attracted criticisms and generated debate along two 

main lines. One, on a conceptual level, Merrett (2003a, 2003b) argued that there is nothing 

virtual about virtual water and that the term is redundant as it duplicates the pre-existing 

term crop water requirement. He also argued that use of the phrase virtual water trade is 

misleading as it is not the water that is traded but the food crop. However, Allan (2003) 

refuted Merrett’s view as incomplete as it focused only on the intensive aspect (i.e. water 

and crop production) of virtual water and not on the extensive aspect (i.e. the impact of 

food trade on the water economies of the trading nations and the water policies of water 

deficit economies). Thus, from the extensive (consumption) perspective, virtual water 
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analysis should include the volume of water virtually saved by importing food, which has 

been called theoretical virtual water (Hoekstra, 2003) or water savings (Chapagain & 

Hoekstra, 2008; Chapagain et al., 2006; Yang et al., 2006) or exogenous water (Haddadin, 

2003). Two, on the practical usefulness of virtual water for water management decisions 

and policy, there are suggestions that virtual water suffers conceptual and practical 

limitations. Here, the main questions have been whether water scarcity is the main driver 

of the structure and direction of virtual water flows; and if it is consistent with trade 

theories (see Chapter 2, Section 2.5.2; Ansink, 2010; Ramirez-Vallejo & Rogers, 2010; 

Wichelns, 2010a; 2010b; 2004), or virtual water export can be linked to a specific 

environmental impact category (Ridoutt & Pfister, 2010; Pfister et al., 2009).    

The aim of this chapter is to contribute to, and advance, the debate on the role and 

usefulness of the virtual water concept for informing water-food security management and 

policy decisions. It is argued that the role or usefulness of virtual water in water-food 

security management and policy decisions can be understood by analysing its components, 

which must be conceptually compatible. It is argued that current limitations of the concept 

of virtual water to inform policy arise from the conceptual incompatibility among its main 

components. Therefore, in order to advance the debate, this chapter draws on literature 

and concepts or findings of the previous chapters to promote the concept that ‘agri-

compatibility’ is required to understand the link between water scarcity and food security 

through the movement of virtual water. The objective of this chapter is therefore to present 

the conceptual outlines of ‘agri-compatibility’ (Section 6.2) and a framework for its 

evaluation (Section 6.3).  In Section 6.4, a discussion of the implications of the proposed 
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‘agri-compatibility’ for virtual water analysis is presented and, finally, conclusions are 

drawn. 

6.2 ‘Agri-compatibility’ 

Virtual water has an agronomic (or production) component, which concerns crop-

water use, and a socio-economic (or consumption) component with regard to food security 

and the two are linked by trade. On the production side, the key issue is the consumption 

of a productive resource (water), or the constraint thereof (water scarcity). On the 

consumption side, the key issue is sufficient availability of food (hence, food security). 

The two parts, however, require detailed examination so that the ability to match 

sustainable water use to food security needs, and the role of trade, can be evaluated 

accurately. To achieve this, the two components (water scarcity and food security) should 

be conceptually compatible to justify and strengthen the link provided by virtual water 

(food trade). If this conceptual compatibility is achieved for a given crop, area and time, 

the situation can be referred to as agri-compatible connections among water scarcity, 

virtual water and food security (or simply ‘agri-compatibility’).   

In the context of crop production and food security, ‘agri-compatibility’ refers to 

the condition in which a food crop commodity is imported to fill actual or potential food 

security gaps created by insufficient aggregate water supply from all relevant sources to 

satisfy the water requirements for the production of the given food commodity in the 

importing area. Figure 6-1 is an illustration of the idea of ‘agri-compatibility’. Thus, 

virtual water can be said to be agri-compatible if conditions ‘X’ and ‘Y’ (agri-compatible 
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water scarcity and agri-compatible food imports respectively) are satisfied. Otherwise, it is 

non-agri-compatible (that is, food import is driven by factors other than water scarcity).   

6.2.1 Agri-compatible Water Scarcity 

Depending on the source, there are two main types of water used by crops (as 

defined in Section 1.3.1): blue (from irrigation) and green (from precipitation) (Hoff et al., 

2010; Chapagain & Orr, 2009). The actual or potential use of harvested rainwater by 

direct interception or by collecting runoff, which is at the interface between green and blue 

water (Hoff et al. 2010; Wisser et al., 2010), and desalinated water in crop production has 

not yet been included in these types of water. ‘Agri-compatible water scarcity’ refers to 

the condition where there is insufficient water availability from all relevant sources to 

satisfy the water requirement of a given crop at a particular area and time. This means 

that, to achieve ‘agri-compatibility’, water scarcity should be defined with reference to a 

crop, location and time.  

As pointed out earlier (see Chapter 2, Section 2.2.3.2), current concepts of water 

scarcity focus on blue water availability for human populations and the associated socio-

 
 

 
Figure 6-1: An illustration of agri-compatible connections between water scarcity, virtual  
water and food security. X denotes agri-compatible water scarcity; Y denotes agri- 
compatible food import. Figure adapted from Yawson et al. (2013). 
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economic impacts. They do not adequately capture water availability and use in agro-

ecosystems and are therefore limited when applied to virtual water and food security. 

Available evidence suggests that, on average, green water constitutes over 80% of global 

water use in crop production (e.g. Aldaya et al., 2010a; Hanasaki et al., 2010; Hoff et al., 

2010; Liu & Yang, 2010; Thenkabail et al., 2010; Liu, 2009;  Liu et al., 2009; Rockström 

et al., 2010; 2009; Molden, 2007) although there can be large variations within and 

between countries, as well as between crop types. Consequently, green water dominates 

global virtual water flows (Aldaya et al., 2010a; 2010b; Liu et al., 2009; Chapagain & 

Hoekstra, 2008; Yang et al., 2006; Hoekstra & Hung, 2005). This means that, for water 

scarcity to be meaningful to virtual water and food security analysis, it must account for 

green water available to a target crop. In other words, water scarcity should be analysed 

through agricultural systems and expressed in terms of normal water balance concepts and 

its effect on food security understood by considering the role of the target food crop in the 

water consumption and food balance sheet of the country or region of interest. The main 

conventional indicators of water scarcity fail to capture this fact (Rockström et al., 2010; 

2009; 1999; Oki & Kanae, 2006; Vörösmarty et al., 2005; ; Rockström, 2003; 2001; 

Sullivan et al., 2003; Ohlsson, 2000; Falkenmark et al., 1989), yet, any reference to water 

scarcity is indiscriminately linked to food insecurity. Thus, as shown in Figure 6-1, not 

every type of water scarcity is relevant to or compatible with crop production or food 

security needs. ‘Agri-compatible water scarcity’, therefore, provides insight into the 

contribution of a given food crop to water scarcity in a given crop-producing area at a 

given time, or food insecurity in a given nation or region.  
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6.2.2 Agri-compatible Food Import 

This is the second condition for achieving ‘agri-compatibility’ (Figure 6-1).  Once 

‘agri-compatible water scarcity’ is defined or established, it is possible to assess its effect 

on food security. The gap in food security here then becomes “water-dependent” (Aldaya 

et al., 2010b), necessitating the import of food. ‘Agri-compatible food import’ refers to the 

total amount of food imported to fill actual or potential gaps in food security created by 

insufficient available water from all relevant sources for food crop production (all other 

things being equal). In other words, it is the import of food to fill a gap in food security 

created by agri-compatible water scarcity. Virtual water flows associated with such food 

imports can be referred to as ‘ecological virtual water flows’. While food import generally 

satisfies food security needs, it can only be agri-compatible when it is driven by agri-

compatible water scarcity. Moreover, import of crop commodities for non-food security 

purposes (e.g. biofuel production) will also fall outside the scope of ‘agri-compatibility’ or 

can be referred to as ‘economic virtual water flows’. Thus, making water scarcity agri-

compatible is the key to achieving agri-compatible virtual water which can be more useful 

to the analysis of water-food security policy needs than the current understanding or 

approaches used. Therefore, instead of conflating all food imports in virtual water 

analysis, a distinction between agri-compatible and non-agri-compatible virtual water 

flows will help to clarify the role and usefulness of virtual water for policy in the nexus of 

water and food security.  
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 6.3 A Framework for Evaluating ‘Agri-compatibility’  

The previous section has described the conceptual outlines of ‘agri-compatibility’. 

It has been indicated that ‘agri-compatible water scarcity’ is the primary requirement for 

defining agri-compatible virtual water. A framework for evaluating agri-compatible 

virtual water flows is proposed (Figure 6-2). The base of Figure 6-2 shows the factors of 

agri-compatible water scarcity (crop type, soil, climate and water type). Each factor has 

elements that are relevant for quantifying or analysing agri-compatible water scarcity. 

 

 
Figure 6-2: A framework for evaluating agri-compatible virtual water flows and 

understanding the role of virtual water in achieving food security in a water-scarce area.  The 
base of the triangle shows the factors of agri-compatible water scarcity which limits crop 
production and necessitates food import (virtual water). The apex of the triangle shows food 
security achieved through water-dependent food import. Conversely, food security, achieved 
through virtual water, also affects water availability and impacts the environment in the crop 
production area. * Potential Evapotranspiration. Figure taken from Yawson et al. (2013). 
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Agri-compatible water scarcity should account for the totality of environmental 

water availability (green, blue and other sources) and consumption in relation to specific 

crop water requirement (CWR) at a given crop-producing area and time (for e.g. at a given 

catchment or sub-national scale). The CWR is affected by crop type, climate, soil and 

agronomic practices regarding management of the soil-water-crop continuum (e.g. soil 

water conservation and irrigation practices) (Raes et al., 2009; Barnabàs et al., 2008; 

Shahin, 2003; Allen et al., 1998). Crops can also suffer genotype-specific water scarcity or 

stress under the same production conditions due partly to differences in water use 

efficiency (Anjum et al., 2011a; Barnabàs et al., 2008; Blum, 2005; Sumner & Jacobs, 

2005). The total volume of water consumed by a crop increases with the area of land for 

its production.  The main climatic factor that influences the magnitude of CWR is the 

reference evapotranspiration, which indicates the evaporative demand of the atmosphere 

(Hess, 2010; Raes et al., 2009; Shahin, 2003; Allen et al., 2006; 1998). The type of soil 

and its hydraulic properties also control the amount of water available to crops and surface 

evaporation but this can be influenced by agronomic practices (Raes et al., 2009; Shahin, 

2003). It is proposed that ‘agri-compatible water scarcity’ should capture three key 

elements: (i) quantification of CWR and total water resource available from all sources to 

the given crop to identify gaps in supply, (ii) where irrigation is involved, the use of crop- 

and catchment-specific water scarcity factors to evaluate the contribution of the crop to 

water scarcity, and (iii) the contribution of aridity or drought (from a temporal 

perspective) to crop yield losses and consequently food import. 
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6.3.1 Quantification of Water from Different Sources 

A comparison of CWR and water available to a crop from all sources will reveal if 

there is insufficient water availability to constrain the production of the given crop. In 

most agricultural areas, green and blue water are the main sources of water for crop 

production (Hoff et al. 2010; Aldaya et al. 2010b). However, even though green water 

dominates crop production in most agro-ecosystems (Figure 6-3; Hoff et al. 2010; Aldaya 

et al. 2010b) , green water volumes and consumption are rarely measured (Hess, 2010).  

Even in the arid Middle East and North Africa (MENA) region, which depends largely on 

irrigation, green water could account for 50% of total water consumption by all crops, 

either in rain-fed production or from precipitation over irrigated land (Hoff et al. 2010). 

Rockström et al. (2009) suggested that estimates of the adverse effect of blue water 

scarcity on crop production, even under future climate change, can be significantly 

diminished when green water is properly estimated, sourced and managed. The accurate 

quantification of especially green water availability and use in crop producing areas is 

therefore important in the analysis of agricultural water scarcity.  
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6.3.2 Crop and Catchment Water Scarcity Factors 

Allan (2003) argues that the virtual water concept is both intensive and extensive, 

meaning that it carries implications for water resources availability and management for 

both sites of production and consumption. Estimates of either virtual water flows or water 

footprint are not indicators of any environmental damage or stress. They only quantify 

consumptive use of water, a situation that limits their usefulness for policy. Water scarcity 

is an environmental phenomenon that has biophysical and socio-economic drivers and 

impacts. However, current water scarcity indicators are not only inadequate for gauging 

water availability for agriculture, but they also fail to capture the impact of food 

consumption on water scarcity of production communities. If the analysis of drought must 

be specific to a given crop type or land use to be meaningful and purposeful (Allan, 2000), 

then, similarly, agri-compatible water scarcity must be specific to a particular crop or 

Figure 6-3: Green water use as a proportion of total water use (green + blue) on global  
croplands and pasture (1995-2005 average). Source: Rockström et al. (2009). 
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catchment and time in order to be meaningful and purposeful. By making water scarcity 

specific to a given crop, the contribution of that crop to water scarcity or the effect of 

water scarcity on that crop can be isolated and analysed.  

Pfister et al. (2009) developed a method that uses water stress characterization 

factors to assess the environmental impacts of water consumption. Subsequently, Ridoutt 

& Pfister (2010) applied the water stress characterization factors of Pfister et al. (2009) to 

weight the water footprint of Dolmio™ pasta sauce and Peanut M&M™ produced in 

Australia. In that study (Ridoutt & Pfister, 2010), the location of water consumption at 

each point in the product’s life cycle was defined. However, the water consumption at the 

production phase was equated to the crop water requirement. The water consumption at 

each phase was then multiplied by the relevant water stress factor. The results were then 

linearly summed to produce product-level water footprint. The results showed that while 

the conventional water footprint of Dolmio pasta sauce was less than one-fifth that of 

Peanut M&M’s, the stress-weighted water footprint of Dolmio pasta sauce was over 10 

times higher in magnitude (and for that matter impact) than that of Peanut M&M’s. 

Ridoutt & Pfister (2010) argued that the significance of their study lies in its potential to 

minimize the difficulties associated with partitioning water input into blue and green in 

water footprint accounting, as well as giving a single value that is associated with an 

environmental impact category (water scarcity). This study, however, did not include 

green water on the premise that green water has low opportunity cost and does not 

contribute to environmental flows or directly to water scarcity. Thus, while the work of 

Ridoutt & Pfister (2010) is significant as it creates opportunity for quantifying the specific 

contribution of each product, through its life cycle, to water scarcity at the location of 
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production, it does not fully capture agri-compatible water scarcity. Therefore, a 

calculation scheme for agri-compatible water scarcity factors at crop and catchment levels 

is proposed (Table 6-1).  

A scarcity factor (Cf) =< 1 implies no scarcity; Cf > 1 implies water scarcity. 

Thus, taking Cf = 1 as the threshold for water scarcity, it implies water scarcity 

increases as Cf increases from 1 and vice versa. The development or use of these crop and 

catchment specific scarcity factors is important for the following reasons:  

a) Knowing the crop and catchment water scarcity factors will help match 

crops to catchments in order to save water or reduce the effect of the 

production of a particular crop on a given catchment. This will, in turn, aid 

Table 6-1: A scheme for calculating crop- and catchment-specific water scarcity factors.  

(i) CROP FIELD (ii) CATCHMENT 
Per unit time (t): 
 
BWRi[t] (m3) = (ETc[t] – Peff[t]) x A 
[where ETc ≥ Peff] 
 
Per season: 

BWRi[season] = ∑
=

l

t

tBWRi
1

][   

 

Scarcity factor (Cfi) = 
BWfi

seasonBWRi ][  

 

BWRc[t] = ∑
=

n

i

tBWRi
1

][  

 
 

BWRc[season] = ∑
=

n

i

seasonBWRi
1

][ = TBWR 

 

Scarcity factor (Cfc) = 

∑
=

n

i

BWfi

TBWR

1

 

NOTE:  
(i) BWRi denotes blue water requirement of crop i per unit time (t) (m3); Peff denotes 

effective rainfall or soil water content (mm); ETc denotes crop evapotranspiration (mm); A denotes 
area covered by crop i (m2); BWf denotes the  amount of blue water in  the catchment applied to 
crop i  (m3); l denotes length of crop growing period (days); (ii) TBWR denotes total blue water 
requirement of all crops considered in the catchment (m3); n denotes number of crops considered; 
and c denotes catchment. 
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the analysis of the effect of land cover change on water scarcity in a given 

catchment.  

b) Not all catchments in a country might have agricultural abstractions of blue 

water. 

c) Different catchments will have different scarcity factors with respect to 

agriculture and overall withdrawal; and for different crops grown in the 

catchment. 

d) There can be water scarcity in a particular area without there being water 

scarcity for a particular crop in the same area. Thus, green water 

availability could be sufficient to support the production of some crop(s) in 

a catchment that might be suffering blue water scarcity.  

e) Intra-seasonal dry spells might adversely affect crop yield in a country or 

an area that is not considered as water-scarce in the conventional sense. 

f) The equations also have operational significance as they can be used to 

monitor temporal water scarcity (for only green water, blue water or both) 

at crop, field and catchment scales.  

g) The crop- and catchment-specific scarcity factors can be used in calculating 

crop water footprints and related effects on humans and ecosystems at both 

sites of production and consumption. The virtual water content of a crop is 

similar to its water productivity. In the conventional analysis of virtual 

water, water savings occur in the importing region if the water productivity 

of the given food crop is less than that of the source of import (Yang & 

Zehnder, 2007; Yang et al., 2006). Such water savings can be a 



209 

justification for promoting import of the given food crop from the given 

source of import.   However, a comparison of the crop or catchment water 

scarcity factors between the two trading regions could suggest that greater 

environmental damage is done due to greater water scarcity factors at the 

source of import. 

6.3.3 Aridity and Drought 

Numerical indices of aridity (obtained as the quotient of precipitation and PET) 

describe the extent of dryness of the atmosphere of agro-ecosystems (Rockström et al. 

2010). Arid agro-ecosystems (where PET substantially exceeds effective rainfall) are 

characterized by high spatial and temporal variability of rainfall and frequent drought or 

dry spells (Rockström et al. 2010). There is therefore a high potential for physical water 

scarcity in such environments. Drought is a temporary shortage of water, over periods of 

months to years, due to below-normal precipitation (Dai, 2011). Within a growing season, 

crops can suffer water stress due to agricultural drought (or dry spells) even in the absence 

of meteorological drought (Dai, 2011), a situation that is common in many rain-fed crop 

production systems (Barnabàs et al., 2008; Gardner & Gardner, 1983; Boyer, 1982). 

Depending on the timing and intensity, dry spells can ultimately impair crop growth and 

yield if not addressed in a timely manner. Drought is a complex abiotic stress and difficult 

to predict because of the interaction of multiple factors related to crop, climate, soil and 

agronomic practices (Richards, 2006; Blum, 2005). Assessment of the effects of drought 

on yield is further complicated by the varying effectiveness of different crop response and 
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adaptive mechanisms, the time of incidence in the crop cycle and the severity of the 

drought (Blum, 2005). Aridity and drought increase CWR and the need for irrigation. 

Thus, imports of water-intensive food crops might help save scarce blue water in arid 

countries. Similarly, Allan (2000) argues that the virtual water concept is particularly 

effective and efficient in addressing progressive and occasional local agricultural 

drought. Drought can compel a relatively water-secure economy to restrict food export or 

increase food import in order to maintain food security. Therefore, in a temporal sense, 

agri-compatible water scarcity should incorporate the role of aridity and drought in 

creating crop-specific water stress at a particular area and time and, thereby necessitating 

food import. This provides a more rigorous basis for evaluating the significance of virtual 

water for water-food security. 

The role of aridity in understanding agri-compatible virtual water flows can be 

illustrated using cereals, which have the largest water use in global crop production (de 

Fraiture & Wilchens, 2010) and are the most traded crop commodity (de Fraiture & 

Wilchens, 2010; Hoekstra & Chapagain, 2008; Chapagain et al., 2006; Yang et al. 2006). 

In the year 2000, for example, cereals accounted for 57% of total crop water use in the 

world (over 7000 km3) and over 70% of total crop water use in the MENA region (Figure 

6-4). The aridity of the MENA region largely accounts for the high irrigation water 

requirement of cereal production (de Fraiture and Wilchens, 2010; Allan, 1998a; 1998b), 

giving rise to agri-compatible water scarcity. Cereals constitute the largest food import to 

the MENA region. According to de Fraiture & Wilchens (2010), in 2000, Egypt alone 

imported 8 million tonnes of grains from the USA. As a result of the grain import, Egypt 

saved 8.5 billion m3 blue water which could have been used to produce the imported 
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grains (de Fraiture & Wilchens, 2010). The analysis of Allan (1998a; 1998b) suggests that 

import of cereal grains (especially wheat) to the MENA region serves the purpose of 

water-dependent food security as water availability for cereal crop production is limited 

substantially by aridity and competition.  

 

 
 

 
Figure 6-4: Top: total water used for crop production in the world and selected major  
crop production regions in the year 2000. Bottom: total water used by cereals as a  
percentage of total crop water used in the world and selected major crop production areas  
in 2000. MENA, CAEE and SSA denote Middle East and North Africa, Central Asia and  
Eastern Europe, and Sub-Saharan Africa respectively.   Data taken from de Fraiture  
& Wilchens (2010). 
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6.4 Discussion 

A number of factors (economic, ecological, technical, political and socio-cultural) 

operate singly or in combination to limit or enhance crop production in a particular 

geographic region, resulting in the creation of surpluses or deficits in food production 

across space and time. Food commodity trade enables the transfer of food from regions 

with food surplus to regions with food deficits. Trade theories such as the Heckscher-

Ohlin theorem or the Ricardian comparative advantage suggest that trading a commodity 

invariably constitutes an indirect trade of the factors or resources consumed in the 

production of that commodity (Ansink, 2010; Hakimian, 2003; Krugman & Obstfeld, 

1991). Hence, in the context of trade theories, the virtual water concept has been 

interpreted and reduced to relative water endowments between trading nations. Trade 

theories, such as comparative advantage and opportunity cost, have therefore been used or 

proposed as tools for testing the virtual water concept or evaluating its usefulness for 

policy (Ansink, 2010; Wichelns, 2010a; 2010b; 2004; Hakimian, 2003; Allan, 1999).  

Just like any commodity, food is produced with several productive factors 

including water. However, when the availability of a particular resource such as water 

becomes the main constraint to the production of a commodity, such as a food crop, the 

effects of the resource scarcity can be isolated and analyzed to identify solutions. Even in 

conventional trade analysis, single factor and single commodity analysis is common 

(Ansink, 2010; Krugman & Obstfeld, 1991). Hence, scarcity of water can be considered as 

a main resource constraint to food production or food security in certain areas and, by 

isolating the resource problem, virtual water proposes a possible solution for food security 

in water-scarce areas. However, just as for industrial commodities, applications of trade 
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theories to virtual water analysis have largely exhibited the Leontief Paradox where 

relatively water-rich countries import crop commodities from relatively water-poor 

countries ( Seekell et al., 2011; Ansink, 2010; Ramirez-vallejo & Rogers, 2010; Verma et 

al., 2009; Kumar & Singh, 2005; Lant, 2003; Earle, 2001) and sometimes lead to the 

conclusion that the virtual water concept has limited use for policy (Ansink, 2010; 

Wichelns, 2010a; 2010b). Moreover, both water (as a productive resource) and food do 

not bear a true economic cost to the consumer (Allan, 2003; Hakimian, 2003), a situation 

that further confounds any economic (or cost-based) analysis.  

‘Agri-compatibility’ can help explain why the application of trade theories to 

virtual water analysis has largely yielded poor results and diminished the usefulness of the 

virtual water concept for policy. As suggested by Hakimian (2003), analysis of the virtual 

water hypothesis is sensitive to the definition and measurement of water employed.  Using 

‘agri-compatibility’ would mean distinguishing between areas that suffer agri-compatible 

water scarcity from others and distinguishing between agri-compatible food imports from 

other food imports. Thus, using conventional water scarcity renders the analysis 

incompatible with the virtual water concept. The ‘agri-compatibility’ framework also 

supports the suggestion that, if properly applied, the virtual water concept can be useful in 

informing optimal design of water right systems, management and policy decisions on 

agricultural water use (El-Sadek, 2011; Aldaya et al., 2010b; Brown et al., 2009). 

The requirements for the application of the ‘agri-compatibility’ framework will 

differ depending on geographic area or scale of analysis, crop production system (rain-fed 

versus irrigated systems) and time. A dynamic application of the ‘agri-compatibility’ 

framework will show its usefulness. For example, in the case of UK barley production, the 
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results in Chapters 3 and 4 generally showed that rainfall is and will be sufficient to 

support barley production. In that case, the projected barley imports by the UK (Chapter 

5) will not be due to water deficit limiting barley production but by other factors. The 

virtual water inflow associated with such barley imports would not be agri-compatible as 

it will not be driven by agri-compatible water scarcity. The UK can, however, use the 

‘agri-compatibility’ framework (crop or catchment specific water scarcity factors) to 

import barley sustainably from where barley production does not contribute substantially 

to water scarcity. Conversely, the results in Chapter 4 also showed that future UK regional 

barley yields could also be reduced substantially (see Tables 4-6 to 4-8) due to water 

deficits (in combination with heat stress). In that case, the water-limited yield would raise 

the UK barley imports and render the associated virtual water inflows agri-compatible. 

This shows that both water-rich and water-scarce countries can use the ‘agri-compatibilty’ 

framework to inform water-food security management and policy decisions in the context 

of climate change and over varying temporal scales. 

‘Agri-compatibility’ requires a re-statement of the virtual water hypothesis to aid 

clarity in interpretation and application. That is, through the instrument of food import, 

agri-compatible water-scarce areas can maintain food security and allocate water 

virtually saved to alternative uses. The implication is that ‘agri-compatibility’ shifts the 

focus of virtual water analysis or discussion from mere quantification of virtual water 

flows or water endowment (static or permanent water scarcity) to understanding the 

spatio-temporal dynamic relationships in the continuum of water availability, crop water 

use and import of food crop commodities, and how these interact over space and time to 

affect water resources and food security. This shift in focus makes the virtual water 
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concept relevant for both rain-fed and irrigated production systems, as well as for both 

water-poor and water-rich agro-ecosystems. It also exposes the importance of green water 

in water-food security and policy. The shift in the focus of virtual water analysis is 

consistent with the suggestion that, to ensure food security in the face of water scarcity, a 

hydro-centric view is not sufficient for policy and that there is the need to integrate food 

production and consumption into frameworks for water management and policy 

(Brichieri-Colombi, 2004).  ‘Agri-compatibility’ combines the intensive and extensive 

dimensions of virtual water to provide a more rigorous basis for evaluating the usefulness 

of virtual water to inform management and policy decisions on water-food security. It 

adds to the call for a paradigm shift in water resources management towards accurate 

measurement or estimation, dynamic monitoring and effective management of green water 

availability and consumption in crop production areas (Hess, 2010; Rockstrom et al., 

2010; 2009). Roth & Warner (2007) suggested that, for nations faced with food insecurity 

induced by water scarcity, virtual water is a key component of a wider palette of policy 

choices. ‘Agri-compatibility’ expands this suggestion and clarifies the role and usefulness 

of virtual water for water-food security in both water-scarce and water-rich economies as 

demonstrated using results from Chapters 3, 4 and 5.  

6.5 Conclusions 

a) The ‘agri-compatibility’ framework uses the fundamental and dynamic 

relationships among water availability, crop water use and food import to 



216 

clarify the role and utility of the virtual water concept in water-food 

security and policy. 

b) For virtual water to be agri-compatible, two conditions must be met. One, 

water scarcity ought to be compatible with water availability and 

consumption in crop producing areas (i.e. agri-compatible water scarcity). 

Two, food crops that suffer agri-compatible water scarcity are imported to 

fulfill water-dependent food security needs (i.e. agri-compatible food 

import). 

c) Establishment of agri-compatible water scarcity is the key requirement of 

making virtual water agri-compatible. 

d) Agri-compatible water scarcity has three main elements: accounting for 

water available to crops from all possible sources, use of crop and 

catchment-specific water scarcity factors to show the scale of crop and land 

use effect on local hydrological system and, finally, a consideration of the 

effects of aridity or drought on crop-specific water stress and yield that 

necessitate food imports. 

e) While all food imports serve, to a considerable extent, food security 

purposes, not all can be agri-compatible. 

f) Countries, such as the UK, can use the framework to support or inform 

decisions and policies on sustainable food production and trade, especially 

in the context of projected climate change.  
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CHAPTER 7 
 

SYNTHESIS, CONCLUSIONS AND RECOMMENDATIONS 

7.1 Introduction 

Demand for food is projected to increase substantially in the next four decades 

(Alexandratos & Bruinsma, 2012; Foresight, 2011). Due to the interlocked relationship 

between water availability and crop production, projected climate change and water 

scarcity pose a direct threat to future food security across varying spatio-temporal scales. 

Food trade can play a key role in ensuring food security at times when water stresses limit 

the yields of food crops substantially. However, the magnitude and direction of future 

food trade and its impact on water resources and food security, rationalized in the ‘virtual 

water’ concept (Allan, 1999; 1997), require a detailed examination of the local 

environmental water availability to crops to inform policy and management decisions. The 

overall aim of this thesis was to improve understanding of the relationship between future 

crop-water availability, crop production and food trade and how their interactions will 

impact water resources and food security, using the UK as a model country and barley as a 

model crop. The key findings and emergent issues of the thesis are synthesised in the 

sections that follow. 
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7.2 Synthesis 

7.2.1 Predicted Barley Water Use Differs Between Models But Not Among Genotypes  

This thesis has shown that, within the same production environment and under 

adequate soil water supply conditions, the barley genotypes studied might not differ 

substantially in their patterns or quantities of water consumption (Chapter 3, Figures 3-

3a,b,c, 3-4). This observation was consistent for all the three models used (AquaCrop, 

CropWat and WaSim). Canopy temperature profiles of the genotypes (which can be a 

proxy for ETc or water stress, Leinonen & Jones, 2004) also did not show substantial 

variation among the genotypes studied (Figure 3-5). The similarity in water consumption 

patterns among barley genotypes in the presence of adequate soil water supply has been 

observed in other environments (e.g. González & Ayerbe, 2011; Alderfasi, 2009). The 

similarity in water use found in this thesis was attributed to the similar abilities of the 

genotypes to acquire water from the soil. This is consistent with the findings of Alderfasi 

(2009) and McKenzie et al. (2009). The climate change simulation study also shows that 

green water availability will be sufficient for future barley production (Chapter 4, Figure 

4-4). 

However, the predicted seasonal water use of barley can differ substantially 

between models. This thesis has shown that CropWat can underestimate the water use of 

barley genotypes (Figure 3-4, 3-7). CropWat also performed poorly, according to the 

RMSE and D-Stat values, compared with AquaCrop and WaSim (Table 3-5). The data 

presented in this thesis (Figure 3-4, 3-7) suggest that CropWat might not be an appropriate 

model for quantifying the virtual water content (or flows) of crops in northern temperate 
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environments, or indeed the world. This observation has been made previously by Hess 

(2010) and Chatterton et al. (2010). Models can give different results due to differences in 

their structure and underlying assumptions. Apart from its ease of use, CropWat has 

limitations that make it unsuitable for estimating crop water use over larger spatial scales. 

CropWat uses a fixed rate of change in the crop coefficient (Kc, the crop-specific 

coefficient that relates to the crop’s soil water depletion potential, Allen et al., 1998) with 

time even though ETc actually varies over short time scales with weather or ETo, canopy 

cover and alternating wetting and drying of the soil surface. Further, CropWat is limited 

by its use of the effective rainfall method and its inability to separate water depletion at 

different depths in the soil, which can affect the accuracy of blue water requirement (Hess, 

2010). The development of AquaCrop was partly informed by these deficiencies in 

CropWat (Raes et al., 2009). The poor performance of CropWat in this thesis has 

implications for the wider use of CropWat in estimating the virtual water content and 

flows of crops at a global scale. Specifically, poor estimates of green water use of crops 

will have a cascading effect on the estimates of blue (irrigation) water requirement and, 

consequently, the perception of water scarcity in crop producing areas. There is the need, 

therefore, for best estimates of green water availability and consumption for different 

crops in different crop producing areas, based on best or most suitable models, to inform 

decisions or discussions on water scarcity and food security at large spatial scales.  
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7.2.2 UK Barley Yields are Projected to Increase under Climate Change  

The results of the simulations described in Chapter 4 show that projected spring 

barley yields are substantially greater than the yields in the baseline period in all UK 

regions, time slices and under all emission scenarios (Figure 4-9). The greatest increase in 

yields occurs under the high emission scenario (HES) in the 2050s and the magnitude of 

the projected yields is considered as plausible. This finding suggests that climate change 

will likely have a net positive effect on barley yields in the UK and probably northern 

temperate environments. This finding is consistent with similar studies using barley in 

Denmark (Clausen et al., 2011), Finland (Rötter et al. 2011), Germany (Manderscheid et 

al., 2009), Ireland (Holden et al., 2003) and Norway (Sæbø & Mortensen, 1996), or wheat 

in England and Wales (Richter & Semenov, 2005), Norway  (Sæbø & Mortensen, 1996) 

and Europe (Semenov & Shewry, 2011).  

This thesis has also shown that elevated atmospheric CO2 concentrations 

([CO2]atm) can substantially explain the variations in projected UK barley yields. Elevated 

[CO2]atm  explained 30–80% of variations in projected yields of UK regions under all 

emission scenarios and time slices, and 30–50% of variation in projected UK yields (Table 

4-9). While the direct effect of changes in individual climatic factors on crops can be 

readily understood, it is not clear what the net effect of their interactions, together with 

elevated [CO2]atm, would be. The findings in Chapter 4 suggest that elevated [CO2]atm 

would be important in reducing the effect of warmer temperatures and rainfall variability, 

as well as raising yields of barley across the UK. This potential role of elevated [CO2]atm 

in northern temperate environments has been reported in previous studies (Rötter et al., 

2011; Richter & Semenov, 2005; Holden et al., 2003). Similar observations have been 
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made in China (Erda et al., 2005). While elevated [CO2]atm might have several positive 

effects on C3 crops (Burkart et al. 2011; Robredo et al. 2011; 2007), more studies are 

required to understand its effects on crops over long time durations of exposure to inform 

adaptation planning. This is because acclimation to elevated [CO2]atm can reduce the rate 

of photosynthesis to a level equal to or lower than the rate under ambient conditions (Erda 

et al., 2005; Tang & Liren, 1998).   

The results described in Chapter 4 also show that projected rainfall under all 

emission scenarios (Figure 4-4), regardless of the reductions from the 2030s to the 2050s 

and from the LES to the HES, will be sufficient for UK barley production. Generally, a 

reduction in ETc (Figure 5-4), as well as improvement in water productivity, was observed 

from the 2030s to the 2050s and from the LES to the HES. This confirms the belief that 

projected changes in temperature and elevated [CO2]atm might increase radiation use 

efficiency, water use efficiency and photosynthesis in C3 crops assuming there is no 

severe water stress and nitrogen is not limiting (Robredo et al. 2011; 2007; Manderscheid 

et al., 2009). In this thesis, water stress was rare but soil fertility stresses were not 

considered in the simulations. It has been reported, however, that nitrogen stress could 

substantially reduce the positive effect of elevated [CO2]atm on crops (Erda et al., 2005). 

This indicates, regardless of models used, a need for future studies to incorporate an 

improved understanding of the effect of climate change and elevated [CO2]atm on nitrogen 

dynamics and acquisition from soil by different crops in different environments. This is 

particularly important for barley as grain nitrogen content is a key determinant of quality 

for either animal feed or malting (Robredo et al., 2011).  
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In this thesis, even though water stress was only occasionally encountered among 

the model variants, it still constitutes a potential risk to stable barley yields, especially in 

the East and South East English regions. Other important sources of risks identified 

include heat stress and saturated soil conditions (Section 4.4.3, Figure 4-11a, b). While 

barley can tolerate soil water deficit well, it can be vulnerable to heat stress in spite of 

elevated [CO2]atm (Clausen et al., 2011; Rötter et al. 2011). The adverse effect of heat 

stress on C3 crops has been emphasized in previous studies (e.g. Clausen et al., 2011; 

Rötter et al. 2011; Semenov & Shewry 2011; Richter & Semenov 2005; Fuhrer, 2003). In 

this thesis, however, anaerobiosis stress was found to be an equally important source of 

potential risk to barley yields (Section 4.4.3). Thus, future management of soil water 

should not be aimed at minimizing only the risk of deficit but also the risk of excess 

supply. In all, this thesis has shown that barley will remain a viable rain-fed crop in the 

UK under projected climate change.  

7.2.3 Land, Not Climate Change, Will Limit UK Barley Production Capacity 

This thesis has shown that UK barley production capacity will be constrained by 

reductions in the area of land allocated to barley production (Chapter 5) but not by climate 

change or water scarcity (Chapter 4). The large deficits in UK future feed barley supply 

suggested in Chapter 5 arise from projected reductions in the area of croplands in general 

and barley in particular in the face of increased demand due to increase in population and 

per capita demand (Tables 5-2, 5-7, 5-8). Feed barley demand increases by approximately 

8.0 million, 8.6 million and 9.3 million tons in 2030, 2040 and 2050 respectively over that 
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in the baseline period (Table 5-1a, 5-8). Thus, the expected increase to satisfy projected 

demand is approximately three times the quantity used in the baseline period. Using barley 

yields under the HES (Chapter 4, Tables 4-6, 4-7 and 4-8), approximately 1.7 million ha 

of land will be required from 2030 to 2050 to meet the projected feed barley demand 

(Table 5-8). This implies additional 700 thousand ha of land over current area of land 

under barley production will be required by 2050 if the UK is to maintain a 100% self-

sufficiency rate in feed barley supply (assuming total domestic barley produced is 

allocated to feed). Additional land would surely be required to produce malt barley (as a 

competitive end use) or wheat (as either a complementary or substitute feed grain). The 

question remains whether the UK would be able to allocate sufficient land for the 

production of barley or find alternative means to address the deficit.   

In 2011, total agricultural land in the UK (including common rough grazing) was 

18.3 million ha (Defra, 2011). Total utilized agricultural area (UAA, comprising arable 

and horticultural crops, uncropped arable land, common rough grazing, temporary and 

permanent grassland and land used for outdoor pigs) was 17.2 million ha, representing 

70% of total land area in the UK (Defra, 2011). Of this, arable cropping accounted for 

36%, distributed according to Figure 7-1. Of the cereals, wheat covered nearly 2.0 million 

ha (64%) whereas barley occupied 970 thousand ha (31.5%). Uncropped arable land 

(including uncropped set-aside land and all other arable land not in production, such as 

wild bird and game cover and land managed in Good Agricultural and Environmental 

Condition – GAEC12) was 156 thousand ha. Contrasting the current land use with the 

projected land requirement for barley, it becomes clear that it would be difficult to 

increase barley production through expansion of cropped area.   
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Croplands are projected to decrease not only in the UK (Thomson et al., 2013; 

Angus et al., 2009; Rounsevell & Reay, 2009) but also across the EU (European 

Commission, 2011; Rounsevell et al., 2006) and the industrialized countries 

(Alexandratos & Bruinsma, 2012). As a result, it has been projected that, by 2050, the 

global area of cereals could suffer a net reduction of 28 million ha after adjusting for 

expansion in other regions (Rosegrant et al., 2008). Analysis of the current global agro-

ecological zones data suggests that the net balance of global prime and good arable land 

potentially available for agricultural expansion is about 1.4 billion ha, of which 960 

million ha are located in developing countries (Alexandratos & Bruinsma, 2012; Fischer et 

al., 2011). Africa and Latin America account for 450 and 360 million ha respectively 

(about 85%) of the 960 million ha located in developing countries (Alexandratos & 

Bruinsma, 2012; Fischer et al., 2011). There is almost no prime or good arable land 

 
 
 

 
Figure 7-1: Distribution of total croppable land area in 2011. Figure taken from Defra  
(2011). 
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remaining in many countries in the Near East and North Africa, South Asia, Central 

America and the Caribbean (Alexandratos & Bruinsma, 2012; Fischer et al., 2011). This 

suggests that the UK, like many industrialized countries, might face land scarcity for crop 

production, which occurs when more than 60% of a country’s prime and good arable land 

is actually cultivated (Alexandratos & Bruinsma, 2012). Moreover, because agriculture is 

the dominant land use in the UK (Angus et al., 2009; Rounsevell & Reay, 2009) and 

Europe (Audsley et al., 2006), changes in land use in the interest of climate change 

mitigation and energy security policy goals will likely affect crop production. In all, the 

potential land scarcity found in this thesis agrees with the conclusion of the Foresight 

Regional Case Studies R1 (the UK in the context of North-West Europe) that the most 

plausible effect of land use changes in the UK would be a net reduction in the area of 

croplands and production penalties (Pollock, 2011). Although allocation of land to a 

particular crop will be dictated by interaction of policy, profitability and domestic 

imperatives, this thesis has shown that projected reductions in land allocation to barley, 

rather than climate change, will be the key constraint to UK’s future barley production 

capacity and self-sufficiency rate in feed barley supply.   

7.2.4 Risk of Deficits in Feed Barley or Meat Supply   

This thesis has shown that the UK faces risks of large deficits in feed barley and 

meat supply from the 2030s to the 2050s (Table 5-9, 5-10). The projected deficits in feed 

barley supply range from 7.2 to 9.8 million tons (Table 5-9) while the projected deficits in 

feed barley equivalent meat demand range from 1.7 to 2.4 million tons in the 2050s (Table 
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5-10). The deficit in meat supply is due to projected increase in population and per capita 

meat demand (Table 5-7) in combination with reductions in the area of land allocated to 

barley production (Table 5-2). Meat constitutes an important component of the UK diet or 

food balance sheet (FAOSTAT, 2009). However, aggregate meat production in the UK 

already lags behind aggregate demand, resulting in the import of 2.4 million tons of meat 

largely from the EU (Table 5-1b; Defra, 2011; FAOSTAT, 2009). This means the UK 

consumes the bulk of its locally-produced meat.  

On the balance of such supply deficits and land constraint found in this thesis, the 

UK might have to rely on increased imports of either feed barley or meat to offset the 

deficits. The questions that need to be addressed are (1) where the imports will come from, 

(2) what the security of supply will be and (3) what will be the cost implications for 

domestic production and the consumer. First, the area of barley is likely to reduce in the 

EU in favour of biofuel grains (European Commission, 2011) and meat import to Europe, 

as well as animal feed, is projected to increase substantially in the future (Bruinsma, 2012; 

European Commission, 2011). This suggests uncertainties regarding the ability of 

traditional sources of imports to generate substantial surpluses (after satisfying their 

domestic demand) to sustain exports to the UK in future. Second, EU-level biofuel 

production might intensify competition for grains that can either substitute or complement 

feed barley unless second generation biofuel technologies become operational. Third, 

sustainability and regulatory pressures on livestock production in the EU might intensify 

to reduce the environmental footprints of meat production and consumption (Foresight, 

2011). Fourth, globally, potential yield gains from climate change in notably northern 

temperate regions might be neutralized by losses in other regions (Alexandratos & 
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Bruinsma, 2012; Foresight, 2011; Rosegrant et al., 2008; IPCC, 2007). Finally, overall 

global area of cereals might reduce substantially (Rosegrant et al., 2008) while feed use of 

grains might also increase substantially in developing countries (Alexandratos & 

Bruinsma, 2012; Kruse, 2011), suggesting a potentially tight grains market. Overall, given 

the socio-economic importance of barley, it is likely that the UK would respond through 

appropriate domestic adjustments to moderate the risk of large deficits and its cascading 

effect on meat production. Such a response would help the UK contribute to future global 

food security substantially. 

7.2.5 Rethinking Water Scarcity and Food Security 

This thesis has argued that the conventional concepts of water scarcity (which are 

essentially based on the socio-economics of blue water supply) are not compatible with 

water availability and consumption in crop producing areas (Chapter 6, Section 6.2.1). To 

address this deficiency, the concept of ‘agri-compatible water scarcity’ was introduced 

and elaborated in Section 6.2.1. Due to the predominance of green water in crop 

production, it is appropriate to quantify the totality of water availability and consumption 

from all sources by a given crop at a given area and time. By so doing, water scarcity is 

rendered compatible with a specific crop over a given spatio-temporal scale. Throughout 

this thesis, it has been shown that green water is and will be sufficient, even under climate 

change, for barley production in the UK. It will not be exaggerating to extend this finding 

to the production of cereals in northern temperate environments.  
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The spatio-temporal scale in agri-compatible water scarcity is important as yield-

limiting crop water stress can occur over either short time periods (within the crop 

growing season) or long time periods (due to meteorological drought) even at a 

conventionally water-rich location. It makes a difference when one says there is drought 

or water shortage in the UK, or in England or in South-East England. Similarly, potato and 

barley in the same environment will make different demands on water and respond 

differently to different degrees of soil water deficits. While at the moment, using a specific 

water scarcity indicator, the UK or a part thereof might be considered water-scarce, such 

water scarcity might not be entirely agri-compatible. For example, only about 2% of total 

UK water withdrawal is allocated to irrigation, mainly horticulture, in the driest parts of 

England and Wales (Knox et al., 2010; 2009; Weatherhead & Howden, 2009; 

Weatherhead, 2008) where water scarcity issues are prominent (Charlton & Arnell, 2011). 

This suggests that demand for irrigation water during summer droughts in these parts of 

the UK can have profound localized effect on water resources and crop production (Hess 

et al., 2011). Agriculture (largely cattle production) accounts for about 0.2% of blue water 

withdrawal in Scotland (Moran et al., 2007). Hence, discussions on UK water scarcity and 

food security (or any other country) ought to be crop- and location-specific in order to be 

agri-compatible and meaningful. Moreover, water scarcity due to socio-economic 

constraints (economic water scarcity,) has little or nothing to do with food production as 

this type of water scarcity is caused by low investments in water resources development 

and not by agricultural withdrawals (Rijsberman, 2006). Therefore, the idea of agri-

compatible water scarcity and the calculation scheme proposed (Table 6-1) to quantify 

crop- or catchment-specific water scarcity opens up opportunities for analyzing or 
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thinking about the effect of crop production on water scarcity and vice versa. Use of agri-

compatible water scarcity will reveal the true extent of the effect of water scarcity on the 

production of specific crops or vice versa in a given area and time. This shows a need to 

match crops to suitable environments according to their physiology, water requirements 

and root systems to allow them to exploit water and nutrients in the soil effectively and 

efficiently. Agri-compatible water scarcity therefore draws attention to the need to 

incorporate soil and green water management in an integrated framework for water-food 

security and policy.  

7.2.6 Rethinking the Role of Virtual Water in Policy 

The concept of virtual water will continue to attract conflicting views regarding its 

relevance for policy. Progress in this debate might depend on defining what ‘policy’ is 

being considered, what are its goals and requirements and at what spatio-temporal scale it 

is being considered in order to determine the fitness of applying the concept of virtual 

water to a specific problem. Hitherto, these have been the missing elements in the debate 

which is too focused on water resource endowment or policy at national scale (Roth & 

Warner, 2007). In Chapter 6, it was shown that the primary purpose of food import is to 

serve food security needs, whereas savings in virtual water are only a secondary benefit 

(Figure 6-1, Section 6.2.2). However, food import can be necessitated or driven by several 

factors including water scarcity (Ramirez-vallejo & Rogers, 2010; Verma et al., 2009; 

Roth & Warner, 2007). In the context of water scarcity, the proposed ‘agri-compatibility’ 

framework (Figures 6-1 and 6-2) can be used to analyze or understand the role of food 
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trade in ensuring food security and mitigating the effect of water scarcity on food security 

in the importing economy, as well as the effect on the water resources of the exporting 

economy. In the context of agri-compatibility, food import should be driven mainly by 

agri-compatible water scarcity and should serve water-dependent food security. Thus, the 

proposed agri-compatibility addresses or harmonizes the conflicting views by combining 

both the intensive and extensive dimensions of the virtual water concept (Allan, 2003).  

It was argued in Section 6.4 that the application of economic or trade theories to 

the virtual water concept in order to explain the structure and flow of virtual water is 

inappropriate and would often yield undesirable result because both water (as a productive 

resource) and food do not bear a true economic cost or value. Moreover, whatever cost or 

value attached to water and food, and conditions of access to water for food production, 

will differ considerably between nations and over time. Further, food production or trade 

serves one or more of cultural, socio-economic and political purposes, which are 

consistent with food security goals (McIntyre et al., 2009). Consequently, it is not 

surprising that the application of trade theories based on relative water endowments to 

virtual water often does not yield the desired results (Seekell et al., 2011; Ansink, 2010; 

Ramirez-vallejo & Rogers, 2010; Wichelns, 2010a; 2010b; Verma et al., 2009). 

Agri-compatibility essentially shifts the focus of the policy debate from water 

(hydrocentricity, Brichieri-Colombi, 2004) to food security goals by strengthening the 

practical and conceptual relationship between water availability and crop production. It 

enables the identification and quantification of water resource constraint to food 

production and the consequent import of food as a basis for distinguishing between agri-

compatible and non-agri-compatible food import (or ecological and economic virtual 
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water flows, respectively). Moreover, it introduces a temporal aspect to virtual water 

analysis which is important with regard to crop production. That is, the virtual water 

concept could be temporarily applicable to a relatively water-secure economy in the event 

of, say, a severe drought. In that case, positive application of the virtual water concept 

becomes instrumental in transitioning from food insecurity to food security, a situation 

that has hitherto been neglected in virtual water analysis (Allan, 2003). Agri-

compatibility, therefore, narrows and focuses the scope of application of the virtual water 

concept in order to expose its usefulness to water-food security policy. The agri-

compatibility framework can be used to analyze the role of, or effect of water scarcity on a 

crop, the main driver of food import and the effect of food import on the water resources 

of the exporting economy.  

7.2.7 Implications for Food Security and Policy 

In this thesis, food security was defined as “the risk of adequate food not being 

available” (Chakraborty & Newton, 2011; Newton et al., 2011). This thesis has shown 

that the UK faces the risk of large deficits in feed barley supply (Table 5-9) with a 

cascading effect on domestic meat production. Because meat constitutes a substantial 

source of calorie and nutrients in the UK diet (FAOSTAT, 2009), the projected shortfall in 

feed barley and meat supply will clearly have an adverse effect on food security. Altering 

demand for food in a consumerist-oriented world is difficult but not impossible (Gerbens-

Leenes et al., 2010; Ingram et al., 2010; Kearney, 2010). Food demand and consumption 

levels can be altered through a suite of policy, legal and market instruments, as well as 
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public educational campaigns aimed at desirable behavioural changes (Gerbens-Leenes et 

al., 2010; Kearney, 2010). For example, efforts can be made to keep per capita meat 

demand well below projected levels, ensure efficient use of meat or alter the composition 

of total meat consumption. Options for dealing with the projected supply deficits and their 

implications are discussed below.   

Future increase in crop production is expected to arise mainly from productivity 

gains per unit area and the expansion of croplands (Alexandratos & Bruinsma, 2012; 

Pollock, 2011; Araus et al., 2002). It was concluded earlier in this discussion that the 

ability of UK to expand the area of barley production in future would be limited (Section 

7.2.3). Since the mid-1980s, declines in areas of croplands in high income countries have 

been more than compensated for by productivity gains per unit area and very intensive use 

of land (Alexandratos & Bruinsma, 2012; Pollock, 2011; Rounsevell et al., 2006; Araus et 

al., 2002). These mitigation options have sustained agricultural growth, lowered food 

prices and are likely to continue to 2050 due to increasing pressures on land (Alexandratos 

& Bruinsma, 2012; Pollock, 2011).  

Apart from potential gains from climate change, there are opportunities for 

increasing barley yields per unit area and overall production through crop improvement, 

intensification and alterations in agronomic management practices (Pollock, 2011; Araus 

et al., 2002). The same can be said of animal production where there is still scope for 

improving carcass yield per unit feed intake (Pollock, 2011; Godfray et al., 2010). 

Assuming the projected maximum UK barley yield is raised from 8 tons ha-1 (Table 4-8) 

to 10 tons ha-1, together with the projected land area under the BAU or Mid+20% scenario 

(Table 5-2), it will almost neutralize the feed barley deficit. This yield increase is 
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achievable through a combination of conventional breeding (complemented with 

genomics and molecular techniques) and suitable agronomic practices (Pollock, 2011; 

Zwart et al., 2004; Araus et al., 2002). A yield of 10 tons ha-1 has been observed in a field 

experiment with the genotype Westminster in South-east Scotland (Chapter 3, Table 3-6; 

McKenzie et al., 2009). Obviously, even if this yield level is achieved, any reduction in 

the area of land for barley below the current level will result in a proportional production 

penalty. However, as indicated in Chapter 2 (Section 2.4), there are constraints and limits 

to the extent of genetic or physiological improvement and there is yet to be a compelling 

evidence for sustainable intensification in relation to biodiversity and ecosystem services. 

Cereal yields seem to have already plateaued in Europe and yields cannot be raised 

indefinitely even if other factors are not limiting (Brisson et al., 2010). Nonetheless, given 

the socio-economic importance of barley and the scale of projected deficits, raising the 

yield of barley remains the most likely and viable option if the UK is to maintain self-

sufficiency in feed barley supply. 

Other measures could include exploring alternative production systems that require 

less land, upgrading low productive land uses to more productive uses, reducing the rate 

of degradation and loss of agricultural lands, substantially reducing food waste along the 

entire food chain, and using waste or by-products across production systems or sectors 

(Alexandratos & Bruinsma, 2012; Pollock, 2011). Shuffling around the components of 

current production might also help. For example, given the increasing preference for 

poultry, pig and processed meat in the UK (Defra, 2013; 2011) and the EU (European 

Commission, 2011), one can imagine that increasing poultry and pig production at the 

expense of other animals might help address the surging demand for meat in the UK. The 
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observed decline in the consumption of carcass meat (mainly beef and lamb) and 

preference for poultry (Defra, 2013; 2011) can have implications for future meat demand 

and production mix, and therefore feed grain demand. This is because poultry, for 

example, requires about 5 times less kcal of feed grain to produce a unit kcal of meat 

compared to beef cattle.  However, the socio-economic consequences of this for the 

supply of, example, beef and dairy products and their related economic activities would 

require a careful examination. The implications for production cost due to, for example, 

bought-in feed (especially concentrates) and final price to the consumer equally require 

attention as the cost of feed has been rising steeply in recent years (Defra, 2011). 

Increasing grazed production might reduce dependence on prepared feed but this would 

require accepting a certain overall production penalty. 

The UK could be exposed to several risks if it becomes a net importer of feed 

barley or its meat production capacity is substantially reduced due to unavailability of 

feed. Projections of world demand for meat and demand for grains for biofuel and feed 

(see Chapter 5, Section 1.1) suggest that future global meat and grain markets could be 

tighter. Across the EU, where the UK’s imports largely come from, the UK is the 5th 

largest cereal producer (but with the 7th largest cereal area), second largest producer of 

poultry meat, the largest producer of sheep and goats, the 4th largest producer of cattle and 

9th largest producer of pig meat (Eurostat, 2012). These statistics give a general 

impression of the UK’s position and the scale of meat production and trade flows in the 

EU. A linear extrapolation might suggest that a future increase in import of grains or meat 

from the EU could be difficult (Section 7.2.4). Moreover, without substantial subsidies, 

UK and European agriculture could have a limited capacity to absorb increased costs and 
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regulatory burdens unless profitability remains high (Pollock, 2011). Demand for biofuel 

might also add to the pressure on croplands and grains that could complement or substitute 

feed barley (Rounsevell et al., 2006). Consequently, the UK might have to import more 

from markets other than the EU and thereby expose its farmers to global competition 

where profitability is the key determinant of what and how much is produced. This will 

raise the additional challenge of sustaining a highly regulated agricultural system that 

delivers food and ecosystems services and remain globally competitive and profitable in 

the absence of trade barriers and other market distortion mechanisms. In the event of acute 

deficit in domestic production of feed barley or meat, availability and affordability could 

be contingent on the profit interest of supply chains and retailers. In this regard, 

uncertainties regarding global supply and demand of meat and grains for feed and biofuel, 

driven by competition, prices and asymmetric productivity and policies, would profoundly 

influence the stability of UK’s future food security. 

To reduce the insecurity of a potentially tight global supply, the UK can adopt 

measures to influence proactively regional or global food production and land use. There 

is considerable potential to increase food production in areas where there are yield gaps 

due to inefficient farming practices or where there is potentially available arable land for 

expansion (e.g. Eastern Europe and Africa; Alexandratos & Bruinsma, 2012; Pollock, 

2011). From a global sustainability perspective, the UK can influence and drive genuine 

investments in research and development, development of functional markets and related 

services, as well as appropriate institutional frameworks and support services to increase 

productivity and effectiveness of land use governance in such areas. Whatever the future 
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turns out to be, the UK would remain an integral part of the global food system and the 

earlier these measures are employed the better it could be for the UK in the future. 

7.3 Conclusions  

This thesis evaluated water availability for barley production under future climate 

change and the effects on UK feed barley supply, food security and trade in order to 

examine the role and usefulness of  the virtual water concept for policy. Like all futures 

analyses, the results of this thesis indicate a future possibility within the boundaries of the 

prevailing circumstances or assumptions employed. Therefore, within the limits of this 

thesis, and based on its findings, the following conclusions can be drawn.  

One, the evaluation of the water-driven models using the RMSE and D-Stat 

(Chapter 3) showed that AquaCrop and WaSim performed excellently, while CropWat 

performed poorly in estimating the green water use of 10 barley genotypes. The seasonal 

water use simulated using WaSim was greater than that of AquaCrop which was greater 

than that of CropWat. These differences appeared to arise from differences in the 

sensitivity of the models to (a) crop development and (b) partitioning of rainfall.  CropWat 

might not be suitable for estimating crop water use under Scottish or northern temperate 

environments. Even though WaSim performed slightly better than AquaCrop, AquaCrop 

is recommended for studying crop water use and the effect of water stress or climate 

change on yields, as it simulates canopy development more realistically and also 

incorporates atmospheric CO2 concentration. The ten barley genotypes studied did not 

show substantial differences in their pattern of either daily or seasonal water use. The 
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consistency of this finding across the models and the canopy temperature profiles 

indicates that, under sufficient soil water supply, barley genotypes might not differ 

substantially in their water use in a northern temperate environment.  

Two, future climate change would have positive effect on UK barley production. 

For all UK regions, barley yields were predicted to increase substantially over baseline 

yields for all time slices and emissions scenarios (Chapter 4). The magnitudes of increase 

in yield were greatest under the high emissions scenario (HES) in 2050 and lowest under 

the low emissions scenario (LES) in 2030. For all time slices and emissions scenarios, 

atmospheric CO2 concentrations explained about 80% of variations in regional barley 

yields and 50% of UK national yield. This suggests that future increases in atmospheric 

CO2 would be beneficial to the production of barley or C3 crops in the UK and northern 

temperate environments. Even though barley would remain a viable rain-fed crop, the 

potential for occasional yield dips due to heat stress or soil water stress (from both deficit 

and excess) should be integral to the portfolio of risk management. Other biotic or abiotic 

stresses that might potentially reduce barley yields were beyond the scope of this thesis 

but would be worthy of consideration in future work.  

Three, regardless of projected increase in UK barley yields, the UK faces a risk of 

large deficits in feed barley supply from domestic production from the 2030s to the 2050s 

(Chapter 5). This deficit translates, proportionately, to a large deficit in meat production. 

The deficit in feed barley supply arises from projected reductions in the area of land for 

barley production in the face of escalated aggregate demand for meat. This suggests that 

future feed barley capacity of the UK will not be limited by water availability or climate 

change but by land use change and increase in population and per capita meat demand. 
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Therefore, the total area of land allocated to barley production in the future will largely 

determine UK’s self-sufficiency in feed barley supply and, for that matter, domestic meat 

production. The area of barley production will be determined largely by future policy 

goals regarding mainly energy and climate mitigation and, to some extent, market signals. 

Currently, the UK is self-sufficient in barley supply but a net importer of meat. Given the 

potential for land scarcity and the scale of the projected deficit, the options available to the 

UK include further increasing barley yield per unit area or carcass yield per unit feed 

intake, intensifying production, increasing imports of feed barley or the equivalent meat, 

slowing down increase in per capita meat demand and encouraging genuine investments to 

raise productivity and effectively govern land use where there is available arable land. 

Given its high agricultural capability, the UK could be expected to increase global food 

security rather than diminish it through large imports.  

Finally, this thesis has shown that virtual water can be a useful tool in water-food 

security policy if properly applied (Chapter 6). However, its conceptual basis requires a 

refinement. To this end, agri-compatibility was proposed as a simple but powerful way to 

address the policy-deficiency of virtual water. Agri-compatibility better aligns the virtual 

water concept with water availability and consumption in crop producing areas on one 

hand and food trade on the other hand. The agri-compatibility framework allows not only 

the quantification of water-dependent food import but also the crop-specific impact on 

water resources at the location of production. By distinguishing between agri-compatible 

and non-agri-compatible virtual water flows in a given spatio-temporal context, agri-

compatibility enhances understanding and evaluation of the role or usefulness of virtual 

water for water-food security policy in both water-scarce and water-rich countries. 
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Countries such as the UK can use the calculation scheme of agri-compatible water scarcity 

as a tool for environmentally responsible food import.  In the case of countries in the 

position of the UK as shown in this thesis, it is probably helpful to begin to pay attention 

to virtual land (the area of land virtually saved which could have been used to produce a 

given quantity of a given food commodity that is imported). The agri-compatibility 

framework can be adjusted to analyze or isolate and quantify the virtual flows of scarce 

productive resources that are difficult to transport physically (for example, land). 

7.4 Recommendations for Future Work 

1. Due to constraints of data and time, the evaluation of the models (AquaCrop, 

CropWat and WaSim) employed limited calibration. For a crop like barley that has much 

wider geographic coverage, a robust calibration with multi-site and multi-temporal data is 

required. AquaCrop has limited calibration information on barley. Future work should 

therefore consider a robust calibration with locally-generated and multi-year data. 

Moreover, in wet environments, such as Scotland or the UK, drainage is important to 

estimating soil water balance and crop water use. Future work should test and compare the 

suitability of the drainage sub-models in these models.  

2. The sensitivities of simulated crop water use to different phenophases employed 

by different crop growth simulation models should be explored in future work to identify 

effects on final estimate of crop water use. 

3. The barley genotypes studied could be exposed to water deficit conditions to test 

the similarity in their water use under contrasting water availabilities. 
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4. Revised projections of atmospheric CO2 concentrations, together with other 

climatic variables, as they become available, should be employed to assess the consistency 

of the findings described in this thesis.  

5. There is a need to study the effect of climate change on both winter and spring 

barley production and how this will affect the scale of future feed barley deficits. 

5. There is little information on agricultural land use futures in the UK and 

globally (Foresight, 2011; Angus et al., 2009; Rounsevell & Reay, 2009). In this thesis, 

the current ratio of area of barley to total croplands was assumed to remain unchanged to 

2050. Future work can focus on how much land could be available to a given crop given a 

matrix of production targets of several crops and areas of croplands under different land 

use change scenarios. 

6. The proposed agri-compatibility framework requires further applications to 

different areas and crops to test its robustness for analyzing and understanding the role of 

virtual water in water-food security policy.    
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Appendix 1: Geographic locations of the 14 UK administrative regions 
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Appendix 2A: Temporal variations in total seasonal rainfall under the LES in the 2030s, 
2040s and 2050s. 
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Appendix 2B: Temporal variations in total seasonal rainfall under the MES in the 2030s, 
2040s and 2050s. 
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Appendix 2C: Temporal variations in total seasonal rainfall under the HES in the 2030s, 
2040s and 2050s. 
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Appendix 3A: Temporal variations in yield under the LES in the 2030s, 2040s and 2050s. 
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Appendix 3B: Temporal variations in yield under the MES in the 2030s, 2040s and 2050s. 
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Appendix 3C: Temporal variations in yield under the HES in the 2030s, 2040s and 2050s. 
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Abstract  
Virtual water has been proposed as a mechanism with potential to reduce the effects of 

water scarcity on food security. To evaluate the role of virtual water in reducing the effect of water 
scarcity on food security, all components of the available water resource in agricultural areas must 
be quantified to provide a basis for evaluating food imports driven by water scarcity. We refer to 
this situation as ‘agri-compatible connections’ among water scarcity, virtual water, and food 
security. To date, this has not been captured in the literature on water scarcity, virtual water flows 
and food security. The lack of agri-compatibility has rendered the virtual water concept seemingly 
inconsistent with trade theories and water-food security policy needs. We propose two 
requirements for achieving agri-compatible connections: (i) the limit of crop production imposed 
by water scarcity should be captured by quantifying all components of the water available to 
satisfy specific crop water requirement in the importing economy, and (ii) food import should 
satisfy ‘water-dependent food security’ need, which is the actual or potential food security gap 
created by insufficient available water from all sources for crop production (all other things being 
equal). Further, we propose that agri-compatible water scarcity should capture three key elements: 
(i) a reflection of aridity or drought potential, (ii) quantification of all the components of water 
resource available to a given crop at a given locality and time, and (iii) use of crop- and 
catchment-specific water scarcity factors to evaluate the effect of crop production and virtual 
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water on water scarcity. In this paper, we show the conceptual outlines for the proposed agri-
compatible connections. Achieving agri-compatible connections among water scarcity, virtual 
water and food security will enhance the analysis and understanding of the role of virtual water for 
food security in the importing economy and water scarcity in the exporting economy. We suggest 
that achieving agri-compatibility will improve the use of virtual water as a mechanism to reduce 
existing and future pressures on global food security.  

 
Key words: water scarcity, food security, virtual water, agri-compatibility, crop water use 
 

 
 

1. INTRODUCTION  
Access to water and food is essential to human survival and is recognized as a 

fundamental human right (UN, 1948; Dubreuil, 2006). Water scarcity is however 
projected to be a key limiting factor to food production and development in the 21st 
century (WRI, 2003; UNDP, 2007). Many reports highlight the precariousness of global 
water security as water scarcity increases in scale and scope due to increasing demand for 
water (e.g. de Fraiture and Wichelns, 2010; Falkenmark et al. 2009; Falkenmark and 
Molden, 2008; Oki and Kanae, 2006). Projected changes in the global population, climate, 
economic growth and urbanization are expected to exacerbate water scarcity and further 
destabilize food security (Gregory et al. 2005). The economic theory of efficient allocation 
of resources tells us that as water becomes scarce, its allocation increasingly shifts from 
low economic-value activities (agriculture and other primary sectors) to relatively high-
value activities (industrial and service sectors) (Ohlsson and Turton, 1999). This potential 
shift of water away from crop production raises concerns over the destabilizing effect of 
water scarcity on food security. 

 
Food security is fundamentally linked to water availability for crop use as it is 

known that, on a global average, crop production is the largest water use sector 
(Thenkabail et al. 2010). Globally, the volume of water loss through crop 
evapotranspiration (ET) ranges from 6,685 to 7,500 km3 year-1 (Thenkabail et al. 2010), 
accounting for over 70% of global water abstraction (e.g. de Fraiture and Wilchens, 2010; 
Hamdy et al. 2003; Yang et al. 2006). For example, in 2000, the global crop water 
abstraction amounted to 7,130 km3 (of which irrigation accounted for 2,630 km3) and total 
abstraction for domestic and industrial use was 877 km3 (de Fraiture and Wilchens, 2010). 
However, soil water deficit experienced under drought conditions during crop growing 
season is one of the major threats to achieving high and stable crop yields (Boyer, 1982; 
Rockstrom et al. 2009), making food security overly vulnerable to water scarcity (Liu, 
2009). Water scarcity will, however, never be globally homogenous; it will always be 
geographically differentiated due to differences in climate and the management of 
different stocks and flows of water in the local hydrological system and differences in 
usage of water in economic activities.  

 
To address the uneven distribution of global water reserves and increasing demand 

of water for food production, the movement of water through the trade of food 
commodities has been rationalised into the concept of virtual water. Virtual water refers to 
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the volume of water used in the production of a unit crop commodity traded (Allan, 1998a, 
1998b; 2003). The virtual water concept hypothesises that, by importing water-intensive 
food products from water-rich areas, water-scarce communities can offset local water 
scarcity and maintain food security (Allan, 1998a; 1998b; 2003; Yang et al., 2006; Liu et 
al., 2007; Aldaya, 2010a). It is this hypothesis that gives virtual water the potential to link 
water scarcity and food security through trade. Thus, importing food products saves the 
volume of water equivalent to the crop water requirement under the local conditions of 
production while augmenting domestic food security. Contrasted to engineering solutions, 
which move water to people, virtual water is an agro-economic mechanism that moves 
water embedded in traded food commodities from production sites to people in a water-
scarce economy (Allan, 1998a). A large body of literature exists on virtual water, 
highlighting the utility of the concept as a potentially useful policy instrument for 
addressing the coupled problem of food-water insecurity (see e.g. Allan, 1998a; Hoekstra 
and Hung, 2005; Chapagain et al. 2006; Chapagain and Orr, 2009; Yang et al. 2006; de 
Fraiture and Wilchens, 2010). Virtual water is, therefore, now regarded as a key 
component of the options available to economies actually or potentially exposed to food 
insecurity as a result of water scarcity (Roth and Warner, 2008; Allan, 1998a).  

 
Some studies (e.g. Ansink, 2010; Ramirez-Vallejo and Rogers, 2010) have, 

however, shown that some water-abundant countries import water-intensive crop 
commodities from water-scarce countries. Based on this evidence, these authors argue that 
food commodity trade is not motivated by water endowment and, therefore, the virtual 
water concept is insufficient for addressing policy requirements for improved food and 
water security.  Wilchens (2010) also argued that virtual water does not offer sufficient 
insight for important policy questions regarding water security as it suffers conceptual 
limitations regarding relative water endowments and opportunity costs of production 
among trading countries. This paradox emanates from a lack of agri-compatible 
connections (or agri-compatibility) among water scarcity, the virtual water concept and 
food security (Figure 1). Specifically, the water scarcity considered excludes some 
components of the water resource (mainly soil water) in crop producing areas and its 
evaluation is entirely from an economic perspective.  

 
Virtual water is a dual concept that has a crop-water use component and a trade 

component. The two parts, however, require detailed examination so that the ability to 
match sustainable water use to food security can be evaluated accurately. In this paper, we 
concentrate on the crop specific elements of virtual water. We promote the concept that 
agri-compatibility is required to understand the link between water scarcity and food 
security through the movement of virtual water and to render virtual water more amenable 
to water and food security policy. To date, this has not been attempted and this paper 
proposes to show the requirements for agri-compatible connections by (i) demonstrating 
the need for such agri-compatible connection, (ii) providing a formula for calculating 
crop- and catchment-specific water scarcity (iii) showing the use of agri-compatible water 
scarcity in the evaluation of the effects of virtual water movements on water and food 
security. 
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Definition of Terms 
Agri-compatibility:  refers to the condition in which food is imported to fill the 

food security gap created by insufficient aggregate water supply from all relevant sources 
to satisfy the water requirements of crop production in the importing economy. The idea 
of agri-compatible connections is illustrated below. 

 

 
X = agri-compatible water scarcity            Y = water-dependent food import 
 
Agri-compatible water scarcity: insufficient water availability from all relevant 

sources (blue, green, grey) to satisfy the water requirement of a crop or crops at a 
particular area.  

 
Water-dependent food import: import of food to fill potential or actual food 

security gap resulting from insufficient water from all relevant sources to meet the water 
requirement of crops. 

Figure 1: Definition of terms  
 
2. FOOD SECURITY 
Food security must necessarily refer to a state in which the food system is secured. 

Food systems include production and related supply chains of commodities and foods in 
the production-consumption nexus (Gerbens-Leenes et al. 2010; Gregory et al. 2005). 
Food security is complex as a number of biophysical and socio-economic factors interact 
in dynamic and complex ways to affect food systems that underpin food security (Gregory 
et al. 2005). Food security is generally defined as “availability of and assured access to 
sufficient food that is nutritionally adequate, culturally acceptable, safe and which is 
obtained in socially acceptable ways” (Gorton et al. 2009). The most widely used 
definition of food security emerged from the World Food Summit (1996): “food security 
exists when all people, at all times, have physical and economic access to sufficient, safe 
and nutritious food that meets their dietary needs and food preferences for an active and 
healthy life”. The components of food security are availability, accessibility, utilization 
and stability of access (FAO, 2006).  

 
The preceding definitions of food security reveal little of the issue of food crop 

production, but the ability to supply food relies on the availability of harvested food crops 
produced domestically or imported. In this paper, food security is equated to food 
availability in sufficient quantity to satisfy the dietary requirements of a given population 
and is understood to have a specific spatio-temporal context. Water is a key factor that 
links crop system productivity with food availability. Consequently, domestic food 
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production to satisfy food security is subject to the constraint of water availability but food 
security is achievable through domestic production or import.  

 
3. WATER SCARCITY 
Water used in crop production is classified into three main colours: blue, green and 

grey (Chapagain and Orr, 2009). Blue water refers to groundwater and surface water 
(streams, lakes, rivers, dams) available for human use that is introduced into crop 
production systems through irrigation. There is greater competition for blue water from all 
water use sectors compared with the other water colours. Green water refers the fraction of 
precipitation that infiltrates and remains in the unsaturated zone of the soil after drainage 
and is available for crop evapotranspiration. Grey water represents recycled water that is 
used in crop production after treatment. In assessing the effect of crop production on water 
availability, grey water is defined as the water required for diluting pollutants from agro-
chemical inputs in crop production (Chapagain and Orr, 2009). These definitions, 
however, leave out or mask the use of rainfall harvesting by collecting runoff or by direct 
interception from roof for crop production (but the latter is also used to augment domestic 
water use in developing countries) and desalinated water that can potentially be used in 
agriculture. Perhaps, these can be referred to as ‘yellow water’ and ‘red water’ 
respectively. We label the former ‘yellow’ water because, in terms of crop production, it is 
considered to be at the interface between blue and green water (Wisser et al. 2010; Hoff et 
al. 2010); and the latter ‘red water’ because it is expensive and difficult to obtain, 
particularly in terms of energy consumption. 

 
3.1 Types of Water Scarcity  
According to Rijsberman (2006), an individual who is unable to access safe and 

affordable water to meet personal basic requirements is said to be “water insecure”. An 
area is “water scarce” when a significant proportion of the population become water 
insecure for a prolonged period. In the European Environment Outlook (2005), water 
scarcity is defined as the incidence of insufficient water resources (as a result of low 
availability or demand exceeding the supply capacity of the natural system) to satisfy 
long-term average requirements. Rockstrom et al. (2009) state that ‘water scarcity is a 
general collective term used when water is scarce for whatever reason’. In this paper, 
water scarcity is defined as insufficient water availability from all sources to satisfy long-
term average crop water requirement. 

 
A distinction exists between economic and physical water scarcity. Physical water 

scarcity refers to inadequate quantity of available water to satisfy demand or water 
requirement. Economic scarcity or social water scarcity relates to constrained access to 
water as a result of limited investment in water infrastructure or socio-economic constraint 
(Rijsberman, 2006). A third type of water scarcity, hybrid water scarcity, relates to a 
combination of physical and economic scarcity where over-abstraction combines with 
limited socio-economic adaptive capacity. Ohlsson and Turton (1999) argue, however, 
that these are not distinctive types of water scarcity, but progressive orders or levels which 
are emergent from immediately lower orders. Thus, physical scarcity is first order scarcity. 
An effort to resolve this scarcity, through engineered systems to augment supply, leads to 
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the emergence of a second order economic type scarcity. Addressing a second order 
scarcity through enhanced water conservation and use efficiency leads to the possibility of 
a third order scarcity which is a combination of physical and economic scarcities and 
signals a shift in water allocation from low-value to high-value use. It can also be argued, 
however, that economic scarcity can be first order scarcity which, when resolved, can lead 
to the second order physical scarcity. Rijsberman (2006) provided a comprehensive 
overview of water scarcity indicators, discussing their merits, demerits and potential uses. 
On the basis of computational approaches and inherent assumptions, three broad types of 
water scarcity indicators can be distinguished: withdrawal to availability ratio, per capita 
water availability, and hybrid water scarcity indicators.  

 
3.1.1 Withdrawal to Availability Ratio 
This indicator compares water withdrawal with the renewal capacity of a 

watershed or natural system of a given geographic area. A widely used method for 
calculating scarcity is the Water Resources Vulnerability Index (WRVI) developed by 
Raskin et al. (1997). This technique computes scarcity as the proportion of total annual 
withdrawal to total available water resources. When annual withdrawal is 20-40% of 
renewable water supply, the region suffers water scarcity. When the value is above 40%, 
the region suffers severe water scarcity. Other approaches include the criticality ratio 
(Alcamo et al. 1997) which is the quotient of water withdrawal to total renewable water 
supply. A value of 0.4 indicates high water scarcity. Similar methods of calculating water 
scarcity can be found in Vorosmarty et al. (2000), Alcamo et al. (2003), and Oki and 
Kanae (2006). Another variant is the Water Exploitation Index (WEI) which is used to 
gauge water scarcity in Europe (European Environment Outlook, 2005). The WEI is the 
quotient of total water abstraction and the long term annual average water resources. A 
WEI value of 0.2 is the threshold that indicates water scarcity. A value higher than 0.40 
indicates severe water scarcity.  

 
3.1.2 Per Capita Water Availability 
This category of indicators presents the amount of water potentially available to an 

individual in a given population that depends on a given amount of water resources in a 
particular geographic area (Rockstrom et al. 2009). An example of such a method is the 
Falkenmark indicator (Falkenmark et al. 1989). The Falkenmark indicator is commonly 
used because it is easy to measure and is readily understandable and meaningful, even 
though it also has certain limitations such as masking variability across spatial-temporal 
scales, infrastructural capacity and demand due to differences in socio-economic contexts 
(Rijsberman, 2006). According to the Falkenmark indicator, a country is suggested to 
suffer water stress if its per capita annual renewable water supply (surface water and 
groundwater) is less than 1700 m3, water scarcity if its per capita available water is 1000 
m3 or less, and absolute scarcity when its per capita water availability is less than 500 m3. 
It is easy to deduce from this indicator that an increase in population automatically 
increases water scarcity as the same amount of water circulates within the local 
hydrological cycle. 
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3.1.3 Hybrid Water Scarcity Indicators 
Hybrid indicators combine physical and economic water scarcity into a single 

value. Examples include the water poverty index (Sullivan, 2002) and the social water 
stress index (SWSI) (Ohlsson, 1999). Ohlsson (1999), for example, generated the SWSI 
by weighting the Falkenmark indicator using the United Nations Development Program 
(UNDP) human development index and, thereby, incorporated social adaptive capacity 
(Rijsberman, 2006). Seckler et al. (1998) incorporated social adaptive capacity into their 
analysis to distinguish physical water scarce countries from economic water scarce 
countries.  

 
4. TOWARDS AGRI-COMPATIBLE VIRTUAL WATER 
4.1 Scope for Agri-compatibility 
Currently, any reference to water scarcity is arbitrarily linked to food insecurity 

and any food import qualifies as virtual water. This limits the utility of virtual water for 
addressing specific water and food security policy. We therefore present and elaborate a 
framework for agri-compatible virtual water (Figure 2).  

 

 
Figure 2: Agri-compatible framework for understanding the role of virtual water in 

achieving food security in a water-scarce community. The base of the triangle captures the 
elements of agri-compatible water scarcity which limits crop production and necessitates 
food import (virtual water). The apex of the triangle shows food security achieved through 
virtual water. Conversely, food security, achieved through virtual water, also affects water 
scarcity in the crop production area from which food crops are imported.  

* Potential Evapotranspiration  
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Current methods of calculating water scarcity are not compatible with 
environmental water availability for crop production and therefore do not reflect crop 
water scarcity. These methods are limited by the following factors:  i) current water 
scarcity indicators are based on blue water and socio-economics but do not capture green 
water availability and use, as well as yellow water or the possibility of red water use. The 
potential of deep  groundwater as a buffer has received scant attention (Koehler, 2008); ii) 
increasing water scarcity in a certain area may have a high potential to cause a shift in 
water allocation from agriculture to non-agricultural uses even though the contribution of 
actual crop water use to overall water scarcity is rarely considered; iii) it is rare to include 
climatic variables such as temporal changes in precipitation which is critical for crop 
performance; iv) not all water scarcities are of significance for crop production, e.g. 
economic water scarcity has little relevance for rain-fed agricultural systems; (v) the scale 
of analysis is often too coarse to reveal important spatial, temporal and socio-economic 
differences within a given country, region or catchment. 

 
Figure 2 shows that virtual water can be used as a mechanism to bolster food 

security while offsetting water scarcity in an importing economy, but can also affect water 
scarcity in the exporting economy. Figure 2 shows the two requirements for evaluating 
agri-compatible virtual water estimates. One, water scarcity must be agri-compatible, the 
other, food importation should serve “water-dependent” food security requirement 
(Aldaya et al., 2010b). Water-dependent food security refers to actual or potential food 
security gap created by insufficient available water from all relevant sources for crop 
production (all other things being equal) to meet food security requirement.  

 
4.2 Agri-compatible water scarcity 
Agri-compatible water scarcity refers to insufficient water availability from all 

relevant sources to satisfy crop water requirement to the extent that food security is 
undermined. The components of agri-compatible water scarcity (crop type, climate and 
water components) are shown at the base of Figure 2. Existing water scarcity indicators 
give useful information on water availability for use by human populations. There is, 
however, relatively scant information on the link between water scarcity for food 
production and security. For water scarcity to be meaningful for virtual water and food 
security, the concept must be agri-compatible. In other words, water scarcity should be 
analysed through agricultural systems and expressed in terms of normal water balance 
concepts and the role of imported food commodities in the food balance sheet and water 
consumption in the importing economy. Agri-compatible water scarcity, therefore, 
accounts for the totality of environmental water availability (green, blue and other 
sources) and consumption in relation to specific crop water requirement (CWR) at a 
particular place and time. CWR, usually equated to crop evapotranspiration, is a function 
of climatic and weather conditions, soil properties, agronomic practices and crop factors. 
As a result and due partly to differences in crop water use efficiency (amount of water 
used per unit yield), crops can suffer genotype-specific water scarcity under the same 
production conditions. Agri-compatible water scarcity should capture three elements as 
discussed in the next sub-sections.  
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4.2.1. Aridity and Drought 
Aridity describes the extent of dryness of the atmosphere, in terms of the 

relationship between precipitation and potential evapotranspiration (PET), of a given agro-
ecosystem (Rockstrom et al. 2010). In arid agro-ecosystems, PET exceeds effective 
rainfall, spatial-temporal variability of rainfall is high and drought and dry spells are 
frequent (Rockstrom et al. 2010). The occurrence of seasonal and intra-seasonal water 
deficit for crops is therefore high and frequent, underscoring a high potential for physical 
water scarcity. Drought is a temporary shortage of water, over periods of months to few 
years, due to below-normal precipitation (Dai, 2011). The occurrence of drought during 
the growing season of crops can ultimately impair crop growth and yield if not addressed.  

 
While aridity is a permanent climatic feature of certain geographic regions, 

periodic and seasonal drought is common in many crop production areas of the world. 
Drought is a complex abiotic stress and difficult to predict because of the interaction of 
multiple factors related to crop, climate, soil and agronomic practices (Richards, 2006). 
Assessment of the effects of drought on yield is further complicated by the varying 
effectiveness of different crop response and adaptive mechanisms, the time of incidence in 
the crop cycle and the severity of the drought. Under rain-fed systems, drought can 
seriously decrease yield and can necessitate food import even though some crops have a 
physiological capacity to maintain high plant water status and minimize yield loss under 
short term water stress conditions (Blum, 2005). Aridity and drought increase CWR and 
increases the need for irrigation. These features make virtual water particularly relevant 
for regions with arid and semi-arid agro-ecosystems due to the high potential for agri-
compatible water scarcity. Thus, in evaluating virtual water flows, it is important to 
consider the contribution of aridity and drought to water scarcity for crop production and, 
consequently, food import. 

 
Allan (2000) argues that virtual water is particularly effective and efficient in 

addressing progressive and occasional local agricultural drought. Drought can compel a 
relatively water-secure economy to restrict food export and increase food import in order 
to maintain food security. Consequently, agri-compatible water scarcity estimates should 
reflect the effectiveness of the climate and weather in relation to the specific water 
requirement and phenology of a particular crop in a given area and time. Understanding 
the environmental effects of periodic and seasonal drought on crop yield response 
constitutes a more rigorous basis for evaluating the significance of virtual water for food 
security and water savings. 

 
Cereal grains have the largest water use in global crop production, can fail due to 

seasonal drought and are the most traded crop commodity (Yang et al. 2006). World crop 
water use was over 7000 km3 in 2000 (Figure 3a), of which cereals accounted for 57% 
(Figure 3b). Cereals also accounted for over 70% of total crop water use in the Middle 
East and North Africa (MENA) region in 2000 (Figure 3b). The higher aridity of the 
MENA region largely accounts for the high irrigation water requirement of cereal 
production (de Fraiture and Wilchens, 2010; Allan, 1998a; 1998b), giving rise to agri-
compatible water scarcity. Not surprisingly, cereals constitute the largest food import to 
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the MENA region. According to de Fraiture and Wilchens (2010), in 2000, Egypt alone 
imported 8 million tonnes of grains from the USA. As a result of the grain import, Egypt 
saved 8.5 billion m3 blue water which could have been used to produce the imported 
grains (de Fraiture and Wilchens, 2010). Evaluations of virtual water show that the higher 
import of cereals and grains to the MENA region serves the purpose of water-dependent 
food security (Allan, 1998a; 1998b) as water availability is limited substantially by aridity. 
Therefore, it is important that the analysis of agri-compatible water scarcity incorporates a 
‘climate’ factor that reflects the effect of aridity or drought potential. 

 
                      (a) 

 
 

                     (b) 

 
Figure 3: (a) Total crop water use in the world and selected major crop production 

regions in the year 2000 and (b) water used by cereals as a percentage of total crop water 
use in the world and selected major crop production areas in 2000. Data from de Fraiture 
and Wilchens (2010). MENA, CAEE and SSA denote Middle East and North Africa, 
Central Asia and Eastern Europe, and Sub-Saharan Africa respectively.   
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4.2.2 Green and Blue Water Availability 
Green and blue water are the main components of water resource that serves 

specific crop water requirements in crop producing areas, even though other components 
may exist in some other crop producing areas. A number of studies highlight the 
dominance of green water in global crop production by indicating that green water 
consumption is about 4-5 times higher than blue water consumption (Hoff et al. 2010; 
Aldaya et al. 2010b), yet green water volumes and consumption are rarely estimated 
(Hess, 2010).  Hoff et al. (2010) suggest that two-thirds of global precipitation is stored as 
green water while the remaining third is blue water. Even the MENA region, which 
depends largely on irrigation, meets 50% of their total crop water requirement from green 
water, either in rain-fed agriculture or from precipitation over irrigated land (Hoff et al. 
2010).  

 
Rockstrom et al. (2009) showed that global water scarcity for crop production can 

be significantly diminished when green water is properly sourced and managed. Liu and 
Yang (2010) undertook a spatially-explicit assessment of global green and blue water use 
on croplands and pasture fields. Their work demonstrated that high water use occurs in 
China and India, the southern part of West Africa, the mid-belt of USA and parts of South 
America.  However, while blue water use could be substantial in global crop production 
(figure 4a), its proportional contribution to total water use is small (figure 4b). Green 
water therefore significantly moderates water scarcity and should be reflected in agri-
compatible water scarcity.  
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Figure 4: Global pattern of (a) blue water use in crop production (b) blue water use 

as a proportion of total water use in crop season (Liu and Yang, 2010). 
 
 
3.2.3 Calculation of Crop and Catchment Water Scarcity Indicators 
Allan (2000) asserted that analysis of drought must be specific to a given crop type 

or land use. Similarly, agri-compatible water scarcity must be specific to a particular crop 
and catchment at a particular area and time in order to be meaningful and purposeful. The 
work of Ridoutt and Pfister (2010) is significant as it creates opportunity for quantifying 
the specific contribution of each product to water scarcity, through its life cycle, and the 
location of water scarcity. Nevertheless, it does not fully capture agri-compatible water 
scarcity. We propose a calculation scheme for agri-compatible water scarcity factors at 
crop and catchment levels (Table 1). 

 
Table 1: A scheme for calculating agri-compatible water scarcity at crop and 

catchment scales. Note: 
(i) BWRi denotes blue water requirement of crop i per unit time (t) (m3); Peff 

denotes effective rainfall (mm) (effective rainfall is the proportion of rainfall that remains 
in the root zone after runoff and deep percolation); ETc denotes crop evapotranspiration 
(mm); A denotes areal coverage of crop i (m2); BWf denotes the fractional amount of blue 
water in the catchment available for to crop i  (m3); l denotes length of crop growing 
period (days). 
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(ii) TBWR denotes total blue water requirement of all crops considered in the 
catchment (m3);        

n denotes number of crops considered; and c denotes catchment. 
(i) CROP FIELD (ii) CATCHMENT 

Per unit time (t): 
 
BWRi[t] (m3) = (ETc[t] – Peff[t]) x A 
[where ETc ≥ Peff] 
 
Per season: 

BWRi[season] = ∑
=

l

t

tBWRi
1

][   

 
Scarcity factor (Cfi) = 

BWfi

seasonBWRi ][
 

 

BWRc[t] = ∑
=

n

i

tBWRi
1

][  

 
 

BWRc[season] = ∑
=

n

i

seasonBWRi
1

][ = 

TBWR 
 

Scarcity factor (Cfc) = 

∑
=

n

i

BWfi

TBWR

1

 

  
Scarcity factor (Cf) < 1 implies no scarcity; Cf > 1 implies water scarcity. 
Thus, taking Cf = 1 as the threshold for water scarcity, it implies water scarcity 

increases as Cf increases from 1 and vice versa.  
 
The development or use of these crop and catchment specific scarcity factors is 

important for the following reasons:  
i) not all the catchments in a country might have agricultural withdrawals or 

abstractions of blue water 
ii) different catchments will have different scarcity factors with respect to 

agriculture and overall withdrawal; and for different crops grown in the catchment 
iii) there can be water scarcity in a particular area without there being water 

scarcity for a particular crop in the same area. Thus, green water availability could be 
sufficient to support the production of some crop(s) in a catchment that might be suffering 
blue water scarcity.  

iv) intra-seasonal dry spells might adversely affect crop yield in a country or an 
area that is not considered as water-scarce in the conventional sense.   

v) knowing the crop and catchment water scarcity factors will help match crops to 
catchments in order to save water or reduce the effect of the production of a particular 
crop on a given catchment. This will, in turn, aid the analysis of the effect of land cover 
change on water scarcity in a given catchment.  

vi) the equations also have operational significance as they can be used to monitor 
temporal water scarcity (for only green water, blue water or both) at crop, field and 
catchment scales.  

vii) the crop- and catchment-specific scarcity factors can be used in calculating 
crop water footprints and related effects on humans and ecosystems at both sites of 
production and consumption. 
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4. SUMMARY AND CONCLUSIONS 
Virtual water has been proposed as an essential component of the policy toolkit 

available to water-scarce communities to reduce the effect of water scarcity on food 
security. As water scarcity becomes more widespread and crop production becomes 
increasingly constrained, interest in virtual water is growing in the water research and 
policy community.  However, the connection and the mechanism by which virtual water 
can reduce the effect of water scarcity on food security remains unclear and contested. We 
attribute this situation to a lack of agri-compatibility, which should provide a basis for 
evaluating the role of virtual water in reducing the effect of water scarcity on food 
security. To evaluate the role of virtual water in the global issue of water scarcity and food 
security, all components of the available water in crop producing areas need to be 
quantified to provide a basis for evaluating food imports necessitated by water scarcity. 
This makes virtual water agri-compatible. 

 
The agri-compatibility framework improves understanding of the connections 

among water scarcity, virtual water and food security; and shows the relevance of virtual 
water as a mechanism for reducing the effect of water scarcity on food security. This 
paper shows scope for agri-compatibility and has argued, that, to ensure agri-
compatibility, two key requirements must be met. First, water scarcity should be agri-
compatible and, second, food importation should serve “water-dependent” food security 
requirement. Addressing the former significantly improves overall agri-compatibility. 
Agri-compatible water scarcity must capture three elements: i) It should account for the 
totality of water availability and consumption from all relevant sources in crop production. 
This requires further research effort in the accurate measurement and monitoring of the 
dynamics of green water availability and consumption in croplands; ii) The analysis of 
water scarcity for food production should incorporate a ‘climate’ factor that reflects aridity 
and drought potential; iii) Water scarcity factors should be specific to crops and 
catchments to show the scale of crop and land use effect on local hydrological system and, 
therefore, water scarcity. A conceptual framework for analysing agri-compatible 
connections among water scarcity, virtual water and food security has been presented and 
a scheme for calculating agri-compatible water scarcity at crop and catchment scales has 
been proposed. Making virtual water agri-compatible will require a multi-disciplinary 
research effort that spans socio-economics, hydrology, soil-water-crop-atmosphere 
dynamics, spatially-explicit modelling and policy analysis. Nevertheless, achieving such 
agri-compatibility will significantly advance the utility of virtual water for policy in 
addressing the effect of water scarcity on food security. 
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