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Summary 

 

Hyperactivation is described as a type of motility with asymmetrical bending of the 

flagella, increased amplitude of lateral head displacement, and decreased linearity. The 

resulting increase in thrust by hyperactivated motility is required for successful 

fertilization. Semen samples panels of patients were induced to hyperactivate with 4-AP 

(putative Ca2+ store mobilizer), progesterone (CatSper activator), NH4Cl (increased 

intracellular pH), or IBMX (AC/cAMP/PKA pathway) and hyperactivation levels were 

quantified using CASA. Induced hyperactivation levels with 4-AP (rp=0.5242, 

p=0.0123, n=22), IBMX (rp=0.8361, p=0.0026, n=11), and spontaneous hyperactivation 

levels (rp=0.4420, p=0.0347, n=23) were correlated with fertilization rates in IVF. 

Furthermore, ICSI patients showed significantly lower responses to all inducers than 

that of IVF patients and research donors. Based on these findings and the knowledge 

that Ca2+ is pivotal to sperm function, it was hypothesized that screening compounds on 

their ability to induce intracellular Ca2+ signalling, as a surrogate of physiological 

response would identify novel compounds to stimulate human sperm motility. This 

hypothesis was tested with known motility inducers. PDE inhibitors Ibudilast, Etazolate 

HCl, Tofisopam, MMPX, and Papaverine were found to be poor inducers of Ca2+ 

signalling and their actions on sperm motility are thus hypothesized to be via 

mechanisms other than Ca2+ signalling. A chemogenomics library consisting of 223 

compounds was screened using Ca2+ as a surrogate for physiological response and 

identified 25 compounds, which significantly increased intracellular Ca2+ levels. 

Trequinsin HCl and BRL 50481, two of the hit compounds were tested on human sperm 

motility. Trequinsin HCl was found to be a novel and effective motility inducer. 

Conversely, BRL 50481 had no significant effect on human sperm motility. In 

conclusion, spontaneous-, induced-hyperactivation levels, and CASA parameters ALH, 

VCL and LIN were found to be significant prognostic indicators for fertilization at IVF. 
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Furthermore, Ca2+ responses can be utilised in compound HTS as part of a drug 

discovery programme for male factor subfertility, and Trequinsin HCl is a novel human 

sperm motility stimulator.  
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Chapter 1: General Introduction 

1.1  Sperm Structure 

 Sperm cells have highly compartmentalized and compact structure that is 

specifically evolved to achieve its one and only task — fertilization (Barratt et. al., 

2009). Additionally, sperm cells can be considered as very selective cells as they are 

highly streamlined and devoid of any excess cellular luggage that is not required for 

fertilization such as protein production machinery (endoplasmic reticulum). Therefore, 

it is important to briefly describe its cellular and subcellular structures. A spermatozoon 

consists of a head and a tail (or flagellum, consists of mid-piece, principal piece, and 

end-piece) that are covered with a continuous plasmalemma (Figure 1.1). 

 

 

Figure 1.1: Structure of a human spermatozoon and selected ultrastructure of the 

flagella.  Illustrates the cross section of the mid-piece that consists of the plasma 

membrane, nine outer dynein arms, and nine outer microtubule doublets (both tubule A 

and B indicated) and their associated, radial spokes, and central pair of microtubule 

doublets. Figure is taken from Fauci and Dillon, (2006). 



2 

 

1.1.1 Sperm Head  

Sperm head consists of a nucleus that contains hypercondensed DNA (in an 

almost crystalline state) with histones and protamines, a reduced NE that covers the 

nucleus, and acrosome that contains the enzymes required for penetration through zona 

pellucida. Hypercondensation enables the sperm head to take a hydrodynamic shape to 

permit efficient swimming (especially in viscoelastic media) and therefore aids motility 

(Brewer et. al., 2002; Dadoune, 2003; Fauci and Dillon, 2006). The sperm nucleus is 

protected by the perinuclear theca, which consists of 3 segments and is composed of 

structural proteins tightened by disulphide bonds and other proteins (Oko, 1995). Some 

of these proteins have other signalling features upon fertilization. 

1.1.2 Sperm Flagellum 

Sperm flagellum is the driving motor of sperm motility; therefore, understanding 

its structure and ultrastructure is important. The flagellum of a human spermatozoon 

consists of a mid-piece, a principal piece, and an end-piece (Figure 1.1). The motile 

force is generated through the 9+2 arrangement of microtubules of axoneme (discussed 

in detail in section 1.2). The 9+2 arrangement refers to the nine peripheral, symmetrical 

doublets of microtubules that are connected by dynein arms and to the sheath of central 

pair of microtubules by radial spokes (Murase, 1992; Witman, 1990; Figure 1.1). 

 

1.2 Control of Sperm Motility 

Human spermatozoa are held immotile within the epididymis by the low pH (Carr 

et. al., 1985). They acquire motility upon deposition into the vagina. However, sperm 

motility must be regulated in order to achieve fertilization in the viscoelastic and 

variable environments of the female reproductive tract. 
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1.2.1 Flagellum 

Flagellar waves create the necessary forward movement required for successful 

fertilization in vivo or in vitro. The flagellar ultrastructures are subject to post-

translational modifications at different levels. These can be divided into 4 categories; (i) 

the axoneme, (ii) outer dense fibres (iii) fibrous sheath and (iv) mitochondrial sheath. 

1.2.1.1 The Axoneme 

Axoneme is the most common structure for motility in different organisms and 

cells (ciliary or flagellar) and its structure remains similar from prokaryotic to 

eukaryotic organisms (Witman, 1990; Murase, 1992). It is the core structure that propels 

flagella and consequently enables the sperm motility in mammals. The axoneme is 

made of nine microtubule doublets around the central pair of microtubules, making the 

9+2 formation (Figure 1.1). Each of the nine outer doublets is connected to each other 

with nexin (protein links) and radial spokes. Dynein arms are the pivotal structures that 

enable the active sliding of the microtubules that result in a flagellar wave (Bozkurt and 

Wooley, 1993; Fauci and Dillon, 2006). The force that is required for sliding dynein 

arms is generated by the axonemal motor protein dynein ATPases that propagates 

towards the end of the flagellum. Dynein arms at one side of the flagellum bend the 

flagella at one side where the dynein arms of the other side bend the sperm in the 

opposite direction. Consequently, the result of opposite bending propagates towards the 

end of the flagellum by an undulatory switch of dynein arms, thus creating a wave of 

the flagella (Brokaw, 2009). This cascade of dynein arm activation and inactivation is 

controlled within the axoneme itself.  

The inner and outer dynein arms have different functions within a microtubule 

doublet. The outer dynein arms are insensitive to ATP and they are bound to tubulin 

through a dynein-docking complex (Di Bella and King, 2001; Porter and Sale, 2000; 

Takada et. al., 2002). They determine the maximal velocity of outer doublet 
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microtubule sliding (Brokaw, 2009). The inner dynein arms regulate the beating 

symmetry and affect the flagellar wave formation (Brokaw and Kamiya, 1987). Dynein 

arms are protein motor complexes that consist of heavy chains (α and β), intermediate 

chains, and light chains, where each chain has different functions. Heavy chains have 

ATPase activity and are responsible for the active sliding of the microtubules. 

Intermediate chains serve as a binding location for the microtubules. Light chains are 

the regulatory centres of the dynein arms, where they have multiple binding sites for 

different molecules, such as calcium binding site, which is required for fine adjustments 

of the beating pattern (Inaba, 2002). The presence of multiple binding sites on the light 

chain of the dynein complex indicates the possible contribution of multiple regulatory 

molecules resulting in a complex regulatory system for the dynein arms.  

The dynein regulatory complex is tightly bound to the microtubule lattice that 

has regulatory functions on the axoneme. There are seven polypeptides on the dynein 

regulatory complex, which are subject to post-translational modifications that result in 

control of sperm motility such as; acetylation, palmitylation, phosphorylation, 

polyglutamylation and polyglycation, all of which are important for axonemal motility 

(Gagnon et. al., 1996; Huitorel et. al., 2002; MacRae, 1997; Lindemann and Lesich, 

2010). 

Demembranation studies on sea urchin spermatozoa showed that Ca2+ ion 

modulates flagellar curvature. Brokaw et. al., (1975) performed experiments on sea 

urchin using increasing Ca2+ concentrations in reactivation media. It was observed that 

as Ca2+ concentration increased, the sperm trajectories also increased. This observation 

suggested that Ca2+ controls flagellar beat asymmetry by directly acting on the 

axoneme. The main action of Ca2+ on the axoneme is to convert linear symmetrical 

beating pattern into non-linear and asymmetrical beating pattern, called hyperactivation 
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(see section 1.4 for more detail). Additionally, a recent study by O’Rand and Widgren 

(2012) showed that intracellular Ca2+ loss through EPPIN consequently results in loss of 

progressive motility of human spermatozoa. EPPIN coats human spermatozoa and 

during ejaculation it binds to SEMG1 that inhibits progressive motility by decreasing 

intracellular Ca2+ concentration (O’Rand and Widgren, 2012). Therefore, it is believed 

that Ca2+ has important regulatory function on human sperm motility other than 

controlling hyperactivation. However, it is possible that the actions of Ca2+ on 

controlling progressive motility can be closely associated with the capacitation. 

1.2.1.2 Mitochondrial sheath 

Mitochondria that are found in the mid-piece can have multiple functions in 

sperm, which is entirely different from mitochondria in somatic cells. These organelles 

are appropriately positioned to control Ca2+ buffering in mouse sperm and Ca2+-

ATPases are associated with the giant mitochondrion in sea urchin sperm (Wennemuth 

et. al., 2003; Gunaratne and Vacquier, 2006). Therefore, it is believed that mitochondria 

might have a role in Ca2+ homeostasis. However, mitochondrial uncouplers were found 

to have no effect on Ca2+ signals of human sperm stimulated with progesterone (Harper 

et. al., 2004). Consequently, it is unclear if mitochondria have a role in controlling 

human sperm motility through Ca2+ signalling. 

1.2.2 cAMP control of motility 

 

Pharmacological evidence suggests that phosphorylation of several residues on 

axonemal proteins is associated with flagellar motility regulation. Central to these 

phosphorylation cascades is the PKA, as well as secondary messengers cAMP and Ca2+. 

Soluble adenylyl cyclase is the enzyme responsible for producing cAMP from ATP. 

This enzyme has unique features including insensitivity to forskolin and G-protein 

modulation (Buck et. al., 2001). However, a recent study by Wertheimer et. al., (2013) 
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showed that mice sperm have tmAC activity only on the sperm head. This finding 

suggests compartmentalization of cAMP signalling, which may be important in 

controlling acrosome reaction (Wertheimer et. al., 2013). Therefore, understanding the 

control of cAMP concentration and its downstream actrions are crucial. 

1.2.2.1 Bicarbonate stimulation 

Seminal plasma (70-80% of the ejaculate) is bicarbonate rich. Effects of 

bicarbonate are best illustrated on mice sperm. Experiments show that demembranated 

epididymal sperm (poorly motile) diluted in media lacking bicarbonate remain poorly 

motile. However, when cAMP (together with ATP) is added to the test medium mice 

sperm motility increases (Si and Okuno, 1999). Additionally, it was shown that adding 

intact epididymal mice sperm to bicarbonate rich media results in the induction of 

motility (Si and Okuno, 1999). This result is the same for porcine, human, bovine, rat, 

dog, and bull sperm (Okamura et. al., 1985; Garty et. al., 1987; Rojas et. al., 1992). 

Following bicarbonate stimulation, cAMP is no longer required for the maintenance of 

motility. These results suggest that cAMP is the central regulatory secondary messenger 

required for sperm motility induction and cAMP production is initiated by bicarbonate 

stimulation.  The main effects of bicarbonate on sperm cells are; increased pH, 

stimulation of respiratory activity, opening of voltage-gated Ca2+ channels, and direct 

activation of sAC (Jaishwal and Conti, 2001; Wennemuth et. al., 2003). Increase in 

cAMP and Ca2+ consequently induces and maintains sperm motility. 

1.2.2.2 Phosphodiesterases 

Phosphodiesterases (PDE) are the enzymes responsible for hydrolysing cAMP 

into 5’-AMP or cGMP into 5’-GMP. Therefore, they have very important functions on 

sperm. Pharmacological experiments on human sperm show that PDE inhibitors are 

effective in stimulating sperm motility (Wennemuth et. al., 2002). Human sperm 

motility was observed to increase by treating sperm with caffeine or pentoxifylline (first 
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generation PDE inhibitors) at high concentrations (1-10mM, Rees et. al., 1990; Yovich 

et. al., 1990; Pang et. al., 1993). There are different subtypes of PDEs located within the 

sperm controlling different functions of sperm cells. PDE type 4 is located mainly on 

the mid-piece and it is proposed to control motility, whereas type 1 PDE is distributed 

along the sperm head and it is proposed control acrosome reaction (Fisch et. al., 1998). 

PDE type 1 family is a calcium-calmodulin dependent enzyme that has higher affinity 

for hydrolysing cGMP although it can also hydrolyse cAMP (Beavo, 1995). PDE type 4 

family, on the other hand, is a cAMP-specific enzyme and it is controlled by 

phosphorylation of residues on the enzyme (Conti et. al., 1995). Second generation PDE 

inhibitors IBMX and Rolipram, identified by Fisch et. al., (1998), were both shown to 

modulate human sperm motility or acrosome reaction discretely. However, there is a 

lack of research in identifying third generation PDE inhibitors, which could ignite 

dramatic changes in clinical embryology. Developing/finding new PDE inhibitors that 

specifically affect selected sperm function would be highly valuable in clinical 

embryology in shifting the current situation into in vivo treatment options.  

Lefievre et. al., (2000) showed that sildenafil (IC50= 4nM, PDE type 5 specific 

inhibitor) treatment at 30μM, 100μM, and 200μM increases intracellular cAMP 

concentration and stimulates both capacitation and motility of human spermatozoa 

without stimulating acrosome reaction. However, Lefievre et. al., (2000) suggested that, 

the increase in motility and stimulation of capacitation in response to sildenafil is via its 

inhibitory action on PDE activity other than PDE type 5 specific inhibition. Richter et. 

al., (1999) identified mRNA transcripts of 6 different PDEs from ejaculated human 

spermatozoa. These PDEs are PDE type 1-A/B/C, PDE type 2, PDE type 3-A/B, PDE 

type 4-A/B/C, PDE type 5, and PDE type 7. It is possible that these mRNA transcripts 

remained intact through spermiogenesis. However, as spermatozoa are believed to be 

transcriptionally and translationally silent, the presence of some of these 6 PDE 
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enzymes is questionable in the mature sperm.  As different subtypes of PDEs are 

located at different location and each have different modulators, it can be said that 

spatio-temporal regulations of different types of PDEs can result in spatio-temporal 

cAMP concentration fluctuations in order to respond to extracellular stimulation. It was 

shown that using PKA selective antagonist H89 completely inhibits sperm motility 

stimulated with bicarbonate (Holt and Harrison, 2002). Therefore, the main action of 

cAMP is to activate PKA. 

 
Km (μM) 

    

Family cAMP cGMP 

Number 

of 

Genes 

Property 
Specific 

Inhibitors 

IBMX 

sensitivity 

PDE1 1-30 3 3 

Calcium-

Calmodulin 

activated 

8-methoxy 

IBMX, 

phenothiazines, 

Nimodipine 

+ 

PDE2 30-100 10-30 1 cGMP activated EHNA + 

PDE3 0.1-0.5 0.1-0.5 2 cGMP inhibited 
Cilostamine, 

Milrinone 
+ 

PDE4 0.5-4 >50 4 cAMP specific 

Rolipram, Ro 

20-1724, 

Roflumilast, 

Ariflo 

+ 

PDE5 >40 1.5 1 
PKA/PKG 

phosphorylated 

Zaprinast, 

DMPPO, 

E4021, 

Sildenafil 

+ 

PDE6 2000 60 4 Transducin activated 

Zaprinast, 

DMPPO, 

E4021, 

Sildenafil 

+ 

PDE7 0.2 >1000 2 
cAMP high affinity, 

Rolipram insensitive 

BRL 50481, 

ICI242 
+ 

PDE8 0.7 >100 2 
cAMP high affinity, 

Rolipram insensitive 
- - 

PDE9 >100 0.07 1 cGMP high affinity - - 

PDE10 0.5 3 1 Dual substrate - + 

PDE11 1 0.5 1 Dual substrate - + 

 

Table 1.1: PDE families. 11 PDE families; their names, their affinities for substrates, 

their number of genes, their selective inhibitors, and their sensitivity for IBMX are 

shown. Table is adapted from Mehats et. al., 2002 and Lugnier, 2006. 
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1.3 Capacitation 

 

Spermatozoa from mammals are not able to fertilize oocytes immediately after 

ejaculation. Two independent experiments showed that rabbit sperm are not able to 

fertilize oocytes in the fallopian tubes without a period of time spent in the female 

reproductive tract (Chang, 1951; Austin, 1951). In other words, sperm cells acquire the 

capacity to fertilize oocytes only after a period of time in the female reproductive tract 

(which varies from species to species). The acquisition of capacity to fertilize an oocyte 

is accompanied by various physiological, biochemical, and molecular changes through 

highly complex signal transduction is termed “capacitation” (Figure1.2; Chang, 1952; 

Austin, 1951). Markers of the capacitation process are lipid rearrangements in the 

plasma membrane, ion fluxes resulting in alteration of Em, and increased tyr 

phosphorylation of proteins involved in induction of hyperactivation and acrosome 

reaction. It is very important to understand the physiological mechanics of this central 

process, as this is a key process for fertilization. 
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Figure 1.2: Biochemical pathways involved in capacitation. 1) Transport of 

bicarbonate and Ca2+ ions stimulate sAC (SACY). 2) Intracellular cAMP levels 

increase. 3) Secondary Messenger cAMP activates PKA (could be inhibited by PKA 

selective inhibitors H89/Rp-cAMPs/PKI). 4) Enzymes phosphorylated by PKA are 

subject to regulation by phosphatases, likely PP2A, that in turn regulated by Src kinases 

(could be inhibited by SKI606/SU6656). 5) PKA activates unidentified protein kinases 

that (6) phosphorylates try residues on target proteins/enzymes such as AKAPs and 

CABYR. 7) Ca2+ influx possibly regulates dynein activity that leads to hyperactivation. 

Figure is taken from Visconti et. al., 2011. 

 

1.3.1 Molecular basis of capacitation 

 

Although it has been 62 years since the capacitation was discovered, the 

molecular mechanisms underlying capacitation remains largely unknown. Most if not 

all of the studies about capacitation were done under in vitro conditions, therefore, it 
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should be noted that further experiments will be required to confirm in vitro findings are 

reproducible under in vivo conditions. The capacitation process can be divided into two 

events, fast events and slow events, that require the presence of bicarbonate, cholesterol 

acceptor (albumin, high-density lipoproteins (HDL), and apolipoproteins), and Ca2+ ion 

(Aitken and Nixon, 2013). However, it was shown that none of these factors are 

probably essential for tyr phosphorylation (Aitken et. al., 1998; Baker et. al., 2004; 

Ecroyd et. al., 2004). Increased tyr phosphorylation has been reported to correlate with 

capacitation in mouse, hamster, bovine, pig, and human sperm (Visconti et. al., 1995; 

Devi et. al., 1999; Galantino-Homer et. al., 1997; Kalab et. al., 1998; Luconi et. al., 

1996). 

1.3.1.1 Fast events 

Fast events can be summarized by; transfer of bicarbonate through 

Na+/bicarbonate co-transporter (Demarco et. al., 2003), activation of sAC resulting in 

increased cAMP levels (Chen et. al., 2000), activation of PKA resulting in modulation 

of CatSper therefore changes in Em (Wennemuth et. al., 2003), activation of scramblases 

(Harrison et. al., 1996; Gadella and Harrison, 2002), and increased availability of 

cholesterol for external acceptors (Flesch et. al., 2001). Sperm cells are exposed to a 

significant increase in bicarbonate ion concentration after deposition into the vagina 

(Setchell et. al., 1994). There are various studies, which confirm that bicarbonate is the 

key agent required for capacitation (Boatman and Robbins, 1991; Gadella and Harrison, 

2000; Lee and Storey, 1986; Neil and Olds-Clarke, 1987; Shi and Roldan, 1995; 

Visconti et. al., 1995). Bicarbonate is also the key agent mediating the fast events of 

capacitation through the bicarbonate/sAC/cAMP/PKA pathway. Bicarbonate transport 

into the cell results in an increase in pH, however, the role of pH is not well understood 

(Parrish et. al., 1989; Zeng et. al., 1996; Demarco et. al., 2003). The main role of 
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bicarbonate is to stimulate sAC to increase intracellular cAMP concentration (Garbers 

et. al., 1982). In turn, cAMP activates PKA. cAMP levels rise to its maximal levels by 

60 seconds in boar sperm (Harrison and Miller, 2000) and PKA-dependent 

phosphorylation levels begins in 90 seconds (Harrison, 2004). Following these series of 

events, cAMP concentration and PKA-catalysed protein phosphorylation starts to 

fluctuate (7 minutes intervals) due to the activation of phosphodiesterases by PKA 

(Hanoune and Defer, 2001; Mehats et. al., 2002).  

Mammalian sperm cells appear to have asymmetrical phospholipid architecture 

(Pomorski et. al., 1995; Nolan et. al., 1995; Gadella et. al., 1999). Experiments on boar 

sperm revealed that physiological levels of bicarbonate under in vitro conditions induce 

a collapse in phospholipid asymmetry (Harrison et. al., 1996). Harrison et. al. (1996) 

showed that the direct staining of PE and PS is subsequently detectable. Normally, PE 

and PS are found only in the inner leaflet of the plasma membrane. This finding 

suggests that the enzymes responsible for this collapse appear to be activated by the 

bicarbonate/sAC/cAMP/PKA pathway. This stainability starts to be detectable quite 

rapidly (2 min). Therefore, it is certain that there are fast events during the capacitation 

that involves changing the architecture of phospholipid structure among the sperm 

plasma membrane bilayer.    

1.3.1.2 Slow events 

Surprisingly, slow events are also regulated by the bicarbonate/sAC/cAMP/PKA 

pathway with the only exception of the requirement of a cholesterol acceptor, albumin. 

In the absence of albumin, slow events of the capacitation are not initiated (Salicioni et. 

al., 2007). It was found that cholesterol depletion does not initiate without bicarbonate 

induced phospholipid scrambling (Flesch et. al., 2001). Therefore, albumin is only 

required for cholesterol depletion. After the initial increase in cAMP levels with 
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fluctuations in temporal concentrations, cAMP levels follow a more sustained increase 

in concentration. This more sustained level of cAMP concentration enables the slow 

events of capacitation to take place. However, the mechanism(s) that allow such 

complex events in a minute amount of cytoplasm is not understood (Salicioni et. al., 

2007). Most of the slow events of capacitation involve phosphorylation of tyr residues 

on proteins, which start to be detected by 45 min in mouse sperm (Visconti et. al., 

1995). PKA is a ser/thr kinase; therefore, tyr residues cannot be phosphorylated by PKA 

directly. This explains why try phosphorylation is a slow event and it can be related to 

the sustained concentration phase of cAMP. This is supported by experiments on mice 

that lack sAC (knockout), show no tyr phosphorylation (Esposito et. al., 2004). The 

primary kinase responsible for tyr phosphorylation is the SRC family kinases both in 

mice and human sperm (Aitken and Nixon, 2013). There are several crucial differences 

in the function and localization of Src between mice and human sperm (Varano et. al., 

2008). Inhibition of mouse Src results in inhibition of hyperactivation (Baker et. al., 

2006). Conversely, inhibition of the human Src has no effect on hyperactivation but 

inhibits the progesterone-induced acrosome reaction (Varano et. al., 2008).  Recent 

experiments showed that cAMP/PKA activation should be supported by ser/thr 

phosphatase suppression that requires the Src family kinases in human sperm 

(Battistone et. al., 2013). This finding suggests that phosphorylation events associated 

with PKA should be prolonged for capacitation by downregulating phosphatases. 

1.3.2 Calcium and capacitation 

 

Capacitation of mammalian sperm is a Ca2+ dependent process in both the fast 

and slow events. Ca2+ has both negative and positive effects throughout the capacitation 

process. Ca2+ calmodulin can activate AC to promote the synthesis of cAMP, and 

therefore promote capacitation (Gross et. al., 1987). Oppositely, Ca2+ binds to the 
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regulatory subunit of PDEs to promote the hydrolysis of cAMP, therefore down 

regulating the capacitation (Wasco and Orr, 1984). Nevertheless, it is believed that the 

Ca2+ concentration is crucial for the capacitation dependent functions of sperm such as 

acrosome reaction or hyperactivation. There are some studies on human (Leclerc et. al., 

1998) and mouse (Visconti et. al., 1995) sperm suggesting that increasing the 

extracellular Ca2+ concentration correlates with increased try phosphorylation. 

Conversely, there are other studies, which suggests the opposite where increasing the 

extracellular Ca2+ concentration negatively correlates with try phosphorylation (Luconi 

et. al., 1996; Carrera et. al., 1996; Baker et. al., 2006). Additionally, a recent study by 

Tateno et. al., (2013) showed that Ca2+ ionophore A23187 could make mouse sperm 

capable of fertilizing cumulus intact oocytes even before activating the cAMP-

dependent phosphorylation pathways (i.e. try phosphorylation). Mouse sperm incubated 

with A23187 were immobilized (due to excessive intracellular Ca2+ levels) however, 

upon removal of A23187, sperm gained motility and were able to fertilize cumulus 

intact oocytes within 30 minutes. This finding is important, as tyr phosphorylation 

events in mouse sperm do not start before 45 minutes (Visconti et. al., 1995). Therefore, 

increase in intracellular Ca2+ levels were shown to bypass cAMP-dependent 

capacitation events in mouse sperm and enabled “non-capacitated” spermatozoa to 

fertilize oocytes in vitro. This finding is confirmed with ionophore treated mouse sperm 

were able to fertilize oocytes even in the presence of H89 (i.e. there is no PKA-

dependent phosphorylation events). Therefore, it is clear that Ca2+ is a critical secondary 

messenger controlling capacitation. 
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1.4 Hyperactivation 

 

As hyperactivation is required for fertilization, it is also considered to be a part of 

capacitation. However, this definition is controversial as non-capacitated bovine and 

human sperm are able to hyperactivate (Ho and Suarez, 2001; Marquez and Suarez, 

2004; Bedu-Addo et. al., 2008). Therefore, hyperactivation may be regulated by 

different mechanisms than that of capacitation, although it is possible that they are 

closely related. 

1.4.1 Definition and importance of hyperactivation 

 

Hyperactivated motility is described as asymmetrical bending of flagella, 

increased amplitude of head displacement, and decreased linearity (Yanagimachi, 

1970). The result of this movement is reduced linearity of the sperm trajectory but an 

increase in thrust that is necessary for cumulus and zona pellucida penetration (Stauss 

et. al., 1995; Suarez et. al, 1991; Ren et. al., 2001). Not surprisingly, increased 

propulsion generated by hyperactivated motility is associated with fertility both in vitro 

and in vivo (Johnston et. al., 1994). It has been suggested that sub-fertile males have 

lower hyperactivation levels (Munire et. al., 2004). Another study by Liu et. al. (2007) 

showed that hyperactivation of capacitated sperm showed high correlation with the zona 

pellucida-induced acrosome reaction. This finding is important, as the human zona-

binding assay has been proven to be a good diagnostic tool (Barratt et. al., 2010). 

Furthermore, the basal human sperm hyperactivation levels have been found to correlate 

with fertilization rates in IVF (Wang et. al., 1993; Alasmari et. al., 2013; see chapter 2) 

and artificial insemination (Johnston et. al., 1994). Hyperactivated motility is also listed 

as one of the influential factors for sperm quality that can be measured reasonably well 

(Amann and Hammerstedt, 1993).  
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1.4.2 Function of hyperactivation 

 

As defined above, hyperactivation has potential clinical value and shown to be 

an indicator of fertilization both in vitro and in vivo. The reason why hyperactivation 

has a value in reproductive biology/medicine is as it has 4 critical functions that are 

prerequisites of successful fertilization. These functions are; (i) hyperactivation enables 

effective passage through viscous oviductal mucous, (ii) hyperactivated motility enables 

spermatozoa to be released from epithelial cells of the lumen of the oviduct, 

hyperactivation enables sperm to penetrate (iii) cumulus cells and (iv) zona pellucida. 

Hyperactivated mouse and hamster sperm show a non-progressive and vigorous 

beating of flagella in non-viscous media whereas in viscous media it shows a 

progressive swimming (Suarez et. al., 1991; Suarez and Dai, 1992). Therefore, it is 

believed that only the hyperactive sperm are able to swim through viscous media. 

However, recent experiments by Alasmari et. al., (2013) demonstrated that human 

sperm induced with progesterone or ammonium chloride that did not induce 

hyperactivation showed increased penetration into methylcellulose (viscous media 

mimicking cervical mucus or cumulus matrix). Penetration into methylcellulose was 

sensitive to NNC55-0396 treatment, indicating a role for CatSper. Ca2+ store mobilizing 

agents thimerosal and 4-AP caused high hyperactivation levels, however, only 4-AP 

showed penetration into methylcellulose in a NNC55-0396 sensitive manner. This study 

suggests that the hyperactivated motility may not be involved in penetration into the 

viscous media and Ca2+ originating from different sources can determine the sperm 

motility pattern in human sperm. 

In vitro experiments demonstrate that human sperm binds to the epithelial cells of 

the fallopian tubes (Pacey et al., 1995; Baillie et. al., 1997). This binding has been 

proposed to hold the sperm cells in a quiescent state to preserve their motility (i.e. their 
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survival) until the time of ovulation (Suarez et. al., 1992; Suarez, 2008; Holt and Fazeli, 

2010; Bjorndahl et. al., 2010). Spermatozoa were originally observed to attach-to and 

detach-from epithelial cells (Pacey et. al., 1995). Furthermore, it was observed that the 

sperm detaching from epithelial cells were observed to show higher ALH and VCL, and 

lower LIN, which is the definition of hyperactivated motility. This implies that the 

hyperactivated motility is required in order to free the bound spermatozoa into the 

lumen of the oviduct (Suarez, 2008; Demott and Suarez, 1992; Ho et. al., 2009). 

In vivo oocytes are surrounded by cumulus cells that support its development. These 

cells are linked together with proteins, as well as hyaluronic acid, that form an elastic 

matrix. There are hyaluronidase enzymes on the sperm head that degrade hyaluronic 

acid (Kim et. al., 2008) however; enzymatic degradation is insufficient for penetrating 

through this matrix. Therefore, increased thrust by hyperactivation is also required for 

efficient penetration (Suarez and Dai, 1992). However, there are some species 

differences. For example, frog and hamster sperm were observed to penetrate the 

extracellular matrix of hamster oocyte cumulus complexes without hyperactivating 

(Talbot et. al., 1985; Drobnis et. al., 1988), indicating that hyperactivated motility may 

not be fundamental to penetrating cumulus cells. 

Zona pellucida is a glycoprotein complex that surrounds the egg. This glycoprotein 

complex is the last obstacle that sperm must penetrate with the aid of acrosomal 

enzymes and hyperactivated motility to achieve fertilization. CatSper knockout mice 

sperm studies show that spermatozoa unable to hyperactivate (but showing normal 

acrosome reaction and motility) cannot fertilize zona-intact oocytes. However, when the 

zona pellucida of the oocytes was removed, the sperm were able fertilize the eggs, 

despite the inability to hyperactivate (Quill et. al., 2003; Ren et. al., 2001). This clearly 
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demonstrates that hyperactivation is required for penetrating the zona pellucida in mice 

sperm. 

1.4.3 Control of hyperactivation 

 

As sperm cells have no endoplasmic reticulum, minimal amount of cytoplasm, 

and highly compact genetic material they are believed to be transcriptionally and 

translationally inactive (Costello et. al., 2009). Control of hyperactivation therefore has 

to rely on modifying and changing the activity of proteins or enzymes that are already 

present. Hyperactivation is a directionless movement pattern in non-viscous media and 

have several critical physiological functions (see above). Therefore, its activation and 

inactivation should be tightly regulated.  Post-translational modifications that control 

hyperactivation by secondary messengers (cAMP and Ca2+) are tightly bound to 

extracellular stimuli. Among these secondary messengers, the Ca2+ ion appears to be the 

crucial one (Publicover et. al., 2007). Indeed, hyperactivation appears to be only 

controlled by Ca2+ by acting directly on the cytoskeletal components of the axoneme 

and by binding to calmodulin/calmodulin binding proteins to alter their function (Ho et. 

al., 2002; Ignotz and Suarez, 2005). However, the exact functional mechanism of Ca2+ 

signalling and how it controls hyperactivation is not entirely known. Demembranation 

studies performed by Ho et. al. (2002) on bull spermatozoa showed that Triton X-100 

treatment disrupts the plasma membrane, acrosomal vesicles, and mitochondrial 

membranes leaving the nucleus, cytoskeletal elements and proteins that are associated to 

these structures intact. This treatment abolishes sperm motility but under the presence of 

~50 nM Ca2+ and ATP, motility can be rescued. Increasing the Ca2+ concentration to 

~100 nM resulted in the development of hyperactivation expressed by 40% of the cells, 

and further increase in Ca2+ concentration to ~400 nM resulted in 80% of the cells 

hyperactivated.  
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Some studies support a crucial role for tyr phosphorylation in hyperactivation 

(Segare-Patil et. al., 2012). As a result, cAMP might be hypothesized to carry important 

regulatory functions on hyperactivation. However, non-specific PDE inhibitors such as 

procaine and caffeine induce hyperactivation before tyr phosphorylation (Marquez and 

Suarez, 2004). Furthermore, H89 and Rp-cAMPS, both relatively selective PKA 

inhibitors, blocks bicarbonate/sAC/cAMP/PKA resulting in lack of tyr phosphorylation 

but do not inhibit hyperactivation. Therefore, the role of cAMP on controlling 

hyperactivation remains unclear, whereas Ca2+ is clearly the main secondary messenger 

that controls hyperactivation in mammalian spermatozoa. As Ca2+ is the secondary 

messenger that controls hyperactivation, the source of Ca2+ merits further investigation. 

1.4.3.1 CatSper 

CatSper channels are encoded by 4 CATSPER genes that are specifically 

expressed in testis (Quill et. al., 2001; Ren et. al., 2001; Carlson et. al., 2003). CatSper 

1-2-3-4 form a pore together with the CatSperβ, CatSperγ, and CatSperδ auxiliary 

subunits, where the pore forming CatSper 1-4 resembles the Cav channels (Arias et. al., 

2003; Chung et. al., 2011; Jin et. al., 2005; Liu et. al., 2007; Quill et. al., 2001; Lobley 

et. al., 2003; Ren et. al., 2001; Wang et. al., 2009). Each of the CatSper 1-2-3-4 has 6 

transmembrane segments. CatSper 3 and 4 has the typical positively charges residues on 

the 4th transmembrane segment. This explains why the channel is mildly voltage-

sensitive. CatSper1 on the other hand has a histidine rich N-terminal (cytoplasmic site) 

which enables post-translational changes in response to the pH (Ren et. al., 2001). 

CatSperβ and CatSperγ auxiliary units are absent in the CatSper1 knockout sperm (Liu 

et. al., 2007; Wang et. al., 2009). This strongly suggests that these auxiliary units form a 

complex with the CatSper1 protein. CatSperβ and CatSperγ are believed to serve as a 

regulatory unit of the CatSper complex as they have large extracellular binding 

domains. CatSperδ knockout sperm show a remarkable decrease in the amount of 



20 

 

CatSper1, indicating a role for the expression of CatSper proteins on the transcription 

level (Ren et. al., 2001).  

CatSper knockout studies in mouse show that all of the CatSper subunits are 

required for fertility (Ren et. al., 2001; Jin et. al., 2005; Jin et. al., 2007; Qi et. al., 

2007). These CatSper knockout mouse sperm show normal capacitation and motility 

except for hyperactivation. Fertilization capacity of the knockout sperm is restored upon 

zona removal (i.e. removal of the final barrier that requires hyperactivation to penetrate, 

Ren et. al., 2001). These experiments showed very clearly that the CatSper channels are 

essential for hyperactivation in mouse spermatozoa and crucial for fertility. A study 

reported by Avidan et. al. (2003) showed that a human male with CATSPER2 gene 

mutation is infertile. The semen from this male shows normal (within WHO reference 

values) volume and sperm concentration but the motility was severely hampered and 

there were morphological defects on the tails. Another study on humans show that 

mutations on CATSPER1 gene results in infertility (Avenarius et. al., 2009). Same 

phenotypical observations were found in these patients as CATSPER2 mutations. 

Therefore, these two studies suggest that maybe there are species differences between 

mice and humans on the function of CatSper as mouse knockout sperm were relatively 

normal. A very recent study by Smith et. al., (2013) showed by patch-clamping that a 

human CatSper2-deficient patient had disrupted patch-clamp recording in response to 

progesterone. This confirms that the CatSper is indeed the principal Ca2+ channel in 

human sperm. This finding fills the gap partially between mouse models and humans. 

Due to technical challenges, researchers have, as yet, failed to clone and express a 

functional CatSper channel to examine and unlock all the mysteries of this polymodal 

channel. Therefore, our knowledge on CatSper is limited to the wild-type mice, CatSper 

knockout, and CatSper2-deficient human at the moment. It should be noted that mouse 

CatSper and human CatSper show some critical variation in the functionality, such as: 
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mice CatSper is not responsive to progesterone while human CatSper is highly 

responsive (Lishko et. al., 2011; Strunker et. al, 2011). Therefore, findings on the mice 

model should be evaluated carefully. 

CatSper channels are the main source of Ca2+ and they appear to be a polymodal 

sensor as they can be controlled by various compounds, pH, and Em (Brenker et. al., 

2012). Progesterone also activates the CatSper channels by directly binding to the 

CatSper channels on an extracellular site on human sperm (Lishko et. al., 2011; 

Strunker et. al, 2011). A study by Torres-Flores et. al. (2008) showed that incubating 

human sperm cells with papaverine (a non-selective PDE inhibitor) under non-

capacitating conditions resulted in progesterone-induced Ca2+
 influx similar to that of 

capacitated cells, whereas non-capacitated spermatozoa fail to respond as much. 

Additionally, the same group showed that progesterone-induced Ca2+ influx was 

inhibited by H89 and genistein (PKA inhibitors). This strongly suggests that 

progesterone-induced Ca2+ influx is regulated through bicarbonate/sAC/cAMP/PKA 

pathway. Hypothetically, there might be phosphorylation (or other post-translational) 

events that take place during the capacitation resulting in post-translational 

modifications required for the CatSper channels in order to bind progesterone.  

1.4.3.2 Intracellular calcium stores 

There are some studies, indicating that it is possible to induce Ca2+ signalling 

and hyperactivation in Ca2+ free media (Ho and Suarez, 2001; Ho and Suarez, 2003; 

Marquez et. al., 2007). These findings challenged the original assumption of a lack of 

calcium store(s) in sperm. Sperm cells lack endoplasmic reticulum, which is the 

organelle responsible of storing Ca2+ in somatic cells. However, the acrosome and a 

store found in the neck/mid-piece region of the sperm are now acknowledged to serve as 

Ca2+ stores (Florman et. al., 1998; Herrick et. al., 2005; Bedu-Addo et. al., 2007).  
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Pharmacological stimulation of sperm by Ca2+ releasing agents strongly suggests 

the existence of intracellular Ca2+ stores in the neck region (Ho and Suarez, 2001). 

Treatment of spermatozoa with caffeine (a non-specific PDE inhibitor), thimerosal 

(IP3R agonist), and thapsigargin (inhibitor of SERCA) induces hyperactivation 

significantly in bull sperm. However, chelating extracellular Ca2+ below 50nM 

decreases the effect of caffeine on hyperactivation greatly, whereas the ability of 

thapsigargin and thimerosal to induce hyperactivation persists (Ho and Suarez, 2001). 

This finding strongly suggests the presence of intracellular Ca2+ store(s) that contributes 

to the control of hyperactivation. Another study by Ho and Suarez, (2003) hypothesized   

that the redundant nuclear envelope (RNE) could function as a Ca2+ store by showing 

that IP3R and calreticulin localizes to the RNE. Inducing hyperactivation by the voltage-

gated K+ channel blocker 4-AP also involves stored Ca2+ mobilization and produces the 

highest level of hyperactivation (Costello et. al., 2010, Gu et. al., 2004). Although the 

effect of 4-AP is well known, the molecular target(s) is less clear, making deductions 

from cellular responses hard. Another broad-spectrum voltage-sensitive K+ channel 

blocker TEA fails to induce hyperactivation (Gu et. al., 2004) suggesting that the effect 

of 4-AP on sperm hyperactivation is not due to block of K+ channels, but rather from 

another mechanism that is not fully understood. A study by Alasmari et. al. (2013) 

showed that the Ca2+ from stores and extracellular influx result in different types of 

sperm motility patterns and functionality in human sperm. The Ca2+ influx from 

CatSper causes weak induction of hyperactivation whereas the thimerosal treatment 

induces strong hyperactivation levels. All of the inducers (thimerosal, NH4Cl, and 

progesterone) used in the aforementioned study produced a sustained intracellular Ca2+ 

response where the CatSper inducers were sensitive to NNC55-0369 inhibition but 

thimerosal was not (i.e. confirms store mobilization by thimerosal). Although Ca2+ store 

mobilizer treatment results in higher levels of hyperactivation, CatSper modulators 
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resulted in better penetration of sperm through viscous media. This finding suggests that 

the source of Ca2+ is important to both motility and function. However, how this is 

achieved is not known and is highly unusual considering the amount of cytoplasm in 

human sperm. 

1.4.4 Physiological inducers of hyperactivation 

 

As described, hyperactivation needs to be controlled spatio-temporally in order 

to achieve successful fertilization. Therefore, there must be follicular fluid or other 

female reproductive tract factors that trigger hyperactivation in vivo. Follicular fluid was 

shown to induce hyperactivation in vitro (Zhu et. al., 1994a). Cumulus cells secrete 

progesterone and it is known that it can diffuse across the fallopian tubes to reach 

oviduct ampulla (Ralt et. al., 1991). A very recent study attempted to shed light on how 

progesterone controls the acrosome reaction and hyperactivation discretely. 

Progesterone at low concentrations (10nM and 100nM) induced sperm motility and 

activates tyr kinase activity whereas at higher concentrations (1-10µM) it induced 

hyperactivation and acrosome reaction (Sagare-Patil et. al., 2012). Furthermore, photo-

release of caged-progesterone stimulated hyperactivation of human sperm (Kilic et. al., 

2009). Although there has been some progress in our understanding of in vivo 

stimulators of hyperactivation, we still do not have a good understanding. It has been 

suggested that progesterone is also involved in the chemotaxis of human sperm (Oren-

Benaroya et. al., 2008). Furthermore, there is evidence suggesting that the 

hyperactivated motility is involved in setting the human sperm in the right course during 

chemotaxis in response to physiological concentrations of progesterone (Armon and 

Eisenbach, 2011). 
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1.5 Infertility 

 

In order to achieve successful conception, a spermatozoon must perform almost 

perfectly in every aspect of sperm function. Therefore, not surprisingly, infertility is a 

common, significant, and a growing global problem (Sharpe and Irvine, 2004; Slama et. 

al., 2012). There are number of reports that have raised serious concerns about the 

development of reproductive problems (Cadbury, 1997; Sharpe, 2012). Furthermore, 

there are studies that show controversial results on semen quality (Carlsen et. al., 1992; 

Auger et. al., 1995; Irvine et. al., 1996).  

1.5.1 Definition, prognosis, diagnosis, and treatment of male infertility 

 

The definition of infertility itself is subject to debate. However, it is generally 

accepted that infertility is defined by WHO as a failure to achieve pregnancy within 12 

months of regular unprotected intercourse (Cooper et. al., 2010). “Normally” fertile 

couples anticipate pregnancy rates of approximately 30%/month with 85% of these 

couples achieving a pregnancy within a year (Spira, 1986; Ford et. al., 2000; Thonneau 

et. al., 1991). In men there is no sperm storage, whereas in most animals there is. 

Therefore, men’s sperm concentration is completely dependent on the concentration of 

the sertoli cells, and the abstinence period. The sertoli cell concentration is fixed during 

development whereas the abstinence period is variable. Another factor is that even in 

“normal” men, only a small fraction of sperm is morphologically “normal” (5-15% 

depending on the criteria used) whereas in most animals 90% of spermatozoa is 

considered to be morphologically “normal” (i.e. pleiomorphism). Morphological 

assessments generally do not tell if a sperm is “normal or not”. In not so frequent cases, 

morphological assessment can indicate the fertilization potential, especially in cases of 

flagella defects and globozoospermia (<0.1%, Dam et. al., 2007). Furthermore, human 
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sperm identified as “normal” by strict morphology criteria (Kruger’s) were shown to 

have poor genetic quality (Ryu et. al., 2001).  

Over 80 million couples worldwide are infertile (Boivin et. al., 1997; Slama et. 

al., 2012). The single most common cause for infertility is male factor infertility, which 

accounts for 1 in 15 men of reproductive age (HFEA 2011, www.hfea.gov.uk). Despite 

the importance, very little is known about the factors that cause sperm dysfunction due 

to an incomplete understanding of sperm physiology. Our relatively limited 

understanding about sperm function has thus disadvantaged the development of drugs to 

treat male factor sub-fertility. Therefore, patients with sperm dysfunction have no 

treatment option, other than Assisted Reproductive Technologies (ART), which are 

invasive and may bypass the selection processes performed by the female reproductive 

tract (Holt, 2009). There are some concerns about the selection of sperm in cases of 

ICSI, which is used in the most severe cases of male factor infertility. However, ICSI 

treatment has been associated with increase in congenital birth defects (Davies et. al., 

2012; Tararbit et. al., 2013) and imprinting disorders (Cox et. al., 2002). Rather 

worrying, the usage of ICSI has increased dramatically and is used for 66% of total 

treatment cycles across Europe (Ferraretti et. al., 2013). It should be noted that there are 

some countries, such as Turkey, which uses ICSI in 98% of total cycles (Ferraretti et. 

al., 2012). The same scenario applies globally, as ICSI is the method of treatment in 

65.6% of total cycles in Australia and New Zealand and 72.9% of total cycles in the 

USA (Ferraretti et. al., 2013). Surprisingly, the male factor infertility diagnosis 

remained stable (Jain and Gupta, 2007). Therefore,  increased usage of ICSI cannot be 

due to increased male factor infertility diagnosis. This situation is due to incorrect 

allocation of patients to the relevant treatment method. Supporting this statement, 53% 

of ICSI cycles in the USA were performed without the diagnosis of male factor 

infertility (CDC, 2011).  
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Prior to the introduction of ICSI in 1992, embryologists had to find alternative 

methods in order to increase the chances of a successful IVF cycle. These methods 

included pre-treatment of sperm with heat or pharmacological agents, including 

pentoxifylline (Mortimer and Mortimer, 1992; Tournaye et. al., 1994). However, after 

ICSI was introduced into the mainstream clinical practice, embryologists now allocate 

this treatment for patients on the basis of sperm count, motility and/or morphology, yet 

without consideration of sperm function (Jain and Gupta, 2007; CDC, 2011). Therefore, 

it is critical to develop sperm functioning tests that are easy and efficient to perform, 

thus facilitating allocation of patients into the appropriate treatment methods. 

Despite this importance, there are limited tools, which are available to diagnose 

or predict the fertilizing potential of a man. The most common method for diagnosis and 

prognosis is still the conventional semen analysis with the reference values provided by 

WHO (WHO, 2010). However, these reference values are based on statistical 

calculations on large populations of fertile and sub-fertile men. Furthermore, semen 

analysis is not an effective prognostic method for fertility, with the exception of 

progressive motility (Barratt et. al., 1992; Barratt et. al., 2011; Lefievre et. al., 2007; 

Sanchez et. al., 2013). However, there are other sperm function tests available such as 

the zona-binding assay, which were shown to correlate with fertilization rates (Barratt 

et. al., 2011). Unfortunately, this test cannot be performed routinely as human material 

required for the test. Therefore, there is an urgent need to develop (and validate 

universal reference values) prognostic assays to address this very important problem, as 

male factor infertility is the commonest underlying cause of sub-fertility (Collins et. al., 

1983; Cates et. al., 1985; Hull et. al., 1985; Haxton and Black, 1987; Randall and 

Templeton, 1991; Thonneau and Spira, 1991; Schmidt et. al., 1995). 
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1.6 Aims and objectives 

 

The primary aim of this thesis was to re-assess the clinical significance of the 

hyperactivation and Ca2+ signalling assays. It is known that Ca2+ ions have pivotal role 

in sperm function and responsiveness of sperm in terms of Ca2+ signalling show relation 

with fertilisation success. Therefore, it was hypothesized that the ability of compounds 

to induce intracellular Ca2+ signalling can be used as a surrogate of physiological 

response to identify novel human sperm motility modulators. To address this, several 

objectives were followed: 

 Assess the prognostic value of spontaneous- and agonist-induced-

hyperactivation together with intracellular Ca2+ signalling in IVF. 

 Document the intracellular Ca2+ signalling of Ibudilast, MMPX, Etazolate HCl, 

Tofisopam, and Papaverine and investigate their relationship with motility. 

 Document the intracellular Ca2+ signalling responses of 223 compounds and 

categorize them accordingly to their relative responses with the progesterone 

response to identify the compounds causing strong Ca2+ influx. 

 Investigate if drugs identified from the drug screening program has any effects 

on human sperm motility for the first time. 
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Chapter 2 : Investigation of Human Sperm Hyperactivation Levels 

and Intracellular Calcium Signalling and Their Relation with 

Fertilization Rates 

 

2.1 Introduction 

 

ICSI is the method used on the most severe cases of male factor infertility. 

However, allocation of patients into the correct ART method is challenging as even 

sperm from men with ‘normal’ semen parameters can show sperm dysfunction (Aitken 

et. al., 1991). Furthermore, there is a dramatic increase in ICSI usage worldwide (see 

section 1.6.1 for more detail). Diagnosis as well as prognosis is done by semen analysis 

before fertility treatment, taking only concentration, motility, and morphology into 

consideration. However, these 3 parameters are poor indicators of the fertility status (see 

section 1.6.1 for more detail). Accordingly, there are studies, which investigated sperm 

functionality such as, hyaluran binding (Jakab et. al., 2005; Huszar et. al., 2003; Nijs et. 

al., 2010; Sakkas, 2013), DNA fragmentation (Trisini et. al., 2004; Daris et. al., 2010; 

Lewis et. al., 2013), and hyperactivation (Alasmari et. al., 2013; Brenzik et. al., 2013), 

which is believed to be better in predicting the fertilization outcome by assessing the 

functionality of sperm cells. 

Hyperactivated motility is a directionless movement type that is critical for 

successful fertilization both in vitro and in vivo (see section 1.4.2 for more detail) and 

was proposed to be an indicator of IVF success (Alasmari et. al., 2013; Brenzik et. al., 

2013). Hyperactivation should be tightly controlled in order to achieve successful 

fertilization (see section 1.4.3 for more detail). Alasmari et. al., (2013) showed that 

spontaneous and 4-AP induced hyperactivation levels correlate significantly with 

fertilization rates in IVF. Another recent study demonstrated that progesterone-induced 

hyperactivation levels correlated significantly with fertilization rates in IVF (Brenzik et. 

al., 2013). Furthermore, intracellular Ca2+ responsiveness of human sperm to 4-AP 
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(Alasmari et. al., 2013) and progesterone (Falsetti et. al., 1993; Krausz et. al., 1995; 

Krausz et. al., 1996; Alasmari et. al., 2013) showed relationship with fertilization rates 

in IVF. However, severe cases of ICSI patients with very low sperm counts were not 

investigated in terms of intracellular Ca2+ signalling due to technical limitations. 

Consequently, there is no data available about the significance of Ca2+ defects in severe 

cases of ICSI patients. It is known that several compounds induce hyperactivation. 

Progesterone activates CatSper channels causing Ca2+ influx, thus hyperactivation of 

sperm (Lishko et. al., 2011; Strunker et. al., 2011; Marquez and Suarez, 2007; Chang 

and Suarez, 2011). Store-mobilizing agent 4-AP (a broad spectrum K+ channel blocker, 

putative store mobilizer, also causes weak alkalization similar to NH4Cl) also induce 

hyperactivation (Gu et. al., 2004; Bedu-Addo et. al., 2008). IBMX also stimulates 

hyperactivation through the cAMP/sAC/PKA pathway without inducing Ca2+ influx 

(Strunker et. al., 2011).  

In this study, progesterone, 4-AP, NH4Cl, and IBMX were used to stimulate 

hyperactivation of sperm from healthy donors and sub-fertile patients. Furthermore, 

intracellular Ca2+ responses induced with progesterone and 4-AP were recorded. In this 

study, the clinical significance of induced hyperactivation assay and intracellular Ca2+ 

responses were re-visited by investigating a panel of patients undergoing IVF or ICSI 

treatment. Furthermore, severe cases of ICSI samples were tested in terms of induced 

hyperactivation and in terms of intracellular Ca2+ responses.  
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2.2 Materials and Methods 

 

2.2.1 Experimental Design 

 

Semen samples from healthy research donors, IVF patients, and ICSI patients were used 

in this study. Donor samples were used as a control for IVF and ICSI patients. For the 

sake of consistency, all of the samples were treated in the same way to enable correct 

comparison (see sperm preparation). Prepared samples were allowed to capacitate in 

capacitating medium (STF) for 2 hours. After this time, the samples were subjected to 

the hyperactivation assay with 4-AP, progesterone, IBMX, and NH4Cl (see evaluation 

of hyperactivation) followed by the intracellular Ca2+ assay (see intracellular Ca2+ 

detection). 

2.2.2 Media and Chemicals 

 

Synthetic Tubal Fluid (STF) was used as the capacitating media (Mortimer, 1986). The 

components of STF were 4.7mM KCl, 3mM CaCl2, 1mM MgSO4.7H2O, 106mM NaCl, 

5.6mM D-Glucose, 1.5mM NaH2PO4, 1mM Na-pyruvate, 41.8mM Na lactate, 25mM 

NaHCO3, 1.33mM Glycine, 0.68mM Glutamine, 0.07mM Taurine, Non-essential amino 

acids (1:100 dilution in STF) and 30mg/ml BSA. Non-Capacitating Buffer (NCB) was 

adapted from STF excluding the amino acids and NaHCO3. The components of NCB 

were 5.4mM KCl, 1.8mM CaCl2, 0.8mM MgSO4.7H2O, 116.4mM NaCl, 5.6mM D-

Glucose, 1.0mM NaH2PO4, 2.7mM Na-pyruvate, 41.8mM Na lactate and 25mM 

HEPES. The pH of NCB was adjusted to 7.4 with NaOH, and pH of STF was allowed 

to reach about 7.4 at 37°C and 5% CO2 before usage. The osmolality of the buffers were 

checked to be between 290-320 mOsm/kg. Fresh STF and NCB were made at least 

weekly to avoid contamination. Experimental STF used on the FLUOstar assay was the 
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same as STF but lacking BSA as fura-2/AM binds to BSA resulting in background 

fluorescence. 

4-aminopyridine (4-AP) (Sigma Aldrich, Catalogue number 275875-5G, UK) was 

dissolved in distilled water and used at 2mM final concentration. Progesterone (Sigma 

Aldrich, Catalogue number P8783-5G, UK) was dissolved in absolute ethanol and 

diluted with distilled water and used at 3.6µM final concentration. Ammonium chloride 

(NH4Cl, Sigma Aldrich, Catalogue number 4316230J, UK) was dissolved in distilled 

water and used at 25mM final concentration. The Ca2+ indicator dye, fura-2/AM, was 

dissolved in DMSO and kept at -20°C at dark and used at 1µM final concentration. 1% 

Pluronic acid solution was made daily prior to usage. 

2.2.3 Sperm Preparation 

 

Patients were asked to produce semen samples at the Assisted Conception Unit, 

Ninewells Hospital on the same day of partner’s egg collection. Samples were produced 

by masturbation into sterile plastic containers. Produced samples were allowed to 

liquefy at 37°C for 30 minutes. Liquefied samples were placed on to a separation 

density gradient (PureSperm buffered with Cook Sydney IVF Gamete Buffer, HEPES 

buffered media that do not support capacitation) and centrifuged at 300g for 20 minutes. 

The 40% fragment and majority of the 80% gradient was discarded (discarded fractions 

of consented patients were picked up and processed as research donors processed for the 

study, see below, figure 2.1). The 80% pellet was then washed with 5 ml of Cook 

Sydney IVF Gamete buffer for 10 minutes at 500g. If the patient was allocated to IVF, 

sperm from the wash stage was transferred to the Cook Sydney IVF Fertilization, 

bicarbonate buffered medium that supports capacitation, gassed with CO2 and kept at 

room temperature for approximately 4 hours. IVF samples were then placed in 

incubation at 37°C and 5% CO2 for 1 hour prior to insemination. If the patient was 



32 

 

allocated to ICSI, sperm from the wash stage was transferred to the Cook Sydney IVF 

Gamete buffer and kept at room temperature until the time of injection (approximately 4 

hours). 

Healthy research donors were asked to produce semen samples at home by masturbation 

into sterile plastic containers in 2-3 days of sexual abstinence. Samples were allowed to 

liquefy at 37°C for 30 minutes. If the sample was already liquefied upon arrival, then it 

was only incubated for 15 minutes at 37°C. 1ml of liquefied semen sample was placed 

on to a separation density gradient (2ml of 40% Percoll buffered with NCB on top of 

2ml of 80% Percoll buffered with NCB) and centrifuged at 300g for 20 minutes. The 

40% fragment and majority of the 80% gradient was discarded leaving about 2/3 of the 

80% gradient on top of the 80% pellet to avoid contamination from the 40% fragment. 

The 80% pellet was then transferred into a 14ml Falcon tube containing 5ml of NCB 

and washed at 500g for 10 minutes. Washed sperm were then transferred into STF and 

allowed to capacitate for 2 hours at 37°C and 5% CO2. Once the initial centrifugation 

done by the clinic, the surplus patient samples were collected and prepared in the same 

way as the donor samples were processed. Therefore, there is an additional 1 

centrifugation step for the patients. 

 

 



33 

 

 

Figure 2.1: Preparation of samples. Surplus patient samples were collected from the 

clinic following the density gradient centrifugation. Surplus samples were then prepared 

as donor samples were prepared and subjected to the hyperactivation and Ca2+ assays. 

 

Patients were allocated to ICSI or IVF in the light of the clinical implications and semen 

quality. In general, men with approximately 1x106 motile cells after preparation were 

allocated to IVF and any men below this were allocated to ICSI. 

2.2.4 Evaluation of Hyperactivation 

 

Hamilton Thorne CASA system (Ceros, v12) was used to evaluate motility parameters 

including hyperactivation. The settings used for the instrument to detect human sperm 

were: 60 Hz; low and high size gates, 0.35 and 2.80, respectively; low and high 

intensity gate, 0.5 and 2 respectively; minimum number of data points, 13; non-motile 

head size, 6 pixels; non-motile head intensity, 160. The CASA parameters measured 

were as follows: the average path velocity (VAP: is the average path velocity measured 

in µm/s of smoothed cell path), the curvilinear velocity (VCL: is the average velocity in 

µm/s over the actual start-to-end track of the cell), the lateral head displacement (ALH: 
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is the lateral head displacement in µm), and the linearity (LIN: is the linearity of sperm 

path in ratio of VSL/VCL in %). The percentage of hyperactivated cells was assessed 

using standard criteria to identify hyperactivation: VCL ≥ 150 µm/s, linearity ≤ 50%, 

and ALH ≥ 7 (Mortimer et. al., 1998). Progressive motility was assessed by VAP and 

LIN with the criteria of VAP ≥ 25 µm/s and LIN ≥ 80%. Concentration of the sperm 

samples was adjusted to be 20-30 million/ml during capacitation with STF to 

standardize all samples used for the study. At the time of analysis, sperm suspensions 

were homogenized gently and 4µl of sperm suspension was transferred to pre-warmed 

Hamilton-Thorn 2X-Cel chambers (20µm depth, Dual Sided Sperm Analysis Chamber, 

Hamilton Thorn Biosciences, Beverly, MA, USA) on a heated stage at 37°C. Slides 

were held on the heated stage for approximately 2 minutes and the motility parameters 

were taken. Minimum of 200 spermatozoa were analysed from 4 different chambers 

(i.e. 2 slides) from randomly selected fields to have statistical significance. Analysis 

was done under negative phase contrast trinocular optics by 10X magnification (final 

magnification 100X) on an Olympus CX21 light microscope with high resolution CCD 

camera. 

Induced hyperactivation levels in response to 4-AP (putative store mobilizer), 

progesterone (CatSper activator), ammonium chloride (increased intracellular pH), and 

IBMX (AC/cAMP/PKA pathway) was detected by adding 1µl of inducer to 99µl of 

sperm suspension in STF. Suspensions were then kept at room temperature for 5 

minutes (eppendorf tubes were tightly sealed) for the reaction to take place. After 5 

minutes 4µl of sperm suspension was transferred to pre-heated slide and covered with 

pre-heated coverslip and allowed to reach 37°C for 2 minutes. The analysis was done as 

described above. 
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2.2.5 Intracellular Calcium Detection  

 

Intracellular Ca2+ levels were measured fluorometrically using the Ca2+ indicator dye 

fura-2/AM (acetoxymethyl ester of fura-2). After the evaluation of sperm motility 

parameters, the concentration of sperm suspension was diluted to 6x106 cells/ml with 

STF. 1µl of fura-2/AM was added to 500µl of sperm suspension giving a final 

concentration of 1µM fura-2/AM. Pluronic F-127 also added giving final concentration 

to 0.015% (vol/vol) and incubated at 37°C and 5% CO2 for 40 minutes covered with foil 

(to ensure that the cells were not exposed to light). Following incubation, fura-2/AM 

was washed away by centrifugation at 500g for 10 minutes and the sperm were 

resuspended in Experimental STF at 37 Co and 5% CO2. Spermatozoa were then further 

incubated for 15 minutes to allow the de-esterification of fura-2/AM in dark 37Co and 

5% CO2 incubator. Fluorescence measurements were carried out on a FLUOstar Omega 

device (BMG Labtech Offenburg, Germany) at 340 (Ca2+-bound Fura-2) and 380nm 

(free Fura-2) excitation wavelength and emission at wavelength 510 nm. Aliquots of 

95µl of samples were pipetted into a 96 well plate and 5µl of agonist was added after 

100 seconds of data acquisition (20 readings) at the resting level (R). Following data 

acquisition manganese chloride at a final concentration of 10µM were injected to 

quench Fura-2/AM to eliminate background readings. The fluorimetric ratio between 

Fura-2-bound to Ca2+ and free Fura-2 indirectly indicates the intracellular Ca2+ levels.  

A minimum of ~150,000 cells were required per well for robust results. However, 

minimum of 250,000 cells were used in the assay for stronger fluorescent signals. dH2O 

and ethanol were used as negative controls as 4-AP were dissolved in dH2O and 

progesterone were dissolved in ethanol. 
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2.2.6 Definition of defective hyperactivation and Ca2+ response 

 

Defective (failed) hyperactivation response was determined by standard deviation (SD), 

and considered to be defective where SDs were overlapping comparing basal and 

induced hyperactivation responses. Defective (failed) Ca2+ responses were determined 

by the cut-off values. If the maximum reading of the sample in response to 2mM 4-AP 

or 3.6µM progesterone fails to exceed the cut-off value, the Ca2+ response was 

considered as defective. Cut-off values for 4-AP and progesterone responses were 

calculated using the log transformed donor sample responses and the cut-off values 

were determined based on the maximum reading point around agonist injection point 

using SD. Using this approach, the cut-off values for progesterone and 4-AP were 

calculated to be 0.09 and 0.12, respectively. 

2.2.7 Fertilization Rates 

 

Fertilization rates were calculated as; fertilized number of eggs divided by the total 

number of inseminated eggs and multiplied by one hundred (expressed as %). 

Fertilization was defined as the formation of two pro-nuclei (2PN). Embryologists 

assessed the 2PN formation. As ICSI procedure bypasses natural means of fertilization 

dependent on sperm function, the fertilization rates were not taken into account in case 

of ICSI treatment. In order to reduce the influence of the number of eggs on the 

outcome of the study, only the IVF cycles with ≥ 4 mature oocytes were used on 

correlation calcuations. The average number of MII oocytes of IVF patients used in this 

study was 10. 

2.2.8 Statistical Analysis 

 

As majority of the data used in the study was greater than 20, it was possible to use 

D’agostino & Pearson test to assess the normality of the data (table 2.1). This test was 
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chosen, as it is the most accurate test available for normality assessment (Razali and 

Wah, 2011). In cases where the sample size was not enough, Shapiro-Wilk test was 

used, as it is an alternative test for testing the normality of the data. Correlations were 

assessed by Spearman (rs; non-parametric) or Pearson (rp; parametric) equation 

depending on the normality. Comparisons of groups were done with paired t-test (for 

normal distribution) or Wilcoxon test (for non-normal distribution). Results are 

expressed as the mean ± SD, median, and range for hyperactivation. All calculations 

were done using GraphPad Prism version 6 (GraphPad Software, La Jolla, CA, USA). 

Results with p ≤ 0.05 were considered to be statistically significant. Sample powers (1-β 

error probability) were calculated using G*Power version 3.1 (G*Power Software, 

Germany) and considered to be adequate where 1-β > 0.80. Sample sizes were 

calculated using G*Power version 3.1 software based on effect size, p value, and power 

(Faul et. al., 2007). 
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Variable 

Sample 

Size (n) 

Mean Median Range SD 

Normality of 

the Data 

Fertilization Rate (%) 23 59.73 60.00 0.0-100.0 26.05 Yes 

IVF, Basal HA (%) 23 7.74 4.05 0.9-22.0 6.89 Yes 

IVF, 4-AP induced HA 

(%) 

22 19.50 16.38 1.4-56.5 15.00 Yes 

IVF, Absolute Δ in 4-

AP induced HA (%) 

22 12.20 12.63 0.0-34.5 10.50 Yes 

IVF, IBMX induced 

HA (%) 

10 15.00 13.88 5.0-34.5 9.77 Yes 

IVF, Absolute Δ in 

IBMX induced HA 

(%) 

10 5.61 2.92 0.0-20.5 6.62 Yes 

IVF, Progesterone 

induced HA (%) 

23 12.25 12.00 0.0-35.5 8.82 Yes 

IVF, NH4Cl induced 

HA (%) 

22 9.82 6.25 0.0-40.5 10.06 No 

 

Table 2.1: Summary of the data used for the study. Table shows the samples size (n 

values), mean, median, standard deviation (SD), range, and normality of the data. 

D’agostino & Pearson test was used to assess normality of the data where sample size 

was greater than 20 and Shapiro-Wilk test used for the rest. 
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2.3 Results 

2.3.1 Hyperactivation Levels and Efficacy of the Drugs 

 

17 Donors, 25 IVF, and 9 ICSI patients were screened for spontaneous 

hyperactivation levels and induced hyperactivation levels in response to 4-AP, 

progesterone, ammonium chloride, and IBMX (figures 2.3-2.4-2.5). Spontaneous 

hyperactivation levels of IVF and ICSI patients were significantly different, with IVF 

patients having higher levels (p=0.0118, figure 2.2).  

 

Figure 2.1: Spontaneous hyperactivation levels of donor, IVF and ICSI 

populations. Box and whisker plot showing the spontaneous levels of hyperactivation. 

Boxes represent the interquartile range and lines within them are the medians. Numbers 

in brackets on the x-axis are the sample size. There is significant difference between 

donor and ICSI populations (p=0.0004), however comparison is not scientifically ideal 

due to preparation differences (see sample preparation). ‘a’ represents significant 

difference from IVF and ICSI populations (p=0.0118) assessed by paired t-test. 

 

Among the compounds used, 4-AP was the most potent inducer of 

hyperactivation in the donor and IVF populations, followed by IBMX and progesterone 

(figures 2.3-2.4-2.5). Conversely, ammonium chloride was not an effective stimulator of 

hyperactivation. ICSI patients failed to respond significantly to the agonists apart from 

4-AP (figure 2.5).  
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Figure 2.2: Comparison of agonists on hyperactivation levels of donors. Box and 

whisker plot showing basal (control) and induced levels of hyperactivation in response 

to 2mM 4-AP, 100µM IBMX, 3.6µM progesterone, and 25mM ammonium chloride. 

The boxes represent the interquartile range and lines within them are the medians. The 

numbers in brackets on the x-axis is the sample size. Number of asterisk (*) represents 

decimal place significant difference from basal hyperactivation level assessed with 

patired t-test for 4-AP, IBMX, and Progesterone and Wilcoxon test for ammonium 

chloride. 

 

Figure 2.3: Comparison of agonists on hyperactivation levels of IVF patients. Box 

and whisker plot showing basal (control) and induced levels of hyperactivation in 

response to 2mM 4-AP, 100µM IBMX, 3.6µM progesterone, 25mM and ammonium 

chloride. The boxes represent the interquartile range and lines within them are the 

medians. The numbers in brackets on the x-axis is the sample size. Number of asterisk 

(*) represents decimal place significant difference from basal hyperactivation level 

assessed with patired t-test for 4-AP, IBMX, and Progesterone and Wilcoxon test for 

ammonium chloride. 
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Figure 2.4: Comparison of agonists on hyperactivation levels of ICSI patients. Box 

and whisker plot showing the basal (control) and induced levels of hyperactivation in 

response to 2mM 4-AP, 100µMM IBMX, 3.6µM progesterone, 25mM and ammonium 

chloride. The boxes represent the interquartile range and lines within them are the 

medians. The numbers in brackets on the x-axis is the sample size. Number of asterisk 

(*) represents decimal place significant difference from basal hyperactivation level 

assessed with patired t-test for 4-AP, IBMX, and Progesterone and Wilcoxon test for 

ammonium chloride. 

 

2.3.2 Hyperactivation Levels of IVF Patients and Relationship with Fertilization 

Rates 

  

Total and progressively motile sperm levels were not correlated with fertilization 

rates (appendix). In order to evaluate the clinical significance of hyperactivation assay 

spontaneous, 4-AP-induced, progesterone-induced, ammonium chloride-induced, and 

IBMX-induced hyperactivation levels were checked for relationship between 

fertilization rates on 23 IVF cycles. Spontaneous hyperactivation levels were found to 

correlate with fertilization rates significantly (rp=0.4420, p=0.0347, n=23, 1-β=0.8278, 

figure 2.6). The maximum hyperactivation leves in response to 4-AP as well as the 

increment in 4-AP-induced hyperactivation correlated significantly with fertilization 
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rates (rp=0.5242, p=0.0123, n=22, 1-β=0.8869; rp=0.4481, p=0.0365, n=22, 1-β=0.8258; 

respectively, figure 2.7). Another significant correlation was IBMX-induced 

hyperactivation levels (rp: 0.8361, p: 0.0026, n=11, 1-β=0.9771, figure 2.8). However, 

IBMX-induced increment in hyperactivation was not significantly correlated with 

fertilization rates (ns, appendix). There was no significant relationship between 

progesterone- (ns, n=21, 1-β=0.7196, appendix) and ammonium chloride-induced (ns, 

n=19, appendix) hyperactivation levels and fertilization rates.   

 

Figure 2.5: Relationship between basal hyperactivation levels and fertilization 

rates. Basal hyperactivation leves correlate significantly with fertilization rates (n=23). 

Pearson correlation coefficient (rp), p-value, and R2 values are shown on the figure. 
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Figure 2.6: Relationship between 2mM 4-AP-induced hyperactivation (A), 

increment in hyperactivation with 4-AP (B) and fertilization rates. (A) 4-AP-

induced hyperactivation levels correlate significantly with fertilization rates (n=22). (B) 

Increment in hyperactivation with 4-AP correlate significantly with fertilization rates 

(n=22). Pearson correlation (rp), p-values, and R2 values are shown on the figures. 
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Figure 2.7: Relationship between 100µM IBMX-induced hyperactivation levels 

with fertilization rates. IBMX-induced hyperactivation levels correlate significantly 

with fertilization rates (n=11). Pearson correlation (rp), p-value, and R2 values are 

shown on the figure. 

 

As hyperactivation criteria consist of VCL, ALH and LIN, basal and induced 

levels of these parameters were checked for correlation with fertilization rates. It was 

found that, basal ALH (rp=0.6828, R2=0.4800, p=0.0007, 1-β=0.9781, figure 2.9), basal 

VCL (rp=0.4565, R2=0.2084, p=0.0430, 1-β=0.8403, figure 2.10), and basal LIN (rs=-

0.7145, R2=0.2694, p=0.0004, 1-β=0.8897, figure 2.11) levels were significantly 

correlated with fertilization rates. However, increments in ALH, VCL, and LIN with 4-

AP or IBMX did not correlate with fertilization rates (appendix). 
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Figure 2.8: Relationship between basal ALH with fertilization rates. (A) Basal ALH 

levels correlate significantly with fertilization rates (n=23).  Pearson correlation 

coefficient (rp), p-value, and R2 value are shown on the figure. 

 

 

Figure 2.9: Relationship between basal VCL with fertilization rates. Basal VCL 

levels correlate significantly with fertilization rates (n=23). Pearson correlation 

coefficient (rp), p-value, and R2 value are shown on the figure. 
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Figure 2.10: Relationship between basal LIN with fertilization rates. Basal LIN 

levels correlate significantly with fertilization rates (n=23). Spearman correlation 

coefficient (rs), p-value, and R2 value are shown on the figure. 

 

2.3.3 Calcium Signalling Induction with Agonists in IVF Patients and Donors 

  

Intracellular Ca2+ signalling of 11 IVF patients and 17 donors were recorded in 

response to 4-AP and progesterone (figure 2.12). The Ca2+ signalling in response to 4-

AP was significantly different between IVF patients and donor populations (p<0.05, 

figure 2.12). IVF patients showed a significantly higher response to 4-AP. Furthermore, 

the nature of 4-AP response is different than that of donor responses (figure 2.12). On 

the other hand, there was no significant difference in progesterone responses of IVF and 

donor populations (ns, figure 2.12). 
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Figure 2.11: Intracellular Ca2+ responses to 2mM 4-AP and 3.6µM progesterone in 

donor and IVF patient populations. Intracellular Ca2+ responses induced by 4-AP and 

progesterone in donors (4-AP n=6, progesterone n=17) and IVF patients (4-AP n=11, 

progesterone n=9). * indicates significant difference from resting level Ca2+ ratio. 

Arrow indicates point of agonist injection. 
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The maximum reading of the peak point and sustained phase reading for both 

agonists were checked for relationship with fertilization rates, however, there was no 

such relationship. However, 4-AP induced hyperactivation levels showed a significant 

negative correlation with ALH levels (rp=-0.6601, R2=0.4357, p=0.0378, figure 2.13). 

This was the only relationship found with intracellular Ca2+ signalling and as ALH 

levels correlated with fertilization rates there might be a relationship. 

 

Figure 2.12: Relationship between 2mM 4-AP-induced intracellular Ca2+ and ALH 

levels. Maximal points of 4-AP-induced intracellular Ca2+ signaling correlate 

significantly with ALH levels (n=11). Pearson correlation coefficient (rp), p-value, and 

R2 values are shown on the figure. 

 

2.3.4 Hyperactivation and Intracellular Ca2+ Responses of ICSI Patients 

  

As ICSI patients had very low sperm concentration it was challenging to record 

intracellular Ca2+ signalling. Intracellular Ca2+ responses of only 3 out of 9 ICSI 

samples could be obtained (figure 2.14). 2 of the ICSI samples gave poor responses to 

4-AP. However, those 2 samples that gave poor responses to 4-AP gave ‘normal’ 

(considering cut-off values, see materials and methods) responses to progesterone, but 
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the responses were significantly lower than the usual response. Of those 3 patients, only 

Patient 3 gave a significant response to 4-AP in terms of hyperactivation. Patient 1 

responded significantly to progesterone, Patient 2 did not respond, and progesterone-

induced hyperactivation for Patient 3 was not tested. 

 

 

Figure 2.13: Intracellular Ca2+ responses to 2mM 4-AP and 3.6µM progesterone in 

3 ICSI patients. Arrow indicates point of agonist injection. Patients 2 and 3 gave poor 

responses to 4-AP. Progesterone responses were “normal” considerin the cut-off value. 
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2.3.5 Defective Hyperactivation and Intracellular Ca2+ Responses of Different 

Populations 

  

In order to understand the differences between healthy donors and sub-fertile 

patients, occurrence of defective hyperactivation and intracellular Ca2+ responses to the 

agonists were analysed. It was found that 12% (i.e. 2 in 17) of the donor samples gave a 

defective hyperactivation response to 4-AP, and 24% (i.e. 4 in 17) to progesterone. The 

incidence of defective hyperactivation among the IVF patients in response to 4-AP was 

not significantly different than that of the donor responses, 16% (i.e. 7 in 25). Similarly, 

the incidence of defective progesterone-induced hyperactivation levels among the IVF 

patients was not significantly higher than that of the donors 42% (i.e. 10 in 24) in 

response to progesterone. The incidence of defective hyperactivation was 33% (i.e. 3 in 

9) in response to 4-AP was not significantly different than that of the donors and IVF 

patients. Similarly, 71% (i.e. 5 in 9) of the ICSI patients gave defective hyperactivation 

in response to progesterone that was not significantly different than that of the donors 

and IVF patients. As there was a limitation in requirement for an intracellular Ca2+ 

response detection, not all the patients could be screened for intracellular Ca2+ 

responses. However, for those patients which had the sufficient amount of cells for Ca2+ 

detection assay was assessed for their intracellular Ca2+ responses. None of the donors 

and IVF patients gave a defective intracellular Ca2+ response with 4-AP and 

progesterone. One of the ICSI patients (1 in 3) showed a defective intracellular Ca2+ 

response to 4-AP. Conversely, all of the patients gave ‘normal’ responses to 

progesterone.  
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2.4 Discussion 

 

The aim of the study was to determine the clinical significance of 

hyperactivation and intracellular Ca2+ assays. It is clear that hyperactivation is 

controlled by Ca2+ signalling (Publicover et. al., 2007). However, there are very few 

studies about defective hyperactivation levels in sub-fertile patients. Furthermore, the 

existing studies focused on the basal levels of hyperactivation (Munire et. al., 2004). 

The control of hyperactivation is relying on extracellular stimulation from the 

environment. The strongest candidate for physiological external stimulation for 

hyperactivation is progesterone in vivo. Although not a potent hyperactivation inducer, 

progesterone is the candidate that initiates hyperactivation in mammals upon binding to 

CatSper in the vicinity of oocytes (Lishko et. al., 2011; Strunker et. al, 2011). 4-AP on 

the other hand is much more potent inducer of hyperactivation and its effect on 

hyperactivation is not dependent on extracellular Ca2+, suggesting the presence of 

intracellular Ca2+ store(s) (Gu et. al., 2004; Bedu-Addo et. al., 2008). Recently, clinical 

significance of the Ca2+ stores was evaluated (Alasmari et. al., 2013). Alasmari et. al., 

(2013) documented the prevelance of calcium store defects and highlighted the clinical 

significancy of calcium signalling for fertilisation at IVF. 

The advantage of using the surplus patient samples is that there were no inter-

ejaculate sample differences; therefore, there was a direct relationship between the 

sperm used for the insemination and the sperm used for the hyperactivation and Ca2+ 

assays. However, relying on surplus samples was challenging in case of samples with 

low sperm concentration as there is always a limit on the sperm number recovered from 

the samples provided from the clinic. Because of this limitation, not all the samples 

could be tested for all the agonists in the hyperactivation and intracellular Ca2+ assays. 

25 IVF and 9 ICSI patients were screened. Although the sample sizes were small, the 

effect sizes and the sample powers indicate that data used is strong enough to make 



52 

 

statements (except progesterone). It was shown very clearly that; 4-AP-induced-, 

IBMX-induced-, and basal hyperactivation levels correlated significantly with 

fertilization rates (figure 2.6, figure 2.7, and figure 2.5, respectively). As 

hyperactivation assay shows robust repeatability (Burkman and Samrock, 1992), this 

study has a value in prognostic allocation of suitable treatment methods in ART. It has 

been suggested by Brenzik et. al. (2013) that the basal hyperactivation levels of sperm 

samples in IVF cycles is not useful. In contrast with Brenzik et. al. (2013), this study in 

agreement with Alasmari et. al., (2013) shows that the basal hyperactivation levels 

correlated significantly with fertilization rates and it can be used together with induced 

levels of hyperactivation to give an idea about the IVF outcome. Again in contrast with 

Brenzik et. al., (2013), progesterone induced hyperactivation levels did not correlate 

with fertilization rates in this study confirming Alasmari et. al., (2013). The criteria 

used by Brenzik et. al., (2013) for hyperactivation was; ALH ≥ 5µm, LIN ≤ 60%, and 

VCL ≥ 100µm/s. The criteria used in this study and Alasmari et. al., (2013) was more 

stringent (ALH ≥ 7µm, LIN ≤ 50%, and VCL ≥ 150µm/s). Therefore, this finding could 

be explained by using different criterias. It is clear that the responsiveness of sperm to 

4-AP in terms of hyperactivation can indicate the fertilization potential of a man 

(Alasmari et. al., 2013; this study). However, as progesterone induced hyperactivation 

levels did not correlate with fertilization rates, it cannot be used as a prognostic test 

(Alasmari et. al., 2013; this study). It was calculated to have a sample size of 51 in order 

to have significant results for progesterone induced hyperactivation correlating with 

fertilization rates.  

The effects of inducers can be ranked as; 4-AP˃IBMX˃Progesterone˃NH4Cl 

(Figures 2.3, 2.4, 2.5). This ranking was similar between the different populations used. 

It has been suggested that progesterone-induced intracellular Ca2+ signalling is 

accompanied with a burst of hyperactivation for a short period of time (i.e. transient 
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period of induction, Gakamsky et. al., 2009; Servin-Vences et. al., 2012). However, 

under the experimental conditions of this study, this induction of hyperactivation was 

‘missed’. As a result, progesterone-induced hyperactivation levels from different 

populations were low and defective hyperactivation responses were frequent in all the 

populations used. Furthermore, IVF patients that showed failed response to 

progesterone also failed to respond significantly in CASA parameters (appendix). 

Although there are molecular weaknesses, caged-progesterone analogues could be used 

to test the transient Ca2+ period and its effect on patient samples. Furthermore, the 

significance of CatSper activity in hyperactivation induction in man is largely unknown 

(Brenker et. al., 2012).  

Hyperactivation is also stimulated by phosphodiesterase (PDE) inhibitors 

through the cAMP/PKA pathway. In order to test the significance of the cAMP 

pathway, IBMX was used to inhibit PDE activity and albeit increase [cAMP]i to 

stimulate hyperactivation (Tesarik et. al., 1992). IBMX application does not stimulate 

Ca2+ influx, therefore, IBMX-induced hyperactivation is not dependent on the intra- or 

extra-cellular Ca2+. Although, hyperactivation is controlled by Ca2+ not cAMP in 

mammals (Ho et. al., 2002), in this study, it was found that the IBMX-induced 

hyperactivation levels showed the highest level of correlation with fertilization rates. 

However, it should be noted that the sample size for IBMX-induced hyperactivation 

levels was small (Figure 2.8). Furthermore, the increment in hyperactivation with 

IBMX did not correlate with fertilization rates. Therefore, it is not certain if IBMX-

induced hyperactivation has a prognostic value in IVF. 

IVF patients showed significantly higher Ca2+ response to 4-AP than research 

donors. There is no rational explanation for this. However, there was no correlation 

between the intracellular Ca2+ responses by agonists and fertilization rates, possibly due 
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to low sample sizes. Comparing the Ca2+ signalling between IVF and ICSI patients with 

independent t-test showed that the 4-AP response was significantly lower in ICSI 

patients (Figure 2.10 and Figure 2.12). This reflects that the ICSI patients were likely to 

have intracellular Ca2+ store deficiencies. It should be noted that the acrosome reaction 

was not tested for these patients and there is a possibility that these patients could have 

acrosome reaction problems. 

In case of IVF treatment, the problem could be a female factor as well as a male 

factor. Therefore, it was uncertain if the patients undergoing IVF treatment had sperm 

dysfunction. It should be noted that the decision on using ICSI is made on the light of 

sperm concentration, sperm motility, and sperm morphology or the couple had a failed 

IVF cycle (see section 2.2.2). Therefore, there is a greater possibility that ICSI cycles 

were chosen due to male factor infertility. Trying IVF and failing is financially 

wasteful. This study demonstrates that the hyperactivation assay has potential in 

predicting IVF outcome and may be introduced into routine semen analysis for better 

allocation of patients into the correct treatment methods. 

In summary it was shown that 4-AP-induced, IBMX-induced and spontaneous-

hyperactivation levels correlate significantly with IVF fertilization rates. Therefore, it is 

proposed that the hyperactivation assay should be further investigated and clinically 

established reference values must be evaluated. Furthermore, hyperactivation assay 

along with other tests such as semen analysis, hyaluronan-binding, and sperm DNA 

damage could be used together to develop algorithms for predicting IVF outcome. By 

using these functional tests, allocation of patients to ICSI would be determined much 

more efficiently.  
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Chapter 3 : Effect of Phosphodiesterase Inhibitors on Human Sperm 

Motility and Calcium Signalling 

 

3.1 Introduction 

 

Human sperm motility is controlled through mechanisms that are dependent on 

cAMP and Ca2+ (Wennemuth et. al., 2003; Publicover et. al., 2007). It is known that 

several odorants increase cAMP content of spermatozoa that results in opening 

unknown Ca2+ channels (Spehr et. al., 2003; Neuhauss et. al., 2006; Veitinger et. al., 

2011). Supporting this finding, membrane-permeable analogues of cAMP and cGMP 

evoke their own Ca2+ signals in mouse and human sperm (Kobori et. al., 2000; Ren et. 

al., 2001; Machado-Oliveira et. al., 2008). cAMP molecule itself evokes Ca2+ influx 

upon binding to CatSper on an extracellular site, making the context of Ca2+ signalling 

and its interplay with cAMP very complex (Brenker et. al., 2012). cAMP and Ca2+ were 

shown to influence the flagellar beating pattern (Ishjima, 2013; Ho et. al., 2002). PDE 

inhibitors have been used to stimulate human sperm motility through increasing 

intracellular cAMP content (Rees et. al., 1990; Yovich et. al., 1990; Pang et. al., 1993). 

However, effects of the PDE inhibitors on Ca2+ signalling remain largely unknown as 

there are very limited studies addressing this (Nassar et. al., 1998; Hong et. al., 1985; 

Torres-Flores et. al., 2008; Colas et. al., 2010). There is evidence that shows 

hyperactivated motility is stimulated by non-specific PDE inhibitor pentoxifylline 

independently from Ca2+ induction (Nassar et. al., 1998). This is particularly interesting, 

as it is known that hyperactivation is controlled by Ca2+. It is therefore, interesting to 

document the effects of PDE inhibitors on Ca2+ signalling as Ca2+ ion is pivotal in 

sperm function.  

It has been suggested that PDE type 4 is responsible for controlling motility 

(Fisch et. al., 1998). Selective inhibitors of PDE type 4, Etazolate HCl (IC50: 2µM), 
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Ibudilast (IC50: 0.05-5µM depending on the sub-type), and Tofisopam (IC50: 0.68µM) 

were shown to increase human sperm motility significantly (Tardif et. al., unpublished 

data). Additionally, Papaverine (IC50: 1.1µM), a non-selective PDE inhibitor that has 

sensitivity towards PDE type 4 also significantly increases human sperm motility 

(Tardif et. al., unpublished data). Therefore, the effects of PDE inhibitors Ibudilast, 

MMPX, Tofisopam, Etazolate Hydrochloride, and Papaverine on intracellular Ca2+ 

signalling induction and its relation with motility were investigated. 
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3.2 Materials and Methods 

 

3.2.1 Experimental design 

 

Semen samples from healthy research donors were used for this study. Prepared donor 

samples were allowed to capacitate in the capacitating medium (STF) for 2 hours (see 

sperm preparation). After this time, the samples were subjected to PDE inhibition with 

Ibudilast, Etazolate HCL, MMPX, Tofisopam, or Papaverine at 10 different 

concentrations (0.1-100µM) for their motility effects (see phosphodiesterase inhibition). 

This range of concentration was chosen based on the IC50 values of these inhibitors and 

previous observations (Tardif et. al., unpublished data). Following evaluation of 

motility effects, samples were subjected to the intracellular Ca2+ assay to evaluate the 

effects of the aforementioned PDE inhibitors on Ca2+ signalling (see intracellular Ca2+ 

detection). There is a time difference of 1 hour between motility assays and Ca2+ assays. 

Different donors were used for each experiment. 

3.2.2 Media and Chemicals 

 

NCB, STF, and Experimental STF were the same as described in Chapter 2 (see section 

2.2.2). Progesterone (Sigma Aldrich, Catalogue number P8783-5G, UK) was dissolved 

in absolute ethanol and diluted with distilled water prior to use and used at a final 

concentration of 3.6µM. The Ca2+ indicator dye Fura-2/AM was dissolved in DMSO 

and kept at -20°C and used at 1µM final concentration. 1% Pluronic acid solution was 

made daily prior usage. 

3.2.3 Sperm Preparation 

 

Healthy research donors were asked to produce semen samples at home by masturbation 

into sterile plastic containers in 2-3 days of sexual abstinence. Samples were allowed to 

liquefy at 37°C for 30 minutes. If the sample was already liquefied upon arrival, then it 
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was only incubated for 15 minutes at 37°C to standardize the temperature of the 

samples used. Following the percoll density gradient (see section 2.2.3), the 80% 

fraction sperm were transferred into the STF and allowed to capacitate for 2 hours at 

37°C and 5% CO2. 

3.2.4 Phosphodiesterase Inhibition 

 

Following 2 hours of exposure to the capacitating conditions, sperm were exposed to 

various concentrations of different phosphodiesterase inhibitors (0.1-100µM). Selected 

PDE inhibitor (dissolved in DMSO) was added to the sperm suspension and mixed 

gently followed by a further incubation at 25°C for 5 minutes before any analysis (as 

Ca2+ assay could be only recorded up to 5 minutes). 1% DMSO was used as negative 

control and 3.6µM progesterone was used as positive control. 

3.2.5 Evaluation of Hyperactivation 

 

CASA settings were the same as described in Chapter 2 (see section 2.2.4). Following 

addition of 1µl PDE inhibitor to 99µl in STF for desired final concentration, the 

suspension was kept at 25°C for 5 minutes. After 5 minutes, 4µl of sperm suspension 

was transferred to pre-heated slide (Dual Sided Sperm Analysis Chamber, Hamilton 

Thorn Biosciences, Beverly, MA, USA) and covered with pre-heated coverslip and 

allowed to reach 37°C for 2 minutes. The analysis was done as described in section 

2.2.4. 

3.2.6 Intracellular Calcium Detection 

 

The Ca2+ detection protocol was the same as described in Chapter 2 (see section 2.2.5). 

Pluronic acid was used at a final concentration of 0.005%. Minimum of 2x106 cells/well 

were required. 
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3.2.7 Statistics 

 

The general linear model was used where possible, as the sample size was small to 

perform other statistical calculations. Where general linear model was unable to give 

clear statistical results (due to wide variations in data), individual donor analysis was 

performed. For individual donor analysis, SD was checked with control data, and 

considered to be statistically significant where the SDs was not overlapping. Results 

with p≤0.05 were considered to be statistically significant. Sample powers (1-β error 

probability) were calculated using G*Power version 3.1 (G*Power Software, Germany) 

and considered to be adequate where 1-β>0.80. Sample sizes were calculated using 

G*Power version 3.1 software based on effect size, p value, and power (Faul et. al., 

2007). 
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3.3 Results 

 

3.3.1 Effect of PDE Inhibitors on Motility Parameters 

 

All of the 5 PDE inhibitors tested on human sperm had significant effects on 

motility parameters. Whilst total motility and progressive motility were not significantly 

affected by PDE inhibitor treatments (ns, Figure 3.1 and 3.2), there was a significant 

induction in hyperactivation in spermatozoa only in response to Ibudilast (Figure 3.3). 

This induction was statistically significant only at 50µM and 100µM concentrations 

(p=0.038 and p=0.020, respectively). Due to high variation seen in the hyperactivation 

data (Figure 3.3) individual donors were also analysed using SD (Table 3.1-3.5). 

 

Figure 3.1: Dose responses of Ibudilast, MMPX, Etazolate, Papaverine, and 

Tofisopam on total motility. The scatter graph is showing a 10-point dose response of 

total motility of Ibudilast (n=4), MMPX (n=4), Etazolate (n=4), Papaverine (n=5), and 

Tofisopam (n=3). The x-axis (concentration) is on log scale.  Error bars represent SEM 

(only plus values are shown). 
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Figure 3.2: Dose responses of Ibudilast, MMPX, Etazolate, Papaverine, and 

Tofisopam on progressive motility. The scatter graph is showing a 10-point dose 

response of progressive motility of Ibudilast (n=4), MMPX (n=4), Etazolate (n=4), 

Papaverine (n=5), and Tofisopam (n=3). The x-axis (concentration) is on log scale.  

Error bars represent SEM (only plus values are shown). 

 

Figure 3.3: Dose responses of Ibudilast, MMPX, Etazolate, Papaverine, and 

Tofisopam on hyperactivation. The scatter graph is showing a 10-point dose response 

of hyperactivation of Ibudilast (n=4), MMPX (n=4), Etazolate (n=4), Papaverine (n=5), 

and Tofisopam (n=3). The x-axis (concentration) is on log scale.  Error bars represent 

SEM (only plus values are shown). 
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Concentration (µM) 

 
-ve  

control 
0.1 0.3 0.5 1 3 5 10 30 50 100 

+ve 
control 

D1 
5.00  

(1.00) 

6.25    

(0.50) 

4.00  

(0.82) 

4.00  

(0.00) 

4.50  

(1.29) 

9.00* 

(0.82) 

6.50  

(1.29) 

7.75  

(2.22) 

10.75* 

(0.96) 

16.50* 

(2.89) 

15.25* 

(0.96) 

15.00* 

(1.15) 

D2 
5.00  

(0.82) 

8.50* 

(1.29) 

4.75  

(0.96) 

6.75  

(2.36) 

5.75  

(0.50) 

6.25  

(1.26) 

6.75* 

(0,50) 

11.75* 

(0.96) 

11.75* 

(1.89) 

20.25* 

(1.50) 

23.25* 

(2.63) 

17.00* 

(2.58) 

D3 
4.50  

(0.87) 

5.25  

(0.63) 

4.00  

(0.71) 

2.00  

(0.00) 

3.50  

(0.29) 

3.75  

(0.75) 

9.00* 

(1.47) 

6.50* 

(0.87) 

7.75* 

(0.48) 

6.50* 

(0.50) 

6.25* 

(0.48) 

5.25  

(1.18) 

D4 
8.00  

(2.71) 

6.50   

(3.00) 

5.50  

(1.00) 

6.25  

(0.96) 

7.75  

(1.71) 

7.25  

(1.71) 

9.50  

(1.29) 

12.50 

(2.38) 

18.75* 

(3.59) 

16.25* 

(4.99) 

17.00* 

(2.58) 

21.75* 

(3.10) 
 

Table 3.1: Effect of Ibudilast on hyperactivation. Table shows the effect of Ibudilast on hyperactivation as 10 different concentrations on 4 different 

donors. The numbers in brackets are standard deviation. Asterix (*) indicates that standard deviations are not overlapping compared to control (i.e. 

statistically significant). Negative (1% DMSO) and positive (3.6µM progesterone) controls are shown on the table. 

 

 

Concentration (µM) 

 
-ve  

control 
0.1 0.3 0.5 1 3 5 10 30 50 100 

+ve 

control 

D1 
2.00  

(2.45) 

3.50    

(2.38) 

4.50  

(2.38) 

6.5    

(4.04) 

5.50  

(1.73) 

9.50* 

(2.65) 

9.75* 

(2.22) 

4.25  

(2.63) 

5.25  

(3.20) 

3.50   

(1.91) 

7.50  

(6.66) 

11.75 

(6.29) 

D2 
3.25    

(0.50) 

2.75  

(0.96) 

3.25  

(0.96) 

1.75    

(0.50) 

2.25    

(1.50) 

3.50  

(1.29) 

7.25* 

(2.22) 

5.25* 

(0.96) 

7.50* 

(1.73) 

10.00* 

(2.16) 

11.25* 

(2.22) 

10.00* 

(2.44) 

D3 
15.50 

(3.42) 

20.75 

(6.34) 

15.75 

(3.40) 

13.25 

(3.30) 

27.50* 

(3.11) 

24.00* 

(2.31) 

23.25 

(5.90) 

27.80* 

(3.42) 

24.75* 

(5.12) 

29.75* 

(5.32) 

21.00 

(4.08) 

22.25 

(4.72) 

D4 
8.50  

(0.29) 

11.00* 

(0.58) 

13.25* 

(0.63) 

18.50* 

(1.19) 

14.50* 

(0.96) 

12.25* 

(1.25) 

16.50* 

(1.55) 

20.50* 

(1.76) 

9.50  

(2.25) 

13.00* 

(1.00) 

9.50* 

(0.29) 

21.00* 

(5.52) 
 

Table 3.2: Effect of MMPX on hyperactivation. Table shows the effect of MMPX on hyperactivation as 10 different concentrations on 4 different donors. 

The numbers in brackets are standard deviation. Asterix (*) indicates that standard deviations are not overlapping compared to control (i.e. statistically 

significant). Negative (1% DMSO) and positive (3.6µM progesterone) controls are shown on the table. 
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Concentration (µM) 

 
-ve  

control 
0.1 0.3 0.5 1 3 5 10 30 50 100 

+ve 

control 

D1 
8.75  

(3.10) 

13.25 

(2.99) 

10.25 

(2.06) 

14.25 

(3.59) 

15.00* 

(2.45) 

24.25* 

(4.79) 

25.75* 

(3.30) 

27.75* 

(3.30) 

29.25* 

(8.26) 

18.75* 

(3.29) 

19.25* 

(3.59) 

40.00* 

(5.48) 

D2 
19.5  

(4.80) 

18.75 

(5,62) 

25.00     

(3.26) 

20.25 

(6.29) 

32.00* 

(6.38) 

26.50 

(5.26) 

33.25* 

(8.46) 

29.00* 

(3.16) 

33.25* 

(3.77) 

17.75 

(4.92) 

17.50 

(3.70) 

38.00* 

(3.74) 

D3 
2.75  

(1.71) 

2.20    

(1.30) 

4.25  

(0.96) 

4.00  

(1.41) 

5.50  

(1.29) 

5.25  

(1.50) 

6.25* 

(1.71) 

12.00* 

(1.83) 

14.5* 

(3.42) 

10.75* 

(1.71) 

7.25  

(2.87) 

9.50* 

(1.29) 

D4 
11.75 

(3.86) 

8.25   

(3.59) 

9.25  

(2.63) 

17.25 

(6.85) 

15.5  

(5.20) 

15.50 

(7.05) 

21.75 

(6.95) 

22.25* 

(2.22) 

33.00* 

(12.25) 

14.75  

(2.50) 

15.75 

(9.95) 

22.50 

(9.04) 
 

Table 3.3: Effect of Etazolate on hyperactivation. Table shows the effect of Etazolate on hyperactivation as 10 different concentrations on 4 different 

donors. The numbers in brackets are standard deviation. Asterix (*) indicates that standard deviations are not overlapping compared to control (i.e. 

statistically significant). Negative (1% DMSO) and positive (3.6µM progesterone) controls are shown on the table. 

Concentration (µM) 

 
-ve  

control 
0.1 0.3 0.5 1 3 5 10 30 50 100 

+ve 

control 

D1 
3.25  

(0.50) 

1.75  

(0.50) 

3.25  

(0.96) 

3.75  

(0.96) 

4.25  

(0.50) 

9.25* 

(0.96) 

6.75* 

(0.96) 

11.25* 

(0.96) 

11.75* 

(1.71) 

17.50* 

(3.11) 

15.00* 

(2.94) 

19.75* 

(4.50) 

D2 
9.25  

(0.63) 

11.00* 

(0.41) 

10.00 

(1.22) 

11.00* 

(0.41) 

20.50* 

(0.96) 

22.50* 

(1.04) 

25.00* 

(1.08) 

18.75* 

(1.44) 

28.75* 

(1.44) 

24.00* 

(1.22) 

20.25* 

(1.25) 

19.25* 

(1.44) 

D3 
9.75  

(0.75) 

14.00* 

(0.82) 

15.75* 

(0.75) 

21.75* 

(1.11) 

25.25* 

(1.44) 

23.00* 

(1.91) 

21.00* 

(1.00) 

32.25* 

(1.11) 

24.00* 

(0.91) 

30.00* 

(0.41) 

25.25* 

(0.75) 

27.75* 

(0.85) 

D4 
4.75  

(1.71) 

3.50  

(0.58) 

5.00  

(0.00) 

7.25  

(0.98) 

15.50* 

(1.29) 

13.75* 

(3.30) 

10.75* 

(1.26) 

12.50* 

(1.73) 

18.75* 

(4.99) 

11.75* 

(0.96) 

10.25* 

(2.87) 

17.25* 

(0.98) 

D5 
13.00 

(1.15) 

10.50 

(2.38) 

14.25 

(1.26) 

17.25* 

(2.50) 

16.25* 

(1.89) 

21.75* 

(1.89) 

19.50* 

(1.29) 

25.50* 

(2.08) 

19.75* 

(1.50) 

25.75* 

(3.50) 

23.25* 

(2.06) 

19.25* 

(1.50) 
 

Table 3.4: Effect of Papaverine on hyperactivation. Table shows the effect of Papaverine on hyperactivation as 10 different concentrations on 5 different 

donors. The numbers in brackets are standard deviation. Asterix (*) indicates that standard deviations are not overlapping compared to control (i.e. 

statistically significant). Negative (1% DMSO) and positive (3.6µM progesterone) controls are shown on the table. 
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Concentration (µM) 

 

-ve  

control 
0.1 0.3 0.5 1 3 5 10 30 50 100 

+ve 

control 

D1 
17.75 

(9.88) 

14.50 

(4.93) 

15.00 

(2.94) 

22.75 

(4.79) 

27.75 

(4.99) 

21.50 

(5.20) 

28.25 

(12.42) 

34.00* 

(3.46) 

30.75 

(10.10) 

24.25 

(7.27) 

17.75 

(5.90) 

42.25* 

(8.46) 

D2 
6.50 

(1.91) 

19.25* 

(3.40) 

16.00* 

(3.16) 

20.00* 

(3.74) 

22.75* 

(5.12) 

19.50* 

(4.12) 

28.00* 

(9.56) 

23.75* 

(2.99) 

23.25* 

(3.95) 

20.25* 

(6.29) 

12.00 

(9.76) 

34.75* 

(3.10) 

D3 
0.50 

(1.00) 

1.50 

(1.73) 

2.75 

(1.26) 

1.25 

(0.50) 

2.25 

(1.26) 

2.75* 

(0.96) 

5.25* 

(1.5) 

3.25 

(1.89) 

1.75 

(1.26) 

2.25 

(1.71) 

2.00 

(1.41) 

4.50  

(3.11) 
 

Table 3.5: Effect of Tofisopam on hyperactivation. Table shows the effect of Tofisopam on hyperactivation as 10 different concentrations on 3 different 

donors. The numbers in brackets are standard deviation. Asterix (*) indicates that standard deviations are not overlapping compared to control (i.e. 

statistically significant). Negative (1% DMSO) and positive (3.6µM progesterone) controls are shown on the table.
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Comparison between individual donor responses indicates that all 5 inhibitors 

were effective inducers of hyperactivation. However, their effective concentration on 

stimulating hyperactivation varies as expected. Among the 5 PDE inhibitors examined, 

Papaverine had the broadest concentration spectrum on hyperactivation; above 0.5µM 

concentration, all of the donors showed a significant increase in hyperactivated cells in 

response to Papaverine (Table 3.6). Rest of the inhibitors had narrower concentration 

spectrum on hyperactivation. Ibudilast (IC50: 0.05-5µM depending on the sub-type) was 

effective between 10-100µM, MMPX (IC50: 5.2µM) was effective between 3-100µM, 

Etazolate (IC50: 2µM) was effective between 5-30µM, and Tofisopam (IC50: 0.68µM) 

was found to be most effective at 10µM (Table 3.6). Furthermore, the increment in 

hyperactivation in response to PDE inhibitors was found to be lower at 100µM (Figure 

3.3). 

 

                 Concentration (µM) 

Drug 0.1 0.3 0.5 1 3 5 10 30 50 100 
+ve 

control 

Ibudilast 1/4 0/4 0/4 1/4 2/4 2/4 2/4 4/4 4/4 4/4 3/4 

MMPX 1/4 1/4 1/4 2/4 3/4 3/4 3/4 2/4 3/4 2/4 2/4 

Etazolate 0/4 0/4 0/4 2/4 1/4 3/4 4/4 4/4 2/4 1/4 3/4 

Papaverine 2/5 1/5 3/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 

Tofisopam 1/3 1/3 1/3 1/3 2/3 1/3 2/3 1/3 1/3 0/3 2/3 

 

Table 3.6: Table shows the number of donors showing significant responses to 5 

PDE inhibitors on hyperactivation 10 different concentrations. Ibudilast (n=4), 

MMPX (n=4), Etazolate (n=4), Papaverine (n=5), Tofisopam (n=3). Progesterone at 

3.6µM is used as +ve control. Siginificancy was determined by examining SD 

compared to –ve control (1% DMSO, not shown). 

 

As the spermatozoa used in these experiments were highly motile, it was 

hypothesized that the intracellular cAMP concentration was maximal (Tash and Means, 
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1983). Therefore, further increment in intracellular cAMP concentration may not have 

been possible in response to the PDE inhibitors, hence no significant difference 

observed in total motility and progressive motility. To examine this, further analysis 

was performed on individual donors on specific motility parameters, namely VAP, 

VCL, VSL, and ALH (Appendix). It was found that all PDE inhibitors used increased 

these parameters.  

 

3.3.2 Effect of PDE Inhibitors on Calcium Signalling and Its Relation with Motility 

  

Intracellular Ca2+ signals of research donors in response to 5 PDE inhibitors at 

10µM to 100µM were recorded. This range of concentration was determined in the light 

of IC50 values to have 100% inhibition of PDEs and previous observations by Tardif et. 

al., (unpublished data) suggesting that above 100µM concentration these PDE inhibitors 

become toxic to human sperm cells. All of the PDE inhibitors tested evoked their own 

Ca2+ signals at higher concentrations (50-100µM, Figure 3.8-3.22) and showed no 

significant relationship with motility. However, these signals were not strong and 

statistically insignificant. At 100µM Papaverine evoked 14% (± 0.82%, ns, n=4, Figure 

3.20) of response that of progesterone response. MMPX showed the highest response at 

100µM as it showed 21% (± 18, ns, n=4, Figure 3.12) of response that of progesterone 

response. However, this was due to an unusual response of 1 donor, which showed 73% 

response that of progesterone. 
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Figure 3.4: Relationship between intracellular Ca2+ signalling and hyperactivation 

in response to 100µM Ibudilast. Intracellular Ca2+ signals were evaluated upon 

stimulation with Ibudilast (n=4) at 100µM final concentration, and both +ve 

(progesterone at 3.6µM final concentration, n=4) and –ve (1% DMSO, n=4) controls 

after 100sec (20 readings) of data acquisition at resting level indicated by arrow. Inset 

shows %hyperactivation in response to 100µM Ibudilast (n=4) and 3.6µM progesterone 

(n=4).  Error bars represent SEM. Asterisk “*” indicates significancy at p<0.05. 

 

Figure 3.5: Relationship between intracellular calcium signalling and 

hyperactivation in response to 50µM Ibudilast. Intracellular Ca2+ signals were 

evaluated upon stimulation with Ibudilast (n=4) at 50µM final concentration, and both 

+ve (progesterone at 3.6µM final concentration, n=4) and –ve (1% DMSO, n=4) 

controls after 100sec (20 readings) of data acquisition at resting level indicated by 

arrow. Inset shows %hyperactivation in response to 50µM Ibudilast (n=4) and 3.6µM 

progesterone (n=4).  Error bars represent SEM. Asterisk “*” indicates significance at 

p<0.05. 

  * 

 * 
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Figure 3.6: Relationship between intracellular calcium signalling and 

hyperactivation in response to 30µM Ibudilast. Intracellular Ca2+ signals were 

evaluated upon stimulation with Ibudilast (n=3) at 30µM final concentration, and both 

+ve (progesterone at 3.6µM final concentration, n=3) and –ve (1% DMSO, n=3) 

controls after 100sec (20 readings) of data acquisition at resting level indicated by 

arrow. Inset shows %hyperactivation in response to 30µM Ibudilast (n=3) and 3.6µM 

progesterone (n=3).  Error bars represent SEM. Asterisk “*” indicates significance at 

p<0.05. 

 

 

Figure 3.7: Relationship between intracellular calcium signalling and 

hyperactivation in response to 10µM Ibudilast. Intracellular Ca2+ signals were 

evaluated upon stimulation with Ibudilast (n=3) at 10µM final concentration, and both 

+ve (progesterone at 3.6µM final concentration, n=3) and –ve (1% DMSO, n=3) 

controls after 100sec (20 readings) of data acquisition at resting level indicated by 

arrow. Inset shows %hyperactivation in response to 10µM Ibudilast (n=3) and 3.6µM 

progesterone (n=3).  Error bars represent SEM. Asterisk “*” indicates significance at 

p<0.05. 

* 

* 
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Figure 3.8: Relationship between intracellular calcium signalling and 

hyperactivation in response to 100µM MMPX. Intracellular Ca2+ signals were 

evaluated upon stimulation with MMPX (n=4) at 100µM final concentration, and both 

+ve (progesterone at 3.6µM final concentration, n=4) and –ve (1% DMSO, n=4) 

controls after 100sec (20 readings) of data acquisition at resting level indicated by 

arrow. Inset shows %hyperactivation in response to 100µM MMPX (n=4) and 3.6µM 

progesterone (n=4).  Error bars represent SEM. Asterisk “*” indicates significance at 

p<0.05. 

 

Figure 3.9: Relationship between intracellular calcium signalling and 

hyperactivation in response to 50µM MMPX. Intracellular Ca2+ signals were 

evaluated upon stimulation with MMPX (n=4) at 50µM final concentration, and both 

+ve (progesterone at 3.6µM final concentration, n=4) and –ve (1% DMSO, n=4) 

controls after 100sec (20 readings) of data acquisition at resting level indicated by 

arrow. Inset shows %hyperactivation in response to 50µM MMPX (n=4) and 3.6µM 

progesterone (n=4).  Error bars represent SEM. Asterisk “*” indicates significance at 

p<0.05. 

* 

* 
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Figure 3.10: Relationship between intracellular calcium signalling and 

hyperactivation in response to 30µM MMPX. Intracellular Ca2+ signals were 

evaluated upon stimulation with MMPX (n=4) at 30µM final concentration, and both 

+ve (progesterone at 3.6µM final concentration, n=4) and –ve (1% DMSO, n=4) 

controls after 100sec (20 readings) of data acquisition at resting level indicated by 

arrow. Inset shows %hyperactivation in response to 30µM MMPX (n=4) and 3.6µM 

progesterone (n=4).  Error bars represent SEM. Asterisk “*” indicates significance at 

p<0.05. 

 

Figure 3.11: Relationship between intracellular calcium signalling and 

hyperactivation in response to 10µM MMPX. Intracellular Ca2+ signals were 

evaluated upon stimulation with MMPX (n=4) at 10µM final concentration, and both 

+ve (progesterone at 3.6µM final concentration, n=4) and –ve (1% DMSO, n=4) 

controls after 100sec (20 readings) of data acquisition at resting level indicated by 

arrow. Inset shows %hyperactivation in response to 10µM MMPX (n=4) and 3.6µM 

progesterone (n=4).  Error bars represent SEM. Asterisk “*” indicates significance at 

p<0.05. 

* 

* 
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Figure 3.12: Relationship between intracellular calcium signalling and 

hyperactivation in response to 100µM Etazolate. Intracellular Ca2+ signals were 

evaluated upon stimulation with Etazolate (n=4) at 100µM final concentration, and both 

+ve (progesterone at 3.6µM final concentration, n=4) and –ve (1% DMSO, n=4) 

controls after 100sec (20 readings) of data acquisition at resting level indicated by 

arrow. Inset shows %hyperactivation in response to 100µM Etazolate (n=4) and 3.6µM 

progesterone (n=4).  Error bars represent SEM. Asterisk “*” indicates significance at 

p<0.05. 

 

Figure 3.13: Relationship between intracellular calcium signalling and 

hyperactivation in response to 50µM Etazolate. Intracellular Ca2+ signals were 

evaluated upon stimulation with Etazolate (n=4) at 50µM final concentration, and both 

+ve (progesterone at 3.6µM final concentration, n=4) and –ve (1% DMSO, n=4) 

controls after 100sec (20 readings) of data acquisition at resting level indicated by 

arrow. Inset shows %hyperactivation in response to 50µM Etazolate (n=4) and 3.6µM 

progesterone (n=4).  Error bars represent SEM. Asterisk “*” indicates significance at 

p<0.05. 

* 

* 
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Figure 3.14: Relationship between intracellular calcium signalling and 

hyperactivation in response to 30µM Etazolate. Intracellular Ca2+ signals were 

evaluated upon stimulation with Etazolate (n=4) at 30µM final concentration, and both 

+ve (progesterone at 3.6µM final concentration, n=4) and –ve (1% DMSO, n=4) 

controls after 100sec (20 readings) of data acquisition at resting level indicated by 

arrow. Inset shows %hyperactivation in response to 30µM Etazolate (n=4) and 3.6µM 

progesterone (n=4).  Error bars represent SEM. Asterisk “*” indicates significance at 

p<0.05. 

 

Figure 3.15: Relationship between intracellular calcium signalling and 

hyperactivation in response to 10µM Etazolate. Intracellular Ca2+ signals were 

evaluated upon stimulation with Etazolate (n=4) at 10µM final concentration, and both 

+ve (progesterone at 3.6µM final concentration, n=4) and –ve (1% DMSO, n=4) 

controls after 100sec (20 readings) of data acquisition at resting level indicated by 

arrow. Inset shows %hyperactivation in response to 10µM Etazolate (n=4) and 3.6µM 

progesterone (n=4).  Error bars represent SEM. Asterisk “*” indicates significance at 

p<0.05. 

* 

 * 
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Figure 3.16: Relationship between intracellular calcium signalling and 

hyperactivation in response to 100µM Papaverine. Intracellular Ca2+ signals were 

evaluated upon stimulation with Papaverine (n=4) at 100µM final concentration, and 

both +ve (progesterone at 3.6µM final concentration, n=4) and –ve (1% DMSO, n=4) 

controls after 100sec (20 readings) of data acquisition at resting level indicated by 

arrow. Inset shows %hyperactivation in response to 100µM Etazolate (n=4) and 3.6µM 

progesterone (n=4).  Error bars represent SEM. Asterisk “*” indicates significance at 

p<0.05. 

 

Figure 3.17: Relationship between intracellular calcium signalling and 

hyperactivation in response to 50µM Papaverine. Intracellular Ca2+ signals were 

evaluated upon stimulation with Papaverine (n=4) at 50µM final concentration, and 

both +ve (progesterone at 3.6µM final concentration, n=4) and –ve (1% DMSO, n=4) 

controls after 100sec (20 readings) of data acquisition at resting level indicated by 

arrow. Inset shows %hyperactivation in response to 50µM Etazolate (n=4) and 3.6µM 

progesterone (n=4).  Error bars represent SEM. Asterisk “*” indicates significance at 

p<0.05. 

* 

* 
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Figure 3.18: Relationship between intracellular calcium signalling and 

hyperactivation in response to 30µM Papaverine. Intracellular Ca2+ signals were 

evaluated upon stimulation with Papaverine (n=4) at 30µM final concentration, and 

both +ve (progesterone at 3.6µM final concentration, n=4) and –ve (1% DMSO, n=4) 

controls after 100sec (20 readings) of data acquisition at resting level indicated by 

arrow. Inset shows %hyperactivation in response to 30µM Etazolate (n=4) and 3.6µM 

progesterone (n=4).  Error bars represent SEM. Asterisk “*” indicates significance at 

p<0.05. 

 

 

Figure 3.19: Relationship between intracellular calcium signalling and 

hyperactivation in response to 100µM Tofisopam. Intracellular Ca2+ signals were 

evaluated upon stimulation with Tofisopam (n=2) at 100µM final concentration, and 

both +ve (progesterone at 3.6µM final concentration, n=2) and –ve (1% DMSO, n=2) 

controls after 100sec (20 readings) of data acquisition at resting level indicated by 

arrow. Inset shows %hyperactivation in response to 100µM Tofisopam (n=3) and 

3.6µM progesterone (n=3).  Error bars represent SEM. Asterisk “*” indicates 

significance at p<0.05. 

* 

* 
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Figure 3.20: Relationship between intracellular calcium signalling and 

hyperactivation in response to 50µM Tofisopam. Intracellular Ca2+ signals were 

evaluated upon stimulation with Tofisopam (n=2) at 50µM final concentration, and both 

+ve (progesterone at 3.6µM final concentration, n=2) and –ve (1% DMSO, n=2) 

controls after 100sec (20 readings) of data acquisition at resting level indicated by 

arrow. Inset shows %hyperactivation in response to 50µM Tofisopam (n=3) and 3.6µM 

progesterone (n=3).  Error bars represent SEM. Asterisk “*” indicates significance at 

p<0.05. 

 

Figure 3.21: Relationship between intracellular calcium signalling and 

hyperactivation in response to 30µM Tofisopam. Intracellular Ca2+ signals were 

evaluated upon stimulation with Tofisopam (n=2) at 30µM final concentration, and both 

+ve (progesterone at 3.6µM final concentration, n=2) and –ve (1% DMSO, n=2) 

controls after 100sec (20 readings) of data acquisition at resting level indicated by 

arrow. Inset shows %hyperactivation in response to 30µM Tofisopam (n=3) and 3.6µM 

progesterone (n=3).  Error bars represent SEM. Asterisk “*” indicates significance at 

p<0.05. 

* 

* 
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Figure 3.22: Relationship between intracellular calcium signalling and 

hyperactivation in response to 10µM Tofisopam. Intracellular Ca2+ signals were 

evaluated upon stimulation with Tofisopam (n=2) at 10µM final concentration, and both 

+ve (progesterone at 3.6µM final concentration, n=2) and –ve (1% DMSO, n=2) 

controls after 100sec (20 readings) of data acquisition at resting level indicated by 

arrow. Inset shows %hyperactivation in response to 10µM Tofisopam (n=3) and 3.6µM 

progesterone (n=3).  Error bars represent SEM. Asterisk “*” indicates significance at 

p<0.05. 

 

 

 

 

 

 

 

 

 

 

 

 

 

* 



77 
 

3.4 Discussion 

 

The aim of the study was to document the intracellular Ca2+ responses of 5 different 

PDE inhibitors (Ibudilast, MMPX, Etazolate, Papaverine and Tofisopam) and to 

investigate their relationship with motility. Pentoxifylline, a well defined, first 

generation non-specific PDE inhibitor was shown to increase human sperm motility, 

induce hyperactivation, and induce acrosome reaction (Tesarik et. al., 1992; De Jonge 

et. al., 1991; Nassar et. al., 1998). Surprisingly, the effect of pentoxifylline on both 

acrosome reaction and hyperactivation is not induced by Ca2+ influx (Nassar et. al., 

1998). This finding suggests that there are different mechanisms that control the 

acrosome reaction and hyperactivation other than Ca2+ signalling. However, the effects 

of specific PDE inhibitors on Ca2+ signalling have never been tested before. 

In this study, it was shown that selective PDE inhibitors Ibudilast, MMPX, 

Etazolate, Tofisopam, and non-selective PDE inhibitor Papaverine failed to induce 

significant Ca2+ influx in human sperm at any concentration. Therefore, their effects on 

motility occur through mechanisms other than Ca2+ signalling. All compounds tested 

stimulated hyperactivation and CASA parameters VAP, VCL, VSL, and ALH. The 

effects of inhibitors tested on hyperactivation appear to be more effective on lower 

concentrations (1-10µM), with the exception of Papaverine. Conversely, all of the 

inhibitors tested had effects on Ca2+ signalling on higher concentrations (50-100µM). 

Based on the IC50 values of PDE inhibitors used, it was concluded that the induction in 

Ca2+ signalling is due to non-specific interactions of the drugs used. It has been showed 

that CatSper is a polymodal channel that can be activated by various compounds 

(Brenker et. al., 2012). Furthermore, Trequinsin HCl, an ultra-potent PDE type 4 

inhibitor also activates CatSper, such that the ionic current is indistinguishable from the 

progesterone activation (see chapter 4 and 5; Mansell et. al., unpublished data). 

Therefore, Ca2+ signals induced by these 5 PDE inhibitors tested in this study could 
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influx through CatSper channels as well as through opening of unknown Ca2+ channels 

or through store mobilization. However, none of these Ca2+ signals were statistically 

significant. These chemicals were required in high quantities for each Ca2+ assay and 

due to financial limitations, the compounds were in limited supply. Consequently, the 

sample sizes of the study were small. Therefore, more repeats are required in order to 

have more significant results. All compounds evoked the highest Ca2+ signals at 100µM 

concentration. Therefore, sample powers for each compound at 100µM were calculated 

and checked with the sample power of the positive control (3.6µM progesterone). 

Sample powers for the compounds were; Ibudilast (1-β=0.7753), MMPX (1-β=0.6982), 

Etazolate (1-β=0.7201), Papaverine (1-β=0.7424), and Tofisopam (1-β=0.7664). 

Positive control 3.6µM progesterone oppositely showed 1-β > 0.99 on each case. Based 

on the statistical power and significancy of the positive control, it was concluded that 

the statistics applied were working. Required sample sizes in order to have significant 

results were calculated based these findings to be 13 for Ibudilast, 20 for MMPX, 18 for 

Etazolate, 15 for Papaverine, and 9 for Tofisopam in order to have significant results. 

Therefore, it was concluded that evaluating intracellular Ca2+ responses of these 

compounds would be impractical using FLUOstar and it is suggested to use Flexstation 

for future experiments. Nevertheless, the sample sizes were sufficient enough to 

conclude that the effects of these PDE inhibitors on both hyperactivation and Ca2+ 

signalling were repeatable. 

As these PDE inhibitors are effective human sperm motility inducers (Tardif et. al., 

unpublished data; this study), the value of screening possible drug candidates for human 

sperm motility using Ca2+ responses could also be investigated. It can be said that these 

effective drugs would not be identified from the drug screening program for further 

investigation as none of the inhibitors evoked sufficient Ca2+ signals in order to be 

considered as a hit compound (see chapter 4). The Ca2+ signals in this study were 
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evaluated for 5 minutes, whereas, in the drug screening Flexstation assay, the signals 

were only evaluated for 100 seconds at a single point screen at 40µM. Comparing the 

closest concentration of PDE inhibtors on the Ca2+ assays in this study (30µM and 

50µM) suggests that only Papaverine would be identified as a responding compound 

and would be categorized to respond 8-10% response that of the progesterone response 

which is below the criteria considered as a hit compound. Nevertheless, drug-screening 

program still possesses importance as it already identified a novel compound that 

increases human sperm motility (see chapters 4 and 5). Additionally, it is possible that 

some compounds that cause Ca2+ influx may still alter human sperm motility.  

In conclusion, it was shown that Ibudilast, MMPX, Etazolate, Papaverine, and 

Tofisopam are effective human sperm motility inducers. However, their effects on 

hyperactivation are through mechanisms other than intracellular Ca2+ signalling. 
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Chapter 4 : Screening a Chemogenomics Library Using Calcium as a 

Surrogate 

 

4.1 Introduction 

 

 Despite the unmet need for therapeutic options for male factor sub-fertility, there 

is limited progress in our understanding of sperm physiology that controls human sperm 

function thus, hampering novel drug design/discovery. However, sperm motility and 

intracellular Ca2+ signalling of human sperm are known to correlate with fertilization 

success in vitro and in vivo (Publicover and Barratt, 2011; Alasmari et. al., 2012; 

Brenzik et. al., 2013). Changes in intracellular Ca2+ concentration controls human 

sperm function such as hyperactivation, acrosome reaction, and chemotaxis (Publicover 

et. al., 2007; Publicover and Barratt, 2011; Darzson et. al., 2011; Eisenbach and 

Giojalas, 2006). For this reason, a chemogenomics library consisting of 223 compounds 

(from Drug Discovery Unit, University of Dundee, College of Life Science) was 

subjected to high throughput screening (HTS) using intracellular Ca2+ signalling as a 

surrogate for physiological response in order to identify potential pro-motility 

compounds for human sperm. Although it was shown that effective motility stimulators 

are ineffective Ca2+ influx inducers (see chapter 3), it is still possible that compounds 

that cause Ca2+ influx can also alter sperm function. Clearly, using CASA would be the 

ideal method for screening motility modulators. However, screening large number of 

compounds using CASA would be methodologically impractical and inefficient. 

Promisingly, there is evidence suggesting CatSper functioning as a polymodal channel 

indicating that there are possibilities of finding novel CatSper agonists (Brenker et. al., 

2012). As both intracellular Ca2+ signalling and hyperactivation correlates with 

fertilization success in vitro and in vivo, it was hypothesized that HTS screening 

compounds would lead to the discovery of novel compounds (possible drug candidates) 

for human sperm motility induction as well as helping us to understand and unravel the 
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control mechanisms of human sperm physiology and motility. Therefore, a 

chemogenomics library consisting of 223 compounds aiming at a broad range of 

physiological targets was screened using intracellular Ca2+ signalling as a surrogate of 

physiological response. Compounds were ranked and categorized according to their 

Ca2+ responses. Subsequently, identified hit compounds with intense intracellular Ca2+ 

signalling were tested on motility in order to confirm the hypothesis in the next chapter 

(see chapter 5). 
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4.2 Materials and Methods 

 

4.2.1 Experimental design 

 

Semen samples from research donors were used for this study. Prepared samples were 

allowed to capacitate for 2½ hours (see sperm preparation). Following capacitation, 

sperm samples were prepared for Flexstation screening (see Flexstation assay). 

4.2.2 Media and Chemicals 

 

STF and NCB were the same as described in Chapter 2 (see section 2.2.2) with the 

exception of BSA, which is used at 0.3% final concentration in both STF and NCB. 

Fresh STF and NCB were made 1 day before the experiment to avoid contamination. 

All of the chemicals were purchased from Sigma. The Flexstation assay buffer consists 

of 1X HBSS (Invitrogen Cat No 14065-049) supplemented with 20mM HEPES 

(4.766g/l), 0.5mM probenecid (Sigma Cat No P8761) and the pH was adjusted to 7.4 

with NaOH. Calcium 3 (Molecular Devices R8090) and Calcium 5 (Molecular Devices 

R8186) dyes were reconstituted at a 2X concentration in Flexstation assay buffer, as 

described by the manufacturer. Fluo-3/AM (Invitrogen Cat No F14242) was re-

constituted in solution B (100mg/ml pluronic F-127 (Sigma, Cat No. P2443) dissolved 

in 0.1% acetic acid in dry DMSO) to a concentration of 10mM and stored at -20°C. The 

dye was subsequently diluted in Flexstation assay buffer to a final concentration of 

20µM in assay buffer, prior to the Flexstation assay. Solution B was made of 100mg/ml 

pluronic F-127 dissolved in 0.1% acetic acid in dry DMSO. 

4.2.3 Sperm Preparation 

 

Semen samples were prepared as described in Chapter 2 (see section 2.2.3). Prepared 

samples were allowed to capacitate for 2½ hours. 
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4.2.4 Flexstation Assay 

 

Following the capacitation, cells were diluted with the Flexstation assay buffer to 5 x 

106 cells / ml and equal volume of Ca2+ sensitive dye was added and incubated at 37ºC 

for 40 minutes. Following the incubation, Ca2+ sensitive dye was washed away by 

centrifugation at 700g for 5 minutes at room temperature (25ºC). Cells were then 

resuspended at a concentration of 5x106 cells/ml in flexstation buffer and aliquoted 50µl 

(0.25x106 cells) of cells into individual wells of a 384 well black walled, clear bottom 

assay plate. The assay plate was then centrifuged at 700g for 5 minutes at room 

temperature (25ºC) to ensure that the cells were located at the base of the plate. Assay 

plate, agonist/compound plate, and tips were placed into the appropriate chambers of the 

flexstation device and started the chosen protocol. Resting levels of fluorescence were 

evaluated for 20 seconds followed by agonist injection. Cells were stimulated by the 

addition of 12.5µl progesterone giving a final concentration of 30µM or other agonists 

giving final concentration of 40µM and fluorescence signals were evaluated for 100 

seconds. 
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4.3 Results  

 

The chemogenomics library consisted of a broad spectrum of compounds aimed 

at a wide range of molecular targets. Total of 223 compounds were screened on a single 

plate and single point concentration were used (40µM). Hits were divided into 3 

categories (>25% effect, >50% effect, and >75% effect) according to their relative 

signal strength compared to progesterone (positive control) to identify the compunds 

evoking strong Ca2+ influx. 11.2% (25 compounds), 6.3% (14 compounds), and 3.1% (7 

compounds) gave putative hit effect of >25% effect, >50% effect, and >75% effect 

respectively (Table 4.1 and 4.2).  

 

Output Result As % of total 

Total number of compounds 223 - 

Putative hit >25% effect 25 11.2 

Putative hit >50% effect 14 6.3 

Putative hit >75% effect 7 3.1 
 

Table 4.1: Output chemogenomics library on flexstation assay. Compounds were 

categorized (colour coded) accordingly with their relative responses to progesterone. 
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Compound 

Name 
Primary Action 

Increase in 

Fluorescence 

(%) 

JX 401 Potent, reversible p38α inhibitor 115 

PHA 665752 Potent and selective MET inhibitor 111 

Lylamine 

hydrochloride 
CB1 agonist 108 

Trequinsin 

hydrochloride 
Ultrapotent inhibitor of PDE3 91 

Y 29794 oxalate Prolyl endopeptidase inhibitor 88 

NVP 231 Potent, selective and reversible CerK inhibitor 77 

FPL 64176 Potent activator of Ca2+ channels (L-type) 75 

GW 9508 Potent and selective FFA1 (GPR40) agonist 67 

UK 78282 

hydrochloride 
Blocker of KV1.3 and KV1.4 channels 66 

Ciglitazone Selective PPARg agonist 64 

SANT-1 
Inhibitor of hedgehog (Hh) signalling; 

antagonizes smoothened activity 
57 

U 89843A 
Positive allosteric modulator of GABAA 

receptors 
57 

AS 1949490 
SH2 domain-containing inositol 5'-phosphatase 2 

(SHIP2) inhibitor 
54 

Calcipotriol Vitamin D3 analogue 51 

BRL 50481 Selective PDE7 inhibitor 49 

IKK 16 Selective inhibitor of IKK 47 

BI 78D3 Selective, competitive JNK inhibitor 45 

EO 1428 Selective inhibitor of p38α and p38b2 39 

Repaglinide KATP channel blocker 38 

SANT-2 
Inhibitor of hedgehog (Hh) signalling; 

antagonizes smoothened activity 
36 

SD 208 Potent ATP-competitive TGFbRI inhibitor 34 

NNC 55-0396 

dihydrochloride 
Highly selective Ca2+ channel blocker (T-type) 32 

GP 1a Highly selective CB2 agonist 32 

EHT 1864 Potent inhibitor of Rac family GTPases 32 

RO-3 Selective P2X3 and P2X2/3 antagonist 26 

SB 218078 Inhibitor of checkpoint kinase 1 (Chk1) 25 

 

Table 4.2: 25 compounds identified as hit compounds. Table shows 25 compounds 

that gave a response ≥25% response that of progesterone. Compounds are colour coded 

according to their relative response compared to progesterone (increase in fluorescence 

expressed as percentage compared to resting level fluorescence). All of the compounds 

were tested on single point concentration (40µM) on a single plate (n=1). 
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4.4 Discussion 

 
 The aim of the study was to document the intracellular Ca2+ responses of 223 

compounds, categorize them according to their relative responses (that of progesterone), 

and further investigate their effects on human sperm motility (see chapter 5). High 

throughput screening protocol was designed by Sarah Martins Da Silva (University of 

Dundee, Ninewells Hospital) and Anthony Hope (University of Dundee, College of Life 

Sciences) and utilized on human sperm for the first time (Da Silva et. al., 2012). This 

method was developed as it is a highly time, effort, and material efficient way of 

screening the effect of a large number of compounds on human sperm Ca2+ signalling. 

This screening program was aimed at human sperm motility, as asthenozoospermia is 

the main male factor infertility (Van der Steeg et. al., 2011). However, testing hundreds 

of compounds on human sperm motility is time consuming and financially wasteful. 

Therefore, HTS was utilized using Ca2+ signalling as a surrogate for physiological 

response. The compounds library consisting of 223 compounds (some commercially 

available) were aimed at broad spectrum of targets ranging from ion channels to PDEs. 

Therefore, a wide range of compounds with different primary actions was documented 

in their ability to induce Ca2+ influx. 

Using single point concentration has both advantages and disadvantages. The 

advantage was as screening was performed at low concentration (40µM) compared to 

Tardif et. al., (unpublished data); only the compounds that induce Ca2+ influx at 

(relatively) lower concentrations were detected. On the other hand, compounds that 

would normally induce Ca2+ influx at higher concentrations would be “missed”. This 

would be highly appropriate in case of compounds showing sigmoidal response curves. 

HTS screening on Flexstation showed good repeatability (Da Silva et. al., unpublished 

data). The vast majority (96%) of the compounds identified were novel Ca2+ influx 
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inducers. There are, however, compounds that were known to induce Ca2+ influx. NNC 

55-0369 is used as a potent CatSper channel blocker, which also induces its own Ca2+ 

signals at concentrations greater than 10µM (Strunker et. al, 2011). Vitamin D 

analogue, calcipotriol, also stimulated Ca2+ influx. Vitamin D itself induces Ca2+ 

signalling in human sperm and has positive effect on human sperm motility (Jensen et. 

al., 2011). It is known that vitamin D receptor (VDR) is present in human sperm, 

therefore, it could be possible that calcipotriol induces Ca2+ through its action on VDR 

(Jensen et. al., 2010; Jensen et. al., 2011). Both CB1 and CB2 receptors are found in 

human sperm (Rosatto et. al., 2005; Agirregoitia et. al., 2010). Furthermore, stimulation 

through CB1 and CB2 were shown to modulate sperm motility, acrosome reaction, and 

capacitation (Rosatto et. al., 2005; Aquila et. al., 2009; Aquila et. al., 2010). Therefore, 

GP1a and Lylamine HCl identified in this study have potential in modulating sperm 

function(s). GABA receptor modulation was shown to induce acrosome reaction in bull 

sperm (Puente et. al., 2011). This indicates a possible role for U 89843A. However, 

species differences should not be neglected. PPARg were shown to be present in human 

and pig sperm and agonists of this receptor were shown to increase sperm motility and 

capacitation (Santoro et. al., 2013; Aquila et. al., 2006). Therefore, selective PPARg 

agonist Ciglitazone identified in this study may alter some of the sperm function(s). 

The transient component of the progesterone Ca2+ response was at its maximal 

within 100 seconds (Strunker et. al., 2011). Therefore, the maximum peak point of the 

transient component of the progesterone response was not missed in the screening. This 

enabled us to examine the compounds on the Ca2+ signalling kinetics in comparison 

with the progesterone response. However, it was hard to comment on the kinetics, 

therefore, this section of the analysis should be considered preliminarily. In order to 

have much clearer findings about the kinetics of the compounds, a 10-point 

concentration curve should be evaluated. None of the compounds evoked Ca2+ influx as 
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rapid as progesterone with the exception of PHA 665752. PHA 665752 evoked Ca2+ 

signalling instantaneously that the maximal stimulation was reached within 2 seconds 

and sustained over the period of readings (i.e. 100 seconds) and produced a signal that is 

greater than the progesterone signal (110% response that of progesterone response). 

Trequinsin HCl evoked Ca2+ influx that was almost linear throughout the period of data 

acquisition. This observation, also applies to Lylamine HCl, GP 1a, SB 218078, IKK 

16, NNC 55-0396, UK 78282, AS 1949490, EO 1428, RO-3, and Y 29784 although the 

signal magnitudes showed variation. Other inhibitors, namely; Ciglitazone, BRL 50481, 

FPL 64176, JX 401, BI 78D3, Repaglinide, NVP 231, SD 208, SANT-2 and 

Calcipotriol showed plateau responses. The natures of the Ca2+ signals evoked by these 

compounds should be investigated for longer period of time and at various 

concentrations in order to have a better understanding. 

Some PDE inhibitors also identified as hit compounds. It is known that several 

odorants increase intracellular cAMP concentration of sperm that consequently opens 

unknown voltage-gated Ca2+ channels (Spehr et. al., 2003; Neuhauss et. al., 2006; 

Veitinger et. al., 2011). Supporting this, membrane-permeable analogues of cAMP 

induce Ca2+ influx as well (Kobori et. al., 2000; Ren et. al., 2001; Machado-Oliveira et. 

al., 2008). Therefore, it can be deduced that PDE inhibitors could induce Ca2+ influx. 

There are several PDE inhibitors identified as hit compounds, namely; Trequinsin HCl 

(ultrapotent inhibitor of PDE type 3, IC50: 250pM), and BRL 50481 (selective PDE type 

7 substrate competitor, Ki: 180nM). However, there is no data available in the literature 

on Trequinsin HCl and BRL 50481 about their effects on sperm cells. Trequinsin HCl 

induced Ca2+ influx almost as strong as progesterone (91% response that of 

progesterone). This induction cannot be explained by the opening of unknown voltage-

gated Ca2+ channels via cAMP stimulation as other PDE inhibitors do not stimulate 

Ca2+ signalling at this magnitude (see chapter 3). Therefore, it is possible that there 
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might be other mechanisms responsible for Ca2+ signalling in response to the PDE 

inhibitors. 

It is highly important to test all of these compounds on human sperm as some of 

the targets of these compounds have been reported to alter sperm function. It should be 

noted that Ca2+ measurements on Flexstation are from populations of spermatozoa. 

Therefore, further experiments must be performed for better understanding the actions 

of the drugs on Ca2+ signalling (i.e. patch-clamping and single-cell imaging). 

Furthermore, although there are exceptions, effective motility inducers are either poor 

Ca2+ stimulators or do not stimulate Ca2+ at all (see appendix for a list of compounds). 

Therefore, there is a possibility that the hit compounds would be ineffective on human 

sperm motility induction. 
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Chapter 5 : Effect of Drugs Identified from Drug Screening on Human 

Sperm Motility 

 

5.1 Introduction 

 

There are different types of phosphodiesterases found in human sperm that 

control sperm functions spatio-temporally including the control of sperm motility (Fisch 

et. al., 1996; Wennemuth et. al., 2002). In a simple way, using PDE inhibitors to 

increase the number of functional spermatozoa for either IUI or IVF is a logical 

approach to increase the success rates. Consequently, there are studies which 

investigated the effects of methylxanthines pentoxifylline, IBMX, and caffeine on 

human sperm motility in vitro. However, these drugs fail in clinical trials, as they do not 

increase the fertilization rates in ART unless used at high concentrations (1-10mM; 

Tesarik et. al., 1992; Lanzafame et. al., 1994; Tesarik et. al., 1992a; Terriou et. al., 

2000). The reason of failure was because these drugs lack the specificity, as they are 

non-specific inhibitors of PDEs. Due to non-specific inhibition, acrosome reaction is 

also stimulated. Although it is known that acrosome reacted rabbit (Kuzan et. al., 1984) 

and mouse (Inoue et. al., 2011) sperm are able to fertilize oocytes, human sperm have 

never been tested for this ability. Consequently, it is considered that acrosome reacted 

human sperm cannot fertilize oocytes. Therefore, it is important to find/develop specific 

drugs to stimulate only the sperm motility in order to be useful in the ART field.  

However, there has been a lack of research in this area, especially in terms of 

developing/finding third generation PDE inhibitors (Publicover and Barratt, 2011). It is 

clear that further research is required in order to develop/find specific PDE inhibitors to 

be used clinically for increasing the fertilizing potential of men. Therefore, Trequinsin 

HCl (PDE type 3 specific ultrapotent inhibitor) and BRL 50481 (PDE type 7 specific 

competitive inhibitor), 2 of the PDE inhibitors identified from the drug-screening 

program (see chapter 4) were tested on human spermatozoa motility using CASA. 
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5.2 Materials and Methods 

 

5.2.1 Experimental design 

 

Semen samples from healthy research donors were used for this study. Following 

density gradient centrifugation, both the 40% and the 80% fraction of the samples were 

aliquoted into 4. 2 aliquots (one for control and one for test) were subjected to non-

capacitating conditions, and 2 aliquots (one for control and one for test) were subjected 

to capacitating conditions. The 40% fraction sperm were used as putative surrogates of 

patient samples as they were previously shown to have similar profile in terms of 

motility, morphology, and DNA status to men with male factor infertility (O'Connell et 

al., 2003; Glenn et al., 2007). Effect of drugs on motility was also investigated under 

non-capacitating conditions as these are commonly used in clinics for IUI. Prepared 

donor samples were allowed to capacitate (or not to capacitate in non-capacitating 

buffer) in capacitating medium (STF) for 2½ hours (see sperm preparation). After this 

time, samples were subjected to drug administration with either of Trequinsin or BRL 

50481 for 2 hours (see phosphodiesterase inhibition).  

5.2.2. Chemicals and Solutions 

 

STF and NCB used were the same as described in Chapter 2 (see section 2.2.2) with the 

exception 0.3% BSA final concentration in both STF and NCB. Trequinsin 

hydrochloride (T2057 sigma) and BRL 50481 (0936 sigma) were dissolved in DMSO 

and stored at 4 Co. 

5.2.3 Sperm Preparation 

 

Semen samples were prepared as described in Chapter 2 (see section 2.2.3). Prepared 

samples were allowed to capacitate for 2½ hours. 
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5.2.4 Drug Administration  

 

After 2½ hours of capacitation or non-capacitation, spermatozoa were aliquoted in 

round-bottomed tubes and trequinsin/BRL 50481/DMSO were added giving final 

concentration of trequinsin or BRL 50481 (test) at 10µM final concentration or 1% 

DMSO (control) followed by mixing gently. Motility parameters of treated spermatozoa 

were taken over 2 hours period at; 20 min, 40 min, 60 min, 90 min, and 120 min time 

intervals. 

5.2.5 Sperm Motility Detection 

 

CASA settings are the same as described in Chapter 2 (see section 2.2.4). In addition to 

CASA parameters described in section 2.2.4, the velocity on a straight line (VSL: is the 

velocity of sperm over the actual start-to-end track of cell in µm/s) and the beat cross-

frequency (BCF: is the frequency of sperm head crossing the sperm average path 

velocity in Hz) were also evaluated.  

5.2.6 Statistics 

 

Normality of the data was checked using Kolmogorov-Smirnov test. Paired t-test was 

used to evaluate significance. Data shown are the means with the error bars representing 

SEM unless stated otherwise. 
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5.3 Results 

 

5.3.1 Effects of Trequinsin and BRL 50481 Treatment on 40% Fraction 

Spermatozoa 

 

5.3.1.1 Under Non-Capacitating Conditions  

The 40% fraction spermatozoa from normozoospermic research donors were 

treated with DMSO (vehicle control), 10µM Trequinsin (test) or 10µM BRL 50481 

(test) under non-capacitating conditions. Following 20 min incubation with 10µM 

Trequinsin, total motility increased by 20% (±7%, p=0.009, n=4; figure 5.1) under non-

capacitating conditions. However, there was no increase observed on spermatozoa 

treated with 10µM BRL 50481 in any of the motility parameters (Appendix). 

Progressive motility was also stimulated following 20 min incubation with 10µM 

Trequinsin by 26% (±13%, p=0.026, n=4; figure 5.2) under non-capacitating conditions. 

There was no significant increase in hyperactivated cells in response to 10µM 

Trequinsin under non-capacitating conditions.  

 

Figure 5.1: Effect of 10 µM Trequinsin on the 40% fraction spermatozoa under 

non-capacitating conditions on total motility (n=4). Letters above the bars represents 

p values (a: 0.009, b: 0.029, c: 0.015) and error bars represent SEM. 
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Figure 5.2: Effect of 10 µM Trequinsin on the 40% fraction spermatozoa under 

non-capacitating conditions on progressive motility (n=4). Letters above the bars 

represents p values (a: 0.003, b: 0.033, c: 0.015, d: 0.026) and error bars represent SEM. 

 

Trequinsin at 10µM stimulated motility parameters under non-capacitating 

conditions. In order to further investigate the motility stimulation, average values for 

individual motility parameters were evaluated, namely; ALH (amplitude of lateral head 

displacement), VCL (curvilinear velocity), VSL (velocity on a straight line), VAP 

(average path velocity), LIN (linearity), and BCF (beat cross frequency). Non-

capacitated spermatozoa showed significant increases in their VAP, VSL, VCL, LIN 

and BCF (Table 5.1). 
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Treatment Movement Parameters 

 
VAP (µm/s) VSL (µm/s) VCL (µm/s) ALH (µm) LIN (%) BCF (Hz) 

20 min control 41.01 ± 1.99 34.43 ± 2.10 67.14 ± 1.87 3.59 ± 0.09 50.25 ± 1.93 22.69 ± 0.86 

20 min trequinsin 53.54 ± 1.61 * 47.19 ± 2.32 * 81.83 ± 1.42 * 3.35 ± 0.21 59.13 ± 3.39 * 27.20 ± 0.73 * 

       40 min control 42.11 ± 2.54 35.39 ± 2.55 67.86 ± 2.52 3.56 ± 0.13 51.31 ± 1.87 22.03 ± 0.65 

40 min trequinsin 51.23 ± 1.75 * 44.48 ± 2.78 * 80.11 ± 0.59 * 3.55 ± 0.16 56.38 ± 3.72 26.02 ± 0.85 * 

       
60 min control 40.05 ± 2.76 33.34 ± 2.69 65.02 ± 3.58 3.66 ± 0.04 50.13 ± 1.45 21.33 ± 1.01 

60 min trequinsin 52.19 ± 2.83 * 45.11 ± 3.13 * 82.37 ± 1.93 * 3.58 ± 0.08 55.44 ± 2.81 25.99 ± 0.84 * 

       90 min control 39.15 ± 3.12 32.75 ± 3.49 63.89 ± 2.94 3.56 ± 0.09 50.04 ± 2.80 22.94 ± 0.72 

90 min trequinsin 51.93 ± 2.57 * 44.77 ± 3.45 * 82.15 ± 1.24 * 3.62 ± 0.11 55.63 ± 3.45 * 25.45 ± 0.82 

       
120 min control 41.36 ± 2.94 34.64 ± 2.88 67.78 ± 2.94 3.74 ± 0.11 50.00 ± 2.26 21.91 ± 0.49 

120 min trequinsin 49.59 ± 2.29 * 41.99 ± 3.01 * 80.55 ± 1.23 * 3.71 ± 0.12 52.63 ± 3.02 24.93 ± 0.95 * 

 

Table 5.1: Effect of 10µM Trequinsin on movement characteristics of the 40% 

fraction spermatozoa under non-capacitating conditions (n=4). ± values are SEM. * 

indicates p<0.05. 

 

5.3.1.2 Under Capacitating Conditions 

 The 40% fraction spermatozoa from normozoospermic research donors were 

treated with DMSO (vehicle control), 10µM Trequinsin (test) or 10µM BRL 50481 

(test) under capacitating conditions. Following 60 min incubation with Trequinsin at 

10µM, total motilility increased by 15% (±5%, p=0.009, n=4, figure 5.3). Progressive 

motility was also stimulated following 40 min incubation with 10µM Trequinsin by 

11% (±6%, p=0.046, n=4, figure 5.4) under capacitating conditions. Only capacitated 

spermatozoa treated with Trequinsin showed a significant increase in hyperactivated 

cells by 6% (±3%, p=0.025, n=4, figure 5.5) following 40 min incubation. 
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Figure 5.3: Effect of 10 µM Trequinsin on the 40% fraction spermatozoa under 

capacitating conditions on %total motility (n=4). Letters above the bars represents p 

values (a: 0.009, b: 0.02, c: 0.04) and error bars represent SEM. 

 

Figure 5.4: Effect of 10 µM Trequinsin on the 40% fraction spermatozoa under 

capacitating conditions on progressive motility (n=4). Letters above the bars 

represents p values (a: 0.046, b: 0.012, c: 0.013) and error bars represent SEM. 
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Figure 5.5: Effect of 10 µM Trequinsin on the 40% fraction spermatozoa under 

capacitating conditions on hyperactivation (n=4). Letters above the bars represent p 

values (a: 0.025, b: 0.041, c: 0.043, d: 0.048) and error bars represent SEM. 

 

Trequinsin at 10µM stimulated motility parameters under capacitating 

conditions. In order to further investigate the motility stimulation, average values for 

individual motility parameters were evaluated, namely; ALH, VCL, VSL, VAP, LIN, 

and BCF. Capacitated spermatozoa showed increase in their VAP, VSL, VCL, and 

ALH (Table 5.2). The magnitude of increase in motility parameters was higher than that 

of non-capacitated spermatozoa. 
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Treatment Movement Parameters 

 
VAP (µm/s) VSL (µm/s) VCL (µm/s) ALH (µm) LIN (%) BCF (Hz) 

20 min control 48.71 ± 2.07 42.83 ± 2.36 74.36 ± 2.79 3.59 ± 0.10 56.25 ± 2.03 24.54 ± 1.10 

20 min trequinsin 64.16 ± 1.73 * 53.79 ± 3.05 * 104.40 ± 3.49 * 4.48 ± 0.38 53.75 ± 4.62 27.48 ± 1.10 

       40 min control 48.68 ± 2.45 42.66 ± 2.89 74.09 ± 1.83 3.53 ± 0.08 56.25 ± 2.46 24.93 ± 0.79 

40 min trequinsin 61.83 ± 1.93 * 51.70 ± 2.96 * 102.22 ± 1.10 * 4.59 ± 0.22 * 52.19 ± 3.37 * 26.54 ± 0.76 

       
60 min control 47.59 ± 2.19 41.60 ± 2.37 72.63 ± 1.95 3.46 ± 0.16 55.94 ± 2.54 25.14 ± 0.91 

60 min trequinsin 62.18 ± 2.46 * 52.74 ± 3.53 * 101.31 ± 1.53 * 4.56 ± 0.27 * 53.31 ± 3.55 25.83 ± 1.22 

       90 min control 47.29 ± 3.66 41.44 ± 3.73 71.13 ± 2.48 3.41 ± 0.10 57.63 ± 3.95 24.60 ± 0.63 

90 min trequinsin 59.48 ± 3.59 * 50.19 ± 4.22 * 98.19 ± 2.69 * 4.69 ± 0.15 * 51.63 ± 3.00 * 25.28 ± 1.31 

       
120 min control 44.81 ± 2.06 38.58 ± 1.98 68.63 ± 2.15 3.44 ± 0.11 54.63 ± 1.56 24.16 ± 0.63 

120 min trequinsin 57.60 ± 3.44 * 49.46 ± 4.06 * 94.28 ± 3.78 * 4.52 ± 0.17 * 52.63 ± 3.12 24.29 ± 1.36 

 

Table 5.2: Effect of 10µM Trequinsin on movement characteristics of 40% fraction 

spermatozoa under capacitating conditions (n=4). ± values are SEM. * indicates 

p<0.05. 
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5.3.2 Effects of Trequinsin Treatment on 80% Fraction Spermatozoa 

 

5.3.2.1 Under non-capacitating conditions 

 The 80% fraction spermatozoa from healthy normozoospermic research donors 

were treated with DMSO (vehicle control), 10µM Trequinsin or 10µM BRL 50481 and 

under non-capacitating conditions. BRL 50481 was found to be not effective in 

stimulating any of the motility parameters under non-capacitating conditions 

(Appendix). 10µM Trequinsin failed to stimulate total motility significantly under non-

capacitating conditions (Figure 5.6). However, progressive motility showed 23% 

(±12%, p=0.029, n=4, figure 5.7) increase following 20 min incubation under non-

capacitating conditions. 

 

Figure 5.6: Effect of 10 µM Trequinsin on the 80% fraction spermatozoa under 

non-capacitating conditions on %total motility (n=4). There is no significant increase 

in %total motility. Error bars represent SEM. 
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Figure 5.7: Effect of 10 µM Trequinsin on the 80% fraction spermatozoa under 

non-capacitating conditions on %progressive motility (n=4). Letters above the bars 

represents p values (a: 0.026, b: 0.046, c: 0.04, d: 0.044, e: 0.029) and error bars 

represent SEM 

 

 

Trequinsin at 10µM stimulated motility parameters under both capacitating and 

non-capacitating conditions. In order to further investigate the motility stimulation, 

average values for individual motility parameters were evaluated, namely; ALH, VCL, 

VSL, VAP, LIN, and BCF. Non-capacitated spermatozoa showed increase in their 

VAP, VSL, VCL, ALH, and BCF (Table 5.3).  
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Treatment Movement Parameters 

 
VAP (µm/s) VSL (µm/s) VCL (µm/s) ALH (µm) LIN (%) BCF (Hz) 

20 min control 55.03 ± 4.17 49.71 ± 4.67 82.16 ± 3.01 3.59 ± 0.13 59.88 ± 3.59 24.94 ± 1.32 

20 min trequinsin 66.42 ± 2.82 * 59.92 ± 3.54 * 97.10 ± 1.72 * 3.71 ± 0.28 63.25 ± 4.09 28.11 ± 1.58 * 

       40 min control 52.84 ± 4.25 46.69 ± 4.55 81.08 ± 3.22 3.69 ± 0.16 57.00 ± 3.34 23.80 ± 0.96 

40 min trequinsin 63.18 ± 1.89 * 55.94 ± 2.53 * 96.95 ± 1.53 * 3.96 ± 0.17 59.50 ± 2.80 26.31 ± 1.47 * 

       
60 min control 51.89 ± 4.69 45.89 ± 4.95 78.91 ± 3.97 3.59 ± 0.10 57.31 ± 3.23 23.96 ± 1.33 

60 min trequinsin 62.61 ± 2.53 * 54.34 ± 3.44 * 96.26 ± 0.93 * 3.98 ± 0.19 58.15 ± 3.22 25.76 ± 1.61 

       90 min control 50.91 ± 4.90 45.11 ± 5.18  77.69 ± 4.31 3.68 ± 0.12 57.13 ± 3.50 23.60 ± 1.16 

90 min trequinsin 61.25 ± 3.16 * 53.74 ± 3.74 * 96.44 ± 2.16 * 4.21 ± 0.16 * 56.69 ± 2.48 24.81 ± 1.94 

       
120 min control 49.98 ± 4.07 44.06 ± 4.32 77.07 ± 3.66 3.63 ± 0.10 56.25 ± 2.96 23.85 ± 0.92 

120 min trequinsin 59.66 ± 3.26 * 52.23 ± 4.05 * 96.38 ± 1.62 * 4.37 ± 0.15 * 54.90 ± 3.19 24.37 ± 1.58 

 

Table 5.3: Effect of 10µM Trequinsin on movement characteristics of 80% fraction 

spermatozoa under non-capacitating conditions (n=4). ± values are SEM. * indicates 

p<0.05. 

 

 

5.3.2.2 Under capacitating conditions 

The 80% fraction spermatozoa from healthy normozoospermic research donors 

were treated with DMSO (vehicle control), 10µM Trequinsin or 10µM BRL 50481 and 

capacitating conditions. BRL 50481 was found to be not effective in stimulating any 

motility parameters under capacitating conditions (Appendix). 10µM Trequinsin failed 

to stimulate total motility, progressive motility, and hyperactivation under capacitating 

conditions significantly (ns, Figure 5.8, 5.9, and 5.10, respectively). 
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Figure 5.8: Effect of 10 µM Trequinsin on the 80% fraction spermatozoa under 

capacitating conditions on %total motility (n=4). Error bars represent SEM. 

 

 

Figure 5.9: Effect of 10 µM Trequinsin on the 80% fraction spermatozoa under 

capacitating conditions on %progressive motility (n=4). There is no significant 

response. Error bars represent SEM. 
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Figure 5.10: Effect of 10 µM Trequinsin on the 80% fraction spermatozoa under 

capacitating conditions on hyperactivation (n=4). There is no significant response. 

Error bars represent SEM. 

 

Trequinsin at 10µM stimulated motility parameters under both capacitating and 

non-capacitating conditions. In order to further investigate the motility stimulation, 

average values for individual motility parameters were evaluated, namely; ALH, VCL, 

VSL, VAP, LIN, and BCF. Capacitated spermatozoa showed increase in their VAP, 

VSL, VCL, and ALH and decrease in their LIN and BCF (Table 5.4).  
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Treatment Movement Parameters 

 
VAP (µm/s) VSL (µm/s) VCL (µm/s) ALH (µm) LIN (%) BCF (Hz) 

20 min control 64.06 ± 3.88 56.86 ± 4.63 96.68 ± 4.06 4.01 ± 0.21 59.94 ± 4.11 26.73 ± 1.31 

20 min trequinsin 79.29 ± 2.88 * 67.61 ± 4.56 * 130.36 ± 4.45 * 5.65 ± 0.41 * 54.44 ± 4.99 25.44 ± 1.56 

       40 min control 64.43 ± 2.18 57.45 ± 2.95 94.14 ± 1.60 3.88 ± 0.17 61.25 ± 3.02 27.06 ± 1.27 

40 min trequinsin 75.68 ± 3.02 * 65.52 ± 4.05 * 123.44 ± 3.22 * 5.56 ± 0.39 * 54.94 ± 4.02 * 24.06 ± 1.78 * 

       
60 min control 64.88 ± 5.15 58.28 ± 5.63 94.54 ± 3.45 3.89 ± 0.12 61.81 ± 3.45 26.39 ± 0.93 

60 min trequinsin 75.94 ± 3.86 * 65.89 ± 4.29 124.90 ± 2.18 * 5.86 ± 0.22 * 53.75 ± 3.03 * 23.65 ± 1.53 * 

       90 min control 64.53 ± 5.01 58.41 ± 5.31 93.78 ± 5.01 3.92 ± 0.16 61.94 ± 2.87 26.64 ± 1.84 

90 min trequinsin 75.86 ± 4.06 * 66.09 ± 4.90 * 123.89 ± 4.07 * 5.93 ± 0.29 * 53.94 ± 3.26 * 23.24 ± 1.75 * 

       
120 min control 64.51 ± 5.83 57.86 ± 6.02 96.33 ± 6.06 4.08 ± 0.17 60.19 ± 2.93 25.82 ± 1.58 

120 min trequinsin 72.06 ± 4.67 63.38 ± 5.21 116.48 ± 4.34 * 5.53 ± 0.23 * 54.50 ± 2.94 * 23.45 ± 1.69 * 

 

Table 5.4: Effect of 10µM Trequinsin on movement characteristics of 80% fraction 

spermatozoa under capacitating conditions (n=4). ± values are SEM. * indicates 

p<0.05. 
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5.3.3 Trequinsin Stimulates 40% Fraction Motility of Failed Fertilization ICSI 

Patient 

  

In order to eliminate speculations about using the 40% fraction from healthy 

research donors as a surrogate of poorly motile spermatozoa, 40% fraction spermatozoa 

from a patient is also tested with 10µM Trequinsin. The 40% fraction spermatozoa from 

a failed fertilization ICSI patient were tested with 10µM Trequinsin as a time-course 

experiment for 2 hours. It was found that total motility and progressive motility 

increased significantly (increase is considered significant as standard deviation error 

bars is not overlapping). 

 

Figure 5.11: Effect of 10µM Trequinsin on total motility of failed fertilization ICSI 

patient under non-capacitating conditions. Error bars represent standard deviation 

(SD). 
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Figure 5.12: Effect of 10µM Trequinsin on total motility of failed fertilization ICSI 

patient under capacitating conditions. Error bars represent standard deviation (SD). 

 

 

Figure 5.13: Effect of 10µM Trequinsin on progressive motility of failed 

fertilization ICSI patient under non-capacitating conditions. Error bars represent 

standard deviation (SD). 
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Figure 5.14: Effect of 10µM Trequinsin on progressive motility of failed 

fertilization ICSI patient under capacitating conditions. Error bars represent 

standard deviation (SD). 
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5.4 Discussion 

 
Trequinsin (IC50: 250pM, a type 3 PDE inhibitor) and BRL 50481 (Ki: 180nM, a 

type 7 PDE substrate competitor) are both potent and specific PDE inhibitors 

(O’Donnell and Frith, 1999; Kurjak et. al., 1999; Reid, 1999; Smith et. al., 2004) as 

well as inducers of intracellular Ca2+ influx of human spermatozoa (see chapter 4). 

Another type 3 specific PDE inhibitor, milrinone at 50µM (IC50: 0.5µM) increase 

intracellular cAMP concentration by 15% without any alterations in sperm function 

(Lefievre et. al., 2002). Trequinsin is clearly effective at a concentration of 10µM in 

stimulating motility parameters of both the 40% and the 80% fractions under both 

capacitating and non-capacitating conditions. Conversely, BRL 50481 was ineffective at 

this concentration. However, the initial Flexstation was done at 40µM concentration, so 

further experiments were performed to examine the effects of BRL 50481 on human 

sperm motility. However, the results were shown to be the same under both capacitating 

and non-capacitating conditions (Appendix). Therefore, it was confirmed that BRL 

50481 is ineffective in stimulating human sperm motility. 

Using 40% fraction sperm as a surrogate for poorly motile patient sperm has 

limitations. These cells are known to be the “bad” fraction sperm of “good” sperm 

sample. However, as even the testicular sperm can be used for ICSI with successful 

outcomes (Schlegel et. al., 1997) it can be said that even these cells have the genetic 

requirements for fertilising oocytes, although the 40% fraction sperm would not be able 

to reach the site of fertilisation in vivo. As this is also the case with patient samples with 

poor motility, it can be assumed that there are better chances of mimicking the poorly 

motile patient samples. 

The main effect of 10µM Trequinsin on motility parameters was to increase; 

VAP, VCL, VSL, and in the case of capacitated spermatozoa, increase in ALH as well 



109 
 

(Table 5.1-5.4). These alterations in the motility parameters appear not to be dependent 

on the capacitation (apart from ALH) and the population of spermatozoa used.  

Trequinsin were effective in increasing total motility and progressive motility in 

the 40% fraction under both capacitating and non-capacitating conditions. However, 

total motility was found to be not significantly different from control under capacitating 

conditions for the 80% fraction spermatozoa. Progressive motility on the other hand, 

was found to be responding to the drug. This finding on total motility can be explained. 

The 80% fraction spermatozoa were highly motile prior to Trequinsin treatment. 

Therefore, these spermatozoa probably had maximal PKA stimulation already, which 

any further increase in [cAMP]i is non-beneficial (Tash and Means, 1983).  

Trequinsin appears not to be stimulating hyperactivation significantly. CASA 

was set to detect hyperactivation using VCL, LIN, and ALH (see section 2.2.4 for 

details). As ALH was not stimulated under the non-capacitating conditions only the 

capacitated spermatozoa showed an increase in hyperactivation levels. Therefore, 

frequency distribution graphs evaluated to examine the effect of Trequinsin on 

hyperactivation (Figure 5.15-5.17, see appendix for the rest of the CASA parameters). It 

is clear that Trequinsin stimulates VCL towards the hyperactive sperm criteria range. 

However, stimulation of ALH appears to be the limiting factor as Trequinsin fails to 

increase ALH beyond 7µm (Figure 5.16). As clearly seen on figure 5.10 stimulation of 

hyperactivation is maximal at 20min incubation point. Trequinsin treatment increases 

VCL beyond the criteria for hyperactivation (≥150 µm/s) but both LIN and ALH fails to 

reach hyperactivation criteria levels of this study (≤50% and ≥7 µm, respectively, 

Figure 5.15-5.17). 
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Figure 5.15: Effect of 10µM Trequinsin on 80% fraction spermatozoa under 

capacitating conditions on VCL after 20min treatment (n=4). Error bars represent 

SEM. 

 

 

Figure 5.16: Effect of 10µM Trequinsin on 80% fraction spermatozoa under 

capacitating conditions on ALH after 20min treatment (n=4). Error bars represent 

SEM. 
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Figure 5.17: Effect of 10µM Trequinsin on 80% fraction spermatozoa under 

capacitating conditions on LIN after 20min treatment (n=4). Error bars represent 

SEM. 

 

As human sperm motility was significantly stimulated by 1 of the 25 drugs 

identified as hit compounds, the drug-screening program using Ca2+ as a surrogate has 

potential in identifying pro-motility compounds. However, it should be noted that the 

remaining 23 compounds were not tested on human sperm motility due to time 

limitations. Nevertheless, motility assay was the second stage of the screening program 

and it was expected that some of the compounds would be filtered throughout the 

process. Therefore, identifying 1 compound (for now) out of 223 compounds is a good 

outcome considering other drug screening programs from other fields. 

In summary, Trequinsin is a novel and effective motility stimulator at 10µM 

concentration. Trequinsin’s effectiveness at low concentration is important, because, 

theoretically, selectivity of the drug is preserved at this concentration. This is important, 

as other PDE inhibitors have found to be ineffective in clinical aspects of the field due 

to lack of selectivity (Lanzafame et. al., 1994). Further experiments are required in 
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order to have a better idea about the drug. The effect of Trequinsin on sperm 

metabolism must be tested, as alterations on sperm motility undoubtedly require energy. 

Acrosome reaction must be tested as Trequinsin might also be stimulating acrosome 

reaction. Furthermore, preliminary patch-clamping studies by Mansell et. al., 

(unpublished data) showed that Trequinsin is activating CatSper channels in a manner 

that is indistinguishable from progesterone activation. Therefore, motility studies 

together with CatSper blocking agents could be useful in understanding the effect of 

Ca2+ induction on motility in response to Trequinsin. 
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Chapter 6 : General discussion 

 

In chapter 2, it was clearly shown that the hyperactivation assay has clinical 

value. It is possible that mobilizing stored Ca2+ has a significant role in determining 

fertilizing capacity of sperm in vitro as putative store-mobilizing agent 4-AP gave the 

highest increment in hyperactivation and showed a significant correlation with 

fertilization rates. The role of CatSper-induced-hyperactivation in fertilization is not 

clear; even though CatSper deficient males are infertile and show disrupted CatSper 

activity in response to progesterone (Smith et. al., 2013). Progesterone- or NH4Cl-

induced hyperactivation levels did not correlate with fertilization rates (see chapter 2). 

Alasmari et. al., (2013) showed that Ca2+ originating from store(s) resulted in higher 

level of hyperactivation but Ca2+ originating from CatSper resulted in better penetration 

into viscous media in vitro. However, clinical studies on stored Ca2+ suggest the 

opposite (Alasmari et. al., 2013; this study). This can be explained as 4-AP used at high 

concentration (2mM) possibly depletes the stored Ca2+ giving a burst in hyperactivation, 

however, it is possible that stored Ca2+ may be released at a lower rate or used for 

oscillations to support penetration of zona pellucida or viscous media in vivo. However, 

definitive conclusions cannot be made, as the molecular mechanism(s) of 4-AP on 

human sperm hyperactivation remains largely unknown. An interesting experiment to 

further investigate Ca2+ deficiencies on IVF or ICSI patients would be to use single-cell 

imaging technologies to record intracellular Ca2+ responses from individual sperm cells 

of patients, especially the poor responding patients. These single-cell-imaging 

experiments could be taken a step forward using experiments together with oocytes, 

cumulus cells, and the isthmic epithelial cells could be performed. Such experiments 

would be highly valuable in understanding the in vivo significance of human sperm 

hyperactivation and intracellular Ca2+ signalling. Lacking a standard definition of 

hyperactivation makes interpretation of the literature data difficult (Robertson et. al., 
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1988; Mortimer and Mortimer, 1990; Grunert et. al., 1990; Burkman, 1991; Zhu et. al., 

1994b; Sukcharoen et. al., 1995; Mortimer and Swan, 1995). Therefore, there is a need 

for setting a defined and universally accepted hyperactivation criteria for using this easy 

and valuable prognostic test effectively. 

 

Male factor infertility accounts for the majority of infertility cases (HFEA 2011, 

www.hfea.gov.uk). These men have to rely on ART without a guarantee of success. 

Therefore, it is now a necessity to find/develop drugs to target male factor infertility in 

order to reduce the usage of ART as well as to increase the success rates of ART. Based 

on the fact that Ca2+ signalling is pivotal in sperm function (Publicover et. al., 2007), 

the clinical findings (Brenzik et. al., 2013, Alasmari et. al., 2013; and see chapter 2), 

and CatSper being a polymodal chemosensor (Brenker et. al., 2012), it was 

hypothesized that screening compounds using Ca2+ as a surrogate for physiological 

responses would identify novel compounds for male infertility. This hypothesis was 

addressed prior to the HTS experiments with known motility inducers (PDE inhibitors), 

namely; MMPX, Tofisopam, Papaverine, Etazolate HCl, and Ibudilast (see chapter 3). It 

was found that these 5 compounds are poor inducers of Ca2+ influx therefore they would 

not be identified with the drug screening program. This supports the null hypothesis and 

findings by Nassar et. al., (1998) suggesting no relation in motility modulation with 

Ca2+ signalling. Nevertheless, HTS was utilized using the Flexstation and 223 

compounds were screened using intracellular Ca2+ signalling as a surrogate of the 

physiological response (see chapter 4). Promisingly, some hit compounds identified 

from the screening program had previously been suggested to modulate sperm function 

(either positive or negative; see chapter 4). However, the fact that effective motility 

inducers are either poor Ca2+ inducers or do not stimulate Ca2+ influx questions the logic 

of screening. That said, it is possible that some human sperm motility stimulators may 

induce Ca2+ influx as well (such as Trequinsin). Nevertheless, HTS is by far the best 
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method available that is efficient enough to be utilized to screen large number of 

compounds. 2 of the 25 hit compounds were tested for their ability to induce human 

sperm motility. It was found that 1 of the 2 compounds, Trequinsin, is an effective 

motility inducer under both capacitating and non-capacitating conditions on both 40% 

and 80% fraction spermatozoa (see chapter 5). Furthermore, patch-clamping studies 

performed by Mansell et. al., (unpublished data) indicate that Trequinsin activates 

CatSper channels in a manner that is indistinguishable from the progesterone activation. 

Therefore, a novel human sperm motility inducer was identified using HTS using 

intracellular Ca2+ signalling as a surrogate. This finding is in agreement with Brenker et. 

al., (2012) that supports CatSper being a polymodal channel. It is possible that an 

increase in intracellular Ca2+ results in motility induction (Publicover et. al., 2007). 

However, without performing intracellular cAMP measurement and CatSper blocking 

agent experiments it cannot be confirmed, as Trequinsin is a type 3 selective PDE 

inhibitor. Further experiments are required for clearer results on Trequinsin. As 

acrosome reaction and chemotaxis are also controlled through Ca2+ influx, effects of 

Trequinsin on acrosome reaction and chemotaxis must be investigated. Another 

interesting experiment would be to test Trequinsin on different species such as mice. 

There are crucial species differences between mice and human sperm, such that mouse 

CatSper is not responsive to progesterone whereas human CatSper is highly responsive 

(Lishko et. al., 2011). Therefore, it would be interesting to perform motility experiments 

with Trequinsin on mice sperm and test if Trequinsin activates CatSper, and if so, 

CatSper knockout mice sperm would shed light on the underlying mechanisms of 

Trequinsin stimulation. 

On a broader aspect, derivatives of identified compounds could be produced by 

changing the molecular composition slightly (i.e. changing the structure of identified 

compounds) in order to have a better understanding of the structure-activity relationship 
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(SAR). This could potentially shed light on the binding site(s) of CatSper in the case of 

Trequinsin. If this would be achieved, it would be very important, as CatSper has never 

been crystalized in order to perform x-ray crystallography studies. Another possible 

outcome from screening library would be to find a sperm specific contraceptive that 

could immobilize/kill spermatozoa (possibly through Ca2+ homeostasis disruption). It is 

known that human sperm intracellular Ca2+ levels are kept around 200nM (Irvine and 

Aitken, 1986). Therefore, excessive intracellular Ca2+ should be effluxed or stored in 

intracellular store(s) (i.e. acrosome, Dorval et. al., 2002) in order to maintain Ca2+ 

homeostasis. Disrupting Ca2+ homeostasis would consequently result in increased 

energy requirements. Therefore, it is possible that compounds that cause excessive Ca2+ 

influx can deplete ATP levels, consequently adversely affecting sperm function. 

Candidates for this would be Lylamine HCl (which also evoked Ca2+ influx greater than 

progesterone response) and GP1a (CB1 and CB2 agonists, respectively) which both 

CB1 and CB2 modulation had been proposed to had negative effects on sperm motility 

and viability (Whan et. al., 2006). 

 

Results of this thesis demonstrate that systematical drug screening can be 

utilized for sperm physiology research, and can help to understand the control 

mechanisms of human sperm motility. It is clear that understanding sperm physiology 

from production of sperm to function and unlocking the mysteries on signalling 

pathways that controls sperm function will lead to finding alternative treatment 

method(s) for male factor infertility other than ART, as well as providing safe 

contraception. Applying known research methods such as HTS, or even succeeding to 

accomplish in vitro spermiogenesis for knockout studies on human cells would result in 

a breakthrough. It is hoped that results of this study would ignite a spark to drive 

continuous studies to find/develop specific drugs for the global infertility problem. 
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Nevertheless, it is almost certain that ART usage is inevitable, especially ICSI, but for 

sure it could be reduced or used appropriately. 

 

 

Figure 6.1: Model for controlling human sperm motility in this study. Progesterone 

directly binds and activates the CatSper channels. Trequinsn HCl activates the CatSper 

channels (Steven Mansell, unpublished data). Ammonium chloride and 4-AP increase 

intracellular pH that results in activation of CatSper channels. Activation of CatSper 

channels results in increased intracellular Ca2+ levels in the principal piece that results 

in hyperactivation and penetration into viscous media (Alasmari et. al., 2013). 4-AP 

(putatively) mobilizes stored Ca2+ in the neck region that results in hyperactivation. 

IBMX inhibits PDEs resulting in increased intracellular cAMP levels that promote 

hyperactivated motility through AC/cAMP/PKA pathway. MMPX, Papaverine, 

Ibudilast, Tofisopam, and Etazolate inhibit PDE(s) (types of PDEs are to be confirmed) 

and promote hyperactivation. Effect of Trequinsin HCl on human sperm PDEs is yet to 

be confirmed. Solid lines indicate the mechanism of action. Dashed lines indicate 

mechanism(s) of action(s) yet to be confirmed. 
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Chapter 7 : Appendix 

 

 

7.1 Supplementary figures and tables for chapter 2 

 

 

 
Figure 7.1: Effect of 2mM 4-AP-induced hyperactivation levels on donor, IVF and 

ICSI populations. Box and whisker plot showing 4-AP-induced hyperactivation levels. 

The boxes represent the interquartile range and lines within them are the medians. The 

numbers in brackets on the x-axis are the sample size.  

 

 

 
Figure 7.2: Effect of 3.6µM progesterone-induced hyperactivation levels on donor, 

IVF and ICSI populations. Box and whisker plot showing progesterone-induced 

hyperactivation levels. The boxes represent the interquartile range and lines within them 

are the medians. The numbers in brackets on the x-axis are the sample size.  
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Figure 7.3: Effect of 25mM NH4Cl-induced hyperactivation levels on donor, IVF 

and ICSI populations. Box and whisker plot showing NH4Cl-induced hyperactivation 

levels. The boxes represent the interquartile range and lines within them are the 

medians. The numbers in brackets on the x-axis are the sample size.  

 

 

Figure 7.4: Relationship between progesterone-induced hyperactivation and 

fertilization rates. There is no correlation with fertilization rates. Pearson correlation 

coefficient (rp), p value (p), and R2 values are shown on graph. 
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Figure 7.4: Relationship between total motility and fertilization rates. There is no 

correlation with fertilization rates. Spearman correlation coefficient (rs), p value (p), and 

R2 values are shown on graph. 

 

 

 
Figure 7.5: Relationship between total motility and fertilization rates. There is no 

correlation with fertilization rates. Spearman correlation coefficient (rs), p value (p), and 

R2 values are shown on graph. 
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Figure 7.6: Relationship betweeen 2mM 4-AP-induced increment in ALH and 

fertilization rates in IVF. There is no correlation with fertilization rates. Pearson 

correlation coefficient (rp), p value (p), and R2 values are shown on graph. 

 

 

 
Figure 7.7: Relationship betweeen 2mM 4-AP-induced increment in VCL and 

fertilization rates in IVF. There is no correlation with fertilization rates. Spearman 

correlation coefficient (rs), p value (p), and R2 values are shown on graph. 
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Patient VCL (µm/s) ALH (µm) LIN (%) HA (%) 

1-     Control 

Progeterone 

90.90 ± 1.70     

94.98 ± 1.18 

3.9 ± 0.08    

4.32 ±0.05 

63.00 ± 0.00  

57.25 ± 0.50 

1.00 ± 0.00     

1.00 ± 0.00 

2-     Control 

Progeterone 

142.63 ± 8.21   

128.65 ± 3.59 

5.68 ± 0.50    

5.40 ± 0.14 

56.00 ± 2.00   

54.50 ± 1.00 

21.50 ± 5.26   

15.25 ±2.06 

3-     Control 

Progeterone 

114.78 ± 3.91     

130.93 ± 3.59 

5.43 ± 0.05  

6.23 ± 0.15 

50.75 ± 1.50  

51.25 ± 1.89 

9.75 ± 2.22   

13.25 ± 2.36 

4-     Control 

Progeterone 

130.18 ± 4.74    

112.40 ± 4.81 

5.25 ± 0.19   

6.30 ± 0.35 

63.50 ± 3.00    

48.33 ± 2.31 

1.75 ± 3.50   

0.00 ± 0.00 

5-     Control 

Progeterone 

130.43 ± 6.10    

132.85 ± 6.47 

5.63 ± 0.41  

6.70 ± 0.36 

58.25 ± 2.06     

52.25 ± 1.50 

17.25 ± 6.24    

19.75 ± 4.25 

6-     Control 

Progeterone 

171.85 ± 3.95    

121.88 ± 2.55 

6.78 ± 0.66    

5.85 ± 0.10 

34.50 ± 1.29   

46.25 ± 1.50 

22.00 ± 4.97    

17.75 ± 3.20 

7-     Control 

Progeterone 

130.10 ± 10.12    

130.55 ± 4.18 

5.35 ± 0.62   

5.33 ± 0.24 

56.25 ± 4.19   

59.50 ± 1.00 

17.00 ± 5.60    

13.00 ± 1.83 

8-     Control 

Progeterone 

83.63 ± 1.27    

95.18 ± 2.07 

3.40 ± 0.12    

4.00 ± 0.14 

59.00 ± 0.82    

59.25 ± 0.50 

2.75 ± 0.50   

3.50 ± 1.29 

9-     Control 

Progeterone 

93.28 ± 2.61      

93.10 ± 2.89 

3.85 ± 0.06     

4.33 ± 0.13 

60.75 ± 0.96     

55.25 ± 1.71 

3.75 ± 1.26    

5.50 ± 0.58 

10-    Control 

Progeterone 

100.50 ± 0.86    

104.65 ± 2.39 

3.73 ± 0.08     

4.33 ± 0.10 

65.67 ± 0.82  

62.75 ± 1.50 

3.50 ± 0.58    

2.50 ± 0.58 

 

Table 7.1: CASA parameters in 10 IVF patients with failed respose to 3.6µM 

progesterone. Data are presented as average ± standard deviation (SD). 
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7.2 Supplementary figures and tables for chapter 3 

 

Table 7.2: Effect of Ibudilast on VAP. Table shows effect of Ibudilast on VAP as 10 different concentrations on 4 different donors. The numbers in 

brackets are standard deviation. Asterix (*) indicates that standard deviations are not overlapping compared to -ve control (i.e. statistically significant). 

Negative (1% DMSO) and positive (3.6µM progesterone) controls are shown on the table. 

  
Concentration (µM) 

 

 
-ve 

control 
0.1 0.3 0.5 1 3 5 10 30 50 100 

+ve 

control 

D1 
81.43 

(0.12) 

81.90 

(1.43) 

84.38* 

(0.59) 

85.95* 

(1.88) 

86.30* 

(1.26) 

89.45* 

(1.04) 

91.23* 

(1.14) 

91.95* 

(1.21) 

94.40* 

(0.85) 

88.43* 

(1.28) 

87.65* 

(1.43) 

97.78* 

(1.20) 

D2 
61.33 

(2.20) 

59.33 

(0.83) 

59.05 

(0/90) 

61.70 

(0.88) 

62.45 

(0.31) 

61.15 

(0/90) 

62.05 

(1.51) 

68.53* 

(0.88) 

81.68* 

(6.95) 

73.03* 

(2.15) 

74.10* 

(0.91) 

72.53* 

(1.27) 

D3 
65.68 

(1.63) 

63.40 

(1.61) 

63.60 

(1.90) 

61.90 

(2.04) 

72.68* 

(2.46) 

66.63 

(3.24) 

70.60* 

(1.43) 

64.28 

(1.65) 

72.30* 

(0.81) 

68.25 

(3.08) 

75.13* 

(2.05) 

65.70 

(2.46) 

D4 
55.68 

(1.07) 

59.10 

(2.49) 

59.55* 

(1.23) 

58.40* 

(1.14) 

59.18* 

(1.34) 

59.93* 

(1.36) 

59.28* 

(1.00) 

61.10* 

(1.57) 

62.25* 

(3.18) 

59.95* 

(1.80) 

60.70* 

(1.64) 

62.98* 

(2.10) 

 

Table 7.3: Effect of Ibudilast on VSL. Table shows effect of Ibudilast on VSL as 10 different concentrations on 4 different donors. The numbers in 

brackets are standard deviation. Asterix (*) indicates that standard deviations are not overlapping compared to -ve control (i.e. statistically significant). 

Negative (1% DMSO) and positive (3.6µM progesterone) controls are shown on the table. 

 

 

 

 
Concentration (µM) 

 

 
-ve 

control 
0.1 0.3 0.5 1 3 5 10 30 50 100 

+ve 

control 

D1 
89.73 

(0.49) 

90.15 

(1.59) 

91.38* 

(0.67) 

93.08* 

(1.60) 

94.50* 

(1.61) 

98.00* 

(1.81) 

99.88* 

(0.62) 

101.70* 

(2.00) 

104.95* 

(1.42) 

101.35* 

(1.78) 

101.03* 

(1.14) 

110.10* 

(0.88) 

D2 
69.35 

(1.68) 

68.75 

(1.47) 

67.03 

(1.17) 

69.45 

(0.71) 

70.88 

(0.36) 

69.05 

(0.96) 

70.83 

(1.61) 

78.33* 

(0.93) 

95.58* 

(8.69) 

85.90* 

(2.64) 

88.00* 

(1.75) 

85.83* 

(2.22) 

D3 
70.80 

(0.57) 

69.65 

(1.33) 

68.78 

(1.77) 

66.20 

(2.10) 

77.88* 

(2.43) 

72.68 

(3.80) 

78.38* 

(2.23) 

70.40 

(2.52) 

79.75* 

(1.31) 

75.03* 

(2.48) 

80.93* 

(1.91) 

72.23 

(3.08) 

D4 
66.45 

(0.42) 

69.00 

(3.63) 

70.28* 

(1.13) 

68.83* 

(1.54) 

70.80* 

(1.87) 

70.53* 

(1.37) 

71.83* 

(1.23) 

75.60* 

(1.35) 

77.45* 

(3.33) 

73.63* 

(3.69) 

77.58* 

(0.96) 

80.85* 

(4.39) 
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Concentration (µM) 

 

 
-ve 

control 
0.1 0.3 0.5 1 3 5 10 30 50 100 

+ve 

control 

D1 
120.43 

(1.56) 

122.38 

(1.99) 

120.75 

(1.35) 

120.95 

(2.11) 

126.95* 

(2.75) 

135.85* 

(3.86) 

134.18* 

(0.57) 

141.10* 

(4.51) 

145.95* 

(2.42) 

147.00* 

(9.55) 

143.73* 

(2.79) 

162.20* 

(1.42) 

D2 
102.98 

(1.52) 

106.35 

(3.11) 

102.23 

(2.36) 

104.90 

(2.60) 

106.55 

(1.65) 

104.63 

(2.39) 

105.13 

(1.65) 

118.23* 

(1.50) 

147.78* 

(12.91) 

138.48* 

(4.03) 

144.70* 

(3.48) 

138.68* 

(5.59) 

D3 
97.88 

(3.46) 

99.68 

(2.01) 

93.525 

(1.20) 

88.13 

(1.91) 

104.83 

(3.42) 

98.40 

(6.07) 

114.13* 

(4.75) 

98.40 

(5.04) 

115.15* 

(2.77) 

108.65* 

(1.52) 

110.85* 

(2.35) 

102.25 

(8.90) 

D4 
109.40 

(3.01) 

109.63 

(7.97) 

111.78 

(2.69) 

109.88 

(2.67) 

115.13 

(4.52) 

113.48 

(2.83) 

115.50 

(2.43) 

126.15* 

(2.61) 

131.68* 

(6.85) 

126.28* 

(8.33) 

132.53* 

(4.01) 

138.25* 

(7.68) 
 

Table 7.4: Effect of Ibudilast on VCL. Table shows effect of Ibudilast on VCL as 10 different concentrations on 4 different donors. The numbers in 

brackets are standard deviation. Asterix (*) indicates that standard deviations are not overlapping compared to -ve control (i.e. statistically significant). 

Negative (1% DMSO) and positive (3.6µM progesterone) controls are shown on the table. 

 

  
Concentration (µM) 

 

 
-ve 

control 
0.1 0.3 0.5 1 3 5 10 30 50 100 

+ve 

control 

D1 
4.400 

(0.000) 

4.325 

(0.096) 

4.350 

(0.058) 

4.125 

(0.096) 

4.475 

(0.050) 

4.875* 

(0.189) 

4.650* 

(0.100) 

4.950* 

(0.173) 

5.000* 

(0.082) 

5.075* 

(0.613) 

4.825* 

(0.275) 

6.050* 

(0.129) 

D2 
4.375 

(0.050) 

4.600 

(0.183) 

4.425 

(0.126) 

4.325 

(0.189) 

4.300 

(0.141) 

4.225 

(0.050) 

4.150 

(0.100) 

4.725* 

(0.096) 

5.350* 

(0.058) 

5.575* 

(0.263) 

6.050* 

(0.129) 

5.700* 

(0.231) 

D3 
3.400 

(0.216) 

3.550 

(0.129) 

3.400 

(0.082) 

3.025 

(0.050) 

3.650 

(0.208) 

3.425 

(0.263) 

3.925* 

(0.096) 

3.300 

(0.216) 

4.150* 

(0.208) 

3.975* 

(0.287) 

3.725* 

(0.096) 

3.825 

(0.411) 

D4 
4.875 

(0.171) 

4.900 

(0.356) 

4.975 

(0.171) 

4.675 

(0.096) 

4.975 

(0.250) 

4.850 

(0.173) 

4.775 

(0.096) 

5.375* 

(0.171) 

5.700* 

(0.316) 

5.475* 

(0.330) 

5.700* 

(0.258) 

6.050* 

(0.129) 

 

Table 7.5: Effect of Ibudilast on ALH. Table shows effect of Ibudilast on ALH as 10 different concentrations on 4 different donors. The numbers in 

brackets are standard deviation. Asterix (*) indicates that standard deviations are not overlapping compared to -ve control (i.e. statistically significant). 

Negative (1% DMSO) and positive (3.6µM progesterone) controls are shown on the table. 
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Concentration (µM) 

 

 
-ve 

control 
0.1 0.3 0.5 1 3 5 10 30 50 100 

+ve 

control 

D1 
60.18 

(1.77) 

65.00* 

(1.72) 

69.60* 

(1.37) 

67.58* 

(2.82) 

71.03* 

(1.16) 

71.95* 

(1.58) 

73.63* 

(1.93) 

67.40* 

(2.24) 

67.95* 

(2.42) 

65.55* 

(2.95) 

66.45 

(5.08) 

72.73* 

(4.01) 

D2 
76.28 

(2.68) 

78.55 

(0.40) 

78.38 

(1.95) 

78.53 

(1.20) 

80.80* 

(0.81) 

83.95* 

(3.53) 

89.20* 

(1.79) 

87.43* 

(3.18) 

90.88* 

(3.76) 

88.48* 

(2.99) 

87.95* 

(3.50) 

94.15* 

(0.68) 

D3 
80.83 

(1.11) 

85.28 

(4.68) 

80.53  

(3.87) 

82.18 

(1.89) 

85.08* 

(3.01) 

84.88* 

(2.09) 

85.13 

(4.12) 

85.30* 

(1.85) 

82.20 

(2.44) 

83.85 

(1.99) 

79.83 

(2.80) 

82.60 

(1.56) 

D4 
73.55 

(1.20) 

75.40 

(0.95) 

74.50 

(0.32) 

83.95* 

(1.57) 

87.10* 

(0.65) 

79.75* 

(1.77) 

83.90* 

(1.78) 

84.45* 

(0.70) 

90.53* 

(0.05) 

82.20* 

(0.95) 

78.53* 

(0.27) 

90.90* 

(1.77) 

 

Table 7.6: Effect of MMPX on VAP. Table shows effect of MMPX on VAP as 10 different concentrations on 4 different donors. The numbers in 

brackets are standard deviation. Asterix (*) indicates that standard deviations are not overlapping compared to -ve control (i.e. statistically significant). 

Negative (1% DMSO) and positive (3.6µM progesterone) controls are shown on the table. 

 

  
Concentration (µM) 

 

 
-ve 

control 
0.1 0.3 0.5 1 3 5 10 30 50 100 

+ve 

control 

D1 
52.40 

(1.60) 

56.68* 

(1.16) 

60.58* 

(1.39) 

56.75 

(3.25) 

61.28* 

(1.64) 

60.55* 

(1.71) 

62.53* 

(1.72) 

57.35* 

(0.99) 

57.63* 

(1.82) 

54.93 

(2.14) 

54.00 

(2.70) 

60.70* 

(2.94) 

D2 
69.70 

(2.90) 

71.43 

(0.68) 

72.48 

(2.49) 

71.98 

(1.86) 

74.75* 

(1.34) 

76.73* 

(2.20) 

80.95* 

(2.28) 

80.23* 

(3.34) 

82.68* 

(2.88) 

79.60* 

(1.87) 

78.23* 

(2.82) 

84.95* 

(0.60) 

D3 
68.4 

(0.97) 

71.73 

(4.15) 

67.95 

(4.31) 

70.98 

(1.72) 

69.58 

(3.75) 

70.10 

(1.80) 

70.98 

(3.88) 

70.12 

(3.09) 

66.85 

(2.61) 

67.68 

(1.97) 

64.90 

(3.14) 

66.75 

(0.95) 

D4 
64.83 

(1.43) 

67.20 

(0.94) 

65.63 

(0.71) 

73.35* 

(1.87) 

78.35* 

(0.75) 

70.43* 

(1.46) 

74.50* 

(1.92) 

73.48* 

(0.80) 

81.80* 

(0.33) 

74.60* 

(0.79) 

71.75* 

(0.15) 

83.75* 

(0.15) 

 

Table 7.7: Effect of MMPX on VSL. Table shows effect of MMPX on VSL as 10 different concentrations on 4 different donors. The numbers in 

brackets are standard deviation. Asterix (*) indicates that standard deviations are not overlapping compared to -ve control (i.e. statistically significant). 

Negative (1% DMSO) and positive (3.6µM progesterone) controls are shown on the table. 
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Concentration (µM) 

 

 
-ve 

control 
0.1 0.3 0.5 1 3 5 10 30 50 100 

+ve 

control 

D1 
96.35 

(4.60) 

103.53 

(5.63) 

111.35* 

(2.68) 

112.15* 

(8.70) 

114.25* 

(2.02) 

120.58* 

(3.11) 

123.63* 

(4.48) 

108.38* 

(5.04) 

112.48* 

(5.75) 

107.70 

(6.56) 

114.58* 

(11.96) 

123.65* 

(8.67) 

D2 
106.40 

(4.33) 

107.50 

(1.43) 

106.43 

(2.99) 

106.03 

(2.02) 

108.28 

(1.24) 

114.33 

(6.29) 

122.68* 

(3.10) 

118.75* 

(3.15) 

127.90* 

(7.79) 

126.08* 

(6.87) 

128.25* 

(6.03) 

135.53* 

(4.98) 

D3 
128.63 

(1.07) 

141.40* 

(7.62) 

129.80 

(4.12) 

129.95 

(1.89) 

145.65* 

(3.07) 

142.10* 

(2.62) 

140.53* 

(7.70) 

144.56* 

(4.85) 

139.53* 

(4.07) 

146.43* 

(5.08) 

135.48* 

(2.91) 

138.95* 

(2.81) 

D4 
113.35 

(2.00) 

114.33 

(1.13) 

115.88 

(1.24) 

134.75* 

(2.56) 

134.70* 

(0.80) 

121.53* 

(3.77) 

127.75* 

(2.16) 

134.95* 

(1.70) 

139.00* 

(1.31) 

126.77* 

(0.88) 

116.15 

(1.06) 

129.75* 

(2.16) 

 

Table 7.8: Effect of MMPX on VCL. Table shows effect of MMPX on VCL as 10 different concentrations on 4 different donors. The numbers in 

brackets are standard deviation. Asterix (*) indicates that standard deviations are not overlapping compared to -ve control (i.e. statistically significant). 

Negative (1% DMSO) and positive (3.6µM progesterone) controls are shown on the table. 

 

  
Concentration (µM) 

 

 
-ve 

control 
0.1 0.3 0.5 1 3 5 10 30 50 100 

+ve 

control 

D1 
4.300 

(0.140) 

4.500 

(0.420) 

4.825* 

(0.190) 

4.775 

(0.440) 

4.825* 

(0.130) 

5.125* 

(0.150) 

5.325* 

(0.240) 

4.600 

(0.320) 

5.025* 

(0.300) 

4.650* 

(0.210) 

5.100* 

(0.560) 

5.600* 

(0.270) 

D2 
3.750 

(0.250) 

3.775 

(0.130) 

3.725 

(0.130) 

3.650 

(0.190) 

3.650 

(0.190) 

3.825 

(0.220) 

3.925 

(0.100) 

3.800 

(0.080) 

4.175 

(0.380) 

4.125 

(0.340) 

4.175 

(0.330) 

4.650* 

(0.310) 

D3 
5.125 

(0.130) 

5.875* 

(0.380) 

5.375 

(0.250) 

5.250 

(0.170) 

6.200* 

(0.140) 

5.900* 

(0.360) 

5.775* 

(0.220) 

5.900* 

(0.390) 

5.950* 

(0.310) 

6.125* 

(0.210) 

5.650* 

(0.170) 

5.750* 

(0.260) 

D4 
4.375 

(0.060) 

4.150 

(0.030) 

4.525 

(0.120) 

5.175* 

(0.170) 

4.950* 

(0.030) 

4.375 

(0.210) 

4.575 

(0.160) 

4.950* 

(0.120) 

5.150* 

(0.060) 

4.733* 

(0.030) 

4.175 

(0.130) 

4.375 

(0.210) 

 

Table 7.9: Effect of MMPX on ALH. Table shows effect of MMPX on ALH as 10 different concentrations on 4 different donors. The numbers in 

brackets are standard deviation. Asterix (*) indicates that standard deviations are not overlapping compared to -ve control (i.e. statistically significant). 

Negative (1% DMSO) and positive (3.6µM progesterone) controls are shown on the table. 
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Concentration (µM) 

 

 
-ve 

control 
0.1 0.3 0.5 1 3 5 10 30 50 100 

+ve 

control 

D1 
68.58 

(2.27) 

76.65* 

(2.49) 

75.60* 

(0.99) 

76.45* 

(0.01) 

75.63* 

(1.94) 

80.38* 

(3.45) 

82.43* 

(3.65) 

82.60* 

(3.01) 

81.28* 

(0.83) 

74.58* 

(2.86) 

76.63* 

(2.94) 

86.55* 

(4.07) 

D2 
83.38 

(2.20) 

86.18 

(3.58) 

85.05 

(1.67) 

85.63 

(2.22) 

88.80 

(3.42) 

86.90 

(2.54) 

87.63 

(3.61) 

83.25 

(2.02) 

84.05 

(0.79) 

75.30 

(2.01) 

73.65 

(2.25) 

92.30* 

(1.63) 

D3 
81.93 

(3.96) 

81.68 

(1.36) 

87.45 

(1.65) 

88.70 

(2.82) 

90.73* 

(2.43) 

92.43* 

(4.38) 

90.88* 

(1.30) 

98.23* 

(3.35) 

93.75* 

(2.62) 

90.45* 

(0.62) 

80.23 

(2.53) 

96.15* 

(3.28) 

D4 
76.33 

(3.03) 

76.43 

(1.78) 

79.95 

(5.61) 

81.35 

(2.72) 

81.83 

(3.01) 

82.65 

(3.83) 

81.53 

(4.34) 

80.40 

(2.09) 

80.05 

(4.51) 

74.43 

(3.61) 

70.45 

(3.39) 

87.63* 

(2.37) 

 

Table 7.10: Effect of Etazolate on VAP. Table shows effect of Etazolate on VAP as 10 different concentrations on 4 different donors. The numbers in 

brackets are standard deviation. Asterix (*) indicates that standard deviations are not overlapping compared to -ve control (i.e. statistically significant). 

Negative (1% DMSO) and positive (3.6µM progesterone) controls are shown on the table. 

 

  
Concentration (µM) 

 

 
-ve 

control 
0.1 0.3 0.5 1 3 5 10 30 50 100 

+ve 

control 

D1 
60.08 

(3.05) 

66.90* 

(0.76) 

66.78* 

(1.58) 

66.35* 

(2.24) 

65.28* 

(1.86) 

66.35* 

(1.71) 

67.98 

(4.11) 

69.05* 

(2.57) 

64.90 

(1.92) 

62.48 

(2.74) 

64.00 

(3.37) 

69.70* 

(1.88) 

D2 
68.90 

(2.25) 

72.40 

(2.76) 

69.90 

(1.79) 

72.25 

(0.92) 

70.33 

(1.59) 

70.88 

(1.96) 

70.05 

(3.02) 

65.78 

(1.92) 

64.15 

(1.65) 

59.03 

(0.97) 

58.13 

(2.45) 

72.80* 

(0.82) 

D3 
74.95 

(4.01) 

75.48 

(1.91) 

79.90 

(1.86) 

81.70 

(2.48) 

82.90* 

(2.30) 

84.55* 

(3.82) 

82.90* 

(1.82) 

88.85* 

(3.98) 

81.98 

(2.32) 

80.70* 

(0.93) 

71.78 

(2.61) 

86.60* 

(3.44) 

D4 
65.93 

(2.90) 

67.325 

(3.63) 

69.55 

(4.13) 

69.95 

(2.26) 

71.05 

(2.56) 

70.85 

(4.60) 

68.53 

(4.53) 

67.53 

(1.34) 

63.40 

(0.70) 

62.00 

(2.51) 

58.43 

(2.64) 

74.88* 

(1.94) 

 

Table 7.11: Effect of Etazolate on VSL. Table shows effect of Etazolate on VSL as 10 different concentrations on 4 different donors. The numbers in 

brackets are standard deviation. Asterix (*) indicates that standard deviations are not overlapping compared to -ve control (i.e. statistically significant). 

Negative (1% DMSO) and positive (3.6µM progesterone) controls are shown on the table. 
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Concentration (µM) 

 

 
-ve 

control 
0.1 0.3 0.5 1 3 5 10 30 50 100 

+ve 

control 

D1 
107.23 

(5.20) 

120.23* 

(6.58) 

115.10 

(2.57) 

121.23* 

(2.47) 

119.80* 

(3.60) 

135.10* 

(9.06) 

139.20* 

(3.61) 

139.45* 

(7.18) 

143.85* 

(7.58) 

126.60* 

(6.71) 

128.88* 

(4.34) 

153.90* 

(8.35) 

D2 
135.50 

(3.42) 

139.30 

(9.39) 

142.38 

(6.23) 

139.00 

(8.22) 

152.00* 

(8.58) 

146.20 

(6.77) 

151.28* 

(9.44) 

143.88 

(4.75) 

146.70* 

(3.36) 

129.88 

(5.03) 

129.23 

(5.05) 

162.58* 

(4.04) 

D3 
109.35 

(3.81) 

107.36 

(1.98) 

116.70* 

(2.60) 

118.08* 

(3.65) 

120.70* 

(3.29) 

125.45* 

(8.67) 

123.10* 

(1.24) 

139.68* 

(3.16) 

136.95* 

(6.44) 

130.90* 

(2.40) 

118.23 

(5.71) 

135.53* 

(5.20) 

D4 
122.55 

(5.83) 

119.15 

(2.34) 

124.75 

(8.84) 

132.13 

(8.32) 

133.20 

(7.14) 

135.03* 

(5.17) 

139.03* 

(8.38) 

137.90* 

(5.02) 

145.95* 

(15.05) 

125.00 

(4.24) 

122.00 

(10.69) 

145.98* 

(9.61 

 

Table 7.12: Effect of Etazolate on VCL. Table shows effect of Etazolate on VCL as 10 different concentrations on 4 different donors. The numbers in 

brackets are standard deviation. Asterix (*) indicates that standard deviations are not overlapping compared to -ve control (i.e. statistically significant). 

Negative (1% DMSO) and positive (3.6µM progesterone) controls are shown on the table. 

 

  
Concentration (µM) 

 

 
-ve 

control 
0.1 0.3 0.5 1 3 5 10 30 50 100 

+ve 

control 

D1 
4.150 

(0.130) 

4.750* 

(0.370) 

4.475 

(0.210) 

4.650* 

(0.100) 

4.600* 

(0.140) 

5.350* 

(0.700) 

5.500* 

(0.240) 

5.750* 

(0.330) 

5.975* 

(0.450) 

5.100* 

(0.410) 

5.450* 

(0.240) 

6.500* 

(0.450) 

D2 
5.425 

(0.130) 

5.525 

(0.390) 

5.725 

(0.190) 

5.575 

(0.320) 

6.025 

(0.530) 

5.950 

(0370) 

6.175* 

(0.220) 

5.775 

(0.220) 

6.125* 

(0.340) 

5.550 

(0.100) 

5.900 

(0.330) 

6.600* 

(0.290) 

D3 
3.575 

(0.170) 

3.56 

(0.090) 

3.775 

(0.210) 

3.800 

(0.120) 

3.850 

(0.170) 

4.025 

(0.400) 

3.900* 

(0.00) 

4.575* 

(0.170) 

4.550* 

(0.310) 

4.375* 

(0.130) 

4.250* 

(0.260) 

4.650* 

(0.260) 

D4 
5.225 

(0.340) 

5.000 

(0.350) 

5.075 

(0.300) 

5.425 

(0.330) 

5.425 

(0.300) 

5.675 

(0.430) 

5.875 

(0.390) 

5.950* 

(0.640) 

6.575* 

(0.640) 

5.425 

(0.150) 

5.600 

(0.470) 

6.075* 

(0.450) 

 

Table 7.13:  Effect of Etazolate on ALH. Table shows effect of Etazolate on ALH as 10 different concentrations on 4 different donors. The numbers 

in brackets are standard deviation. Asterix (*) indicates that standard deviations are not overlapping compared to -ve control (i.e. statistically 

significant). Negative (1% DMSO) and positive (3.6µM progesterone) controls are shown on the table. 
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Concentration (µM) 

 

 
-ve 

control 
0.1 0.3 0.5 1 3 5 10 30 50 100 

+ve 

control 

D1 
64.10 

(0.29) 

65.15 

(0.90) 

68.78* 

(0.84) 

74.38* 

(0.47) 

77.05* 

(1.50) 

79.10* 

(0.36) 

80.60* 

(1.73) 

80.55* 

(1.38) 

78.43* 

(0.79) 

82.15* 

(0.90) 

77.03* 

(1.05) 

79.00* 

(2.79) 

D2 
73.88 

(0.11) 

79.03* 

(0.39) 

81.25* 

(0.25) 

80.35* 

(0.85) 

85.83* 

(0.31) 

87.15* 

(0.34) 

88.75* 

(0.88) 

87.78* 

(0.41) 

88.50* 

(0.58) 

89.05* 

(0.65) 

81.93* 

(0.54) 

87.33* 

(0.60) 

D3 
70.25 

(0.45) 

79.73* 

(0.22) 

77.80* 

(1.60) 

88.05* 

(0.50) 

83.40* 

(0.51) 

87.70* 

(0.44) 

86.85* 

(0.50) 

90.08* 

(0.57) 

85.00* 

(0.80) 

88.23* 

(0.58) 

84.00* 

(0.86) 

86.55* 

(0.94) 

D4 
61.13 

(1.16) 

63.28 

(1.52) 

71.33* 

(0.36) 

72.60* 

(0.67) 

78.68* 

(0.43) 

80.23* 

(1.01) 

76.75* 

(0.57) 

75.73* 

(1.53) 

79.35* 

(1.19) 

75.23* 

(2.00) 

75.03* 

(1.00) 

82.35* 

(1.01) 

D5 
83.98 

(0.80) 

86.40 

(2.38) 

83.80 

(1.14) 

90.75* 

(0.65) 

83.03 

(1.19) 

89.98* 

(2.20) 

89.53* 

(1.71) 

85.53 

(0.88) 

84.93 

(1.14) 

85.35 

(0.70) 

84.68 

(0.15) 

87.98* 

(2.20) 

 

Table 7.14: Effect of Papaverine on VAP. Table shows effect of Papaverine on VAP as 10 different concentrations on 4 different donors. The 

numbers in brackets are standard deviation. Asterix (*) indicates that standard deviations are not overlapping compared to -ve control (i.e. statistically 

significant). Negative (1% DMSO) and positive (3.6µM progesterone) controls are shown on the table. 
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Concentration (µM) 

 

 
-ve 

control 
0.1 0.3 0.5 1 3 5 10 30 50 100 

+ve 

control 

D1 
57.68 

(0.32) 

60.08* 

(0.57) 

62.93* 

(0.43) 

68.35* 

(0.76) 

70.78* 

(1.61) 

72.25* 

(0.24) 

73.83* 

(1.73) 

72.33* 

(1.52) 

70.40* 

(1.06) 

72.18* 

(0.33) 

68.30* 

(0.89) 

66.60* 

(1.27) 

D2 
63.38 

(0.48) 

67.73* 

(0.83) 

70.78* 

(0.71) 

69.75* 

(1.32) 

71.70* 

(0.24) 

70.53* 

(1.24) 

72.10* 

(1.32) 

74.78* 

(0.79) 

70.78* 

(0.50) 

72.88* 

(0.15) 

67.08* 

(0.92) 

72.93* 

(0.65) 

D3 
61.53 

(0.64) 

66.68* 

(0.99) 

65.23 

(3.36) 

73.28* 

(0.70) 

65.23* 

(0.46) 

71.75* 

(0.69) 

72.08* 

(0.36) 

71.20* 

(0.93) 

68.40* 

(1.00) 

71.75* 

(0.53) 

69.45* 

(1.34) 

68.95* 

(1.67) 

D4 
54.15 

(1.68) 

55.45 

(1.75) 

62.85* 

(0.33) 

63.83* 

(0.10) 

65.55* 

(0.56) 

68.35* 

(0.13) 

65.65* 

(0.26) 

65.35* 

(1.70) 

66.43* 

(0.54) 

63.05* 

(2.37) 

65.20* 

(0.27) 

65.25* 

(0.10) 

D5 
73.20 

(0.58) 

75.98* 

(1.92) 

72.50 

(0.96) 

77.85* 

(1.28) 

71.73 

(1.00) 

76.55* 

(1.11) 

76.00* 

(1.35) 

73.45 

(0.65) 

73.25 

(1.10) 

72.30* 

(1.16) 

70.83 

(0.92) 

74.55* 

(0.65) 

 

Table 7.15: Effect of Papaverine on VSL. Table shows effect of Papaverine on VSL as 10 different concentrations on 4 different donors. The 

numbers in brackets are standard deviation. Asterix (*) indicates that standard deviations are not overlapping compared to -ve control (i.e. statistically 

significant). Negative (1% DMSO) and positive (3.6µM progesterone) controls are shown on the table. 
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Concentration (µM) 

 

 
-ve 

control 
0.1 0.3 0.5 1 3 5 10 30 50 100 

+ve 

control 

D1 
97.73 

(1.88) 

93.40 

(1.32) 

101.38 

(2.14) 

107.63* 

(0.68) 

115.18* 

(2.89) 

118.08* 

(0.97) 

117.58* 

(2.84) 

126.13* 

(0.49) 

122.03* 

(1.80) 

134.38* 

(5.59) 

124.33* 

(3.28) 

136.03* 

(7.99) 

D2 
111.75 

(0.93) 

120.25* 

(0.73) 

121.85* 

(2.18) 

119.88* 

(1.48) 

134.45* 

(1.88) 

140.50* 

(1.47) 

144.88* 

(2.27) 

136.20* 

(1.96) 

149.68* 

(2.33) 

146.38* 

(2.16) 

136.13* 

(2.54) 

137.13* 

(2.08) 

D3 
105.65 

(0.39) 

125.33* 

(1.22) 

124.45* 

(2.06) 

142.98* 

(0.99) 

140.98* 

(2.08) 

142.48* 

(1.16) 

139.23* 

(1.13) 

151.93* 

(0.86) 

141.58* 

(1.17) 

149.28* 

(1.36) 

138.85* 

(0.92) 

144.28* 

(1.36) 

D4 
98.55 

(0.67) 

100.03 

(0.73) 

109.90* 

(1.08) 

113.03* 

(1.77) 

129.88* 

(2.72) 

129.90* 

(4.83) 

121.60* 

(2.08) 

122.93* 

(1.96) 

130.03* 

(4.22) 

121.88* 

(2.90) 

119.93* 

(3.04) 

136.23* 

(1.77) 

D5 
132.08 

(2.32) 

134.68 

(4.70) 

134.10 

(1.61) 

146.93* 

(2.24) 

137.28* 

(1.39) 

147.58* 

(4.42) 

147.48* 

(4.17) 

145.33* 

(0.87) 

140.33* 

(1.52) 

147.08* 

(2.29) 

143.75* 

(1.89) 

149.08* 

(0.87) 

 

Table 7.16: Effect of Papaverine on VCL. Table shows effect of Papaverine on VCL as 10 different concentrations on 4 different donors. The 

numbers in brackets are standard deviation. Asterix (*) indicates that standard deviations are not overlapping compared to -ve control (i.e. statistically 

significant). Negative (1% DMSO) and positive (3.6µM progesterone) controls are shown on the table. 
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Concentration (µM) 

 

 
-ve 

control 
0.1 0.3 0.5 1 3 5 10 30 50 100 

+ve 

control 

D1 
4.050 

(0.058) 

3.600 

(0.000) 

3.925 

(0.096) 

3.975 

(0.050) 

4.450* 

(0.129) 

4.375* 

(0.050) 

4.200 

(0.115) 

4.875* 

(0.096) 

4.725* 

(0.222) 

5.175* 

(0.299) 

5.000* 

(0.183) 

5.725* 

(0.330) 

D2 
4.150 

(0.050) 

4.550* 

(0.029) 

4.400* 

(0.122) 

4.400* 

(0.041) 

4.950* 

(0.132) 

5.150* 

(0.104) 

5.475* 

(0.125) 

5.000* 

(0.091) 

5.500* 

(0.158) 

5.600* 

(0.147) 

5.025* 

(0.111) 

5.400* 

(0.041) 

D3 
4.025 

(0.048) 

4.875* 

(0.149) 

4.950* 

(0.065) 

5.425* 

(0.025) 

5.825* 

(0.125) 

5.425* 

(0.063) 

5.225* 

(0.048) 

5.750* 

(0.065) 

5.375* 

(0.063) 

5.850* 

(0.029) 

5.325* 

(0.025) 

5.875* 

(0.085) 

D4 
4.450 

(0.100) 

4.675 

(0.096) 

4.600 

(0.000) 

4.850* 

(0.129) 

5.550* 

(0.173) 

5.425* 

(0.250) 

5.050* 

(0.100) 

5.050* 

(0.129) 

5.325* 

(0.126) 

5.025* 

(0.171) 

4.825* 

(0.189) 

5.575* 

(0.173) 

D5 
5.550 

(0.191) 

5.725 

(0.189) 

5.875 

(0.050) 

6.500* 

(0.216) 

6.250* 

(0.129) 

6.275* 

(0.126) 

6.400* 

(0.216) 

6.725* 

(0.050) 

6.300* 

(0.081) 

6.675* 

(0.171) 

6.575* 

(0.096) 

6.625* 

(0.129) 

 

Table 7.17: Effect of Papaverine on VCL. Table shows effect of Papaverine on VCL as 10 different concentrations on 4 different donors. The 

numbers in brackets are standard deviation. Asterix (*) indicates that standard deviations are not overlapping compared to -ve control (i.e. statistically 

significant). Negative (1% DMSO) and positive (3.6µM progesterone) controls are shown on the table. 

 

  
Concentration (µM) 

 

 
-ve 

control 
0.1 0.3 0.5 1 3 5 10 30 50 100 

+ve 

control 

D1 
82.18 

(5.25) 

92.08 

(3.77) 

84.50 

(3.29) 

88.28 

(1.26) 

91.08 

(4.76) 

93.45* 

(1.63) 

89.45 

(5.23) 

85.93 

(3.51) 

85.20 

(3.97) 

81.20 

(3.21) 

78.43 

(2.23) 

97.45* 

(3.92) 

D2 
77.38 

(4.85) 

81.88 

(3.18) 

80.05* 

(2.04) 

82.20* 

(2.37) 

82.10* 

(2.55) 

81.75* 

(3.19) 

81.83* 

(3.76) 

77.80* 

(2.17) 

76.60* 

(1.98) 

77.98 

(1.80) 

72.00 

(5.42) 

83.53* 

(2.93) 

D3 
58.28 

(1.35) 

61.45 

(4.48) 

66.38 

(5.47) 

65.88 

(0.94) 

70.28 

(2.80) 

67.88 

(2.00) 

68.38 

(2.39) 

62.88 

(1.94) 

62.80 

(1.69) 

58.40 

(4.30) 

56.48 

(1.74) 

67.30 

(2.54) 

 

Table 7.18: Effect of Tofisopam on VAP. Table shows effect of Tosfisopam on VAP as 10 different concentrations on 4 different donors. The 

numbers in brackets are standard deviation. Asterix (*) indicates that standard deviations are not overlapping compared to -ve control (i.e. statistically 

significant). Negative (1% DMSO) and positive (3.6µM progesterone) controls are shown on the table. 
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Concentration (µM) 

 

 
-ve 

control 
0.1 0.3 0.5 1 3 5 10 30 50 100 

+ve 

control 

D1 
69.45 

(2.47) 

80.48* 

(4.20) 

73.25 

(1.87) 

75.93* 

(0.79) 

75.43 

(5.10) 

80.48* 

(0.96) 

75.40* 

(1.62) 

70.78 

(3.21) 

69.18 

(0.98) 

67.25 

(1.58) 

66.00 

(3.07) 

77.85* 

(4.55) 

D2 
67.53 

(4.84) 

68.43 

(3.76) 

66.08 

(1.94) 

67.15 

(2.03) 

65.70 

(2.11) 

67.10 

(2.74) 

62.93 

(1.95) 

61.53 

(1.51) 

59.08 

(2.38) 

62.08 

(3.19) 

56.85 

(3.17) 

63.75 

(3.53) 

D3 
52.90 

(1.66) 

55.93 

(4.15) 

60.98 

(6.23) 

60.65* 

(0.79) 

65.28* 

(2.43) 

62.33* 

(1.85) 

61.70* 

(1.96) 

56.48* 

(1.21) 

56.85* 

(1.67) 

51.93 

(3.96) 

50.20 

(1.94) 

59.20* 

(2.92) 

 

Table 7.19: Effect of Tofisopam on VSL. Table shows effect of Tosfisopam on VSL as 10 different concentrations on 4 different donors. The 

numbers in brackets are standard deviation. Asterix (*) indicates that standard deviations are not overlapping compared to -ve control (i.e. statistically 

significant). Negative (1% DMSO) and positive (3.6µM progesterone) controls are shown on the table. 

 

  
Concentration (µM) 

 

 
-ve 

control 
0.1 0.3 0.5 1 3 5 10 30 50 100 

+ve 

control 

D1 
134.28 

(15.44) 

142.90 

(6.88) 

134.85 

(7.07) 

146.05 

(4.36) 

153.73 

(5.22) 

151.23 

(6.00) 

150.45 

(14.03) 

151.60 

(6.35) 

152.23 

(14.56) 

139.43 

(8.50) 

133.20 

(6.13) 

171.10* 

(10.85) 

D2 
116.70 

(3.97) 

132.93* 

(2.41) 

130.30* 

(3.50) 

132.43* 

(4.92) 

137.23* 

(3.49) 

136.25* 

(5.37) 

143.73* 

(12.09) 

136.10* 

(5.22) 

135.05* 

(5.99) 

133.18* 

(3.33) 

121.90 

(12.42) 

145.28* 

(6.23) 

D3 
84.85 

(1.52) 

88.15 

(7.25) 

94.45* 

(4.06) 

91.53* 

(2.46) 

97.20* 

(3.21) 

94.68* 

(2.94) 

101.38* 

(4.41) 

96.35* 

(5.85) 

93.13* 

(2.70) 

90.13 

(6.56) 

86.88 

(3.17) 

100.53* 

(6.73) 

 

Table 7.20: Effect of Tofisopam on VCL. Table shows effect of Tosfisopam on VCL as 10 different concentrations on 4 different donors. The 

numbers in brackets are standard deviation. Asterix (*) indicates that standard deviations are not overlapping compared to -ve control (i.e. statistically 

significant). Negative (1% DMSO) and positive (3.6µM progesterone) controls are shown on the table. 
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Concentration (µM) 

 

 
-ve 

control 
0.1 0.3 0.5 1 3 5 10 30 50 100 

+ve 

control 

D1 
5.750 

(0.968) 

5.750 

(0.342) 

5.550 

(0.351) 

6.000 

(0.283) 

6.400 

(0.271) 

6.200 

(0.337) 

6.375 

(0.562) 

6.750 

(0.208) 

6.725 

(0.629) 

6.325 

(0.386) 

5.975 

(0.330) 

7.300* 

(0.469) 

D2 
4.575 

(0.206) 

5.475* 

(0.222) 

5.175* 

(0.171) 

5.250* 

(0.311) 

5.525* 

(0.050) 

5.575* 

(0.263) 

5.750* 

(0.681) 

5.625* 

(0.263) 

5.650* 

(0.208) 

5.650* 

(0.191) 

5.275* 

(0.403) 

5.800* 

(0.316) 

D3 
3.300 

(0.183) 

3.400 

(0.216) 

3.525 

(0.096) 

3.300 

(0.200) 

3.450 

(0.129) 

3.350 

(0.129) 

3.775* 

(0.171) 

3.800 

(0.337) 

3.600 

(0.141) 

3.550 

(0.191) 

3.350 

(0.238) 

3.925* 

(0.287) 

 

Table 7.21: Effect of Tofisopam on ALH. Table shows effect of Tosfisopam on ALH as 10 different concentrations on 4 different donors. The 

numbers in brackets are standard deviation. Asterix (*) indicates that standard deviations are not overlapping compared to -ve control (i.e. statistically 

significant). Negative (1% DMSO) and positive (3.6µM progesterone) controls are shown on the table.
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7.2 Supplementary figures and tables for chapter 4 

 

# Compound Author Species Concentration Effect on Mot. Ca2+ effect 

1 Arecoline Yuan et. al. Human 300µg/ml Negative N/A 

2 Arecaidine Yuan et. al. Human 300µg/ml Negative N/A 

3 Guvacine Yuan et. al. Human 300µg/ml Negative N/A 

4 HerbOshield Singh et. al. Rat 100mg/ml Immobil. N/A 

5 NIM-76 Singh et. al. Rat     N/A 

6 Zeralenone Filannino et. al. Stallion 0.1mM Slowed N/A 

7 ɑ-zeralenone Filannino et. al. Stallion 0.1mM Negative N/A 

8 β-zeralenone Filannino et. al. Stallion 0.1mM Slowed N/A 

9 Relaxin Ferlin et. al.  Human 100nM HA Positive 

10 Butan-1-ol Itach et. al.  Mice 0.1%-0.5% Negative N/A 

11 L-arginine Keller et. al. Human 0.004M Positive N/A 

12 Theophylline Ebner et. al. Human   Positive N/A 

13 Remifantil Xu et. al. Human 0.1-100µg/L Negative N/A 

14 Biotin Kathur et. al. Human 10nM Negative N/A 

15 Propranolol Peterson et al  Human 0.8mM Negative N/A 

16 Sotalol Peterson et al  Human 10mM Negative N/A 

17 Chlorpromazine Peterson et al  Human 0.2mM Negative N/A 

18 Lidocaine Peterson et al  Human 12mM Negative N/A 

19 Diphahydramine Peterson et al  Human 2mM Negative N/A 

20 Atropine Peterson et al  Human 7.5mM Negative N/A 

21 Seopolamine Peterson et al  Human 10mM Negative N/A 

22 Benztropine Peterson et al  Human 0.1mM Negative N/A 

23 Phentolamine Peterson et al  Human 2mM Negative N/A 

24 Phenoxybenzamine Peterson et al  Human 5mM Negative N/A 

25 T. fetus extracellular prod. Riberio et. al. Bull  N/A Negative N/A 

26 SEMG1 O'Rand et. al. Human   Negative Negative 

27 Anti-eppin O'Rand et. al. Human   Negative Negative 

28 L-carnitine Banihani et. al. Human 0.5mg/ml Positive N/A 

29 N,N’-Dithiobisphthalimide Florez et. al. Human 24µM Immobil. N/A 

30 Kilikrein Schill et. al. Human   Positive N/A 

31 Adenosine Brenker et. al. Human 50µM N/A N/A 

32 SQ22536 Brenker et. al. Human 500µM N/A N/A 

33 MDL12330a Brenker et. al. Human 100µM N/A N/A 

34 U73122 Brenker et. al. Human   N/A N/A 

35 Bourgeonal Brenker et. al. Human 10µM N/A Positive 

36 Undeacanal Brenker et. al. Human 3µM N/A Positive 

37 NNC Brenker et. al. Human 10µM N/A Negative 

38 Mibefradil Brenker et. al. Human 30µM N/A Negative 

 

Table 7.22: Table shows the effect of 102 compounds on sperm motility and Ca2+ 

signaling. The literature was screened and 102 compounds were found that effect sperm 

motility and/or Ca2+ signaling. Effective concentration and organism of the studies are 

shown on the table. Table continues over-page. 
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# Compound Author Species Concentration Effect on Mot. Ca2+ effect 

39 Calcitonin Brenker et. al. Human 1.5µM N/A N/A 

40 Angiotensin II Brenker et. al. Human 10µM N/A N/A 

41 FFP Brenker et. al. Human 100µM N/A N/A 

42 Diltiazem Hong et. al. Human 7.5µM Positive Negative 

43 Flunarizine Hong et. al. Human 5µM Positive Negative 

44 Verapamil Hong et. al. Human 0.25µM Positive Negative 

45 Caffeine Hong et. al.     Positive Positive 

46 IBMX Fisch et. al. Human 100µM Positive N/A 

47 RS-25344 Fisch et. al. Human 10µM Positive N/A 

48 Rolipram Fisch et. al. Human 20µM Positive N/A 

49 Sildenafil Glenn et. al. Human 0.67µM Positive N/A 

50 Thapsigargin Blackmore Human 10µM HA Positive 

51 Pentoxifylline Nassar et. al. Human 1mg/ml Positive Negative 

52 Progesterone Blackmore et. al. Human 31.8nM Positive Positive 

53 17ɑ-Hydroxyprogesterone Blackmore et. al. Human 30.3nM N/A Positive 

54 11β-Hydroxyprogesterone Blackmore et. al. Human 30.3nM N/A Positive 

55 5ɑ-Pregnane-3,20-dione Blackmore et. al. Human 31.6nM N/A Positive 

56 Androstendione Blackmore et. al. Human 34.9nM N/A Positive 

57 Pregnendione Blackmore et. al. Human 31.4nM N/A Positive 

58 Corticosterone Blackmore et. al. Human 28.9nM N/A Positive 

59 20ɑ Hydroxypregnen-3-onc Blackmore et. al. Human 31.6nM N/A Positive 

60 β-Estradiol Blackmore et. al. Human 36.7nM N/A Positive 

61 Testosterone Blackmore et. al. Human 34.7nM N/A Positive 

62 Estrone Blackmore et. al. Human 37nM N/A Positive 

63 Dehydroepiandrosterone Blackmore et. al. Human 34.7nM N/A Positive 

64 Abamectin Ozenci et. al. Human   N/A N/A 

65 Nonoxynol-9 Nithya et. al. Rat 250µg/ml Immobil. N/A 

66 DBZ Reddy et. al. Human 0.05mM Negative Positive 

67 Ouabain Peris et. al. Ram 0.1mM Negative N/A 

68 Calmidazolium Garcia et. al. Human   N/A Negative 

69 Pimozode Garcia et. al. Human   N/A Negative 

70 Acetylcholine Bray et. al. Human 200µM N/A Positive 

71 Sodium hexachloro-platina Eberl et. al. Human 1mM Negative N/A 

72 Tetraamineplatinuim-II-chl Eberl et. al. Human 1mM Negative N/A 

73 Quinine Yeung and Cooper Human 20µmol/L ↓VCL LIN ALH N/A 

74 Tamoifen Citrate Saberwal et. al. Rat 0.4mg/kg/day ↓ Forward ↑circ. Positive 

75 SAMMA Anderson at. al. Human 2µg/ml N/A Dysregula. 

76 FSH Arienti et. al. Human 98ng/ml N/A Positive 

 

Table 7.22 (continued): Table shows the effect of 102 compounds on sperm motility 

and Ca2+ signaling. The literature was screened and 102 compounds were found that 

effect sperm motility and/or Ca2+ signaling. Effective concentration and organism of the 

studies are shown on the table. Table continues over-page. 
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# Compound Author Species Concentration Effect on Mot. Ca2+ effect 

78 ATP Edwards et. al. Human 2.5mM Positive No effect 

79 Thimerosal Ho and Suarez Bull 20µM HA Positive 

80 Vitamin D Jensen et. al. Human (serum conc) Positive Positive 

81 Lindane Silvestroni et. al. Human 40µM N/A Positive 

82 4-AP Gu et. al. Human 2mM HA Positive 

83 PGE2 Schaefer et. al. Human 1µM N/A Positive 

84 PGE1 Schaefer et. al. Human 1µM N/A Positive 

85 NONOate M-Oliveira et. al. Human 100µM Flagella Modula. Positive 

86 GSNO M-Oliveira et. al. Human 100µM N/A Positive 

87 Dithiothreitol M-Oliveira et. al. Human 1mM N/A (Negative) 

88 CCCP M-Oliveira et. al. Human 10µM N/A Positive 

89 Mifepristone (RU486) Yang et. al. Human 10µM Negative Negative 

90 RU39009 Yang et. al. Human 10µM N/A Negative 

91 RU41291 Yang et. al. Human 10µM N/A Positive 

92 RU39411 Yang et. al. Human 10µM N/A Negative 

93 Estradiol Yang et. al. Human 10µM N/A Positive 

94 R5020 Yang et. al. Human 10µM N/A Positive 

95 Leuhistin Subiran et. al. Human 100µM Positive/HA N/A 

96 Thiorphan Subiran et. al. Human 1µM Positive N/A 

97 LY294002 Nauc et. al. Human 30µM N/A Positive 

98 ZP3 Brewis et. al. Human 20X conc. Solution N/A Positive 

99 KN62 M-Briggiler et. al. Human 60µM Negative N/A 

100 KN93 M-Briggiler et. al. Human 60µM Negative N/A 

101 PACAP Brubel et. al. Human 100nmol Positive N/A 

102 Imidazole Garbers et. al. Bovine 75 mM or 107 mM Inhibition N/A 

 

Table 7.22 (continued): Table shows the effect of 102 compounds on sperm motility 

and Ca2+ signaling. The literature was screened and 102 compounds were found that 

effect sperm motility and/or Ca2+ signaling. Effective concentration and organism of the 

studies are shown on the table. 
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7.3 Supplementary figures and tables for chapter 5 

 

 

Figure 7.8: Effect of 10µM BRL 50481 on 40% fraction spermatozoa under non-

capacitating conditions on total motility (n=4). There is no significant response. Error 

bars represent SEM. 

 

 

Figure 7.9: Effect of 10µM BRL 50481 on 40% fraction spermatozoa under non-

capacitating conditions on progressive motility (n=4). There is no significant 

response. Error bars represent SEM. 
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Figure 7.10: Effect of 10µM BRL 50481 on 40% fraction spermatozoa under 

capacitating conditions on total motility (n=4). There is no significant response. Error 

bars represent SEM. 

 

 

Figure 7.11: Effect of 10µM BRL 50481 on 40% fraction spermatozoa under 

capacitating conditions on progressive motility (n=4). There is no significant 

response. Error bars represent SEM. 
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Figure 7.12: Effect of 10µM BRL 50481 on 40% fraction spermatozoa under 

capacitating conditions on hyperactivation (n=4). There is no significant response. 

Error bars represent SEM. 

 

 

Figure 7.13: Effect of 10µM BRL 50481 on 80% fraction spermatozoa under non-

capacitating conditions on total motility (n=4). There is no significant response. Error 

bars represent SEM. 
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Figure 7.14: Effect of 10µM BRL 50481 on 80% fraction spermatozoa under non-

capacitating conditions on progressive motility (n=4). There is no significant 

response. Error bars represent SEM. 

 

 

Figure 7.15: Effect of 10µM BRL 50481 on 80% fraction spermatozoa under 

capacitating conditions on total motility (n=4). There is no significant response. Error 

bars represent SEM. 
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Figure 7.16: Effect of 10µM BRL 50481 on 80% fraction spermatozoa under 

capacitating conditions on progressive motility (n=4). There is no significant 

response. Error bars represent SEM. 

 

 

Figure 7.17: Effect of 10µM BRL 50481 on 80% fraction spermatozoa under 

capacitating conditions on hyperactivation (n=4). There is no significant response. 

Error bars represent SEM. 
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Figure 7.18: Effect of 40µM BRL 50481 on 40% fraction spermatozoa under 

capacitating conditions on total motility (n=4). There is no significant response. Error 

bars represent SEM. 

 

 

Figure 7.19: Effect of 40µM BRL 50481 on 40% fraction spermatozoa under 

capacitating conditions on progressive motility (n=4). There is no significant 

response. Error bars represent SEM. 
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Figure 7.20: Effect of 40µM BRL 50481 on 40% fraction spermatozoa under 

capacitating conditions on hyperactivation (n=4). There is no significant response. 

Error bars represent SEM. 

 

 

Figure 7.21: Effect of 40µM BRL 50481 on 40% fraction spermatozoa under non-

capacitating conditions on total motility (n=4). There is no significant response. Error 

bars represent SEM. 
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Figure 7.22: Effect of 40µM BRL 50481 on 40% fraction spermatozoa under non-

capacitating conditions on progressive motility (n=4). There is no significant 

response. Error bars represent SEM. 

 

 

Figure 7.23: Effect of 10µM Trequinsin on 40% fraction spermatozoa under non-

capacitating conditions on VAP after 20min treatment (n=4). Error bars represent 

SEM. 
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Figure 7.24: Effect of 10µM Trequinsin on 40% fraction spermatozoa under 

capacitating conditions on VAP after 20min treatment (n=4). Error bars represent 

SEM. 

 

 

Figure 7.25: Effect of 10µM Trequinsin on 80% fraction spermatozoa under non-

capacitating conditions on VAP after 20min treatment (n=4). Error bars represent 

SEM. 
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Figure 7.26: Effect of 10µM Trequinsin on 80% fraction spermatozoa under 

capacitating conditions on VAP after 20min treatment (n=4). Error bars represent 

SEM. 

 

 

Figure 7.27: Effect of 10µM Trequinsin on 40% fraction spermatozoa under non-

capacitating conditions on VSL after 20min treatment (n=4). Error bars represent 

SEM. 
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Figure 7.28: Effect of 10µM Trequinsin on 40% fraction spermatozoa under 

capacitating conditions on VSL after 20min treatment (n=4). Error bars represent 

SEM. 

 

 

Figure 7.29: Effect of 10µM Trequinsin on 80% fraction spermatozoa under non-

capacitating conditions on VSL after 20min treatment (n=4). Error bars represent 

SEM. 
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Figure 7.30: Effect of 10µM Trequinsin on 80% fraction spermatozoa under 

capacitating conditions on VSL after 20min treatment (n=4). Error bars represent 

SEM. 

 

 

Figure 7.31: Effect of 10µM Trequinsin on 40% fraction spermatozoa under non-

capacitating conditions on VCL after 20min treatment (n=4). Error bars represent 

SEM. 
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Figure 7.32: Effect of 10µM Trequinsin on 40% fraction spermatozoa under 

capacitating conditions on VCL after 20min treatment (n=4). Error bars represent 

SEM. 

 

 

Figure 7.33: Effect of 10µM Trequinsin on 80% fraction spermatozoa under non-

capacitating conditions on VCL after 20min treatment (n=4). Error bars represent 

SEM. 
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Figure 7.34: Effect of 10µM Trequinsin on 40% fraction spermatozoa under non-

capacitating conditions on ALH after 20min treatment (n=4). Error bars represent 

SEM. 

 

 

Figure 7.35: Effect of 10µM Trequinsin on 40% fraction spermatozoa under 

capacitating conditions on ALH after 20min treatment (n=4). Error bars represent 

SEM. 
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Figure 7.36: Effect of 10µM Trequinsin on 80% fraction spermatozoa under non-

capacitating conditions on ALH after 20min treatment (n=4). Error bars represent 

SEM. 
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