
University of Dundee

DOCTOR OF PHILOSOPHY

Behaviour of massive reinforced concrete sections in seawater

Thistlethwaite, Christopher

Award date:
2014

Awarding institution:
University of Dundee

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 17. Feb. 2017

http://discovery.dundee.ac.uk/portal/en/theses/behaviour-of-massive-reinforced-concrete-sections-in-seawater(4819cd1e-a5ce-48c2-a982-874196b3e8d9).html


 

 

    

 
BEHAVIOUR OF MASSIVE 

REINFORCED CONCRETE SECTIONS 
IN SEAWATER 

 
 

      
 
 
 
 
 
 
 

CHRISTOPHER JAMES THISTLETHWAITE 

 

 

 

 

 

 

  



 

i 
 

 

BEHAVIOUR OF MASSIVE REINFORCED CONCRETE SECTIONS IN SEAWATER 

VOLUME I 

 

 

 

 

 

Christopher James Thistlethwaite 

 

 

 

 

 

July 2013 

 

 

 

 

 

A Thesis Presented in Application for the Degree of Doctor of Philosophy 

University of Dundee 

United Kingdom  



 

ii 
 

DECLARATION 

 

I hereby declare that I am the author of this Thesis, that the work of which it is a record has 

been carried out by me, and it has not been previously presented for a higher degree. 

 

 

 

Christopher James Thistlethwaite  



 

iii 
 

CERTIFICATE 

 

This is to certify that Christopher James Thistlethwaite has completed this research under 

our supervision, and that he has fulfilled the conditions of Ordinance 14 of the University of 

Dundee, so that he is qualified to submit this Thesis in application for the Degree of Doctor of 

Philosophy. 

 

 

Professor M. R. Jones 

School of Engineering, Physics and Maths 

University of Dundee 

United Kingdom 

Dr. M. D. Z. Newlands 

School of Engineering, Physics and Maths 

University of Dundee 

United Kingdom 

  



 

iv 
 

ACKNOWLEDGEMENTS 

I would like to express my most sincere gratitude to my project supervisors, Professor Martyn 

R. Jones and Dr Moray Newlands, for their assistance throughout my research.  Their 

unwavering support throughout, specifically through hours and hours of endless meetings 

with Prof Jones where his provision of straightforward guidance throughout early phases, 

expert knowledge throughout experimental phases, and no nonsense checking of written 

work assisted me along my journey to this submission of my PhD thesis. 

Many thanks must be given to industrial support for technical support throughout the project.  

Terry Kimber, Fairfield Energy; Joe Pitken, Chris Buchanan, Trevor Hodgson, and Alan 

Marson, Atkins, among others, have all contributed to the success of this research and 

provided the foundations allowing this research to be possible.  I am further grateful for the 

financial support from Fairfield Energy, TAQA and CNR International, along with the EPSRC. 

Also, I would like to thank Dr Li Zheng, Dr Laszlo Cestenyi, Dr Michael McCarthy, Dr Judith 

Halliday, and Dr Tom Dyer for any assistance they have provided throughout my studies. 

My gratitude is extended to friends and research colleagues in the CTU, in particular Dr Z. F. 

Abu Hassan, Dr G. M. S. Islam, and Mr Z. Song for guidance and assistance on experimental 

works.  Mr T. Hope, Mr T Horne, Mr B. Yun, Miss N. Khosravi, Miss K McKinley, Mr E 

Mackenzie and Mr L. Loh are all thanked for their hard work on experiments, with special 

thanks reserved for Mr. M. Robinson for his continued assistance over the past two years, of 

which some of the work would not have been possible.   

Research technicians throughout the Civil Engineering laboratories, Mr C Walker, Mr D 

Ritchie, Mr M McKernie, Mr W Henderson and Mr G Callon among others, are recognised for 

their continued support and technical assistance with experiments. 

I would like to extend my gratitude to Mr Alan Brant (Deputy Chief Engineer Andoc – now 

retired) for early assistance in hunting down information on offshore concrete specific to this 

project, of which all concrete mix designs were subsequently based. 

Finally, I extend my sincere appreciation to my girlfriend Sophie for putting up with me 

through the stresses of my final year, and to my family for their continued support, financially 

and morally, throughout year after year of studying leading up to this point.  Hopefully my 

achievement of a doctorate will not ‘devalue’ my father’s doctorate.  



 

v 
 

PUBLICATIONS 

 

Jones, M.R., Newlands, M. and Thistlethwaite, C., 2010. Determination of the probable failure 

mechanisms and service life of offshore concrete gravity structures in the OSPAR Maritime Area – 

research proposal. In: Advances in modelling concrete service life, proceedings of the 4th 

Intenational RILEM PhD Workshop, Madrid, Spain, 19th Nov 2010, pp.107-118. 

 

Jones, M.R., Forth, J.P., Thistlethwaite, C. and Higgins, L., 2012. Reducing the variability of 

predicting the longevity of reinforced concrete marine structures subjected to physical and chemical 

degradation. In: Concrete in the low carbon era, proceedings of the International Conference, 

Dundee, Scotland, 9-11th July 2012, pp.1554-1562. 

  



 

vi 
 

ABSTRACT 

This study combined research available through literature with extensive experimental studies 

and substantial physical modelling to estimate the remaining ultimate life of large offshore 

reinforced concrete structures.  Although much research has focussed on concrete degradation 

due to chloride ingress, corrosion of permanently submerged concrete is regarded as 

negligible due to the long-assumed apparent worst case of tidal or splash zone exposure.  

Around 350 specimens were tested with a further 200 exposed for further testing by future 

research groups.  Specimens ranged in size from standard cubes to various beam lengths up to 

1.5 metres, allowing for material and structural properties to be assessed. 

My original contribution to knowledge in the sector enhances the fundamental understanding 

of corrosion in subsea concrete, challenging the generally held belief of negligible corrosion.  

Results and modelling provides an improved ability to ultimately estimate the longevity of 

fully submerged offshore reinforced concrete.  Throughout this thesis, the results from 

experimental works, carried out as a direct result of the lack of data or information in 

literature, are reported, assessed and then utilised to provide updated ultimate life 

estimations.  With the current offshore concrete structures currently coming to the end of their 

service life, and the likelihood of further offshore development using concrete for the 

renewables sector, understanding the long-term degradation is vital in determining the most 

effective decommissioning and derogation options.  The research carried out directly provides 

detailed information of the likely time-to-failure, allowing for an informed decision to be 

made on operational and decommissioning plans. 

Experimental work was carried out over four main phases; corrosion initiation due to bulk 

diffusion of chlorides (Phase I), corrosion propagation in low oxygen environments (Phase II), 

corrosion in statically and dynamically cracked sections (Phase III) and structural response of 

heavily corroded individual and lapped bar sections (Phase IV). 

Phase I work shows a marked difference between submerged exposures to seawater as 

opposed to NaCl solution, the unsuitability for accelerated testing with seawater and the 

likelihood of rapid initiation in offshore structures.  Further experimental works through 

Phases II and III found that although exposed to low oxygen concentrations, reinforcement 

corrosion continued at significant rates.  A variation between anode sizes on the reinforcement 

is noted, but critically the cross sectional area of the steel was still reduced, albeit in fewer 

locations.  Corrosive products were visibly different, with fewer expansive products, if any, 
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present.  Additionally, this study further highlights the importance of cracking on corrosion, 

currently ignored by recent model codes, such as the fib Model Code 2010, up to 0.2mm crack 

width.  A linear relationship was found between crack width and corrosion rates, with 

cracking above 0.1mm considered significant. 

The loss of cross sectional area due to propagation was determined for the given environment, 

and consequently further studies were initiated in an attempt to determine the relationship 

between this corrosion propagation and the reduced serviceability or ultimate life of concrete 

beams.  Serviceability, defined by beam stiffness, was reduced due to bond loss along 

reinforcement.  Most importantly, however, results prove that the loss of cross sectional area 

to be the critical influence on loss of ultimate life. 

Initial estimates on the remaining ultimate life of the large offshore structures support early 

rough work that the structures would last centuries.  This thesis, however, has shown this is 

due to the ability of concrete structures with such large volumes of steel to continue to 

ultimately withstand loading at high corrosion percentages and not due to negligible 

corrosion, or long initiation periods, commonly suggested in submerged, low oxygen 

environments. 
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CHAPTER ONE 

1 INTRODUCTION 

When concrete is employed in sub-sea conditions, it is generally assumed that corrosion of the 

material’s steel reinforcement will occur extremely slowly (Böhni, 2005), only becoming a 

cause for concern on structures after a long period of time.  This is due to the assumption that 

the relatively low dissolved oxygen concentrations in seawater reduce the rate of corrosion 

sufficiently.  Corrosion, however, will continue and offshore concrete structures will degrade 

at an unknown rate.  When considering the ultimate capacity of such structures, knowledge of 

the corrosion rate is vital to our estimates because the remaining structural capacity is directly 

related to the cross-sectional area of steel. 

As there are few cases where reinforced concrete (RC) structures remain entirely below the 

lowest astronomical tide (LAT), the longevity of sub-sea concrete is generally ignored due to 

the perception that more rapid corrosion is found in splash or tidal zones.  However, the 

majority of offshore structures have large volumes of concrete that remain fully submerged 

(International Association of Oil & Gas Suppliers, 2003; 2012), which will have a significant 

influence on their overall remaining life. 

With decommissioning a current and increasingly pressing issue within the North Sea and 

worldwide, further understanding of the degradation processes and failure mechanisms of 

offshore concrete infrastructure will impact on the future decommissioning options and 

further investment planning of the industry. 

Throughout this thesis, the widespread assumption of little, or negligible, degradation to 

corrosion of sub-sea RC structures will be challenged.  Including the effects of static and 

dynamic loading conditions experienced by concrete structures will allow for an improved 

understanding of large concrete infrastructure for use in the offshore oil, gas and renewable 

energy sectors.  

Furthermore, existing offshore concrete structures in the North Sea have been exposed for less 

than fifty years.  Experience of the degradation of such structures is consequently limited, 

forcing operating companies and governing bodies to rely on long term predictions with large 

variability.  The research undertaken between the University of Dundee and the University of 

Leeds aims to reduce the variability of these long term models allowing for operations to 
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continue and long term derogation to be effective.  The findings are also likely to have 

implications on the lifetime modelling of other large structures where the majority of the 

concrete remains submerged. 

1.1 RESEARCH BACKGROUND 

Production of oil and gas in the North Sea has been active since the early 1970s with around 

600 platforms in this area consisting of four types: 

● small steel platforms (under 4000 tonnes) 

● large steel platforms 

● concrete gravity-based structures (GBS) 

● floating platforms (Concrete offshore in the Nineties, 1990; VSL, 1992). 

Twenty-seven of these platforms are concrete GBS, of which 12 lie on the UK Continental Shelf 

(UKCS).  Figure 1.1 shows a variety of North Sea GBS constructed at Hinna, Norway and 

floated to site.  As shown, the depths and design of the structures vary depending on the 

depth and size of platform required.  

Due to the depletion of natural resources in the UK sector, owners of GBS are planning for 

derogation of their assets.  Prior to this decommissioning, the four options available to the 

owners and operators are assessed and evaluated (OSPAR, 1998).  These options are: 

● total removal for onshore disposal and recycling 

● float and disband in deep water 

● cut and remove structure at -55m LAT 

● leave in situ with a navigation aid (navaid) (Figure 1.2) 
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FIGURE 1.1 CONCRETE GBS CONSTRUCTED AT HINNA, NORWAY (SANDVIK ET AL., 2004) 

         

FIGURE 1.2 EXAMPLE PLATFORM PRIOR TO DECOMMISSIONING AND LEFT IN SITU (FAIRFIELD ENERGY, 

2012) 

Any alternative to full removal and disposal must be agreed upon between all OSPAR 

(Oslo/Paris convention) members.  Additionally, works on the UKCS must also comply with 

the OSPAR regulations (OSPAR, 1998) and government guidelines (Scottish Enterprise, 2009).  

The OSPAR Maritime Area covers the Norwegian Continental Shelf (NCS) and the Dutch 

Continental Shelf (DCS) along with the UKCS.  This decommissioning phase of work is likely 

to occur during the next twenty to thirty years (International Association of Oil & Gas 

Suppliers, 2003).  

As structures constructed in the 1970s and 80s exceed their original design service lives (Gjørv, 

2009) and investment in concrete for further offshore applications continues, understanding 
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the degradation of RC sub-sea structures is becoming more important.  The processes of 

chemical and mechanical degradation are complex, with multiple variables having significant 

effects on the longevity of these structures such as concrete mix, temperature, salinity, etc. 

At present, there is little experience on the long-term durability of offshore RC structures in 

the North Sea.  The first concrete platform was only constructed in 1973 at the Ekofisk field 

and therefore only around 40 years of deterioration have been monitored and minimally 

recorded.  Additionally, information on the quality of construction and material properties is 

difficult to obtain due to the loss or misplacement of documents over the years.  The 

combination of missing construction information, insufficient monitoring and recording of 

degradation, the complex nature of concrete deterioration in a marine environment, and the 

relatively short exposure make modelling and predicting the longevity of sub-sea RC 

structures extremely challenging. 

Due to the relatively young exposure duration of existing structures, the durability and failure 

mechanisms are unknown, and previous works to determine the most probable ultimate life 

and failure mechanisms have been limited.  This was the starting point for this research to 

further the understanding of how and, as importantly, when such structures will fail.  This 

thesis focuses on sub-sea concrete of a similar material design and construction as the majority 

of the offshore concrete used on the UKCS.  Environmental exposures attempt to replicate the 

environment of the North Sea with the focus on seawater-driven deterioration of RC. 

1.2 AIM AND OBJECTIVES 

The overall aim of this research project is to enhance the quality of time-to-failure estimates for 

sub-sea offshore reinforced concrete exposed to the North Sea environment. To accomplish 

this, a combination of desktop studies, experimental programmes and modelling attempts is 

required.  It is hoped that the findings will reduce the variability in the estimation of probable 

failure mechanisms, providing stakeholders of offshore assets reliable estimations on the 

remaining life of their structures. 

The specific objectives of this thesis are: 

● A comprehensive review of current methods of service life estimation for concrete 

structures in sub-sea environments 
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● Investigation of chloride ingress into submerged concrete from seawater and sodium 

chloride solutions 

● Determination of corrosion rates of steel in un-cracked, statically loaded and 

dynamically loaded RC  in replicated sub-sea environments 

● Production of a structural evaluation of RC concrete with corrosion of varying severity 

occurring in multiple areas 

● Generation of estimates of time-to-failure of sub-sea RC offshore GBS 

In order to achieve these objectives, experimental programmes will be carried out with 

assistance from undergraduate engineering students over the course of a three year period.  

Numerical modelling will then be used in an attempt to quantify the remaining ultimate life 

with multiple failure scenarios considered. 

1.3 SCOPE 

The research will primarily be focussed on material properties from an individual 

concrete gravity structure in the North Sea in water around 150 metres in depth.  Due to 

the minimal information available on the platform’s concrete mix design, experimental 

work will cover a range of grades and admixtures.  The CEM I concrete mix assumed to 

be used for construction of this particular platform will be used extensively throughout 

(Tegelaar, 1975).  Similar mixes for alternative platforms can be estimated using reported 

concrete properties of other platforms of a similar age and construction.  With such a wide 

range of variables to be tested, the research will be valid for a range of different structures, 

provided the prevailing conditions are sufficiently similar to the experiment’s recreation 

of the North Sea composition and climate. Where possible a range of concrete mix designs 

of offshore platforms will be tested and compared. The principles of the model and the 

probabilistic method will be transferable to a number of  structures and conditions. 

Works will be completed on chloride diffusion, corrosion under low-oxygen 

environments in unloaded, statically loaded and dynamically loaded states and 

experimental replication of offshore concrete.  Further works carried out within the 

research group will be used to inform the probabilistic modelling of the sub-sea structures 

in Chapter 8. 
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Research completed for the main platform will be applicable to other installations in the North 

Sea and, it is hoped, provide a basis for future concrete structures that are likely to be used in 

offshore renewable energy installations. 

1.4 OUTLINE OF THESIS 

The thesis is a chronological progression of literature research, experimental design and 

execution, material modelling and evaluation of the likely time-to-failure. 

Chapter 2 reviews information available on the degradation of concrete structures in a 

marine environment.  Theoretical assumptions are challenged whilst reviewing and 

comparing current modelling techniques with experimental and ‘real world’ data across a 

range of topics.  Chloride diffusion and chloride-induced corrosion are explored, 

including a wide ranging set of variables with a focus on sub-sea concrete.  Current 

experimental protocols and design codes are reviewed, allowing for the development of a 

detailed set of experiments.  An understanding of the response of structures to corrosion 

is gained and various methods of ultimate life estimation are assessed.  Where 

information is available, comparisons are made between ‘real world’ structures and 

laboratory works. 

Chapter 3 sets out the experimental programmes performed with two project groups 

under supervision and assisted throughout by the author.  Experimental variables and 

procedures are explained in detail, describing all variables and expected results.  

Experimental work includes chloride diffusion and migration through a range of 

concretes in multiple exposures, corrosion in un-cracked, statically and dynamically 

cracked concrete in sub-sea exposure simulations, and structural analysis of beams with 

lapped and individual corroded reinforcement. 

Chapters 4-7 report on results obtained through experimental programmes, highlighting 

key observations and exploring a theoretical basis to explain observed results.  

Investigations are carried out into the diffusion of chlorides and the subsequent initiation 

of corrosion, the propagation of corrosion within cracked sections in low-oxygen 

environments, and the structural effects of corrosion on remaining capacity of beams.  

Conclusions are drawn on rates of corrosion and methods for investigating the remaining 

ultimate life of RC structures. 
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Chapter 8 evaluates the potential for offshore concrete platforms to have a lengthy 

remaining life through deterministic and probabilistic modelling.  Current chloride-

induced corrosion models are utilised to provide a background for existing structures, 

before adapting the modelling process to incorporate findings discussed throughout this 

thesis. 

Finally, Chapter 9 draws conclusions from the presented works, highlighting a number of 

contradictory findings and setting out a number of recommendations for further studies and 

experimental programmes.  Continuation of a number of the experiments undertaken for this 

study will be described and set out for future undergraduate or postgraduate research to 

further the long term knowledge of concrete behaviour. 
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CHAPTER TWO 

2 REVIEW OF LITERATURE 

2.1 INTRODUCTION 

Due to the widespread use of concrete, vast numbers of research projects and studies have 

been completed on the durability of varying concrete mixes in an extensive array of 

environments (e.g. Neville, 2011).  As there are large numbers of research papers on the 

general topic, this review will predominantly consist of relevant research carried out by large 

research groups and well-known, respected researchers within the industry.  Where the 

author perceives a lack of reported data, experiments carried out by others of a similar nature 

are evaluated and reported. 

To achieve the overall aim of this research project, a comprehensive understanding of the 

degradation of concrete in a North Sea, or similar, environment is required.  Focus will, for the 

main part, be restricted to a sub-sea environment, however, where information is sparse, 

similar concrete design, environments, or loading schemes are reviewed. 

The severity of the exposure of concrete structures is taken into account during design 

through exposure classes in the European standards, Table 2.1 (British Standards Institution, 

2000c). 

Exposure class XS2, fully submerged sub-sea concrete, will be the focus of this thesis, although 

reference will be made to XS3 where necessary.  Exposure classes of structural areas are 

shown in Figure 2.1. 

It is uncommon for an entire structure to be located in the submerged zone, as the majority of 

offshore platforms and other marine structures protrude through the surface of the water.  

Although the splash zones are considered to be worst affected by corrosion damage (Bertolini 

et al., 2013), the largest bending moments and stresses on the structure are often located well 

below the surface of the water. 
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TABLE 2.1  EXPOSURE CLASSES FOR CORROSION INDUCED BY CHLORIDES FROM SEAWATER (EXTRACT 

FROM TABLE 1, BRITISH STANDARDS INSTITUTION, 2000C) 

Class designation Description of the 

environment 

Informative examples where 

exposure classes may occur 

4. Corrosion induced by chlorides from seawater 

XS1 Exposed to airborne salt but not 

in direct contact with sea water 

Structures near to or on the 

coast 

XS2 Permanently submerged Parts of marine structures 

XS3 Tidal, splash and spray zones Parts of marine structures 

 

 

FIGURE 2.1 DIAGRAM OF EXPOSURE ZONES 

2.2 NORTH SEA CONCRETE GBS CONSTRUCTION 

The first concrete gravity based platform, in the Ekofisk field, was constructed in 1973.  Since 

then, 26 more platforms have been constructed in the North Sea.  The majority of these are of a 

CONDEEP (concrete deep water structure) construction, with other types of construction 

including Sea Tank, Doris, a proposed type by C G DORIS (Compagnie General pour les 

Developments Operationelles des Richesses Sous-Marines), and ANDOC (Anglo Dutch 

Offshore Concrete) (Figure 2.2).  Each construction is individualised for the location and 

nature of the work.  A full list of North Sea concrete GBS are in Table 2.2. 

 

XS3 Tidal Zone 

XS3 Splash/Spray Zone 

XS1Atmospheric Zone 

XS2 Submerged Zone 

Low tide 

High tide 
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a) Doris (Ninian Central) 

(Lee Robinson, 1978) 

b) SeaTank (Cormorant Alpha) 

(Beckman, n.d.) 

  

c) Condeep (Oseberg A) 

(Statoil, n.d.) 

d) Andoc (Dunlin Alpha) 

(Fairfield Energy, n.d.) 

 

FIGURE 2.2 EXAMPLE CONCRETE GBS CONSTRUCTION TYPES 
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TABLE 2.2  NORTH SEA CONCRETE GBS (INTERNATIONAL ASSOCIATION OF OIL AND GAS PRODUCERS, 

2003) 

Field Construction type Water depth, 

m 

Installation date 

Ekofisk Tank Doris 70 1973 

Frigg TCP2 Condeep 103 1977 

Statfjord A Condeep 145 1977 

Gulifaks A Condeep 134 1986 

Gulifaks B Condeep 142 1987 

Gulifaks C Condeep 217 1989 

Draugen Condeep 250 1993 

Oseberg A Condeep 109 1988 

Statfjord B Condeep 145 1981 

Statfjord C Condeep 145 1984 

Sleipner A Condeep 83 1992 

Troll Gas Condeep 330 1995 

Frigg CDP1 Doris 98 1975 

Frigg TP1 SeaTank 103 1976 

Dunlin A Andoc 151 1977 

Ninian Central Doris 135 1978 

Cormorant A SeaTank 150 1978 

Brent B Condeep 139 1975 

Brent C SeaTank 141 1978 

Brent D Condeep 142 1976 

North Ravensburn Arup 43 1989 

Harding (34m base 

caisson) 
Technip 110 1995 

Beryl A Condeep 117 1975 

MCP01 Doris 94 1976 

South Arne 
Blocks 5604/29 + 

5604/30 Denmark 
61 1999 

F/3 
Block F/3 

Netherlands 
42 1992 

Halfweg 
Block Q/1 

Netherlands 
30 1995 

 

 



 

12 
 

2.3 OSPAR RULES FOR DECOMMISSIONING AND ABANDONING 

STRUCTURES 

OSPAR Decision 98/3 (OSPAR, 1998) on the disposal of disused offshore installations states in 

Paragraph 2; 

“The dumping, and the leaving wholly or partly in place, of disused offshore 

installations within the maritime area is prohibited.”  

This subscribes to the notion that the concrete GBS must be removed completely from the sea 

bed and preferably reused or recycled onshore.  This decision could, however, be negated 

because removing large-scale concrete structures has the potential for hazardous structural 

damage. Paragraph 3 states; 

“any other disused offshore installation to be dumped or left wholly or partly in 

place, when exceptional and unforeseen circumstances resulting from structural 

damage or deterioration, or from some other cause presenting equivalent 

difficulties, can be demonstrated.” 

Although the preferred option for OSPAR is the removal of the structures, proposals to leave 

other concrete GBS in situ are being put forward (International Association of Oil and Gas 

Producers, 2003). 

2.4 HISTORY OF SUB-SEA OIL/GAS REINFORCED CONCRETE REMOVAL 

A total of four concrete GBS structures have so far been decommissioned and left in situ with 

a navaid installed atop the remaining structure.  In each case, the derogation consultation 

showed that for a reduced cost and minimal danger to the workforce, the optimum solution is 

to leave the entire structure in situ.  Removal to shore and cutting the legs to -55m LAT are 

both deemed unpractical and unpredictable at present. 

MCP01, Frigg CDP1, TCP2, and TP1 have all been decommissioned and left in situ (Figure 2.3 

and Figure 2.4). 

2.4.1 MCP01 

MCP01 was initially used as a compression platform to transport gas from the offshore Frigg 

fields to Aberdeen.  Operated by Total, decommissioning was started in 2006 after the 

pipelines leading into the substructure were rerouted (Total E&P UK Limited, 2007). 
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Figure 2.3 shows the final configuration of the decommissioned concrete structure.  To 

maintain integrity, the central column where the navigational aid is located must remain 

vertical.  Spalling of cover concrete from the external beams due to corrosion in the splash 

zones is likely to occur first, while on-going corrosion in the concrete substructure will 

decrease the structure’s load-bearing capacity.  At some time in the future, during extreme 

weather conditions, wave loading will then cause structural failure when loading becomes 

greater than the capacity. 

2.4.2 FRIGG FIELD  

Further into the North Sea, the Frigg field consists of three concrete GBS that have all been 

decommissioned with topsides removed and navigational aids located on each substructure 

(Total E&P Norge AS, 2003).  Again, these structures all protrude the water surface with 

concrete in the splash zone assumed to degrade more rapidly than the submerged concrete. 

Estimating the remaining service life of these structures is difficult, with a complex interaction 

between corroding reinforcement and the cement paste.  Additionally, dynamic loading could 

cause fatigue, relaxation of pre-stressed tendons could reduce structural capacity, and large, 

infrequent storms could generate forces that exceed capacity. 

2.4.3 EKOFISK TANK 

Operated by ConocoPhillips, the Ekofisk tank in Norway is being decommissioned with the 

final configuration shown in Figure 2.5.  All steel topsides will be removed and the concrete 

tank also left in situ with the navigational aid on top. 

Due to vast volume of concrete in the large GBS and the consequential infeasibility in 

removing them for recycling (e.g. TEP UK, N.D.), future platforms are likely to be left in situ 

with only very rough estimations on ultimate life. 
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FIGURE 2.3 DECOMISSIONED MCP01 PLATFORM (TEP UK, N.D.) 

 

FIGURE 2.4 FRIGG CDP1, TCP2 AND TP1 AFTER DECOMMISSIONING (TOTAL E&P NORGE AS, 2011)  

 

FIGURE 2.5 EKOFISK TANK BEFORE/AFTER TOPSIDE REMOVAL (NORWEGIAN PETROLEUM 

DIRECTORATE, N.D.) 
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2.5 INITIATION OF SUB-SEA REINFORCEMENT CORROSION 

2.5.1 SCOPE 

Corrosion of reinforcing steel is widely regarded as the most significant cause of concrete 

degradation.  For this reason, the mechanisms for its initiation must be reviewed and 

modelled to inform predictions for the time-to-initiation and future service life of an offshore 

structure. 

As this research deals with concrete in a sub-sea environment, this review focusses on 

chloride-induced corrosion caused by exposure to chloride-laden environments.  Attention is 

paid to the effects of additional ions found in seawater, the length of exposure and the 

concrete mixes used in sub-sea concrete structures. 

Due to the structural properties of concrete, and the large moments exerted on offshore 

structures, cracks of up to 0.3mm are expected under design loads.  Although the effects of 

cracking on initiation of corrosion have been researched, they are commonly ignored in 

models where the structure has cracks of up to 0.2mm (fib, International Federation for 

Structural Concrete, 2010a; 2010b).  

Diffusion is the predominant transport mechanism in sub-sea concrete.  The effects of concrete 

properties have been extensively studied (e.g. Neville, 2011) and are reviewed providing a 

broader background for generating a model.  Additionally, critical chloride contents that 

define the start of propagation, temperature and construction quality are taken into 

consideration when proposing the variables that should be used in a model. 

As there are a large number of factors contributing to the rate of chloride ingress, results and 

relationships developed for some variables will be collated and integrated into any modelling 

used or developed in this study. 

The adequacy of currently available initiation models is critically analysed to determine 

suitability for use in predicting the service life of marine and offshore structures.  Careful 

attention is paid to submerged concrete in seawater, with comparisons drawn between these 

‘real’ exposures and those of laboratory exposure.  Owing to the significant variability in the 

predicted initiation from different experimental methods, the most suitable of the available 

methods will be utilised. 
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2.5.2 KINETICS OF CHLORIDE INGRESS 

Chloride can penetrate into concrete by absorption, permeation, diffusion, migration and/or 

convection.  The likelihood of each type of penetration is heavily dependent on the exposure 

conditions.  Exposure in the submerged zone will initially be diffusion driven, followed by a 

combination of ionic migration, due to the electrochemistry of corrosion when an anode has 

been established, and diffusion.  In tidal, splash and atmospheric zones however, transport of 

chlorides is likely to be a combination of all these mechanisms.  Submerged concrete 

commonly produces higher chloride concentrations at all depths of concrete (e.g. McCarter et 

al., 2008) and can be considered the worst case for chloride ingress. 

Although the potential mechanisms vary significantly, chloride transport is commonly 

modelled using Crank’s solution to Fick’s Second Law in all conditions, shown in Equation 2.1 

and Equation 2.2 (Crank, 1956; Poulsen, 2006). 

 ���� = � ������ EQUATION 2.1 

Where;  

C chloride concentration, % wt. concrete 

t  time, s 

x depth of penetration, mm 

D diffusion coefficient, mm2/s 

 ���, �
 = �� − ��� − �
 ∙ ��� � �2����� EQUATION 2.2 

 

Or rearranging to form an equation for time to initiation; 

 � = 1�� � �2 ∙ ����� � �� − ����� − �
��
�
 EQUATION 2.3 

Where; 

C(x,t)  chloride concentration at depth, x, and time, t, % wt. concrete 
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x  depth from the exposed surface, m 

Cs  surface chloride concentration, % wt. concrete 

Ci  initial chloride concentration, % wt. concrete 

Da  apparent chloride diffusion coefficient, m2/s 

t  duration of exposure, s 

ti time to initiation, s 

Ct chloride threshold, % wt. concrete 

Inaccuracies when measuring the transport of chlorides in tidal or splash zones, where other 

mechanisms exert an influence, can result in the overestimation of life estimated because a 

combination of mechanisms is likely to increase the flux of chlorides into the concrete. 

The rate of transport of chlorides is affected by the pore structure which is heavily dependent 

on the water/cement ratio, cementitious additives, and the binding capacity (Dhir et al., 2004; 

Dhir et al., 2006; Spiesz, Ballari and Brouwer, 2012; Thomas et al., 2012).  Chloride transport 

can also be affected by the exposure period, chloride surface concentration, exposure 

conditions, aggregate type and cracking.  These additional factors will be discussed 

throughout this section. 

2.5.2.1 EFFECT OF EXPOSURE PERIOD 

It is acknowledged that the coefficient of chloride diffusion is variable and commonly 

decreases over time (Bamforth, 2004; Andrade, Castellote and d’Andrea, 2011).  The rate of 

decrease is due to further hydration, binding of chlorides and ion exchange with the external 

environment.  These processes can physically constrict the pores as well as preventing the 

chloride from progressing due to the binding. 

To take into account an ageing factor, the coefficient of diffusion is modelled to vary 

exponentially with respect to time as shown in Equation 2.4.  This methodology has 

limitations due to the nature of the equation where the diffusion coefficient should be 

constant.  Although this equation is then commonly substituted into Equation 2.2, this has 

been shown to be incorrect without integrating with respect to time.  Integrating with respect 

to time, Equation 2.2 is converted to Equation 2.5, as proved by Tang and Gulikers (2007). 
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 �� = �� ! � ��� !�
�"

 EQUATION 2.4 

 
���, �
�# = 1 − ���

$%
& �
2' �� !1 − ( ∙ )�� !� *" ∙ �+,

-
 EQUATION 2.5 

Where; 

Da apparent chloride diffusion coefficient, m2/s 

Dref coefficient of diffusion for a given exposure duration tref, m2/s 

t duration of exposure, s 

n factor of ageing dependent  

C(x,t) chloride concentration at depth, x, and time, t, % wt. concrete 

x depth from the exposed surface, m 

Cs surface chloride concentration, % wt. concrete 

erf Gaussian error function 

The authors then state that this method: 

“may be used for long-term prediction without significant mathematical errors if the age 

factor n is small (<0.3), however it may underestimate the service life if high values for n are used”. 

Using this method may reduce the common errors that occur in service life predictions and 

avoid overestimation of the remaining time to initiation. 

The fib model code 2010 (fib International Federation for Structural Concrete, 2010a; 2010b) 

accords with the approach of using an ageing factor, applying variables for the environment 

and test method to the chloride migration coefficient to determine an average apparent 

diffusion coefficient.  This is widely used in Crank’s solution to Fick’s Second Law to 

determine the expected chloride concentration profiles within concrete at a given depth and 

time. 

Although used frequently, an extremely wide range of ageing factors have been reported for a 

number of concrete mix designs with varying water/cement ratios and admixtures as shown 
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in Table 2.3.  For the purposes of modelling initiation periods, averages and standard 

deviations of grouped reported factors could be used.  However, for a mildly conservative 

approach in cases where CEM I concretes are used, as in a number of offshore platforms, no 

ageing factor should be applied.  Concrete mixes including blastfurnace slag or fly ash show 

much larger reduction in diffusion coefficient due to the ageing factor in Equation 2.24. 

Additionally, there are instances reported in literature where the diffusion coefficient appears 

to increase over time for CEM I concrete, although this observation is less frequent (Vallinin 

and Aldred, 2003; Andrade Castellote and d’Andrea, 2011). 
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TABLE 2.3  SELECTION OF REPORTED AGEING FACTORS 

Concrete 

Type 
PC GGBS FA SF w/b 

Ageing 

Factor 
StDev Reference 

CEM I �    
0.66 
0.50 

0.1 
0.14 

 
Thomas and 

Bamforth 
(1999) 

GGBS  �   0.48 1.2  

FA   �  
0.54 
0.50 

0.7 
0.6 

 

CEM I �     0.32  
Stanish and 

Thomas (2003) 
FA   �   0.6-0.8  

CEM I �    0.4 0.69  Vallini and 
Aldred (2003) GGBS  �   0.4 0.7-0.8  

CEM I �    0.4-0.6   
Thomas and 

Matthews 
(2004) 

15% FA   �  0.4-0.6 ~0.75  

30%-50% 
FA 

  �  0.4-0.6 0.8-1.2  

Shore 
Approach 

   � 0.36/0.34 0.61 ~0.04# 

Maage and 
Helland (2008) 

   �  0.54 ~0.06# 

   �  0.13 ~0.5# 

�     0.1  

CEM I � 
    

0.264 
 

Helland (2008) 

CEM I 
(Old) 

� 
    

0.54 
 

PFA 
  

� 
  

0.699 
 

GGBS 
 

� 
   

0.621 
 

SF 
   

� 0.4 0.56 
 

PC � 
   

0.4-0.6 0.3 0.012 

PFA 
  

� 
 

0.4-0.62 0.6 0.15 

GGBS 
 

� 
  

0.4-0.6 0.45 0.2 

Norwegian 
bridges 

� 
   

0.45-0.6 0.57 
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TABLE 2.3  CONT’D… 

Concrete 

Type 
PC GGBS FA SF w/b 

Ageing 

Factor 
Stdev Reference 

Heidrun 

Platform    
� 0.39 0.82 

 

Helland et al. 

(2010) 

CEM I � 
   

0.45 
-0.24 
-0.03  

Andrade et al. 

(2011) 

FA 
  

� 
 

0.28 
0.07 
1.00  

SF 
   

� 0.41 
0.07 
0.30  

FA/SF 
  

� � 0.31 
-0.20 
0.46  

FA (mortar) 
  

� 
 

0.37 
0.49 
0.79  

FA (mortar) 
  

� 
 

0.49 
0.24 
1.30  

CEM I �     0.4 0.08 

Gjørv (2011) GGBS  �    0.5 0.1 

FA   �   0.6 0.12 

# Estimated standard deviation from reported data 

2.5.2.2 EFFECT OF CHLORIDE SURFACE CONCENTRATION 

As with the coefficient of diffusion, the surface chloride concentration, Cs, is commonly 

variable with time due to condensing of chlorides in the surface layer, wetting and drying 

cycles for tidal and splash zones and leaching of ions from concrete (Song, Lee and Ann,  

2008).  Cs can commonly be modelled as a constant value, a linear build-up (Equation 2.6) 

square root build-up (Equation 2.7) or in alternative ways using empirical data (Equation 2.8 

to Equation 2.10).  
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 �#��
 = .�� EQUATION 2.6 

 �#��
 = .�√� EQUATION 2.7 

 �#��
 = �0 + 23(��
 EQUATION 2.8 

Where; 

CS(t)  time dependent surface chloride concentration, % wt. concrete 

C0 surface chloride concentration at a standard time, tref, % wt. concrete 

k1, k2 constants 

2 constant derived from empirical data 

t  exposure duration, s 

Cs depends heavily on the type of exposure.  Chlorides can be applied to structures through 

the spreading of salts for use as a de-icer, airborne chlorides carried by wind, or direct contact 

with seawater.  De-icing is standard practice in countries where the temperature regularly 

drops below freezing throughout the winter months.  As the application of chlorides depends 

on the seasonal temperature and salt spreading regimes, quantifying the exposure conditions 

for such structures is difficult.  Cs values for structures exposed to a sub-sea environment are 

likely to be more predictable, although there are a number of alternative factors to be taken 

into account. 

A selection of compiled Cs values presented by Song, Lee and Ann (2008) is recorded in Table 

2.4.  As the pore size decreases, due to a reduction in water/cement ratio or through the 

addition of GGBS of PFA, the apparent Cs increases.  This is not necessarily observed directly 

through measured concentrations but through the method of fitting a profile through 

measured chloride concentrations.  Spiesz, Ballari and Brouwers (2012) discuss the use of 

modelling binding properties of concrete, which would more reasonably determine the 

chloride surface concentration due to the shape of the fitted curve.  

Measuring the chloride surface concentration is commonly achieved by plotting an error 

function curve to measured diffusion profiles (British Standards Institution, 2010).  Using the 

method of extrapolating back to determine a value of Cs could lead to overestimation, which 
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in turn could result in underestimation of the diffusion coefficient and, ultimately, an increase 

in the predicted life to overly optimistic timescales. 

As the chlorides penetrate further into the concrete, the area of constant concentration, 2mm 

depth in Figure 2.6, propagates further into the concrete.  Although fitting a curve in a similar 

manner to such a profile will provide a similar or lower Dapp measurement, the modelled Cs 

will be increased.  In practice, however, the chloride concentration at the surface is likely to 

reach a peak much lower than the reported, measured value.  The value of Cs will 

predominantly be constant for submerged concrete structures, whereby the modelling 

technique must be adapted to take this into account. 

Ann et al. (2009) suggest that using a square-root or linear build-up of chlorides at the surface 

of the concrete provides a more realistic estimation of chloride penetration than using an 

initial, conservative value derived from chloride profiling. It is also suggested that seawater 

concentration, humidity, temperature have rarely been taken into account when modelling 

surface chloride concentrations. 

Andrade et al (2013) acknowledge that of all the input variables for models predicting chloride 

penetration into concrete, variation in Cs is the most crucial factor, causing large deviations 

from actual chloride ingress. 

Although there is general agreement on the method of using fitted Cs values for predicting 

initiation, the author believes the method to be flawed as the outer layers of the concrete can 

measure artificially lower, due to washing out of chlorides in a tidal zone, or higher with the 

precipitation of salts in the surface layers.  Agreement on a diffusion-based surface chloride 

concentration based on the measured environment concentration is, therefore, deemed 

important for future initiation predictions. 

  



 

24 
 

TABLE 2.4  SELECTED SURFACE CONCENTRATIONS FOR MARINE CONCRETE (SON, LEE AND ANN, 2008) 

Binder w/c ratio Exposure Time, 

years 

Cs, %wb¤ 

CEM I 

CEM I 

CEM I 

0.4 

Submerged (lab.) 

2 4.08 

0.5 2 2.55 

0.6 2 1.33 

CEM I unknown Tidal/splash 16 3.74 - 5.54 

CEM I 0.5 Tidal/splash 24 1.5 - 3.10 

CEM I 

0.4 Submerged 1, 4 

2.93, 4.72 

FA 2.10, 4.80 

CEM I 0.66 Tidal/splash 3, 8 0.48, 3.05 

CEM I 

0.45 Submerged 15 

3.53 

GGBS 4.12 

FA 5.80 

CEM I 0.44-0.6 Tidal/splash 

33 10.51 

38 10.51 

60 9.26 

64 11.96 

¤ %wt. of binder 
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FIGURE 2.6 EXAMPLE OF CHLORIDE PROFILE WITH FITTED CURVES (SONG, LEE AND ANN, 2008) 

2.5.2.3 EFFECTS OF SEAWATER COMPOSITION 

Application of chlorides to concrete in laboratory chloride resistance tests is commonly 

achieved using sodium chloride solutions.  Chloride ions from this solution penetrate to 

concrete samples relatively quickly and, since the effect of co-occurring ions on transport is 

not considered, this method may inaccurately determine the time to onset of corrosion. 

Although this scenario may be suitable to simulate de-icing salts, it is not appropriate for 

marine environments, where concrete is exposed to a number of additional ions; the most 

prevalent are shown in Table 2.5.  

Chloride cations and sulphates are the two most significant ions in seawater influencing 

chloride transport.  Salts are commonly in the form of sodium chloride, NaCl, although in 

seawater, sodium sulphate, NaSO4, magnesium chloride, MgCl, and magnesium sulphates, 

MgSO4, are also present. 

  



 

26 
 

TABLE 2.5  AVERAGE COMPOSITION OF SEAWATER (TABLE 2.1 IN MEHTA, 1991) 

Ion Concentration, g/litre 

Na+ 11.00 

K+ 0.40 

Mg2+ 1.33 

Ca2+ 0.43 

Cl- 19.80 

SO42- 2.76 

 

Sulphate ion attack on concrete commonly causes the formation of tricalcium sulfoaluminate 

hydrate (ettringite), 3CaO·Al2O3·3CaSO4·32H2O, and gypsum, CaSO4·H2O.  Ettringite is 

naturally expansive and is commonly attributed to stresses and micro cracking in the concrete 

structure (Zhang et al., 2013).  Expansive cracking can cause an increase in chloride ingress 

due to a larger, more connected pore structure.  This is evident from experimental research 

wherein chloride diffusion coefficients are larger in a composite, sulphate and chloride, 

solution than in a chloride solution (Zuquan et al., 2007).  In continuously submerged 

speciments, however, the diffusion coefficients are lower for the composite solution and this 

suggests that alternative ions and mechanisms have a significant effect on chloride ingress. 

Results indicate that seawater improves the microstructure of concrete’s outer region through 

additional deposition of Friedel’s salt, 3CaO·Al2O3·CaCl2·10H2O, and ettringite (Mohammed, 

Yamaji and Hamada, 2002b).  This result is similar to the findings of Kurdowski (2004), where 

Friedel’s salts are the likely chloride-blocking deposits. 

Alternatively, magnesium ions, in the form of MgSO4 and MgCl2, also have a notable effect on 

the surface ‘skin’ of concrete and have been associated with a reduction in chloride ingress in 

marine environments.  These effects, however, are less well understood, with differing 

opinions on whether reactions with the cement matrix have a beneficial or detrimental effect 

on the durability of the concrete. 
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Brown and Doerr (2000) noted that the base-exchange reaction readily occurs in the surface 

region of the concrete (Equation 2.9).  The brucite, Mg(OH)2, can also replace the calcium 

hydroxide, Ca(OH)2, over a large section of the cement-aggregate interface (Equation 2.10 - 

Equation 2.12).  

 45�6 + �7�89
��:
 ⇒45�89
��:
 + �7�6 EQUATION 2.9 

 45�3� + �7�89
� →45�89
� + �7�3� EQUATION 2.10 

 45=8> + �7�89
� →45�89
� + �7=8> ∙ 29�8 EQUATION 2.11 

 
45=8> + ?�7�89
� + 2�78 ∙ 2=@8� ∙ 39�8B → 4458 ∙ =@8�∙ 89�8 + �7=8> ∙ 29�8 

EQUATION 2.12 

 

This brucite deposition in the surface layer is said to physically block the concrete pores, thus 

restricting the transport of water and chlorides into the concrete (Buenfeld and Newman 1984; 

Buenfeld, Newman and Page, 1986; Santhanam, Cohen and Aloek, 2006).  Mohammed, Yamaji 

and Hamada (2002a) found brucite was only present in CEM I and PFA mixes and was not 

evident for blast furnace slag mixes, suggesting that the pore structure of the concrete is still a 

more influential factor in restricting chloride ingress than a surface skin layer.  

Kurdowski (2004) supports the formation of a brucite skin but disputes any long term benefits 

on the grounds that the stability of the layer is insufficient to offer lasting protective action.  

Evidence of a brucite layer exists on 8 year old foundations to concrete steps, as well as on old 

mass concrete structures in Wales.  The brucite, along with calcite and carbonate, was found in 

microcracks in the surface layer, suggesting a self-healing process (Sibbick, Fenn and 

Crammond, 2003). 

Furthermore, as brucite continues to form, the hydroxyl ions are gradually used up, causing a 

reduction in pH.  As the pH decreases, calcium compounds become susceptible to magnesium 

ion attack where the breakdown of calcium silica hydrates (CSH) into magnesium silica 

hydrates (MSH) can occur. 

Differing thicknesses have been reported for the brucite layer, with values ranging from 25µm 

to 100µm (Buenfeld and Newman, 1986; Santhanam, Cohen and Aloek, 2006).  Buenfeld and 

Newman suggest that after 130 days, a 25µm layer of brucite is formed with an outer layer of 
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aragonite, CaCO3, reducing the permeability of the concrete.  However, it is suggested that no 

difference will be recorded in the chloride profiles due to the ingress of chlorides prior to the 

formation of the brucite.  The protective nature of the brucite layer may be commonly 

overstated, as the layer formed was not observed to be continuous (Polder and Larbi, 1995).  

In contrast, Sosa et al. believe the gypsum and brucite to be dangerous compounds for 

concrete.  Evidence from experimental results shows immersed concrete to be at greater risk, 

with more negative half-cell readings and increased corrosion rates. 

Although focus is on these reactions and the potential reduction in the transport rate of 

chlorides, migration testing completed by Tong and Gjørv (2001) appears to suggest Dapp of 

concrete is higher when exposed to seawater than when exposed to NaCl solution.  In 

comparison though, natural diffusion experimental work shows initiation is at least threefold 

slower in synthetic seawater exposure in comparison with NaCl solution, suggesting that 

blocking mechanisms protect concrete from chloride ingress (Erdogd, Bremner and 

Kondratova, 2001). 

Although evidence of brucite and other mineral deposits in the surface layers is 

unquestionable, the author believes the reported beneficial properties of seawater, in 

comparison to sodium chloride solutions, are overstated.  The author believes the evidence 

does support that a reduced chloride diffusion rate is experienced when concrete is in contact 

with seawater, but modelling of initiation periods should be careful not to overestimate the 

benefits.  Evidence shows that the ageing factors applied, and methodology behind coefficient 

determination, incorporate effects of alternative ions without acknowledging that it is a 

combination of ageing and surface layer effects.  Therefore, the author believes estimations of 

time-to-initiation are commonly overestimated. 

2.5.2.4 EFFECTS OF LOADING CRACKS 

British standards currently allow for cracks of up to 0.3mm under the serviceability limit state 

for exposure class XS2 (Table 2.6). 
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TABLE 2.6  RECOMMENDED VALUES FOR WMAX (TABLE7.1, BRITISH STANDARDS INSTITUTION, 2004) 

Exposure Class Reinforced members and 

prestressed members with 

unbounded tendons 

Prestressed members with 

bonded tendons 

 Quasi-permanent load 

combination 

Frequent load combination 

X0, XC1 0.4mm 0.2mm 

XC2, XC3, XC4 

0.3mm 

0.2mm 

XD1, XD2, XS1, XS2, 

XS3 
Decompression 

 

Although the European standards allow for a 0.3mm recommended maximum crack width, 

the fib model (fib International Federation for Structural Concrete, 2006) extrapolates the 

diffusion coefficient at steady state as a constant for cracking with a width of up to 0.2mm, 

assuming that no changes occur in the concrete to alter this.  When cracks are between 0.2mm 

and 0.4mm wide, however, the code allows for a free transfer of chlorides to the reinforcement 

with no impedance, theoretically assuming chloride induced corrosion to instantaneously 

initiate. 

Studies have disputed this showing that with an increasing crack width, the transport of 

chlorides increases accordingly (Coppola et al., 1996; Sahmaran 2007).  Cracking does not 

occur uniformly between the surface of the concrete and the reinforcement, and, as a result, 

using such a method whereby chlorides either penetrate the depth of the crack or not is 

conservative for cracks above 0.2mm and for cracks with widths smaller than 0.2mm, time-to-

initiation may be underestimated.  The depth of the crack will also have an effect on the 

chloride penetration and will increase the rate of chloride transport, although this will not 

necessarily occur instantaneously as suggested in the fib code. 

However, Win, Watanabe and Machida (2004) show that after the initial 10mm cover, the 

chloride concentrations are relatively constant throughout the depth of cracks (0.2mm width), 

with reported concentrations of between 0.1 and 0.2%Cl-/wt. concrete for a water to cement 
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ratio of 0.45-0.65.  This supports the theory that chloride ions penetrate the cracks extremely 

quickly, with significant maximum concentrations at the steel reinforcement in the majority of 

cracked sections.  This suggests modelling cracks above 0.2mm as having a free transfer of 

chlorides is reasonable, albeit conservative when predicting time-to-initiation or propagation 

rates.  Further studies conducted by Yamamoto, Yamaji and Mizuma (2008) showed a similar 

characteristic through cracks of 0.7mm width, showing a free transport of chlorides through 

the cover with a consistent concentration at every depth. 

Sahmaran (2007) reports an apparent critical crack width, 0.135mm, whereby the rate of 

increase of Dapp through the cracked area is accelerated. 

Concrete has a reported self-healing ability, which can reduce the detrimental long-term 

effects that cracking can cause.  Two major hypotheses have been proposed regarding self-

healing mechanisms: further hydration of anhydrous cement in the matrix and the 

precipitation of calcium carbonate (Neville, 2002 cited by Termkhajornkit, 2009).  There is still 

considerable debate between the effects of any self-healing on the chloride ingress; 

particularly the critical crack width whereby healing is no longer beneficial, the decrease in 

chloride ingress observed and any effects on the acceleration of the corrosion rate.  Sahmaran 

(2007) loosely supports earlier work by Reinhardt and Joos (2003) where the self-healing of 

cracks with widths below 0.1mm is reported.  It is suggested that, solely as a result of calcite 

(CaCO3) formation, crack widths of less than 0.05mm show a much reduced Dapp.  The results 

obtained provide limited support for this hypothesis, as testing was only carried out over 30 

days and the slow measured rates of diffusion may have resulted solely from the small initial 

crack widths.  The work was, however, supported by previous research carried out by 

Edvardsen (1999) in which full autogenous healing solely due to CaCO3 was reported.  

Furthermore, active and dormant cracks are reported to heal. 

Fagerlund and Hassanzadeh (2010) are also in agreement with previous researchers regarding 

the extent to which healing, due to continued hydration and deposition of CaCO3, occurs 

throughout the cracks.  It is noted however, that cracked specimens still have much higher 

chloride diffusion rates than un-cracked specimens due to a visibly incomplete sealing of the 

crack. 

The evidence considered provides compelling support for the hypothesis that cracking causes 

a much more rapid initiation of corrosion in concrete and the author believes the reported self-

healing of cracks has little effect on mitigating corrosion.  Modelling of initiation must, 
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therefore, take into account cracking and tensile areas of cover concrete, which permit 

corrosion to propagate at concentrated anodes where cracks reach the reinforcing steel. 

Design codes for crack widths are deemed too relaxed, with researchers pointing to crack 

widths closer to 0.1mm whereby the rate of chloride transport begins to increase.  For the 

majority of modelling purposes, the initiation time of concrete should be assumed to be 

negligible where cracks are greater than 0.2mm, as suggested by the fib model.  Table 2.7 

provides a summary of recent research into the effects of crack widths on initiation. 

TABLE 2.7  EFFECTS OF CRACK WIDTH ON INITIATION OF CORROSION 

Concrete mix 

details 

Crack 

width, 

mm 

Effect on transport of chlorides Reference 

Unknown 0.3# Tensile zone has accelerated diffusion of 

chlorides due to damage to the ITZ above 

crack width to cover ratio of 0.1 

Gowripalan, 

Sirivivatnanon 

and Lim, 2000 

CEM I 

0.25-0.65 w/c 

ratio 

0.2 Rapid transport of chlorides to the steel, 

reduced transport with reduced 

water/cement ratio 

Win, Watanabe 

and Machida, 

2004 

0.5 Free transfer of chlorides to the steel 

CEM I 

0.5 w/c ratio 

< 0.4 Flexural cracks do not influence the 

corrosion of tension reinforcement 

Vidal, Castel and 

François, 2007 

CEM I 

mortar 

0.03 – 

0.39 

Increase in Dapp in two linear stages up to a 

factor of 14 larger than un-cracked 

Sahmaran, 2007 

CEM I 

0.6 w/c ratio 

0.7 -

1.5 

Free transfer of chlorides to the steel Yamamoto, 

Yamaji and 

Mizuma, 2008 

# crack width determined by the author from the reported cover and crack width to cover ratio 

 

2.5.3 CRITICAL CHLORIDE CONTENT 

Initiation of corrosion occurs when chlorides reach the steel/concrete interface and break 

down the passive layer.  The initiation threshold, the concentration of chlorides required to 

initiate the corrosion process, is known as the critical chloride threshold, Ccrit.  It is commonly 

reported as a percentage of chloride ions per weight of concrete (% wt. concrete) or as a 
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percentage of chloride ions per weight of cement (% wt. cement). Compiled chloride threshold 

values range from 0.1% wt. cement to around 1.2% wt. cement (Table 2.8) (Alonso et al., 2000). 

It is suggested that no single critical chloride content is measureable due to the multiple 

variables affecting corrosion initiation: steel roughness, concrete properties and the 

‘aggressiveness’ of the environment (Izquierdo et al., 2004; Alonso, Castellote and Andrade, 

2004).  Investigating the potential of the steel as a factor, it is shown as the polarized potential 

of the steel becomes more negative, Ccrit increases.  This observation applies to the initial 

polarized potential of the steel, as the introduction of chlorides will reduce the polarized 

potential and corrosion will propagate. 

Angst et al. (2009) provide a detailed review of chloride threshold values presented in various 

forms of literature.  Of these, only eight references relate to values derived from real structures 

under capillary and diffusion chloride transport mechanisms.  All reported values are in the 

range 0.2-1.5 % wt. binder for NaCl and 0.4-1.5 % wt. binder for seawater-induced chlorides.  

Angst et al. agree with previous comments on the need for further research to understand 

chloride induced corrosion processes and recommends that future works should use ribbed 

steel in concrete specimens. 

Jiang et al. (2013) carried out a set of experiments to determine the effects of additional salt 

cations on Ccrit.  Since seawater contains the additional ions, comparisons between the effects 

of MgCl, KCl, NaCl and CaCl2 were carried out, with evaluation of Ccrit performed in terms of 

Cl-/OH- ratio and total and free chlorides.  The results suggest that exposure to MgCl and 

CaCl2, in contrast to NaCl and KCl, reduces both the pH and the chloride threshold as a 

proportion of free chlorides.  Measured as a Cl-/OH- ratio or as total chloride content, Ccrit is 

higher for those concrete specimens exposed to MgCl and CaCl2.  Although additional ions 

have been shown to reduce the chloride threshold as a proportion of free chlorides, values for 

all concretes are still greater than 0.3 % wt. binder.  The author suggests the use of previous 

results is not suitable for long term prediction of initiation due to the effects of the additional 

ions.  However, as the results are relatively similar, no alteration of estimation techniques is 

required for an appropriate estimation of time-to-initiation for corrosion. 

Conservative estimations of service life should, therefore, continue to use 0.2% wt. binder as a 

threshold, unless information can be gained from electrochemical measurements of the 

concrete samples.   
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TABLE 2.8  REPORTED CRICITICAL CHLORIDE THRESHOLDS (ALONSO ET AL. 2000, JIANG ET AL. 2013) 

Critical chloride levels required to initiate the corrosion of the reinforcing steel. 

Literature data 

Conditions Environ./ 

Concrete 

type 

Values De-passivation detection 

method 
Free 

Cl- 

Total 

Cl- 

% wb % wb 

Mortar suspensions CEM I  2.42 anodic polarization 

 GGBS  1.21   

Cements with high or low 

alkali content 

80% RH  0.6-1.8 corrosion rate 

 100% RH  0.5-1.7   

Three OPC mortar 

(external chloride) 

50% RH  0.6-1.4 increase in current 

density, potentiostatic test 

Concrete exposed to 

external chloride 

contamination 

CEM I  3.04 anodic polarization 

 GGBS  1.01   

 CEM I  0.6 anodic polarization  

Cl- added as admixture, 

medium (MS) and high 

strength (HS) concretes 

with supplements 

MS 1.15  assuming a threshold of 

Cl/OH value of 0.6, 

calculation of free 

chlorides 

  

HS 0.85  

SF 0.8  

SF/PFA 0.45  
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TABLE 2.8  CONT’D 

Conditions Environ./ 

Concrete 

type 

Values De-passivation detection 

method 

Free 

Cl 

Total 

Cl 

% wb % wb 

   0.5-1 assuming a threshold 

Cl/OH value of 0.3 
   1-1.5 

   1-1.5  

   0.5 visual observation + mass 

loss 

Reinforced concrete 

prisms with fly ash as 

marine exposure 

CEM I  0.7 mass loss 

PFA 15%  0.65  

PFA 30%  0.5  

PFA 50%  0.2  

Concrete slabs with 

added Cl with various 

exposure conditions 

CEM I  0.097-

0.19 

corrosion rate, AC 

impedance, visual 

inspection and mass loss 

Concrete cubes exposed 

to MgCl, NaCl, KCl, and 

CaCl2 solutions through 

an immersion and drying 

cycle 

CEM I 0.4-0.7 0.8-1.4 corrosion rate, half-cell 

potentials 
PFA 0.3-0.7 0.8-1.5 

GGBS 0.3-0.7 0.8-1.5 

% wb is the % chlorides per weight of binder 

 

2.5.4 EXPERIMENTAL METHODOLOGIES 

Due to the perceived importance of bulk transport to the process of chloride ingress, there are 

a number of frequently used experimental procedures to determine the non-steady and steady 

state chloride migration coefficients through concrete.  Twenty-seven laboratories participated 

in round-robin testing on chloride penetration test methods, with the results being published 

by Castellote and Andrade (2006).  This undertaking acknowledged the complexity of the 
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chloride penetration process and the need for a comparison of the test methods due to the 

variations in their recorded measurements. 

Owing to the existence of a large number of different test methodologies, review will be 

restricted to only the most regularly used experimental methods.  These methods have also 

been used frequently within the department and therefore numerous results are readily 

available.  The results from the round-robin set of testing show large variations in results from 

the majority of test methods. 

2.5.4.1 NATURAL DIFFUSION 

Natural diffusion testing is common, with sampling methods applied to existing structures as 

well as laboratory specimens.  The tests are often accelerated by applying a higher molar 

concentration of chlorides than experienced in common environments.  However, they are still 

relatively time-consuming methods of determining apparent diffusion coefficients.  

Each of the diffusion test methods discussed uses concrete samples with cut surfaces to 

determine the bulk transport properties of the mixes.  To model the lifespan of a structure as 

accurately as possible, the concrete properties, including the skin effects, should be taken into 

account.  This method can, therefore, be adapted by using a cast surface as the exposed face of 

the concrete to provide data on this chloride diffusion rate. 

Sampling the concrete after exposure can influence the results obtained.  Three methods are 

recommended for sampling concrete: dry cutting and crushing, profile grinding, or drilling 

(Vennesland, Climent and Andrade, 2013).  

NT Build 443 

The Nordtest method, NT Build 443 (1994), exposes vacuum-saturated, 28 day concrete 

specimens to a NaCl solution.  This method then uses profile grinding and titration to 

determine the chloride concentration at predetermined depths within the specimen.  Expected 

coefficients of variation for the measured and calculated values are: Cs = 20% and De = 15%.  

These values are calculated using a linear regression analysis on the recorded chloride 

concentrations.  Tang and Sørensen (2001) report the repeatability COV to be between 8 and 

14%, with the reproducibility COV between 16 and 23%.  However, due to the difficulties with 

profile grinding and titration measurements, variations of results from this test procedure 

would be expected to be higher.  The results from Table 5 in Castellote and Andrade (2006), 

ignoring values outside 95% (the mean plus 1.96 standard deviations empirically), still show 

that the data can commonly be spread up to 180% higher than the mean value. 



 

36 
 

A comparison between results from this testing method and exposed beams in natural 

conditions was performed by Vallini and Aldred (2003).  The results showed the exposed 

beams to have diffusion coefficients that were between 5 and 178 times lower than those for 

the Nordtest methods.  

CEN/TS 12390 Part 11 

This recently documented methodology from the CEN/TC 51 research group (British 

Standards Institution, 2010) provides clear instructions on a natural diffusion test.  Specimens 

with a cut surface are exposed to 1M sodium chloride solution for 90 days through either 

immersion, inversion or ponding (Figure 2.7).  After 90 days, a minimum of 8 layers of 

concrete are ground and then titrated to determine the chloride content of each sample. 

From the resulting chloride profile, Crank’s solution to Fick’s second law is fitted to the curve 

to determine an apparent chloride diffusion coefficient, Dapp.  Understanding the appropriate 

value for Cs is vital, as the measured Dapp, could be significantly affected by the use of an 

incorrect measurement. 

 

FIGURE 2.7 (CLOCKWISE FROM TOP LEFT) PONDING, INVERSION AND IMMERSION SETUPS 

(BRITISH STANDARDS INSTITUTE, 2010) 

2.5.4.2 CHLORIDE MIGRATION 

Chloride migration testing uses an applied potential to force chlorides through the concrete, 

either for a set duration or until a steady state is reached.  Migration methods allow for a 
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much more rapid determination of transport properties, although the applied currents can 

cause a distortion in the results when compared to ‘real world’ structures. 

ASTM C1202 

The ASTM C1202 method measures the charge passed through a 50 mm thick and 100mm 

diameter concrete core and relates this to chloride ion permeability.  Current is plotted against 

time in at least 30 minute intervals and then integrated to determine the charge passed.  This is 

related to ion permeability through Table 2.9.  Results obtained through this method are 

relatively vague, with no accurate method of predicting the time to initiation directly from 

results. 

It is reported that two tests by the same operator on the same concrete batch can produce 

results that differ by up to 42%, or 51% with round-robin testing (Grace Construction 

Products, 2006).  

TABLE 2.9  RELATIONSHIP BETWEEN CHARGE PASSED AND CHLORIDE ION PERMEABILITY 

Charge passed, C Chloride ion permeability 

> 4,000 High 

2,000 – 4,000 Moderate 

1,000 – 2,000 Low 

100 – 1,000 Very low 

< 100 Negligible 

 

Multi-Regime (MR) 

The MR methodology uses an externally applied potential difference, 12V, to force chlorides 

through a cut sample (Castellote, Andrade and Alonso, 2001; Castellote and Andrade, 2006).  

A 1M sodium chloride solution is applied to one side and distilled water to the other.  A 

negatively charged steel rod is placed into the sodium chloride solution, and a positively 

charged rod is inserted into the distilled water.  The negatively charged chloride ions are then 

drawn to the positive steel rod. An overview of the setup is shown in Figure 2.8. 
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FIGURE 2.8 MULTI-REGIME METHOD 

 

Results are obtained by measuring the conductivity of the ‘downstream’ solution at the 

positive electrode and recording the drop in potential across the specimen.  The temperature 

at the time of measurement is also recorded, as this will have an effect on the conductivity of 

the solution.  Using the measured increase in conductivity over time, the steady and non-

steady state coefficients of diffusion can be calculated. 

This method does not, however, allow for the use of artificial seawater because the negatively 

charged sulphate ions would also be drawn through the concrete and would dissolve into the 

anodic solution.  The conductivity of the 'downstream' solution would increase due to 

addition of chlorides and sulphates, providing a reading that is not proportional to the 

concentration of chlorides alone.  Consequently, using this method for artificial seawater 

would produce a diffusion coefficient greater than that which occurs naturally. 

NT Build 492 

The Nordtest method, NT Build 492 (1999), uses a visual measurement of chloride penetration 

using a silver nitrate spray that precipitates easily visible silver chlorides when chloride ions 

reach a sufficient concentration.  This method is reported to have a repeatability of 9% and 

reproducibility of 13%, making it slightly more reproducible than NT Build 443.  However, 

comparison of the accuracies of experimental results will provide an approximation of 

variations for use in probabilistic estimations of service life. 

Power supply 

anolyte catholyte 

electrodes 
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Additionally, there is debate concerning the concentration of chlorides at the colour change 

boundary when using this methodology (Yuan et al., 2008).  Reported concentrations at the 

colour change boundary vary from 0.01% to 1.41% wt. cement.  Further information on the 

concentration of hydroxyl ions, measured through the pH of the pore solution, could provide 

an indication of actual chloride concentrations at the penetration front. 

2.5.4.3 SUMMARY OF EXPERIMENTAL METHODS 

Although many methods use similar techniques, results vary between each experimental 

design.  The author believes, however, that the summarised methods (Table 2.10) are suitable 

for distinguishing between the resistances to chloride transport of various concrete designs, 

using short-term chloride penetration data for long-term modelling.   

TABLE 2.10 SUMMARY OF COMMONLY USED EXERIMENTAL METHODS TO DETERMINE CHLORIDE 

DIFFUSION OR MIGRATION COEFFICIENTS 

Method Type Comments Reference 

NT Build 443 Natural 
diffusion 

Immersion for at least 35 days NT Build 443, 1994 

CEN/TS 12390:Part 
11 

Natural 
Diffusion 

28 days curing followed by 90 days 
of exposure 

British Standards 
Institution, 2010 

ASTM C1202 Migration 6 hour rapid test, reported 
repeatability variation in results up 
to 51% 

Grace 
Construction 
Products, 2006 

Multi regime (MR) Migration Up to a month long test, potential 
to gain steady and non-steady state 
coefficients 

Castellote, 
Andrade and 
Alonso, 2001; 
Castellote and 
Andrade, 2006 

NT Build 492 Migration 24 hour rapid test NT Build 492, 1999 

 

2.5.5 CURRENT MODELLING METHODOLOGIES 

The majority of initiation models use a variation of Crank’s solution to Fick’s second law as 

reported in Section 2.5.2.  Modelling is commonly deterministic, with the equation being used 

explicitly with a fixed value for each parameter.  Due to the number of available modelling 

techniques, a selection of common methods is reviewed. 
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DuraCrete 

The Brite-EURam project ‘DuraCrete’ (Lindvall, 1998; Siemes, 1999) was undertaken in an 

attempt at “providing a code-like guide for durability design and assessment of concrete 

structures” (BE-1347/TG7/ Report R17, 2000). A design equation, g, is used to determine the 

time-to-initiation of corrosion (Equation 2.13). 

 5 = EF�G − EG��, �
 = EF�G − E�,FHG
IJ
JJJ
K
1 − ���

$
%%& �G
2L �MFHG ��
+

,,-
NO
OOO
P
 EQUATION 2.13 

Where; 

cR,STU   design value of critical chloride concentration, % wt. concrete 

cSVU  design value of the chloride surface concentration, % wt. concrete 

RSTU  design value of the cover thickness, mm 

xU design value of the chloride resistance, mm 

t time, s 

A complex set of parameters are defined depending on exposure conditions and material 

properties amongst others.  Evaluation of the existing structures of interest, based on this 

method, will be covered in Chapter 8. 

Concrete Society Technical Report 61 

As with DuraCrete, this method is based on diffusion-driven chloride transport mechanisms, 

where a deterministic approach is used (Bamforth, 2004).  Input parameters have been defined 

by experience and experimental results over a range of studies (Table 2.11).   
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TABLE 2.11 INPUT PARAMETERS FOR REPORT NO. 61 

Concrete type Parameter Value 

PC Cs, % wt. concrete 0.36 

0.75˜ 

ageing factor (n) -0.264 

Dapp (x10-12), m2/s log Dca = -12.926+1.999(w/c) 

Ccrit, % wt. concrete 0.4 

pfa/ggbs Cs, % wt. concrete 0.51 

0.90˜ 

ageing factor (n) -0.699 (ggbs) 

-0.621 (pfa) 

Dapp (x10-12), m2/s log Dca = -13.325+1.409(w/c) 

Ccrit, % wt. concrete 0.4(1-0.005(%ggbs-20)) (ggbs) 

0.4(1-0.01(%pfa-10)) (pfa) 

sf Cs, % wt. concrete 0.51 

0.90˜ 

ageing factor (n) -1+1.10(w/c) 

Dapp (x10-12), m2/s log Dca = -13.800+3.100(w/c) 

Ccrit, % wt. concrete 0.05(1-0.025(%sf)) 

˜ values at 95% confidence level due to high variability 

 

Life365 

As with the majority of corrosion initiation models, the transport of chlorides is again 

modelled through the application of Fick’s second law (Life-365 Consortium II, 2012).  Input 

parameters are similar to alternative models; albeit with variations in ageing factors, Cs, Dapp 

and Ccrit depending on the source of the data.  Input parameters for Life365 modelling are 

presented in Table 2.12. 
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TABLE 2.12 INPUT PARAMETERS FOR LIFE365 

Concrete type Parameter Value 

PC Cs, % wt. concrete 0.8 

ageing factor, n 0.20 

Dapp (x10-12), m2/s log Dca = -12.06+2.40(w/c) 

Ccrit, % wt. concrete 0.05 

pfa/ggbs Cs, % wt. concrete 0.8 

ageing factor, n 0.2 + 0.4(%FA/50 + %ggbs/70) 

Dapp (x10-12), m2/s DPC 

Ccrit, % wt. concrete 0.05 

sf ˜ Cs, % wt. concrete 0.8 

ageing factor, n 0.2 

Dapp (x10-12), m2/s DPC · e-0.165 SF 

Ccrit, % wt. concrete 0.05 

˜ up to 15% silica fume 

 

Effects of temperature are taken into account using Equation 2.14. 

 ��Y
 = �� ! ∙ ��Z[∙) �\]^_��\*� EQUATION 2.14 

 

Where; 

D(T) diffusion coefficient at temperature T, m2/s 

Dref diffusion coefficient at temperature Tref, m2/s 

U activation energy of the diffusion process, 35000 J/mol 

R gas constant, 8.8314 J/mol K 

T absolute temperature, K 
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Fib Model Code 2010 

The fib model codes continue the theme of employing Crank’s solution to Fick’s Second Law.  

There is some consideration for the effects of cracking, crack widths under 0.2mm are ignored.  

The input parameters are similar to those used in the Technical Report 61 method (fib 

International Federation for Structural Concrete, 2006; 2010a; 2010b). 

TABLE 2.13 EQUIVALENT PARAMETERS USED IN FIB MODEL CODE FOR SERVICE LIFE 

Parameter Distribution Mean (m) StDev (σσσσ) 

C0, %wb Constant Laboratory analysis - 

Cs,Dx, mm Lognormal To be determined - 

DRCM,0, m2/s Normal Laboratory test 0.2m 

Ccrit, %wb Beta 0.6 0.15 

Ageing factor, n Beta CEM I: 0.3 

FA: 0.6 

GGBS: 0.45 

CEM I: 0.12 

FA: 0.15 

GGBS: 0.2 

 

Additional modelling 

Numerous other models have been proposed for initiation of chloride-induced corrosion.  The 

suitability of the application of Fick’s second law to estimate chloride ingress should be 

questioned.  Marchand and Samson (2009) suggest that “any material database incorporating 

apparent diffusion coefficients for service-life predictions cannot be expected to provide 

reliable results given all the limitations outlined”.  It is suggested that a model incorporating 

multispecies ionic interactions should be used to provide more realistic estimation. 

Wang, Li and Page (2005) had considered ionic interaction between species previously, 

defining the transport of ions as: 

 `� aa� �� + =
 = b cMY∇���∇e
 + ∇��∇�
 EQUATION 2.15 

Where; 

`  tortuosity of the pore structure 
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Ci concentration of species i in solution, % wt. 

Si concentration of bound ions in solution, % wt. 

zi  charge number of species, i 

F Faraday’s constant, 9.6485 x 104 C/mol 

R gas constant, 8.314 J/mol·K 

T temperature, K 

Although this has been shown to provide a more realistic estimation of the ionic distribution 

in concrete, a detailed set of variables and initial input parameters is required, which is 

unlikely to be determinable for an existing structure.  The simplified methodology will 

provide a conservative estimate of the chloride concentration and, consequently, is suitable for 

engineering applications.  

Additionally, taking chloride binding into account will provide a more realistic estimation of 

the expected chloride profile after exposure.  As free chlorides are consumed in reactions with 

the cement paste, the transport of chloride ions through the cement matrix will be reduced.  

Val and Trapper (2008) account for convection and chloride binding but only consider a single 

ion diffusion mechanism. 

2.5.6 SUMMARY 

The transport of chlorides into concrete is complex and the accurate estimation of corrosion 

initiation requires measured data.  Current modelling techniques are disputed and a 

consistent approach to estimate the initiation of chloride-induced corrosion is required.  

Using a more accurate multi-ionic approach will provide a more ‘realistic’ estimate of the 

chloride transport and time-to-initiation but, due to the complexity of the input parameters, 

which can vary greatly, a simplified model is generally sufficient for long-term life prediction 

where the propagation period is likely to be much longer than the initiation. 

The use of artificial seawater is suitable for natural diffusion tests to provide a reasonable 

estimate of the bulk transport of chlorides through concrete in a more realistic multi-ionic 

environment.  Although migration results are faster, the variability between results is large, 

and therefore suggesting the reliability of results from migration is questionable. 
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In practice, ‘real world’ reinforced concrete structures will contain cracks from the surface to 

the neutral axis beyond the steel. If more realistic estimates of the time-to-initiation are to be 

produced, this requires integration of the effects of cracking on diffusion-driven chloride 

entry.  Due to the rapid ingress of chlorides reported through cracked concrete, it can be 

assumed that corrosion has initiated on a large number of concrete structures, some of which 

may show no visible signs of the process.  

This propagation period can continue without a significant effect on the serviceability and 

ultimate capacity and for structures achieving the design service life, it is likely that 

propagation will have already begun to occur.  Propagation of the corrosion and the effective 

structural response must therefore be considered. 

2.6 PROPAGATION OF SUB-SEA REINFORCEMENT CORROSION 

2.6.1 SCOPE 

Reinforcement corrosion can be complex and, for sub-sea structures, it is not yet completely 

understood.  The conditions facilitating corrosion are explored, along with the mechanisms of 

action and the formation of corrosion products.  

It is widely accepted that, over time, chlorides from seawater will reach the steel-concrete 

interface and break down the passive layer on the steel.  The flux of chloride ions to the steel 

has a large effect on the metal's polarised potential and, as a result, the rate of propagation of 

corrosion.  

It is commonly assumed that sub-sea areas of marine or offshore structures experience 

protection from corrosion due to the low oxygen concentrations in the water.  Recently there 

have been two contradictory reports (Hussain, 2011; Toro, 2011) on corrosion in low oxygen 

environments, with one suggesting that corrosion is negligible, and the other that corrosion 

rates are still significantly high.  Further work is required on the effects of oxygen 

concentrations on corrosion in order to determine the rate of corrosion on unloaded and 

loaded sub-sea concrete needed for expected life modelling.  

As with initiation, cracks caused by static or dynamic loading can increase the rate of 

corrosion.  The effects of crack widths, depths, and loading patterns are reviewed and 

experimental works on areas with insufficient data are carried out.  Modelling of propagation 

is then reviewed and its suitability for sub-sea concrete structures assessed. 
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2.6.2 MECHANISMS OF CORROSION 

Corrosion of the steel can occur by a variety of mechanisms, most commonly due to attack 

from chlorides, sulphates or a drop in pH caused by carbonation of the concrete pore solution.  

As service life is commonly modelled on the time taken for the mass of chlorides at the surface 

of the steel reinforcement to reach a critical chloride threshold level, Ccrit, corrosion 

propagation rates are often ignored.  In this situation, the propagation time, tp, is often 

assumed to be constant (Life365 Consortium II, 2012). 

During this propagation phase, anodic and cathodic reactions will commonly occur at the steel 

surface (Figure 2.9).  At the anodic area of reinforcement, corrosive products form on the 

surface of the steel as the metallic ions, most commonly Fe2+, are each released along with two 

electrons (Equation 2.16) (Isgor and Razaqpur, 2006; Warkus, Raupach and Gulikers, 2006).  

The cathodic reaction is typically the breakdown of oxygen and water into hydroxyl ions, 

consuming the electrons released by the anodic reactions.  The resulting hydroxyl ions then 

react with the metallic ions producing corrosive products (Böhni, 2005). 

As corrosion is occurring, both the anodic and the cathodic reactions should be balanced.  If 

the dominant cathodic reaction is the breakdown of oxygen, the supply of oxygen to the area 

of reinforcement acting as a cathode will have a critical effect on the rate of corrosion.  This 

supply of oxygen will also have an effect on both the size of the anode and cathode and the 

corrosion mechanism taking place (Warkus, Raupach and Gulikers, 2006). 

 
FIGURE 2.9 MACROCELL CORROSION ALONG AN INDIVIDUAL BAR (WARKU, RAUPACH AND 

GULIKERS, 2006) 

 

In this subsea environment, anodic reactions occur when the chlorides have broken down the 

passive layer of steel reinforcement.  Iron ions are released from the steel (Equation 2.16) 
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(Raupach, 2006), and often react with hydroxyl ions to form ferrous hydroxides, Fe(OH)2, or 

ferrous oxides, FeO (Equation 2.17 and Equation 2.18). 

 c�	 → c��6 + 2�� EQUATION 2.16 

 c��6 + 2�89
� → c��89
� EQUATION 2.17 

 c��6 + 2�89
� → c�8 + 9�8 EQUATION 2.18 

 

The chlorides act as a catalyst in these reactions and, if there is a lack of available hydroxyl 

ions near the anode, complex transient iron chlorides can be formed which can transport the 

iron ions away from the steel surface.  These could then react with hydroxyl ions available in 

the concrete pore solution, causing corrosive products to be formed throughout the concrete 

structure (Equation 2.19) (Rosenberg et al., 1977).  This allows for further corrosion to occur at 

the steel surface, and will be observed as a loss of cross sectional area without a build-up of 

ferrous hydroxides on the steel surface. 

 c�	�6 + �3� → ?c��3	Eghi3��B� EQUATION 2.19 

 

Cathodic reactions that commonly occur to produce hydroxyl ions are the breakdown of 

oxygen and water (Equation 2.20) or the breakdown of water where oxygen is not available 

(Equation 2.21). 

 8� + 29�8 + 4�� → 4�89
� EQUATION 2.20 

 29�8 + 2�� →9� + 2�89
� EQUATION 2.21 

 

It is acknowledged that corrosion requires a cathodic reaction to occur (Böhni, 2005), as the 

electrons released from the oxidation of iron at the anode must be consumed elsewhere.  

Oxygen, in contrast, is not necessarily required for the corrosion of the steel to occur, as 

demonstrated by Equation 2.19 and Equation 2.21.  It should be noted, however, that 

hydrogen evolution from water, is extremely unlikely in natural environments within a 

concrete structure. 
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Jiang and Yuan (2012) suggest that with atmospheric or saturated concrete with high 

dissolved oxygen concentrations, the corrosion rate is not controlled by the cathodic reaction.  

Once corrosion has initiated, it is believed that some corrosion products with high-valence 

iron ions replace oxygen as a new depolarization agent in the cathode process (Equation 2.22 - 

Equation 2.25). 

 8c�889 + c��6 + 2�� → 3c�j8> + 49�8 EQUATION 2.22 

 c�j6 + �� → c��6 EQUATION 2.23 

 c�j8> + 9�8 + 2�� → 3c�8 + 289� EQUATION 2.24 

 c��89
j + �� → c��89
� + 89� EQUATION 2.25 

 

Furthermore, it is possible that, owing to the lack of oxygen and the availability of nutrients 

within the seawater, sulphate reducing bacteria (SRB) could be the predominant propagation 

mechanism in an anaerobic environment after a period of diffusion-based corrosion (Melchers 

and Wells, 2006).  Energy sources known to be important for the metabolism of SRB are 

carbon, hydrocarbons and hydrogen, all of which are available in immersed steel 

environments.  It is generally accepted that anaerobic conditions bring about corrosion of the 

steel due to action of metabolites, predominantly hydrogen sulphides, resulting from SRB 

activity.  The resultant reduction in the alkalinity of the surrounding area further increases the 

corrosion rate of the steel (Figure 2.10). 

Although this mechanism merits consideration, corrosion propagation will continue without 

the presence of oxygen due to the variation in electrochemical properties along the 

reinforcement, with or without the presence of SRBs.  It is therefore to be assumed for 

modelling purposes that alternative mechanisms will be dominant. 
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Corrosion mechanisms are often reported to be one of two forms: microcell or macrocell. 

Microcell corrosion is defined as a situation when corrosion occurs on adjacent areas of the 

same metal, whilst macrocell is often described as corrosion occurs between two coupled 

sections of metal.  A combination of macrocell and microcell currents can be superimposed to 

determine the total corrosion current (Hansson, Poursaee and Laurent, 2006). 

Although macrocell corrosion is commonly associated with multiple steel reinforcing bars, a 

macrocell type effect can occur along an individual bar, depending on localised changes in 

environment at the surface.  Examples of such surface variations include chloride attack 

through cracking (Warkus and Raupach, 2008) and changes in oxygen concentrations 

(Warkus, Raupach and Gulikers, 2006).  

In addition, large-scale macrocell corrosion can occur where a structure may have different 

exposure surfaces.  In a situation where one face of the concrete is exposed to the atmosphere 

and the other submerged, such as a tunnel or hollow leg, a large corrosion current is possible, 

as shown in Figure 2.11 (Polder and Larbi, 1995). 

 
FIGURE 2.10 POSSIBLE 4 PHASE MECHANISM OF CORROSION OF STEEL IN A MARINE 

ENVIRONMENT (MELCHERS AND WELLS 2006) 
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FIGURE 2.11 SCHEMATIC REPRESENTATION OF MACROCELL CORROSIO IN A HOLLOW LEG 

(POLDER AND LARBI, 1995) 

 

2.6.2.1 CORROSION PRODUCTS 

Corrosive products that form on reinforcing bars are commonly divided into two categories: 

‘red rust’ and ‘black rust’.  ‘Red rust’ is typically a form of ferrous hydroxides (Fe(OH)2), 

ferrous oxides (FeO) or ferric oxides (Fe2O3). 

‘Black rust’ is likely to be formed on the surface of steel due to anaerobic conditions by 

submersion or burying.  This variety of rust is most commonly magnetite (Fe3O4), which can 

be formed by the Schikorr reaction (Equation 2.26). 

 3c��89
�→c�j8> + 29�8 + 9� EQUATION 2.26 

 

Other, more complex methods of determining the propagation make use of resistor networks, 

finite element models and boundary element models.  These models increase in accuracy with 

increasing complexity but more input data are required to accurately determine the corrosion 

conditions in ‘real world’ structures. 

For the structures that are to be assessed in this research project, there is very limited data on 

corrosion that may or may not be occurring at present.  Due to this lack of information, a 

simplistic probabilistic model is required to determine the rate of propagation.  Experimental 

work aimed at improving the understanding of corrosion under low-oxygen subsea 

conditions and static and dynamic loading is proposed in Chapter 3. 
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FIGURE 2.12 UNIT VOLUME OF IRON OXIDE PRODUCTS (JAFFER AND HANSSON, 2009) 

 

2.6.2.2 EFFECTS OF SEAWATER OXYGEN CONCENTRATION 

 “Only for the constantly submerged parts of high quality concrete structures, the 

availability of oxygen is generally so low that an electrochemical corrosion of 

embedded steel does not represent any practical problem” Det Norske Veritas 

(2006)  

Throughout industry, it is commonly assumed submerged concrete will not corrode due to 

extremely low oxygen concentrations in the subsea environment.  Although rates of corrosion 

are expected to be reduced, the notion of ignoring the corrosion of submerged concrete should 

be challenged.  Dissolved oxygen concentrations at the seabed can be as high as 380 µmol/L, 

equivalent to around 6 ppm.  The seabed typically has between 2 to 6 ppm dissolved oxygen, 

with oxygen concentrations increasing towards the surface of the water (Schlüter and Jerosch, 

n.d.). 

Gjørv, Vennesland and El-Busaidy (1986) believe the corrosion current is directly limited by 

the oxygen concentration at the surface of the steel in a chloride-laden environment.  The 

results of oxygen diffusion experiments, presented in Table 2.14, are reported as diffusion 

coefficients and oxygen flux given by: 

 k = �a ∙ ∆E EQUATION 2.27 

Where; 
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J oxygen flux, mol / (s·cm2) 

D diffusion coefficient, cm2 / s 

a  thickness of concrete, cm 

∆E oxygen concentration gradient, mol / cm3 

Page and Lambert (1987) suggest that under extremely low oxygen exposure, the supply of 

oxygen to a cathodic reaction required to maintain an anodic ‘leakage’ current does not exist.  

The continuous passive film on the steel surface would then break down.  In this case, a slow 

general dissolution of the steel could occur, limited by the availability of oxygen.  The 

researchers differentiate between passivity, low oxygen corrosion, active oxygenated 

corrosion and the potential for galvanic corrosion due to interactions between exposed metals 

and reinforcement, although the likelihood of a combination of these mechanisms is high 

making corrosion difficult to model. 

Work carried out by Raupach (1996) on the influence of oxygen on corrosion of steel indicates 

that the diffusion of oxygen is a limiting factor on the corrosion of concrete structures in a 

fully-saturated state.  It is thought that once all remaining oxygen within the concrete is 

consumed, the corrosion rate will be only influenced by the oxygen concentration of the 

surroundings and the diffusion coefficient.  
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TABLE 2.14 MEASURED OXYGEN DIFFUSION AND FLUX THROUGH CONCRETE AND MORTAR (GJØRV, 

VENNESLAND AND EL-BUSAIDY, 1986) 

Material 
Thickness, 

mm 
D (x10-6), cm2/s J (x10-13), mol/(cm2 s) 

w/c ratio  0.4 0.5 0.6 0.4 0.5 0.6 

Mortar 

10  1.3 1.7  5.2 6.8 

20  2.1 3.0  4.3 6.0 

30  2.4 3.2  3.2 4.3 

50  3.2 3.8  2.6 3.0 

70  3.4 4.3  1.9 2.5 

Concrete 

10 2.1 2.5 3.7 8.4 10.0 14.8 

20 3.5 4.2 6.6 7.0 8.4 13.2 

30 3.9 5.2 7.9 5.2 7.0 10.6 

50 5.0 6.2 7.2 4.0 5.0 5.8 

70 5.7 6.8 11.1 3.3 3.9 6.4 

 

It is suggested that a limiting value for the cathodic current is; 

 @Hm = 42.591	 × 10�s EQUATION 2.28 

Where; 

ilim   limiting cathodic current, A/cm2 

M   molar flux of oxygen at the surface of the cathode, as adopted in an alternative 

model by Maruya et al. (2003), mol/(s·cm2) 

Subsequently, Song and Liu (2000) suggest that when concrete is fully saturated, oxygen-

diffusion-controlled corrosion occurs, limited at the cathode by Equation 2.29, which, once 

rearranged, is identical to the equation proposed by Raupach (1996a; 1996b). 

 @Hm = (F ∙ c ∙ �tu ∙ ?8�B0E  EQUATION 2.29 

Where; 
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ilim   limiting cathodic current, A/m2 

Dox oxygen diffusion coefficient, m2/s 

c concrete cover, m 

F Faraday’s constant, 96,500 C/mol 

[O2]0 oxygen concentration on the surface, mol/m3 

nc constant (=4) 

Further work by Warku, Raupach and Gulikers (2006) derive the limiting cathodic current to 

be; 

 @Hm = 3.62 ∙ 10w ∙ �tuE ∙ xFt"x��  H EQUATION 2.30 

Where; 

ilim  limiting cathodic current, A/m2 

Dox oxygen diffusion coefficient, m2/s 

c concrete cover, mm 

yz{|y}~^^�  concrete surface to steel surface ratio (only applicable if ≤1.0) 

Linking the limiting current to the oxygen diffusion coefficient assumes the cathodic reaction 

causing corrosion in the cell is the breakdown of oxygen and water.  Should this be the case, it 

must be noted that the concentration of oxygen at the surface of the concrete is modelled to 

have no effect on the corrosion process. 

For a concrete with a w/c ratio of 0.4, similar to offshore platforms, and a cover of 50mm: 

D = 5 × 10�s 	cm� s⁄   

J = �×�0��� ∙ 1.5 × 10�s = 1.5 × 10��� 		mol �cm�s
⁄   

The limiting cathodic current is calculated using the methods in the discussed models and is 

presented in Table 2.15.  
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TABLE 2.15 LIMITING CATHODIC CURRENTS AS DETERMINED BY VARIOUS DISCUSSED MODELS 

Model Limiting current, 

µA/cm2 

Raupach, 1996 0.58 

Song and Liu, 2000 0.58 

Warku, Raupach and 
Gulikers, 2006 

3.62 

 

The difference between the Warkus, Raupach and Gulikers (2006) model and the other two is 

significant, although all results do not limit the corrosion current substantially in oxygen-

saturated water for the given exposure conditions.  Due to the rapid diffusion of oxygen 

through water and concrete in an oxygenated environment such as the North Sea, the 

mechanism is unlikely to be substantially restricting the corrosion rate within the concrete. 

Experimental work by Hussain (2011) explores the effect of moisture variation on the 

consumption of oxygen in the cathodic reaction of corroding steel.  Results show that a 

limiting current density of 0.04µA/cm2 is achieved for completely submerged concrete.  This is 

in contradiction with previous studies (Raupach, 1996; Warkus, Raupach and Gulikers, 2006), 

where the limiting currents are more than an order of 10 greater. 

Additionally, this does not appear to take into account any variations in the oxygen content of 

the water surrounding the specimen.  If the corrosion current is limited by oxygen 

consumption, this, in turn, will then be limited by oxygen diffusion and the surface 

concentration of oxygen.  The research makes no reference to, nor does it appear to control, 

the concentration of oxygen in the water. 

It is stated that this low value is “actually of not much significance” (Hussain 2011).  This is a 

crude judgement, as the research does not take into account the possibility of large cathodes in 

relation to small anodes and, therefore, the possibility of large corrosion currents still 

occurring in the concrete. 

Contradictory research, conducted by Toro et al. (2011), concludes that although negligible 

oxygen concentrations were recorded in a calcium hydroxide solution, corrosion still occurred 

at significant rates of up to 5µA/cm2.  It is suggested that the chloride content and roughness 
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of reinforcing steel surface are the critical components of corrosion in these environments with 

low oxygen availability. 

As this topic of research is vital, an in-depth understanding of the corrosion rates in sub-sea 

low-oxygen environments is required.  There is currently no further work either to support, or 

oppose the belief of insignificant corrosion in submerged low-oxygen concrete environments.  

This is due to the majority of research concentrating on the splash and tidal zones, rather than 

the submerged area of concrete specific to a subsea structure.  For this reason, it is imperative 

that corrosion in low-oxygen environments with a controlled oxygen concentration is the 

subject of investigation. 

2.6.2.3 EFFECTS OF PORE SATURATION AND RESISTIVITY 

Bertolini et al. (2013) indicate that corrosion currents are a balance between current flowing 

through the metal and concrete and the exchange currents of the anodic and cathodic 

processes (Figure 2.13).  These currents will both be limited by the resistance of each process.  

The metallic resistance is extremely low and, consequently, is unlikely to be rate controlling.  

Depending on the nature of the exposure and resistivity of the concrete, the exchange rate at 

the anode or cathode could be limiting, but the resistivity is more commonly described as the 

limiting factor.  As a result, research has often focussed on the relationship between resistivity 

and corrosion rate (Hornbostel, Larsen and Geiker, 2013). 

Pore saturation, driven predominantly by moisture content at the surface of the concrete, is 

the most significant influence on the corrosion propagation rate assuming a chloride-saturated 

concrete.  Pore saturation reduces the resistivity and, in turn, increases the corrosion rate of 

the steel (Warkus and Raupach, 2008).  A clear indication of the dominating effect of resistivity 

is shown in Figure 2.14. 

The ionic resistivity is an important factor influencing the potential for macrocell corrosion.  In 

HPC concretes where the ionic resistivity is high, a very low macrocell to microcell corrosion 

ratio has been observed and this suggests that, although the rates were small, only microcell 

corrosion was occurring (Hansson, Poursaee and Laurent, 2006). 

Although the resistivity has a significant effect on corrosion rate, the spread of results from 

‘real world’ and laboratory studies is large (Figure 2.15).  Due to this spread in results, the 

author believes that resistivity measurements could be used to identify structures that could 

be at risk of corrosion, allowing further investigations to be carried out. 
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FIGURE 2.13 ELECTROCHEMICAL MEHANISM OF REINFORCEMENT CORROSION (HORNBOSTEL, LARSEN 

AND GEIKER, 2013; BERTOLINI ET AL., 2013.) 

 

 

 

FIGURE 2.14 EFFECT OF RESISTIVITY ON MACROCELL CORROSION RATE (EXTRACT FROM WARKUS AND 

RAUPACH, 2008) 
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FIGURE 2.15 MEASURED RESISTIVITY AND CORROSION RATES (HORNBOSTEL, LARSEN AND GEIKER, 

2013)  

 

2.6.2.4 EFFECTS OF LOADING AND CRACKS 

Offshore structures are subjected to severe wind, wave and tidal loading.  These regular 

loading patterns can cause large bending moments in structures, which may result in 

cracking.  These cracks, under serviceable limit states, are designed to be restricted to 0.3mm, 

as discussed in Section 2.5.2.4. 

Cracking can accelerate corrosion by increasing the ingress of water, chlorides and oxygen 

(Scott, 2007; Subramaniam and Bi, 2010).  Sections of concrete structures in flexure will crack, 

with surface crack widths that can be significantly large and allow for water and ions to 

penetrate to the steel surface.  Any increase in the rate of this ingress will increase the rate of 

corrosion. 

Cracking occurs due to tensile strains in the concrete cover, which are commonly caused by 

flexural loading, build-up of corrosive products, or freeze-thaw.  Usually, in conditions where 

oxygen is available, the product formed due to corrosion is ferric oxide, Fe2O3.  Ferric oxide, 

commonly known as ‘red rust’, has a crystal density roughly four times that of a steel 

compound with equivalent mass.  This expansive product causes localised tensile strains 

around the reinforcement, resulting in cracking of the cover and subsequent spalling. 
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When cracking occurs from the reinforcement out through the cover, the transport properties 

of the concrete are affected in a detrimental way, allowing an accelerated flow of chlorides, 

oxygen and water along the crack to the reinforcing steel.  The fib Model Code 2010 asserts 

that, for crack widths of up to around 0.2 to 0.4mm, there will be no significant effect on the 

rate of corrosion due to accelerated transport mechanisms.  This is disputed in section 2.4, 

where it appears that cracking, along with loss of the aggregate-cement matrix bond in the 

concrete in tension, has a significant effect on corrosion by means of faster transport of 

chlorides to the steel. 

In CEM I concrete with covers of both 20 and 40mm, Scott and Alexander (2007) recorded an 

increase in corrosion current of around 20% as the surface crack width was increased from 0.2 

to 0.7mm.  Although there was an increase, the difference between the recorded values is 

insignificant when compared to the influence of supplementary cementitious materials or 

cover depth.  

Where a flexural crack is formed, the relationship between the macrocell corrosion current and 

measured potential can be estimated by the polarization responses of the anodic steel at the 

crack and passive steel elsewhere in the concrete.  The macrocell current density is 31 times 

the microcell current and is therefore the dominant mechanism in cracked concrete 

(Subramaniam and Bi, 2010). 

Contradicting the above views, research carried out by Dang and François (2013) concluded 

that corrosion appeared heterogeneous in distribution along the perimeter and length of 

reinforcing bars with the initial crack pattern having no bearing on long term corrosion.  

Corrosion was shown to occur across the majority of the section; however, in the 

environmental conditions of the specimens, it is likely that general corrosion would have 

occurred during duration of the experiment. 

Considering the evidence presented, the author has no doubt that cracking increases the 

corrosion rate.  There is, however, minimal information on the dynamics of this relationship 

and experimental work should be carried out with the aim of quantifying the expected 

increase in corrosion rate. 
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2.6.3 MEASURING CORROSION PROPAGATION 

2.6.3.1 HALF-CELL POTENTIAL 

Using half-cell measurements can be a fast and effective method for providing an indication of 

the likelihood of corrosion within concrete.  This is performed by connecting one lead of a 

high impedance voltmeter to the steel and the other to a reference electrode placed on the 

concrete surface (Figure 2.16) (BRE, 1998).  Different standard reference electrodes can be 

used, with readings taken on an electrode referred back to a standard hydrogen electrode, as 

shown in Figure 2.17. 

Simplistically, the measurements can be evaluated using Table 2.16, where the likelihood of 

corrosion is presented for various half-cell potential measurements.  These have been 

developed through data collected from bridges subjected to de-icing salts in the United States 

and, as a result, are unlikely to be representative of all structures. 

It is noted that readings from areas of low resistivity can affect the results of half-cell 

measurements because an electrical conductivity exists between corroding and non-corroding 

environments (BRE, 1998).  Furthermore, areas where oxygen is restricted can lead to very 

negative readings that are not necessarily indicative of corrosion.  Typical ranges of half-cell 

potentials are shown in Table 2.17 (RILEM TC 154-EMC, 2003).  Although these are typical of 

concrete in the given conditions, the effects of further factors that could affect submerged 

concrete half-cell measurements are outlined in Table 2.18 (Gu and Beaudoin, 1998).  

Therefore, half-cell potentials should be used with other tests (i.e. linear polarisation 

resistance) to evaluate the likelihood and rate of corrosion. 
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FIGURE 2.16 SCHEMATIC OF A HALF-CELL MEASUREMENT 

 

 
FIGURE 2.17 GRAPHICAL REPRESENTATION OF A COMPARISON OF TYPICALLY USED REFERENCE 

ELECTRODES 
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TABLE 2.16 INTERPRETATION OF HALF-CELL POTENTIAL MEASUREMENTS  

Half-cell potential# 

(vs Cu/CuSO4) 

Half-cell potential 

(vs Ag/AgCl) 

Half-cell potential 

(vs SCE) 

Likelihood of 

corrosion 

E > -200mV E > -109mV E > -154mV <10% 

-200 < E < -350mV -109 > E > -259mV -154 > E > -314mV Uncertain 

E < -350mV E < - 259mV E < - 314mV >90% 

# obtained from Gu and Beaudoin, 1998 

 

TABLE 2.17 TYPICAL RANGES OF HALF-CELL POTENTIAL MEASUREMENTS IN CONCRETE (RILEM TC 154-

EMC, 2003) 

Condition Potential, V vs. CSE 

Water saturated concrete w/o oxygen -0.9 to -1.0 

Wet, chloride contaminated concrete -0.4 to -0.6 

Humid, chloride free concrete +0.1 to -0.2 

Humid, carbonated concrete + 0.1 to -0.4 

Dry, carbonated concrete + 0.2 to 0 

Dry concrete + 0.2 to 0 
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TABLE 2.18 POTENTIAL EFFECT OF SOME FACTORS ON HALF-CELL MEASUREMENTS (GU AND 

BEAUDOIN, 1998) 

Situation Half-cell potential shift Corrosion of 

reinforcement 

Decrease in oxygen 

concentration 
Negative May not increase 

Carbonation, decrease 

in pH 
Negative Increase 

Increase in chloride 

concentration 
Negative Increase 

Epoxy-coated rebar Positive Not related 

Dense concrete cover Negative Not related 

Dry concrete Positive Not related 

2.6.3.2 LINEAR POLARIZATION 

Linear polarization analysis is a three-electrode method using reference, working and counter 

electrodes.  A galvanostatic method, whereby a current is applied and the potential recorded, 

or a potentiostatic method, where a potential is applied and the current monitored, is used to 

determine the polarization resistance with Equation 2.31 (Stern and Geary, 1957). 

 M� = ∆�∆�  EQUATION 2.31   

Where; 

ΔE  change in potential, mV 

ΔI change in current, mA 

Rp polarization resistance, W 

The change in potential must be small, between 10 and 30mV about the open circuit potential, 

to fall in the linear Stearn-Geary range (Enos and Scribner, 1997; Song and Saraswathy, 2007).  
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 @Ft�� = �M� EQUATION 2.32 

Where; 

icorr  corrosion current, mA 

B  Stearn-Geary constant, mV 

Rp  polarization resistance , W 

B is often simplified as 26mV for active corrosion and 52mV for passive conditions; however, 

this value has been reported to be between 75-278mV (Poursaee, 2010b).  From experimental 

results, B can be determined through Equation 2.33. 

 � = �y ∙ ��2.303 ∙ ��y + ��
 EQUATION 2.33 

Where; 

B Stearn-Geary constant, mV 

�y Anodic tafel slope, mV 

��  Cathodic tafel slope, mV 

From the determined corrosion current (Equation 2.32), Faraday’s laws of electrolysis can be 

applied to determine the mass loss of the steel due to corrosion: 

 h = �c ∙ 4b  EQUATION 2.34 

Where; 

m mass loss of metal, g 

Q total charge passed �= � � ∙ ��\0 �, C 

M molar mass of the metal, g 

F Faraday’s constant �= 96,485	�	hg3��
 
z valency number 
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If the polarization area is known, the corrosion current is commonly divided by the 

polarization area and presented in the form µA/cm2.  Interpretation of the results is shown in 

Table 2.19. 

TABLE 2.19 INTERPRETATION OF CORROSION CURRENTS (MCCARTER AND VENNESLAND, 2004) 

Corrosion current, 

µA/cm2 

Corrosion 

condition 

< 0.1 Passive 

0.1 - 0.5 Low to moderate 

0.5 - 1.0 Moderate to high 

> 1.0 High 

  

Care must be taken when determining the polarization area, as results will vary significantly if 

the wrong area is used.  Employing embedded electrodes with known area will allow for a 

known polarized area and should provide an accurate estimate of the corrosion rate.  A 

schematic for measuring the resistance is shown in Figure 2.18. 

Millard et al. (2001) investigated the effects of environment, temperature and humidity, on 

LPR measurements.  It was concluded that the LPR measurements are insignificantly affected 

by short-term drying, while the concrete solution resistance is greatly affected by this process.  

The effects of temperature were, however, observed to be significant, albeit with a large scatter 

in the measured results.  The authors reported that a number of LPR measurements should be 

taken over time to provide a reliable average corrosion current estimate. 

2.6.3.3 POTENTIODYNAMIC POLARIZATION SCAN 

A potentiodynamic polarization scan can be used to determine the corrosion rates, pitting 

potential, passivity and cathodic behaviour of metals (Enos and Scribner, 1997).  The 

experimental setup for measurements is identical to that used for linear polarization (Figure 

2.18). 

The Tafel slope for the anodic and cathodic polarization can be obtained from the slope of the 

linear section of the curves (Figure 2.20).  Extrapolating back along the slope to the point at 
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which the cathodic and anodic currents are equivalent will provide both the corrosion 

potential, Ecorr, and current density, icorr. 

Results obtained can be sensitive to the applied potential scan rate (Poursaee, 2010a).  If the 

scan rate is too rapid, it is possible to misinterpret the results as suggesting a lack of corrosion.  

If the scan rate is too slow, however, corrosion could significantly change during the course of 

the testing. According to the ASTM G5-94 (ASTM, 2004) standard, the recommended scan rate 

for concrete is 0.166mV/s; however, a faster rate may be used to prevent concrete samples 

from drying or altering their corrosion behaviour, as discussed in Chapter 3. 

2.6.3.4 GRAVIMETRIC 

Weight loss measurements can be useful for laboratory studies but are impractical for work on 

operational structures.  This method determines the weight loss of the steel through the use of 

Equation 2.35. 

 hHt�� = h"��H −h!"�H EQUATION 2.35 

Where; 

mloss  loss of mass, g 

minitial  measured mass prior to corrosion, g 

mfinal  measured weight after corrosion, g 

Inaccuracies can arise due to the difficulty in removing all hydrated cement from the 

reinforcement after destructive testing.  Due to the small nature of the weight loss and the 

difficulty with cleaning the bars, this method is more suitable for estimating the losses due to 

intense corrosion. 
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FIGURE 2.18 SCHEMATIC OF A LINEAR POLARIZATION RESISTANCE AND POTENTIODYNAMIC METHOD 

 

FIGURE 2.19 LINEAR POLARIZATION TECHNIQUE (ENOS AND SCRIBNER 1997) 

 

FIGURE 2.20 CALCULATION OF TAFEL SLOPES (ENOS AND SCRIBNER 1997) 
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2.6.3.5 ELECTRICAL RESISTANCE 

After depassivation, a relationship can be expected between the resistance of the concrete and 

the rate of corrosion (Polder, 2001).  On-site measurement of concrete resistance is often 

achieved through the use of a Wenner (4-point) probe (Figure 2.21).  The relationship between 

the potential drop and induced current is used to determine the resistance. Alternatively, disc 

methods with one, two or four electrodes can be used. 

Due to the inhomogeneity of the concrete, care must be taken when predicting corrosion rates 

through the use of resistance.  Measurements must be sufficiently far away from any 

reinforcement or other forms of disturbance to the concrete.  A dry surface layer of the 

concrete may also provide artificially low corrosion rates, particularly if the concrete around 

the reinforcement is most saturated. 

A simple relationship developed as a guideline to estimate the risk of corrosion is shown in 

Table 2.20 (McCarter and Vennesland, 2004). 

 

FIGURE 2.21 WENNER (4-POINT) PROBE SCHEMATIC (POLDER, 2001) 

 

TABLE 2.20 RISK OF CORROSION DUE TO MEASURED RESISTIVITY (POLDER, 2001) 

Concrete resistivity, 

kWWWW·cm 

Risk of corrosion 

< 5 Very high 

5-10 High 

10 – 20 Low to moderate 

> 20 Low/negligible 



 

69 
 

2.6.4 MODELLING OF CORROSION PROPAGATION RATES 

In practice, corrosion is typically modelled in two phases: initiation and propagation 

(Tretheway and Chamberlain, 1988; Bertolini, 2004; and Böhni, 2005). The propagation period 

has been extensively modelled and previously reviewed by Raupach (2006), followed by work 

on the theoretical background and a regeneration of models carried out by a number of 

researchers (Warkus, Raupach and Gulikers, 2006; Gulikers and Raupach, 2006). 

Otieno, Alexander and Beushausen (2011) are highly critical of accelerated laboratory testing 

and suggest that corrosion modelling should be validated through investigations on ‘real 

world’ structures.  While their point is valid, the use destructive testing to further 

understanding of the development of anodic and cathodic areas, actual corrosion rates and the 

effects on structures is unfeasible.  For this reason, a compromise must be achieved between 

these two methods of investigation. 

Work using resistivity to model propagation has yielded estimates for the corrosion rate at 

certain levels of resistivity.  Those specimens with a high resistivity will have low corrosion 

rates and vice versa. 

Raupach (2006) explores work completed by Takewaka, Yamaguchi and Maeda (2001) in 

which a model is developed for the deterioration of steel due to chloride attack.  Propagation 

is said to be limited by the slower of the anodic and cathodic reactions taking place.  However, 

should the cathodic reaction be slower, it is likely there will be a rebalance of anodic and 

cathodic areas to maintain a balanced rate of corrosion.  

Empirical methods involving experimental work in many conditions were used to assess the 

impact of these conditions on the corrosion of steel plates.  Factors for each variable could then 

be applied and combined to provide an estimation of the rate of corrosion.  One such 

proposed model uses three applied factors; cement content, w/c ratio and chloride content; 

 �Ft�� = 37.726 + 6.120� + 2.231	x�� + 2.722	���� EQUATION 2.36 

Where; 

A, B, C  factors depending on w/c ratio, cement content and chloride content of concrete 

This methodology is extremely simplistic because corrosion propagation rates are dependent 

on environmental conditions as much as, if not more than, the concrete properties.  

Alternative models require the use of engineering experience, using previous cases of 
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corrosion, to determine how future corrosion will occur.  The practicality of these models is 

diminished by the large variations in environment and material properties and the size of the 

database of previous cases that would be required (Raupach, 2006). 

For a predictive method to provide a reasonably accurate estimation of corrosion rate, the 

cathodic and anodic regions must be estimated, together with the flux of oxygen to the 

cathode.  This, as with any method, has limitations because the cathodic and anodic areas 

cannot be defined as specific areas. Laboratory work can, however, be used to visually 

determine the formation of anodes and cathodes by destructively testing concrete that has 

been corroding. 

More recently, Beck and Raupach (2012) developed a simplified model for determining the 

propagation of corrosion (Equation 2.37). 

 @Ft�� = 1xy � �0,� − �0,y��,yxy + ��,�x� + .F ∙ �F + �� H!� EQUATION 2.37 

Where; 

icorr  corrosion current density, A/m2 

AA  anode area, m2 

AC  cathode area, m2 

E0,C  resting potential of cathode, V 

E0,A  resting potential of anode, V 

rp,C  specific integral polarization resistance of cathode, Wm2 

rp,A  specific integral polarization resistance of anode, Wm2 

kc  geometry constant of macrocell, m-1 

ρc  resistivity of concrete, Wm 

Iself  self-corrosion current of macrocell, A 

As with the majority of modelling techniques, although the method is simplistic, information 

must be gained from the structure in question.  Data from an offshore structure is often 
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extremely difficult to determine and, for this reason, engineering estimates are often used, 

giving results that are extremely unreliable. 

Simplifying Equation 2.37, Osterminski and Schießl (2012) provide a more simplified method 

for corrosion rate estimation (Equation 2.38).  Although the method is relatively simple, values 

must be estimated or derived for individual structures. 

 @Ft�� = 1xy � ∆EA ∙ �� + �F
 ∙ G� ∙ � � " EQUATION 2.38 

Where; 

icorr  corrosion current density, A/m2 

AA  anode area, m2 

DE driving voltage, V 

A anode factor 

C cathodic resistivity, Wm 

ρc  resistivity of concrete, Wm 

G geometry factor, m-1 

feigen eigencorrosion factor 

Jiang and Yuan (2012) provide a model of corrosion propagation wherein the corrosion rate is 

controlled by activation polarizations, provided oxygen is easily accessible to the cathode.  In 

saturated concrete with high concentrations of dissolved oxygen, there will be sufficient 

oxygen available at the cathode to render such a model useful.  As shown previously, 

sufficient oxygen is available in a submerged North Sea environment to justify the modelling 

of corrosion with Jiang’s method. 

2.6.5 SUMMARY 

Corrosion is likely to have initiated and be propagating in structures where cracking has 

allowed chlorides to penetrate the cover to the depth of the reinforcement.  A large array of 

variables have been shown to be critical to the corrosion process; therefore, experimental work 

to determine estimates for the rate of corrosion on specific structures will be considered. 
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Although the propagation of corrosion within concrete structures is complex, using a 

combination of experimental research techniques may yield a reasonable estimation of long-

term corrosion.  To ensure that the conditions are representative of a real structure, 

consideration of the environment, concrete type and test methodology is vital (Poursaee and 

Hansson, 2009). 

While a number of mathematical methods for the prediction of corrosion rates are available, 

the author believes that, due to the heterogeneous and complex structure of concrete and the 

inability of mathematical models to account for all variables, corrosion rates should be 

determined through on-site measurements.  If on-site information is unavailable, as with large 

offshore submerged concrete structures, corrosion rates should be determined through 

measurements taken from experimental work carried out in laboratories. 

2.7 STRUCTURAL CAPACITY OF CONCRETE 

2.7.1 SCOPE 

The structural capacity of a concrete structure will ultimately determine the time-to-failure of 

that structure under a given set of loading conditions.  Taking theoretical, experimental and 

observed rates of corrosion and modelling the effects on the capacity of a section is difficult, 

owing to the complexity of the structure. 

Corrosion can cause a reduction in the cross-section of the steel, a loss of bond between the 

concrete and the steel, a loss of ductility in the steel and, potentially, an internal stress that 

may lead to cracking, depending on the products formed through the corrosion process as 

previously discussed. 

The effect of corrosion on the service and ultimate life is reviewed, assessing the links between 

laboratory results and ‘real world’ data.  Additionally, methods are evaluated for prediction of 

the structural degradation caused by corrosion under different exposure conditions. 

2.7.2 EFFECTS OF CORRODED REINFORCEMENT 

2.7.2.1 REDUCED CROSS SECTION OF STEEL 

It is reported that, due to the localized nature of the steel strain, reduction of the cross 

sectional area of steel is not the most significant factor affecting the serviceability of a concrete 

section.  Localized losses of up to 30% did not have an effect on the mid-span deflection 

(Zhang, Castel and François, 2009b).  Furthermore, it is noted that if corrosion propagates in a 
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general manner, the stiffness and, by extension, the serviceability can be dramatically reduced 

(Zhang, Castel and François 2009a).  Ultimate strength, however, is only significantly lowered 

by a localised loss in the cross-sectional area of steel and the reduction in steel capacity that 

results. 

While in partial agreement with Zhang, Castel and François, further experimental work by 

Dang and François (2013) concluded that the yielding moment and ultimate capacity are both 

reduced by the loss of cross sectional area where pitting has occurred.  The reduction in yield 

strength will cause larger deflections at reduced loading, thus reducing serviceability.  

Ultimately though, the conditions at high corrosion levels still allowed for maximum 

moments and deflection limits to be met.  The corrosion caused the reinforcing bars to fail 

serviceability limits through the lack of ductility and ultimate elongation.  

Ultimate flexural capacity of a steel beam is directly proportional to the product of the area of 

reinforcing steel and the yield strength, both of which are affected by corrosion (Stewart, 

2009).  Evidence provided by Stewart also suggests that yield stress declines linearly with 

corrosion, (Equation 2.39).  To allow for pitting, a factor can be included to increase the 

corrosion loss as appropriate.  

 ����
 = �1 − 2��Ft����
� ��0 EQUATION 2.39 

Where; 

fy(t) yield stress of steel at time, t, N/mm2 

fy0 yield stress of un-corroded steel, N/mm2 

t time of propagation, s 

2� empirical coefficient 

�Ft����
  percentage corrosion loss, % wt. steel 

Results presented by Torres-Acosta, Navarro-Gutierrez, and Terán-Guillén (2007) show a 

loosely linear trend between the pit depth ratio and the remaining ultimate capacity.  These 

test methods, which use a three-point loading schedule, could yield artificially high estimates 

of remaining capacity if the maximum loss of cross sectional area is not at the section of 

maximum moment. 
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Chlorides will reach hoop reinforcement earlier due to the shallower cover concrete and mass 

loss percentages can be greater on smaller hoop reinforcing bars.  Ou, Tsai and Chen (2012) 

showed that, due to the extreme corrosion of hoop reinforcement, the tested beams began to 

exhibit flexural-shear failure rather than flexural failure.  The ability for the transverse 

reinforcement to restrain shear stresses was significantly reduced and the beam fractured 

when it failed in flexural-shear. 

Modelling structural damage can be achieved by estimating the remaining cross-sectional area 

through corrosion propagation models and then calculating the ultimate capacity of this 

reduced section (Melchers, Li and Lawanwisut, 2006). 

2.7.2.2 BOND LOSS 

Reduction in bond strength has been comprehensively studied (e.g. Lundgren, 2007) and it is 

accepted that corrosion causes damage to the steel/concrete bond, effectively reducing the 

section stiffness of reinforced concrete (Zhang, Castel and François, 2009b).  This will cause 

larger deflections and increased cracking, causing further corrosion to the steel.  Bond loss 

occurs in the early stages of cracking, for widths up to 1mm, causing the subsequent increase 

in the mid-span deflection of beams. 

Ouglova et al. (2008) conducted pull out testing of plain steel reinforcement in concrete 

samples.  For percentage corrosion values up to around 0.4%, the data collected suggest a 

slight increase in the bond strength.  In contrast, for percentage corrosion values between 0.4% 

and 0.76%, the data indicate a significant loss of bond strength.  More recent experimental 

work by Yalciner (2012) supports earlier research by Chung, Najm and Balaguru (2008) 

showing that corrosion of up to roughly 1% can increase the bond strength but that large 

reductions in strength are observed with more advanced corrosion.  Although these are 

reported results, the methodology for calculating percentage corrosion loss of the steel is 

inconsistent and could be larger than reported. 

Pedziwiatr (2009) concludes that, contrary to common belief, it is myth that the bond has a 

major effect on the stiffness.  This assertion is contradicted by further research where the 

stiffness of a section is observed to decrease most rapidly during the early stages of corrosion 

(5-8% mass loss) before becoming more constant at higher levels of corrosion (Malumbela, 

Moyo and Alexander, 2012b). 
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The majority of research considers unconfined pull-out testing to effectively determine bond 

strength.  It is important to note, however, that ‘real world’ structures are commonly confined 

through stirrups and transverse reinforcement.  Fang et al. (2004) showed that for deformed 

steel reinforcement, corrosion has little effect on the bond strength.  In contrast, for plain bars 

with up to 5% corrosion, they observed that the bond strength continued to increase in 

confined concrete. 

2.7.2.3  INTERNAL CRACKING OF CONCRETE DUE TO CORROSION 

Although cracking is commonly initiated by external loading or early age shrinkage, the 

concrete cover will continue to crack, after significant propagation of corrosion, due to internal 

stresses caused by corrosive process.  This will significantly affect the steel/concrete bond and 

accelerate further corrosion rates.  

Internal cracking, owing to the increased interconnectivity between areas of the bar, can cause 

a shift in the corrosion pattern from macrocell corrosion to microcell corrosion and can also 

provide greater access to the steel surface for oxygen and chlorides (Zhang, Castel and 

François, 2009b).  This change to microcell corrosion is only likely to occur should the 

chlorides reach all areas of the steel surface, a likely outcome with internal cracking caused by 

corrosion. 

2.7.2.4 STRESS REDISTRIBUTION 

Stewart (2009) concludes that the length of reinforcement required to distribute loads from 

corroded reinforcement to adjacent reinforcement has a large effect on the reliability of a given 

structure.  Little research is available on the redistribution of stresses, with the majority of 

research concerned with bond loss or cracking caused by corrosion. 

Investigations into the overall structural capacity with a reduced cross-sectional area in 

individual bars, multiple bars and in various locations are required and will be completed in 

this research project. 

2.7.2.5 TENSION STIFFENING 

Although it is commonly assumed that concrete carries no tensile stress, major experimental 

investigations by the University of Durham and the University of Leeds have detailed the 

effects of the bond stress on both the stiffness and deflections of concrete sections (Beeby and 

Scott, 2005). 
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Through the use of axially loaded reinforced beams, it was shown that the strain in the 

concrete around a crack is reduced to zero and the strain in the steel reinforcement is 

equivalent to the applied axial force over the area of steel reinforcement.  The increase in 

strain will be linear between the crack and a distance from the crack, S0 (Figure 2.22). 

 

FIGURE 2.22 STRAIN DISTRIBUTION AROUND A CRACK (BEEBY AND SCOTT, 2005) 

 

It is shown that the crack width can be determined from the product of the length, S0, and 

strain of the reinforcement at the crack.  Additionally, the length, S0, is directly proportional to 

the cover thickness.  Therefore, the crack width at a given steel strain can be estimated, 

(Equation 2.40). 

 � = 3.05E ∙  �� EQUATION 2.40 

Where; 

w crack width, mm 

c cover thickness, mm 

es2 steel reinforcement strain at crack 

Weckenbach (2008) shows that the concrete-steel bond is acting elastically at low loading 

conditions, with no bond stress measured immediately adjacent to the crack.  At higher 
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stresses, the bond is damaged and this allows slip to be possible.  Crack patterns and distance 

of strain gauges from the major cracks will be taken into consideration throughout 

experimental works.  

Although tension stiffening has a significant effect on crack widths and serviceability of 

concrete sections, the author believes that, when considering ultimate failure, the effects of 

tension stiffening could be ignored. 

2.7.3 EFFECTS OF CORRODED REINFORCING LAPS 

Laps are vital for the transfer of stress along the beam, allowing the beam to continue to 

maintain its capacity.  Should the bond capacity be lost in these sections, the ultimate capacity 

will reduce significantly.  Although experimental results achieved in research by Chung, Najm 

and Balaguru (2008) indicate that the remaining bond capacity is the most important factor 

influencing the remaining capacity of a structure, the experiments were not directly related to 

fully lapped sections in structures.  

In large structures with complex arrangements of vertical and loop reinforcing steel, together 

with vertical pre-stressing steel, the author believes that the transfer of stresses between 

reinforcing bars cannot be reliant on bond capacity alone.  Although there are large areas of 

research required on lapped sections, this research will look at the initial effects of simply 

supported beams with lapped reinforcement. 

2.7.4 SUMMARY 

Corrosion, as commonly accepted, reduces the bond strength and ultimate capacity of 

concrete structures through long-term exposure to chloride environments.  In a large-scale 

concrete structure, however, the author believes the effects of bond strength on the ultimate 

capacity to be relatively insignificant in comparison with those of a reduced cross-sectional 

area of reinforcing steel.  It is acknowledged that further research is required to bridge the gap 

between the currently available knowledge on ductility, bond strength and loss of cross-

sectional area in steel and the overall structural capacity of offshore structures.  Engineering 

solutions are required to aid the estimation of the longevity of structures, combining empirical 

data obtained from laboratory results and ‘real world’ structures, mathematical modelling and 

engineering judgement. 
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2.8 ESTIMATION OF SERVICE AND ULTIMATE LIFE 

2.8.1 SCOPE 

British Standards Institution (2002b) states the design working life should be specified as 50 

years for ‘building structures and other common structures’ and 100 years for ‘monumental 

building structures, bridges, and other civil engineering structures’.  Service life is commonly 

defined as the time to the onset of corrosion (Siemes and Polder, 1998; Shim, 2005; Gjørv, 

2010). 

Corrosion initiation due to chloride ingress commonly occurs within 50 years of exposure in 

sound, un-cracked concrete (Gjørv, 2010).  If the working life (service life) is defined as the 

time to the onset of corrosion, the majority of large structures will not achieve the desired 

working life. 

The definition of service and ultimate life will be considered and assessed for suitability with 

regards to offshore structures.  Some structures have already exceeded the intended service 

life and a subset of these have done so in a a decommissioned state.  For this reason, the 

extended service life will need to be redefined. 

Probabilistic and deterministic modelling currently used is reviewed and its relevance to 

offshore structures evaluated.  The limit states for the existing offshore platforms are 

subsequently defined. 

2.8.2 DETERMINISTIC MODELLING 

Deterministic modelling, the basis for all modelling techniques, is commonly a variation of 

initiation modelling using a combination of transport mechanisms of chlorides, as highlighted 

in Section 2.5.5. 

Service life is commonly defined as the time-to-initiation of corrosion, with diffusion 

coefficients determined from natural diffusion test results at 90 days (e.g. British Standards 

Institution, 2010) or migration testing over a day.  Extrapolation of these diffusion coefficients, 

in combination with changes in environment, ageing factors and other influencing parameters, 

is then carried out using Crank’s solution to Fick’s Second Law as discussed previously.  

Extrapolating in such a manner on a complex heterogeneous material has the potential to 

cause gross errors in determining the service life of a given structure, especially when using a 

deterministic methodology. 
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2.8.3 PROBABILISTIC MODELLING 

Structures will fail when the load exceeds the structural capacity (Sarja, 2000; Quillin, 2001).  

Equation 2.41 and Equation 2.42, or alternative adaptations, are commonly used as the basis 

for probabilistic models of the failure of a structure. 

 ¡�7@3¢��£ = ¡M < =£ EQUATION 2.41 

 ¥! = ¥¡M < =£ EQUATION 2.42 

Where; 

R response variable 

S load variable 

Pf probability of failure 

Both the capacity of the concrete and loading conditions of offshore structures will vary with 

time, suggesting that a probabilistic method of service and ultimate life estimation is 

appropraite.  Predicting the loading conditions throughout the life of the structure is relatively 

reliable; however, the remaining capacity of the structure and effects on ultimate life are much 

less well understood. 

Service period design and lifetime design have been conducted previously and can be 

achieved with reasonable success (Figure 2.23).  Increasing the reliability of the modelling 

should be the focus of further research, with a key priority being a reduction in the estimated 

variability of input parameters for the remaining capacity of sub-sea concrete. 

The fib model code applies a design equation in which serviceability is lost when the 

probability of depassivation occuring is below a target failure probability.  As with the fib 

model, modelling by Saassouh and Lounis (2012) applies a probabilistic approach to diffusion 

equations, showing corrosion is likely to initiate when the probability that the chloride 

concentration at the steel surface exceeds a threshold as highlighted in Figure 2.24. 

Although methods utilising diffusion coefficients are suitable for estimating the time-to-

corrosion in fully-saturated submerged concrete structures which are under no loading and 

exposed to NaCl exposures, the author believes that the importance of deterministic or 

probabilistic determination is overstated.  Unless the environment and loading of structures, 
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along with the structural response of a given structure, are considered, the service and 

ultimate life predictions made through modelling will be insufficient. 

 
FIGURE 2.23 SERVICE AND ULTIMATE LIFE DESIGN (QUILLIN, 2001) 
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FIGURE 2.24 DETERMINISTIC VS. PROBABILISTIC PREDICTIONS OF CORROSION INITIATION (SAASSOUH 

AND LOUNIS, 2012) 

 

2.8.4 ‘REAL WORLD’ STRUCTURES 

Ovstaas and Morgan (1999) investigate chloride-induced corrosion in cracked concrete due to 

shrinkage cracking, a process which originates at the steel surface.  Although cracking 

sustained in loading initiates at the outer concrete surface, similar transport properties are 

likely in each scenario.  Over each crack, chloride ions have penetrated deeper than 50mm to 

the steel reinforcement.  Predicting chloride ingress in the sound concrete, corrosion would 

initiate in 42 years at 50mm deep, with a further 3.1 years to crack initiation due to corrosion.  

It is suggested that the cover thickness should be reduced to 20mm to take into account 

damage by cracking and this gives a service life is prediction of 7.2 years.  This suggests that 

the serviceability of this structure would be breached, although the steel is epoxy coated and 

this will retard the process of corrosion. 

Arskog, Ferreira and Gjørv (2004) reviewed samples taken from a relatively new harbour 

structure of 80 m in length and constructed from a high performance Portland cement with 

silica fume with a maximum w/c ratio of 0.45.  This concrete exceeds serviceability within 10 

years at a 10% probability, where serviceability is defined as the onset of corrosion. 
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Helland, Aarstein and Maage (2010) compiled reported data from offshore structures of 

chloride ingress.  Profiles were obtained from multiple levels and locations from the concrete 

superstructures.  The diffusion data obtainedwas used to predict time to initiation of corrosion 

due to chloride ingress and it was found that 20% of the samples from Oseberg A and Brent B 

would cause initiation within 40 years of exposure.  Additionally, diffusion coefficients from 

Oseberg A show inconclusive effects of ageing within the first 18 years of exposure and 

suggest ageing effects should be ignored when modelling CEM I concretes. 

Owing to the paucity of samples from existing offshore and marine structures, prediction of 

behaviour must be carried out in the laboratory and, where possible, validated against 

structures in situ.  The author believes that the focus on chloride profiles to model ‘real world’ 

structures is inadequate and that further data on corrosion rates, steel potentials and 

resistivity are required to further understand the variations observed between laboratory 

works and the structures. 

2.8.5 SUMMARY OF REMAINING LIFE ESTIMATION TECHNIQUES 

The understanding of service or ultimate life determination for concrete in a subsea 

environment is limited predominantly to the period of initiation of corrosion, with the 

majority of current modelling techniques being based on chloride diffusion.  Although 

diffusion of chlorides through sound concrete will influence the ultimate life, the effects of 

cracking on the rates of corrosion will be the predominant factor influencing the ultimate life 

of offshore structures. 

Failure models taking propagation into account are often defined as the time taken to lose a 

certain percentage of the cross-sectional area of steel due to corrosion.  Although this has the 

potential to provide a reasonable estimation of structural longevity, the structural behaviour 

and response to corrosion should also be taken into account. 

2.9 SUMMARY OF LITERATURE 

Although various large scale research projects over the decades have aimed to understand the 

degradation of concrete structures, there are considerable variations between predicted 

degradation and actual ‘real world’ degradation.  As further data becomes available with the 

ageing of concrete structures, further laboratory-based research programmes and the 

improvement of on-site non-destructive testing mechanisms, there is much scope to improve 

the overall understanding of the complex failure mechanisms resulting from concrete 

degradation. 
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Having reviewed the available literature, the author believes that more knowledge required 

for the effective estimation of the remaining longevity of offshore concrete.  The gaps in the 

literature identified and described by the author to be further investigated are summarisedin 

Table 2.21. 

TABLE 2.21 BRIEF SUMMARY OF AREAS OF RESEARCH REQUIRING FURTHER INVESTIGATION 

Research Area Comments 

Effect of alternative ions on 

the initiation of corrosion in 

concrete 

Seawater comprises a number of ions, and although research 

continues to use NaCl solutions, the effects of alternative 

ions on corrosion in concrete requires further research. 

Corrosion in a low oxygen/ 

submerged environment 

Contradictory evidence has been presented by researchers 

suggesting that corrosion may or may not occur at 

significant rates in low oxygen environments.  Experimental 

work will be aimed at determining any effects of these 

environments on corrosion rates. 

Influence of cracking on the 

rate of corrosion (all 

environments) 

It is widely accepted that cracking increases the risk and rate 

of corrosion.  However, there is disputed research on the 

effects of autogenous crack healing, crack widths and 

corrosion in submerged, low-oxygen environments.  

Research is required on the corrosion in submerged 

conditions with controlled dissolved oxygen concentrations.  

Large scale corrosion 

damage to concrete 

structures 

The effect of corrosion on service life has been studied, with 

research predominantly focussing on reduction in stiffness 

and increases in crack widths.  The ultimate life of a 

structure, however, is considered less frequently due to the 

importance of service life. 

Effects of corroded lapping 

on structural capacity 

Research into the effects of corrosion on lapping and 

remaining capacity is limited and experimental work often 

uses pull-out testing of lapped reinforcement in an attempt 

to determine remaining bond strength. Experimental work 

will be aimed at improving the understanding of pitting and 

general corrosion on the bond between lapped sections and 

the subsequent effect on the ultimate structural capacity. 
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CHAPTER 3 

3 EXPERIMENTAL DETAILS AND PROGRAMME 

3.1 INTRODUCTION 

Substantial experimental works were carried out in four phases as outlined in Figure 3.1.  Two 

project groups were set up to enable multiple experimental programmes to be run 

simultaneously.  Project Group 1 (PG1) consisted of four students; Horne, Robinson, Yun and 

Khosravi, and carried out works on Phase II experiments.  Work on experimental Phases III 

and IV were distributed between members of Project Group 2 (PG2); Robinson, Hope, 

McKenzie, McKinley, and Loh.  Works were split this way to allow for extensive experimental 

work to be achieved in a limited timescale. 

Due to lack of information on offshore concrete modelling reported in literature reviewed in 

Chapter 2, experimental methodologies were designed to investigate the effects of the source 

chlorides (NaCl or seawater), environmental exposure conditions (submerged, deoxygenated), 

and cracking (static, dynamic) on the rate of degradation (corrosion of reinforced steel) of 

submerged reinforced concrete samples.  Further works were carried out to determine the 

effects of the chloride source on the transport of chlorides through the cover, and the 

consequential effects of corrosion rates remaining cross sectional area of reinforcing bars. 

Additional experimental programmes were undertaken in an attempt to further understand 

the remaining life implications of advanced corrosion.  Beams with various reinforcement 

setups (individual bars, lapped reinforcement, location of artificial pits) were used to evaluate 

overall structural response under extreme pitting and general corrosion conditions. 

Individual experimental phases are discussed in detail throughout this chapter. 

3.1.1 SPECIMEN PROCUREMENT 

All aggregates used are quarried locally in Fife.  The coarse aggregates consist of 4/10mm and 

10/20mm grade and are rounded, relatively smooth edged gravel.  The fine aggregates are up 

to 4mm in size.  The aggregates were tested for absorption and particle density in accordance 

with BS EN 1097-6:2000.  The water absorption allows for the total water of the mix to be 

determined, which produces the correct free water/cement ratio as specified in the mix design. 
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The Portland cement is of grade 52.5 cement conforming to BS EN 197-1:2000.  The fly ash 

used for certain mixes has a category S fineness and category B loss on ignition, conforming to 

BS EN 450-1:2012. 

Due to the relatively low water/cement ratios of the concrete mixes, a high range water 

reducing admixture of Glenium Sky 544, complying with BS EN 934-2:2009. 

Concrete specimens are mixed in accordance with BS 1881-125:1986 with the use of laboratory 

dried aggregates at room temperature with added water content to adjust for the water 

absorption of the aggregates.  The fresh properties of slump and plastic density were 

determined in accordance with BS EN 12350-2:2009 and BS 12350-6:2009 respectively to ensure 

consistency of the mix. 

Once cast, concrete is left to cure for 24 hours in the moulds, covered with damp hessian and 

plastic sheeting.  After 24 hours, the samples are de-moulded and submerged in curing tanks  

at room temperature for a further 27 days (Figure 3.2).  After a total of 28 days, two cubes are 

tested for cube strength using a standard calibrated cube crusher in accordance with BS EN 

12390-3:2002.  Wherever possible, experimental work was carried out using concrete at an age 

of 28 days, unless stated otherwise. 

Material details are listed in full in Appendix A. 

3.1.2 CONCRETE MIXES 

Experimental works were carried out on 19 different mix designs, including the use of silica 

fume and fly ash additives.  These replicate a range of mixes that cover common mix designs 

among offshore structures within the North Sea.  The concrete mixes, as shown in Table 3.1, 

were all tested in Phase I.  Mixes CTBD and CTN are estimated from real offshore structures 

constructed in the 1970s (International Association of Oil and Gas Producers, 2003; 2012). 

Mix CT07 was chosen for use in Phases II and III, as this mix is vital when determining the 

longevity of a specific structure of interest (Tegelaar, 1975).  Although the mix design specifies 

a Norfolk coast flint, gravel and limestone aggregates are used in this study due to the 

unavailability of a suitable flint.  The two aggregate types are used with this mix for Phase II 

of experimental work to provide a comparison between commonly used aggregates in 

concrete.  Phase III continues to use mix CT07, however solely with gravel aggregates. 

In Phase IV, concrete was precast and fabricated externally.  C35/40 concrete was specified 

using only a CEM I mix.  High cement contents were used as the procuring company was 
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producing self-compacting concrete at the time.  For the nature of these experiments, self-

compacting concrete is deemed suitable.  

3.1.3 ENVIRONMENTAL EXPOSURE CONDITIONS 

Chlorides are commonly applied to concrete in laboratory experiments by exposing to sodium 

chloride solutions, either in a tidal, spray or submerged setup.  By applying chlorides using an 

artificial seawater solution with additional ions, Red Sea Salts®, a more realistic marine 

exposure condition was achieved.  The composition of salts was previously determined by 

Atkinson and Bingman (1996).  To achieve consistent chloride concentrations, synthetic sea 

salt and NaCl were each produced to contain 1M chloride concentration; 58.44g/L NaCl and 

66.1g/L artificial seawater. 

Phase I considered two sets of experiments concerned with determining chloride diffusion 

coefficients in varying exposures and quantifying the difference between diffusion of 

chlorides from pure NaCl solutions (Set I) or artificial seawater exposures (Set II).  Phase II 

and Phase III will include exposure in artificial seawater as well as pure NaCl solutions. 

Phase IV beams will be saturated through submersion in galvanised steel outdoor tanks where 

corrosion currents will be applied, thus accelerating corrosion.  These specimens will then be 

exposed to the atmosphere during strength testing, as the effects of exposure conditions are 

inconsequential during this experimental phase as the structural response will be similar in or 

out of the water. 

As the effects of temperature on diffusion and corrosion have been previously investigated 

(Pour-Ghaz, Isgor and Ghods, 2009; Bertolini et al., 2013), the exposed temperature is specified 

as room temperature, and was measured to be within the range of 20±2°C.  Corrosion rates 

can then be adjusted for North Sea temperatures for use in service and ultimate life 

estimations.  
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FIGURE 3.1 OVERVIEW OF RESEARCH PROJECT 
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TABLE 3.1  CONCRETE MIXES FOR PHASE I 

Reference w/c Water Binder Aggregates Admixtures Slump Strength 

PC FA SF Fine 10/4 20/10  (28 days) 

 kg/m3 kg/m3 kg/m3 kg/m3 kg/m3 kg/m3 mm N/mm2 

CT01 0.35 135 380   795 385 710 2.45 160 70.45 

CTBD 0.39 175 450   860 245 720 1.17 190 64.10 

CT02 0.4 150 380   785 380 705 1.25 70 63.20 

CTN 0.4 210 405 105  685 340 685 0 85 54.90 

CT03 0.4 150 265 115  745 370 745 0.78 75 48.92 

CT04 0.4 150 190 190  745 370 745 0.33 70 29.56 

CT05 0.4 160 380  20 735 370 735 1.18 75 63.85 

CT06 0.4 160 360  35 740 370 740 1.57 110 67.20 

CT07 0.42 158 375   745 370 745 0.88 75 46.21 

CT08 0.45 170 378   730 365 735 0.3 65 53.65 

CT09 0.45 170 265 115  730 365 735 0.53 80 42.18 

CT10 0.45 170 190 190  730 365 735 0.18 90 24.84 

CT11 0.45 175 370  20 725 365 725 0.37 110 55.85 

CT12 0.45 180 360  35 720 360 720 0.38 100 52.75 

CT13 0.5 180 360   730 365 730 0.0 85 48.98 

CT14 0.5 180 250 108  730 365 730 0.0 80 34.80 

CT15 0.5 180 180 180  730 365 730 0.0 160 20.01 

CT16 0.5 190 360  20 720 360 715 0.23 100 51.94 

CT17 0.5 190 350  35 715 355 715 0.50 115 51.89 
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FIGURE 3.2 CURING OF CONCRETE SPECIMENS 

 

3.2 PHASE I: DETERMINATION OF APPROPRIATE DIFFUSION COEFFICIENTS 

OF CHLORIDE INGRESS 

3.2.1 NATURAL DIFFUSION TESTING 

As is common practice, modelling of service life is dependent on the use of a measured 

diffusion coefficient.  Through the application of Fick’s Law or other transport mechanisms, 

the onset of corrosion could then be predicted through the use of existing models.  To 

determine a suitable diffusion coefficient for use in modelling, natural diffusion tests were 

carried out.  Although modelling through this method provides extremely vague and variable 

results as highlighted in Chapter 2, a general idea of the performance characteristics of the 

concrete is required. 

3.2.1.1 SPECIMEN SPECIFICATIONS AND EXPERIMENTAL SETUP 

Cubes of all mixes were cast and tested in a method similar to DD CEN/TS 12390-11:2011 and 

NT Build 443.  In addition to the specified exposure of NaCl solution, a seawater solution was 

used.  Each solution contained chlorides of 1M concentration of chlorides (35.5ppt) as 

previously defined. 

The samples were not cut, which would allow for the bulk transport properties to be 

measured, and were therefore replicating ‘real world’ structures more appropriately.   As 
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large offshore and marine structures are often slip formed, a cast surface is more applicable 

than a cut surface. 

3.2.1.2 MEASUREMENTS 

Three specimens were tested after 90 days exposure using a grinding method followed by x-

ray fluorescence (XRF) and water soluble titration to determine the total and approximate free 

chloride concentrations at 8 different depths (Figure 3.3).  Further samples were exposed for 

longer durations and are to be tested by a research group in the future to gather data on the 

ageing effects of concrete under laboratory conditions along with further effects of additional 

ions contained in seawater solutions. 

Analysis of surface skin effects caused by the ions in seawater in comparison to NaCl 

solutions and ageing effect of concretes on chloride diffusion in a submerged environment 

will be undertaken through the use of x-ray diffraction (XRD) and XRF.  The repeatability of 

the test methods and sampling techniques were reviewed and values were determined for a 

probabilistic approach to service-life modelling of offshore submerged concrete.  Empirical 

methods provide sufficient data to allow for a more reliable estimation of time to initiation, as 

recommended by the author in Chapter 2. 
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a) profile grinding b) heating and stirring 

  

c) measuring d) titration 

FIGURE 3.3 GRINDING AND TITRATION EXPERIMENTAL METHOD AND APPARATUS 

3.2.2 MIGRATION TESTING 

3.2.2.1 SPECIMEN SPECIFICATIONS AND EXPERIMENTAL SETUP 

100mm cylinders were cast of three realistic offshore concrete mixes; CTN, CTBD and CT07.  

Two methods of migration testing were carried out; the first method being NT Build 492, and 

the second a Multi-Regime (MR) method outlined in Section 2.5.4.2 (Castellote and Andrade, 

2006).  As per the natural diffusion testing, an artificial seawater solution was used in addition 

to a pure NaCl solution. 

Hot plate Magnetic stirring hot  plate 

Sample changer 

Titrino titration 

equipment 
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3.2.2.2 MEASUREMENTS 

The collection of results allowed for the analysis of steady and non-steady state diffusion of 

chlorides through offshore concretes, the suitability of migration testing with the use of 

artificial seawater solutions, and the provision of further data for a probabilistic approach to 

service life estimation.  Care must be taken when using these measurements for modelling 

purposes as results from such testing can differ greatly due to the applied electrical field 

throughout. 

3.3 PHASE II: CORROSION PROPAGATION IN UN-CRACKED CONCRETE 

As propagation of corrosion has been shown to be the predominant cause of failure for 

offshore concrete structures, experimental work was completed to determine likely corrosion 

rates of steel for use in predicting ultimate longevity of specific concrete materials.  The 

method used in this study has been developed using adaptations of experimental works 

carried out by other researchers previously (Castellote, Andrade and Alonso, 2002; Hussain, 

2011). 

3.3.1 SPECIMEN SPECIFICATIONS AND EXPERIMENTAL SETUP 

The specimens used for this test are beams of length 300mm, width 75mm and depth 125mm.  

These contain 2 no. 10mm diameter (φ) steel reinforcing bars (fy = 500N/mm2) spaced with 

25mm cover from each surface (Figure 3.4).  

The steel reinforcement is cleaned prior to casting using a grit blasting technique until visibly 

a consistent colour (Figure 3.5a).  Holes of 4mm (φ) are drilled and then tapped into one end 

of the steel to allow for copper wire to be attached using stainless steel screws.  Black epoxy 

(Elctrolube low viscosity epoxy resin) was then applied to define an exposed area of steel, 

important when calculating the corrosion current density from the total measured current.  

Beams were cast in bespoke steel moulds (Figure 3.5b), with reinforcement out of the end of 

each beam allowing for monitoring of the connection between the copper wire and steel bar.  

Having cured for 28 days, the faces are sealed with wax and ponding is applied to the hand 

troweled surface (Figure 3.6). 

Sample references and variables are shown in Table 3.2.  
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FIGURE 3.4 BEAM SECTION DETAILS 

  

a) grit blasted reinforcing bar b) casting in bespoke moulds 

FIGURE 3.5 CASTING OF CONCRETE IN BESPOKE MOULDS 

  

a) cured beam b) ponding applied to upper surface and 

waxed 

FIGURE 3.6 CURED BEAMS 
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TABLE 3.2  EXPERIMENTAL REFERENCE TABLE FOR LOW OXYGEN CORROSION EXPERIMENTS 

 A:C O2, 

ppm 

Cube 

Strength, 

N/mm2 

 A:C O2, 

ppm 

Cube 

Strength, 

N/mm2 

 A:C O2, 

ppm 

Cube 

Strength, 

N/mm2 

 A:C O2, 

ppm 

Cube 

Strength, 

N/mm2 

7C-1 

1 

~0 

58.8 

7D-1 

1 

~0 

57.1 

7E-1 

1 

~0 

59.3 

7F-1 

1 

~0 

59.4 
7C-2 4 7D-2 4 7E-2 4 7F-2 4 

7C-3 8 7D-3 8 7E-3 8 7F-3 8 

7C-4 Air 7D-4 Air 7E-4 Air 7F-4 Air 

7G-1 1 

~0 58.5 

7H-1 1 

4 55.9 

7I-1 1 

8 55.9 

7J-1 1 

Air 59.1 
7G-2 0.5 7H-2 0.5 7I-2 0.5 7J-2 0.5 

7G-3 0.3 7H-3 0.3 7I-3 0.3 7J-3 0.3 

7G-4 0.1 7H-4 0.1 7I-4 0.1 7J-4 0.1 

7K-1 

1 

~0 

70.3 

7L-1 

1 

~0 

64.7 

7M-1 

1 

~0 

70.0 

7N-1 

1 

~0 

67.9 
7K-2 4 7L-2 4 7M-2 4 7N-2 4 

7K-3 8 7L-3 8 7M-3 8 7N-3 8 

7K-4 Air 7L-4 Air 7M-4 Air 7N-4 Air 
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3.3.1.1 VARIATION OF OXYGEN CONCENTRATIONS 

Oxygen concentrations were controlled using water in shallow plastic trays, exposing the face 

closest to the cathodic bar in the water.  An Oakton dissolved oxygen meter (Acorn Series 

DO6 Dissolved Oxygen Meter) was used to measure the dissolved oxygen concentration in the 

trays, with target concentrations of 4 and 8 ppm, as shown in Figure 3.7.  Nitrogen is used to 

purge oxygen from the water to reduce the concentration from saturated (~8.5/9ppm) to the 

desired value. 

Preliminary experiments showed that, with a small surface area to volume ratio, oxygen 

completely diffused into a water sample within 2 days.  For larger surface area to volume 

ratios, with little or no disturbing currents within the water, oxygen saturation of the water 

was achieved within 12 hours.  Nitrogen was therefore bubbled to purge oxygen from the 

water, controlling the concentration, every 8 hours from the commencement of the 

experiment.  Although a constant measuring system with an automated oxygen controlled 

tank would be preferable, logistics of such a system were unachievable. 

Due to the rapid oxygen dissolution, controlling oxygen into the tanks proved difficult (Figure 

3.8).  As the surface area to volume of water ratio was high, oxygen diffused into the water 

rapidly.  The target value of 4ppm was exceptionally difficult to achieve, and average values 

of this tank were measured to be around 5ppm.  However, for the purposes of this 

experiment, there is still a significant variation between the two tanks to make a comparison 

between environments. 

 

FIGURE 3.7 OXYGEN CONCENTRATION MEASUREMENTS 
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FIGURE 3.8 EXAMPLE OXYGEN CONCENTRATION READINGS FROM AN EXPOSURE TANK  

 

3.3.1.2 ANODE/CATHODE RATIO VARIATIONS 

Four anode/cathode ratios were cast into the concrete using epoxy to define the exposed 

reinforcement surface.  These ratios were 1, 0.5, 0.25 and 0.05 with a fixed cathode size of 

200mm length.  Corrosion measurements were taken in the centre of the specimen above the 

anodic area of steel. 

3.3.1.3 VARIATION OF AGGREGATE TYPE 

Predominantly, gravel is used for the experimental works.  However, a set of concrete beams 

with limestone aggregates were procured to provide a comparison between the effects of two 

aggregate types on corrosion currents. 

3.3.2 INITIATION OF CORROSION 

There are three commonly used methods of initiating corrosion in concrete specimens: 

• Cast-in chlorides – mixing the concrete using chloride contaminated water. 

• Potentially driven-in chlorides – applying a potential difference between the external 

solution and the steel reinforcement. 

• Chloride exposed natural diffusion – applying a chloride source to the surface of the 

concrete and allowing natural transport mechanisms to take chlorides to the steel 

surface. 
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Each method has limitations, but due to the extent of initiation times due to natural diffusion, 

corrosion will be artificially accelerated using an applied potential difference technique.  

Using cast in chlorides was omitted due to the binding of chlorides and probable detrimental 

effects on cement paste caused by this methodology.  

3.3.3 MEASUREMENTS 

3.3.3.1 OXYGEN CONCENTRATIONS 

Oxygen concentrations are taken with a dissolved oxygen meter calibrated through a two 

point calibration in zero oxygen solution and exposure to atmosphere. 

3.3.3.2 HALF-CELL POTENTIAL 

Using a digital multi-meter with the negative lead connected to the reference electrode 

(Ag/AgCl reference electrode) and the positive connected to the corroding bar, the potential 

difference was initially measured daily, as shown in Figure 3.9.  Using the measured voltage, 

the likelihood of corrosion was assessed in accordance with Section 2.6.3.1.  When the 

probability of corrosion was deemed to exceed 90%, the applied potential was removed and 

corrosion was allowed to propagate freely. 

3.3.3.3 LINEAR POLARIZATION 

Linear polarization measurements (Figure 3.10) were carried out to determine the open circuit 

potential and polarization resistance (Figure 3.11).  By applying the Stearn-Geary equation to 

the measured values an estimated corrosion current is obtained. 

3.3.3.4 POTENTIODYNAMIC MEASUREMENTS 

To provide an estimation of the macrocell corrosion current, the Tafel slopes and coefficients 

of the anodic and cathodic reinforcement are obtained using potentiodynamic scans (Figure 

3.12).  Coupling these measured coefficients with Equation 3.1, a further estimate of the total 

corrosion macrocell current was determined. 

 M� = ∆�∆�  EQUATION 3.1 

Where; 

Rp Polarization resistance, W 

E Potential, mV 

I Current, mA 
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FIGURE 3.9 EXAMPLE HALF-CELL MEASUREMENT SETUP 

 

FIGURE 3.10 LINEAR POLARIZATION RESISTANCE AND POTENTIODYNAMIC SETUP 
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FIGURE 3.11 TYPICAL OUTPUT FROM A LINEAR POLARIZATION SCAN 

 

 
FIGURE 3.12 TYPICAL OUTPUT FROM A POTENTIODYNAMIC SCAN 
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3.4 PHASE IIIA CORROSION PROPAGATION IN UN-CRACKED CONCRETE 

VALIDATION 

The follow up to Phase II involved reproducing the experiments using a different casting and 

exposure technique in an attempt to validate the previous findings.  As there were concerns 

over the availability of oxygen within the system and the speed at which oxygen dissolves 

into exposed water, a more controlled and sealed system was set up in an attempt to restrict 

this availability of oxygen.  

3.4.1 SPECIMEN SPECIFICATIONS AND EXPERIMENTAL SETUP 

Specimens were cast in clear plastic containers of height 200mm with sections of 110x80mm at 

the top and 100x70mm at the base.  The concrete was cast up to a depth of 150mm.  This 

allows for a sealed pond of 50mm depth confined between the lid of the container and the 

surface of the concrete, thus preventing access for oxygen into the system as shown in Figure 

3.13. 

Two large sealed containers of dimensions 670x520x200mm are filled with distilled water and 

sealed (Figure 3.14).  12 holes are cut in the top of the lids to accommodate the concrete 

specimens.  Once the specimens are in situ, silicone sealant is used to prevent oxygen seeping 

through the joint.  

Experimental variables are shown in Table 3.3. 

3.4.1.1 VARIATION OF OXYGEN CONCENTRATIONS 

Initially oxygen concentrations of negligible, 2ppm, 6ppm and atmospheric exposure were to 

be used in accordance with the experiments run in Phase II.  However, due to leakage of 

oxygen through the lid, oxygen saturated water exposure replaced the intermediary values 

(Table 3.3).  Direct comparison between the results with Phase II can be completed to confirm 

the previous findings. 

3.4.1.2 VARIATION OF WATER/CEMENT RATIO 

Two differing water/cement ratios are used, 0.42 and 0.5, to evaluate the variation in corrosion 

rate of oxygen depleted concrete due to differing diffusion coefficients.  As the pore structure 

is more interconnected due to a higher w/c ratio, the movement of chlorides, water and 

oxygen should be faster and therefore increasing the corrosion rate.   
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FIGURE 3.13 CAST SPECIMEN FOR LOW OXYGEN CONCENTRATION VALIDATION 

 

 
FIGURE 3.14 EXPOSURE SETUP FOR OXYGEN VARIATION 

 

 

 

3.4.2 INITIATION OF CORROSION 

Initiation was achieved using a 10V potential difference applied between the pond solution 

and the reinforcing bar as per the method in Phase II, Section 3.3.2. 

Sample 

Saline solution 

Steel reinforcement 
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3.4.3 MEASUREMENTS 

Measurements of oxygen concentration, half-cell potential, linear polarization resistance and 

potentiodynamic scans will all be carried out as described in Section 3.3.3. 

TABLE 3.3  EXPERIMENTAL REFERENCE TABLE FOR LOW OXYGEN CORROSION VALIDATION 

EXPERIMENTS 

Reference Mix No. Solution Oxygen, ppm 

ASW0 

A 

(CT07) 

3 

seawater 

Negligible 

ASW3 3 3ppm¤ 

ASW6 3 6ppm¤ 

ASWA 3 Atmospheric 

ANACL0 3 

NaCl 

0ppm 

ANACL3 3 3ppm¤ 

ANACL6 3 6ppm¤ 

ANACLATM 3 Atmospheric 

BSW0 

B 

(CT13) 

3 

seawater 

0ppm 

BSW3 3 3ppm¤ 

BSW6 3 6ppm¤ 

BSWATM 3 Atmospheric 

BNACL0 3 

NaCl 

0ppm 

BNACL3 3 3ppm¤ 

BNACL6 3 6ppm¤ 

BNACLATM 3 Atmospheric 

Total   48     

¤ change of exposure to oxygen saturated water (~8ppm O2) 
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3.5 PHASE IIIB CORROSION INITIATION AND PROPAGATION IN CRACKED 

CONCRETE 

As discussed in Chapter 2, cracking can have a significant effect on corrosion initiation and 

propagation.  However, the corrosion due to cracks in sub-sea concrete is generally 

inadequately researched and continually ignored in industrial applications. 

Experimental work throughout this phase will allow for the investigation of the effects of 

seawater composition, crack widths, and static and dynamic loading conditions on the rate of 

corrosion.  Close attention was paid to any evidence of self-healing effects and any potentially 

subsequent change in corrosion rate. 

3.5.1 SPECIMEN SPECIFICATIONS 

Beams of mix CT07 (Table 3.1) were cast in pairs in wooden formwork.  Steel reinforcing bars 

of 6mm diameter were located at 25mm cover and 40mm cover to the top and bottom surfaces 

respectively.  Cross-sectional dimensions and details of the beam setup are shown in Figure 

3.15 and Figure 3.16.  

Preliminary experiments where loading of control beams to failure using three-point bending 

at 28 days were carried out (Figure 3.17).  Results of this are shown in Table 3.4. 
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FIGURE 3.15 CROSS-SECTIONAL AREA OF BEAMS 

 

 

 

FIGURE 3.16 EXPERIMENTAL LOADING SETUP FOR STATIC CRACKING 

 
FIGURE 3.17 3-POINT BENDING TEST TO ULTIMATE FAILURE 
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TABLE 3.4  PRELIMINARY BEAM LOADING 

Load, 

kN 

Deflection, 

mm 

Crack width, 

mm 

0.0 0.00 0.0 

1.1 0.06 0.0 

2.0 0.14 0.0 

2.7 0.22 0.0 

3.5 0.64 0.15 

4.1 1.27 0.25 

4.9 1.60 - 

5.8 2.54 1.00 

6.7 5.03 2.00 

7.3 7.37 2.50 

 

 

FIGURE 3.18 LOAD DEFLECTION PLOT FOR UNCORRODED BEAM UNDER THREE-POINT BENDING 
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3.5.2 STATIC CRACKING 

3.5.2.1 EXPERIMENTAL SETUP 

The static cracking experimental setup is a variation of a similar experimental cracking 

technique carried out by Jaffer and Hansson (2009).  It was decided to bend the beams with 

one reinforcing bar in tension, acting as a working electrode, thus allowing for corrosion to 

initiate on this outer bar rather than over a combination of two bars.  

Cracking is to be induced in a three-point loading rig comprising two stainless steel brackets 

and a round stainless steel rod as a fulcrum.  Two beams are configured back to back with 

cracking located on the outer surface of each beam where the 40mm cover is located, as shown 

in Figure 3.19 and Figure 3.20.  

The beams are then continuously submerged in either a sodium chloride solution or an 

artificial seawater solution (1M concentration of chlorides) (Table 3.5).  Submerging all beams 

limits the oxygen available to the steel reinforcement to below 9ppm while keeping the beams 

saturated. 

3.5.2.2 INITIATION OF CORROSION 

Corrosion initiation is achieved using two methods; artificially induced through the use of an 

applied potential difference, and naturally induced through the diffusion of chlorides through 

the crack.  With crack widths of 0.2mm and above, initiation of corrosion was found to occur 

extremely quickly and therefore there is no real requirement for artificial initiation. 

Artificial initiation, however, was applied to validate results obtained in Phase II, whereby all 

experimental programmes used a potential driven initiation due to time constraints.  By 

comparing the differences between the two initiation methods, the results from Phase II can be 

evaluated. 

3.5.2.3 LOADING SCHEDULE 

Loading for the static beams is achieved manually through tightening the bolts across one end 

of the beam sets creating a three-point bending setup.  Loads are applied after 28 days of 

curing and transferred to submerged exposure in tanks.  The crack widths are controlled by 

monitoring with a crack-width microscope routinely and loading adjusted accordingly.  
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                                                   (a) loading brackets                                      (b) formation of a crack at centre of beam 

FIGURE 3.19 LOADING SETUP 

 

      
        (a) seawater exposure                                                (b) NaCl exposure  

FIGURE 3.20 SUBMERSION OF CRACKED BEAMS IN TANKS 
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TABLE 3.5  STATIC CRACKING EXPERIMENTAL SETS 

Reference Set 28 day cube 

strength,˘ 

N/mm2 

Crack width, mm Exposure 

solutionˁ 

Initiation 

method 
Beam 1 Beam 2 

NACL02N A 58.50 0.2 0.2 NaCl Natural 

NACL07N B 61.70 0.7 0.7 NaCl Natural 

SW02N C 58.45 0.2 0.2 
Artificial 
Seawater 

Natural 

SW07N D 59.30 0.7 0.7 
Artificial 
Seawater 

Natural 

NACL005N E 52.90 0.01 0.02 NaCl Natural 

NACL05N F 56.55 0.5 0.5 NaCl Natural 

NACL02A G 55.95 0.2 0.2 NaCl Accelerated 

SW02A H 61.90 0.3 0.2 
Artificial 
Seawater 

Accelerated 

˘ Mix design CT07 used for all beams 

ˁ Submerged in solution at room temperature (20±2°C) 
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3.5.3 DYNAMIC CRACKING  

3.5.3.1 EXPERIMENTAL SETUP 

Complete exposure conditions and loading schedule for the dynamic cracking beams are 

reported in Table 3.6.  The setup allows for up to four beams, sitting vertically, being  

submerged in aqueous sodium chloride solution and loaded horizontally using a combination 

of manual loading through threaded bolts and a variable actuator with a 50mm stroke and 

maximum force 6kN (RoboCylinder RCP2-RFA-I-PM-5-50-P1), shown in Figure 3.21.  All 

beams are loaded with a variable repetitive load applied through the actuator to increase 

cracking up to desired widths and then reduce to an unloaded state.  

The framework, constructed from scaffold tubes, angular steel and steel sheets have been 

configured to support up to four beams (Figure 3.22 and Figure 3.23).  Steel, susceptible to 

rusting, was sprayed and the joints wrapped to assist in protecting from corrosion.  To 

decrease the payload due to bending and friction of the loaded angle, the beams were 

completely unloaded, allowing for relaxation of the framework. 

TABLE 3.6  DYNAMIC CRACKING EXPERIMENTAL SETS 

Reference 28 day cube 

strength,˘ 

N/mm2 

Loading 

scheme∞ 

Crack widths, 

mm¬ 

Exposure 

solutionˁ 

NACL01D-1 57.55 0-7mm 0.15 (0.2) NaCl 

NACL02D-2 57.55 0-7mm 0.1 (0.2) NaCl 

˘ Mix design CT07 used for all beams 

∞ 7mm final deflection at the loaded end  

¬ Reported crack widths were measured in an unloaded condition after initial loading at 91 hours 

(final crack width due to deflection of the beam) 

ˁ Submerged in solution at room temperature (20±2°C) 
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FIGURE 3.21 ROBOCYLINDER RCP2 ACTUATOR 

 

FIGURE 3.22 OVERVIEW OF FRAMEWORK FOR DYNAMIC CRACKING OUTSIDE THE TANK 
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FIGURE 3.23 PLAN OF EXPERIMENTAL SETUP 

 

 

 

       

FIGURE 3.24 DYNAMIC CRACK GROWTH 
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FIGURE 3.25 SETUP OF DYNAMIC BEAM LOADING IN SUBMERGED ENVIRONMENT 

 

3.5.3.2 INITIATION OF CORROSION 

Similarly to static cracking experimental work, Section 3.5.2.2, initiation of corrosion was 

achieved using natural diffusion.  Artificial acceleration of initiation through application of a 

potential difference was omitted during dynamic loading as corrosion occurs when chlorides 

reach the steel almost instantaneously through the crack, causing significant corrosion 

propagation at an early age. 

3.5.3.3 LOADING SCHEDULE 

Data were achieved on two beams by using the program, ROBO Cylinder PC Software 

Version 7.  The beams were loaded to desired crack widths and unloaded back to an unloaded 

displacement with a frequency of around 0.14Hz (1 cycle every 7 seconds).  The actuator was 

controlled by displacement rather than load, with the displacement cycling from 6mm to 

22mm at the tip of the beam as shown in Figure 3.26. 
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FIGURE 3.26 EXAMPLE LOADING SETUP FOR A SIMPLE CYCLIC LOADING 

 

3.5.4 MEASUREMENTS 

3.5.4.1 CORROSION MEASUREMENTS 

Potentiodynamic, linear polarisation, and half-cell potential measurements were completed in 

an identical manner to the methods used in Sections 3.3.3. 

Potentiodynamic scans were applied at a rate of between 1 and 10mV/s due to the rapid 

drying of the concrete under testing conditions.  A balance was struck between the 

requirement for consistent measurements and a changing environment.  The results were 

carefully examined with the use of LPR and HC measurements to determine suitable 

predictions of corrosion rates.  HC potentials were measured 5 minutes after retrieving from 

the tanks.  

Measurements continued up to 3 months or until corrosion rates stabilised. 
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3.5.4.2 CRACK WIDTHS 

Crack width measurements were taken periodically to determine if the crack width varies 

over time.  These crack widths, however, could only be determined once the loading has been 

removed, preventing the maximum crack width measurement from being precisely known.  

Dynamic loading will cause the crack widths to increase over time without the effect of 

corrosion, however as the deflection remains constant, the loading force may be reduced and 

crack widths maintained as constant.  Corrosion will, subsequently, decrease the tensile 

capacity of the steel and possible bond loss will reduce the stiffness of the section.  Combining 

these effects will increase the deflection and the crack width of the beams.  

3.6 PHASE IV STRUCTURAL EFFECT OF CORROSION OF REINFORCEMENT 

Phase IV is an additional set of experiments aimed at defining the effects that pitting and 

general corrosion has on structural capacity of beams with straight reinforcement and lapped 

reinforcement.  This work was undertaken with Robinson (2013) and Loh (2013), with the 

majority of lapping experiments completed by Robinson (2013).  

3.6.1 SPECIMEN SPECIFICATIONS 

Concrete was cast by an external supplier using a CEM I concrete mix with a target 

characteristic strength of 35/40 (Table 3.7).  The manufacturing plant were trialling SCC (self-

compacting concrete) and therefore provided high cube strengths, which was reflected in the 

maximum bending strength of the beams.  The mix design was as follows: 

Free water/cement ratio 0.48 

OPC (CEM I 52.5N) 465 kg/m3 

Cambusmore washed concrete sand 950 kg/m3 

Cambusmore 20-6mm coarse aggregate 950 kg/m3 

ADVA 576 super plasticiser 0.8% wt. cement 

Cubes of side 150mm were cast with corroded and un-corroded reinforcement of length 

300mm.  Each end of the reinforcement was coated with epoxy, leaving 100mm exposed to the 

interior of the concrete allowing a bond to develop (Figure 3.27).  The bar schedule and 

sample references are shown in Table 3.8. 
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Beam Set A (Table 3.9), 20 beams with dimensions 200mm x 150mm x 1500mm, were procured 

as shown in Figure 3.28.  Artificial pitting corrosion at varying locations of the three steel bars 

was done prior to the application of four strain gauges located in the constant moment area of 

the beams as detailed in Section 3.6.3.2. 

Beam Set B (Table 3.10), 20 beams also with dimensions 200mm x 150mm x 1500mm, were 

procured as shown in Figure 3.29.  Three strain gauges are attached to each steel bar located at 

125mm centres throughout the lapped area of reinforcement. 

 

TABLE 3.7  DENSITY AND STRENGTH DATA FOR BEAM SETS A AND B 

Mix date Beams Density, kg/m3 Strength, N/mm2 

14 Dec 12 A1, A2, A7, A8, A14 2460 66 

17 Dec 12 A5, A6, A15, A16 2480 71 

18 Dec 12 A3, A10, A19, A20 2470 65.5 

19 Dec 12 A4, A11, A17, A18 2480 63 

20 Dec 12 A9, A12, A13 N/A N/A 

22 Apr 13 - 2470 64 

23 Apr 13 - 2490 65 

24 Apr 13 - 2480 67.5 

25 Apr 13 - 2480 68.5 
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FIGURE 3.27 CUBE DIMENSIONS FOR PULL-OUT TESTING 

 

 

 
FIGURE 3.28 BEAM SET A DETAILS (ROBINSON, 2013) 
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FIGURE 3.29 BEAM SET B DETAILS (ROBINSON, 2013) 

 

TABLE 3.8  PULL-OUT BAR SCHEDULE 

Reference Description 

PO1 1 Uncorroded bar - control 

PO1 2 Centre 25mm ground and glued (replicating gauge attachment) 

PO1 3 Centre 100mm ground and glued (replicating gauge attachment) 

PO2 1 Uncorroded bar – control 

PO2 2 2.5% corrosion – cast in 

PO2 3 5% corrosion – cast in 

PO2 4 7.5% corrosion – cast in 

PO2 5 2.5% corrosion – bar cast in and forced corrosion 

PO2 6 5% corrosion – bar cast in and forced corrosion 

PO2 7 7.5% corrosion – bar cast in and forced corrosion 
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TABLE 3.9  BAR DETAILS FOR GENERAL AND PITTING CORROSION – BEAM SET A 

Beam 

General Corrosion, 

% wt. steel 

Pit depths, 

mm 

Bar 1 Bar 2 Bar 3 
Bar 1 Bar 2 Bar 3 

L C R L C R L C R 

1 0 0.0 0.0 
         

2 0 9.0 0.0 
         

3 0 9.0 0.0 
    

1.03 
    

4 0 11.0 0.0 
    

0.78 1.36 
   

5 0.0 10.0 0.0 
   

1.6 1.12 1.15 
   

6 5.6 5.6 5.6 
         

7 12.0 0.0 0.0 
 

0.74 
       

8 12.0 0.0 0.0 
 

0.93 1.08 
      

9 10.0 0.0 0.0 1.1 0.75 1.09 
      

10 9.0 9.0 9.0 
         

11 9.8 9.8 0.0 
 

1.4 
  

1.52 
    

12 20.0 20.0 0.0 
 

1.11 0.79 
 

0.85 1.18 
   

13 8.0 8.0 0.0 1.35 1.17 1.21 1.14 1.38 0.98 
   

14 13.5 13.5 13.5 
         

15 8.2 8.2 8.2 
 

0.88 
  

1.18 
  

1.19 
 

16 2.5 2.5 2.5 
 

1.05 0.94 
 

1.01 0.88 
 

1.27 1.45 
17 9.8 9.8 9.8 1.00 1.21 0.74 1.03 1 1.1 1.49 0.87 1.24 
18 Taped 0 0 Taped 

  
19 0 Taped 0 

 
Taped 

 
20 Taped Taped 0 Taped Taped 
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TABLE 3.10 BAR DETAILS FOR GENERAL AND PITTING CORROSION – BEAM SET B 

Beam 

 General 

Corrosion, 

% wt. 

Pitting, 

mm 

 All bars Bar 1a Bar 1b Bar 2a Bar 2b 

 
 

A B A B A B A B 

1 
A 0 

 
  

     
B 0         

2 
A 5         

B 5         

3 
A 10         

B 10         

4 
A 20         

B 20         

5 
A 5 X       X 

B 5 X       X 

6 
A 5  X     X  

B 5  X     X  

7 
A 10 X       X 

B 10 X       X 

8 
A 10  X     X  

B 10  X     X  

9 
A 20 X       X 

B 20 X       X 

10 
A 20  X     X  

B 20  X     X  

 

3.6.2 PULL-OUT TESTING 

Pull-out testing was completed using the setup shown in Figure 3.30. Measurements of force 

against displacement were recorded and plotted to compare the effects of corrosion on 

concrete/steel bond. This testing was aimed at providing information for the further 

experiments by providing an insight into the effects of corrosion on bond loss, as well as any 

loss of bond due to the gluing of strain gauges onto the bars. 

Alterations to the schedule were made after the initial cubes were tested due to the lack of 

bond movement (measured using LDVTs) at corrosion levels of up to 7.5%, and updated 

schedules are discussed in Chapter 7. 



 

120 
 

 

FIGURE 3.30 PULL-OUT TEST EXPERIMENTAL SETUP 

 

3.6.3 STRAIN DISTRIBUTIONS OF CORRODED REINFORCED BEAMS 

3.6.3.1 EXPERIMENTAL SETUP 

Four-point bending tests were conducted on all beams after corrosion, loading to ultimate 

failure while measuring deflections, strains and crack patterns (Figure 3.31).  

 

FIGURE 3.31 FOUR-POINT BENDING TESTING WITH DEFLECTION AND STRAIN MEASUREMENTS 
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3.6.3.2 CORROSION OF REINFORCEMENT 

Prior to casting, pitting corrosion was induced using a potential difference of 12V between a 

copper wire cathode above a wet sponge electrolyte and the steel reinforcement.  Electrical 

tape limited the area of steel in connection with the electrolyte, causing an artificial square pit 

of target depth 1mm (Figure 3.32).  The depths of induced pits were then measured using 

callipers with the potential difference removed when the pit depth reaches 1mm. 

After casting, a positive terminal is connected to the corroding bars and the negative terminal 

to a cathode located in a pond setup on the top of an inverted beam (Figure 3.33 and Figure 

3.34) a direct electric current was applied forcing a generalised corrosion of the steel.  The 

percentage mass loss of the steel was then estimated from the averaged current and time.  

 
FIGURE 3.32 ARTIFICIALLY INDUCED PITTING CORROSION 

 

 

FIGURE 3.33  OVERVIEW OF BEAMS DURING CORROSION 

 

2mm 
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FIGURE 3.34 CONNECTION OF BEAM 1 BAR 9 DURING THE APPLICATION OF A CORROSION CURRENT 

 

3.6.3.3 LOADING SCHEDULE 

Loading was completed at a rate of 10kN/min using a 4-point loading setup, up to ultimate 

failure whereby the peak load cannot be sustained.  Deflection measurements were made 

every 2kN increments, with strain readings being logged through a Microlink data logger 

once per second. 

Cyclic loading of lapped sections consisted of 4 cycles to 10kN then 1 cycle to 60kN, repeated 

then loaded to failure. 

Saline solution 

Negative connection 

Positive connection 
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CHAPTER FOUR 

4 EFFECTS OF THE SOURCE OF CHLORIDES ON THE INITIATION 

OF CORROSION IN REINFORCED CONCRETE  

4.1 INTRODUCTION 

As results reported in literature and measured during previous research carried out in the 

Concrete Technology Unit (CTU) at the University of Dundee (e.g. Abu Hassan, 2012) show 

there are significant discrepancies between expected chloride concentrations and actual 

chloride concentrations in marine and offshore structures.  

From laboratory measurements, and cores from marine structures, several researchers have 

attempted to explain the differences between observed chloride profiles and profiles obtained 

from the laboratory through the application of an ageing factor, which reduces the chloride 

diffusion rate exponentially over time for a fixed number of years (Thomas and Bamforth, 

1999; Helland, 2008; Andrade, Castellote and d’Andrea., 2011).  Other researchers have noted 

that alternative mechanisms in the surface layer of the concrete may be critical in the 

apparently slower diffusion rates noted in real structures (Mohammed, Yamaji and Hamada, 

2002b). 

Laboratory methodologies to study chloride diffusion and migration commonly use sodium 

chloride solutions (NT Build 443, ASTM C1202, CEN TS 12390-11).  Use of pure solutions may 

lead to  an unrealistic interpretation of chloride movement through concrete exposed to 

seawater if other components of seawater play an active part in influencing diffusion.  In order 

to  assess the influence of other components in the seawater on chloride diffusion, 

experimental work was carried out in an attempt to further understand the transport of 

chlorides through concrete and attempt to quantify differences between results when exposed 

to the more complex environment that seawater presents. 

The study comprised a number of samples with varying mix designs (see Table 3.1) 

submerged in seawater and sodium chloride solutions, with chloride measurements and 

recordings taken in accordance with CEN TS 12390-11.  Migration experiments (MR and 

NTBuild 492) were carried out on CEM I concrete to evaluate the suitability of these methods 

with the use of artificial seawater, and determine if short term experiments yield equivalent, 
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reduced, or increased chloride diffusion coefficients compared to the use of sodium chloride 

solutions.  

From the measurements, estimates of diffusion coefficients suitable to model the submerged 

concrete in specific offshore structures are obtained.  These provide a mean and standard 

deviation for use in deterministic and probabilistic modelling and allow for the time to 

initiation to be determined and assessed. 

4.2 SUBMERGED NATURAL DIFFUSION 

Although there are potentially a number of different transport mechanisms of chlorides, in 

submerged concrete it can be assumed that diffusion is the predominant, if not the only, 

transport mechanism acting prior to corrosion initiation.  Diffusion coefficients were 

determined for all mixes at an age of 90 days, as shown in Table 4.1. 

Chloride diffusion coefficients for all mixes correspond to values expected for concretes of 

those qualities as reported in literature and extensively researched (eg. Abu Hassan 2013). 

Results from artificial seawater experiments at an age of 90 days show little or no diffusion of 

chlorides into the concrete, even though there are significant concentrations of chlorides in the 

surface layer of the concrete up to 1mm depth.  This supports a view by Abu Hassan (2013) 

that alternative chemical interactions between the concrete matrix and alternative ions present 

in seawater are having a reducing effect on chloride transport.  At 180 days, CEM I concretes 

continued to show no further ingress of chlorides from artificial seawater exposure. 

Typical chloride profiles showing the variation between seawater and NaCl solutions is 

shown in Figure 4.1.  Samples shown, CT01B and CT08B, contain negligible concentration of 

chlorides deeper than 3mm into the concrete. 
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TABLE 4.1  AVERAGED DIFFUSION COEFFICIENTS AT 90 DAYS 

Reference NaCl Seawater 

Dapp x10-12, m2/s 
Cs, % wt. 

concrete 
Dapp x10-12, m2/s 

µ σ µ σ  

CT01 1.81 0.30 0.45 0.05 

Due to no significant 
ingress of chlorides, 
diffusion coefficients 
could not be 
determined. 

CT02 2.29 0.20 0.33 0.06 

CT03 0.91 0.20 1.42 0.19 

CT04 1.17 0.13 1.52 0.14 

CT05 0.19 0.05 1.45 0.20 

CT06 0.54 0.18 0.70 0.10 

CT07 1.32 0.39 1.20 0.16 

CT08 2.82 0.63 0.41 0.03 

CT09 1.18 0.15 1.53 0.22 

CT10 1.45 0.56 1.98 0.21 

CT11 0.52 0.13 0.93 0.06 

CT12 1.65 0.21 1.69 0.16 

CT13 1.84 0.57 0.46 0.05 

CT14 1.42 0.08 1.70 0.13 

CT15 1.91 0.02 1.98 0.09 

CT16 1.02 0.37 1.02 0.06 

CT17 1.97 0.19 1.46 0.11 

CTBD 0.99 0.20 1.32 0.18 

CTN 1.93 0.60 0.36 0.10 
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FIGURE 4.1 TYPICAL CHLORIDE PROFILES FOR CEM I CONCRETES IN NACL AND SEAWATER SOLUTIONS 

(AFTER 90 DAYS) 

 

4.3 CHLORIDE MIGRATION 

Chloride migration test methods are rapid but use an externally applied electric potential 

across the specimen.  Multi Regime (MR) tests and NT Build 492 were carried out on 5, CEM I 

concrete types; 02, 07, 08, N and BD.  

4.3.1 MULTI-REGIME (MR) TEST 

Results from the MR test methods show no correlation between results from sodium chloride 

(NaCl) or seawater exposure as shown in Figure 4.2.  Measured diffusion coefficients are 

unpredictable with large variations between results.  The method of measuring the 

conductivity of the downstream cell is suitable for the use of NaCl, as only the chloride ion 

will influence the conductivity due to the absence of alternative anions in the solution.  The 

transport of additional ions, most notably sulphates, will cause an increase in conductivity 

leading to incorrect chloride measurements.  Therefore, the MR test should not be used to 

evaluate transport of chlorides from a seawater solution. 

4.3.2 NT BUILD 492 

When exposed to NaCl solution, NT build results are in agreement with trends seen using 

natural diffusion test methods, producing diffusion coefficients that are up to twice as large as 

those measured with exposure to seawater, as shown in Figure 4.3.  As the measurement 
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technique determines the chloride concentration only, the results are more reliable than those 

from the MR test.  

The difference is observable throughout a 24 hour test, suggesting that competition between 

sulphate and chloride ions through the pore structure could be a contributing factor.  It is 

likely that due to the potential difference applied and short duration of the testing, a pore 

blocking mechanism is unlikely to have established fully.  However, it is possible that physical 

blocking mechanisms through either the deposition of brucite on the surface, or constriction of 

the pores due to a rapid reaction of sulphates with the cement paste causing a build-up of 

gypsum or ettringite, could prevent further chloride ingress.  

 

FIGURE 4.2 MR TEST RESULTS FOR 5 CEM I CONCRETE MIXES 

 

FIGURE 4.3 NT BUILD 492 TEST RESULTS FOR 4 CEM I CONCRETE MIXES 
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4.4 COMPARISONS BETWEEN TIDAL AND SUBMERGED CHLORIDE INGRESS 

4.4.1 ARTIFICIAL SEAWATER 

Results obtained by Abu Hassan (2013) of tidal exposure experiments using artificial seawater, 

as described in Chapter 3, of 1M chloride concentration are summarised in Table 4.2.  Typical 

profiles are shown in Figure 4.4. 

Care must be taken when utilising Dapp and Cs values obtained through the use of fitting 

Crank’s solution to the measured values obtained from concrete profiles where seawater was 

the exposure solution.  Measured diffusion values remain artificially high when using 

common practice and ignoring the first measured point, and in contrast Cs is much lower than 

the first measured point. 

By calculating the diffusion coefficients using all points produces Cs values much larger and 

much reduced Dapp values (Table 4.3).  Although the profiles shown in Figure 4.5 appear to 

show that ignoring the first point provides a better fit, regression analysis proves that 

including all points for this type of exposure provides a slightly better fit when maximising R2. 

TABLE 4.2  DIFFUSION RESULTS OF CONCRETE EXPOSED TO TIDAL SEAWATER OBTAINED BY ABU 

HASSAN (2013) 

Concrete mix w/c ratio Dapp (x10-12), 

m2/s 

CS, %wt. 
concrete 

CEM I 0.35 1.23 0.106 

CEM I 0.4 3.45 0.086 

CIII/A 0.5 0.56 0.153 

CV/A-M (S-LL) 0.55 0.44 0.141 

CIII/B 0.5 0.92 0.614 

CII/B-V 0.5 2.42 0.080 

CIV/B-V 0.5 4.18 0.636 
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TABLE 4.3  CALCULATED VALUES FOR TIDAL EXPOSURE SAMPLE ZD1.35 7/4 S2 22/6 XS (ABU HASSAN 2013)  

 Cs, %wt. concrete Dapp (x10-12), m2/s R2 

Ignoring first point 0.110 1.27 0.990 

All points 0.602 0.08 0.991 

 

 
FIGURE 4.4 TYPICAL MEASURED PROFILES OF TIDAL AND SUBMERGED ARTIFICIAL SEAWATER 

EXPOSURE  

 

 
FIGURE 4.5 TYPICAL BEST FIT UTILISING DIFFERENT MEASURED VALUES (SUBMERGED) 
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4.5 SURFACE SKIN ANALYSIS 

X-ray diffraction (XRD) analysis was carried out on a selection of samples of the concrete 

surface layer.  XRD results, typical example shown in Figure 4.6, show no significant 

differences between concrete exposed to sodium chloride or seawater solutions when 

analysed qualitatively.  Although peaks are slightly differing in magnitude, no significant 

variations in XRD response were noted. 

 

 
FIGURE 4.6 EXAMPLE XRD PLOTS FOR SURFACE LAYER ANALYSIS OF SUBMERGED SAMPLE CT07A (TOP)  

AND CT07B 

 

XRF results comparing the surface layers of samples in seawater and sodium chloride are 

shown in Table 4.4. 

TABLE 4.4  AVERAGE RATIOS BETWEEN CONCENTRATIONS OF IONS IN THE SURFACE LAYERS OF CEM I 

CONCRETES EXPOSED TO NACL AND SEAWATER 

Ca Si Al Fe Mg Mn Ti K Na P S 

µ 0.97 1.02 1.00 1.01 1.00 0.99 1.01 1.00 0.82 1.01 0.95 

σ 0.06 0.02 0.05 0.08 0.10 0.05 0.08 0.05 0.11 0.06 0.08 
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Sodium is the only element to show a significant difference between the concentrations within 

the surface layers of the two sample sets.  The samples immersed in a sodium chloride 

solution being 18% lower than in artificial seawater.  Although there is an apparently 

significant difference, it is unlikely this contributes to the reduction in chloride ingress 

observed.  This could be due to the deposition of sodium sulphates from seawater into the 

surface layer, which are less soluble than sodium chloride and may remain in the surface layer 

more readily. 

Other researchers (Buenfeld and Newman, 1984; Santhanam, Cohen and Aloek, 2006) had 

identified a difference between ions present in surface layers of concrete exposed to differing 

solutions, however the lack of observed or measured differences in this experiment may be 

due to the depth of surface layer being 1mm.  If brucite is only evident in the outer 35µm as 

reported in literature (Chapter 2), it would be extremely difficult to determine any differences 

with such large layers. 

4.6 EFFECT OF THE METHOD OF DETERMINATION OF DAPP 

Determining Dapp from chloride profiles using a least-square non-linear regression analysis is 

common practice (CEN TS 12390-11), although the application of this technique varies 

depending on researcher.  Currently, CEN TG5 (unpublished) are investigating and the 

differences between techniques to determine a consistent Dapp for use in service-life modelling 

of un-cracked concrete structures.  Service life being defined as the time to initiation of 

corrosion due to the ingress of chlorides through diffusion based transport mechanisms.  

Four methods of determining an appropriate Dapp have been carried out on multiple profiles 

from samples contained within this research.  All profiles are from experimental cubes carried 

out in accordance with CEN TS 12390-11 using only CEM I concrete with a cast surface and 

submerged in 1M NaCl solution.  Non-linear regression analysis was used with the following 

variations in methodology: 

• Method 1 – the outermost measured point is ignored due to variability in surface layer 

properties 

• Method 2 – all measured points are included 

• Method 3 – only Dapp is variable with Cs fixed at the maximum measured chloride 

concentration ignoring first point 

• Method 4 – Dapp is variable with Cs fixed at the maximum measured chloride 

concentration including all measured points 
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Commonly, chloride profiles are of varying shape, with profiles often having a higher 

concentration of chlorides at the second layer than the first (Figure 4.7).  Profiles obtained on 

CEM I concretes in this study consistently have the most concentrated chloride content in the 

surface layer.  The discrepancy is most likely due to the use of a cut surface for the 

standardised test method, CEN TS 12390-11.  For measured profiles where the chloride 

concentration is largest in the second layer, applying Method 1 would cause an artificially 

high Cs and a lower Dapp. 

As the chloride content of the exposed solution is kept constant throughout all samples, a 

fixed value for Cs would be more realistic.  When predicting service life of concrete using a 

relatively low calculated Dapp and an artificially increased Cs, the estimated life could be 

significantly overestimated. 

Assuming a 50mm cover, Ccrit of 0.07% wt. concrete, and Cs as determined for individual 

methods, the time to initiation of corrosion (assumed service life by many researchers) for a 

concrete mix was calculated using each of the stated methodologies (Table 4.5). 

 

FIGURE 4.7 MEASURED CHLORIDE PROFILE AND COMPARISON OF METHODS OF DETERMINATION OF 

DIFFUSION COEFFICIENT AND CHLORIDE SURFACE CONCENTRATION 
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TABLE 4.5  EXAMPLE OF CALCULATED DIFFUSION COEFFICIENTS, SURFACE CHLORIDE 

CONCENTRATIONS AND TIME TO INITIATION  

Method Dapp (x10-12), 

m2/s 

CS, 

% wt. concrete 

ti, 

years 

1 2.79 0.330 9.1 

2 3.64 0.281 8.2 

3 2.71 0.254 12.3 

4 2.71 0.254 12.3 

 

For the purposes of long term modelling, as required for existing offshore structures, it is 

recommended curve fitting for chloride profiles obtained from standardised submerged 

testing should be achieved through Method 4.  Although the R2 coefficient is not always the 

best, taking into account all measured data is important whilst fixing the surface chloride 

concentration to either the highest value or an agreed constant as determined by the exposure 

conditions.  Fixing this surface concentration will provide a more realistic determination of 

diffusion into the concrete as diffusion is driven by a concentration gradient.  It should be 

noted that this method of curve-fitting and determination of Dapp should be used for profiles 

obtained from laboratory methods in a submerged environment and not structures in the 

tidal, atmospheric or splash zones.  At these locations alternative chloride transport 

mechanisms, such as absorption or convection, can significantly influence the obtained 

profiles, and therefore fitting an error function curve assuming a diffusion-based transport 

mechanism may be erroneous. 

Although it is suggested that these diffusion coefficients could be used in predicting initiation 

time if necessary, extrapolating data from laboratory testing at 90 days to decades of exposure 

is extremely unreliable.  As there is large variability between results obtained from different 

experimental procedures and calculations, diffusion coefficients should be used as a guideline 

to assist in concrete mix designs. 
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4.7 KEY OBSERVATIONS 

4.7.1 EFFECTS OF ALTERNATIVE IONS FROM SEAWATER SOLUTIONS 

Difficulty in predicting the initiation of corrosion due to chloride ingress from exposure to 

seawater solutions remains because of the inability to single out one mechanism causing the 

prevention of chlorides through short term testing.  The combination of the large number of 

alternative ions appears to cause an observed reduction in the chloride ingress, although this 

is unquantifiable from short term exposure. 

Currently ageing factors are applied to concrete structures to explain frequent variations 

between measured diffusion coefficients using laboratory testing and ‘real world’ profiles 

after natural exposure including additional ions.  Although there is evidence of ageing in 

laboratory studies, the discrepancy between some measured diffusion coefficients can be 

explained through a ‘seawater effect’ (i.e. the difference in composition between NaCl 

solutions and seawater) 

Sampling of further concrete specimens submerged for a longer duration is likely to provide 

diffusion coefficients for seawater exposure, which will allow for a coefficient to be applied to 

measured diffusion coefficients from NaCl solutions, and is recommended in Chapter 9. 

Migration testing methods commonly applied through the use of NaCl are unsuitable for 

using seawater solutions.  MR testing produces artificially high diffusion coefficients due to 

conductivity measurements being affected by multiple ions, and other experimental methods 

do not allow for the formation of any blocking mechanisms, which are apparently present in 

natural diffusion tests. 

4.7.2 DETERMINATION OF DAPP FROM OBSERVED PROFILES 

The method for determining Dapp from chloride profiles can have a significant effect on 

estimated service life should it be defined as the time to initiation due to chloride diffusion.  

Values for Cs and Dapp currently being used for long term modelling are inconsistent causing 

large errors in estimations of time to initiation. 

It is recommended that determination of values for use in long-term modelling should be 

calculated using sound engineering judgement from a number of profiles collected from 

concrete with an identical, or at least similar, concrete mix exposed to similar conditions.  

Natural diffusion experiments should be used to gather chloride data, before assessing 
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diffusion using a value of Cs not exceeding results found on ‘real world’ structures when used 

for modelling purposes. 

4.7.3 EVALUATION OF THE USE OF DAPP AND CS FOR SERVICE-LIFE MODELLING 

Although these diffusion coefficients are commonly used to predict the onset of corrosion, a 

number of variables are often omitted through the use of this technique alone. 

Early age shrinkage or loading can cause cracking which can rapidly decrease the initiation 

period due to an increased rate of chloride ingress.  Cracks are generally ignored when 

determining initiation times, even though life estimates ignoring cracking can be significantly 

higher than for cracked concrete.  Additionally, ignoring alternative ions in the exposed saline 

solution could provide unrealistically conservative estimates for the initiation time causing 

concrete to be over specified. 

Although determining a diffusion coefficient provides a comparative evaluation between 

different concrete qualities, which can be extremely useful when used in conjunction with 

condition surveys of existing structures, a more comprehensive modelling technique is 

required to provide a realistic estimate of long-term service or ultimate life.  Consideration 

must be taken of the effects of cracking, environment, and concrete quality on the initiation 

period as well as the propagation of corrosion and associated damage.  

Additionally, due to the heterogeneous nature of concrete, initiation of corrosion should be 

modelled spatially as well as temporally.   
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CHAPTER FIVE 

5 CORROSION PROCESSES IN UN-CRACKED CONCRETE 

5.1 INTRODUCTION 

Experimental results from Phase II and Phase IIIA are presented and reviewed to provide 

analysis on the effect of submerged oxygen concentrations on corrosion rates.  Tafel 

coefficients, corrosion potential, linear polarization resistance and corrosion currents were 

measured over a period of up to 6 months, which allowed for corrosion rates to settle and 

consistently stable rates to be measured. 

48 concrete specimens were used to test differing oxygen controlled environments; sealed 

concrete, a single face exposed to 4ppm, 8ppm and the atmosphere.  32 beams contained 

gravel aggregates and the remainder contained limestone aggregates.   

Validation experiments were then completed using 48 samples cast in plastic with continuous 

sealed ponds, to provide a variation and validation on the methodology for oxygen control.  

Experimental methods meant the reduced variables tested were oxygen saturated water, 

atmospheric exposure and sealed face. 

Accelerated corrosion methods were used to initiate corrosion, which is taken into 

consideration when using measured rates for future remaining life calculations.  Results from 

completed experimental work laid the foundations for cracking experiments reported in 

Chapter 6. 

5.2 VARIABLE OXYGEN CONCENTRATION OF EXPOSED SURFACE 

5.2.1 RATE OF CORROSION 

The rate of corrosion is commonly reported as a corrosion rate per area of steel surface, 

µA/cm2.  Both current density and total current are used throughout this chapter when 

reporting results.  The polarized area of steel, which impacts upon the severity of corrosion 

and the depth of penetration into the reinforcement, is important when determining the 

remaining cross-sectional area.  In order to exercise due diligence, both units of corrosion are 

used and appropriate units are selected dependent on the environments and methods being 

investigated.  This approach was used due to the variations in the cathodic and anodic areas 
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experienced in different environments, and assumptions are often made in order to utilise 

certain units which may be unrepresentative of the actual conditions. 

Figure 5.1 shows the development of corrosion current density over time up to a period of 6 

months.  These values are the average readings of four samples (A, B, C, D) in each given 

exposure condition.  Although Figure 5.1 suggests there is no significantly discernible 

difference between measured corrosion rates observed under low oxygen environments, upon 

removal of the steel reinforcement there was visible evidence that the corrosion mechanisms 

occurring are dissimilar.  Care must be taken analysing results as reported in Figure 5.1 as the 

measured corrosion current was divided by the assumed anodic area of corroding steel. 

To make a direct comparison between corrosion on each anodic bar, Figure 5.2 shows the total 

corrosion current of anodic bars in beams D1, negligible oxygen exposure, and D4, 

atmospheric exposure.  In this instance, both values of icorr appear to decrease as the oxygen 

within the system is diminished and the external perturbances are equilibrated.  These 

currents then converge at roughly 0.2mA.  This suggests that the corrosion process is limited, 

in this case, by the resistivity of the concrete or the oxygen availability at the cathode, as 

chlorides are freely accessible throughout.  However, if the oxygen concentration was the 

predominant limiting factor, the anode to cathode ratio would be required to be much smaller 

for the corrosion rate to remain identical.  Further investigation of the corrosion product was 

carried out to determine the effect of oxygen concentration on polarization areas and provide 

a more in-depth explanation of converging corrosion rates. 

In Figure 5.1 and Figure 5.2, the lines serve to illustrate the observed trend.  Current densities 

in Figure 5.1 are calculated assuming a polarized length of 200mm defined by the 

experimental methodology. 
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FIGURE 5.1 EFFECT OF SURFACE OXYGEN CONCENTRATION ON CORROSION CURRENT DENSITY 

 

 

 

FIGURE 5.2 MEASURED CORROSION CURRENT OF BEAMS D1 AND D4 
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5.2.1.1 EFFECT OF THE PROPORTIONALITY COEFFICIENT 

The proportionality coefficient commonly used to calculate corrosion currents was determined 

from the Stearn-Geary equation using the measured coefficients from the corresponding Tafel 

slopes.  Averaged coefficients for each exposure condition are shown in Figure 5.3. 

Poursaee (2010b), among others, suggest that for passive bars a value of 52mV should be used, 

depicted by the green line, and for active bars a coefficient of 26mV should be used, red line.  

Results suggest coefficient values lie around a value of 100mV, and therefore using 26mV as 

the coefficient could underestimate the corrosion current by a factor of four.  Underestimating 

corrosion rates will significantly overestimate the life of a reinforced structure.  Observed 

coefficients are similar to other reported values previously highlighted by the author. 

5.2.1.2 PREDICTING THE CORROSION CURRENT FROM OPEN CIRCUIT POTENTIALS 

The open circuit potentials, or half-cell measurements, provide an indication of the expected 

corrosion current and can be estimated for these laboratory conditions using results shown in 

Figure 5.4.  This method of predicting the likelihood of corrosion through quick OCP 

measurements can often be sufficient, however only a rough estimation of the corrosion rate is 

possible due to the large scatter of results.  Although there is a reasonable visible correlation, 

the author believes a line of best fit be drawn as shown.  When the OCP readings are above 

around 350mV, corrosion rates are extremely high and further investigation into the corrosion 

damage of such a structure should be carried out. 

 



 

140 
 

 

FIGURE 5.3 PROPORTIONALITY COEFFICIENT FOR CORRODING BEAMS UNDER LOW OXYGEN 

SUBMERGED ENVIRONMENTS 

 

 

 

FIGURE 5.4 ESTIMATION OF ICORR FROM OPEN CIRCUIT POTENTIAL MEASUREMENTS FOR DATA SETS C, 

D, E AND F 
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5.2.2 CORROSION PRODUCTS 

Corrosion can cause different products at the steel concrete interface depending on exposure 

conditions, most notably ‘red rust’, commonly forming with an abundance of oxygen, and 

‘black rust’, which occurs whereby a limited oxygen supply is available. 

Figure 5.5 highlights a variation in the perceived colour of corrosion product, suggesting the 

beam exposed to atmospheric conditions at the surface (D4) has a mechanism of corrosion 

producing Iron (III) Hydroxides.  Under conditions of limited oxygen availability at the 

surface (D1), the corrosion product will be a form of Iron (II) Oxide such as magnetite, Fe3O4.  

Iron hydroxides have a crystal density roughly four times that of steel, whilst magnetite only 

has a crystal density around twice that of steel.  More expansive corrosion products, such as 

iron hydroxides, cause increased tensile strains in the concrete leading to cracking and 

spalling.  The extent of cracking is dependent on spacing of bars, pore structure and the tensile 

strength of the concrete. 

Not only do the corrosion products differ under varying oxygen exposures, the polarized area 

(area of steel whereby ion exchange is occurring) of the anodic bars are evidently different.  

While beam D1 has two small patches of corrosion, D4 has a much larger corroding area. 

As these differing polarized areas have been measured, corrosion current densities can be 

recalculated.  These suggest that the corrosion at the anode in a low oxygen environment can 

be more intense than in an atmospheric environment.  The observation of this macro effect 

occurring on one bar suggests that the earlier belief of corrosion being limited by the cathodic 

corrosion current and resistivity to be limiting to be correct.  In the case of a sealed 

environment, oxygen may seep in at extremely low rates through the wax, ponding setup or 

any minor gaps in the sealant. 

Due to the cathodic current density being lower than the density at the anode, a balanced 

system whereby the anodic current density is much higher over a small area is established.  

Estimated anodic corrosion current densities were recalculated using Equation 5.1, with units 

of µA/cm2, as is the common practice, and are reported in Table 5.1.  

 ¦ = 0.0116 @Ft��xy  EQUATION 5.1 

Where; 

v corrosion rate, mm year-1 
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icorr corrosion current, µA 

AA area of anode, cm2 

Although there is a lack of oxygen availability in beam D1, the real corrosion current density 

of the patchy areas is calculated to be in the region of 60µA/cm2, which is equivalent to an 

approximate cross-sectional area loss of 0.74mm/year.  This is consistent with the apparent 

condition of the reinforcing bar after 6 months of exposure. 

 

FIGURE 5.5 COMPARISON BETWEEN CORROSION PRODUCTS ON ANODES IN BARS D4 (TOP) AND D1 

 

TABLE 5.1  ESTIMATED CORROSION DENSITIES IN BEAMS D1 AND D4 

Beam Corrosion current 

(icorr,total), µA 

Polarized area, 

% total steel¤ 

Current density 

(icorr), µA/cm2 

Diameter loss, 

mm/year˜ 

D1 200 5 64 0.7 

D4 200 50 6.4 0.07 

¤ estimated from visual inspection of both cathodic and anodic bars 

˜ 1000µA/cm2 is equivalent to roughly 11.6mm/year (derived from Equation 3 in Poupard et al., 2006) 

 

The transport of oxygen plays a major role in the corrosion of reinforcement as has been 

proved.  The concentration of oxygen at the steel reinforcement in atmospheric and 

submerged atmospheres will vary, but not as significantly as initially expected.  The transport 

of oxygen through the pore restricts the ability for atmospheric exposure to supply oxygen to 

the steel (Figure 5.6). 

10mm 

D4 

D1 
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(a) atmospheric exposure (b) submerged exposure 

FIGURE 5.6 EFFECT OF EXPOSURE ON OXYGEN TRANSPORT 

 

In atmospheric conditions, gaseous oxygen can diffuse through the convection/dry zone of the 

concrete pores reaching depth x2 rapidly.  Diffusion through the saturated zone, x1, is 

independent of exposure and will be the rate at which dissolved oxygen can diffuse to the 

steel surface.  In submerged exposure conditions, x1 is further than for atmospheric conditions, 

therefore reducing the supply of oxygen to the reinforcement sufficiently to alter the anode to 

cathode ratio on the bars. 

Corrosion densities in the submerged exposure condition exceed those found in atmospheric 

saturated concrete.  Although this is not the commonly held view of worst case corrosion 

conditions in the tidal/splash zone, under these given conditions it would be expected.  Due to 

the application of a potential difference between the surface and the reinforcement, chlorides 

were allowed to rapidly saturate the entirety of the concrete cover, thus allowing initiation of 

reinforcement corrosion along its entire exposed length.  This allowed corrosion to propagate 

along the majority of the length of the bar as oxygen was more freely available, producing 

much smaller cathodic areas.  
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gaseous O2 
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The total mass loss may have been equivalent across both exposure conditions, however due 

to the larger cathode required for submerged concrete, the apparent current density appears 

much larger.  In practice though, chlorides would only reach certain parts of the reinforcement 

due to the heterogeneous nature of the concrete cover.  Initiation would then occur at various 

sections along the bar and propagate at total corrosion rates similar to those measured, 

causing much larger localised current densities.  The water saturation of the cover concrete, 

and therefore resistivity of the concrete will be the predominant factor in determining the 

corrosion rate. 

5.3 VARIATION IN ANODE TO CATHODE RATIO 

Hansson, Poursaee and Laurent. (2006) previously show that the anode to cathode area has a 

pronounced effect on the rate of corrosion.  In a corrosion cell, the anodic reaction and 

cathodic reaction balance.  When the reaction is limited by the rate of cathodic reaction, a 

larger cathodic area of steel will be evident as suggested by the corrosion in Figure 5.7.  

Corrosion rates of beams with varying anode to cathode ratios in all exposure conditions are 

shown in Figure 5.8 and Figure 5.9.  The total corrosion current (Figure 5.8) varies depending 

on the anodic polarized area, with the smaller anode causing a reduced total corrosion current 

suggesting a chloride or resistivity limiting corrosion mechanism. 

When the corrosion current density is determined (Figure 5.9) there is no apparent difference 

between any of the four corrosion currents measured suggesting the previously held theory of 

resistivity limited corrosion is supported when a rebalance of the anodically and cathodically 

polarized areas is not possible. 

 

 

 
FIGURE 5.7 VARIATION IN PROPORTION OF POLARIZED ANODIC AREAS IN BEAMS D4 (TOP) AND D1 
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FIGURE 5.8 EFFECT OF ANODE TO CATHODE RATIO ON TOTAL CORROSION CURRENT 

 

 

FIGURE 5.9 EFFECT OF ANODE TO CATHODE RATIO ON CORROSION CURRENT DENSITY 

5.4 EFFECT OF AGGREGATE TYPE 

Although the aggregate has an effect on the concrete strength, no discernible difference 

between the corrosion currents between the two mixes was observed.  Average corrosion 

currents in oxygen saturated water for gravel and limestone aggregate mixes are shown in 
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Figure 5.10.  Although the strength has increased, the limiting area for the diffusion of 

chlorides and oxygen is through the cement paste and the interfacial transition zone (ITZ).  As 

the cement paste is likely to be the same in both concrete mixes and the aggregate sizes are 

similar, no difference between corrosion rates is expected. 

5.5 VARIATION OF WATER/CEMENT RATIO 

5.5.1 INITIATION 

Typically, initiation occurred faster for Mix 2 (0.5 w/c ratio) than Mix 1, supporting the well-

established theory that the more open pore structure allowed for a faster transport of 

chlorides. This trend was observed for seawater exposure in all oxygen concentrations and 

atmospheric environments for NaCl solutions.  However the exposure to oxygen depleted 

NaCl solution caused a reversal of results, which is likely to be due to poor compaction of 

concrete on these samples.  Air voids between the plastic and concrete will cause an 

accelerated transport of chlorides.  

5.5.2 PROPAGATION 

Measured corrosion currents between concrete with varying water cement ratios confirm that 

as the cement matrix becomes denser (lowering w/c ratio) the corrosion propagation rates 

decrease by between 30-40% in negligible oxygen environments, as shown in Figure 5.11.  

Corrosion rates of concrete in a negligible oxygen environment with varying w/c ratios and 

those in atmospheric conditions are shown in Figure 5.11 and Figure 5.12. 

Samples tested in atmospheric conditions have reduced corrosion rates in comparison to 

submerged samples in all cases.  In a scenario where one face of the concrete is exposed to the 

atmosphere there is a decrease in the water saturation of the concrete.  This in turn causes an 

increase in resistivity which can limit the corrosion rate.  As results show the decrease in 

measured currents between the samples, the corrosion rate in such environments is limited by 

the resistivity of the concrete. 
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FIGURE 5.10 VARIATION OF ICORR DUE TO VARIATION IN AGGREGATE TYPE 

 

 

FIGURE 5.11 CORROSION RATES OF CONCRETE IN A NEGLIGIBLE OXYGEN ENVIRONMENT WITH 

VARYING W/C RATIOS 
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FIGURE 5.12 CORROSION RATES OF CONCRETE IN AN ATMOSPHERIC EXPOSURE ENVIRONMENT WITH 

VARYING W/C RATIOS 

5.6 EFFECT OF SEAWATER ON CORROSION INITIATION AND PROPAGATION 

Interestingly, seawater exposure causes a faster initiation of chlorides when applying this 

method of initiation acceleration.  This is contradictory to results from Phase I, where it is 

suggested in natural and accelerated conditions the transport of chlorides from seawater 

exposure is retarded in comparison with those from NaCl solutions.  This is due to one of two 

reasons, neither of which is known to have a more dominating effect on the initiation time. 

The two possible reasons are:  

• decreased resistivity due to alternative ions, specifically sulphates in the pore solution 

• decrease in the chloride threshold when Mg2+ and Ca2+ chloride cations are present, as 

theorised by (Jiang et al. 2012) 

Propagation of seawater exposed concrete was predominantly lower than that of concrete 

exposed to NaCl.  As the corrosion is limited by the resistivity of the concrete cover, a 

reduction in resistivity will cause an increased propagation rate in such samples.  It is 

probable, however, that due to a shorter initiation time, the resistivity of the concrete in these 

samples is higher and therefore propagation is slower.  Although, during propagation the 

external current is removed, protection of the concrete may be achieved through a skin or pore 

blocking mechanism or competition of ions through the concrete pore structure causing a 

reduced propagation rate. 
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5.7 VALIDATION OF EXPERIMENTAL PROCEDURE AND RESULTS 

Validation experiments using a different method of oxygen control as discussed in Chapter 3, 

confirm initial findings on the continuation of the propagation of corrosion in low oxygen 

environments.  Although similar initiation and measuring techniques were used, the 

experiments were run with new mixes and a redesigned control system for oxygen 

concentration. 

Initial setup and results proved the setup to control the oxygen concentration successfully was 

difficult, therefore the variables were adapted to expose the concrete to three environments; 

negligible oxygen, oxygen saturated water and the atmosphere. 

5.7.1 LOW OXYGEN CORROSION 

Figure 5.13 and Figure 5.14 show that there is significant measured corrosion in all 

environments, supporting results from Phase II showing that the oxygen concentration is not 

the critical influencing factor on the rate of corrosion propagation.  The figures show there is a 

difference between the two mixes: specifically that there are higher corrosion rates in concrete 

with a higher w/c ratio as supported previously.  However, there are some outlying results 

that are of interest. 

Results from water saturated exposure of Mix B (CT13, Table 3.1) suggest erroneous readings 

were measured and initiation disabled too early.  As the Linear Polarization Resistance (LPR) 

results dropped below 200W, corrosion was assumed to have initiated, however subsequent 

measurements of LPR remained relatively high in the context of other samples exposed to the 

same environment.  Results from this test provides further evidence that corrosion in these 

conditions is not oxygen limited. 
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FIGURE 5.13 CORROSION CURRENTS OF NACL MIX B IN MULTIPLE ENVIRONMENTS 

 

FIGURE 5.14 CORROSION CURRENTS OF NACL MIX A IN MULTIPLE ENVIRONMENTS 

5.7.2 CORROSION PRODUCTS 

Corrosion products formed across the entire exposed section in almost all conditions. 

Examples of corrosion products for negligible oxygen, oxygenated water and atmospheric are 
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transport the iron through the pore structure before reacting with available hydroxyl ions, 

oxygen and/or water to form iron oxides.  Where the availability of hydroxyl ions and oxygen 

is limited, iron is transported further from the steel/concrete interface before forming the iron 

oxides, as seen in the rust staining. 

For samples exposed to atmospheric conditions, the minimal rust staining will be due to more 

freely available hydroxyl groups formed through a standard cathodic reaction and 

transported through the pore solution to the anode.  



 

152 
 

 

FIGURE 5.15 VARIATION IN PROPORTION OF POLARIZED ANODIC AREAS IN BEAMS D4 (TOP) AND D1 

 

 

FIGURE 5.16 BLACK CORROSION PRODUCT (NEGLIGIBLE OXYGEN) 

 

 

FIGURE 5.17 RED/BLACK CORROSION PRODUCT (OXYGENATED WATER) 

 

 

FIGURE 5.18 MINIMAL RUST STAINING (ATMOSPHERIC) 
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FIGURE 5.19 BLACK AND RED CORROSION PRODUCT 

 

5.8 KEY OBSERVATIONS AND DISCUSSION 

5.8.1 CORROSION PRODUCTS 

The type and location of corrosion products vary between the concrete exposed to various 

exposure conditions.  With a lack of oxygen, magnetite, Fe3O4, is deposited.  When oxygen is 

readily available, either through dissolved oxygen from the sea water or from the atmosphere, 

ferrous or ferric hydroxides are formed.  

Iron hydroxides have a unit mass of around four times larger than that of iron, whilst 

magnetite only around twice that of iron.  Corrosion is more likely to be reported to occur on 

structures in the splash and tidal zones because an increased incidence of cracking and 

spalling in those areas.  The oxygen available in this exposure causes more expansive 

corrosion products, which in turn create tensile strains in the concrete.  This tensile strain 

causes the cracking and spalling of cover concrete, which is easily detectable and therefore 

likely the reason for being more reported.  Time to the occurrence of this cracking or spalling 

could be significantly shorter for oxygenated corrosion due to these more expansive products 

of iron hydroxides in comparison with steel or magnetite.  Additionally, access for inspection 

is easier for concrete in a splash or tidal zone, allowing for more frequent observation of 

corrosion. 

5.8.2 EFFECTS OF LOW OXYGEN CONCENTRATIONS 

Low oxygen concentrations appear to have little or no effect on the measured corrosion 

current using the available methods of detection.  However, the location and apparent size of 

polarized areas of steel appear significantly affected. 

As reported by Hussain (2011), the limiting cathodic current in submerged concrete was 

around 0.04µA/cm2 for the setup and concrete mix used.  If the anodic area was one 

hundredth the size of the cathode, the total anodic current would be 4µA/cm2 assuming a 

10mm 
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cathodically limited corrosion rate.  Results have shown that cathodic areas of steel increase in 

size to provide an electrical current that balances with the anodic current.  Furthermore, as 

reviewed previously, limiting current models suggest that corrosion can propagate at 

significant rates even with low dissolved oxygen concentrations.  Validation experiments 

confirmed the initial findings showing significant corrosion currents in negligible oxygen 

concentrations, forming a similar black corrosion product. 

Alternatively the reinforcement from beam C1, subjected to low oxygenated exposure, has 

large areas of obvious corrosion damage but with no apparent corrosion product on the 

surface of the steel.  The iron oxidized from the surface of this steel is likely to have formed 

iron chlorides and been transported elsewhere in the cement matrix leaving a heavily pitted 

bar in comparison to an initial clean bar shown in Figure 5.20 and Figure 5.21.  Pitting has 

occurred on the corroded reinforcement, and although there was no rust staining, there is a 

visible loss of steel. 

 

FIGURE 5.20 UNCORRODED REINFORCEMENT 

 

FIGURE 5.21 CORRODED REINFORCEMENT FROM BEAM C1 
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5.8.3 CORROSION PROCESSES 

Evidently, as shown in the previous two subsections, under the low oxygen environments the 

corrosion processes continue.  The reactions at the anode appear to be in agreement with 

previously observed reactions and are variable dependent on the availability of hydroxyls at 

the anode (Rosenberg et al., 1977; Böhni, 2005).  The availability of hydroxyls is dependent on 

the rate of cathodic reaction as well as the hydroxyls already present in the pore solution.  

However, the iron continues to oxidise from the steel with or without the hydroxyls and will 

be transported throughout the pore solution as Iron Chloride complexes (Figure 5.22 and 

Figure 5.23). 

 

Comments 

• Chloride saturated environment initiating 

corrosion at any location 

• Low availability of oxygen restricting the 

cathodic current density 

• Water saturated concrete due to submerged 

exposure 

• At anode, chlorides act as a catalyst to form 

transient FeCl complex e.g. FeCl3 (aq) 

• At cathode, oxygen and water form hydroxyl 

ions, [OH]- 

• Anode:cathode area is small due to restricted 

cathodic reaction 

• Aqueous iron chlorides travel further from 

anodic site causing staining through the concrete 

cover 

FIGURE 5.22 LOW OXYGEN AVAILABILITY CORROSION DIAGRAM 
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Comments 

• Chloride saturated environment initiating 

corrosion at any location 

• High availability of oxygen 

• Water saturated concrete due to submerged 

exposure 

• At anode, chlorides act as a catalyst to form 

transient FeCl complex e.g. FeCl3 (aq) 

• At cathode, oxygen and water form hydroxyl 

ions, [OH]- 

• Anode:cathode area is high due to availability of 

oxygen and water at cathodic region 

FIGURE 5.23 HIGH OXYGEN AVAILABILITY CORROSION DIAGRAM 

 

5.8.4 CORROSION MEASUREMENT INTERPRETATION 

Measuring the corrosion rates of concrete should be done with care due to the complex nature 

of the environment.  Half-cell (HC) or open circuit potential (OCP) measurements provide a 

good indication of whether corrosion is occurring and there was a correlation between the 

measured potential and the measured rate of corrosion.  Caution must be used when taking 

measurements on ‘real world’ structures, as knowledge of anodic or cathodic bars can be 

crucial in interpreting these measured half-cell potentials due to the influence of water 

saturation and oxygen depletion. 

LPR and PD measurements also provide a good indication of the rates of propagation, with 

measured values corresponding well to visibly recorded corrosion products on the surface of 

the reinforcement.  Although these measured rates are often expressed in µA/cm2, it is 

extremely unlikely that the size of the anodic area of reinforcement can be determined due to 

the nature of concrete structures.  As the size of the anode and cathode vary dramatically in 

differing environments, an estimate of the total corrosion rate could provide an indication of 

corrosion, but engineering judgement is required when estimating the potential anodic and 

cathodic areas.  Introducing a total corrosion rate into a probabilistic model that accounts for 

observed variations in polarized areas could provide a more realistic indication of corrosion 

damage.  
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Corrosion products are much more difficult to determine due to the complex nature of iron.  

Results have shown a marked difference between low oxygen and oxygen rich environments, 

with less expansive corrosion occurring in the submerged section.  Further evidence has 

shown loss of steel cross section with no evident corrosion product build up. 

5.8.5 EFFECTS OF ARTIFICIAL SEAWATER 

Artificial seawater decreases the initiation time of corrosion through accelerated testing, 

although apparently effective at reducing initiation times of corrosion due to natural chloride 

diffusion.  After initiation, there is no consistent relationship between the corrosion rates and 

type of chloride cation.  Effects of seawater on corrosion propagation should be ignored for 

propagation models, although the measured effects on resistivity of concrete could be 

included.  Although this is conservative, the use of sodium chloride for corrosion testing is 

therefore adequate when predicting corrosion rates. 

5.8.6 IMPACT FOR ASSESSMENT OF OFFSHORE CONCRETE STRUCTURES 

Corrosion occurred in all environments, but the rate and polarized areas of corrosion however 

is dependent on exposure to chlorides, water and oxygen.  Offshore structures should 

therefore be modelled in separated areas dependent on exposure conditions, such as per the 

commonly used exposure areas; submerged, splash/tidal, and atmospheric. 

Rates of corrosion in chloride saturated submerged concrete can be estimated and are 

significant, as shown in Table 5.2.  Although the corrosion rates discussed are rapid, it should 

be noted that the use of an accelerated corrosion technique, high chloride concentrations, 

room temperatures and low concrete cover are not representative conditions for a submerged 

North Sea offshore platform and this must be taken into account when modelling remaining 

ultimate life. 

  



 

158 
 

TABLE 5.2  ESTIMATED RATES OF CORROSION FOR SUBMERGED CONCRETE OF 0.42 W/C RATIO WITH 

25MM COVER 

Exposure O2 

concentration 

Corrosion rate,¤ 

µA/cm2 

A/C ratio~ Comments 

Negligible 65 0.05 Extremely high observed corrosion 

currents over small areas. 

5ppm DO 16.25 0.2 No observed variation between samples 

exposed to dissolved oxygen, similar 

polarised areas. 8ppm DO 16.25 0.2 

Atmospheric 6.5 0.5 Expansive corrosion product with freely 

available oxygen.  Large anodic areas 

causing low corrosion current densities. 

¤ estimated through division of total corrosion current by observed polarised area 

~ estimated from visual observation of measured bars 

 

Consideration must be taken for changes in exposure, such as the structure of a platform with 

an operational drawdown during its working life.  A large oxygen concentration in a humid 

environment will be available on one face of the concrete and a completely saturated chloride 

environment with relatively high concentrations of dissolved oxygen on one face.  The 

operational history of the platform can be used to estimate the condition of the structure at a 

predicted decommissioning date before extrapolating continuing damage in the updated 

environment post decommissioning. 
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CHAPTER SIX 

6 EFFECTS OF CRACKING ON CORROSION PROCESSES IN 

SUBMERGED CONCRETE 

6.1 INTRODUCTION 

As corrosion has been shown to continue propagation in submerged conditions, attention now 

focusses on cracking formed under flexural loading and its subsequent effects on corrosion 

rate.  Static cracking experiments were carried out in submerged conditions with crack widths 

ranging from 0.1 to 0.7mm.  Sodium chloride and artificial sea water solutions were used as 

exposure environments, with accelerated and natural diffusion techniques used for initiation.  

Half-cell and corrosion rate measurements, using linear polarization and potentiodynamic 

scans, were taken weekly to evaluate the effects of crack width on corrosion rates. 

Finally, a control beam and a selection of corroded beams were broken apart to evaluate the 

type and location of corrosion products, as well as to carry out a visual inspection of anodic 

and cathodic areas.  Anodic areas were then estimated from visual inspections and results are 

used in assessing corrosion current densities for ultimate life modelling. 

Previous research on dynamic cracking caused by continuous repetitive loading is deemed 

insufficient by the author, therefore an experimental rig was designed and setup to allow for 

submerged and semi-submerged dynamic cracking to columns/beams.  Experiments focused 

on repetitive loading from unloaded up to a maximum width of 0.2mm were carried out, and 

a range of experiments to continue these studies are proposed in Chapter 9. 

6.2 STATIC CRACKING 

6.2.1 GENERAL DEVELOPMENT OF HALF-CELL POTENTIALS 

As would be expected, half-cell potential measurements along the reinforcement reduce over 

time due to the ingress of chlorides.  More negative values of steel potential are expected 

where corrosion has initiated due to the breakdown of the passive layer of the steel.  At the 

location of the cracks, transport of chlorides to the steel will have occurred in a relatively short 

time-frame.  Chloride ingress through bulk diffusion in the un-cracked section will not have 

occurred, causing the variation in steel potential. 
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Figure 6.1 shows a typical development of measured half-cell potentials of reinforcing steel in 

a cracked bar over time.  The readings taken prior to exposure in the sodium chloride solution 

are consistent along the length of the beam.  This is due to no chlorides being present in the 

concrete and therefore no significant variation of potential along the beam.  

Half-cell readings for the 40mm cover and 25mm cover reinforcement of beams NACL05N 

after 43 days exposure are shown in Figure 6.2.  The 40mm readings are in the region 

predicting a 90% probability of corrosion initiation; however the 25mm bars are more negative 

than the bars with a larger cover suggesting initiation has occurred.  As corrosion is unlikely 

to be occurring due to a lack of access to chlorides, the low potentials are due to the reduction 

of oxygen at the cathodic bar, 25mm depth, causing a lack of oxygen at the steel surface.  A 

reduced oxygen environment causes a significant drop in the potential of the steel without 

necessarily indicating on-going corrosion of the bar. 

Development of half-cell potential at the location of the crack is shown for beam SW07N-1 in 

Figure 6.3.  Initially, as the chlorides penetrate the crack, the half-cell potential of the 40mm 

steel decreases before settling at between -400 and -500mV vs. Ag/AgCl.  The 25mm 

reinforcement remains at values more positive than the 40mm bar, before dropping 

significantly to values more negative than -700mV.  This drop is attributed to the low oxygen 

environment of the submerged concrete.  Half-cell potentials of concrete exposed to seawater 

show a more positive reading at the site of the cracking (Figure 6.4) opposite to results from 

exposure to NaCl solutions. 
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FIGURE 6.1 DEVELOPMENT OF HALF-CELL POTENTIALS ON BEAM NACL07N-1 UP TO 81 DAYS EXPOSURE 

 

FIGURE 6.2 HALF-CELL POTENTIAL MEASUREMENTS OF BEAMS NACL05N-1 AND 2 AFTER 43 DAYS 
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FIGURE 6.3 DEVELOPMENT OF HALF-CELL POTENTIALS OVER 78 DAYS EXPOSURE ON BEAM SW07N-1 

 

 

FIGURE 6.4 DEVELOPMENT OF HALF-CELL POTENTIAL OF SEAWATER EXPOSURE 
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6.2.2 GENERAL DEVELOPMENT OF LINEAR POLARIZATION RESISTANCE OF ANODIC 

STEEL 

The rapid transport of chlorides at the crack causes a rapid decrease of the linear polarization 

resistance (LPR) of the steel due to initiation of corrosion.  Typical results for linear 

polarization measurements over the crack are shown in Figure 6.5.  For cracks of width greater 

than 0.2mm, LPR results become consistent after 30 to 40 days with larger cracks causing 

lower stable LPR results.  This is due to the further ingress of chlorides into the concrete 

reducing the resistivity of the concrete in and around the crack. 

6.2.3 EFFECTS OF SEAWATER SOLUTION 

Corrosion rates for small cracks (<0.3mm) appear to show no variation between immersion in 

seawater or sodium chloride solutions, as shown in Figure 6.6.  For cracking of 0.7mm, 

corrosion rates appear between around five times higher when exposed to sodium chloride 

solutions.  Crack widths of 0.7mm in seawater were increased to 1.5mm on day 80 accounting 

for the steep rise in corrosion rate.  This increase in crack width was an unsuccessful attempt 

to take a sample of any apparent crack sealing material. 

The cracks of beams exposed to seawater appear visibly different to cracks exposed to NaCl 

(Figure 6.7).  Crack sealing by reactions of magnesium with the calcium hydroxide to form 

brucite could cause sealing of the crack, as supported in works by Sibbick, Fenn and 

Crammond (2003). Other mineral deposits, such as Friedel’s salts, gypsum, ettringite or 

magnesium carbonate could cause reduced chloride ingress by the process of crack self-

healing.  Further mineral deposits were evident after breaking open beam D2 (Figure 6.8).  

Retrieving a useful sample of this apparent material proved impossible. 
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FIGURE 6.5 VARIATION OF LINEAR POLARIZATION RESISTANCE OVER TIME 

 

 

FIGURE 6.6 COMPARISON BETWEEN AVERAGED CORROSION RATES WITH VARYING CRACK WIDTHS IN 

NACL AND SEAWATER SOLUTIONS 
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a) sealed crack (seawater) b) open crack (NaCl) 

FIGURE 6.7 CRACKS FROM BEAMS EXPOSED TO SEAWATER (BEAM A1) AND NACL (BEAM D2) 

 

 

FIGURE 6.8 MINERAL DEPOSITS THROUGHOUT THE CRACK IN BEAM D2 
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Although apparent sealing of cracks is more evident on samples exposed to seawater 

solutions, sealing apparently also occurs within crack widths up to 0.2mm for concrete 

immersed in NaCl solution.  Currently no observed decrease in corrosion current is noted, 

most likely due to the sealant in the crack being much more porous than the cement matrix as 

well as incomplete, leaving voids for rapid chloride ingress.  Additionally, sealing of the 

cracks is extremely unlikely to be homogenous and therefore passage of ions to the steel is still 

extremely fast.  Once the corrosion has initiated, corrosion will continue to propagate, 

therefore self-healing/sealing of cracks should be ignored in long-term degradation modelling. 

6.2.4 CRACK WIDTHS 

Increasing crack widths lead to increased measured rates of corrosion (Figure 6.9 and Figure 

6.10).  The increase in corrosion rate is shown as linear with increase in crack width, proving 

proportionality between cracking at the surface and damage to the steel.  This is either due to 

the diffusion of oxygen and chlorides through a given aperture, through an increase in 

polarization area due to a larger crack width at reinforcement level as well as at the surface, or 

a combination of both effects. 

 

FIGURE 6.9 EFFECT OF CRACK WIDTH ON CORROSION RATE 
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FIGURE 6.10 VARIATION IN CORROSION CURRENT DUE TO CRACK WIDTHS 

 

6.2.5 ACCELERATED AGAINST NATURAL INITIATION 
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Accelerating corrosion causes large fluctuations in measured corrosion currents within the 

first 30 days for sodium chloride and 80 days for seawater (

 

Figure 6.11).  Results in chapter 5 show corrosion currents are stable after around 60 days 

using sodium chloride solutions, which is in agreement with results from cracking 

experiments.  Results obtained from LPR and potentiodynamic scans show, although the rates 

are remaining relatively stable, the variability of readings on accelerated beams is large.  

When corrosion is initiated using an external potential difference, chlorides are expected to 

saturate the concrete, reducing the resistivity of the concrete along the length.  Corrosion rates 

are then higher, supporting the hypothesis that the corrosion in this scenario is resistivity 

limited and not oxygen limited. 

Comparing like-for-like crack widths, corrosion measured through accelerated techniques is 

2.9 times faster in NaCl solutions and 2.6 times faster in seawater solutions, where 

measurements are more variable (Table 6.1).  For modelling purposes a conservative estimate 

of 3 should be used as a dynamic factor to adjust corrosion rates. 
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FIGURE 6.11 EFFECTS OF INITIATION ACCELERATION ON CORROSION RATES 

 

TABLE 6.1  DIFFERENCES BETWEEN MEASURED CORROSION RATES FOR ACCELERATED AND NATURAL 

INITIATION 

 

A1 A2 G1 G2 C1 C2 H1 H2 

icorr, mA 

0.103 0.145 0.389 0.342 0.174 0.185 0.524 0.420 

0.124 0.365 0.180 0.472 

Difference 2.9† 2.6§ 

† Sodium chloride solutions with identical crack widths 

§ seawater solution  with identical crack widths 

 

6.2.6 ANODIC POLARIZATION AREA 

After 82 days, two beams of type NACL07N were broken open to observe any corrosion of the 

steel and analyse the actual polarization area and corrosion products.  Corrosion had occurred 

with an area of visible pitting and black/red rust.  After a short period of time exposed to the 

atmosphere, the product altered through further oxidation causing a more prominent 

expansive corrosion product.  Figure 6.12 clearly shows this corrosion covering an area of 
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approximately 3cm long, with the majority of corrosion evident on the upper surface of the 

steel.  Figure 6.13, of beam D2 after 180 days exposure, shows similar corrosive product along 

a length of roughly 3cm, similar to that after 82 days. 

Additionally, the area along the crack was sprayed with 0.1M silver nitrate, AgNO3, as per the 

NT Build 443 methodology to determine the chloride penetration front.  As a consequence, 

silver chloride, AgCl, precipitated on the entire sprayed surface of the cover indicating 

chlorides were present throughout the entire sample.  This quick transfer of chlorides to the 

surface of the steel was expected due to the nature of the crack, backing up the hypothesis 

stating crack widths as being critical, contradicting research that suggested minimizing the 

diffusion coefficient as a priority to increase service, or ultimate, life. 

Instead of considering the polarization area to be the entire length of the bar, as is common 

practice throughout experimental result reporting, using the actual polarization area will 

increase the accuracy of expected corrosion damage.  Beam set B, with crack widths up to 

0.7mm, was broken open after 3 months of exposure to assess for corrosion damage to the bar.  

Around the cracked area, corrosion had appeared to have occurred over a polarized area of 

3cm, with larger cathodic areas either side of the anodic area.  As the area was shown to be 

3cm, as opposed to 80cm, the corrosion current density will be roughly 27 times as large 

(Table 6.2).  

High rates of corrosion are still likely, even in the submerged state, due to similar localized 

corrosion mechanisms as reported in Chapter 5 (Figure 6.14).  Rather than limiting the area of 

anodic polarization due to a limiting cathodic reaction, the corrosion areas and therefore 

densities are limited by the availability of chlorides to break down the passivity of the steel 

around the base of the crack.  Additionally, resistivity of the concrete between the anode and 

cathode could limit the corrosion current, however as the chlorides penetrate into the paste 

from the crack, the resistivity will decrease thus increasing the corrosion rate. 
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FIGURE 6.12 CORROSION OF 40MM REINFORCEMENT FROM BEAM B1 (0.7MM CRACK WIDTH) AFTER 82 

DAYS EXPOSURE 

 

 
FIGURE 6.13 CORROSION OF 40MM REINFORCEMENT FROM BEAM D2 (0.7MM CRACK WIDTH) AFTER 180 

DAYS EXPOSURE  

 

TABLE 6.2  EFFECT OF POLARIZED AREA AND CRACK WIDTH ON CORROSION RATES 

Crack width, mm Polarized length, 

cm 

Corrosion rate#, 

µA/cm2 

0.2 3 16.8 

0.2 80¬ 0.63 

0.3 3 25.5 

0.4 3 37.2 

0.5 3 51.8 

0.7 3 89.1 

0.7 80 3.34 

¬ assumed polarization across entire length of the bar 

# Calculated from observed polarized areas after 90 days of corrosion 
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FIGURE 6.14 CORROSION MECHANISM AROUND CRACK 

 

6.3 DYNAMIC CRACKING 

6.3.1 0.2MM MAXIMUM CRACK WIDTHS 

Short term testing of up to three months was completed on beams in a submerged 
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state to an extension of the actuator to 22mm at the top of the beams, causing cracking of 0.1 

and 0.15mm, increasing to 0.2mm at maximum deflection.  Unloading the beams causes the 

cracks to reduce in width initially, although crack widths remain at 0.2mm in the unloaded 

state after around 30 days of loading.  Total corrosion currents measured for 0.2mm maximum 

crack widths are shown in Figure 6.15.  The solid black line represents the mean corrosion 

current of 0.97mA, with the grey lines show the 95% confidence of measured rates. 

Up to 30 days, the crack depths continue to propagate up to a depth of 90mm before becoming 
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FIGURE 6.15 CORROSION RATES OF CRACK WIDTHS 0.2MM UNDER DYNAMIC LOADING 

 

As the current methodology and equipment has been setup in the laboratory, further dynamic 

loading experiments to be carried out by future researchers are outlined in Chapter 9. 
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(Reinhardt and Joos, 2003; Sahmaran, 2007).  
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has occurred.  Additionally there is no evidence of crack healing reducing the detrimental 
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a) 0.7mm crack in seawater b) 0.2mm crack in seawater 

FIGURE 6.16 APPARENT SEALING OF CRACKS 

 

6.4.2 EFFECTS OF SEAWATER ON MEASURED RATES OF CORROSION 

Although healing is visibly more apparent on seawater samples, corrosion currents are similar 

to measured currents in NaCl solution.  As no significant variation between the two solutions 

is apparent, corrosion experiments can be conducted using either solution.  This supports the 

use of on-site measurements on existing structures to determine the actual corrosion rate 

occurring as the effects of alternative ions in seawater will not cause erroneous readings. 

In cases where concrete has been submerged in seawater for long durations, it is possible a 

reduction in concrete resistivity associated with multiple ionic species from seawater could 

increase the actual corrosion propagation rates. 

6.4.3 EFFECT OF ACCELERATED CORROSION 

Accelerating corrosion rates drawing chlorides in from the surface causes a sustained increase 

in measured propagation rates by roughly 3 after 180 days.  Should accelerated corrosion 

methods for determining corrosion propagation rates be used, careful consideration of the 

choice of the method of acceleration is required.  Driving chlorides into the concrete through 
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the use of an external potential difference can cause artificially low corrosion densities as 

chlorides will reach the entirety of the steel, which is unlikely to occur simultaneously in ‘real 

world’ structures. 

6.4.4 CORROSION PRODUCTS 

Corrosion products on the steel surface immediately after removal from the concrete are a 

black rust and did not expand.  No visible rust staining of the concrete through the crack is 

evident, in line with the expected corrosion mechanisms.  Initially, when removing steel from 

the concrete around cracked areas, visible pitting with black corrosion product is visible, 

before oxidizing further to ‘red rust’ when exposed to the atmosphere. 

Due to the nature of the observed corrosion in submerged cracked concrete, loss of bond is 

unlikely to be an issue for overall structural capacity.  Failure of the structure due to cross 

sectional area loss is likely to occur prior to spalling or bond loss due to the lack of expanding 

solid corrosion product. 

6.4.5 SUMMARY OF DATA FOR MODELLING 

For the purposes of modelling, a crack width factor, kw, was applied to a reference corrosion 

current obtained through the experiments carried out (Equation 6.1).  When the factor was 

applied to the corrosion current, the predicted current increased proportionally with the crack 

width as determined through experimental results, 

 .§ = 11.47��m�u − 0.2
 + 1 EQUATION 6.1 

Where; 

kw crack width factor 

wmax maximum crack width, mm 

For a structure with maximum crack width of less than 0.12mm, it is recommended that 

corrosion currents are similar to un-cracked sections with a reduced initiation time.   

The reference corrosion rate was determined to be a normal distribution with a mean of 120µA 

and a standard deviation of 30µA.  This is applicable to CEM I concrete of water/cement ratio 

of around 0.4 with a cover of 40mm, however, experimental testing should be carried out on 

the concrete mix prior to being modelled. 
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CHAPTER SEVEN 

7 REDUCTION IN STRUCTURAL CAPACITY OF BEAMS DUE TO 

REINFORCEMENT CORROSION 

7.1 INTRODUCTION 

Having observed corrosion continuing under low oxygen environments and through cracked 

concrete, understanding its effects on the structural capacity of concrete sections are vital in 

modelling the remaining life of structures. 

An experimental programme was designed as an additional phase to the project to help 

determine the relationship between corrosion and loss of structural strength.  This phase ran 

three sets of experimental work: 

• Pull-out testing involving cast-in corroded bars and corrosion to bars after casting 

were undertaken to determine effects on bond strength due to corrosion of steel. 

• Stress redistribution in pitted and corroded reinforcement in beams containing 

multiple reinforcing bars. 

• Investigation of the effects of corrosion on reinforcement in lapped sections. 

Although strain gauges were applied to the external surface of the steel, results on strains 

were gathered along with corrosion damage, deflections and crack patterns as beams were 

loaded to ultimate failure.  Structural response in terms of stiffness and ultimate capacity were 

determined and analysed. 

7.2 PULL-OUT TESTING 

Load displacement graphs of the control cube (Figure 7.1) show no bond slip between the steel 

and concrete, instead the loading represents the typical results expected for steel.  Results of 

up to 5% corrosion show similar results, indicating that no bond loss has occurred due to 

corrosion.  

Yield of the steel occurs outside the cube between the vice and the top surface, suggesting the 

restraint of the cube on the steel is sufficient to prevent yield of the steel within the concrete.   

This suggests the pull-out test method is not representative of the bond in structural members.  
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Pre-corroded or corrosion in situ appears to have no effect on the pull-out testing, with the 

ribbed reinforcement keeping bond well with the concrete.  

Because the initial results of the testing schedule did not show any pull-out, the corrosion 

experiments were altered in an attempt to determine the amount of corrosion damage that is 

required to cause bond slip prior to yielding of the steel.  

 

FIGURE 7.1 EXAMPLE LOAD DISPLACEMENT GRAPH WITH NO BOND SLIP (SAMPLE PO1-1B) 

 

Table 7.1 shows the new test schedule for cubes with reinforcement corrosion up to 20%, using 

an applied current of up to 1000 µA/cm2 corrode the reinforcement.  Although it is reported 

that a current density of greater than 200µA/cm2 causes additional crack damage to the 

concrete that is not as realistic as would be found with naturally occurring corrosion 

(Malumbela, Moyo and Alexander, 2012), for the purposes of this work where extensive 

damage is to be created in a short timescale, electrical current is increased above this limit to 

accelerate the corrosion. 

All samples with corrosion up to 14% loss of steel showed no bond slip, and the maximum 

force was equivalent to the capacity of the steel (Figure 7.2).  Final results show that the cube 
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ultimate force to approximately 15kN (Figure 7.3).  Bond slip was only evident in this high 

strength concrete with modern steel bars at general corrosion loss of between 14 and 20%. 

As bond loss is deemed to be of little significance on the total failure capacity of the structure, 

experimental work was carried out on beam sections to determine how general and pitting 

corrosion affects the overall structural integrity of rectangular beam sections. 

TABLE 7.1  UPDATED PULL-OUT TESTING SCHEDULE 

Sample Corrosion, 

% mass loss 

Maximum 

Force, kN 

Comments 

PO1-1B 0 40.65 Control 

PO1-2A 0 45.12 25mm gauge replication 

PO1-3C 0 47.36 100mm gauge replication 

PO2-1B 20 15.02 Pull out failure 

PO2-2A 15 36.18 Steel failure within cube 

PO2-2C 2.5 45.92 Steel failure outside cube 

PO2-3B 5 47.95 Steel failure outside cube 

PO2-4C 10 46.90 Steel failure outside cube 

PO2-5A 2.5 46.39 Steel failure outside cube 
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FIGURE 7.2 LOAD-DISPLACEMENT GRAPH OF BARS UP TO 20% CORROSION 

 

FIGURE 7.3 LOAD-DISPLACEMENT OF BAR AT 20% CORROSION 
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7.3 CORROSION OF REINFORCEMENT OF SINGLE BARS 

7.3.1 CONTROL BEAM ANALYSIS 

The control beam was loaded, at a rate of around 0.1kN/s, to failure providing results for an 

un-corroded beam section.  Maximum loading achieved was 104.0kN with first visible cracks 

appearing at 23.5kN.  Stress in the steel bars was determined from strain data acquired every 

second (Figure 7.4) and cross-referenced with loading data to provide load-stress data (Figure 

7.5).  Stress appears to increase significantly around 10.3kN suggesting cracking occurs 

although not visible. 

Up to first cracking the strain distribution across the gauges is consistent with an almost 

uniform stress distribution through the steel reinforcement.  Once cracked, the bars are then 

unrestrained allowing for the bars to elongate as the loading is increased causing large 

curvature and widening cracking. 

Although Beeby and Scott (2005) advocate the use of internal strain gauges along the entire 

length of the reinforcing bars, the practicalities of using smaller bars, shorter beams and high 

levels of corrosion make this unfeasible.  It is acknowledged that the use of the strain gauges 

on the surface of the reinforcement may provide strain measurements of steel and concrete 

combined and results from the strain gauges are therefore carefully utilised. 

Where strain gauges are in line with cracking, the strain in the steel will increase and the 

readings will be high.  This is due to the entire load being transferred as stress in the steel, 

with the concrete taking no tensile stress around the crack.  Where the stresses are measured 

in an un-cracked area, the measured strains will be representative of the overall strain in the 

concrete and steel combined due to a composite bond action.  
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FIGURE 7.4 CONTROL BEAM - EXAMPLE STEEL STRESS AGAINST TIME 

 
FIGURE 7.5 CONTROL BEAM - STEEL STRESS AGAINST LOAD 
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7.3.2 EFFECTS OF BOND LOSS ON SERVICEABILITY 

With the general corrosion of steel, the bond between the reinforcement and the concrete was 

affected causing the composite action of the beam to be altered.  The stiffness of the section 

decreases with the loss of bond (Figure 7.6).  Bond loss was determined through the general 

corrosion loss to each bar, with a bar with more than 2% corrosion assumed to have lost 

complete bond.  Although this is not supported through pull-out testing carried out 

previously, Chung, Najm and Balaguru (2008) suggest that a bond loss occurs at more than 1% 

corrosion mass loss.  Although there is a significant scatter, the general trend shows a 

significant reduction of stiffness. 

The loss of bond therefore has a pronounced effect on serviceability, with the load at which 

first visible cracking occurs following a similar pattern to the stiffness (calculated from 

load/deflection curves). 

 
FIGURE 7.6 REDUCTION IN STIFFNESS DUE TO BOND LOSS 
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(Table 7.2).  Due to the induced corrosion technique and the variability in material properties 

between bars, some variability in ultimate capacity results was expected.  

TABLE 7.2  EFFECT OF GENERAL CORROSION ON STRUCTURAL RESPONSE 

Beam Maximum 

load, kN 

First 

visible 

crack, kN 

Deflection 

(first crack), 

mm 

Stiffness after 

cracking, 

kN/mm 

Corrosion, %wt. steel 

Bar 1 Bar 2 Bar 3 

1 104.0 23.5 0.76 12.5 0.0 0.0 0.0 

6 94.2 19.6 0.61 11.4 5.6 5.6 5.6 

10 95.6 17.7 0.74 8.8 9.0 9.0 9.0 

 

7.3.4 EFFECTS OF PITTING CORROSION ON STRUCTURAL CAPACITY 

Pitting corrosion reduces the remaining cross sectional area at a given location where 

chlorides have reached the steel first, commonly at the base of a flexural crack.  To simulate 

pitting corrosion and cross sectional area loss, pits were created at predetermined locations 

prior to casting. 

Comparisons between beams 3/7, 4/8 and 5/9 (Table 7.3) show that regardless of the bar within 

the structure being damaged, the stiffness and ultimate capacity are only affected by the loss 

of overall bond or total steel area respectively.  

7.3.5 SUMMARY OF BEAM TESTING 

Although the stiffness reduces due to the loss of bond, causing increased deflections and 

earlier cracking, overall ultimate capacity can be directly predicted through the loss of cross 

sectional area (CSA) of the steel section.  Figure 7.7 highlights the observed linear trend 

between remaining cross sectional area and ultimate failure load.  As the cross sectional area 

decreases, the ultimate failure load of the concrete decreases approximately linearly (Table 

7.4). 

Extrapolating the line of best fit suggests that an unreinforced beam of identical dimensions 

would support an ultimate load of around 10kN.  Although it is common to discuss bond loss 

when determining service life of a structure, either when corrosion is severe enough or the 

concrete reaches an ultimate limit state, the quality of bond has no significant influence on 

ultimate capacity. 
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TABLE 7.3  COMPARISON BETWEEN EFFECTS OF DAMAGE TO CENTRAL OR EDGE REINFORCEMENT 

Beam Maximum 

load, kN 

First 

visible 

crack, kN 

Deflection 

(first 

crack), mm 

Stiffness after 

cracking, 

kN/mm 

Corrosion, %wt. steel 

Bar 1 Bar 2 Bar 3 

3 101.5 - - 11.8 0.0 9.0 0.0% 

4 103.0 19.6 0.59 12.3 0.0 11.0 0.0 

5 93.2 19.6 0.43 10.7 0.0 10.0 0.0 

7 102.0 15.7 0.38 12.2 12.0 0.0 0.0 

8 96.1 19.6 0.38 11.6 12.0 0.0 0.0 

9 98.1 20.6 0.44 12.6 10.0 0.0 0.0 

 

A simplified load-deflection graph shows the generalised response of all beams with Beam 5 

highlighted to provide an example (Figure 7.8).  From left to right the beams had a reduced 

stiffness causing larger deflections at lower loading.  When responding plastically up to 

ultimate failure the graph becomes horizontal to failure, with the beams that have reduced 

cross sectional areas failing at lower loading.  Complete load-deflection graphs are found in 

Appendix H.  
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FIGURE 7.7 MAXIMUM LOAD AND CRACKING DUE TO LOSS OF STEEL CROSS SECTIONAL AREA 

 
FIGURE 7.8 LOAD – DEFLECTION OF BEAM SET A 
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TABLE 7.4  SUMMARY OF BEAM SET A RESULTS 

No. Maximum 

load, kN 

First 

visible 

crack, 

kN 

Deflection 

first crack, 

mm 

Stiffness 

after 

cracking, 

kN/mm 

CSA, 

mm2 

General 

Corrosion, 

% wt. steel 

Bond 

loss, % 

1 104.0 23.5 0.76 12.48 235.6 0.0 0.0 

2 107.9 29.4 0.69 13.17 228.6 3.0 33.3 

3 101.5 - - 11.82 224.8 3.0 33.3 

4 103.0 19.6 0.59 12.33 222.1 3.7 33.3 

5 93.2 19.6 0.43 10.73 222.0 3.3 33.3 

6 94.2 19.6 0.61 11.38 222.4 5.6 100.0 

7 102.0 15.7 0.38 12.20 223.6 4.0 33.3 

8 96.1 19.6 0.38 11.59 222.4 4.0 33.3 

9 98.1 20.6 0.44 12.59 223.8 3.3 33.3 

10 95.6 17.7 0.74 8.78 214.4 9.0 100.0 

11 94.2 17.7 0.51 10.53 209.7 6.5 66.7 

12 85.8 7.8 0.43 10.95 195.9 13.5 100.0 

13 94.2 17.7 0.36 10.13 213.0 5.3 66.7 

14 87.3 17.7 0.53 8.49 205.8 12.7 66.7 

15 100.1 13.7 0.46 10.16 204.4 8.2 100.0 

16 94.2 27.5 0.81 10.08 216.0 2.5 100.0 

17 92.7 19.6 0.25 12.33 198.8 9.8 100.0 

18 107.9 24.5 0.91 12.38 235.6 0.0 33.3 

19 103.0 29.4 1.02 10.73 235.6 0.0 33.3 

20 105.5 - - 9.12 235.6 0.0 66.7 
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7.4 CORROSION OF REINFORCEMENT IN LAPPED SECTIONS 

7.4.1 THEORETICAL BEHAVIOUR 

As lapped reinforcement is sometimes seen as a source of weakness in reinforced concrete, 

theoretical evaluation of remaining capacity was carried out.  Corrosion due to chlorides in a 

submerged marine environment has little effect on the bond between steel and the concrete, 

and therefore lapping will be unaffected by bond loss. 

Assuming pitting corrosion occurs at any of 5 locations on the bottom bar (Figure 7.9), the 

effects of pitting will have a varied effect on total capacity of the section.  Considering a unit 

force acting on each bar with a unit area, the maximum stress would therefore be a unit stress. 

 
FIGURE 7.9 EFFECT OF CORROSION ON LAPPED REINFORCEMENT 

 

As the force is gradually transferred between the bars due to the resistance of the bond, the 

location of the pit is critical to the overall strength of the section (Figure 7.10).  As pitting 

occurs locally at a given location on the bottom bar, the stress is increased due to loss of CSA 

(Figure 7.11).  At location 3 it is evident that 75% loss of CSA could occur before stress limits 

are exceeded, similarly at location 2, 50% loss of CSA is critical.  This critical loss of CSA 

decreases linearly to location 0 whereby any corrosion would cause excess stress.  Therefore, 

at location 0, corrosion is most critical, which is identical to a scenario at a location within the 

concrete where there is no lapping, thus showing that lapping is inconsequential when 

considering submerged corrosion. 
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FIGURE 7.10 STRESS AGAINST LOCATION FOR UNCORRODED LAPPED SECTION 

 

 
FIGURE 7.11 STRESS DUE TO LOSS OF CSA AT LOCATIONS 0-3 
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7.4.2 CONTROL BEAMS 

The control beam showed crack patterns that would be expected from a lapped section in an 

area of constant moment.  Cracking occurred at either end of the lapped section, where the 

section capacity reduces by a half due to the decrease in steel from 2 bars to 1 (Figure 7.12).  

 

FIGURE 7.12 CRACK PATTERN ON SET B CONTROL BEAM 

 

Control Beam A was loaded directly to failure, whilst Control Beam B was loaded to 10% 

capacity 4 times and then to 75% capacity, repeated twice before loading to failure (Figure 

7.13). 

After the first set of cyclic loading to 10% capacity, the stiffness didn’t change and the 

beams acted elastically.  After first cracking, the stiffness reduced by 50%.  When 

unloaded, the deflection returned to initial values before stiffening slightly over the next 

5 cycles.  Deflection then increased linearly to failure at an increased stiffness. 

Both control beams ultimately failed at the same loading, as would be expected from 

similar beams, showing no deterioration from 10 cycles. 

Length of lap 
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FIGURE 7.13 LOAD-DEFLECTION OF SET B CONTROL BEAMS 

 

7.4.3 EFFECTS OF GENERAL CORROSION 

General corrosion causes a reduction in the ultimate capacity due to the loss of CSA of the 

steel.  The ultimate capacity decreases roughly proportionally with around a 10% loss of 

capacity with 10% general corrosion, similar to results obtained in sections with individual 

lapped bars (Figure 7.14). 

After corrosion, the stiffness of the section is reduced both prior to and post cracking, 

although this is likely due to the reduced CSA of steel than a large bond loss. 

7.4.4 EFFECTS OF CYCLIC LOADING ON CORRODED SECTIONS 
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initial loading up to 60kN (Figure 7.15).  When unloaded however, the beam remained at over 
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to 10kN cyclically caused no stiffening as seen with the control beam due to the ability for the 

reinforcement to slip due to loss of bond, although only over small lengths. 

Cyclic loading, however, appeared to have no effect on the ultimate capacity of the section, 

however only a small number of cycles were used. 
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FIGURE 7.14 LOAD-DEFLECTION FOR CORRODED LAPPED SECTIONS 

 

 
FIGURE 7.15 LOAD-DEFLECTION FOR CYCLIC LOADING OF CORRODED LAPPED SECTIONS 
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7.4.5 EFFECTS OF PITTING CORROSION 

Pitting corrosion within the lapped section appeared to have no influence on the stiffness or 

the ultimate capacity as the beams still failed at a location outside the lapped area.  This 

supported theoretical behaviour with the lapped section having a larger capacity due to the 

increased steel. 

7.5 KEY OBSERVATIONS 

7.5.1 ULTIMATE CAPACITY 

The ultimate capacity of beams can be predicted through the use of structural analysis 

considering the beams to consist of concrete in compression and the steel acting alone in 

tension.  Reducing the steel cross sections depending on corrosion rates and predicted damage 

to the bars, an estimate for the remaining ultimate capacity can then be achieved. 

7.5.2 SERVICEABILITY 

Serviceability of structures is commonly defined through maximum deflections or maximum 

allowable crack width.  Results have shown that with increased bond loss due to corrosion, 

first visible cracking occurs at a reduced loading limiting service life defined by allowable 

crack widths.  Additionally, the stiffness of a section is reduced due to bond loss causing 

larger deflections under similar loading. 

The reduction in stiffness between an undamaged section and a section with an averaged 

corrosion mass loss of 12.7% was in the region of 30% (Table 7.5).  This caused an increase in 

additional deflection by 43%. 

TABLE 7.5  EXAMPLE SERVICEABILITY CALCULATION 

Beam Stiffness, 

kN/mm 

DDDDF, 

kN 

DDDDd, 

mm 

Undamaged 12 10 0.83 

12.7% mass loss 8.4 10 1.19 

% change - 30% - 43% 
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7.5.3 PREDICTING REMAINING STRUCTURAL CAPACITY OF COMPLEX MARINE 

STRUCTURES 

Lapped sections appear to have no significant effect on the ultimate capacity, as in submerged 

corrosion mechanisms bond loss is insignificant.  As lapped sections have increased steel, the 

worst case section remains a regular cross section with individual bars. 

Predicting the remaining capacity of beams can therefore be estimated using a simple loss of 

steel CSA due to corrosion propagation.  By combining the mass loss expected from measured 

rates with a loss of diameter, estimating the remaining CSA is straightforward and is 

completed in Chapter 8. 
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CHAPTER EIGHT 

8 REMAINING LIFE MODELLING OF MARINE AND OFFSHORE 

CONCRETE 

8.1 INTRODUCTION 

Predicting the remaining ultimate life of a reinforced concrete structure in a marine or offshore 

environment is extremely complex and a function of a large number of variables, which have 

been discussed throughout this thesis.  To completely model the type of failure mechanisms 

and time to failure, structures will need to be analysed as a whole and not just in terms of 

materials of construction. 

Offshore structures have undergone a variety of loading conditions and will continue to 

experience varying conditions over the coming decades.  To complete a structural analysis, the 

loading history is as important as any future loads.  Historical loading, including construction 

and operational loads, and future loading, including decommissioned loading, must be 

determined and analysed at a macro level. 

The structural response to loading will be significantly affected by the material properties, 

including the continued degradation of the materials due to environmental and physical 

loading.  Due to the nature of this research, modelling will focus on the degradation of the 

reinforcing steel, along with a simplified approach to ultimate failure. 

Deterministic methods of modelling are reviewed and utilised for an equivalent concrete for 

offshore structures taking into account the most significant degradation variables as perceived 

by the author (Table 8.1).  Throughout this modelling process, a submerged CEM I concrete 

section with w/c ratio of 0.42 and a cover of 50mm will be applied to existing techniques to 

assess the remaining life of these structures.  Application of experimental results obtained 

throughout this research is achieved, enhancing the remaining life estimations. 

An estimated remaining ultimate life is predicted due to the combination of corrosion 

initiation and propagation, with a probabilistic model allowing for the variability of inputs.  

Probable scenarios are investigated, taking into account the most significant variables. 
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TABLE 8.1  VARIABLES TO BE CONSIDERED DURING MODELLING 

 Variable* Effect on concrete deterioration Importance 

Rating§ 

E
xp

o
su

re
 

Humidity High humidity reduces resistance and can 
increase corrosion 

High 

Oxygen availability Decrease could potentially decrease the 
corrosion rates 

High 

Additional ion 
availability 

Can reduce resistivity increasing 
corrosion 

Low 

Temperature Decrease causes a decrease in corrosion 
by twofold per 10ºC 

Medium 

Chloride 
concentration 

Surface concentration can increase 
diffusion rates causing reduced service 
life 

Medium 

C
o

n
st

ru
ct

io
n

 

Cover depth Increased cover reduces chloride access to 
steel increasing service life 

Medium 

Steel composition Stainless steel or other alloy reduces 
susceptibility to corrosion 

High 

Lapping  X 

Compaction Good compaction reduces the voids 
preventing easier transportation of 
chlorides  

High 

Coatings Prevent ingress of water/chlorides into 
the concrete 

Medium 
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TABLE 8.1  CONT’D 

 Variable* Effect on concrete deterioration Importance 

Rating§ 
M

at
er

ia
l 

p
ro

p
er

ti
es

 

Water/cement ratio Reduced w/c ratio decreases pore size 
and restricts movement of chlorides, 
water and oxygen 

Medium 

Aggregates Aggregates have a pronounced effect on 
strength, but minimal on corrosion rate 

Low 

Binders FA, GGBS and LS can reduce 
permeability of the concrete, thus 
reducing chloride ingress 

Medium 

Age Ageing is shown to reduce chloride 
ingress, more pronounced in ggbs and fa 
concretes 

Medium 

L
o

ad
in

g
 

Magnitude Larger crack widths increase corrosion 
rates 

High 

Frequency Increased frequency may increase the 
flow of chlorides, water and oxygen to the 
steel surface through hydraulic pumping 

Average 

Extreme Extreme loading will cause failure when 
wave/tidal impact load exceeds 
remaining ultimate capacity 

High 

* variables of most importance as determined by the author 

§ importance rating defined by the author and described as high, medium or low 

 

Combining predicted corrosion mechanisms with an overall structural response is 

complicated, therefore where available, empirical data was used to numerically attempt to 

quantify the ultimate life.  Possible failure mechanisms are described, with this research 

suggesting an expected failure mode, with estimated time to ultimate failure. 

8.2 PROBABLE CORROSION MECHANISMS 

Predicting this time to ultimate failure of such a complex structure accurately must be 

undertaken using considerable engineering judgement.  In this case, consideration is taken of 

all corrosion mechanisms and the most likely are outlined.  The scenarios of the three probable 

corrosion mechanisms are summarised in Table 8.2 and detailed throughout this section. 
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TABLE 8.2  SUMMARY OF PROBABLE CORROSION SCENARIOS 

Scenario Summary of corrosion mechanism 

IA Chloride initiates corrosion in weak areas of concrete, however not in a single 

cross section, as would be found in cracking mechanisms.  Corrosion propagation 

will increase gradually as the conductivity of the concrete increases and more 

chlorides become available at the anode. 

IB§ Chloride saturated concrete would cause anodes and cathodes to form freely and 

with ratios depending on the oxygen availability at a cathode.  Low resistivity 

allows for a speedy transfer of charge through the concrete, causing propagation 

to be limited by the oxygen rate and exchange at the cathode. 

IIœ Cracking causes almost instantaneous initiation due to the rapid transport of 

chlorides to the steel, especially when crack widths are above 0.1mm.  Macrocell 

effects will occur with small anodes and large cathodes, with the resistivity of the 

concrete between the areas limiting the corrosion current achievable. 

§ defined in Chapter 5 and highlighted through experimental results obtained in Phases II and IIIA 

œ described in detail and shown by results in Phase IIIB experimental work, Chapter 6 

 

8.2.1 SCENARIO IA: UN-CRACKED CONCRETE (RANDOM CHLORIDE PROFILES) 

Chlorides will reach the steel in various locations throughout the structure due to poor 

workmanship, variable cover depths, and variations in exposure.  Corrosion will then initiate 

where chloride is present, most probably the hoop reinforcing steel that is located closer to the 

surface.  During the initial phase where drawdown is operational, macrocell corrosion will 

occur with the internal reinforcement becoming a cathode with continuous replenishment of 

oxygen at the steel surface.  Corrosion currents will be limited by the resistance through the 

concrete between the cathode and anode, limiting the flux of hydroxyl ions completing the 

electrochemical cell. 

8.2.2 SCENARIO IB: UN-CRACKED CONCRETE (CHLORIDE SATURATED CONCRETE) 

Assuming chlorides penetrate the concrete uniformly because of the homogenous material 

properties, concrete will be saturated with chlorides causing a lower cover resistivity.  

Initiation can occur on any area of the steel surface, likely to be where steel is highly stressed, 
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oxygen is readily available or there are defects on the steel surface.  The anode to cathode ratio 

is then naturally balanced, depending on the ability for the charge to be transmitted through 

the concrete pore structure.  If oxygen becomes more readily available, corrosion will 

propagate over a larger anodic area, and should oxygen become less readily available, the 

anodic area will decrease, as shown in Chapter 5. 

Once propagation has begun to occur, the rate can be altered due to environmental changes, 

however, because of a likely decrease in pH at the steel surface and the continued presence of 

chlorides, corrosion will continue to propagate. 

8.2.3 SCENARIO II: CRACKED CONCRETE 

Statically and dynamically cracked concrete will cause almost instantaneous corrosion at crack 

widths above 0.1mm, lower than commonly modelled.  As chlorides, water and oxygen all 

reach the concrete/steel interface through the crack opening, corrosion will initiate in the 

region where the cracking intercepts the steel.  Up to around 3cm of steel was shown to begin 

to corrode, whereby the anodic exchange current density will limit the corrosion due to the 

large cathodic areas within the un-cracked concrete and the relatively low resistivity of the 

concrete in the region. 

As cracks increase in width, the corrosion rate appears to increase linearly for statically 

cracked concrete.  As cracks are increased, the transport of chlorides, water and oxygen 

increase due to a larger surface area through which to dissolve. 

8.2.4 CONCLUSION 

As each mechanism is likely, Scenario II will occur first due to the rapid ingress of chlorides 

through a crack.  As massive offshore structures are difficult to assess for cracking due to 

marine growth and lack of ability to inspect, initially the designs were carried out to 

standards, and therefore within the service life period cracks up to 0.2mm are expected.  As 

corrosion in submerged, low oxygen environments will not lead to expansive cracking and 

spalling, the loss of CSA will still occur. 

8.3 PROBABLE OVERALL FAILURE MECHANISMS 

As with the corrosion mechanisms, there are a number of possible failure mechanisms for the 

entire structure.  Utilising literature and results reported in Chapter 7, five probable failure 

mechanisms are considered likely and are described throughout this section (Table 8.3). 
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TABLE 8.3  SUMMARY OF PROBABLE OVERALL FAILURE MECHANISMS 

Scenario Summary of corrosion mechanism 

I Flexural failure of a section will occur when the capacity of the section is reduced 

to below the loading and can simply be caused by a reduction in the cross 

sectional area of the steel.  As an assumption, the section capacity of the concrete 

can be modelled as proportional to the steel cross sectional area. 

II§ Corrosion of the steel lateral reinforcement will cause a reduced ability to 

withstand shear stresses, causing a possible shear failure before the vertical 

reinforcement has reduced in cross section significantly. 

III Large reduction in stiffness caused by bond failure causing no stress to be 

transferred from the steel to the concrete.  As the deflection increases, the 

compressive zone will reduce in size causing increased stress and crushing failure 

of the concrete. 

IV Loss of capacity at lapped sections will cause failure in a similar manner to 

Scenario I, however should the corrosive product be expansive a combination of 

Scenario I and III could occur.  The area of loss of cross section is vital when 

determining capacity in a lapped section, as discussed in Chapter 7. 

Vœ Should the prestressing steel begin to corrode, rapid loss of capacity will be 

evident causing a likely catastrophic instantaneous flexural failure.  

§ this is less likely in the decommissioned period due to the lack of expansive corrosion product in submerged 

corrosion observed in Chapter 5. 

œ similar overall failure mechanism to Scenario I, however likely to be instantaneous 

 

8.3.1 SCENARIO I: FLEXURAL FAILURE DUE TO LOSS OF CSA ON VERTICAL 

REINFORCEMENT 

As reported in Chapter 2 and shown through results in Chapter 7, the cross sectional area 

(CSA) of steel is the dominant factor influencing the remaining ultimate capacity of reinforced 

concrete subjected to overturning moments.  Simplistically, failure of the structure would 

occur when reinforcement corrosion reduces the section capacity sufficiently that applied 

moments would exceed this capacity. 
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Estimating time to such a failure could be loosely achieved by assuming corrosion at cracking 

occurs on each bar at a predicted propagation rate.  The expected loss of CSA and therefore 

section capacity can be calculated, predicting the decline in structural capacity.   

8.3.2 SCENARIO II: FLEXURAL-SHEAR FAILURE DUE TO CSA LOSS ON LATERAL 

REINFORCEMENT 

As lateral/hoop reinforcement is located closer to the surface, it is highly likely that chlorides, 

water and oxygen will penetrate to this steel first, initiating corrosion.  With the loss of this 

restraining reinforcement, shear stresses could lead to failure of the structure when these bars 

fracture. 

As highlighted by Ou, Tsai and Chen (2012), the majority of lateral reinforcement is of a 

smaller diameter than vertical reinforcement.  This can lead to a greater percentage loss of 

section over the same corrosion duration as vertical reinforcement, causing a larger reduction 

in shear capacity.  Determining the remaining shear capacity through a complex section with 

corroded reinforcement could be difficult due to the potential for stress transfers through a 

number of different mechanisms. 

Nevertheless, the author believes this mechanism is highly likely due to the shallow cover to 

the hoop reinforcement and therefore must be considered and an attempt to model must be 

made in the future. 

8.3.3 SCENARIO III: BOND FAILURE DUE TO GENERAL CORROSION 

Although unlikely, if sufficient oxygen is available general corrosion of the steel may occur, 

possible during an operational state.  Should the bond of all bars in a section be lost, slip of the 

tensile reinforcement may occur, causing large deflections and increased compressive strain.  

When the curvature becomes excessively large, the concrete in the compressive zone crushes 

due to geometrical restraint. 

Despite this being a theoretically possible mechanism, the author rules this out as a potential 

failure mode for such a structure due to the unlikely conditions that would lead to such a 

corrosion mechanism in a chloride laden submerged environment.  Yet if deterioration of 

bond due to repetitive loading or alternative degradation mechanism occurs, this may require 

consideration. 
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8.3.4 SCENARIO IV: LOSS OF CAPACITY AT LAPPING OF STEEL 

Lapping of steel is often considered a weak point in concrete structures, relying on the bond 

between the bars and concrete to maintain a continuous path for the transfer of tensile stress.  

General corrosion would cause a loss of bond which could lead to a reduction in the stress 

carrying capacity of the reinforcement.  As discussed previously in Chapter 5, general 

corrosion is unlikely, however further research into the effect of pitting corrosion and stress 

transfer is required. 

Location of anodic areas are critical when considering the overall capacity loss as residual 

capacity could be retained should corrosion occur in the centre of a lap in comparison with 

corrosion in the main bar the end of the lapped section as reported in Chapter 7. 

Although the location of the anodic area along the length of the lap is critical for the ultimate 

capacity of the section, the worst case scenario occurs at the end of the lapped section whereby 

the structural section contains only one reinforcing bar. 

8.3.5 SCENARIO V: FAILURE OF PRESTRESSING SYSTEM 

Although grouted prestressing tendons are located at depths of at least 100mm, rapid 

corrosion of tendons could lead to an instantaneous failure.  Concrete around the prestressing 

tendons should remain in compression, preventing any cracking and therefore can be 

regarded as a failure mechanism that could occur should access for seawater to the tendons be 

achieved. 

With loss of prestress, the structure must be evaluated to determine if the reinforced structure 

would withstand the loading in the decommissioned state.  Should the structure be able to 

withstand these forces, the crack widths would be increased which would lead to accelerated 

corrosion rates.  Ignoring the effects of prestressing, the section loss and remaining ultimate 

capacity could be estimated as for previous mechanisms.  

8.3.6 ADDITIONAL CONSIDERATIONS 

Failure mechanisms described consider the ultimate failure in terms of the loading exceeding 

the remaining capacity.  In an under reinforced concrete beam without corrosion, the steel will 

yield causing large cracking and increasing deflections.  As the curvature continues to 

increase, the concrete cover in compression will proceed to crush and spall due to the reduced 

compressive zone.  Failure in this manner absorbs energy, meaning an impact load, such as 
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large wave loading in a storm, may permanently disfigure the structure whilst not causing 

total structural collapse. 

Corrosion causes a reduction in ductility of steel reinforcement due to cracking in the steel, as 

well as the potential for hydrogen embrittlement caused through hydrogen production in 

corrosion pits.  Less ductile steel does not allow for as much energy to be absorbed, potentially 

leading to an instantaneous catastrophic failure. 

8.3.7 CONCLUSION 

Although any of the five scenarios are probable, it is difficult to assess which mechanism will 

cause failure on such a large scale and complex structure.  As corrosion is likely to initiate at 

areas of cracking, the author believes Scenario I to be critical and therefore modelling of 

ultimate life of such structures should be based on the propagation of vertical reinforcement 

and subsequently the loss of CSA in outer vertical reinforcement. 

8.4 DETERMINISTIC MODELLING OF CORROSION APPLYING VARIOUS 

METHODOLOGIES 

8.4.1 DURACRETE 

Applying the DuraCrete model (Lindvall, 1998) to submerged concrete used throughout the 

experimental programme, a time to corrosion initiation was determined to be 20.6 years and a 

corrosion propagation rate of 80.09µm/year (Appendix C). This is approximately equivalent to 

12.4 years to lose 1mm of reinforcing steel diameter. 

For 75mm depth of vertical reinforcement the initiation period was determined to be 59.1 

years.  Assuming corrosion initiates in this method, hoop reinforcement will have reduced by 

over 3mm in diameter before vertical reinforcement begins to corrode.  It is, however unlikely 

the vertical reinforcement will take an additional 40 years to initiate when chlorides have 

reached the lateral reinforcement. 

8.4.2 CONCRETE SOCIETY TECHNICAL REPORT 61 

Application of methodologies in Technical Report 61 estimate the initiation period to be 53.2 

years for 50mm cover and 146.6 for 75mm cover (Appendix C). 
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8.4.3 LIFE365 

Application of Life365 models determines initiation to be only 7.4 years for 50mm cover 

increasing to 20.3 years for 75mm cover.  No attempt was made to model propagation, which 

is therefore defined as 6 years before repairs are necessary (Appendix C). 

8.4.4 UPDATED METHOD FOR CURRENT NORTH SEA STRUCTURE 

Updating a model to incorporate a revised ‘ultimate life’ prediction, defined having taken into 

account structural response of beams due to artificially applied heavily advanced corrosion.  

Corrosion propagation has been shown to continue in submerged environments, albeit at a 

rate that will vary slightly depending on the oxygen availability within the water.  Due to 

there being significant concentrations of dissolved oxygen in the North Sea, corrosion 

propagation corrosion rates are altered to take this into account, along with the effects of 

cracking. 

The author believes that the resistivity of the concrete between cathodic and anodic areas to be 

the corrosion limiting factor, rather than the rate of cathodic reaction as often stated for 

submerged conditions.  This is due to conditions within the concrete being conducive to 

anodic and cathodic reactions, and the continuity of the steel reinforcement. 

Three concrete systems will be considered for this modelling; sound/un-cracked, statically 

cracked, and dynamically cracked sections.  Although initiation will take considerable time in 

sound concrete, corrosion will still propagate in these areas once initiation has occurred, albeit 

at a slower rate.  Critically, the cracked area is likely to cause ultimate failure due to the 

increased corrosion rate. 

 @Ft�� = .\ ∙ .¨ ∙ .©u ∙ .§ ∙ @Ft��,0xy  EQUATION 8.1 

Where variables are as listed in Table 8.4. 
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TABLE 8.4  VARIABLES FOR UPDATED ULTIMATE-LIFE MODELLING OF PLAFTORM A CONCRETE 

Variable Value 

Temperature factor (kT)# .\ = 2)\�\]^_�0 *
 

Dynamic loading factor (kD)† .¨ = 3 

Oxygen exposure factor (kOx) .©u = 1˜ 

Maximum crack width (wmax), mm �m�u = 0.2˘ 

Crack width factor (kw) 
.§ = 11.47��m�u − 0.2
 + 1.0 

for wmax > 0.12mm 

Reference corrosion current at crack width 

0.2mm (icorr,0), µA 
120 ⅟ 

Diameter loss (v), mm/year ¦ = 0.0116 ∙ @Ft�� 

Propagation duration (tprop),years ���t� = 50 

Reinforcement diameter (dref), mmœ �� ! = 32 

Reinforcement diameter post corrosion (d), 

mm 
� = �� ! − .�¦ ∙ ���t� 

Steel cross sectional area (As,0), mm2 x�,0 = ª�� !�4  

Area of anode (AA), cm2 xy = 30 

Capacity loss (R), % 
x�,[x�,0 

# factor designed to increase corrosion rate by a factor of 2 every 10 degrees 

† judged from dynamic and cracking results, Phase IIIB in Chapter 6 

˘ design value as visual inspection of the submerged concrete is impossible 

˜ conservatively assume oxygen saturated water throughout 

⅟ corrosion current for statically cracked section (wmax = 0.2mm) under laboratory conditions 

œ diameter of rebar used as vertical reinforcement on offshore structures 

 

Remaining steel CSA (As,R) is calculated assuming a constant corrosion current given the 

environmental and loading factors applied.  This initial simplistic estimation assumes a worst 
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case corrosion and damage scenario, and will provide a basis for a lower bound estimation of 

longevity of the structure. 

 x�,� = ª���4  EQUATION 8.2 

Where; 

As,t remaining steel CSA, mm2 

dt  reinforcement diameter post corrosion, mm 

Corrosion rates with 0.2mm dynamic cracking are estimated to be 0.046mm/year, equivalent 

to approximately 22 years to lose 1mm of reinforcement diameter (Appendix C).  This is 

assuming corrosion is occurring at one crack location on an individual beam.  As ultimate 

capacity is for all intents and purposes proportional to the remaining CSA of steel, a lower 

bound estimate for loss of capacity is predicted assuming every steel bar corrodes at the same 

section.  For various dynamic crack widths, minimum remaining capacity is shown in Figure 

8.1, where capacity is determined as the loss in percentage of CSA of individual reinforcing 

bars. 

 

FIGURE 8.1 PREDICTED WORST CASE LOSS OF CAPACITY DUE TO VARIATIONS IN CRACK WIDTH 

8.4.4.1 OPERATIONAL/WORKING STATE 

Operational platforms often undergo additional physical loading through raised temperatures 

causing large temperature gradients and a draw-down system to reduce the internal pressure 
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of each leg allowing hydrostatic pressure to increase the compression in each leg.  

Furthermore, increased bending moments can be caused due to tall steel topsides increasing 

the leverage and therefore the bending moment at the base of the legs.  Topsides may, 

however, cause legs to act as a portal frame increasing the stiffness and reducing lateral 

deflection of the structure. 

Any area within the legs where a draw-down is effective, oxygen will be more readily 

available at the concrete surface causing an increased corrosion current should initiation occur 

during this operational state (Figure 8.2). 

8.4.4.2 DECOMMISSIONED STATE 

Post-decommissioned concrete GBS will have had steel topsides removed and legs flooded as 

shown in Figure 8.3.  As the compressive loading is somewhat reduced, a large relaxation of 

the concrete is expected.  However, bending moments are also reduced, which decrease the 

maximum tensile strain on the concrete counteracting the reduction due to reduced 

compressive payload.  An increase in maximum crack width is expected however, with 

chloride ingress subsequently accelerated.  Macrocell effects from the reduction in availability 

of oxygen on the internal face will reduce, thus decreasing the corrosion rate somewhat, 

although results in Chapter 5 prove that the effect is not significant. 

8.4.5 SUMMARY 

As shown for the current corrosion models, there is a large discrepancy between results, with 

initiation ranging from around 20 to 150 years (Table 8.5) with propagation commonly 

ignored or arbitrarily defined.  Although models of this form are vague, experimental data 

must be utilised to form an empirical estimation of remaining life by defining propagation and 

initiation times for individual concrete types.  The updated model uses similar methodology 

to others, however variables are populated through results obtained from the literature review 

and more importantly, those highlighted through Chapters 4 to 7. 
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FIGURE 8.2 OPERATIONAL DRAWDOWN ENVIRONMENT WITHIN THE LEGS 

 

 
FIGURE 8.3 DECOMMISSIONED STEUP – TOPSIDES REMOVED AND LEGS FLOODED 
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TABLE 8.5  SUMMARY OF PREDICTED INITIATION AND PROPAGATION TIMES FOR 75MM COVER 

Model Initiation 

years 

Propagation 

years 

Comments 

DuraCrete 59.1 12.4# For 32mm diameter bars, CSA will be 

reduced by 50% after around 180 years from 

initial exposure assuming general corrosion 

around the entire circumference of the bar.  

Concrete 

Society TR 61 

146.6 N/A Extremely long initiation period in which 

ageing has a large effect on the chloride 

ingress.  This model suggests the structures 

could be left without issue. 

Life 365 20.3 6 Propagation period is ‘time to repair’ and is 

constant regardless of structure.  This model 

suggests North Sea structures should have 

undergone reparation works programmes in 

the past 20 years. 

Updated 48 uncracked¬ 

0 Cracked 

22.1# Initiation is assuming a CEM I concrete and 

is calculated as a mean value.  Variability in 

results is extremely large, with a reported 

standard deviation of 25 years.  Propagation 

# per loss of 1mm reinforcement 

¬ calculated using a Monte Carlo simulation with 100,000 repetitions 

8.5 PROBABILISTIC MODELLING OF CORROSION RATES 

8.5.1 INTRODUCTION 

Applying variability to input parameters for deterministic modelling through the use of a 

Monte Carlo method is common practice, and is used in combination with the updated 

method as reported in Section 8.4.4.  Expected initiation time for un-cracked sections along 

with corrosion rates for the operational and decommissioned states are calculated.  

8.5.2 ASSUMPTIONS OF VARIABLES 

Engineering values for modelling are defined through experimental results, reported data in 

the literature and engineering judgement by the author.  Distributions of variables are 

determined from existing models and judgement from observed results. 
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Material properties used are a CEM I concrete with a 0.42 w/c ratio determined from a 

platform described in Tegelaar (1975).  It is assumed a gravel aggregate used for testing is 

similar to the flint most likely used in construction. 

The corrosion is assumed to be as in Scenario II, whereby corrosion propagates at the base of 

the cracking, with little to no expansive corrosive product, causing no cracking or spalling.  

Base corrosion rates are determined from Phase IIIB results assuming a crack width of 0.2mm 

in submerged conditions at 293K. 

8.5.3 INITIATION 

Time to initiation was calculated using a Monte Carlo simulation with variables determined 

from experimental research along with reported literature data, as shown in Table 8.6.  Ageing 

factors are defined as zero due to the contradictory evidence reported throughout literature 

for CEM I offshore concrete. 

TABLE 8.6  VARIABLES USED IN CALCULATING EXPECTED TIME TO INITIATION FOR CT07 CONCRETE 

Variable Distribution Mean StDev 

Dapp (x10-12), m2/s ˘ Normal 1.3 0.4 

Cs, % wt. concrete Uniform⅟ 0.5 0.06# 

Ccrit, % wt. concrete Normal 0.1 0.03† 

x, mm Normal 75 8 ˜ 

˘ determined from 90 day diffusion coefficient using CEN TS 12390 methodology 

˜ 95% chance of the cover being between ±20% 

⅟ CS is commonly between 0.4 and 0.6 in literature and throughout results therefore the author 

chose a uniform distribution 

# calculated standard deviation from a uniform distribution from 0.4 to 0.6 

† determine from literature review, 95% confidence Ccrit will be ±60%. 

Using 100,000 repetitions of the deterministic method applying the variables listed, time to 

initiation can be described as a positively skewed normal distribution with mean 48 years and 

a standard deviation of 25 years (Figure 8.4).  Cumulative probability of initiation is shown in 

Figure 8.5, and if allowing for a 10% chance of initiation before assuming propagation, the 

time to initiation would be around 24 years. 
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Deterministic and probabilistic modelling both suggest corrosion initiation is likely to have 

begun on offshore structures of this type, even when ignoring cracking.  Propagation rates 

will determine the ultimate longevity of the structure as corrosion is the ultimate cause of 

failure in offshore structures. 

 

 
FIGURE 8.4 ESTIMATED DISTRIBUTION OF TIME TO INITIATION IN UNCRACKED CONCRETE  
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FIGURE 8.5 CUMULATIVE PROBABILITY OF CORROSION INITIATION IN UNCRACKED CONCRETE 

  

8.5.4 OPERATIONAL PERIOD 

The operational state is modelled by doubling the oxygen factor due to previous research 

showing corrosion continues at considerable rates in submerged environments.  The 

availability of oxygen on the internal face of the concrete however, can increase the rate at 

which dissolved oxygen reaches the steel due to the convection zone, whereby gaseous 

oxygen will be transported faster than dissolved oxygen. 

The updated deterministic methodology is applied to determine the average and mean 

corrosion rates expected under the given conditions.  A Monte Carlo simulation was carried 

out with 100,000 repetitions using the variables outlined in Table 8.7. 

From these calculations, icorr was determined to have a mean average of 7.6µA/cm2 and a 

standard deviation of 2.7µA/cm2, which will be subsequently used for ultimate remaining life 

modelling (Figure 8.6). 

 

 

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 50 100 150 200

C
u

m
u

la
ti

v
e 

p
ro

b
ab

il
it

y

ti, years



 

212 
 

TABLE 8.7  VARIABLES FOR OPERATIONAL CORROSION CURRENT MODELLING 

Variable Distribution Mean StDev 

icorr,0, µA# Normal 120 30 

T, K⅟ Normal 8 1 

w - 0.2˘ - 

kd Uniform˜ 2.5 0.3 

kox Normal 2† 0.5 

AA, cm2 - 30˘ - 

# determined from results of set A, Phase IIIA, Chapter 6 

⅟ Schlüter and Jerosch (n.d.) show temperature in the region of the platforms commonly fluctuates 

between around 7 and 9°C (280-282K) 

˘ no variability applied, therefore the value is not a mean but a single figure 

˜ the author defined this variable from Phase IIIB results, reported in Chapter 6 

† the author determined a significant chance the corrosion rate will rise by a factor of 2 as experimental 

work supports in Chapter 5 

- no value defined 

 

 
FIGURE 8.6 ESTIMATED DISTRIBUTION OF CORROSION RATE FOR OPERATIONAL CONCRETE 
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8.5.5 DECOMMISSIONED PERIOD 

Once decommissioned, the internal face of the legs will now be exposed to seawater, at 

identical saturations of dissolved oxygen as the seawater.  The oxygen coefficient is reduced to 

reflect this, with a mean value of 1, as experimental studies were carried out in submerged 

saturated conditions (Table 8.8). 

TABLE 8.8  VARIABLES FOR DECOMMISSIONED CORROSION CURRENT MODELLING 

Variable Distribution Mean StDev 

icorr,0, µA# Normal 120 30 

T, K⅟ Normal 8 1 

w, mm Fixed 0.2˘ - 

kd˜ Uniform 2.5 0.3 

kox Normal 1† 0.1 

AA, cm2 Fixed 30˘ - 

# determined from results of set A, Phase IIIA, Chapter 6 

⅟ Schlüter and Jerosch (n.d.) show temperature in the region of the platforms commonly fluctuates 

between around 7 and 9°C 

˘ no variability applied, therefore the value is not a mean but a single figure 

˜ the author defined this variable from Phase IIIB results, reported in Chapter 6 

† the author determined a variation of corrosion rate due to oxygen variation as being ±20% 

- no value defined 

 

From these calculations, icorr was determined to have a mean average of 3.8µA/cm2 and a 

standard deviation of 1.2µA/cm2, which will be subsequently used for ultimate remaining life 

modelling (Figure 8.7). 
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FIGURE 8.7 DISTRIBUTION OF ESTIMATED DECOMMISSIONED CORROSION RATE 

 

 

8.6 REMAINING ULTIMATE CAPACITY 

Remaining ultimate capacity is difficult to determine precisely, as the external vertical 

reinforcement will not solely determine the capacity.  For the purposes of modelling however, 

remaining capacity of the external steel vertical reinforcement is defined as critical.   When the 

remaining steel cross sectional area, ultimate capacity in this instance, drops below 50% the 

structure is assumed to have failed. 

Assuming an operational duration of 45 years, and propagation between 0 and 205 years, the 

probability of failure was calculated through Monte Carlo simulations with 100,000 repetitions 

(Figure 8.8 and Table 8.9). 
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FIGURE 8.8 CUMULATIVE PROBABLITY OF ULTIMATE CAPACITY AFTER CORROSION  

 

TABLE 8.9  PROBABILITY OF FAILURE 

Age (top + tdecom), 

years 

Probability of failure 

45 0.002% 

120 12% 

150 35% 

250 84% 

 

Although simplistic and extremely conservative, results have shown that although corrosion 

is occurring, the large structures located in the North Sea will likely last into the next century 

unhindered.  Taking into consideration spatial variations in corrosion, reduced crack widths, 

and extra remaining capacity among other factors, the structures are likely to last for centuries 

without becoming dangerous, supporting decommissioning through leaving the structures in 

situ. 
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8.7 SUMMARY 

Due to the large variability in modelling chloride induced corrosion, it is advised that when 

dealing with projecting estimations of service life, experimental research is completed on the 

chloride diffusion coefficients of the specified concrete as well as work on corrosion rates in 

the environment in which the structure is exposed. 

Although chloride profiling and use of diffusion coefficients are ill-advised for long-term 

modelling as previously recommended, understanding the type of concrete for comparison 

with other existing structures could provide vital insight into the long-term degradation of 

further structures.  Building a database of existing structures and the damage caused by 

chloride-induced corrosion will allow for a better informed estimation of remaining service or 

ultimate life in future structures. 

Probabilistic modelling carried out in this research, assuming a 50% loss of CSA accounts for 

ultimate failure conditions, suggests offshore structures will have an 11.6% chance of ultimate 

failure by 120 years of exposure.  These estimates were based on experimental data gathered 

throughout, literature data where applicable and sound engineering judgement.  All estimates 

are very conservative, supporting the belief that the structures will remain in situ with little 

damage for at least a century.  It is therefore recommended that such structures are left in situ 

when decommissioning as to avoid costly removal. 

Further work is recommended on the structural response of structures with heavily corroded 

reinforcement to provide a better understanding of the like failure mechanisms of heavily 

degraded offshore concrete structures.  It is also suggested the response of alternative section 

shapes and sizes are reviewed.  These recommended studies are outlined in Chapter 9. 
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CHAPTER NINE 

9 CONCLUSIONS AND RECOMMENDATIONS 

9.1 GENERAL SUMMARY 

Current service-life and ultimate-life modelling of offshore concrete structures is often flawed 

due to the misrepresentation of the complexity of reinforced concrete structures and their 

exposed environments.  These, along with the issue of current models using simplified 

diffusion equations to predict the onset of corrosion ignoring cracking and propagation rates, 

often cause erroneous time-to-failure predictions. 

Investigative works carried out through this thesis have challenged preconceived views of 

submerged concrete corrosion, corrosion in cracked structures either statically, or more 

importantly dynamically, loaded and the remaining life of such structures.  Experimental 

work challenged the basic methodology of modelling service life through initiation along, and 

important conclusions can be drawn from the works carried out with respect to ultimate life of 

structures in a sub-sea environment. 

Structures in the North Sea environment are likely to remain unaffected for at least a hundred 

years, however the likelihood is the concrete will show little signs of degradation for many 

years after this.  An area for concern remains any concrete protruding through the splash zone 

as expansive corrosive products will form due to the availability of excessive oxygen.  

Submerged concrete, without this issue is likely to continue to remain relatively undamaged 

for much longer. 

9.2 CONCLUSIONS 

The following conclusions are drawn from experimental works carried out throughout this 

research project and are summarised in Table 9.1. 

1) Transport of chlorides will inevitably initiate corrosion in concrete structures exposed to 

saline solutions.  The rate at which chlorides penetrate is heavily dependent on the solution of 

exposure, where many alternative ions are present the surface skin effects will become 

predominant and can have a more significant influence on initiation than alterations in 

water/cement ratio or additional cementitious materials.  Construction quality (such as quality 
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of compaction) also has a very significant influence on initiation and should be modelled 

through conservative estimates of mean and standard deviation of variables. 

Experimental works, however, showed that in structures under flexural loading whereby 

cracking occurs, corrosion will initiate rapidly rendering the transport of chlorides through 

the cover irrelevant to ultimate life estimation.  It is vital that the structural response of the 

structure in question is well understood allowing for the number of cracks, widths of cracks 

and location of cracks to be known. 

2) Corrosion propagates at significant rates under sub-sea conditions, wherein oxygen is 

limited.  The anodically polarized area of the steel however alters in size depending on oxygen 

availability, even though chlorides are present along the entire length of the bar.  Whereby 

cracking has occurred, the availability of chlorides at the steel surface and the resistivity of the 

concrete will be the limiting factors for propagation rates. 

3) Flexural cracking that penetrates past reinforcement to the neutral axis causes almost 

instantaneous corrosion when the cracks are greater than 0.1mm.  Corrosion rates then 

increase linearly up to measured static crack widths of 0.7mm. 

At the base of the crack, 3cm of length appeared to be anodic whereby corrosion was visible 

after exposure to the atmosphere.  Although there is evidence of pitting within the 3cm area, it 

can be assumed for modelling that the CSA reduces averaged over this small area. 

4) When dynamically loaded, the cracks appeared to increase the corrosion rate by a factor of 

roughly 2.5 after taking the number of cracks in the surface and anodic areas of the bar into 

account.  A dynamic factor was proposed to take this into account in propagation modelling.  

Further works on the effects of dynamic cracking on corrosion rates are required to enhance 

understanding of how variable frequency, variability of magnitudes with infrequent peak 

loads, and gradually increasing crack width and depth effect corrosion propagation rates of 

reinforcing steel. 

5) Bond loss does not occur with modern day steel reinforcing bars up to general corrosion of 

around 15% in pull-out testing, supporting the hypothesis that the loss of CSA is the most 

important factor in the reduction of ultimate capacity.  However, as the CSA was reduced and 

bond was deteriorating, bending tests showed a loss of stiffness of the section.  In turn this 

caused larger deflections and greater crack widths under identical loading conditions. 
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6) As the CSA is reduced, the ultimate capacity is reduced proportionally.  This provides the 

basis for predicting the ultimate capacity through the estimated loss of CSA due to corrosion 

at rates previously determined. 

TABLE 9.1  SUMMARY OF EXPERIMENTAL FINDINGS 

Phase Conclusions 

I Initiation will occur within 50 years of exposure for sub-sea concrete of common 

quality to that which exists within the North Sea.  Seawater causes slower diffusion 

of chlorides through concrete in comparison with NaCl, with diffusion coefficients 

unable to be obtained at early ages of exposure. 

II Corrosion continues to propagate in low oxygen environments, such as those of 

fully submerged concrete in the North Sea.  Anodic areas are reduced due to lack of 

oxygen, however the overall corrosion rate remains significant. 

IIIA Reduced water/cement ratios cause longer initiation and slower propagation of steel 

in submerged conditions.   

Corrosion rates appear to continue in submerged/low oxygen environments similar 

to results from Phase II, thus validating previous results. 

IIIB Static cracking causes corrosion almost instantaneously, with significant rates 

observed for cracks of greater than 0.1mm.  The corrosion rate increases linearly 

with increasing crack width.  Dynamic cracking caused multiple cracks through 

three-point loading, with increasing crack depth.  Corrosion rates increased by a 

factor of roughly 2.5. 

IV Ultimate capacity is heavily dependent on remaining cross sectional area of the 

tensile steel, and appears not linked to loss of bond within reinforcing beams.  

Lapping has an insignificant effect on ultimate capacity and is not a concern for 

ultimate failure of structures, as the failure of lapped sections occur where the 

lapping ends and the section is reduced to single bars. 
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9.3 RECOMMENDED FUTURE WORKS 

Although steps have been taken to improve the understanding of sub-sea concrete 

degradation and aid in the long-term lifetime modelling of existing structures, further works 

should be carried out among material understanding as well as structural response of 

damaged structures.  Along with further laboratory works and continuation of experimental 

methodologies carried out within this thesis, emphasis on validating results with ‘real world’ 

structures should be a priority.  This is not just the case for offshore structures, but for all 

structures whether submerged, tidal, or in the splash zone, exposed either to marine or de-

icing salts. 

Measuring the rate of corrosion in existing sub-sea concrete structures is difficult as 

connecting cables to reinforcement would be impractical.  Taking half-cell measurements 

would be similarly difficult, however this would be much simpler on protruding structures or 

land based structures.  Sampling of cover concrete is easily achievable and would provide 

data on concrete strength, chloride ingress and ageing of the concrete.   

Continuation of dynamic cracking experiments for longer exposure times, differing exposure 

environments. Attempt to control the pressure or oxygen concentration in the submerged 

environment. 

Extended cracking experiments in salt water and analysis of the effect of crack self-healing, 

chemical determination of samples from within the crack to attempt to determine the self-

healing product 

9.3.1 DETERMINATION OF AN APPLICATION FACTOR TO ACCOUNT FOR THE 

‘SEAWATER EFFECT’ 

Continuation of diffusion studies started throughout this research programme by sampling 

concrete exposed to NaCl and seawater solutions over the following years. 

Between 8 and 12 samples of 19 differing concrete mixes are exposed to each solution and 

currently at between 18 and 24 months exposure (Table 9.2).  Profiling and determination of 

Dapp values should be carried out to provide information on ageing of submerged concrete in a 

controlled seawater and NaCl solutions, differences between measured Dapp in each solution 

and an estimation of an exposure condition factor  to apply to measured coefficients for 

lifetime estimation.  



 

221 
 

TABLE 9.2  REMAINING EXPOSED CONCRETE SAMPLES 

Mix reference Cubes Exposure date 

CT01 8 10 August 2011 

CT02 8 10 August 2011 

CT03 12 5 September 2011 

CT04 12 16 September 2011 

CT05 12 20 October 2011 

CT06 12 17 October 2011 

CT07 12 5 September 2011 

CT08 8 10 August 2011 

CT09 12 16 September 2011 

CT10 12 11 October 2011 

CT11 12 22 October 2011 

CT12 12 22 October 2011 

CT13 8 10 August 2011 

CT14 12 11 October 2011 

CT15 12 20 October 2011 

CT16 12 3 November 2011 

CT17 12 3 November 2011 

CTN 8 18 November 2011 

CTBD 8 18 November 2011 

 

The chemical interactions between seawater and the surface layer of the concrete should be 

investigated further, ideally through the use of a large-scale multi-variable experimental 

programme that could isolate the precipitation of compounds in the surface layer directly 

responsible for reduced chloride ingress. 
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9.3.2 DYNAMIC CORROSION EXPERIMENTAL WORK 

Using the setup devised in Chapter 3, and following up on results in Chapter 6, experimental 

work is suggested for dynamic cracking to further understand the effects of dynamic loading 

on corrosion (Table 9.3).  

TABLE 9.3  PROPOSED FUTURE DYNAMIC EXPERIMENTAL WORKS 

Variable Recommended 

experiments 

Comments 

Salt solution NaCl and seawater Determine if evidence of self-healing exists in 

either solution after multiple applied loads. 

Visual inspection of cracks with 

measurements of corrosion rate evolution 

over time.  

Crack width 0.1-0.7mm starting 
widths 

Investigation of the effects on dynamic crack 

width on corrosion rate determining if the 

relationship between crack width and 

corrosion rate is consistent with the 

relationship observed from static cracking 

experiments. 

Frequency 
variation 

1Hz, 0.5 Hz, 0.2Hz Does the frequency of repetitive loading 

influence corrosion rate. Although wave 

frequencies are relatively consistent, loading 

of other structures may vary, i.e. bridge 

traffic. 

Magnitude 
variation 

Peak loading Wave loading is rarely of consistent 

magnitude and can be extremely variable. 

Does extreme rare loading cause a 

consistently greater rate of corrosion. 

Additionally, to determine the true corrosion rates of structures in the North Sea, experiments 

should be completed to determine how low temperatures, extruding metals, dissimilar metals 

and hydrostatic pressure under dynamic loading affects the corrosion rate of reinforcing steel. 
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9.3.3 STRUCTURAL CAPACITY UNDER EXTREME CORROSION 

The ultimate capacity of concrete beams with corrosion of up to 10% loss of mass reduced 

proportionally.  As experimental work was carried out in a relatively short 6 month period, 

similar experiments could be carried out to determine the effects of larger steel mass loss due 

to corrosion.  If the ultimate capacity continues to fall proportionally to the total area of steel 

remaining, the remaining ultimate life of structures could remain substantially long. 

9.3.4 STRUCTURAL CAPACITY OF DIFFERING CROSS-SECTIONS 

Cracking in beams is relatively predictable and occurs across the entire tensile surface of the 

concrete.  Crack patterns in circular sections are likely to be different.  As the bars at the centre 

of the crack begin to corrode, the crack will propagate around the structure, initiating further 

corrosion on other bars in tension. 

Loss of ultimate capacity will occur when the cross-sectional area of steel of this section 

sufficiently reduces the moment capacity whereby the loading will be larger than the capacity.  

To determine the further effects of round steel sections and crack propagation an experimental 

set of hollow cylinders should be cast, and cracked through a bending moment whilst 

submerged.  As the loading rate is constant, corrosion rates of independent longitudinal 

reinforcement should be monitored to determine the spread of corrosion across the bars. 
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